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Abstract: The exponential growth of the power of modern digital computers is based upon the 

miniaturisation of vast nanoscale arrays of electronic switches, but this will be eventually 

constrained by fabrication limits and power dissipation. Chemical processes have the potential 

to scale beyond these limits performing computations through chemical reactions, yet the lack 

of well-defined programmability limits their scalability and performance. We present a hybrid 

digitally programmable chemical array as a probabilistic computational machine that uses 

chemical oscillators partitioned in interconnected cells as a computational substrate. This 

hybrid architecture performs efficient computation by distributing between chemical and 

digital domains together with error correction. The efficiency is gained by combining digital 

with probabilistic chemical logic based on nearest neighbour interactions and hysteresis effects. 

We demonstrated the implementation of one- and two- dimensional Chemical Cellular 

Automata and solutions to combinatorial optimization problems. 

One sentence Summary: A digital-chemical probabilistic computational machine that can 

solve combinatorial problems and instantiate a physical programmable cellular automaton has 

been demonstrated. 

Main text: The exponential increase in computing power has been driven by the vast growth 

of transistors on silicon chips (1). This growth was made possible by developments in 

fabrication technology reducing the feature sizes of the transistors (2), but this paradigm is 

currently approaching the limits imposed by physics as quantum effects become more 
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pronounced (3). To overcome these limitations, various novel computational architectures 

based on physical and chemical processes have been proposed (4–8).  Quantum computers 

show the potential to solve problems that are intractable on classic computing machines but 

currently suffer from scalability issues due to error correction (9). Alternative computing 

substrates and unconventional computation paradigms are being developed based on mapping 

computational logic to various physical phenomena (10). These tend to emulate transistor-

based logic gates and other circuit components into the physical domain using architectures 

based on Boolean circuits (11) or discovered using artificial intelligence (12). Other classic 

computational architectures which utilize the true nature of physical phenomena include 

reaction-diffusion (13) and neuromorphic computers (14). These architectures and their 

algorithms have been designed to solve a specific set of abstract mathematical problems (15–

18). The challenge is to develop new platforms that can take advantage of chemical substrates 

but can be easily programmable.   

Herein, we present a probabilistic computational machine based on a chemical computational 

architecture that is digitally addressable (20). This device is built from a programmable 

chemical array-based (21) around a new type of chemical state machine for information 

processing. The chemical-computational array operates using the Belousov–Zhabotinsky (BZ) 

reaction which is an oscillating chemical reaction (22, 23). The cells are arranged in a 

rectangular array and are individually programmable with a central oscillator driver and has 

four tuneable gates that allow the oscillations to be coupled between adjacent cells in the grid. 

By programming cell and interfacial controls, the emerging chemical oscillations of the ith cell 

(with jth neighbour cells) are defined by the analogue chemical state (𝑪𝑪𝑪𝑪𝒊𝒊𝒕𝒕) that can be monitored 

and mapped to a digitally representable Chemical State (𝑪𝑪𝑪𝑪𝒊𝒊𝒕𝒕) for each cell. The chemical state 

evolution in the analogue domain occurs via the chemical oscillations, while the digital state is 

based on a finite state logic. Both the analogue and digital representations of chemical states 
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are synchronized utilizing the chemical oscillations. Thus, this approach creates a hybrid 

electronic-chemical logic where the digital domain has deterministic logic using 𝑪𝑪𝑪𝑪𝒊𝒊𝒕𝒕 and the 

chemical domain performs analogue computation using chemical oscillations. A generalized 

representation of the time evolution of the hybrid electronic-chemical logic in the analogue 

domain using chemical states (𝑪𝑪𝑪𝑪𝒊𝒊𝒕𝒕) can be defined by, 

𝑪𝑪𝑪𝑪𝒊𝒊𝒕𝒕+𝟏𝟏 = 𝑮𝑮�𝑭𝑭(𝑪𝑪𝑪𝑪𝒊𝒊𝒕𝒕,𝑪𝑪𝑪𝑪𝒋𝒋𝒕𝒕),𝑪𝑪𝑪𝑪𝒊𝒊𝒕𝒕� 

where 𝑭𝑭 represents the digital operation and 𝑮𝑮 represents interactions in the physical system. 

𝑭𝑭 can be defined by a digital Finite State Machine (FSM) that reads the current analogue signal 

from the physical system and performs operations back into the analogue domain and  𝑪𝑪𝑪𝑪𝒋𝒋𝒕𝒕 are 

the neighboring cells to 𝑪𝑪𝑪𝑪𝒊𝒊𝒕𝒕 . The physical system evolves in a high dimensional space 

controlled by the complex myriad interactions between the chemical oscillations and their 

hysteresis effects combined with the effect of localized digital operations and the outcomes are 

probabilistic. Therefore, the computation is performed by iterating the single-step operation 

involving analogue and digital states with finite state logic defined for a specific problem. 

 

In our experiments, using a digitally programmable input-output (I/O) system, we showed that 

it is possible to have an error correction system whereby the oscillatory chemical state can be 

reinforced, and the effects of phase shift can be eliminated so that the hybrid electronic control 

system amplifies and stabilizes the chemical states, see Fig. 1. As a proof of computation, we 

showed that the system could embody a cellular automaton (CA) and increase the connectivity 

in the configuration space way beyond the digital feature space even for simple rules of the 

elementary CA (24). The probabilistic nature within the hybrid computational architecture was 

demonstrated by implementing a two-dimensional probabilistