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Abstract

This thesis presents three classes of semi-nonparametric varying coeffi-

cient regression for modelling spatial heterogeneity with cross-sectional

data, panel data, and functional data, respectively, in the urban con-

text.

Chapter 2 presents a selective review of the nonparametric and semi-

parametric methodologies. We first examine the estimation of a non-

parametric regression using the kernel and the series methods, high-

lighting the cost of using the nonparametric methods. Next, we review

the estimation of a varying coefficient regression and stress its relation-

ship with the popular geographical weighted regression. Finally, we

discuss the estimation of a functional linear regression, where the in-

dependent variable itself is a function. The functional principal com-

ponent and Tikhonov regularisation are introduced subsequently to

estimate the model.

Chapter 3 considers a spatially varying coefficient regression model

over irregularly shaped areas. We develop a novel methodology that

combines local polynomials and a non-Euclidean metric, called geodesic

distance, to achieve both coefficient smoothing and spatial prediction

over complex regions. We implement a series of Monte Carlo simu-

lation studies to test the proposed methodology. The results suggest

that our method performs better in the estimated coefficients as well as

the prediction than alternative methods. Finally, we apply the method

to the housing market in Aveiro, Portugal, a coastal area separated by

lagoons and rivers. The results highlight the importance of modelling

spatial heterogeneity and dependence in a hedonic regression.

Chapter 4 presents a spatiotemporally varying coefficient regression

model which extends the spatially varying coefficient regression model

into the temporal dimension. A three-dimensional local polynomial

method is applied to estimate the coefficient. The Monte-Carlo simu-

lations show that the proposed methodology outperforms the existing



geographical and temporal weighted regression. Empirically, we apply

the methodology to study the relationship between human activities

and consumption amenities in Beijing. To measure the human activi-

ties and the distribution of the consumption amenities, we collect two

unique datasets, a high-resolution mobile phone positioning dataset

from Wechat, a mobile social-networking application, and a point-of-

interest(POI) dataset from Meituan-Dianping, a crowd-sourcing re-

view website. The results show that the spatial configurations for

the consumption amenities play a significant role in attracting human

activities, after controlling for a wide range of location-specific char-

acteristics. However, the effects vary substantially over space and a

24-hour time span. The results provide insights into the geographic

contextual uncertainties of local amenities in shaping the rise and fall

in the city liveliness.

Chapter 5 proposes a novel methodology called sieve continuum gen-

eralised method of moments to estimate a functional linear regression

model. The methodology uses the sieve method to achieve dimension

reduction and the continuum generalised method of moments to ex-

ploit all the moment conditions. It provides a general framework for

estimating a functional linear regression with exogenous regressors as

well as a functional instrumental variable regression. The proposed

estimator has a closed-form which makes it easy to implement and in-

tuitively appealing. Finally, we derive the optimal rate of convergence

for the estimator.

Chapter 6 concludes with the summaries, the limitations of the thesis,

as well as the directions for future researches.
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Chapter 1

Introduction

1.1 Overview

The last two decades have witnessed an explosive growth of large geospatial

datasets, catalysed by technological advances in areas such as computing and stor-

age, remote sensors and monitors, as well as GIS-enabled mobile devices (Schintler

and Fischer, 2018). The rise of big data presents many exciting opportunities to

spatial economists. With the data that expand along both observation and vari-

able dimensions1, existing parametric spatial models can offer more accurate in-

ference and prediction. On the other hand, abundant data availability encourages

researchers to apply novel methods such as the nonparametric and semiparamet-

ric regressions to model spatial processes for their flexibility and robustness over

parametric approaches (Pagan and Ullah, 1999; Horowitz, 2012a; Li and Racine,

2007).

This thesis focuses on a class of semi-nonparametric regressions known as the

statistical varying coefficient regression (Hastie and Tibshirani, 1993; Fan and

Zhang, 2008) and its applications in the urban context. The varying coefficient

regressions relax the core assumption that regression coefficients are held fixed in

favour of functional coefficients that are allowed to change with some underlying

covariates. When the underlying covariate in a varying coefficient regression is

space, the model sheds lights on a spatial heterogeneous relationship between

the response and the explanatory variables. This regression setup is particularly

attractive to spatial and urban economists whose research questions often lie in

spatial heterogeneity, the structural differences over space (Anselin, 1988, 2001).

Estimating a semi-nonparametric regression is more complicated than estimating

1Varian (2014) calls data with a large number of observations tall data and data with a
large number of variables fat data.
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a parametric one as the coefficients are unknown functions associated with an

infinite-dimensional parameter space. Smoothing or regularisation is commonly

employed to estimate the components with finite data (Chen, 2007).

Modelling spatial heterogeneity using semi-nonparametric methods is not a

new idea in the spatial literature. Fotheringham and his co-authors proposed the

‘Geographically Weighted Regression’ (GWR) to estimate the spatially varying

coefficients (see, e.g., Brunsdon et al., 1996, 1998; Fotheringham et al., 2002;

Wheeler, 2019). The GWR is later extended to the temporal domain to model

the spatiotemporal heterogeneity (Fotheringham et al., 2015; Ma et al., 2018).

Despite its popularity in the geographic studies, the GWR has many drawbacks.

Specifically, the derivation of the GWR is not founded on rigorous statistical

theories and fails to relate itself with the statistical varying coefficient regression.

We will illustrate using the Taylor approximation that the GWR is essentially a

‘local constant estimator ’, which is known to have several disadvantages such as

excessive bias and poor boundary performance (see Fan and Gijbels, 1996; Li and

Racine, 2007). Besides, the GWR cannot incorporate additional elements such as

non-varying coefficients or spatially correlated errors, which significantly limits its

application in various urban economic contexts. Furthermore, the GWR cannot

work with functional spatial data, i.e., when each datum represents a surface over

space.

In this thesis, we aim to close this gap by developing a suite of statistically

sound varying coefficient models to facilitate the estimation and understanding

of spatial heterogeneity with different data structures. In chapter 3, we develop

a spatially varying coefficient regression (SVCR) for spatial cross-sectional data.

Motivated by the empirical question, the model jointly incorporates four compo-

nents: spatially heterogeneous effects, spatially correlated errors, irregular spatial

domain, and measurement error. In chapter 4, we develop a spatiotemporally

varying coefficient regression (STVCR), which extends the SVCR into the tem-

poral dimension. In chapter 5, we study the heterogeneous coefficients in a func-

tional linear regression (FLR) setting, which has been linked to the spatial lag

model recently (Bhattacharjee et al., 2016a). We propose two estimators for the

FLR with exogenous functional regressors as well as endogenous functional re-

gressors. In both cases, we derive the rate of convergence. Empirically, we study

two important issues in urban economics, urban housing and urban consumption,

using the proposed methodologies. In chapter 3, we apply the SVCR to study

the housing market in Aveiro, Portugal. In chapter 4, the STVCR is applied to

2



study the spatiotemporally heterogeneous relationship between the configuration

of consumption amenities and the distribution of human activities in Beijing.

1.2 Chapter 2: Selective Review of Nonpara-

metric and Semiparametric Regression

This chapter conducts a selective review of several nonparametric and semi-

parametric regression techniques related to this thesis. We first consider the non-

parametric regression, characterised by a regression function with an unknown

functional form. Two popular methods are introduced to estimate the regression

function. The first one is the kernel method, which estimates functional values

by smoothing local data. The other one is the series method, which approximates

a function with a finite number of basis functions. Next, we review the varying

coefficient regression, a semiparametric model with the conditional mean addi-

tive in explanatory variables but heterogeneous in their partial effects. A local

polynomial method is considered to estimate the model. Finally, we review the

functional linear regression, which extends a multiple linear regression with a fi-

nite number of regressors to an infinite number. The functional linear regression

shares some similarity with the varying coefficient regression as the parameters

of interest in both cases are functional coefficients. We introduce two estimators

proposed by Hall and Horowitz (2007), Tikhonov regularisation and functional

principal component analysis (FPCA).

1.3 Chapter 3: Spatially Varying Coefficient Re-

gression

In many empirical applications with spatial data, interest lies in the spatial

heterogeneity of the regression coefficients. In real estate studies, for example, one

may not only be interested in explaining property prices with different housing

characteristics but also in understanding how the effects of these factors vary with

location, as they are related to important policy and business questions.

This chapter develops a new spatial regression technique that incorporates a

spatially heterogeneous coefficient over a non-convex spatial domain and a spa-

tially dependent error with an autocorrelation structure unknown up to a finite

number of parameters. To estimate the coefficients, we apply a two-dimensional

Taylor approximation combined with kernel smoothing over a geodesic distance to

3



measure the closeness between locations. The error autocorrelation, on the other

hand, is estimated via variogram fitting. The methodology is suitable for em-

pirical questions that require joint modelling of spatial heterogeneity and spatial

dependency in the spatial big data context. We apply the proposed methodology

to a hedonic house price model for the Aveiro urban housing market in Portugal –

a coastal area divided by lagoons and rivers, and with natural holes and irregular

boundaries. We focus on the spatially varying implicit price of living spaces and

predicted house prices, the primary objects of inference. Application to the Aveiro

housing market provides exciting new inferences on the value of living spaces and

price predictions.

1.4 Chapter 4: Spatiotemporally Varying Coef-

ficient Regression

In this chapter, we study the relationship between the spatiotemporal urban

human activities and the spatial distribution of consumption amenities in Beijing.

Understanding the interaction between the two variables has been a key research

theme in urban economics since Glaeser et al. (2001). The human activity is

measured by a unique mobile phone positioning (MPP) dataset from China’s

largest social networking application WeChat, whereas the geo-coded consumption

amenity data are retrieved from China’s largest local reviewing website meituan-

dianping. These two unique big datasets offer high-resolution details, which allow

us to infer the relationship between consumption amenities and human activity

in Beijing at a short period (24-hour) and with high spatial granularity.

We develop a spatiotemporal varying coefficient regression (STVCR) model

that allows some or all of the coefficients to vary over space and time, offering a

channel to assess the spatially and temporally heterogeneous relationship. The

model improves upon the geographical and temporal weighted regression (GTWR)

(Fotheringham et al., 2015) by allowing the presence of non-varying coefficients

and by employing local linear estimators. Simulation analysis is conducted to

compare the performances between the two approaches. The results suggest that

the proposed methodology outperforms the GTWR.

Empirically, we apply the proposed STVCR model to study the spatiotem-

poral relationship between human activity and urban consumption, including a

set of control variables. We find that human activity is strongly linked to the

distribution of consumption amenities in Beijing. The effects, however, are not

4



homogeneous and vary substantially over time and space. The temporal hetero-

geneity largely depends on the human periodic cycle. It is stronger during the day

when people are awake and weaker at night when people are asleep. The spatial

heterogeneity depends on the centrality of the location. The effect is higher in the

outer suburb where consumption amenities are at a premium than the central city

where amenities are abundant. These results provide insights into the geographic

contextual uncertainties of the consumption amenities in shaping the rise and fall

in the vibrancy of urbanity.

1.5 Chapter 5: Functional Linear Regression

This chapter studies the theory of functional linear regression (FLR). The FLR

has long been considered as a method not suitable for economic analysis because

‘economic data are not functional data’2. Recently Bhattacharjee et al. (2016a)

points out that a reduced-form spatial lag model with heterogeneous effects can

be considered as a functional linear regression. Analysing spatial data with a

functional linear regression is particularly attractive as it is capable of incorporat-

ing spatial heterogeneity and spatial dependence in a single regression framework.

This chapter studies functional linear regression with exogenous regressor and

functional instrumental variable regression. Both models are Fredholm integral

equations of the first kind, known to be ill-posed. To estimate the slope function

in each model, we propose a unified method that combines the method of sieves

(Grenander, 1981; Chen, 2007) and the GMM with a continuum of moments (Car-

rasco and Florens, 2000). The proposed estimator has a closed-form resembling

generalised least square (GLS), making it easy to implement. Under suitable as-

sumptions, we derive the optimal minimax rate of convergence for the proposed

estimators.

1.6 Chapter 6: Conclusion

This chapter summarises the thesis, highlighting the key methodological con-

tributions and empirical findings. We also discuss the implications of the study

and point to the directions of future researches.

2This is a direct quote from Joel Horowitz at London CEMMAP conference in 2015.
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Chapter 2

Nonparametric and
Semiparametric Regression: A
Selective Review

2.1 Introduction

In this chapter, we conduct a selective review of several nonparametric and

semiparametric regression methodologies in the literature, including nonparamet-

ric regression, varying coefficient regression, and functional linear regression. The

term “regression” in this thesis refers to the statistical techniques used to esti-

mate E(y|x), the mean of a random variable y conditional on a vector of variables

x = (x1, . . . , xk)
T. We call y dependent or response variable and x independent

or explanatory variable. Researchers often impose various assumptions about the

functional form of E(y|x). For example, a multiple linear regression assumes the

conditional mean is linear in x,

E(y|x) = β0 + β1x1 + · · ·+ βkxk, (2.1.1)

where β0, . . . , βk are unknown scalars, or parameters of the regression. The possi-

ble values that these parameters are allowed to take, called the parameter space,

is a subset of a finite dimensional Euclidean space. We call a regression with a

finite number of parameters a parametric regression.

Alternatively, researchers can impose a minimal number of assumptions on a

regression, such as

E(y|x) = f(x), (2.1.2)

where f(·) is an arbitrary k-variate smooth function. This type of regression is

known as a nonparametric regression, and it involves an infinite number of un-
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known parameters. Finally, a semiparametric regression is the one that combines

both parametric and nonparametric elements, such as the partially linear regres-

sion (Robinson, 1988),

E(y|x) = β0 + β1x1 + · · ·+ βk−1xk−1 + g(xk), (2.1.3)

where g is a function left unspecified.

Being a long-standing research topic in the statistical community (see, e.g.,

Stone, 1977, 1980, 1982), nonparametric and semiparametric techniques did not

gain popularity in applied econometrics until recent decades. The rise of the

popularity is attributed to several factors. First, economists began to recognise

the specification error associated with parametric regressions. As the underlying

functional relationships among economic variables are rarely known, a parametric

regression often represents an ‘educated guess’ by a researcher. If the model

assumptions deviate significantly from the actual data generating process (DGP),

statistical inferences drawn from a parametric model will suffer from a sizeable

bias (Wooldridge, 2010). Using motorcycle data, Fan and Gijbels (1996) illustrates

in a simple bivariate setting that when the data generating process is highly

nonlinear, the bias from a simple linear regression model is exceptionally large

and does not diminish, even with a fourth-degree polynomial. With multiple

variables, the nonlinearity effect is aggravated by the possible interactions among

them. Concerns over misspecification have encouraged econometricians to develop

and apply techniques that are more robust to misspecification and rely on less

restrictive assumptions (see, e.g., Robinson, 1988; Ichimura, 1993).

Second, the advance of the nonparametric and semiparametric econometrics is

partly driven by the need to estimate and infer intrinsically functional parameters.

In spatial and urban economics, research interest not only lies in the interaction be-

tween spatial units (spatial autocorrelation) but also in spatial heterogeneity, the

structural differences across space (Anselin, 1988, 2001). A real-estate economist,

for example, is interested in understanding how much people are willing to pay

for an extra square meter of living space in different neighbourhoods, as it helps

price a property more accurately. Nonparametric and semiparametric techniques

offer a flexible way to model smooth spatial heterogeneity with limited data (see

Fotheringham et al., 2002, 2015).

Third, the growth of big data and computing technology also facilitates the

adoption of nonparametric and semiparametric regressions. With the emergence of

big economic data such as high-frequency trading data (Engle, 2000), sensor data
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(Henderson et al., 2012), GPS positioning data (Wu et al., 2016a) and internet-

based data (Glaeser et al., 2017), it becomes feasible to estimate more complex

non-semiparametric models that require a substantial amount of data to achieve

reasonable accuracy. On the other hand, estimating a semi-nonparametric regres-

sion is more computationally demanding than estimating a parametric regression.

To be specific, most nonparametric and semiparametric estimators depend on

one or more tuning parameters which control the smoothness of the nonparamet-

ric components. Common procedures such as ‘cross-validation’ require searching

through all the possible grid values for the tuning parameter and compute the

out-of-sample performance (Craven and Wahba, 1978; Arlot et al., 2010). The

computational burden has been significantly alleviated with the improvement of

computing capacity and the development of distributed computing.

This chapter does not intend to provide a comprehensive review of all the non-

parametric and semiparametric methods. We will focus on the semi-nonparametric

models that are directly related to the proposed methodologies in this thesis and

highlight the advantages as well as the cost associated with these models. The

rest of the chapter is organised as follows. In section 2.2, we review the nonpara-

metric regression focusing on the kernel method. In section 2.3, we review the

series estimation of a nonparametric regression. In section 2.4, we review a class

of semiparametric regression known as the varying coefficient regression, and in

section 2.5, we look into the functional linear regression. Section 2.6 discusses

the role of the tuning parameter in semi-nonparametric models and section 2.7

concludes.

2.2 Nonparametric Regression and Kernel Method

2.2.1 Nonparametric Regression

Consider a random sample {(x1, y1), . . . , (xn, yn)} that satisfy the following

model,

yi = g(xi) + εi, i = 1, . . . , n, (2.2.4)

where x1, . . . , xn are the realisations of a random variable x with support D and

cumulative density function (CDF) F ; εi, i = 1, . . . , n are i.i.d random variables

with 0 mean, and g is an unknown function defined on D.

Regression (2.2.4) is nonparametric as g(·) is completely left unspecified, and

the parameter space for the function is infinite-dimensional. As the sample size is

always less than the dimension of the parameter space, minimising a loss function
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like the mean square error (MSE) without additional constraint would lead to over-

fitting (Chen, 2007; Li and Racine, 2007). As a result, estimating a nonparametric

regression requires smoothing or regularisation. In this section, we review the

kernel estimation of the nonparametric regression.

2.2.2 Nadaraya–Watson Estimator

Nadaraya (1965) and Watson (1964) proposed a kernel estimator later known

as the Nadaraya–Watson estimator. Motivated by the fact that g(·) is the condi-

tional mean of y given x, they suggest that g(·) be estimated by taking a weighted

average of yi around each x ∈ D, divided by the density estimate of x,

ĝ(x) =

∑n
i=1Kh(x− xi)yi∑n
i=1 Kh(x− xi)

, (2.2.5)

where Kh(u) = K(u/h), and K : R 7→ R is a weighting function called ‘Kernel’

that assigns weights to observations based on the distances between data xis and

x. Data that are close to x receive larger weights whereas those that are further

away receive smaller weights.

Popular kernel functions include the Epanechnikov kernel,

K(v) =
3

4
(1− v2)1(|v| ≤ 1), (2.2.6)

and the Gaussian kernel

K(v) =
1√
2π
e−

1
2
v2 . (2.2.7)

h is a scalar called ‘bandwidth’, which controls the smoothness of the estimate.

The Nadaraya–Watson estimator is easy to implement. By evaluating the

equation (2.2.5) pointwise with different x, we obtain an estimate of an entire

curve. Despite its simplicity, the estimator suffers from non-trivial bias issue.

Firstly, by directly taking the weighted average of local data around a point, the

Nadaraya-Watson estimator does not consider the discrepancy of functional val-

ues between local data and that at the point. Secondly, the Nadaraya-Waston

estimator does not perform well at areas close to the boundary of the support due

to the use of disproportionately one-sided data (Fan and Gijbels, 1996). Conse-

quently, boundary correction is often required for this type of estimator (Müller,

1991; Jones, 1993).
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2.2.3 Local Polynomial Regression

Following Nadaraya (1965) and Watson (1964), alternative kernel methods

have been developed to remedy the drawbacks. Cleveland (1979) introduced a

smoother called local polynomial regression to smooth a scatter plot. Fan and his

co-author subsequently investigated the asymptotic properties of the smoother,

particularly the first-order local polynomial (local linear). They found that the

local polynomial (linear) possesses superior statistical performance and does not

suffer from the boundary bias compared with the Nadaraya-Watson estimator

(Fan, 1992, 1993; Fan and Gijbels, 1992, 1995, 1996). Furthermore, using the

Epanechnikov kernel, the local linear estimator achieves the optimal linear mini-

max risk (see, e.g., Fan, 1993).

The basic idea of a local polynomial regression is to combine the kernel smooth-

ing with the Taylor approximation. For data xis in the neighbourhood of an

arbitrary x ∈ D, the following p-th order Taylor approximation holds,

g(xi) ≈
p∑
j=0

g(j)(x)

j!
(xi − x)j (2.2.8)

where g(j) denote j-th order derivative with g(0)(x) := g(x), and j! means j-th

order factorial. The formula quantifies the relationship between the gradient of

an arbitrary point x and the function values of the data in the neighbourhood.

Define βj(x) := g(j)(x)
j!

and substitute the Taylor approximation of g(xi) into the

nonparametric regression (2.2.4),

yi ≈
p∑
j=0

βj(x)(xi − x)j + εi, i = 1, . . . , n. (2.2.9)

The equation only involves a fixed number of parameters, hence is estimable using

finite data. The Taylor approximation works well when x and xi are close and

less so when they are far apart, suggesting each data point be weighted based on

its relative distance to x. We consider the following kernel weighted least square

objective function,

n∑
i=1

[
yi −

p∑
j=0

βj(x)(xi − x)j

]2

Kh(xi − x), (2.2.10)

where weights are assigned by passing the Euclidean distance between xi and x

into a kernel function. Minimising the objective functions with respect to βjs

leads to the following closed-form weighted least square (WLS) estimator,
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ĝ(x) := β̂0(x) = eT
1,p(X

T
xWh

xXx)
−1XT

xWh
xY, (2.2.11)

where

Xx =

1 (x1 − x) . . . (x1 − x)p

...
...

. . .
...

1 (xn − x) . . . (xn − x)p

 , (2.2.12)

Y = [y1, . . . , yn]T, Wh
x = diag(Kh(x1−x), . . . , Kh(xn−x)), and eT

1,p = [1, 0, . . . ]T,

a p× 1 vector with the first element as 1 and remaining elements as 0.

With a local polynomial regression, one needs to choose the order of the Taylor

approximation, p. A larger p would reduce the approximation bias, but introduce

additional unknown parameters. A smaller p, on the other hand, necessitates a

smaller number of parameters. A popular choice of the order is p = 1, when the

approximation becomes linear,

g(xi) ≈ g(x) + g′(x)(xi − x), (2.2.13)

which gives rise to the ‘local linear estimator’. It is also interesting to note that

when p = 0, the Taylor approximation takes the form g(xi) ≈ g(x), and the

estimator becomes

ĝ(x) = (uTWh
xu)−1uTWh

xY =

∑n
i=1 Kh(x− xi)yi∑n
i=1Kh(x− xi)

, (2.2.14)

where u is a n × 1 vector of 1. In this case, the local polynomial estimator

degenerates to the Nadaraya–Watson estimator. Therefore the Nadaraya-Watson

estimator is known as a type of a local constant estimator because of the 0-th

order Taylor approximation.

2.2.4 Asymptotic Properties

In this section, we investigate the asymptotic properties of the local linear

estimator in a univariate nonparametric regression, following Fan (1993). The

local polynomial and multivariate cases are generalised in Ruppert and Wand

(1994) and Masry (1996).

Assumption 2.2.1. (Fan, 1993)

• g(2)(·) is bounded.

• fx(·), the marginal density of x satisfies |fx(u) − fx(v)| ≤ c|u − v|α, for

0 < α < 1.
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• σ2(u) = Var(y|x = u) is bounded and continuous.

• K(·) is bounded and continuous satisfying

1.
∫∞
−∞K(v)dv = 1,

2.
∫∞
−∞ vK(v)dv = 0,

3.
∫∞
−∞ v

2K(v)dv 6= 0,

4.
∫∞
−∞ v

2rK(v)dv <∞, r = 1, 2, . . . .

Theorem 2.2.2. (Fan, 1993) Under assumption 2.2.1, the MSE of the estimator

is

E[ĝ(u)− g(u)]2 = a(u)h4 + b(u)(nh)−1 + o

(
h4 +

1

nh

)
, (2.2.15)

where a(u) = 1
4

(
g(2)(u)

∫∞
−∞ v

2K(v)dv
)2

, b(u) = σ2(u)
fx(u)

∫∞
−∞K

2(v)dv.

The theorem shows that how fast the local linear estimator converges to the

true function depends on two parameters: the sample size n and the bandwidth

size h. A large h inflates the bias term a(u)h4 of the MSE and diminishes the

variance term b(u)(nh)−1, whereas a small h enjoys a small bias but loses on the

variance side. The success of a nonparametric estimator depends critically on

how the tuning parameter is selected. The theorem also informs that the rate of

convergence is strictly less than
√
n, a rate that is normally achieved by parametric

estimators.

Fan (1993)’s theorem is established on a set of relatively restrictive assumptions

such as i.i.d error terms. Recent researches have since relaxed the assumptions

and extended the result to allow for non-i.i.d cases. Martins-Filho and Yao (2009)

and Su et al. (2013) show how to efficiently apply local linear estimator when

the errors have a non-spherical parametric covariance structure. Henderson et al.

(2008) extends the nonparametric kernel estimation into the panel data setting

with fixed effects. Linton and Xiao (2019) introduce a weighted local polynomial

regression to take account of the dynamic heteroskedasticity in a nonparametric

regression.

2.3 Nonparametric Regression and Series Method

We now turn to the series method for estimating a nonparametric regression.

Unlike the kernel smoothing which models an unknown function ‘locally’, the series

method aims to model a function ‘globally’ using the basis function expansion

(Newey, 1997; Chen, 2007; Li and Racine, 2007).
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2.3.1 Basis Functions

A basis is a collection of functions defined on some domain such that an arbi-

trary function f defined on the same domain satisfying certain regularity condi-

tions can be expressed in terms of a linear combination of these basis functions,

f(x) =
∞∑
j=1

δjφj(x), (2.3.16)

where δj, j = 1, 2, . . . are the coefficients associated with the basis functions.

Classic examples include polynomial series, Fourier series, Spline series, Wavelet

series (Newey, 1997; Belloni et al., 2015). Basis functions that satisfy the following

conditions are known as the orthonormal basis,

1.
∫
D φj(x)φi(x)dx = 0, i 6= j,

2.
∫
D φj(x)φj(x)dx = 1.

2.3.2 Series Estimator

Let φj(x), j = 1, 2, 3, . . . be a sequence of basis functions defined on D such

that g(·) can be represented as a linear combination of these functions,

g(x) =
∞∑
j=1

δjφj(x), (2.3.17)

where δjs are the unknown coefficients.

Substitute the basis function expansion of g(xi) into the nonparametric regres-

sion (2.2.4) and take the first k elements of the expansion,

yi =
∞∑
j=1

δjφj(xi) + εi, i = 1, . . . , n (2.3.18)

≈
k∑
j=1

δjφj(xi) + εi.

By approximating an unknown function with k basis functions, we immediately

reduce the dimension of the parameter space from infinity to k. The approxima-

tion error is the remainder of the expansion
∑∞

j=k+1 δjφj. When k < n, δjs can

be estimated by minimising the following objective function with respect to these
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coefficients,
n∑
i=1

[
yi −

k∑
j=1

δjφj(xi)

]2

. (2.3.19)

This gives a least square type estimator,

∆̂k := (δ̂1, . . . , δ̂k)
T = (ΦT

kΦk)
−1ΦT

kY, (2.3.20)

where

Φk =

φ1(x1) . . . φk(x1)
...

. . .
...

φ1(xn) . . . φk(xn)

 . (2.3.21)

Associate each δ̂j with its basis function, and we obtain an estimator for g(·),

ĝ(x) =
k∑
j=1

δ̂jφj(x)

= φT
k (x)(ΦT

kΦk)
−1ΦT

kY,

where φT
k (x) = [φ1(x), . . . , φk(x)].

2.3.3 Splines

In this section, we discuss a popular choice of the basis function system known

as ‘splines’, widely used for modelling non-periodic functions.

A spline is essentially a function built from piecewise polynomial functions.

For a real interval [a, b], where a < b, we could partition the interval into m sub-

intervals: [t0, t1], [t1, t2], . . . , [tm−1, tm], where a = t0 < t1 < · · · < tm = b. Then

a basis function φ is a k-th order spline with knots at t1, . . . , tm−1 if the following

two conditions hold,

1. φ is a polynomial of degree k on each of the sub-interval.

2. The j-th derivative of φ is continuous at knots t1, . . . , tm−1, for j = 1, 2, . . . , k−
1.

For example, when k = 3, φ is known as a ‘cubic spline’, composed of piecewise

cubic functions with continuous first and second order derivatives. For a given

set of knots, a spline could be represented in terms of truncated power series,

φ1(x) = 1, φ2(x) = x, . . . , φk+1 = xk, φk+2 = (x− t1)k+, . . . , φk+m+1 = (x− tm)k+,

where x+ := max{x, 0}. See De Boor et al. (1978) and Schumaker (2007) for a

detailed discussion.
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Perform a regression of y on the spline functions yields the so-called ‘regression

spline’ estimate of the regression function. However, the estimate is prone to have

high variance, particularly at boundaries. Furthermore, one needs to decide where

to place the knots.

The smoothing spline method is designed to tackle the issues. Interestingly,

it can be motivated from the perspective of functional optimisation. Smoothing

spline aims to find a function g, which minimises the following objective function,

n∑
i=1

(yi − g(xi))
2 + λ

∫
(g′′(xi))

2dx (2.3.22)

where g′′ is the second order derivative of g, and λ is a tuning parameter that

controls the weight assigned to the second term of the objective function. The

objective function creates a trade-off between the least square of error and the

smoothness of g. Functions that are wiggly attracts more penalty through the

second derivative, whereas smooth functions receive less penalty. It turns out

that the objective function has a unique solution, and the solution is a cubic

spline with knots at data points x1, . . . , xn (De Boor et al., 1978).

2.3.4 Rate of Convergence

In this section, we discuss the asymptotic properties of the series method. We

follow Newey (1997) and focus on i.i.d data.

Assumption 2.3.1. (xi, yi), i = 1, . . . , n are i.i.d data, conditional variance Var(y|x)

is bounded. xi ∈ D, which is compact.

Assumption 2.3.2. Uniformly in k, the eigenvalues of E[Φk(xi)Φk(xi)
T] are

bounded away from 0, where Φk(xi) = (φ1(xi), . . . , φk(xi))
T

Assumption 2.3.3. There is a sequence of constants ζ(k) satisfying supx∈D |φk(x)| ≤
ζ(k), where k = k(n) such that ζ(k)2/n→ 0 as n→∞.

Assumption 2.3.4. There exists α and ∆k = (δ1, . . . , δk) such that supx∈D |g(x)−
ΦT
k ∆k| = O(k−α) as k →∞

Assumption 2.3.5. As n→∞, k →∞ and k/n→∞

Theorem 2.3.6. Under assumption (2.3.1),(2.3.2),(2.3.3),(2.3.4) and (2.3.5),

we have ∫
[ĝ(x)− g(x)]2dF (x) = Op(k/n+ k−2α) (2.3.23)
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Theorem 2.3.6 suggests that the error of the series estimator can be decom-

posed into two parts, the approximation error (k−2α) which governs the bias of the

estimator and the estimation error (k/n), associated with the variance. A larger

k brings more basis functions into the equation and leads to a smaller approxima-

tion bias but loses on variance side. A smaller k improves the variance but suffers

a higher approximation bias. The number of the basis functions k plays the same

role as the bandwidth h in a kernel estimation.

Building on the theory of the series method pioneered by Newey (1997), Bel-

loni et al. (2015) recently developed some new asymptotic results that consider-

ably weaken the assumptions required for the convergence of the series estimator.

In particular, they establish that the condition ζ(k)2/n → 0 can be relaxed to

ζ(k)/n→ 0.

2.4 Varying Coefficient Regression

In this section, we move from the nonparametric regression to the semipara-

metric regression which imposes some structures on the regression function. A

popular type of the semiparametric regression is known as the ‘varying coefficient

regression’ (Hastie and Tibshirani, 1993), specified as follows,

yi = xT
i β(zi) + εi, (2.4.24)

where xi = (x1,i, . . . , xk,i)
T and β(zi) = (β1(zi), . . . , βk(zi))

T, a vector of unknown

functions of the covariate zi. For example, zi could represent spatial coordinates

and β(zi) reflects spatially varying effects.

The varying coefficient regression offers many useful features by combining

both parametric and nonparametric components. As the partial effect of each

variable xk,i is solely captured by βk(zi), a VCR has better interpretability than

a nonparametric regression. βk(zi), on the other hand, is allowed to change with

some covariate zi, providing a channel to model non-stationary coefficient hetero-

geneity.

2.4.1 Local linear estimator

The local linear estimator has been a popular method to estimate a varying

coefficient regression and the mechanism is similar to estimating a nonparametric
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regression. To start with, we apply the first order Taylor approximation to β,

β(zi) ≈ β(z) + β(1)(z)(zi − z), (2.4.25)

where β(1)(z) = (dβ1
dz
, . . . , dβk

dz
), and substitute the approximation into the VCR

model,

yi ≈ xT
i β(z) + xT

i (zi − z)β(1)(z) + εi. (2.4.26)

Both β(z) and β(1)(z) can be estimated by minimising the following kernel

weighted sum of squares of errors,

n∑
i=1

{
yi − xT

i β(z)− xT
i (zi − z)β(1)

}2
Kh(zi − z).

We could write the estimator compactly as[
β̂(z)

β̂(1)(z)

]
= (GTWhG)−1GTWhY, (2.4.27)

where Y = (y1, . . . , yn)T, Wh = diag(Kh(z1 − z), . . . , Kh(zn − z)), and G =

(xT
i ,x

T
i (zi − z))i=1,...,n.

The asymptotic properties of the local linear estimator in the VCR model

are similar to that in the nonparametric regression and have been substantially

studied and reviewed in Fan and Zhang (2008).

2.4.2 Geographical Weighted Regression

The varying coefficient regression is widely used in various subjects to model

coefficient heterogeneity. In geography, the model is applied under the name ‘geo-

graphical weighted regression’ (GWR), and often without mentioning its statisti-

cal foundation (Brunsdon et al., 1996, 1998; Fotheringham et al., 2002; Wheeler,

2019).

A standard GWR is specified as follows,

yi = xT
i β(ai, bi) + εi, i = 1, . . . , n, (2.4.28)

where zi in equation (2.4.24) is replaced by ai, bi, the latitude and longitude defined

over a two-dimensional spatial domain S. To estimate β(a, b) for each (a, b) ∈ S,

the GWR suggests using the following kernel estimator,

β̂(a, b) = (XTWhX)−1XTWhY. (2.4.29)
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It could be shown that the estimator corresponds to a local constant nonparamet-

ric regression where the Taylor approximation takes the following form,

β(ai, bi) ≈ β(a, b), (2.4.30)

for (ai, bi) close to (a, b). As a result, the GWR inherits all the disadvantages

of the local constant estimator such as excessive bias and poor performance at

boundaries.

2.4.3 Varying Coefficient Regression with Discontinuity

A key assumption of the varying coefficient regression is that the coefficients

are smooth functions of the underlying domain. Several recent researches have

explored varying coefficient regressions with a discontinuity on the domain. Zhu

et al. (2014) propose a spatially varying coefficient regression model, which simul-

taneously captures (1) spatially varying coefficients, (2) multiple piecewise smooth

regions with unknown edges and jumps, (3) substantial spatial correlations. The

model is specified as follows,

yi(d) = xTi β(d) + ηi(d) + εi(d) (2.4.31)

where d ∈ S is a spatial location. Zhu et al. (2014) develop a multiscale adaptive

and sequential smoothing (MASS) method which incorporates the propagation-

separation, functional principal component analysis, and jumping surface model.

The approach is capable of estimating the coefficients while simultaneously iden-

tifying the edges of the discontinuous regions.

2.5 Functional Linear Regression

The nonparametric and semiparametric regressions covered in the previous

sections focus on fitting data with finite dimensions. In this section, we consider

a special class of the semiparametric models called functional linear regression

(FLR), where the independent variable X itself is a function (Wang et al., 2016).

Consider i.i.d data (Xi, yi), i = 1, . . . , n that are generated by the following

model,

yi =

∫ 1

0

Xi(s)β(s)ds+ εi. (2.5.32)
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yi is a scalar, whereas Xi is a random function defined on [0, 1]. Without loss of

generality, we assume Xi is centred in the sense that E(Xi) = 0. εi is i.i.d with 0

mean and finite variance σ2.

2.5.1 Inverse Problem and Spectral Decomposition

The independence between ε and X suggests that for t ∈ [0, 1], the covariance

between X and ε is 0,

E[X(t)ε] = E[X(t)Y ]−
∫ 1

0

E[X(s)X(t)]β(s)ds

= 0

Let g(t) := E[X(t)Y ], the covariance between Y and X, and let Kf(t) :=∫ 1

0
[X(s)X(t)]f(s)ds, the covariance operator of X. The relationship of X and ε

can be summarised into

Kβ = g. (2.5.33)

The equation is known as the Fredholm integral equation of the first kind (Kress

et al., 1989). Assuming K is invertible and K−1 is the inverse of K, then β is

solved by

β = K−1g. (2.5.34)

Intuitively, if K−1 and g are to be estimated from the data, then the β estimator

would follow by equation (2.5.34). However, this turns out to be challenging

as K−1 is not a continuous operator, and a small perturbation in g would be

translated into a large deviation in β estimate.

To appreciate the challenge, we conduct a spectral decomposition of the equa-

tion. Note that the covariance operator K is symmetric and positive definite,

therefore there exists a sequence of positive and non-increasing eigenvalues kjs,

and a sequence of orthonormal1 eigenfunctions φj(·)s satisfying,

Kφj = kjφj, j = 1, 2, 3, . . . . (2.5.35)

The eigenfunctions serve as an orthonormal basis for the functional space where

they are defined. Specifically, any function f defined on [0, 1] with finite norm can

be expressed in terms of φjs,

f(s) =
∞∑
j=1

αjφj(s), (2.5.36)

1Orthonormal means that
∫ 1

0
φiφj = δij where δij = 0 if i 6= j and 1 if i = j.
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where αj =
∫ 1

0
f(s)φj(s)ds, j = 1, 2, 3, . . . are known as the generalised Fourier

coefficients. Likewise, we can expand β and g function using the eigenfunctions,

β(s) =
∞∑
j=1

bjφj(s), (2.5.37)

g(s) =
∞∑
j=1

gjφj(s), (2.5.38)

where bjs and gjs are the generalised Fourier coefficients for β and g respectively.

Substitute (2.5.37) and (2.5.38) into (2.5.33), we obtain

∞∑
j=1

bjKφj(s) =
∞∑
j=1

bjkjφj(s)

=
∞∑
j=1

gjφj(s),

suggesting bjkj = gj for each j. Substitute bj = gj/kj back into (2.5.37), we obtain

the solution of β based on expanded series,

β(s) =
∞∑
j=1

gj
kj
φj(s). (2.5.39)

Equation (2.5.39) highlights the challenge of estimating a functional linear

regression from a different perspective. Note that kjs appears in the denominator

and is a sequence of scalars converging towards 0. For a large j, a small estimation

error in gj would be inflated dramatically through k−1
j . Furthermore, kj and

φj themselves are estimated from data, adding additional uncertainties into the

estimator of β.

2.5.2 Functional Principal Component Estimator

Hall and Horowitz (2007) suggest taking the first k components of the β ex-

pansion and replacing kj, φj, gj with their empirical counterparts k̂j, φ̂j, ĝj to form

the functional principal component estimator (FPCE),

β̂(s) =
k∑
j=1

ĝj

k̂j
φ̂j(s), (2.5.40)

where k̂j and φ̂j are estimated from the empirical covariance operator K̂, with

K̂φ̂j = k̂jφ̂j. ĝj is estimated via
∫ 1

0
ĝ(x)φ̂j(x)dx. Terms after k are excluded from
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the estimator, making the result more stable. k is a tuning parameter picked by a

researcher. A smaller k means more items are excluded, introducing extra biases,

whereas a larger k would lead to smaller eigenvalues being included, increasing

the variance.

The FPCE has a similar structure to the series estimator. Both are repre-

sented using a finite number (k) of basis functions, where k plays a critical role

in balancing the variance and bias. With a series estimator, the basis functions

are pre-determined and non-stochastic, whereas the FPCE applies the empirical

eigenfunctions that are data-dependent.

2.5.3 Tikhonov Regularisation

Another popular method to estimate the FLR is known as the Tikhonov regu-

larisation, or Ridge regression, due to Hall and Horowitz (2005, 2007). Tikhonov

regularisation could be motivated in several ways, and here we start from the

spectral decomposition of the β (equation 2.5.39). To avoid k−1
j from diverging,

Tikhonov regularisation suggests modifying k−1
j with (kj +λ)−1, where λ is a pos-

itive number. Choosing λ properly, we keep kj + λ away from 0 for large j. The

Tikhonov regularisation estimator is defined as follows,

β̂(s) =
∞∑
j=1

ĝj

k̂j + λ
φ̂j(s). (2.5.41)

λ is the tuning parameter in Tikhnov regularisation. As n goes to infinite, λ

moves slowly towards 0 so that (k̂j + λ) converges to kj.

2.5.4 Rate of Convergence

Now we discuss the rate of convergence of the FLR estimators. We focus

on the functional principal component estimator, whereas results for Tikhonov

regularisation can be found in Hall and Horowitz (2005).

Assumption 2.5.1. Let C > 1 be a constant.

1. X has finite 4th moment,
∫ 1

0
E[X4(s)]ds <∞.

2. E(ξ4
j ) ≤ Ck2

j uniformly in j, where ξj is the jth coefficient of the basis

function expansion of X with eigenfunctions.

3. εi follows i.i.d distribution with 0 mean and variance Var(ε) < C
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Assumption 2.5.2 (Eigenvalue Spacing).

kj − kj+1 ≥ C−1j−α−1, α > 1, j ≥ 1 (2.5.42)

Assumption (2.5.2) outlines the spacing between consecutive eigenvalues. It

prevents the difference between two consecutive eigenvalues from being too small.

In particular, it rules out the existence of tied eigenvalues.

Assumption 2.5.3 (Parameter Smoothness).

|bj| ≥ Cj−β, 0.5α + 1 < β (2.5.43)

Assumption (2.5.3) sets out the smoothness of the functional parameter with

respect to the covariance operator.

Assumption 2.5.4 (Tuning Parameter).

k � n1/(α+2β) (2.5.44)

Assumption (2.5.4) decides how fast the tuning parameter should converge to

infinity.

Theorem 2.5.5. (Hall and Horowitz, 2007) For each F be a class joint distribu-

tions of (X, Y ) satisfying (2.5.1), and if (2.5.1)– (2.5.4) holds, for each F ∈ F∫ 1

0

(b̂− b)2 = Op(n
−(2β−1)/(α+2β)) (2.5.45)

Theorem (2.5.5) states that the rate of convergence depends negatively on the

smoothness of the covariance operator and positively on the smoothness of the β

and strictly less than n−1.

2.6 Tuning Parameter

All of the nonparametric and semiparametric estimators introduced in this

chapter require some tuning parameters. With local polynomial, linear and con-

stant estimators, the tuning parameter h determines the window size in local

smoothing. With series and functional principal component estimators, the tun-

ing parameter k represents the number of basis functions to take. With Tikhonov

regularisation, the tuning parameter λ measures the deviation from the original

eigenvalues. h, k, λ control the systematic bias introduced into the estimation pro-

cess. As the sample size n goes to infinity, these tuning parameters need to move
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towards the direction with less bias to achieve the consistency of the estimators.

For example, the number of the basis functions k in a series estimator needs to

grow with n to diminish the approximation error. For a given sample size n, it

is critical to pick an appropriate value for a tuning parameter to balance the bias

and variance.

In this section, we discuss a tuning parameter selection procedure called cross-

validation (Arlot et al., 2010). With a cross-validation process, a tuning parameter

is selected that optimises the out-of-sample performance of the model. To illus-

trate the concept, let y1, . . . , yn be a set of actual values of y and ŷ1(m), . . . , ŷn(m)

be the out-of-sample estimated values using a semi-nonparametric model with a

tuning parameter value m. The out-of-sample performance is then summarised

by the mean square error,

MSE(m) =
1

n

n∑
j=1

(yj − ŷj(m))2 (2.6.46)

The best tuning parameter is chosen by minimising the MSE with respect to m

m∗ = arg min
m

MSE(m) (2.6.47)

To estimate the out-of-sample ŷj, it is common to split the data into a training

sample and a test sample2, then evaluate the out-of-sample prediction for the test

sample using models estimated by the training sample.

2.7 Conclusion

The nonparametric and semiparametric econometrics has experienced rapid

growth during the past decades. The core principles of estimating a nonpara-

metric and semiparametric regression, on the other hand, have largely remained

consistent. It involves applying regularisation to balance the variance and the

bias of an estimator. This chapter reviews a set of methodologies and regularisa-

tion approaches that are related to this thesis. For a more comprehensive review

on econometric applications, please refer to Pagan and Ullah (1999), Horowitz

(2012a) and Li and Racine (2007). For a comprehensive review on functional

data analysis (FDA) and functional linear regression, please refer to Ramsay and

Silverman (2007), Ramsay and Silverman (2005) and Wang et al. (2016).

2Train-test split is a term borrowed from the machine learning literature, see Hastie et al.
(2015).
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Despite the rapid theoretical and methodological development in nonparamet-

ric and semiparametric regressions, several challenges are still present. The first

issue is related to high dimensionality. With a large dimension of explanatory vari-

ables, nonparametric regressions suffer from the ‘curse of dimensionality’ when the

data required to accurately estimate a model become astronomically large3. The

phenomenon is aggravated when the number of variables exceeds the number of

observations (Yang and Tokdar, 2015). The second challenge is associated with en-

dogeneity. In consumer behaviour studies, economists are interested in estimating

the nonparametric Engel curve, which describes the relationship between a house-

hold’s total expenditure and spending on particular goods (Chai and Moneta,

2010; Blundell et al., 2003, 2008). As the total expenditure has been considered

as endogenous, i.e., correlated with the error term, standard semi-nonparametric

estimators suffer from an asymptotic bias. To tackle the endogeneity in semi-

nonparametric regressions, nonparametric instrumental variable estimators have

been developed and received significant attention in the recent literature (Newey

and Powell, 2003; Hall and Horowitz, 2005; Blundell et al., 2007; Darolles et al.,

2011; Horowitz, 2011; Chen and Pouzo, 2012; Gagliardini and Scaillet, 2012).

3Stone (1982) finds that the convergence rate of nonparametrically estimated function is

n−
p

2p+d , where p measures the smoothness of the function and d is the dimension of the function.
The convergence rate drops dramatically as d increases.
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Chapter 3

Spatially Varying Coefficient
Regression Over Irregularly
Shaped Regions: Application to a
Hedonic House Price Model

3.1 Introduction

The central object of this chapter is to develop a new spatial regression method-

ology called spatially varying coefficient regression (SVCR) that simultaneously

models spatial heterogeneity and spatial autocorrelation over an irregular domain

and in the presence of a large dataset. The methodology is applied to a hedonic

house price model, a popular tool in both applied research and business to un-

derstand the variation of house prices. Pioneered by Lancaster (1966) and Rosen

(1974), a hedonic model regresses the value of a property on its attributes, such

as structural and neighbourhood factors, therefore provides a way to characterise

markets for heterogeneous goods. The regression coefficient for each attribute

gives rise to the estimated price of, or the willingness to pay for, the attribute.

It is also known as the ‘shadow price’, as it is not directly observed from the

market. Empirical examples of hedonic models include the price of air quality

(Anselin and Lozano-Gracia, 2008), clean water (Anselin et al., 2010) and living

space (Bhattacharjee et al., 2016a). Effective use of the hedonic models in business

and policy requires an accurate and fast estimation of the regression. However,

available methods in the literature have not placed adequate attention to several

essential features.

0Earlier version of this chapter was co-authored with Arnab Bhattacharjee, Taps Maiti,
Pingshou Zhong under the title ‘Spatially Varying Regression Over Irregularly Shaped Regions:
Application to a Hedonic House Price Model ’ (see Bhattacharjee et al., 2016b)
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First of all, there exists substantial spatial heterogeneity in the implicit prices.

Urban housing markets are usually segmented with complicated spatial patterns

(Bhattacharjee et al., 2016a). Residents with different preferences and socioe-

conomic backgrounds tend to be sorted into different spatial clusters (Galster,

2001). As a result, there exist several housing submarkets, each with a different

equilibrium (Rothenberg et al., 1991). This suggests the shadow prices are varying

over spatial domains (Bhattacharjee et al., 2016a). For example, in the context of

our empirical application, we expect the implicit price of the living spaces to be

higher in the central areas where larger houses are at a premium, as opposed to

the suburban areas where space is less scarce. Second, there exist strong spatial

spillovers or contagion between different houses in the same submarket, and be-

tween submarkets (Gillen et al., 2001; Anselin et al., 2010). The recent literature

has discussed the potential bias and loss of efficiency when such spatial effects

are ignored (see, e.g., Anselin and Lozano-Gracia, 2008; LeSage and Pace, 2009;

Anselin et al., 2010). Therefore, the spatial autocorrelation in house prices needs

to be adequately accounted for. Third, in many spatial applications with housing

markets, the Euclidean distance is often implicitly applied to measure the close-

ness of two locations for the purpose of modelling spatial heterogeneity or spatial

autocorrelation. However, this is not appropriate with a non-convex spatial do-

main. In regions with irregular boundaries, peninsulas, and interior, closeness in

the Euclidean sense does not necessarily mean similarity between two locations

(Wang and Ranalli, 2007). Fourth, whereas the literature primarily focuses on

the estimation of hedonic models, we place special emphasis on the prediction

of house prices which is of key policy and business interest. When the response

variable is modelled as a linear function of several covariates, the best linear un-

biased predictor (BLUP) can be obtained using a covariance function that may

be unknown up to a finite number of parameters (Cressie, 1990). BLUP formula

requires inverting an n× n covariance matrix with n being the sample size. With

a large n, this becomes computationally challenging.

To address these concerns, we develop a spatially varying coefficient regres-

sion (SVCR) that jointly deals with spatial heterogeneity, spatial autocorrelation,

irregular domains and computational issues with large datasets. First, the re-

gression function is specified as semiparametric with some coefficients changing

smoothly over space. This feature captures spatially heterogeneous effects. Sec-

ond, the spatial autocorrelation is embedded in the spatial error term, which is

modelled as a parametric function of distance with finite parameters. To measure

the (dis-)similarity between two locations, we replace the Euclidean distance with
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the geodesic distance (Wang and Ranalli, 2007). The geodesic distance calculates

the closeness between two locations using the shortest path inside the domain,

rather than a straight line. To estimate the model, we apply the first-order Tay-

lor approximation with a kernel and inverse covariance weighting scheme. The

estimation and prediction are conducted locally, which substantially reduces the

computational burden of inverting a covariance matrix.

The methodology is applied to the housing market of Aveiro in central Por-

tugal, including the twin municipality of Ílhavo and the adjoining peri-urban and

rural areas (Figure 3.1). We regress the logarithm of the house price per square

meter on a large collection of housing characteristics, including our key covariate,

the living space. The other covariates include the internal and external features

of the house, the quality of the residential neighbourhood, and access to local and

central facilities. These additional covariates are combined, using factor analysis,

into five factors, each having a distinct economic interpretation. Then, the es-

timates of the regression coefficients are interpreted as the shadow (or implicit)

prices for the relevant characteristics, that is, the willingness to pay for each such

feature.

 

5 
 

statistical methods developed in Clapp et al. (2006), Bhattacharjee and Jensen-Butler 
(2005) and Bhattacharjee and Holly (2010a; b) are more sophisticated approaches to 
delineate sub-markets [these methods consider residual spatial autocorrelation - see 
Bhattacharjee, Castro et al., (2012); Marques (2012)]. The previous methodologies 
focused on the statistical techniques to determine housing sub-markets, however it can 
be effected subjectively given expert knowledge, that is, delineated by real estate agents 
or appraisers (e.g.: Palm, 1978; Michaels and Smith, 1990).  

In the next session some of these perspectives will be explored and applied in the 
context of the housing market of Aveiro and Ílhavo. 

 

3. HOUSING SEGMENTATION FOR AVEIRO-ÍLHAVO 
In this section housing sub-markets of Aveiro are empirically defined and analyzed. The 
study area is located in the Centro Region of Portugal and includes two municipalities; 
Aveiro and Ílhavo (see Figure 1).  

Municipality of Aveiro
(78 454 inhab)

Municipality of Ílhavo
(38 317 inhab)

Aveiro Lagoon

Cacia

Eixo

Vera Cruz

São Salvador

Esgueira

Nariz

Aradas

São Jacinto

Eirol

Requeixo

Oliveirinha

Glória

Gafanha da Nazaré

Santa Joana

Nossa Senhora de Fátima

Gafanha da Encarnação

Gafanha do Carmo

São Bernardo

 
Figure 1 – Location of the study area: Municipalities of Aveiro and Ílhavo 

 

The municipality of Aveiro has a total area of 200 km² and a total population of 78454; 
the municipality of Ílhavo latter has an area of 75km2 and 38317 inhabitants (2011 
Census). If the area of the lagoon is removed, the population density is 600 inhabitants 
per km2, a typical value for an urban agglomeration.  

The database used for this empirical work is provided by the firm Janela Digital S.A., 
which owns and manages the real estate portal database CASA SAPO. This portal is the 
largest site in Portugal of real estate diffusion. Since 2000 (from October 2000 to March 
2010) collated about 4 million records of properties available for transaction in Portugal 
covering all the national territory. For the specific case of Aveiro and Ílhavo 47188 
properties entered in the database between 2000 and 2010, as described in the Figure 2. 
The models used in this empirical work consider a database with 12467 observations, 
which is a number obtained after data cleaning. 

Figure 3.1: Municipalities of Aveiro and Ílhavo

This chapter makes methodological contributions to three domains of spatial

researches. The first area is spatial prediction (or Kriging, see Cressie (1993)).

The SVCR relaxes the assumption that the mean structure is parametric in favour

of a semiparametric form. The errors can be spatially correlated and potentially

heteroskedastic over the domain. Compared with the existing Kriging regres-

sion, the methodology is more flexible and suffers from less specification bias.
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Besides, the estimation and prediction do not require the inversion of an n × n
covariance matrix, but only matrices of the order n(s(h)), where n is the total

sampled locations and n(s(h)) is the local sample size. This enriches researches

of Kriging with big data (see, e.g., Cressie and Johannesson, 2008). The second

area is related to the modelling of spatial heterogeneity. The proposed method-

ology improves significantly upon the popular geographically weighted regression

(GWR), commonly used in geography to estimate spatial heterogeneity (Brunsdon

et al., 1996, 1998; Fotheringham et al., 2002). To estimate the spatially heteroge-

neous coefficients, we extend the local linear approach to a two-dimensional space,

and provide statistical inference on the estimated functional coefficient as well as

predicted response. The approach enjoys many statistical advantages over the

GWR-type estimator, discussed in Fan and Gijbels (1996) and Fan and Zhang

(2008). A simulation study is carried out to compare the performances between

the two approaches. Finally, we contribute to the literature of spatial smoothing

over irregular domains. Wang and Ranalli (2007) suggested a modified version

of low-rank thin plate splines (LTPS) where the Euclidean distance is replaced

by the geodesic distance. While the distance-based approaches are conceptually

similar to the modified kernel regression, this connection is not highlighted in the

literature. We make the link explicit by building a kernel-based local linear re-

gression methodology, where the kernel is based on a distance function that takes

the complex nature of the spatial domain into account. Our methodology shares

some similarity with Zhu et al. (2014) which proposed a spatially varying coef-

ficient model for smoothing neuroimaging data with unknown edges and jumps.

However, they consider only smoothing not spatial prediction. Further, they did

not use the geodesic distances which restrict applications in irregular domains.

The chapter is organised as follows. Section 3.2 develops our models and

methodology followed in section 3.3 by simulation studies. Section 3.4 develops

the application to the urban housing market of Aveiro, Portugal. Finally, section

3.5 concludes.

3.2 Spatially Varying Coefficient Regression

In this section, we develop the methodology for the spatially varying coefficient

regression over an irregular domain. Consider a spatial sample {(Yi,xi, si), i =

1, . . . , n} generated by the following model,

Yi = xT
i β(si) + εi + ηi, i = 1, . . . , n, (3.2.1)
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where si = (ai, bi) ∈ D ⊂ R
2 represents the x coordinate and y coordinate in

a two-dimensional spatial domain D. D is a non-convex region equipped with a

suitable distance measure (e.g., geodesic distance, see Wang and Ranalli (2007)),

denoted by d(·, ·). xi = [x1,i, . . . , xp,i]
T is a vector of p−dimensional explanatory

variables and β(s) = [β1(s), . . . , βp(s)]T is the vector of p−dimensional functional

coefficients. Each βj, j = 1, . . . , p is a smooth function over D. ηi is a measure-

ment error term which follows a Gaussian process with 0 mean, known variance

σ2
η(si) and Cov(ηi, ηj) := Ση(si, sj)

1. εi is an independent Gaussian process with 0

mean, variance σ2
ε (si), and covariance Cov(εi, εj) = σε(si)σε(sj)ρ(d(si, sj)) where

ρ(d(si, sj)) is the correlation function depending on distance.

We are interested in estimating β(si) as well as predicting Y at unsampled

location s0 with x0.

3.2.1 Estimation

Two-Dimensional Taylor Approximation

For a generic location s = (a, b) ∈ D, define the neighbourhood of s as a

collection of nearby sample locations,

s(h) = {si = (ai, bi), i = 1, . . . , n : d(s, si) ≤ h for some small h > 0} , (3.2.2)

where h is a bandwidth that controls the size of the neighbourhood. Let n(s(h))

be the number of locations in the set s(h). For a small h and for an si in s(h),

the following two-dimensional Taylor approximation holds,

β(si) ≈ β(s) + β(a)(s)(ai − a) + β(b)(s)(bi − b) (3.2.3)

:= β0s + β1s(ai − a) + β2s(bi − b).

where β(a)(s) = [∂β1
∂a
, . . . , ∂βp

∂a
] and β(b)(s) = [∂β1

∂b
, . . . , ∂βp

∂b
]. The Taylor approxi-

mation is a particularly useful formula in the nonparametric estimation of spatial

models, as it relates β at arbitrary locations s to β in the neighbourhood locations

where we sample data.

Substitute the Taylor approximation 3.2.3 into the model 3.2.1 and we obtain

Yi ≈ xT
i β0s + xT

i (ai − a)β1s + xT
i (bi − b)β2s + εi + ηi, si ∈ s(h). (3.2.4)

1The requirement for known covariance Ση(si, sj) is necessary for parameter identification
but is not necessary if repeated measurements are available at each location s. Please refer to
our application example for further details.
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In doing so, we transform the original regression with the heterogeneous coefficient

for each observation into a regression with the same coefficient value β0s, after

adjustment for the first-order derivatives. Note that the Taylor approximation

works well if si is close to s, and less so if two locations are further apart. Therefore,

the importance of each datum to the estimation of β(s) shall vary based on their

proximity to s. To incorporate this feature, we define a kernel function to assign

weight to each observation according to the its distance to s,

Kh(d(si, s)) = K(d(si, s)/h) (3.2.5)

whereK(·) is a kernel function such as the Epanechnikov kernel, defined asK(u) =

0.75(1− u2)1(|u| ≤ 1) (see Wasserman, 2006, p. 3).

First Stage Estimation

In the first stage, the covariance of ε is unknown, therefore an initial estimator

of β0s is needed to estimate the error covariance. We minimise the following kernel

weighted objective function with respect to β0s,β1s,β2s,

n∑
i=1

[
Yi − xT

i β0s − xT
i (ai − a)β1s − xT

i (bi − b)β2s

]2
Kh(d(si, s)), (3.2.6)

which leads to a weighted-least-square type estimator written as follows,

β̂h(s) = [Ip,0p,2p](G
T
s(h)Ws(h)Gs(h))

−1GT
s(h)Ws(h)Ys(h) (3.2.7)

where Ip is a p× p identity matrix, 0p,2p is a p× 2p matrix of 0; Ys(h) = [Yi]si∈s(h),

Gs(h) = [xT
i ,x

T
i (ai − a),xT

i (bi − b)]si∈s(h) and Ws(h) = diag([Kh(d(si, s))]si∈s(h)).

β̂h(s) can be evaluated for each s ∈ D. Particularly for each si, i = 1, . . . , n,

we obtain the residual ei, defined as ei = Yi − xT
i β̂h(si).

Covariance Estimation

In the first stage estimation, we construct an initial β estimator and obtain

the residual ei. Now we focus on the estimation of the covariance of ε via the

variogram fitting (Opsomer et al., 1999; Zimmerman and Zimmerman, 1991).

Define r(si) = (εi+ηi)/σε(si). We note that, for any location pair (si, sj) ∈ D,

Γ(d(si, sj)) := E (r(si)− r(sj))2 (3.2.8)

= 2− 2ρε(d(si, sj)) +
σ2
η(si)

σ2
ε (si)

+
σ2
η(sj)

σ2
ε (sj)

− 2Ση(si, sj)

σε(si)σε(sj)
.
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Then

ρε(d(si, sj)) = 1− 1

2

{
Γ (d(si, sj))−

σ2
η(si)

σ2
ε (si)

−
σ2
η(sj)

σ2
ε (sj)

+
2Ση(si, sj)

σε(si)σε(sj)

}
. (3.2.9)

It follows that ρε(d(si, sj)) can be estimated as

ρ̂ε(d(si, sj) = 1− 1

2

{
Γ̂(d(si, sj))−

σ2
η(si)

σ̂2
ε (si)

−
σ2
η(sj)

σ̂2
ε (sj)

+
2Ση(si, sj)

σ̂ε(si)σ̂ε(sj)

}
,

where σ̂2
ε (s) can be estimated via

σ̂2
ε (s) =

∑
iKh(d(si, s))e2

i∑
iKh(d(si, s))

− σ2
η(s),

and Γ̂(d(si, sj)) is estimated via

Γ̂(d(si, sj)) =

∑
l,l′,l 6=l′ Kh ([d(sl, sl′)− d(si, sj)]) (r̂(si)− r̂(sj))2∑

l,l′,l 6=l′ Kh ([d(sl, sl′)− d(si, sj)])
, (3.2.10)

where r̂(si) = ei/σ̂ε(si).

Now, consider {d(si, sj), ρ̂ε(d(si, sj)), i, j = 1, . . . , n} as data points and assume

the correlation function has a parametric form ρε(d(si, sj);θ) up to a finite number

of parameters θ := (θ1, θ2, . . . , θr). θ can be estimated by minimising the following

objective function,

θ̂ = arg min
θ

∑
i 6=j,i,j=1,...,n

[ρ̂ε(d(si, sj))− ρε(d(si, sj);θ)]2 . (3.2.11)

For an arbitrary location pair (sl, sm) ∈ D, the covariance Σε(sl, sm) is then esti-

mated as Σ̂ε(sl, sm) = σ̂ε(sl)σ̂ε(sm)ρε(d(sl, sm); θ̂).

Second Stage Estimation

With the estimated error covariance, we move to the second stage estimation,

which incorporates the covariance structure into the β estimator.

Let Ĥs(h) be the estimated covariance matrix of ε+η with element (i, j) being

Σ̂(si, sj) = Σ̂ε(si, sj) + Ση(si, sj) for si, sj in s(h). We also define Ĥ
−1/2
s(h) such that

(Ĥ
−1/2
s(h) )TĤ

−1/2
s(h) = Ĥ−1

s(h) and W
1/2
s(h) = diag([K

1/2
h (d(si, s))]si∈s(h)).

Note that the local regression 3.2.4 can be written in a matrix format,

Ys(h) = Gs(h)βs + εs(h) + ηs(h) (3.2.12)

where βs = [βT
0s,β

T
1s,β

T
2s]

T, εs(s) = [εi]
T
i∈s(h) and ηs(s) = [ηi]

T
i∈s(h). Left multiply
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both sides by Ĥ
−1/2
s(h) W

1/2
s(h)

Ĥ
−1/2
s(h) W

1/2
s(h)Ys(h) = Ĥ

−1/2
s(h) W

1/2
s(h)Gs(h)βs + Ĥ

−1/2
s(h) W

1/2
s(h)εs(h) + Ĥ

−1/2
s(h) W

1/2
s(h)ηs(h).

(3.2.13)

Then, minimise the following objective function with respect to βs,

(Ĥ
−1/2
s(h) W

1/2
s(h)Ys(h)−Ĥ−1/2

s(h) W
1/2
s(h)Gs(h)βs)

T(Ĥ
−1/2
s(h) W

1/2
s(h)Ys(h)−Ĥ−1/2

s(h) W
1/2
s(h)Gs(h)βs)

(3.2.14)

which gives the following second state generalised-least-square type estimator,

β̃h(s) = [Ip,0p,2p](G
T
s(h)W

1/2
s(h)Ĥ

−1
s(h)W

1/2
s(h)Gs(h))

−1GT
s(h)W

1/2
s(h)Ĥ

−1
s(h)W

1/2
s(h)Ys(h).

(3.2.15)

Compared with the first stage estimator, the second stage estimator incorporates

the error covariance matrix along with the kernel weight matrix. It is worth noting

that because we estimate β(s) using only local data s(h) controlled by bandwidth

h, implementation of the estimator does not require inverting an n×n covariance

matrix, but rather depends on local sample size n(s(h)).

3.2.2 Spatially Non-Varying Coefficients

Now we consider an important extension of the model 3.2.1 to include coeffi-

cients that are non-varying. The model is specified as follows,

Yi = xT
i β(si) + zT

i γ + εi + ηi, i = 1, . . . , n, (3.2.16)

where zi is a vector of q additional explanatory variables associated with non-

varying coefficient γ.

To estimate γ, we treat the coefficients as if they are spatially varying and

estimate γ(s) using the methodology described above. The varying estimates are

then aggregated to form non-varying estimates,

γ̂h =
1

n

n∑
i=1

γ̂h(si). (3.2.17)

Alternatively, we could apply the ‘profile method’ to estimate the non-varying

coefficient (Fan and Tao, 2005). However, the approach would require inverting

an n× n covariance matrix, which is not suitable in our context.
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3.2.3 Spatial Prediction

In this section we consider the spatial prediction problem. Let s0 be a generic

location on D, where x0 is observed. We are interested in predicting Y0 at s0.

This requires predicting β(s) at s0 and the error ê0 at s0,

Ŷ0 = xT
0 β̃h(s0) + ê0 (3.2.18)

While β̃(s0) can be evaluated directly, estimating ê0 involves inverting an n×n
covariance matrix (Cressie and Johannesson, 2008), which might be computation-

ally intensive. To deal with the problem, we consider spatial prediction using local

information. Specifically, let s0(h) be the the collection of sample locations within

the distance of h to s0.

We define the local estimate of ê0 as follows

ê0 = ĤT
s0(h)(s0)W

1/2
s0(h)Ĥ

−1
s0(h)W

1/2
s0(h)es0(h), (3.2.19)

where Ĥs0(h)(s0) = [Σ̂(s0, si)]i∈s0(h), Ĥs0(h) is a n(s0(h)) × n(s0(h)) with (i, j)th

element being Σ̂(si, sj), i, j ∈ s0(h), and W
1/2
s0(h) = diag([K

1/2
h (d(s0, si)]si∈s0(h)).

3.2.4 Bandwidth Selection

In order to implement the estimator, the size of h should be determined. A

relatively small h will lead to a smaller neighbourhood in the estimation of β,

therefore less approximation bias, but larger variance in β̂. A relatively large

bandwidth, on the other hand, includes data farther away, hence increase the

approximation bias. As more data are involved, the variance for each estimate is

expected to be smaller. An appropriate bandwidth, therefore, strikes a balance

between the bias and variance of the estimators. In this chapter, we use the

cross-validation method to choose a bandwidth.

Let Ŷ −(i) be the prediction of Yi without the ith observation. Then we pick

the bandwidth h by minimising the leave-one-out mean square error.

CV(h) :=
1

n

n∑
i=1

(
Yi − Ŷ −(i)

)2

(3.2.20)

Other cross-validation methods are also available. For example, instead of

leaving one observation out, we could leave out k data points, k being a positive

integer. Picking k out of N has potentially N !
k!(N−k)!

different combinations, which
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is not feasible when the sample size is large. Alternatively, non-exhaustive cross-

validation methods could be applied, such as k−fold. The k−fold cross-validation

randomly divides data into k groups. Each time, one group is reserved for predic-

tion, whereas k − 1 groups are used for estimation. The process is iterated for k

times, and CV score is calculated by summing up k groups of prediction errors.

The approach is computationally more appealing as it requires only k (e.g., 10)

iterations.

First Stage Es,ma,on
(get 𝑒")

Covariance Estimation
(get $Σ)

Second Stage Estimation
(get &𝛽, )𝛾)

Inference and Predic,on

Calculate Geodesic 
Distances

Select a bandwidth
(h)

Cross validation

Figure 3.2: SVCR methodology road map

3.3 Monte Carlo Study

To study the finite-sample performance of our proposed methodology and com-

pare it with other existing relatively simpler methods, we conduct a simulation

study. We generate the simulated data from the following model

yi = c+ xiβ(si) + εi + ηi, i = 1, . . . , N. (3.3.21)
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Figure 3.3: The distribution of coefficient in the horse-shoe shaped domain

We take c = 5, xi ∼ N(3, 22) and β(·) is varying like Figure 3.3; εi is spatially

distributed with correlation function ρ(εi, εj) = exp(−2dg(si, sj)), dg(si, sj) is the

shortest path in the doamin between location si and sj; ηi ∼ N(0, 0.52). To test

the robustness of our method against potential non-Gaussianity, we also consider

a case where ε and η follow multivariate t distribution with the same covariance

structure. The β(·) surface is a classic horseshoe-shaped test function originally

proposed by Ramsay (2002) and later studied by Wang and Ranalli (2007); Wood

et al. (2008). The values are smoothly defined over the horseshoe-shaped region,

but the region itself is not regular. Specifically, it has a gap between the two

arms, across which function values differ significantly. In this design, Euclidean

distance across the gap does not indicate similarity.

Under the above design, we compare our proposed estimator against alter-

natives that differ in how the varying coefficients and non-varying coefficients

are estimated, which distance measures are used and, whether or not a spatially

weighted (by the inverse spatial covariance matrix) estimator is used.

For the varying coefficient, we consider two options: the covariance weighted lo-

cal linear, the proposed approach, and the commonly used geographically weighted

regression (GWR) (e.g., Lloyd, 2010; Bivand and Yu, 2015). For the non-varying

part, both the profile method and the average-over-local-estimates method are

considered. For the choice of the distance measure, both geodesic distance and

Euclidean distance are examined. With the proposed estimator, the regression

function is estimated with a weighting of the inverse spatial covariance matrix not

37



shared by other approaches, including Zhu et al. (2014). The rows in each block of

Tables 3.1 and 3.2 represent the Monte-Carlo results from various combination of

estimation methods. The bandwidths in all methodologies are selected via 10-fold

cross-validation.

We choose various sample sizes, N = 50, 100, 200, 300, each with 1000 repeti-

tions. To reduce computational burden in this simulation study, βs are randomly

sampled from the horseshoe-shaped region. To test how different methodologies

perform at different parts of the domain, we divide the horse-shoe shape into three

parts: boundary, gap and inner zone (see Figure 3.3). The boundary zone refers

to the area close to the boundary of the shape. Data are not sample outside the

boundary. The gap zone refers to the area where data from two sides of the tube

are close in the Euclidean sense, but not close in terms of shortest path in the

domain. The inner zone lies in the middle of the domain, away from boundary of

the shape. Both β and c are estimated by different models mentioned above, and

the performance is measured using the following quantities,

1. Bias and RMSE (root mean sum of squares) for the non-varying coefficient,

B(ĉ) =
1

Rep

Rep∑
r=1

(ĉr − c) and RMSE(ĉ) =

√√√√ 1

Rep

Rep∑
r=1

(ĉr − c)2

2. Mean summed squared error (MSSE) at sampled locations for the varying

coefficient,

MSSE(β) =
1

Rep ·N

Rep∑
r=1

N∑
i=1

[
β̂r(si)− βr(si)

]2

3. MSSE for the varying coefficient at boundary, gap and inner zones specified

in Figure 3.3,

MSSEb(β) =
1

Rep ·N

Rep∑
r=1

N∑
i=1

[
β̂r(si)− β(si)

]2

I(si ∈ Boundary Zone)

MSSEg(β) =
1

Rep ·N

Rep∑
r=1

N∑
i=1

[
β̂r(si)− β(si)

]2

I(si ∈ Gap Zone)

MSSEg(β) =
1

Rep ·N

Rep∑
r=1

N∑
i=1

[
β̂r(si)− β(si)

]2

I(si ∈ Inner Zone)
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4. Estimated coverage probability for a 95% nominal level,

Coverage Probability =
1

N ·Rep

Rep∑
r=1

N∑
i=1

I(Yi ∈ 95%prediction interval)

The Monte Carlo output is presented in Tables 3.1 and 3.2. The simulation

outcomes clearly indicate the superiority of the proposed procedure. The study

also ensures that there is no loss in accuracy for our local estimates of the vary-

ing coefficients or the fixed coefficients. The maximum gain comes from the gap

zone. Compared with the estimator which does not consider spatial dependence

(third row and above), covariance weighted estimator have achieved higher effi-

ciency, particularly for a large sample. For the varying coefficient β, our estimator

has the best performance when the sample size is not too small. Both the bias

and RMSE for all parameters reduce for increasing sample sizes, confirming the

consistency of the estimator in the asymptotic sense. In terms of prediction and

prediction intervals, the proposed method performs fairly well. There is slight

under coverage, but the gap reduces with sample increasing sample size. When

the true distribution is not normal, the proposed method enjoys some robustness,

although not as good as in the case of normality.

Ceteris paribus, we find that (i) local linear estimators outperform local con-

stant (GWR) estimators; (ii) estimators using geodesic distance have better per-

formance compared with Euclidean counterparts; (iii) the non-varying coeffi-

cient obtained by averaging local estimates also performs better than the profiled

method.
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3.4 Application

In this section, we apply the proposed methodology to a specific urban housing

market in Portugal. The analysed area is located in the Centro Region of Portugal

and includes two municipalities – Aveiro and Ílhavo (Figure 3.1). The municipality

of Aveiro has a total area of 200km2, and Ílhavo an area of 75km; the total

population in 2011 were 78,454 and 38,317 inhabitants respectively (Source: 2011

Census). Omitting the area of the lagoon (where a minimal number of people live

on boats), the population density is 600 inhabitants per square kilometre, which

is typical for an urban agglomeration in western Europe.

Following the early works of Lancaster (1966) and Rosen (1974), hedonic pric-

ing models are widely used to decompose housing values. A general form of a

hedonic pricing model can be represented as follows,

P = f(S,N,L,C, T ) (3.4.22)

where P denotes the value of a house (price), S,N, L,C, T denote, respectively,

structural characteristics, neighbourhood characteristics, location within the mar-

ket, other characteristics and the time when the value is recorded. f is a function

that links these characteristics to the value. Its partial effect with respect to one

variable represents people’s willingness to pay an additional unit of that hedonic

feature.

Three issues surround the estimation of a hedonic model. The first is con-

cerned with the choice of f(·), which is not very precisely informed by theories

such as Lancaster (1966) or Rosen (1974). A common practice is to adopt a

simple parametric form, such as the semi-log form where the dependent variable

takes a logarithm transformation, or the log-log form where both the dependent

and independent variables take logarithm transformations. The log-log form also

offers a simple interpretation for the coefficients in terms of price elasticities. Fol-

lain and Malpezzi (1980) tested the log-linear as well as the linear specifications.

They found that the former enjoys some advantages such as the ability to capture

nonlinear relations and the convenience to interpret the coefficients as elasticities.

Moreover, the nonlinear hedonic function makes it possible to recover the param-

eters of structural demand curve (Malpezzi, 2002). In this chapter, we consider

a hedonic house price regression model where the dependent variable is the log-

arithm of house prices per square meter and a collection of housing features are

regressors. Our specific interest lies in the house price elasticity of living space,

which is allowed to vary over the spatial domain.
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The second issue involves the selection of relevant regressors. Due to the com-

plex and heterogeneous nature of a house, literally hundreds of potential regressors

could be included in a hedonic regression model. To reduce the dimension, factor

analysis has been actively used in the literature; see Wilkinson and Archer (1973)

for the pioneering work in this area and Malpezzi (2002) for an excellent review.

Factor analysis can aggregate numerous housing characteristics into a small num-

ber of interpretable categories, and therefore greatly reduces the dimension and

simplifies further analysis. For this particular housing market, Bhattacharjee et al.

(2012) combine factor analysis with regression and obtained a parsimonious model.

They extract five leading orthogonal factors from a large number of characteristics

and then treat the factors as the regressors in the estimation of a hedonic model.

Third, the hedonic relationship is expected to vary over the spatial domain.

Therefore, in practice, a hedonic regression is not applied directly to a whole

housing market but separately to several smaller homogeneous areas, often called

sub-markets. If sub-markets are not specified properly, estimates of heterogeneous

coefficients would be misleading. Recently, it has been argued that the heteroge-

neous coefficients should be estimated prior to the segmentation of sub-markets,

and the delineation itself should be ‘data-driven’–building upon the similarity of

hedonic prices and characteristics, rather than the other way around (Bhattachar-

jee et al., 2016a).

To understand the spatial heterogeneity in the hedonic regression, we combine

the multi-factor structure (Bhattacharjee et al., 2012) and the varying coefficient

component into a single regression model,

lnPi,j = β(si) lnMi,j+η lnTi,j+γ0+
5∑

k=1

γkFki,j+εi+ηi,j, j = 1, . . . , ni i = 1, . . . , N

(3.4.23)

where lnPi,j is the logarithm of house price per square meter of living area (P/S2);

lnMi,j denotes the logarithm of square meters of living area (S2); lnTi,j denotes

the logarithm of time on the markets (in days); Fki,j, k = 1, . . . , 5 are five orthog-

onal factors which can be interpreted as access to the centre amenities, access to

local amenities, access to beaches, physical attributes such as house type, num-

ber of rooms and additional house facilities (balcony, garage, etc.). The double

subscript (i, j) is used as each location (i) might be shared by more than one

data point (j), in which case there are replications. Here i denotes a distinct

location and j indexes a specific house (observation) at that location. N is the

total number of distinct locations and nj is the number of houses at location i.

43



We assume a random effect structure for the error terms similar to that in the

panel data setting (Baltagi, 2008). εi is the location-specific random effect, with

E(εi) = 0, var(εi) = σ2
ε(si), and ρε(si, sj) = ρε(d(si, sj);θ). ηij is the idiosyncratic

error such that E(ηi) = 0, var(ηi,j) = σ2
η(si), ρη(si, sj) = 0 for all si 6= sj. This

implies spatial autocorrelation is captured only through ε.

3.4.1 Data

The database used for this empirical work is provided by the firm Janela

Digital S.A., which owns and manages the real estate portal CASA SAPO – the

largest site of real estate advertisement in Portugal. For a detailed discussion with

the database, see the online supplement and the data archive of Bhattacharjee

et al. (2016a). The database covers the time interval between October 2000 and

March 2010 and includes around 4 million properties available for transactions in

Portugal. For the municipalities of Aveiro and Ílhavo, there are 47,188 properties

recorded. This empirical work uses 12, 467 observations, after cleaning the data

and removing all cases where data were incomplete.2

Descriptive statistics are reported in Bhattacharjee et al. (2012). For most of

the properties, the coordinates are not precisely observed. Rather, each property

is assigned to a relatively homogeneous area, which we call a zone, whose centroid

is geo-referenced. We use the zone-centroid coordinates as the measurement of

house locations. The entire territory is divided into 76 such zones (Figure 3.4),

each of which contains at least two data points.

3.4.2 Complex Domain and Distance Measure

The spatial domain under study is a coastal region with the Atlantic Ocean

flanking the western boundary of the area. The north of the region is dominated

by the Aveiro lagoon (Ria de Aveiro) which has no houses and is therefore ex-

cluded from our analysis. Two waterways extend from the lagoon southwards

(Figure 3.4). The western branch is a river (also called Ria de Aveiro) that flows

southwards and westwards into the Atlantic. The eastern waterway is also a river

(Rio Boco) extending southwards and inland. The central business district (CBD)

of Aveiro lies on the bank of the lagoon slightly eastwards from Rio Boco. The

CBD of the twin municipality of Ílhavo lies southwards on the eastern bank of Rio

Boco. These central urban areas are surrounded by suburban housing combining

traditional and newly built areas; see Bhattacharjee et al. (2012) for a detailed

2For a detailed discussion of data cleaning, see Marques (2012).
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Figure 3.4: Complex domain of Aveiro housing market, marking the centroids of
the 76 zones

description of the suburban areas. Beyond these, there are rural areas with mixed

agricultural and (small scale) industrial land use and sparse traditional housing.

Unlike Rio Boco, which is traversed by many bridges providing continuous

connection between its two banks, there are only limited connections across Ria de

Aveiro. Thus, the domain includes peninsulas, interior holes, gaps and concavities

along the boundaries. To the west, the lagoon and western branch of water trisect

the spatial domain into three parts – southern beach (Barra, Costa Nova) and

northern beach (Sao Jacinto) and a peninsula (Gafanha da Nazaré) which is the

centre of the provincial town Gafanhas. Connections between beach areas and

the mainland are limited. The southern beach is connected via a bridge from

Gafanhas across the river which across the peninsula. The northern beach is
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connected to the mainland by a ferry, from Gafanhas as well.

When, like the study region, a spatial domain is fragmented with only limited

connections between its parts, the Euclidean metric does not always measure

the true proximity between spatial points.3 Consider two sites, Costa Nova and

Gafanha da Encarnacao situated on opposite banks of the western river (Ria

de Aveiro). These two locations are quite close in the Euclidean sense – just

across the river. However, in order to travel from one to the other, a detour is

needed northwards along the river, across the bridge, and southwards again; this

is because there is no direct connection between these two places.

Intuitively, a suitable distance measure should be the one that is based on

the shortest path bypassing inadmissible areas. The recent spatial smoothing

literature provides several alternative distance measures in this context. One

option is developed by Feng et al. (2012). Their approach relies on a priori

known boundaries of regions, or at least the adjacency matrix. Distances are

computed by either the minimal number of boundaries to cross from one region to

another, or the Euclidean distance between centroid coordinates of two regions.

In our application, this approach is not feasible because we have point data and

an adjacency matrix is not known a priori. Furthermore, it cannot be used to

deal with complicated and irregular domain problem since the Euclidean distance

between regions can cut across boundary features.

Here we adopt the idea of the geodesic distance (Wang and Ranalli, 2007) to

measure the intrinsic proximity (similarity/ dissimilarity) between two locations.

To compute geodesic distances, we first treat all the distinct locations as a set

of nodes and impose a weighted graph structure, say G, on them. All the loca-

tions are fully connected, which means every pair of nodes (locations) has an edge

between them. Edge weights are measured by pairwise Euclidean distances; the

weight matrix is denoted by D = (di,j) for i, j = 1, . . . , n, whose (i, j)-th entry

represents the weight between location i and j. Next, we consider a restricted

graph of G, called Gk, where each node is only connected to its k nearest neigh-

bours. We denote Gk and Dk the restricted graph and restricted weight matrix,

respectively. The (i, j)-th entry of Dk matrix is equal to the same entry in D if

there is an edge between them and infinity otherwise. Wang and Ranalli (2007)

show that with a properly chosen k, the pairwise shortest path4 in the restricted

graph Gk can serve as a suitable distance metric in the irregular and complicated

3For another example, see the discussion on the spatial domain of the island of Montreal in
Ramsay (2002).

4Computation involves the use of Floyd’s algorithm (Floyd, 1962).
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domain. The method, however, does not address the problem of holes and gaps

directly. When a location’s k nearest neighbours include those lying at the oppo-

site side of the gap, the geodesic distance will be wrongly calculated. Choosing

a small k could reduce potential bias, but the restricted graph might not be con-

nected. The problem is conspicuous in the Aveiro housing market because the

problematic region (across the river) is sparsely sampled.

Figure 3.5: Delaunay triangulation of Aveiro housing market

To address this issue, we apply Delaunay triangulation to the set of data

locations within the domain (Ramsay, 2002; Sangalli et al., 2013). Delaunay

triangulation is a method that approximate the original domain with the union of

disjoint triangles, where no point is inside the circumcircle of any triangle (Hjelle

and Dæhlen, 2006). Figure 3.5 shows the result of the Delaunay triangulation

of the Aveiro housing market. It is clear that triangulation delineates both the

boundary of the domain and inadmissible areas. As expected, triangulation in the

city centre is finer because of more available data points, whereas in the periphery,

triangulation is less dense. Two connections from the mainland to the western

beach areas are clearly visible. With the triangulated map, we then treat the

vertices of triangles as the nodes of a graph and apply Wang and Ranalli (2007)’s

method. The pairwise geodesic distances of 76 regions are thus obtained.

The distance between two data points sharing the same location also needs to

be appropriately addressed. We assume a house is randomly located within its

zone. If this zone were a circle, then the expected distance between two randomly

scattered points is 128
45π
r
∑
≈ 0.91r, where r is the radius of the circle. Although
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in our application, we may view each zone as a polygon rather than a circle, the

above rule is approximately valid. We let r denote the Euclidean distance from

the centroid of a zone to the nearest border and use this to measure the distance

of points sharing the same location. We also verify that our estimates are not

sensitive to this modelling assumption.

3.4.3 Estimates and Discussion

With a proper geodesic distance defined on the domain, we proceed to estimate

the varying coefficient hedonic regression model (3.4.23) based on the proposed

methodology. Figure 3.7 shows the variogram and estimated variogram function.

For the parametric form of the correlation function, we choose a mixture exponen-

tial function ρ(si, sj; θ1, θ2, θ3) = θ3e
−θ1d(si,sj) + (1 − θ3)e−θ2d(si,sj), with θ1, θ2 > 0

and 0 ≤ θ3 ≤ 1. As mentioned in Opsomer et al. (1999), the mixture expo-

nential function is generally much more flexible compared with alternatives and

guarantees the positive definiteness of the estimated covariance matrix. Using the

weighted least square method outlined in Cressie (1993), we obtained the param-

eter estimates and hence the spatial covariance matrix. After fitting the proposed

model, the histogram from the fitted residuals is presented in Figure 3.6. No clear

model violation or normality assumption is indicated.

Figure 3.6: Histogram for fitted resid-
uals
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Figure 3.7: Variogram with fitted curve

Figure 3.8 and Table 3.3 report the varying coefficient β estimates at the 76

locations. The value of β̂ informs the percentage change in house price per square

meters in response to 1 percentage change in living space, whereas 1 + β̂ is more

conveniently interpreted as the price elasticity of space or the implicit price of

living space.
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Full estimates reveal that the coefficient displays substantial variability over

space. The highest estimated elasticity (1 + β̂) is observed for Barra (0.6158),

which is in the beach area. For an average property in Barra, 1 percent increase

in the living space will bring an estimated 0.6158 percent rise in housing price.

Interestingly, Barra is far from the city centre and only have limited access to the

mainland. This suggests that the beach area is valued for vacation use and tourist

rental which attracts the high premium. Apart from the beach, high implicit prices

are found in the city centres of Aveiro and Ílhavo (yellow and green dots in Figure

3.8), where the population is dense and location there brings easy access to central

amenities.

Figure 3.8: Spatially varying coefficient estimates over the 76 zones

Around the eastern and southern boundary of the map, most implicit price

estimates are almost negligible (blue dots). The lowest estimate is observed at

Eirol (−0.2865), followed by Sarrazola (−0.2168), Nariz (−0.1963), all of which are

rural areas. Note that a few of estimates are slightly below the theoretical range of

price elasticity for normal goods (0, 1). Table 3.3 shows that all the out-of-range

zones, where a larger house brings added costs of maintenance and low rental
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Figure 3.9: Distance decay of implicit price by distance from Aveiro CBD

potential, are either in rural or suburban areas. In those districts, the population

is relatively sparse and facilities are less accessible, which makes extra living space

undesirable. Figure 3.9 plots varying coefficient estimates against distance to the

Aveiro city centre. A clear decreasing trend shows that the elasticity decreases

gradually as we move from centre to periphery, which agrees with both intuition

and economic theory. A few exceptions are the beach areas, and areas close to

Ílhavo.

Table 3.3 also indicates a large variation in the number of data points used

for local estimation. In the city centre, each location generally has one or more

neighbours, while in the periphery, many do not have any neighbour at all. The

variation is caused by the non-uniform design density across space, which leads to

uneven sampling frequencies. Varying local sample size suggests that the accuracy

of prediction could be different at different locations. Table 3.3 also reports local

MSE at 76 zones and regression analysis indicates negative relations between local

MSE and both number of houses in locality and in the neighbourhood.
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Zone Region-type Price No. Obs No. of Obs in the MSE
Elasticity (Within zone) Neighbours neighbour (Within zone)

Barra Beaches 0.6158 705 0 0 0.0641
Centro (Ilhavo) CBD Ilhavo 0.4639 1158 1 29 0.0503
Gulbenkian CBD Aveiro 0.4428 2 5 430 0.6407
Costa Nova Beaches 0.4182 100 0 0 0.0905
Glicinias CBD Aveiro 0.4091 151 4 355 0.0344
Gafanha da Nazare Gafanhas 0.3962 1444 0 0 0.0607
Alboi CBD Aveiro 0.3878 89 6 331 0.0465
Bairro do Liceu CBD Aveiro 0.3865 169 7 312 0.0464
Rossio CBD Aveiro 0.3846 100 5 199 0.0572
Sao Jacinto Rural 0.3844 28 0 0 0.0959
Mario Sacramento CBD Aveiro 0.3751 102 5 573 0.0583
Forum CBD Aveiro 0.3555 2 9 600 0.4284
Eucalipto CBD Aveiro 0.3522 189 4 317 0.0438
Cancela CBD Ilhavo 0.3517 29 1 1158 0.0325
Bairro de Santiago CBD Aveiro 0.3366 43 6 667 0.1346
Beira Mar CBD Aveiro 0.3243 70 7 357 0.0810
Vila Jovem / Santiago CBD Aveiro 0.3022 21 5 520 0.0326
Centro de Congressos Gafanhas 0.2955 6 7 1005 0.0019
Feira de Marco Suburban 0.2871 121 10 1415 0.0251
Oita CBD Aveiro 0.2627 7 8 1247 0.0091
Avenida Dr Suburban 0.2563 36 11 1600 0.0786
Lourenco Peixinho
Ribas Suburban 0.2390 44 1 37 0.0332
Verdemilho CBD Aveiro 0.2147 233 0 0 0.0287
Gafanha da Encarnacao CBD Aveiro 0.2141 258 0 0 0.0349
Gafanha D”aquem Rural 0.2042 82 0 0 0.0240
Alagoas Suburban 0.2007 526 0 0 0.0174
Coutada/Medela Suburban 0.1955 37 1 44 0.0294
Forca CBD Aveiro 0.1952 635 2 41 0.0256
Patela Suburban 0.1834 223 2 10 0.0182
Santiago CBD Aveiro 0.1812 35 2 64 0.0576
Vista Alegre CBD Aveiro 0.1812 36 0 0 0.0171
Gafanha do Carmo Rural 0.1770 40 0 0 0.0367
Estacao CBD Aveiro 0.1678 35 9 2066 0.0202
Barrocas CBD Aveiro 0.1658 975 6 203 0.0388
Vilar Suburban 0.1589 217 1 2 0.0177
Agras do Norte Suburban 0.1452 11 1 2 0.0974
Cabo Luis/Quinta Suburban 0.1359 3 2 136 0.1819
das Acacias
Viaduto Suburban 0.0931 2 7 1631 0.0028
Sol Posto/Presa Suburban 0.0904 3 1 223 0.0009
Viso/Caiao Suburban 0.0800 17 2 116 0.0747
Aradas Suburban 0.0706 32 0 0 0.0547
Sao Bernardo Suburban 0.0694 1143 0 0 0.0297
Agras CBD Aveiro 0.0661 2 2 986 0.0144
Azenha de Baixo Suburban 0.0652 102 0 0 0.0459
Bonsucesso Suburban 0.0604 193 0 0 0.0286
Quinta do Cruzeiro CBD Aveiro 0.0524 233 4 201 0.0249
Cale da Vila Gafanhas 0.0493 63 0 0 0.0347
Quinta do Picado Rural 0.0250 139 0 0 0.0411
Esgueira CBD Aveiro 0.0191 51 4 383 0.0368
Quinta da Bela Vista Suburban 0.0147 119 1 3 0.0119
Carramona CBD Aveiro 0.0117 109 0 0 0.0152
Quinta do Gato Suburban 0.0034 4 0 0 0.0081
Moitinhos Rural 0.0029 26 2 157 0.0391
Escolas CBD Ilhavo -0.0152 113 4 303 0.0373
Cidadela/Quinta Suburban -0.0173 7 2 232 0.0108
de Santo Antonio
Olho d”agua Rural -0.0396 9 2 159 0.1001
Mataducos Suburban -0.0561 152 1 9 0.0446
Quinta do Loureiro Suburban -0.0591 129 0 0 0.0390
Paco Rural -0.0676 92 1 97 0.0249
Nossa Senhora Suburban -0.0863 94 0 0 0.0730
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de Fatima
Oliveirinha Rural -0.0865 22 0 0 0.0195
Granja de Baixo Rural -0.0925 13 0 0 0.0421
Povoa do Paco Rural -0.0937 97 1 92 0.0524
Costa do Valado Rural -0.1063 118 0 0 0.0199
Requeixo Suburban -0.1081 41 0 0 0.0866
Cilhas Rural -0.1223 17 0 0 0.0248
Cacia Rural -0.1245 13 0 0 0.0237
Quintas Rural -0.1362 127 0 0 0.0499
Azurva Rural -0.1407 563 0 0 0.0464
Povoa do Valado Rural -0.1419 3 0 0 0.0037
Taboeira Suburban -0.1462 69 0 0 0.0707
Mamodeiro Rural -0.1464 29 0 0 0.0762
Eixo Rural -0.1891 281 0 0 0.0711
Nariz Rural -0.1963 37 0 0 0.0963
Sarrazola Rural -0.2168 235 0 0 0.0389
Eirol Rural -0.2865 6 0 0 0.0881

Table 3.3: SVCR hedonic estimates by zones

3.4.4 Prediction and prediction intervals

The proposed methods are BLUP-based, and therefore an important advantage

is the ease with which predictions and prediction intervals can be obtained. In

the context of the current application, such predictions have immense importance.

For real estate agencies, the proposed methods provide an easy way to value

properties for their clients, paying adequate attention to different preferences,

and social and neighbourhood conditions in different places. Such differences then

lead to different implicit prices, for example, for living space. For homebuyers,

such predictions provide easy ways to balance different priorities across a range of

heterogeneous characteristics of alternate houses and neighbourhoods. Finally, for

local and national governments, predictions provide useful ways to evaluate the

affordability for housing and the potential need for state support. Importantly, our

method provides simple-to-compute out-of-sample predictions not only in terms

of regressors with fixed and varying coefficients but also potential new locations

that have not been sampled. This is also useful for developers planning new

build of houses. In other contexts, there is substantial importance attached to the

predictions at out-of-sample locations where data could not be collected, typically

because of cost considerations; see, for example, Goulard et al. (2017).

To explore predicted prices, we choose three regions within our study domain

with a high price elasticity of living space: CBD Aveiro, CBD Ílhavo and Beaches.

In each case, we consider the centroid of the sampled locations from the specific

region, which is not a sampled location in itself. For the central area of Aveiro,

this location turns out to be in Centro de Congressos, which is the seat of the

local government but contains only six sampled houses. This small local sample
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size does not matter because the method draws adequately upon information from

other locations in the neighbourhood. For the CBD of Ílhavo, this centroid lies in

the zone Centro (́Ilhavo) which has high design density. For Beaches, the chosen

location lies in Barra, which is right on the edge of the study region. Then,

estimates for the location will also provide some intuitive insights as to boundary

spillages.

Predictions are obtained under two different scenarios: (a) local median and

(b) aggregate average. For the first, we set covariates, including living space, at

the median value for the respective area: CBD Aveiro, CBD Ílhavo or Beaches.

For the second, we place the covariates at the average value for the entire housing

market, including Gafanhas, suburban and rural areas. This design will allow for

evaluation of prices locally within the region but also for houses with comparable

characteristics placed at different locations. In effect, this enables us to evaluate

how important living space is to homebuyers, as compared with other character-

istics of the lived environment, including access to local and central services and

facilities within the house.

Region Scenario Pred. ln(P/S2) Pred. P (Euros)

CBD Aveiro Local 7.6049
(7.2683,7.9413)

EUR 209, 065
(200780,292708)

CBD Ílhavo Local 6.7809
(6.3420,7.2197)

EUR 123, 317
(79512,191254)

Beaches Local 7.3725
(6.8758,7.8692)

EUR 162, 344
(98796,266770)

CBD Aveiro Average 7.4650
(7.1285,7.8015)

EUR 230, 892
(164913,323268)

CBD Ílhavo Average 8.2876
(7.8487,8.7264)

EUR 525, 597
(338895,815156)

Beaches Average 9.0296
(8.5329,9.5262)

EUR 1, 103, 809
(671731,1813812)

Table 3.4: Spatial prediction using SVCR

Table 3.4 reports the predicted prices. We first predict the logarithm of the

price per square meter and its 95% prediction interval. Then, we translate this

into absolute house prices in Euros. Some interesting observations follow. As one

would expect, the price of a local representative house is highest in the CBD of

Aveiro, at Euros 209, 065 (95% prediction interval: 200, 780 to 292, 708). The

price of a representative house on the beaches is about 22 percent lower, and one

in the CBD of Ílhavo is lower by another 24 percent. However, this is only a

representative house in that area. There is important variation over the spatial
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domain in living space and housing quality, neighbourhood quality and perhaps

most importantly in access to services. Now, if a house with average (represen-

tative) characteristics from the entire domain are placed in each of these three

areas, the situation dramatically changes. This index house has a predicted price

of a whopping Euros 1, 103, 809 (95% prediction interval: 671, 731, 181, 3812) if it

is located on the beaches. The same house would be valued at one-fifth of the

price (Euros 230, 892) if it were placed in the centre of Aveiro. Even the 95%

prediction interval (Euros 164, 913 to 323, 268) does not intersect. Thus, the high

predicted price of a local representative house in the CBD of Aveiro was not so

much due to living space, but other covariates. In fact, residents value closeness

to the centre and therefore the labour market and central facilities far more than

the size of the house itself. The same house placed in the CBD of Ílhavo would

fetch a value 47 percent of that on the beach, but the 95% prediction interval is

still disjoint from that in the CBD of Aveiro. Houses in Ílhavo are on average

larger compared to both the CBD of Aveiro and the beach area. However, prices

in the centre of Aveiro are higher because of proximity to the CBD, and prices in

the beaches are higher because of investment and leisure value. Such insights are

crucial for the participants in the housing market, but also the local government.

3.5 Conclusion

Spatial applications in housing markets, as well as many other areas, have

several distinguishing features: irregular and complex spatial domain, spatially

varying coefficients, spatially autocorrelated errors, large spatial dimension, and

measurement error. The current literature in spatial statistics addresses these

issues in a piecemeal manner. There is substantial existing research in spatial

smoothing over irregular domains, but these methods are not appropriately ex-

tended to a regression context. The literature on spatially varying coefficients

pays little attention to spatially autocorrelated errors. Methods for modelling

spatial autocorrelation by variogram fitting also include measurement error, but

not spatially varying slopes.

We consider an application in housing markets where all of the above issues are

concurrently present. Our objects of inference are both the spatially varying co-

efficients, as well as prediction at new locations where there are no observed data.

We propose an innovative methodology to estimate the spatially varying surface of

a regression slope parameter, in the presence of potentially other covariates with

fixed slopes, measurement error and spatially autocorrelated errors. The method
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is easy to apply and computationally efficient when the spatial domain is irregu-

lar, and when the dataset is large. Applied to data on the Aveiro-́Ilhavo urban

housing market in Portugal, the method takes adequate account of the complex

nature of the spatial domain and recovers intricate spatial patterns in the implicit

price of living space. The estimates obtained offer useful interpretation within

the context of the application. The predictions derived from our model provide

exciting new insights into housing preferences and spatial variation in prices.
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Chapter 4

The Geography of Human
Activity and Urban Consumption
in Beijing: A Spatiotemporally
Varying Coefficient Regression
Approach

4.1 Introduction

The rise of Chinese megacities is marvellous. Since the economic reform in

1978, the ratio of the urban population in China has surged from 19% in 1980 to

58% in 2017 (The World Bank, 2018). In Beijing, the capital city, the popula-

tion has more than doubled from 8.7 million to 21.7 million in the same period

(Beijing Municipal Bureau of Statistics, 2018). Despite the adverse effects such

as congestion and pollution, Chinese megacities play a critical role in boosting

productivity and economic growth by lowering the cost of transport for goods,

services, people and ideas. As urban household income continues to rise with the

booming economy, the role of a city in facilitating consumption has been high-

lighted in the recent literature (Glaeser et al., 2001; Glaeser and Gottlieb, 2006;

Rappaport, 2008). Like its western counterparts, modern-day Chinese megacities

attract people by providing a wide range of consumer goods such as restaurants,

pubs, theatres, museums, and grocery stores. The growth of the urban pop-

ulation, on the other hand, makes it possible for cities to take advantage of the

economy of scale. Higher urban population density brings better and more diverse

0Earlier version of this chapter was co-authored with Wenjie Wu, Jianghao Wang and
Chengyu Li under the title ‘The Geography of City Liveliness and Consumption: Evidence from
Location Based Big Data’ and is archived as SERC Discussion Paper (see Wu et al., 2016b)
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consumption amenities such as concerts, basketball matches, exotic restaurants

and transportation infrastructure. As Jane Jacobs put it, ‘Liveliness and variety

attract more liveliness; deadness and monotony repel life’ (Jacobs, 1962).

In this chapter, we study the relationship between human activity and con-

sumption amenities in Beijing, China. We ask whether the liveliness of Beijing

benefits from the configuration of consumption amenities, and what insight can be

gained about the spatiotemporal heterogeneity of this relationship. To facilitate

our investigation, we collect two unique datasets, (1) high frequency mobile phone

positioning (MPP) data from Chinese social network application WeChat, and (2)

large-scale point-of-interest (POI) data from local consumption website Meituan-

Dianping1, the Chinese version of Yelp. The first dataset records locations of all

the WeChat users with mobile phone GPS enabled in metropolitan Beijing each

hour during a two-week window in June 2015. Due to the popularity of WeChat

in China, the spatiotemporal distribution of mobile phone positioning serves as

an excellent proxy for the real-time human activity distribution in Beijing. The

second dataset gathers all the businesses and amenities with physical addresses

registered at Meituan-Dianping. The comprehensive geo-coded datasets give us

detailed information about the spatial distribution of consumption amenities.

Our study is of interest in several aspects. First of all, the future of cities

depends on people’s continued willingness to live in high density and take ad-

vantage of agglomeration effects (Glaeser, 2010). With Chinese urban residents

growing richer, the attractiveness of a city not only lies in salaries it can offer but

also in the quality of life it provides. As urban consumption is most relevant to

the quality of life a resident would enjoy, understanding the linkage between con-

sumption amenities and human activity carries significant importance in urban

planning and urban policy-making. In the ‘Consumer City’ paper, Glaeser et al.

(2001) sheds light on the role of urban density in facilitating consumption activi-

ties. They argue that the existence of a wide variety of consumer goods is one of

the most important urban amenities. Empirically, they find a strong positive rela-

tionship between urban amenities and population growth. Following Glaeser et al.

(2001), an increasing number of theoretical and empirical studies have emerged

to discuss the role of urban consumption and its interaction with the urban popu-

lation. Using US restaurant data, Schiff (2014) finds that the population density

has a substantial impact on the consumer product variety through demand ag-

gregation, even if cities have otherwise identical characteristics. Couture (2013)

1Meituan and Dianping were previously independent websites followed by a merger in 2015.
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estimates the consumption value of density using travel and local business data,

in which he finds higher density areas benefits consumers through gains in variety.

In the context of China, Zheng and Kahn (2008) find that local urban amenities,

such as public infrastructure, good schools, pleasant environment are significantly

capitalised into households’ willingness to pay for proprieties. Wu et al. (2017)

confirm that substantial value is attached to the accessibility of various amenities

in Beijing, with significant spatial heterogeneity. This allows us to assume that the

configuration of local amenities influences residents’ quality of life. Understanding

the spatial and temporal connection between consumption amenities and human

activity at the local level enables policymakers and developers to make better de-

cisions regarding how land resources and capitals should be allocated. Our study

about the relationship between the distribution of consumption amenities and

human activity contributes directly to this line of research.

Second, since 1990s China has started reinstating the urban land market as well

as removing migration restrictions in an effort to transform the centrally planned

economy into a market-oriented economy. Economic liberalisation catalyses the

explosive growth of construction and urban development which continually chang-

ing the face of Beijing (Zheng and Kahn, 2008). On the other hand, with better

public transportation and increasing car ownership (Zheng et al., 2016), Beijing

residents are able to move swiftly from one place to another, constantly shift-

ing the spatiotemporal distribution of human activity. As the texture of the city

evolves rapidly, current county-level census data published after relatively long

periods often fail to provide up-to-date information at granular geographical scale

(Glaeser et al., 2017). To gain insight into the contemporaneous local economic

activity, many researchers have turned to alternative location-based data sources,

such as those from social media, traffic cameras, smart cards, crowdsourced web-

sites and mobile phones (Long et al., 2012; Li et al., 2013; Liu et al., 2014; Wu

et al., 2016a; Glaeser et al., 2017). Our study adds to a growing body of urban

economics literature using location-based big data from online platforms. In par-

ticular, using the MPP data allows us to track the quantity and distribution of

within-city human activity with high spatiotemporal precision, therefore provid-

ing an opportunity to dive into the administrative boundary and investigate the

dynamics of the city liveliness at fine scales.

Third, whereas the distribution of human activity can display significant vari-

ation within a short window (e.g., 24 hours), the distribution of consumption

amenities typically remains stable overnight. This intuition suggests that the

relationship between human activity and configuration of amenities is far from
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static within a short period. For example, shopping malls are likely to attract

more customers during the day when they are open, but fewer people when they

are closed at night. However, few empirical studies investigate the heterogeneous

relationship between consumption and human activity.

Our study fills the gap. To identify the spatial and temporal heterogeneous

effects between human activity and local consumption amenities, we propose a

semiparametric regression model called spatially and temporally varying coeffi-

cient regression (STVCR), adapted from the statistical varying coefficient models

(Fan and Zhang, 2008). We relax the constant-coefficient regression assumption

in favour of coefficients that vary with both space and time. This setup provides

a framework to investigate spatial-temporal heterogeneous effects. Methodologi-

cally, the proposed STVCR model contributes to the recent development in semi-

nonparametric spatial and temporal models. Fotheringham et al. (2015) proposed

the Geographical and Temporal Weighted Regression (GTWR), which extends the

Geographical Weighted Regression (GWR) into the temporal dimension. Our ap-

proach is similar to GTWR but also differs in two ways. On the one hand, the

STVCR allows some of the regression coefficients to be non-varying, rather than

fully varying in the GTWR, therefore provides a more flexible regression frame-

work with different types of coefficients. On the other hand, we apply a local

linear estimator to estimate the model, as opposed to the GTWR, which is a

type of local constant estimator. Using the first-order Taylor approximation, the

local linear estimator controls the size of bias in semi-parametric estimation. We

conduct a Monte Carlo study to compare the performances of the STVCR and

GTWR. The results back the theory that the local linear estimator outperforms

the local constant estimator.

The remainder of this paper is organised as follows. Section 4.2 details the

context and the data used in this study. Section 4.3 proposes the methodology.

Section 4.4 presents the empirical results and Section 4.5 concludes.

4.2 Context and Data

4.2.1 Beijing Metropolitan Area

Beijing (or Peking) is located in northern China, south of Yanshan mountain

and surrounded by Hebei province. The city displays a monocentric structure with

Tiananmen square being the geographic centre and the surrounding CBD (‘Jian-

GuoMenWai ’) being the centre of economic activity and employment (Zheng and
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Kahn, 2008). The monocentric city structure has been a significant feature that

differentiates Chinese cities from cities in developed economies, where urban em-

ployment has been decentralised to suburbs (Glaeser and Kahn, 2001). From

the city centre, Beijing extends along with all directions with eight rings roads

nested on each other. Under Beijing municipality there are 16 districts, often cat-

egorised into three types: (1) Inner city–districts within 5th ring road, including

Dongcheng, Xicheng, Chaoyang, Fengtai, Shijingshan, Haidian; (2) Inner suburb–

districts connected by 6th ring road including Mentougou, Fangshan, Tongzhou,

Shunyi, Changping, Daxing ; (3) Outer suburb – districts outside 6th ring roads,

including Huairou, Pinggu, Miyun, Yanqing. Each district is further split into

smaller administrative areas, called neighbourhoods, or ‘Jiedao’2. There are alto-

gether 149 Jiedao.

4.2.2 Mobile Phone Positioning (MPP) Data

To measure the exact real-time human activity pattern in Beijing, we ex-

tract mobile phone positioning (MPP) data from a Chinese mobile application

‘WeChat ’3. WeChat is an instant messaging and social networking application

developed by Tencent4, a technology conglomerate based in Shenzhen, China.

Since its first release in 2011, it has become one of the largest mobile applications

in the world with monthly active users rising from 14 million in 2011 Q3 to 1.08

billion in 2018 Q4 according to Tencent ’s quarterly report. As the popularity of

WeChat soars in China, Tencent starts assembling large quantities of user and us-

age information for market research and personalisation purposes. A critical piece

of the information Tencent has been compiling is ‘user location’, the latitude and

longitude tracked by global positioning system (GPS). These records can be ac-

cessed on Tencent ’s platform ‘Easygo’ (https://heat.qq.com/), via the Institute

of Geographic Science and Natural Resources Research Centre (NRRC), Chinese

Academy of Sciences (CAS). The platform provides an application programming

interface (API) through which mobile position numbers at a spatial unit, during

a time interval can be retrieved. From the platform, we extracted the MPP data

from 15th June 2015 to 28th June 2015 in Beijing. The dataset is presented as

spatiotemporal count data. During each hour, the MPP number is counted over

1km2 grids in Beijing. A larger number indicates that more WeChat users have

been visiting this area for that hour and vice versa. To avoid large sampling errors

2‘Jiedao’ literally means ‘street’ in Mandarin.
3‘WeChat ’, also known as ‘WeiXin’, means ‘micro-messaging’ in Mandarin Chinese.
4https://www.tencent.com/en-us/
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from specific days, we further aggregate the original dataset which spans over two

weeks into two sub-datasets, a weekday dataset and a weekend dataset, each of

which spans 24 hours.

The weekday data (Y (wd)) are aggregated as follows,

Y
(wd)
i,t =

1

10

∑
τ

Y τ
i,t, t ∈ 0, 1, 2, . . . , 23, i ∈ 1, 2, . . . , N (4.2.1)

where Y τ
i,t is the mobile phone density at hour t and location i on day τ between

15/06/2015 to 19/06/2015 and 22/06/2015 to 26/06/2015.

Likewise, we aggregate the weekend data (Y (we)) as

Y
(we)
i,t =

1

4

∑
ω

Y ω
i,t, t ∈ 0, 1, 2, . . . , 23, i ∈ 1, 2, . . . , N (4.2.2)

where Y τ
i,t is the mobile phone density at hour t and location i on day τ between

20/06/2015 to 21/06/2015 and 27/06/2015 to 28/06/2015.

Figure 4.1 plots the heatmap of the spatial distribution of the weekday data

over 6 periods: midnight (0:00-1:00), early morning (4:00-5:00), morning peak

hours (8:00-9:00), midday (12:00-13:00), afternoon (16:00-17:00), and evening

(20:00-21:00). In each plot, we find that the spatial distribution of the densi-

ties displays a monocentric pattern that stretches from the CBD to the outer

suburbs in all directions. The colour is darker in the centre of Beijing, indicating

a higher positioning density. The density decays with distance from the centre,

consistent with Beijing’s economic pattern found in the literature (Zheng and

Kahn, 2008; Wang, 2009). Comparing different plots, we find that the temporal

distribution of the density follows humans’ periodic living pattern in a day. The

overall density starts lowering in the evening as people turn off the phones and

go to sleep. It reaches the trough in the early morning and bounces back. The

positioning density maintains high during the day until the next evening starts.

The dataset reports on average 450 million mobile phone positioning in Beijing

per day, with 22 million unique users. Given the official population data is 16.44

million in 2015 (Beijing Municipal Bureau of Statistics, 2018), the positioning

data suggest a high proportion of residents not captured by the current census

data, such as non-local commuters, visitors and tourists.

Though the sheer size of the positioning number gives us confidence about the

repressiveness of the WeChat users in Beijing, there are several limitations asso-

ciated with the MPP data. First, despite its popularity, there is still no guarantee

that the MPP data cover all the demographics and areas equally. For example,
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Figure 4.1: Spatiotemporal distribution of the MPP data in Beijing

it is likely that millennials have better access to smartphones required to install

WeChat compared with the elderly who are less technologically sophisticated.

Income difference may also generate a gap in mobile phone and WeChat usage

among different demographics. Addressing this issue requires the socioeconomic

data associated with each positioning point, which are not available due to pri-

vacy protection reasons. We are also not able to pinpoint the address of each

mobile phone positioning, limiting the possibility to infer user activities, nor are

we able to know the motivation behind each movement across the city. This is

not a grave issue in our study, as we are investigating the urban human activity

pattern at an aggregated time-space level, rather than mobility at an individual

level. A similar study in Amsterdam by Jacobs-Crisioni et al. (2014) suggests

that mobile positioning aggregated at collective levels are useful to analyse urban

activity. We do acknowledge that using the mobile phone position data to under-

stand individual behaviour would be an exciting field that deserves more future

studies. The second issue with the MPP data is related to the nature of the

WeChat data collection mechanism. The location of a user is logged every time

he (or she) opens a WeChat application on a GPS-enabled phone. The frequency

of recording, therefore, varies significantly depending on user habit and immedi-
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ate environment. For WeChat users without functioning GPS, no positioning will

be reported. Some workplaces and schools have mobile phone usage restrictions

which disguises the population density in the area. On the other hand, users with

a high dependency on the application will generate more records than those who

use WeChat less frequently. To reduce the bias from a single user’s duplicated

records, we only take the first positioning in any given hour for each unique user.

Repeated locations generated by the same user in each hour is therefore dropped.

To verify the appropriateness of the WeChat positioning as a proxy for human

activity level, as well as its representativeness, we conduct two analyses to compare

the MPP data with other data sources. In the first analysis, we collect the Beijing

population density estimates from LandScanTM, a community standard for global

population distribution. Using various sources such as census, geographic and

satellite data, LandScanTM employs multivariate dasymetric modelling to estimate

the ambient population distribution (Dobson et al., 2000; Bhaduri et al., 2002).

We compare the LandScanTM population density estimates in 2015 against the

temporal average of the WeChat MPP at the same 1km2 spatial scale. Figure

4.2 shows the scatter plot between the LandScan population and the MPP data,

with the correlation calculated as 0.76 (p-value< 0.001). This suggests that in the

spatial dimension, these two estimates exhibit a high correlation.

Second, we extend our investigation into the temporal dimension. From Visible

Infrared Imaging Radiometer Suite (VIIRS)5, we collect the nightlight satellite

data in Beijing from 15th June 2015 to 28th June 2015, the same period as the

WeChat data. Since Henderson et al. (2012), luminosity has been widely used in

many empirical studies as a robust proxy for GDP, in the absence of reliable data

sources (see, e.g., Michalopoulos and Papaioannou, 2013; Ahrens, 2015). Here, we

consider the night light in Beijing as a proxy for economic activities carried out by

residents at night time. In Figure 4.3, we plot the 1km2-aggregated luminosity in

Beijing against the MPP between 8 to 10 pm weekday. The scatter plot indicates

a significant correlation, 0.71 (p-value< 0.001), between the two variables. These

two exercises provide evidence that the WeChat MPP are indeed good proxies

for human activities at the local aggregate level. The finding is consistent with

recent studies using similar data sources (Mayer-Schönberger and Cukier, 2013;

Jacobs-Crisioni et al., 2014; Wu et al., 2016a).

5https://earthdata.nasa.gov/earth-observation-data/near-real-time/download-nrt-
data/viirs-nrt
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Figure 4.2: Correlation between LandScanTM population density and WeChat
mobile phone positioning density. (x, y axes in log scales)
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Figure 4.3: Correlation between night light intensity distribution and WeChat
mobile phone positioning density. (x, y axes in log scales)
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4.2.3 Point of Interest (POI) Data

To measure the spatial configurations of the consumption amenities in Beijing,

we collect the geo-coded point of interest (POI) data from China’s group buying

and crowdsourced review website Meituan-Dianping6. Meituan7 and Dianping8

were previously two independent online platforms providing local consumption

services. While Meituan specialised in group buying like Groupon9, Dianping

focused on crowdsourced reviewing like Yelp10 or Tripadvisor 11. Both websites

had assembled large numbers of detailed points of interest in China.

From the merged website cached on 28th June 2015, we extract consumption

related POIs located in the Beijing metropolitan area. Circa 345,000 consump-

tion related POIs are identified, which include a wide range of amenities such as

restaurants, coffee shops, shopping malls, grocery stores, movie theatres, gyms,

museums. For each POI, we collect relevant details such as business name, busi-

ness scope, address, and Meituan-Dianping rating. Coordinates are mapped and

retrieved from Google Map. Features related to the heterogeneity of consumption

amenities, such as service, quality, size, decoration, are not available. To con-

trol for the heterogeneity, we collect ‘hits’ number reported by Meituan-Dianping

which reflects the popularity of each POI. Both consumption POIs and hits are

counted and aggregated at the same 1km2 areal level to match WeChat position-

ing density.

Apart from the consumption amenities, we also collect housing POIs such as

residential complex and other POIs which cannot be classified as consumption

nor housing, such as hospitals and government buildings. The comprehensiveness

of these POIs allows us to visualise the spatial distributions of the amenities in

Beijing (Figure 4.4). The left panel of Figure 4.4 displays the overall distribu-

tion of the POIs in Beijing, with each blue pixel representing a POI. The right

panel zooms in two areas, Wangjing in the upper right and Guomao in the lower

right. Like the positioning density, the distribution of the POIs displays a similar

monocentric pattern, with higher density in the city centre diminishing density

outwards.

6http://www.meituan.com/
7Meituan literally means ‘happy group buying’.
8Dianping literally means ‘review’.
9https://www.groupon.com/

10https://www.yelp.co.uk
11https://www.tripadvisor.co.uk/
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Figure 4.4: Spatial configurations of amenities in Beijing

4.3 Methodology

During 24 hours, the distribution of the human activities shows significant

variation at both spatial and temporal dimension. The distribution of the ur-

ban amenity, on the other hand, remains stable and static. This fact implies the

short-run spatiotemporal relationship between the two variables must be highly

non-stationary and heterogeneous. In this section, we develop a spatiotempo-

rally varying coefficient regression (STVCR) model to estimate the heterogeneous

effects.

4.3.1 Spatiotemporally Varying Coefficient Regression

A regression model attempts to explain a dependent variable y using a set of

explanatory variables. We differentiate two types of explanatory variables, the

variables associated with coefficients that are allowed to change with location and

time, denoted by xT = (x1, . . . , xk) and the variables with non-varying coefficients,

denoted by zT = (z1, . . . , zl). The STVCR model is specified as follows,

yit = xT
itβ(si, τt) + zT

itγ + εit, (4.3.3)
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where β = (β1, . . . , βk)
T, γ = (γ1, . . . , γl)

T, l, k ∈ Z+. si = (ai, bi) ∈ S ⊂ R2,

τt ∈ I ⊂ R, where both S and I and compact sets. xT
it and zT

it are the sample

analogue of x and z. To make our model generic and flexible enough, we label both

dependent variables with subscript i and t, even if all the independent variables

in our applications are not time-varying.

The STVCR nests many classes of regression models as special cases when

restrictions are imposed on the coefficients,

1. (Multiple Linear Regression) β = 0,

2. (Geographical and Temporal Weighted Regression, GTWR) γ = 0,

3. (Geographical Weighted Regression, GWR), β(si, τt) = β̃(si), γ = 0,

4. (Spatially Semi-Varying Coefficient Regression) β(si, τt) = β̃(si).

5. (Temporally Varying Coefficient Regression) β(si, τt) = β̌(τt).

4.3.2 Local Linear Estimator

Given a sample (yit,xit, zit), i = 1, . . . , N, t = 1, . . . , T , we are particularly

interested in estimating the varying coefficients, β(s, τ), s ∈ S, τ ∈ I, and the non-

varying components γ. Whereas γ lies in a finite l dimensional Euclidean space,

β(·) is a vector of functions that are defined on an infinite dimensional parameter

space S × I. To estimate the functional coefficients using a finite sample, we

need to apply smoothing or regularisation. In this chapter, we consider the local

linear estimator that uses a weighting function and first-order Taylor expansion

to achieve estimation.

To illustrate the idea, let (s, τ) ∈ S×I be a generic location/time pair. For ob-

servations that are close to the location/time, the following approximation holds,

β(si, τt) ≈ β(s, τ) +
∂β(s)

∂s
(si − s) +

∂β(s)

∂τ
(τt − τ)

:= β(s, τ) + β(s)(si − s) + β(τ)(τt − τ) (4.3.4)

where ∂β(s)
∂s

=
((

∂β1
∂a
, . . . , ∂βk

∂a

)T
,
(
∂β1
∂b
, . . . , ∂βk

∂b

)T
)

and ∂β(s)
∂τ

=
(
∂β1
∂τ
, . . . , ∂βk

∂τ

)T
.

The Taylor approximation quantifies the relationship between β at a generic loca-

tion/time and that where data are available. Figure 4.5 visualises the approxima-

tion. The blue curve represents a generic varying coefficient function β mapped

into one dimension, with the point A(a, b, τ) being a generic location/time where

we are interested in estimating the coefficient value, and B(ai, bi, τt) a generic
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Figure 4.5: Geometry of GTWR and first-order Taylor approximation

location/time where we have data. Using the Taylor approximation, we are able

to use the neighbourhood data points to estimate the coefficient at an unsampled

location/time. The segment BC measures the approximation error. The GTWR

is actually a special case of the Taylor approximation. With (si, τt) close to (s, τ),

the following approximation holds,

β(si, τt) ≈ β(s, τ). (4.3.5)

The approximation error from the GTWR is reflected in the segment BD.

Note that the error of the first-order Taylor approximation is less than that of

the GTWR. By including first-order derivatives in the regression, the local linear

estimator improves the accuracy of the GTWR.

The quality of Taylor approximation depends critically on two factors (1) the

smoothness of the function, (2) the distance between the target location time

and the sample location time. For the former, smoother functions are better

approximated by a linear function. However, the smoothness of the function is

treated as given and determined by the data generating process. For the latter,

a sample location/time that is closer to the target location/time incurs less bias.
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Figure 4.6: STVCR weighting scheme

In Figure 4.6, the location/time B′ is closer to A and the bias B′C ′ is less than

BC as a result. To take into account this effect, we define a weight function as

the product of a spatial and a temporal kernel,

Khs,hτ ,s,τ (si, τt) = Ks(‖(ai, bi)− (a, b)‖/hs)×Kτ (|τt − τ |/hτ ) (4.3.6)

where hs and hτ control the spatial bandwidth and temporal bandwidth, respec-

tively. The weight function assigns a high weight if (ai, bi, τt) is close to (a, b, τ)

and a low weight if they are further apart. The dashed line in Figure 4.6 illustrates

a weighting scheme. With A being assigned a highest weight, the weight function

declines symmetrically at both directions and drops to 0 outside a bound.

To estimate β, we first assume that γ is known and define

y∗it := yit − zT
itγ. (4.3.7)

Combine equation (4.3.7), (4.3.3) and (4.3.4), we get

y∗it ≈ xT
itβ(s) + xT

it(si − s)β(s) + xT
it(τt − τ)β(τ) + εit (4.3.8)
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Next we define an objective function as a weighted sum of errors,∑
i,t

(
y∗it − xT

itβ(s)− xT
it(si − s)β(s) − xT

it(τt − τ)β(τ)
)2 ×Khs,hτ ,s,τ (si, τt) (4.3.9)

Optimising the objective function with respect to the unknown parameters

leads to a classic Weighted Least Square (WLS) type estimator and can be written

compactly as follows,

β̃hs,hτ (s, τ) = ak,k+2l(QT
s,τWhs,hτ ,s,τQs,τ )

−1QT
s,τWhs,hτ ,s,τY∗

= ak,k+2l(QT
s,τWhs,hτ ,s,τQs,τ )

−1QT
s,τWhs,hτ ,s,τ (Y − ZTγ)(4.3.10)

where ak,k+2l = (Ik,0k,2l), Ik being a k×k identity matrix and 0k,2l a k×2l matrix

with zero entries. The rest is defined as follow,Wa,b,τ = diag ((Khs,hτ ,s,τ (si, τt))i,t),

Y∗ = (y∗it)i,t, Y = (yit)i,t, Qs,τ = (xT
it,x

T
it(si − s),xT

it(τt − τ))i,t, Z = (zit)it.

β̃ is not a feasible estimator as γ is unknown at the moment. To estimate γ,

we substitute equation (4.3.10) into regression (4.3.3),

yit = xT
itβ̃hs,hτ (si, τt) + zT

itγ + εit (4.3.11)

Equation (4.3.11) can then be organised into the following matrix format

(IN −Dhs,hτ )ZY = (IN −Dhs,hτ )Zγ + ε (4.3.12)

where IN is an N ×N identity matrix, N being the number of observations,

Dhs,hτ =
(
[zT
it,01,2l](QT

si,τt
Whs,hτ ,si,τtQsi,τt)

−1QT
si,τt
Whs,hτ ,si,τt

)
i,t

(4.3.13)

γ is estimated via the least square method,

γ̂hs,hτ =
(
ZT(IN −Dhs,hτ )T(IN −Dhs,hτ )Z

)−1
(ZT(IN −Dhs,hτ )T(IN −Dhs,hτ )ZY

(4.3.14)

Finally if we substitute the γ estimator into (4.3.10), a feasible β estimator is

obtained,

β̂hs,hτ (s, τ) = ak,k+2l(QT
s,τWhs,hτ ,s,τQs,τ )

−1QT
s,τWhs,hτ ,s,τ (Y − ZTγ̂hs,hτ ) (4.3.15)

In some cases, we are only interested in estimating the spatially or temporally

varying coefficients. We propose the following two estimators aggregated from
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(4.3.15),

β̂hs,hτ (s) =
1

T

T∑
t=1

β̂hs,hτ (s, τt) (Spatially Varying Coefficient)

β̂hs,hτ (τ) =
1

N

N∑
i=1

β̂hs,hτ (si, τ) (Temporally Varying Coefficient)

4.3.3 Bandwidth Selection

Both γ and β estimators rely on two tuning parameters hs and hτ , which

control the level of smoothing over space and time, respectively. A smaller hs

and hτ would produce a smoother estimated coefficient surface and hence smaller

variance but lead to a higher level of bias. A larger hs and hτ , on the other hand,

yields less bias but could result in unstable estimates and over-fitting. Suitable

hs and hτ should strike a balance between the variance and bias.

In this chapter, we use cross-validation (CV) to select the most suitable tuning

parameters. The idea of CV is straightforward–the validity of a regression model

lies in its ability to fit and predict out-of-sample data, as in-sample fitting statistics

can be highly misleading with semi-parametric models. For each tuning parameter

value on a predefined parameter grid, CV evaluates the out-of-sample performance

(e.g. MSE) of the estimator corresponding to this value. The value with the best

out-of-sample performance is chosen to fit the model.

In particular, we will use the K−fold cross-validation to split in-sample and

out-of-sample. To implement the K−fold CV, we first randomly assign observa-

tions into K groups, (G1,. . . ,GK). For each (hs, hτ ) combination, K − 1 groups

of data are used to estimate the model, whereas the remaining group is reserved

to evaluate the out-of-sample performance of the estimator given the tuning pa-

rameters.

ĥs, ĥτ =
1

N
arg min
hs,hτ

K∑
m=1

∑
it∈Gm

(
yit − ŷ(−Gm)

it,hs,hτ

)2

(4.3.16)

where ŷ
(−Gm)
it,hs,hτ

is the fitted value for it in group Gm using model estimated from

data excluding Gm.
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4.3.4 Simulation

To test the finite sample performance of the proposed estimator against the

GTWR in the presence of varying-coefficient only regression, we conduct the fol-

lowing Monte Carlo simulation studies.

We define the space S as a [0, 1]× [0, 1] rectangle and time interval I as [0, 2].

Three different simulation designs are considered,

yit = xit · β1(ai, bi, τt) + εit (Design 1)

yit = xit · β2(ai, bi, τt) + εit (Design 2)

yit = xit · β3(ai, bi, τt) + εit (Design 3)

where β1(ai, bi, τt) = a2
i + b2

i + cos τt, β2(ai, bi, τt) = a2
i + b2

i , β3(ai, bi, τt) = a2
i +

b2
i + cos τt. xit is independently drawn from N(3, 1). εit is independently drawn

from N(0, 0.52). Coordinates and time (ai, bi, τt) are randomly drawn from S× I.

We consider the following sample size N = 50, T = 10; N = 100, T = 20;

N = 200, T = 50, which correspond to small, medium and large sample designs.

For each sample size, the coefficients are estimated by both GTWR (outlined in

Fotheringham et al., 2015) and our estimator for R = 1000 replications. To eval-

uate the performance of each estimator, we compute the mean summed squared

error (MSSE) for each case (Ruppert et al., 2003), defined as

MSSE(β̂k) =
1

R ·N · T

R∑
j=1

N∑
i=1

T∑
t=1

[β̂
(j)
k (ai, bi, τt)− βk(ai, bi, τt)]2, k = 1, 2, 3

(4.3.17)

Note that when both the replication number and sample size is large, MSSE will

be made arbitrarily close to the integrated mean square error (IMSE),

IMSE(β̂k) = E
∫
a

∫
b

∫
I

[β̂k(a, b, τ)− βk(a, b, τ)]2dadbdτ (4.3.18)

which is the L2 measure of the squared error between an functional estimate and

its true value.

The Monte Carlo results in Table 4.1 show that all the estimates from the

local linear estimator procedure have lower MSSE compared with the GTWR for

each simulation design. It suggests that the local linear estimator significantly

outperforms the GTWR. This gives us more confidence in the reliability of our

estimation strategy.
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(Design 1) (Desgin 2) (Desgin 3)

Estimator N T MSSE(β1) MSSE(β2) MSSE(β3)

Local Linear Estimator 50 10 0.02038* 0.0185* 0.00049*

100 20 0.0076* 0.0053* 0.000101*

200 50 0.0028* 0.002* 0.00006*

GTWR 50 10 0.0259 0.0224 0.0034

100 20 0.0096 0.0067 0.00034

200 50 0.0038 0.0025 0.000074

Replication:1000. ∗ indicates smaller MSSE between Local Linear Esti-
mator and GTWR for each design.

Table 4.1: STVCR simulation results

4.4 Empirical Application

In this section, we apply the proposed methodology to study the relationship

between human activity and the configuration of consumption amenities. Follow-

ing Glaeser et al. (2001), we argue that a location attracts more footprints if it

offers more consumption amenities, has better public transport, road density and

so forth. We specify two linear regression models,

ln yit = lnCiβ + zT
i θ + εit (Non-varying coefficient regression)

ln yit = lnCiβ(ai, bi, τt) + zT
i θ + εit (Varying coefficient regression)

In both specifications, the dependent variable is human activity level ln yit, mea-

sured as the logarithm of the mobile phone positioning records for each areal unit

and at each hour t = 1, . . . , 24. The key independent variable is lnCi, the loga-

rithm of the number of consumption amenities per areal unit. Apart from this,

we include a vector of control variables zi such as road density, number of sub-

way stations, housing and other amenities location and temporal specific dummy

variables. Both β and θ are unknown coefficients.

Two model specifications differ mainly in the way β coefficient is prescribed. β

measures the percentage change of human activity as a response to a percentage

increase in the number of consumption amenities. In the non-varying coefficient

regression, the β coefficient is a scalar, whereas in the varying coefficient regres-

sion, the β coefficient is a function of space (ai, bi) and time (τt), which allows us

to model spatial and temporal heterogeneity. For both regression models, we ap-

ply them on weekday sub-sample and weekend sub-sample separately to capture

the potential weekday-weekend difference.
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Variable Name Definition Mean SD Min Max

Weekday mobile phone
positioning density

Number of mobile phone po-
sitioning data per grid point
per hour aggregated over
weekday

5415 10075 4 225924

Weekend mobile phone
positioning density

Number of mobile phone po-
sitioning data per grid point
per hour aggregated over
weekend

5322 9459 4 218127

Consumption amenities Number of POIs identified
as consumption amenities per
grid point

75.762 174.954 0 2177

Housing amenities Number of POIs identified
as residential blocks per grid
unit

1.372 3.209 0 32

Other amenities Number of POIs not consid-
ered as consumption or hous-
ing per grid unit

18.149 41.359 0 546

Subway stations Subway station counts per
grid unit

0.121 0.833 0 42

Road Density Total road lengths per grid
unit (in km)

5.711 4.425 0 23.281

Distance to CBD Euclidean distance from the
centroid of a grid point to the
centre of CBD (in km)

22.441 9.000 0 44.926

Hits Monthly Median “hits” num-
bers collected by Meituan-
Dianping for all consumption
amenities per grid unit

20.6 1970 0 70442

Table 4.2: Descriptive statistics of key variables
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4.4.1 Non-Varying Coefficient Estimates

Table 4.3 reports the estimates of the non-varying coefficient regression. Col-

umn (1) (3) (5) are the estimates using the weekday data and column (2) (4) (6)

are the estimates using the weekend data. All the specifications are estimated by

standard panel data methods (Baltagi, 2008). Due to a lack of temporal variation

among the variables on the right-hand side, the fixed effects and the first differ-

ence estimators fail to work, whereas the pooled regression, the between estimator

and the random effect estimator will yield the same estimates, which the Table

4.3 reports.

Specifications (1) and (2) report the coefficient estimates for consumption

amenities, median of hits, residential and other amenities, number of stations,

road density and distance to CBD. All the estimated coefficients, apart from the

intercept, are statistically significant at 1% level. In the weekday model, the es-

timated coefficient for consumption amenities is 0.493. The number informs that

elasticity of human activity in response to consumption amenities. Here 1% in-

crease in the number of consumption amenities would lead to 0.493% increase

in the human activity on average (spatially and temporally). The number is

consistent with the empirical evidence from previous studies that suggest higher

consumption amenity density is associated with more human activity. The co-

efficient for ‘hits’ is positive and significant. The variable is used to control the

heterogeneity of consumption amenities. The estimate suggests that consumption

amenities that are associated with higher popularity are likely to attract more

activity.

For the rest of POIs, we find that the coefficients of other amenities are also

positive, though the magnitude is much smaller than consumption amenities. For

residential amenity, the estimate is −0.147, which suggests that a higher density of

residential complex is associated with lower human activity. The counter-intuitive

result is not surprising considering the residential blocks in Bejing, particularly

those built after the economic liberalisation are gated communities with strictly

controlled entrances. These residential complex are very different from the tradi-

tional Beijing residential communities (Hutong) as they are generally situated in

less central areas with less integration of consumption amenities. These features

discourage social interactions and activities. Finally, we find that better transport

accessibility, such as road and subway densities are associated with positive esti-

mates, consistent with the existing literature (Glaeser et al., 2001). Comparing
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(1) (2) (3) (4) (5) (6)
lnYd lnYn lnYd lnYn lnYd lnYn

Log consumption Amenities 0.493∗∗∗ 0.497∗∗∗ 0.487∗∗∗ 0.491∗∗∗ 0.483∗∗∗ 0.487∗∗∗

(0.0106) (0.0100) (0.0104) (0.0099) (0.0101) (0.0096)

Median of Hits 0.0135∗∗∗ 0.0136∗∗∗ 0.0129∗∗∗ 0.0130∗∗∗ 0.0137∗∗∗ 0.0139∗∗∗

(0.0003) (0.0004) (0.0003) (0.0004) (0.0003) (0.0004)

Log Residential Amenities -0.147∗∗∗ -0.152∗∗∗ -0.145∗∗∗ -0.149∗∗∗ -0.0866∗∗∗ -0.0865∗∗∗

(0.0111) (0.0113) (0.0110) (0.0111) (0.0085) (0.0085)

Log Other Amenities 0.0986∗∗∗ 0.0942∗∗∗ 0.141∗∗∗ 0.137∗∗∗ 0.168∗∗∗ 0.166∗∗∗

(0.0036) (0.0043) (0.0037) (0.0048) (0.0041) (0.0054)

Transport (No. of Stations) 1.535∗∗∗ 1.543∗∗∗ 1.573∗∗∗ 1.583∗∗∗ 1.050∗∗∗ 1.080∗∗∗

(0.0622) (0.0690) (0.0637) (0.0704) (0.0375) (0.0476)

Road Density 0.0222∗∗∗ 0.0188∗∗∗ 0.0308∗∗∗ 0.0277∗∗∗ 0.0323∗∗∗ 0.0293∗∗∗

(0.0010) (0.0007) (0.0013) (0.0010) (0.0013) (0.0010)

Distance to CBD -0.0519∗∗∗ -0.0527∗∗∗ -0.0584∗∗∗ -0.0595∗∗∗ -0.0582∗∗∗ -0.0593∗∗∗

(0.0011) (0.0009) (0.0013) (0.0011) (0.0013) (0.0011)

Central City -0.827∗∗∗ -0.834∗∗∗ 1.291∗∗∗ 1.314∗∗∗

(0.0314) (0.0260) (0.0494) (0.0421)

Inner Suburb -0.368∗∗∗ -0.383∗∗∗ 0.628∗∗∗ 0.682∗∗∗

(0.0173) (0.0143) (0.0329) (0.0335)

Log Consumption* Transport 1.337∗∗∗ 1.159∗∗∗

(0.1193) (0.1047)

Log Consumption* Inner City -0.378∗∗∗ -0.385∗∗∗

(0.0125) (0.0102)

Log Consumption* Inner Suburb -0.227∗∗∗ -0.243∗∗∗

(0.0109) (0.0106)

Constant -0.197 -0.153 -0.0743 -0.0264 -0.128 -0.0825
(0.2141) (0.2096) (0.2185) (0.2200) (0.2169) (0.2115)

N 69168 69168 69168 69168 69168 69168

Robust SE in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 4.3: Non-varying coefficient regression results

(1) and (2), we find that weekday and weekend sub-samples yield very similar

estimates with the same significance, sign and similar magnitudes.

Column (3) and (4) are estimated with additional region-specific dummy vari-

ables. We divide metropolitan Beijing into three parts: central city, inner suburb

and outer suburb. Dummies for the central city and the inner suburb are included

in the regression, whereas the outer suburb serves as a benchmark. We find that

key coefficients from (1) and (2) are largely robust to the inclusion of additional

dummy variables. Column (5) and (6) look into some interaction effects. We find

that the consumption amenities in the outer-suburb tend to have a more sub-

stantial impact on attracting human activity than the inner city and the inner

suburb.
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4.4.2 Spatiotemporally Varying Coefficient Estimates

The panel estimates presented in the previous section suggests that there’s

a strong partial correlation between the provision of consumption amenities and

human activity. The estimates represent an average effect across the spatial and

temporal domain. To uncover how the relationship between the two variables

evolve over a 24-hour time span, and whether there exists spatial heterogeneity in

such a relationship, we turn to the spatiotemporally varying coefficient regression

using the proposed methodology. As the estimate of the STVCR is a trivariate

function (two-dimensional space and one-dimensional time), it is difficult to vi-

sualise the whole surface. We consider the following approaches to visualise the

spatial and temporal dimension of the estimate separately. First, the temporal

dimension of the varying coefficient is sliced by taking the weighted average of the

estimates over some meaningful spatial domain D,

β̂D(τ) =
1

#D
∑

(ai,bi)∈D

β̂(ai, bi, τ) (4.4.19)

where #D is the number of cross-sectional units.

Second, the spatial dimension of the varying coefficient is visualised by taking

the weighted average of the estimates over some time range T ,

β̂T (a, b) =
1

#T
∑
τt∈T

β̂(a, b, τt) (4.4.20)

Figure 4.7 shows the temporal dimension of the STVCR estimate, with D
defined as the (a) whole region, (b) inner suburb, (c) central city, and (4) outer

suburb. The solid line in each graph represents the estimate from the weekday

sample, whereas the dashed line denotes that from the weekend sample. The first

thing we note is that the average estimate strongly represents the pattern in the

outer suburb, due to the broad geographical coverage of the region. In both (a)

and (d), elasticity drops from 0−5am and climbs back from 5−10am and maintains

the level until midnight. The elasticity ranges from 0.35− 0.6, in line with panel

estimates. Turning to the central city and the inner suburb where most economic

activities occur, we find that the temporal variation displays different patterns.

In the central city, the elasticity ranges from 0.05 to 0.16, the lowest in three

regions. The temporal distribution of the elasticity during the day and evening

is consistent with humans’ living, working and sleeping pattern. However, it is

interesting to note that there’s a small peak at 2−4am, which indicates substantial
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Figure 4.7: Temporal distribution of STVCR estimate

human activity in the early morning. In the inner suburb, the elasticity ranges

from 0.2 to 0.28 with a trend similar to that of the central city.

We now turn to the spatial dimension of the STVCR estimate. Figure 4.8

plots the spatial dimension of the STVCR estimate. In the first graph of the

upper panel, we show the urban structure of the Beijing metropolitan area. The

second and third graph display the temporal average of the elasticity over Beijing

with weekday sample and weekend sample, respectively. The lower panel of the

figure plots the spatial distribution at hour 0, 8, 12, 20, respectively. The figure

highlights the spatial pattern of the consumption elasticity. The outer suburb such

as mountains and green spaces are associated with high elasticity. The central city

and the inner suburb have relatively lower elasticity estimates. This is in line with

the results from Figure 4.7 and Table 4.3.

On the other hand, we find that the size of elasticity in general increases to-

wards the outer suburb. Figure 4.9 shows the scatter plot between the weekday

average elasticity per grid unit and the distance to the CBD. The solid line is the

local linear smoothing curve of the scatter plot, whereas the shaded area represents

the confidence band. We find that the distance to the CBD and consumption elas-

ticity display a positive relationship. The elasticity is generally lower at locations

closer to the city centre and higher at places in the outer suburbs.
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Figure 4.8: Spatial distribution of the STVCR estimate

Overall, we find strong evidence from the STVCR estimates that the interac-

tion of consumption amenities and human activity is highly heterogeneous across

time and space. On the one hand, the rise and decline of the consumption elas-

ticity over the temporal dimension are consistent with people’s living and resting

behaviours across different regions. On the other hand, the size and magnitude of

the elasticity vary significantly across space. Places with denser population and

economic activity, such as downtown have lower elasticity, whereas less populated

areas such as mountains and green spaces have significantly higher elasticity.

4.5 Conclusion

Urban consumption will remain a key driving force of economic growth in fast-

urbanising China. In this chapter, we investigate the spatiotemporal relationship

between the distribution of consumption amenities and human activity in Beijing.

To measure these two key variables, we utilise two unique internet-based datasets,

the POI data from Meituan-Dianping for consumption amenities and the MPP

data from WeChat as a proxy for human activity. To estimate the spatiotemporal

heterogeneity, we propose a methodology named ‘spatiotemporally varying coeffi-

cient regression (STVCR)’ and conduct a simulation study against geographically

and temporally weighted regression (GTWR). The application of the STVCR to
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the datasets uncovers substantial heterogeneity across space and time.

In urban economics, the ever-rising unconventional big data allow economists

to understand better the structure of a city and how it interacts with the resi-

dents (Batty, 2013; Wu, 2016). This study shows the enormous potential of POI

and MPP data to proxy consumption amenities and human activity, respectively.

Large-scale crowdsourced POI data offer comprehensive, detailed and cheap in-

formation about land use, which is particularly useful in studying cities that lack

up-to-date granular public records. The eye-opening mobile phone positioning

data, on the other hand, offer measures of migration and movement pattern of

individuals. The data source underpins many recent studies on western cities

(Tranos and Nijkamp, 2015; Jacobs-Crisioni et al., 2014). This chapter represents

one of the first attempts to understand urban human activity using MPP data in

the context of developing countries.

Methodologically, we propose the spatiotemporally varying coefficient regres-

sion to model the relationship between consumption amenities and human activity.

The STVCR model allows the regression coefficient to change smoothly with space

and time, incorporating spatial and temporal heterogeneity jointly. Conceptually,

the proposed regression is similar to the setup of geographically and temporally

weighted regression (Fotheringham et al., 2015). However, Fotheringham et al.

(2015) applies a local constant estimator which has been pointed out in the sta-

tistical literature to have several key disadvantages (Fan and Gijbels, 1996). This

point is verified in a simulation study to evaluate the statistical performances

of these two approaches. Our methodology provides urban economists with a

new statistical framework to go beyond the exploratory analysis of the big spa-

tiotemporal data (see, e.g., Brunsdon et al., 2007; Chen et al., 2011) and to model

regression with substantial spatiotemporal uncertainties between the dependent

and independent variables.

Our empirical study shows that consumption amenities contribute significantly

to the vibrancy of a city. The results confirm Glaeser et al. (2001)’s theory of con-

sumer city that cities attract workers not only for their productive advantage

but also for the consumption amenities they offer. We find substantial spatial

and temporal heterogeneity of consumption elasticity of human activity. During

a 24-hour span, the elasticity exhibits periodic pattern consistent with human’s

working and resting pattern. Over the spatial dimension, we find that the elas-

ticity tends to be lower in the central city with abundant economic activities and

higher in the outer suburb with fewer amenities. The findings provide useful in-

sights into urban planning for fast-growing cities. In particular, an attractive mix
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of consumption amenities can affect dense and diverse human activity patterns to

sustain urban vibrancy. This would, in turn, influence a city’s productivity and

social capital. A further implication points out the possibility that place-based

policies (Barca et al., 2012) relating to the spatial distribution of amenities can

generate observable effects on employment (Dalenberg and Partridge, 1995), firm

births and agglomeration (Holl, 2004) in excess of city liveliness.

It should be pointed out that there are several limitations associated with this

study. First, the analysis in this chapter is conducted on an aggregated spatiotem-

poral level, rather than on an individual level. We are not able to tell whether an

individual shows up in a neighbourhood to engage in consumption or production

activity, nor can we tell which property he or she visits. It would be interesting to

associate individuals’ travelling pattern with socioeconomic backgrounds to gain

a deeper understanding of the factors beneath the urban residents travel motiva-

tion. Second, we acknowledge that there is a non-trivial endogeneity issue with

the regression. For example, neighbourhoods with more consumption amenities

tend to attract more residents, whereas more people in the area will bring more

consumption amenities. The presence of such endogeneity means that the esti-

mated coefficients should not be interpreted as the causal effects. Future studies

should carefully look for exogenous variations of consumption amenities from both

spatial and temporal dimension to identify the causal effects from consumption

amenity innovations.
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Chapter 5

Sieve Continuum GMM
Estimation of Functional Linear
Regression

5.1 Introduction

The chapter is concerned with the estimation of the slope function in a func-

tional linear regression (FLR), which models the relationship between a scalar

response and a functional regressor,

Y =

∫ 1

0

X(s)b(s)ds+ ε, (5.1.1)

where Y is a random scalar; X(·) is a square-integrable random function on a

compact support [0, 1]; b(·) is a non-random slope function also defined on [0, 1]; ε

is a scalar error term with mean 0 and variance σ2 > 0. To simplify the analysis,

we assume that both X and Y are centred so that intercept is not required1. The

domain [0, 1] is defined for technical convenience.

As a motivating example, we consider modelling the relationship between an-

nual precipitation and temperature profile. The precipitation is a scalar, de-

noted by Prepi, whereas the temperature is a trajectory over a year, denoted by

Tempi(t). Note that the annual precipitation is an integration of rainfall over a

year,

Prepi =

∫ 365

0

Prepi(t)dt (5.1.2)

0Earlier version of the chapter won Excellence Award (1st Prize) in 26th (EC)2 conference
on Theory and Practice of Spatial Econometrics.

1X = X̃ − E(X̃) and Y = Ỹ − E(Ỹ ) where X̃, Ỹ refer to the uncentered variables.
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The rainfall trajectory Prepi(t), on the other hand, could be modelled concur-

rently using the temperature of the same time,

Prepi(t) = α(t) + Tempi(t)b(t) + εi(t), t ∈ [0, 365] (5.1.3)

Combine equation (5.1.2) and (5.1.3), we get a functional linear regression

model,

Prepi = αi +

∫ 365

0

Tempi(t)b(t)dt+ εi (5.1.4)

where αi =
∫ 365

0
αi(t)dt and εi =

∫ 365

0
εi(t)dt.

The functional linear regression was first introduced by Cardot et al. (1999)

to model continuous-time processes and has since received a lot of attention in

various areas, such as meteorology, medicine, biology, growth studies and so on

(see Silverman and Ramsay, 2005). In economics and econometrics, the use of

functional linear models is gaining a foothold, in particular with time series and

spatial analysis (e.g. Florens and Van Bellegem, 2015; Bhattacharjee et al., 2016a).

However, applications are still rare compared with the volume using mainstream

econometric methodologies, partly due to a lack of easy-to-implement estimators.

Besides, most FLR estimators assume the independence of X and ε, which is a

strong assumption and unrealistic in many econometric studies. The only excep-

tion is Florens and Van Bellegem (2015) which considers the instrumental variable

estimation in the functional linear regression context.

Estimating the slope function in a functional linear regression model is partic-

ularly challenging because the slope function is determined by an infinite number

of parameters as opposed to finite data available. Therefore, regularisation (or

dimension reduction) is required to generate meaningful estimates. So far, two

general approaches have been proposed in the literature. The first approach is

based on the functional principal component analysis (FPCA), also known as the

spectral cut-off method (See, e.g., Dauxois et al., 1982; Hall et al., 2006; Hall and

Vial, 2006; Hall and Horowitz, 2007; Silverman and Ramsay, 2005). The FPCA

has been widely used as an approach to summarise and extract information from

functional data (see Silverman and Ramsay, 2005). To estimate a regression

slope, the FPCA method projects the infinite-dimensional parameter into a low-

dimensional subspace spanned by the eigenfunctions of the empirical covariance

operator of X. Hall and Horowitz (2007) shows that the FPCA estimator achieves

the optimal rate of convergence under regularity assumptions. A second approach

is known as Tikhonov regularisation or ridge regression (Tikhonov, 1963; Hall and
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Horowitz, 2007; Florens and Van Bellegem, 2015). Unlike the FPCA, which aims

to reduce the regression dimension, the Tikhonov regularisation acknowledges that

the major problem of the OLS estimation of the FLR is the dis-continuity of the

inverse covariance operator. The method replaces the dis-continuous covariance

operator with a continuous albeit deviant operator, which gives rise to stable es-

timates. For the asymptotic properties of the Tikhonov regularisation, Hall and

Horowitz (2005, 2007) prove that it achieves minimax rate of convergence when

X is exogenous, and Florens and Van Bellegem (2015) shows the rate when the

slope function is estimated by instrumental variables.

In this paper, we propose a sieve continuum generalised method of moments

(SCGMM) approach to estimate a functional linear regression with orthogonality

conditions from exogenous regressors or instrumental variables. To deal with the

dimensionality of the slope function, we replace the infinite parameter space with

a sieve parameter space spanned by a finite number of known basis functions. The

sieve achieves dimension reduction by introducing some bias into the parameter

space. To fully utilise all the moment conditions provided by the model, we follow

the idea of the GMM with a continuum of moment conditions (Carrasco and

Florens, 2000), which extends GMM’s capability to cope with an infinite number

of moment conditions. The estimator is produced by minimising the objective

function of GMM with a continuum of moments over the sieve parameter space.

We study the asymptotic properties of the estimator and derive the upper bound

for the integrated mean square error. The rate coincides with the lower bound

derived by Chen and Reiss (2011), which indicates that the rate is optimal.

Our study makes the following contributions. First of all, in terms of imple-

mentation, the proposed methodology is easy to apply. As the sieve method relies

on a series of known basis functions, there is no need to estimate the eigenfunc-

tions, required by the FPCA approach. Compared with the Tikhonov regulari-

sation, which keeps an infinite dimension of the parameter space, our procedure

transforms the problem of estimating a function into estimating a vector of the

generalised Fourier coefficients, which leads to a closed-form GLS estimator. Fur-

thermore, the method makes it easy to include prior constraints on the slope

function, such as monotonicity, convexity, and so forth (Chen, 2007). Second,

functional linear regression has been mainly studied with the implicit assump-

tion that the error ε is independent of X. In this chapter, we provide a general

framework which not only allows for conventional estimation with an exogenous

X but also unifies the estimation of the functional instrumental variable regres-

sion. Again, the implementation of the IV estimator is more straightforward than

87



Florens and Van Bellegem (2015)’s Tikhonov regularisation. Third, we establish

the asymptotic properties and derive the rate of convergence of our sieve contin-

uum GMM estimator, which ensures the theoretical performance of the proposed

methodology. Finally, our research enriches the study of the statistical ill-posed

problem and regularisation (Kress et al., 1989; Engl et al., 1996; Carrasco et al.,

2007), semi-nonparametric regression, high-dimensional regression (Belloni et al.,

2011), high-dimensional IV regression (Ahrens and Bhattacharjee, 2015).

The remaining of the chapter is organised as follows. In section 5.2, we discuss

the relationship between the spatial lag model and the functional linear regression.

Section 5.3 presents the methodology of the functional linear regression with ex-

ogenous regressors. Section 5.4 studies the functional instrumental instrumental

variable regression. Section 5.5 discusses the assumptions imposed on the model

and the rate of convergence of the estimators. Section 5.6 concludes.

5.2 Functional Linear Regression and Spatial Lag

Model

In this section, we discuss how a spatial lag model is related to a functional

linear regression model, following Bhattacharjee et al. (2016a). To illustrate the

idea, let s1 and s2 be two locations where we observe scalar independent variable

x1, x2 and scalar dependent variable y1, y2. Assume the effect of x on y is spatially

heterogeneous, a spatial lag model can be specified as follows,(
y1

y2

)
= ρW

(
y1

y2

)
+

(
x1β1

x2β2

)
+

(
ε1
ε2

)
(5.2.5)

where W is a pre-determined spatial weights matrix which measures the spillover

effect of y from one location to another. Let M = (I − ρW )−1, I being a 2 × 2

identity matrix, the spatial lag model is reduced to

(
y1

y2

)
= M

(
x1β1

x2β2

)
+M

(
ε1
ε2

)
(5.2.6)

=

(∑2
j=1 m1,jxjβj∑2
j=1 m2,jxjβj

)
+

(
u1

u2

)
,

where mi,j represents the (i, j)th element of matrix M and [u1, u2]T = M [ε1, ε2]T.

Equation (5.2.6) suggests that a spatial lag model with heterogeneous effects could
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be reduced to a regression on a collection of the weighted xjβj at the neighbour-

hood locations. Moreover, the model could be easily extended to n locations,

yi =
n∑
j=1

mi,jxjβj + uj, j = 1, . . . , n. (5.2.7)

If we treat the space as a continuum D ⊂ R2 where m,x, β are defined, then the

model (5.2.7) is turned into

yi =

∫
D
mi(s)xi(s)β(s)ds+ ui, j = 1, . . . , n. (5.2.8)

Note that equation (5.2.8) now forms a functional linear regression with mixi

serving as a functional regressor, and β as a functional coefficient. The model

simultaneously captures spatial autocorrelation by including an entire weighted

surface of x into the regression, and spatial heterogeneity through the varying

coefficient β.

5.3 Functional Linear Regression with Exoge-

nous Regressor

We now move to the methodology of functional linear regression. First, con-

sider a typical functional linear regression along with the assumption that X and

ε are not correlated.

Assumption 5.3.1 (Exogeneity).

E[X(t)ε] = 0, ∀t ∈ [0, 1]. (5.3.9)

The assumption is a form of the unconditional moment condition and is weaker

than the conditional moment restriction E[ε|X] = 0, commonly used in the FLR

literature. Also note that equation (5.3.9) is essentially a continuum of moment

conditions (Carrasco and Florens, 2000), as it is defined for each value in [0, 1].

The functional linear regression equation (5.1.1) and unconditional moment

condition equation (5.3.9) imply that

E[X(t)Y ] =

∫ 1

0

E[X(s)X(t)]b(s)ds, ∀t ∈ [0, 1], (5.3.10)

which represents an infinite-dimensional version of the multivariate least square
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normal equation. Equation (5.3.10) could be written compactly as

Kb = g, (5.3.11)

where K is a covariance operator, defined as (Kf)(t) =
∫ 1

0
E[X(s)X(t)]f(s)]ds

for some function f , and g(t) = E[X(t)Y ].

Equation (5.3.10) is known in the literature as the Fredholm integral equation

of the first kind (Engl et al., 1996; Kress et al., 1989), where the value of the

equation g and the linear integral operator K are estimable but the argument b is

unknown. Intuitively, if we could find an estimator for the inverse of K, denoted

by K−1, b could be recovered. The direct inverse of an empirical version of K often

leads to problems as neither K−1 nor the empirical counterpart are continuous

operators (Kress et al., 1989). This means a small perturbation of g would be

translated into considerable variation in b through K−1.

To better understand the challenge, we consider a Hilbert space H of square

integrable functions defined on a compact support [0, 1]

H =

{
f(s), s ∈ [0, 1] :

∫ 1

0

|f(s)|2ds <∞
}
. (5.3.12)

As a Hilbert space, H is equipped with an inner product 〈·, ·〉H defined as

〈f, g〉H =

∫ 1

0

f(u)g(u)du, ∀f, g ∈ H. (5.3.13)

The inner product induces a norm on H, defined as

‖f‖H = 〈f, f〉1/2H , ∀f ∈ H. (5.3.14)

Let φ1, φ2, . . . be a sequence of orthonormal basis functions in H, such that

〈φj, φk〉H = 0 for all j, k ∈ N, j 6= k and 〈φj, φj〉H = 1 for all j ∈ N. Any

function f ∈ H could be represented in terms of the basis functions,

f =
∞∑
j=1

fjφj, fj = 〈f, φj〉H (5.3.15)

Using the terminology defined above, it is noted that the functional linear

regression could be transformed into a linear regression with an infinite countable

number of regressors and coefficients,

Y =

∫ 1

0

X(s)b(s)ds+ ε =
∞∑
l=1

blχl + ε, (5.3.16)
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where bl = 〈b, φl〉H, and χl = 〈X,φl〉H. The transformed regression illustrates

the problem from the perspective of the multiple linear regression– the number

of the unknown regression coefficients b1, b2, . . . is infinite but the size of the data

is always finite. As a result, the rank of the data matrix will always be less

than the dimension of the coefficients, violating the rank condition in the classical

Gauss-Markov theorem.

To salvage the rank condition, we turn our attention to a sequence of sieve

spaces that are less complex. For a given orthonormal basis function series {φj, j =

1, 2, . . . }, define a subspace Hn of H spanned by φ1, . . . , φkn ,

Hn =

{
f ∈ H : f =

kn∑
j=1

ajφj, a1, . . . , akn ∈ R

}
(5.3.17)

where kn ≥ 1 is a finite positive integer, non-decreasing with n. In addition,

kn →∞ as n→∞. {Hn} sequence has the following properties,

1. for a given n, the dimension of the space Hn is kn, therefore finite;

2. {Hn} is increasing, H1 ⊂ H2 ⊂ · · · ⊂ Hn ⊂ · · · ⊂ H;

3. {Hn} are dense in H, in the sense that any function in H can be approxi-

mated by a function in Hn arbitrary well with a sufficiently large n. Fur-

thermore, H = limn→∞ ∪knj=1Hj.

If we search for estimators in a sieve parameter space, then only a series of the

generalised Fourier coefficients need to be estimated, which is feasible given finite

available data.

Let bn =
∑kn

j=1 bjφj and substitute bn into (5.3.10)

E[X(t)Y ] =

∫ 1

0

E[X(t)X(s)]
kn∑
j=1

bjφj(s)ds, t ∈ [0, 1]

=
kn∑
j=1

bjE
[
X(t)

∫ 1

0

X(s)φj(s)ds

]

=
kn∑
j=1

bjE[X(t)χj]. (5.3.18)

The new normal equation involves kn parameters, determined by a continuum of

moment conditions.

Let (Xi, Yi), i = 1, . . . , n be an independent and identically distributed sample

following the same joint distribution as (X, Y ). Following Carrasco and Florens
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(2000), the finite parameters b1, . . . , bkn determined through (5.3.18) could be

estimated by minimising the L2 norm of the continuum of the moment conditions.

Definition 5.3.2 (Sieve Continuum GMM Estimator for FLR-EXO).

b̂n = arg min
b∈Θn

‖K̂b− ĝ‖2
H (5.3.19)

where (K̂b)(t) =
∫ 1

0
1
n

∑n
i=1 Xi(t)〈Xi, b〉H, ĝ(t) = 1

n

∑n
i=1Xi(t)Yi and Θn is the pa-

rameter space spanned by φ1, . . . , φkn with additional smoothness conditions stated

in assumption (5.5.4).

The estimator has a closed form,

b̂n = φT
n (XT

nWnXn)−1XT
nWnYn, (5.3.20)

where φn = (φ1, . . . , φkn)T , Xn is a n×kn matrix with (i, j)th component 〈Xi, φj〉H;

Wn is a n× n matrix with (i, j)th element 〈Xi, Xj〉H, and Yn = (Y1, . . . , Yn)T.

Proof. See Appendix.

The estimator is composed of two parts, the first part φn = (φ1, . . . , φkn)T is

the vector of basis functions used to estimate the slope function, and the second

part (XT
nWnXn)−1XT

nWnYn is the estimate of the generalised Fourier coefficients

attached to the basis functions. Once the choice of the basis functions is fixed,

the remaining task is simply to obtain a vector of finite coefficients, in the form

of a generalised least squares.

The estimator could also be derived from the perspective of solving the linear

integral equation (5.3.18). Define operator Kn as

(Knf)(u) =
kn∑
j=1

fjE[X(t)χj], (5.3.21)

where fj = 〈f, φj〉H and χj = 〈X,φj〉. Also define the adjoint operator of Kn,

denoted by K∗n as

(K∗nf)(t) =
kn∑
j=1

E[χj〈X, f〉]φj(t). (5.3.22)

Note that Kbn = Knbn, therefore, equation (5.3.18) can be expressed as Knbn = g.

Apply K∗n on both sides of Knbn = g, which yields

K∗nKnbn = K∗ng (5.3.23)
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As K∗nKn is a positive definite operator, the inverse exists, then bn is solved by

bn = (K∗nKn)−1K∗ng (5.3.24)

A natural estimator of bn is produced by replacing Kn, K
∗
n, g with the empirical

version,

b̃n = (K̂∗nK̂n)−1K̂∗nĝ (5.3.25)

where (K̂nf)(u) = 1
n

∑n
i=1

∑kn
j=1 fjXi(u)χi,j, (K̂∗nf)(u) = 1

n

∑n
i=1

∑kn
j=1 χi,j〈Xi, f〉φj(u),

ĝ = 1
n

∑n
i=1XiYi.

Proposition 5.3.3. b̃n = b̂n = φT
n (XT

nWnXn)−1XT
nWnYn

Proof. See Appendix.

While the proposed estimator is derived under the identity weighting operator,

alternative weighting schemes are allowed for the continuum GMM.

b̌n = arg min
bn

∫ 1

0

∫ 1

0

[
(K̂nbn)(t)− ĝ(t)

]
ωn(s, t)

[
(K̂nbn)(s)− ĝ(s)

]
dsdt (5.3.26)

where wn(s, t) is a continuous GMM weighting function defined on [0, 1] × [0, 1].

The generalised estimator is then modified as

b̌n = φT
n (XT

n W̌nXn)−1XT
n W̌nYn (5.3.27)

where W̌ is n×n matrix with (i, j)th element being
∫ 1

0

∫ 1

0
Xi(s)ωn(s, t)Xj(t)dsdt.

With a conventional GMM, the most efficient estimator is the one weighted by

the inverse covariance of the moment condition (Hansen, 1982). With a functional

linear regression, the inverse covariance of the continuum of moment conditions

is once again ill-posed. To avoid additional regularisation and added complexity

to the estimator, we will mainly study the identity weighting scheme.

Though the analytic form of our estimator is similar to Carrasco and Florens

(2000), the implications of these two estimators diverge. In Carrasco and Florens

(2000), the parameter space is a finite-dimensional Euclidean space where coef-

ficients reside. As the sample size goes to infinity, the parameter space remains

the same, and
√
n consistency can be achieved. In our model, the true parameter

space is infinite-dimensional, whereas the sieve parameter depends on the sample

size. As the sample size increases, the complexity of the sieve parameter space

increases as well. As a result, the rate of convergence will be strictly slower than
√
n.
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5.4 Functional Instrumental Variable Regression

In this section, we consider the situation where the exogeneity assumption

does not hold,

E[X(s)ε] 6= 0, ∀s ∈ [0, 1]. (5.4.28)

Such ‘endogeneity’ problem often arises as a result of omitted variables, reverse

causality, measurement error etc. Without the exogeneity condition, the slope

function is not identified, and the proposed sieve estimator in the previous sec-

tion will not be consistent. In the econometric literature, identification without

exogeneity could be achieved through other channels. For example, if there exist

some ‘instrumental variables’ that are not correlated with error, and sufficiently

correlated with the endogenous regressor, then coefficient could still be identified

and estimated. A classic case of the endogeneity issue comes from estimating the

impact of education (X) on salary (Y ) (Mincer, 1958). As education and salary

levels are both correlated with one’s ability (Spence, 1978), failure to include the

ability variable would bias the estimator from the usual regression procedure.

However, if the variation of education could be induced by a third instrumental

variable (Z), correlated only with education, but not with other factors that may

link to salary, then the effect of education could still be consistently estimated.

Here we follow the same logic and assume there exists an instrumental function

Z(·), such that Z and ε are not correlated (exogeneity). Besides, Z and X are

sufficiently correlated (relevance). To make our results general enough, we assume

that Z is an element in a Hilbert space D of square integrable functions defined

on a domain D. Let 〈·, ·〉D denote the inner product function on D. For example,

D could be defined on a compact real interval [a, b], where a < b, and a, b ∈ R. In

this case, we could define 〈f, g〉D =
∫ b
a
f(s)g(s)ds. When Z = X and D = [0, 1],

the functional IV regression nests the functional linear regression with exogenous

regressors as a special case. D could also be defined on some product spaces, e.g.,

[a, b]p, p being an positive integer.

Assumption 5.4.1 (IV Exogeneity).

E[Z(s)ε] = 0, s ∈ D. (5.4.29)

The functional linear regression (5.1.1) and the IV exogeneity assumption

(5.4.29) imply that

E[Z(t)Y ] =

∫ 1

0

E[Z(t)X(s)]b(s)ds, t ∈ D (5.4.30)
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which we write compactly as

Tb = h, (5.4.31)

where (Tf)(t) =
∫ 1

0
E[Z(t)X(s)]f(s)ds and h(t) = E[Z(t)Y ], t ∈ D.

The normal equation implied by the IV exogeneity condition is also a Fredholm

equation of the first kind. Therefore, the inverse of T will not be continuous and

requires regularisation. A major difference between T and K is that K is a self-

adjoint covariance operator of X, whereas T is the cross-covariance between X

and Z, which is not self-adjoint unless Z = X.

Definition 5.4.2 (Sieve Continuum GMM Estimator for FLR-IV).

b̂iv,n = arg min
b∈ΘIVn

‖T̂ b− ĥ‖D (5.4.32)

where ĥ = 1
n

∑n
i=1 ZiYi, and T̂ b = 1

n

∑n
i=1 Zi〈Xi, b〉; Θn is the sieve parameter

space spanned by φ1, . . . , φkn with functions satisfying smoothness conditions stated

in assumption (5.5.4).

The estimator also has a closed form

b̂IVn = φT
n (XT

n ZnXn)−1XT
n ZnYn (5.4.33)

where φn = (φ1, . . . , φkn)T , Xn is an n × kn matrix with the (i, j)th compo-

nent 〈Xi, φj〉H; Zn is an n × n matrix with (i, j)th element 〈Zi, Zj〉D and Yn =

(Y1, . . . , Yn)T.

5.5 Rate of Convergence

In this section, we explore the rate of convergence of the proposed Sieve Con-

tinuum GMM estimators. Before laying out the assumptions for convergence

results, we define the following notations.

For a function f ∈ H and non-negative integer k, define the differential oper-

ator Dkf as

Dkf =
∂kf(x)

∂xk
, if k > 0 and D0f = f. (5.5.34)

Given a positive integer m, define the Sobolev norm on H as

‖f‖m =

{
m∑
j=0

‖Djf‖2
H

}1/2

. (5.5.35)
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Let Hk be a subspace of H with Sobolev norm no bigger than some constant C,

Hk = {f ∈ H, ‖f‖k ≤ C}. (5.5.36)

Let Λ(p, C0) be a function subspace of H ⊗ H such that a bivariate function

w ∈ Λ(p, C0) if and only if there exists a constant C0 and a positive integer p such

that

sup
j≤p

sup
s,t∈[0,1]

|Djf(s, t)| ≤ C0 and sup
s1,t1,s2,t2∈[0,1]

|Dpf(s1, t1)−Dp(s2, t2)|
‖(s1, t1)− (s2, t2)‖

≤ C0.

(5.5.37)

The assumptions for the Sieve Continuum GMM estimator for FLR-EXO are

as follows.

Assumption 5.5.1. Data (Xi, Yi) are i.i.d and follow the same joint distribution

as (X, Y ).

Assumption 5.5.2. There exist finite constants C2, C3 such that

EY 2 < C2, E‖X‖2 < C3 (5.5.38)

Assumption (5.5.1) and (5.5.2) are distributional assumptions on X and Y , in

line with most of the functional linear regression literature (e.g. Cai et al., 2006;

Hall and Horowitz, 2007). Assumption (5.5.1) requires (Xi, Yi) to be independent

and identically distributed, defined for technical convenience. As the proposed

estimator is a type of the generalised method of moments, it is expected to work

with less stringent assumptions such as independent but non-identical distribu-

tions. Assumption (5.5.2) requires the second moment of X and Y are finite. This

assumption ensures the sum of the eigenvalues of the covariance operator does not

diverge. This condition normally holds in practice.

Assumption 5.5.3. There exists a constant C1 and a positive integer r such that

k(s, t) := 〈E[X(s)X],E[XX(t)]〉H ∈ Λ(r, C1) (5.5.39)

Assumption (5.5.3) defines the smoothness of the bivariate function k(s, t),

the kernel of the operator K∗K, in terms of the parameter r. It assumes that

the derivatives of the k function up to r times be uniformly bounded and rth

order derivative of k is Lipschitz continuous. The assumption requires that the k

function to be a smooth function. If k is not first-order differentiable, then the

assumption does not hold. The parameter r informs the number of derivatives
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that the kernel of the operator possess. The larger the r, the higher level of

smoothness the operator has.

Assumption 5.5.4. The sieve parameter space is

Θn = Hn ∩Hs =

{
h =

kn∑
j=1

hjφj, ‖h‖s < C

}
(5.5.40)

for some s ≥ 2.

Assumption 5.5.5. With the sieve parameter space assumed in (5.5.4), a unique

minimiser exists for the objective function (5.3.2).

Assumption (5.5.4) and (5.5.5) define the sieve parameter space over which the

objective function is optimised. Following Horowitz (2012b), we not only assume

that the sieve parameter space is spanned by a finite number of known basis func-

tions, but also require some level of smoothness. In cases where the constraint is

bounded, the estimator will not have a closed-form, and it is very challenging to

derive the asymptotic properties, suggested by Horowitz (2012b). This assump-

tion stipulates the parameters that the methodology is able to estimate–functions

that are at least twice continuously differentiable.

Assumption 5.5.6. Define the sieve-measure of ill-posedness as

τn = sup
f∈Θn

‖f‖
‖(K∗K)f‖

, (5.5.41)

We assume

τn = O(krn), and τn sup
f∈Θn

‖(K∗nKn −K∗K)f‖
‖f‖

= O(k−sn ) (5.5.42)

Assumption (5.5.6) is related to the ‘sieve-measure of ill-posedness’, a concept

introduced by Blundell et al. (2007). The measure quantifies the ill-posedness of

the operator K∗K for a given choice of sieve space. Blundell et al. (2007) shows

that τn is closely related to λ2
kn

, the kn-th eigenvalue of K∗K. As n and Θn grow,

τn increases as well. The assumption τn = O(krn) requires the τn to grow at a

polynomial rate. Conditions are provided in Blundell et al. (2007) and Chen and

Reiss (2011) under which the assumption holds. Similar assumptions are imposed

on PCA-based estimators (Hall and Horowitz, 2007) where the speed at which the

eigenvalue sequence decreases has a lower polynomial bound. The second part of

the assumption is a smoothness restriction placed on the kernel of K∗K. It makes
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sure that K∗nKn approximates K∗K sufficiently well in the sieve space. Similar

assumptions are applied by Horowitz (2011) and Horowitz (2012b).

Assumption 5.5.7.

‖K∗nKn −K∗K‖ = O(k−rn ) (5.5.43)

Assumption (5.5.7) is a complement of the second part of the assumption

(5.5.6), which sets the approximation error bound for K∗nKn on a larger set.

Assumption 5.5.8. There exists a s ≥ 2, such that (1) b ∈ Hs, (2)K∗g ∈ Hs+r,

(3) for any f ∈ Hl, there are coefficients fj, j = 1, 2, . . . such that∥∥∥∥∥f −
m∑
j=1

fjφj

∥∥∥∥∥ ≤ O(m−l) (5.5.44)

Assumption (5.5.8) is the smoothness conditions imposed on the slope function

b and the K∗g, and the rate at which they can be approximated by the basis

functions. The assumption is generally satisfied with the commonly used basis

function system such as spline, polynomial and trigonometric bases.

Assumption 5.5.9. K∗K is non-singular.

Assumption (5.5.9) is concerned with the identification of the slope function.

This assumption ensures that K∗K is invertible, therefore b can be solved by

b = (K∗K)−1K∗g.

Theorem 5.5.10 (Rate of Convergence for the sieve estimator of FLR-EXO).

‖b̂− b‖ = Op(k
−s
n + krn

√
kn/n) (5.5.45)

Under assumption (5.3.9) (5.5.1) (5.5.3) (5.5.2) (5.5.4) (5.5.5) (5.5.6) (5.5.8)

5.5.7). If kn � n1/(2s+2r+1), the fastest rate of convergence is achieved as

‖b̂n − b‖ = Op(n
−s/(2s+2r+1)) (5.5.46)

Proof. See Appendix.

For the functional instrumental variable regression, the following additional

assumptions are required.

Assumption 5.5.11. Data (Xi, Yi, Zi) are i.i.d and follow the same joint distri-

bution as (X, Y, Z).
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Assumption 5.5.12. There exists a constant C̃1 and a positive integer m such

that

〈E[X(s)Z],E[ZX(t)]〉H ∈ Λ(m, C̃1) (5.5.47)

Assumption 5.5.13. There exists a finite constant C4 such that

E‖Z‖2 < C4 (5.5.48)

Assumption 5.5.14. Define the sieve-measure of ill-posedness as

δn = sup
f∈Θn

‖f‖
‖(T ∗T )f‖

, (5.5.49)

δn = O(kmn ), and δn sup
f∈Θn

‖(T ∗nTn − T ∗T )f‖
‖f‖

= O(k−sn ) (5.5.50)

Assumption 5.5.15. T ∗g ∈ Hs+m.

Assumption 5.5.16. T ∗T is non-singular.

Assumption 5.5.17.

‖T ∗nTn − T ∗T‖ = O(k−mn ) (5.5.51)

Theorem 5.5.18 (Functional IV Estimator Rate of Convergence).

‖b̂− b‖ = Op(k
−s
n + kmn

√
kn/n) (5.5.52)

Under assumption (5.5.11) (5.5.12) (5.5.13) (5.5.14) (5.5.15) (5.5.16) (5.5.17)

(5.4.29) (5.5.2) (5.5.4) (5.5.8). If kn � n1/(2s+2m+1), the fastest rate of conver-

gence is achieved as

‖b̂iv,n − b‖ = Op(n
−s/(2s+2m+1)). (5.5.53)

.

Proof. See Appendix

The approaches for proving these two theorems are similar. Here we outline

the strategy using the functional linear regression with exogeneity as an example.

1. The error between b̂n and true b is decomposed into two parts, the estimation

error between b̂n and bn, the approximation error between bn and b, the

bound of which is set in the assumption (5.5.8).

2. The error between b̂n and bn is translated into the error between K∗Kb̂n −
K∗Kbn through the ‘sieve measure of ill-posedness’ assumption (5.5.6).
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3. The error between K∗Kb̂n and K∗Kbn can be further decomposed into three

parts involving the error between K∗Kbn and K∗Kb, the error between K̂∗ĝ

and K∗g, the error between K∗Kb̂n − K̂∗nK̂nb̂n, each of which is bounded

separately using the assumptions.

4. Combine all the error bounds together via the triangle inequality to get the

rate of convergence.

The rate of convergence reveals two aspects of the functional linear estimators.

First of all, the rate is by construction strictly slower than
√
n. This is generally

in line with the results in the nonparametric literature. Second, the rate of conver-

gence for both estimators suggest that the speed depends on two parameters. The

smoothness of the slope function (s), and the relative smoothness of the operator

(r or m). A smoother slope function leads to a faster rate of convergence, as it is

easier to infer the shape of the function when the slope function is smooth. On the

contrary, the smoother the operator, the slower the rate of convergence. This is

because the smoothness of the operator is synonymous to the level of variation in

X. A smooth operator means there is less information in the data and therefore

more difficult to estimate the coefficient. For the functional instrumental vari-

able regression, the parameter m informs the size of the cross-covariance between

X and Z. A large m means that the instrument Z contains less information

regarding X, which exacerbates the results.

5.6 Conclusion

In this chapter, we propose a class of sieve estimators for the functional linear

regression models with exogenous regressor as well as function instrumental vari-

able regression. We combine the method of sieves and the generalised method of

moments with a continuum of moment conditions, which simultaneously achieves

dimension reduction and utilisation of all the moment conditions. The estimator

has a closed-form, making it easy to implement. We derive the minimax rate of

convergence of each estimator under suitable assumptions and show that the rates

are optimal.

There are still a few unanswered questions in this chapter to be studied in the

future. First of all, is there a weighting scheme which outperforms other weight-

ing schemes, and is it the inverse covariance operator of the moment conditions?

The problem is particularly tricky as most interesting weighting matrix in Hansen
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(1982)’s efficient GMM needs further regularisation in the framework of the func-

tional linear regression. This adds further bias and variance into the estimator

that requires a delicate balance to achieve desirable statistical properties. The

second challenge is related to the choice of the tuning parameter kn. Although

many data-driven methods have been suggested to pick kn, e.g., cross-validation

criteria and information criteria, the theoretical and finite sample properties of

these methods still need further exploration. Third, the assumptions required

to derive the rate of convergence could be relaxed further. For example, exten-

sions could be made to allow for spatial or temporal dependence, which would

significantly improve the applicability of the functional linear regression models

in economics.
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Chapter 6

Conclusion

Understanding spatial heterogeneity has been a central concern in spatial

and urban economic studies during the past two decades (Anselin, 1988, 2001;

Brunsdon et al., 1998; Fotheringham et al., 2002; Wheeler, 2019), driven by the

ever-increasing availability of geo-tagged big data, rapid progress in econometric

methodologies as well as researchers’ desire to understand the structural instabil-

ity behind the spatial processes.

This thesis contributes to the methodology of spatial heterogeneity by devel-

oping three classes of varying coefficients regressions. In chapter 3, we propose the

spatially varying coefficient regression (SVCR), designed for spatial cross-sectional

data. The SVCR allows the spatial regression coefficients between a dependent

variable and independent variables to vary smoothly over space, therefore captur-

ing the spatial heterogeneous effects. Conceptually, the regression setup is similar

to the geographic weighted regression (GWR), widely used in applied geographic

research (Brunsdon et al., 1996, 1998; Fotheringham et al., 2002; Wheeler, 2019).

We highlight the relationship and the core differences between the two methodolo-

gies and conduct detailed simulation studies to investigate their respective perfor-

mances. We also address several spatial methodological issues such as smoothing

over complex regions, modelling spatially auto-correlated and heteroskedastic er-

rors, and spatial prediction with a large dataset. In chapter 4 we develop the spa-

tiotemporally varying coefficient regression (STVCR) for spatial-temporal data.

The STVCR jointly models both spatial and temporal heterogeneous effects, ex-

tending the SVCR to the temporal dimension. We compare the STVCR with the

geographical and temporal weighted regression (GTWR) (Fotheringham et al.,

2015) and highlight the advantage of the proposed methodology. Chapter 5 is

dedicated to the methodology of the functional linear regression for spatial func-

tional data. We propose a unified framework for estimating a functional linear
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regression with exogenous regressors or with instrumental variables. The method

is called sieve continuum generalised method of moments (SCGMM), motivated

by the combination of the sieve method (Grenander, 1981; Chen, 2007) and the

GMM method with a continuum of moment conditions (Carrasco and Florens,

2000). We derive the rate of convergence of the estimator and contribute to the

research of the statistical ill-posed problems (Kress et al., 1989; Carrasco et al.,

2007).

Empirically, we address two important issues in urban economics, urban hous-

ing and urban consumption. In chapter 3, we investigate a housing market located

in Aveiro, Portugal. We apply the SVCR that jointly models the spatial hetero-

geneity for coefficients and spatial autocorrelation for the error term in a hedonic

regression framework. The method takes into consideration the irregularly shaped

domain and estimates the complex spatial pattern of the shadow price. The es-

timates of the coefficients and prediction provide new insights about the urban

housing market segmentation. Chapter 4 conducts an empirical study of the re-

lationship between urban consumption amenities and human activity in China,

following Glaeser et al. (2001). To facilitate the investigation, we collect two

novel datasets, large scale mobile phone positioning data (MPP) and web-based

point of interest (POI) data. Whereas the MPP data provide the spatiotemporal

distribution of human activity on an hourly basis with high spatial resolution,

the POI data inform the detailed distribution of individual consumption amenity.

The incredible spatial and temporal granularity of the data allows us to apply the

STVCR to uncover spatiotemporal heterogeneous effects between consumption

amenities and human activity at very fine spatial and temporal scales. The study

confirms that the role of consumption in facilitating urban density mostly holds in

Beijing, though there exists substantial spatial and temporal uncertainty. It also

illustrates the enormous potential of using internet-based data as an alternative

data source in urban studies.

Admittedly, there are several limitations associated with the thesis. Method-

ologically, we focus mainly on the model and coefficient estimation. Many other

methodological issues of importance are not covered in this thesis. For example,

with SVCR and STVCR, how to conduct a homogeneity test to check whether a

regression coefficient is spatially varying or non-varying? How to test whether the

semiparametric model is more appropriate compared to parametric ones? With a

functional linear regression model, on the other hand, we do not address several

issues such as hypothesis testing, prediction. Besides, the proposed methodologies

rely on the crucial assumption that the heterogeneous coefficients vary smoothly
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over the underlying spatial domain. If the spatial effects displays discontinuity or

structural break (see, e.g., Zhu et al., 2014), or if the spatial domain is simply a

small set of disjoint homogeneous areas, the proposed methodologies may not be

suitable. The second limitation is associated with the complexity of implementa-

tion. Semi-nonparametric methods are considerably more complex in terms of the

estimation procedures compared with their parametric counterparts. By introduc-

ing an infinite-dimensional parameter space, a semi-parametric regression relies

on regularisation or smoothing to obtain stable estimates, which in turn requires

parameter tuning. An ill-advised tuning parameter will either inflates the bias or

the variance that makes the estimates unreliable. The third limitation is related

to the empirical applications. This thesis does not place emphasis on causal in-

ferences. Therefore the coefficients estimated from the SVCR and STVCR do not

have a causal interpretation. In chapter 4, the model will suffer from endogeneity

issues as consumption amenities open at places with more people around, bring-

ing reverse causality. As a result, the coefficient does not inform the elasticity of

human activity in response to opening a new restaurant.

Beyond this thesis, there are still plenty of exciting areas to be explored and

studied in the future. The first area is related to the methodology and theory of

semi-nonparametric econometrics in the spatial and urban setting. With SVCR

and STVCR, methodologies should be extended to accommodate more sophis-

ticated estimation and inference tasks, such as regression with a large number

of dependent variables (high-dimensional model) and regression with endogeneity

(nonparametric instrumental variable model). Simulation exercises could be car-

ried out to investigate further the performance of the estimators under different

data generating processes. With a functional linear regression model, substantial

methodological work needs to be carried out to narrow the gap between the theory

and empirical studies. For example, how to estimate an FLR model with multiple

regressors, which could be a mixture of functional and non-functional components?

The second area is about improving the implementation of the methodologies in

this thesis. All the methods in this thesis require running bespoke Matlab scripts

to carry out the estimation, which hinders the usage at different platforms. Ef-

forts should be made to develop user-friendly statistical packages to facilitate the

adoption and application of these methods. Finally, future researches should fo-

cus more on the estimation of the causal effects in an urban economic setting.

With consumption and human activity, for example, one possible way is to adopt

difference-in-differences (DID) approach (Abadie, 2005; Athey and Imbens, 2006),

which compares the neighbourhoods with new consumption amenity opening with
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areas that do not experience consumption amenity change. This will bring a new

understanding of how cities interact with the people and how policymakers could

improve urban vibrancy.
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Appendix A

Appendix of Chapter 3

A.1 Invert Large Symmetric Block Matrix

Here we present the details of the recursive method to obtain the inverse of a

large symmetric block matrix of the form

Σ =


A11 A12 · · · A1k

A21 A22 · · · A2k
...

...
. . .

...
Ak1 Ak2 · · · Akk


where Akk has the form Ak,k = akInk + bk1nk1

′
nk

; nk is the dimension of Akk.

Furthermore, Aij = ATji for all i, j = 1, . . . , k, where Aij has a generic form

Aij = ςij1ni1
′
nj

. We will use the following two results, which can be found in Rao

(1973).

(Rao, 1973, p.67) For a n× n matrix

A = aIn + b1n1
′
n,

its inverse is

A−1 = ãIn + b̃1n1
′
n,

where

ã =
1

a
, b̃ =

−b
a(a+ nb)

(Rao, 1973, p.33) For a symmetric block matrix

Σ =

(
A B
B′ D

)
,
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its inverse is

Σ−1 =

(
A−1 + FE−1F ′ −FE−1

−E−1F ′ E−1

)
where

E = D −B′A−1B,F = A−1B.

Now, we consider the recursive method for the inverse. The main result we

establish is that the computation only involves finite scalar level operations.

In the first iteration, we immediately have the inverse of A11 = a1In1+bk1n11
′
n1

,

K1 := A−1
11 = ã1In1 + b̃k1n11

′
n1

In the second iteration, set

K2 =

(
K1 A12

A′12 A22

)
=

(
a1In1 + b11n11

′
n1

ς121n11
′
n2

ς121n21
′
n1

a2In2 + b21n21
′
n2

)
Using the formula for symmetric block matrix mentioned above, it can be

shown that the inverse has the same form as K2

K−1
2 =

(
p1In1 + q111n11

′
n1

q121n11
′
n2

q121n21
′
n1

p2In2 + q221n21
′
n2

)
,

The inverse coefficients (p1, p2, q11, q12, q22) are determined directly through the

coefficients

(a1, a2, b1, b2, ς12, n1, n2), which does not require matrix operation.

In the (k + 1)th iteration, suppose K−1
k has the following form,

K−1
k =

p1In1 + q111n11
′
n1
· · · q1k1n11

′
nk

...
. . .

...
q1k1nk1

′
n1

. . . pkInk + qkk1nk1
′
nk


The updated matrix in this iteration is as follows,

Kk+1 =

(
Kk Bk+1

B′k+1 Ak+1,k+1

)
where

Bk+1 =


A1,k+1

A2,k+1
...

Ak,k+1

 =


ς1,k+11n11

′
nk+1

ς2,k+11n21
′
nk+1

...
ςk,k+11nk1

′
nk+1


and Ak+1,k+1 = ak+1Ik+1 + bk+11k+11

′
k+1.
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It can be shown that the inverse of Kk+1 also possesses the same structure,

K−1
k+1 =

r1In1 + s1,11n11
′
n1
· · · s1,k+11n11

′
nk+1

...
. . .

...
s1,k+11nk+1

1′n1
. . . rk+1Ink+1

+ sk+1,k+11nk+1
1′nk+1


where coefficients (r1, . . . , rk+1) and (s1,1, s1,2, . . . , snk+1,k+1

) are computed from the

coefficients of the original matrix (p1, . . . , pk), (q1,1, q1,2, . . . , qk,k), (a1,k+1, . . . , ak+1,k+1, bk+1)

and (n1, . . . , nk+1).
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Appendix B

Appendix of Chapter 5

B.1 Lemma

Lemma B.1.1. Let G be a Hilbert space with inner product 〈f, g〉 and norm

‖f‖ = 〈f, f〉1/2 for f, g ∈ G. Let {Ai, i = 1, . . . , n} be a sequence of i.i.d ran-

dom functions, defined on G.Let {Bi, i = 1, . . . , n} be another sequence of i.i.d

random functions, defined on G. Let A = E[Ai] and B = E[Bi], where E means

expectation. Also define Ā = 1
n

∑n
i=1 Ai and B̄ = 1

n

∑n
i=1 Bi then

〈Ā, B̄〉 − 〈A,B〉 = Op(n
−1/2) (B.1.1)

Proof. Note that

〈Ā, B̄〉 − 〈A,B〉 = 〈Ā− A, B̄ −B〉+ 〈Ā− A,B〉+ 〈A,B − B̄〉

≤ ‖Ā− A‖‖B̄ −B‖+ ‖Ā− A‖‖B‖+ ‖A‖‖B − B̄‖

It is obvious that

‖Ā− A‖ = Op(n
−1/2) and ‖B − B̄‖ = Op(n

−1/2). (B.1.2)

Besides

‖A‖ ≤ C (B.1.3)

and

‖B‖ ≤ C (B.1.4)

Hence 〈Ā, B̄〉 − 〈A,B〉 = Op(n
−1/2)

111



B.2 Proof 1: Derive Sieve Estimator for FLR-

EXO

b̃ = b̃1φ1 + · · ·+ b̃knφkn := φT
n b̃n, (B.2.5)

where φn = (φ1, . . . , φkn) and b̃n = (b̃1, . . . , b̃kn). Note that

b̂n = arg min
b̃∈Hn

‖K̂b̃− ĝ‖

= arg min
b̃∈Hn

‖K̂b̃− ĝ‖2

= φT
narg min

b̃n∈Rkn
‖K̂b̃− ĝ‖2,

therefore, finding the function that minimise the objective function is equivalent

to finding the generalised Fourier coefficients, given a sequence of basis functions.

K̂b̃ =

∫ 1

0

1

n

n∑
i=1

Xi(s)Xi(t)b̃(s)ds, t ∈ [0, 1]

=
1

n

n∑
i=1

Xi(t)

∫ 1

0

Xi(s)b̃(s)ds

=
1

n

n∑
i=1

Xi(t)

∫ 1

0

Xi(s)

(
kn∑
k=1

b̃kφk(s)

)
ds

=
1

n

n∑
i=1

Xi(t)

(
kn∑
k=1

b̃k

∫ 1

0

Xi(s)φk(s)ds

)

=
1

n

n∑
i=1

Xi(t)

(
kn∑
k=1

b̃kĉi,k

)

where ĉi,k =
∫ 1

0
Xi(s)φk(s)ds

ĝ(t) =
1

n

n∑
i=1

Xi(t)Yi, t ∈ [0, 1]
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(K̂b̃− ĝ)(t) =

[
1

n

n∑
i=1

Xi(t)

(
kn∑
k=1

b̃kĉi,k

)]
−

[
1

n

n∑
i=1

Xi(t)Yi

]

=
1

n

n∑
i=1

Xi(t)

[(
kn∑
k=1

b̃kĉi,k

)
− Yi

]

‖K̂b̃− ĝ‖2 =

∫ 1

0

{
1

n

n∑
i=1

Xi(t)

[(
kn∑
k=1

b̃kĉi,k

)
− Yi

]}2

dt

∂‖K̂b̃− ĝ‖2

∂b̃j
=

∫ 1

0

2

{
1

n

n∑
i=1

Xi(t)

[(
kn∑
k=1

b̃kĉi,k

)
− Yi

]}{
1

n

n∑
m=1

Xm(t)ĉm,j

}
dt

=

∫ 1

0

2

n2

n∑
i=1

n∑
m=1

Xm(t)Xi(t)ĉm,j

[(
kn∑
k=1

b̃kĉi,k

)
− Yi

]
dt

=
2

n2

n∑
i=1

n∑
m=1

[∫ 1

0

Xm(t)Xi(t)dt

]
ĉm,j

[(
kn∑
k=1

b̃kĉi,k

)
− Yi

]

=
2

n2

n∑
i=1

n∑
m=1

dm,iĉm,j

[(
kn∑
k=1

b̃kĉi,k

)
− Yi

]

where dm,i =
∫ 1

0
Xm(t)Xi(t)dt.

Let
∂‖K̂b̃− ĝ‖2

∂b̃j
= 0, for j = 1, . . . , kn

n∑
i=1

n∑
m=1

dm,iĉm,j

(
rn∑
k=1

b̃kĉi,k

)
=

n∑
i=1

n∑
m=1

dm,iĉm,jYi, j = 1, . . . , kn

which is equivalent to

(XT
nWnXn)b̃n = XT

nWnYn. (B.2.6)

Then

b̃n = (XT
nWnXn)−1XT

nWnYn
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and

b̂n = φTn (XT
nWnXn)−1XT

nWnYn

We could derive the Hessian matrix in the similar fashion,

H = XT
nWnXn (B.2.7)

which is positive definite.
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B.3 Proof 2: Equivalence between b̂ and b̃

Let b̂m,n = 〈b̂n, φm〉, form = 1, . . . , kn. (b̂1,n, . . . , b̂kn,n)T = (XT
nWnXn)−1XT

nWnYn.

K̂∗nK̂nb̂n =
1

n

n∑
i=1

kn∑
j=1

χi,j〈Xi,
1

n

n∑
l=1

kn∑
m=1

b̂m,nXlχl,m〉φj

=
1

n2

n∑
i=1

kn∑
j=1

n∑
l=1

kn∑
m=1

χi,j〈Xi, Xl〉χl,mb̂m,nφj

=
1

n2
φT
n (XT

nWnXn)(XT
nWnXn)−1XT

nWnYn

=
1

n2
φT
nXT

nWnYn

K̂∗nĝ =
1

n

n∑
i=1

kn∑
j=1

χi,j〈Xi,
1

n

n∑
l=1

XlYl〉φj

=
1

n2

n∑
i=1

kn∑
j=1

n∑
l=1

χi,j〈Xi, Xl〉Ylφj

=
1

n2
φT
nXT

nWnYn

Therefore,

K̂∗nK̂nb̂n = K̂∗nĝ (B.3.8)

As K̂∗nK̂n is invertible, b̂n = b̃n
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B.4 Proof 3: Rate of Convergence

The following proof derives the rate of convergence for functional linear re-

gression with exogeneity. The results for functional IV regression will be similar,

which will not be elaborated here.

By triangle inequality, we have

‖b̂n − b‖ ≤ ‖b̂n − bn‖+ ‖bn − b‖ (B.4.9)

By Assumption (5.5.8),

‖bn − b‖ = O(k−sn ). (B.4.10)

For ‖b̂n− bn‖, notice that both b̂n and bn belong to Θn, by assumption (5.5.5)

and (5.5.8), therefore b̂n − bn ∈ Θns, and by the definition of τn,

‖b̂n − bn‖
‖K∗K(b̂n − bn)‖

≤ sup
f∈Hns

‖f‖
‖(K∗K)f‖

:= τn, (B.4.11)

therefore

‖b̂n − bn‖ ≤ τn‖K∗K(b̂n − bn)‖. (B.4.12)

Note that K∗K(b̂n − bn) could be decomposed into

K∗K(b̂n− bn) = (K∗K− K̂∗nK̂n)b̂n + (K̂∗nK̂nb̂n−K∗Kb) +K∗K(b− bn) (B.4.13)

Besides, K∗Kb = K∗g and K̂∗nK̂nb̂n = K̂∗ĝ w.p.a 1.

By triangle inequality

‖K∗K(b̂n−bn)‖ = ‖(K∗K−K̂∗nK̂n)b̂n‖+‖K̂∗ĝ−K∗g‖+‖K∗K(b−bn)‖ (B.4.14)

Let

∆1 := ‖(K∗K − K̂∗nK̂n)b̂n‖,

∆2 := ‖K̂∗ĝ −K∗g‖,

∆3 := ‖K∗K(b− bn)‖.
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Note that K∗nKnb = K∗nKnbn and K∗nKn(b− bn) = 0, hence for ∆3,

‖K∗K(b− bn)‖ = ‖K∗K(b− bn)−K∗nKn(b− bn)‖

= ‖(K∗K −K∗nKn)(b− bn)‖

≤ ‖(K∗K −K∗nKn)‖‖b− bn‖

= τ−1
n O(k−sn )

by Assumption (5.5.8) and (5.5.7)

For ∆2

‖K̂∗ĝ −K∗g‖ ≤ ‖K̂∗ĝ −K∗ng‖+ ‖K∗ng −K∗g‖ (B.4.15)

Let ∆21 := ‖K̂∗ĝ −K∗ng‖, and ∆22 := ‖K∗ng −K∗g‖.

∆22 = O(k−r−sn ) (B.4.16)

by Assumption (5.5.8).

For ∆21,

K̂∗ĝ =
kn∑
j=1

ζ̂jφj (B.4.17)

where

ζ̂j =

∫ 1

0

∫ 1

0

(
1

n

n∑
i=1

Xi(s)Xi(t)

)(
1

n

n∑
m=1

Xm(t)Ym

)
dtφj(s)ds (B.4.18)

and

K∗ng =
kn∑
j=1

ζjφj (B.4.19)

where

ζj =

∫ 1

0

∫ 1

0

E[X(s)X(t)]E[X(t)Y ]dtφj(s)ds (B.4.20)

Moment calculation suggests that ζ̂j − ζj = Op(n
−1/2). Hence

∆21 =

[
kn∑
j=1

(ζ̂j − ζj)2

]1/2

= (knOp(n
−1/2)2)1/2

= Op

(√
kn/n

)
.

So

∆2 ≤ ∆21 + ∆22 = Op

(
k−r−sn +

√
kn/n

)
. (B.4.21)
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For ∆1,

‖(K∗K − K̂∗nK̂n)b̂n‖ ≤ ‖(K∗K −K∗nKn)b̂n‖+ ‖(K∗nKn − K̂∗nK̂n)b̂n‖

‖(K∗K −K∗nKn)b̂n‖ ≤ sup
v∈Θn

‖(K∗K −K∗nKn)f‖ = τ−1
n O(k−sn ) (B.4.22)

by assumption (5.5.8).

‖(K∗nKn − K̂∗nK̂n)b̂n‖ ≤ sup
f∈Θn

‖(K∗nKn − K̂∗nK̂n)f‖ (B.4.23)

where f =
∑kn

j=1 fjφj, vj =
∫ 1

0
f(s)φj(s)ds

‖(K∗nKn − K̂∗nK̂n)‖2 =
kn∑
p=1

[
kn∑
q=1

(ĉq,p − cq,p)vp

]2

where

ĉq,p =

∫ 1

0

∫ 1

0

∫ 1

0

1

n

n∑
i=1

[Xi(s)Xi(t)]
1

n

n∑
i=1

[X(u)X(t)]dtdsdu

cq,p =

∫ 1

0

∫ 1

0

∫ 1

0

E[X(s)X(t)]E[X(u)X(t)]dtdsdu

Using the same argument,

ĉp,q − cp,q = Op(1/
√
n) (B.4.24)

for all p, q∣∣∣∣∣
kn∑
p=1

(ĉq,p − cq,p)vp

∣∣∣∣∣ ≤ sup
p,q
|ĉq,p − cq,p|

kn∑
p=1

|vp| = Op(1/
√
n) (B.4.25)

kn∑
q=1

[
kn∑
p=1

(ĉq,p − cq,p)vp

]2

≤
kn∑
q=1

Op(1/n) = Op(kn/n) (B.4.26)

Therefore

‖(K∗nKn − K̂∗nK̂n)‖ = Op(
√
kn/n)

Combine all the bounds, we get
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‖b̂n − b‖ ≤ τn(∆1 + ∆2 + ∆3) +O(ksn)

= Op(k
−s
n + τn

√
kn/n+ τn(k−r−sn +

√
kn/n)

= Op(k
−s
n + krn

√
kn/n)

If we pick kn � n1/(2s+2r+1), the rate of convergence will be

‖b̂n − b‖ = Op

(
n−s/(2s+2r+1)

)
(B.4.27)
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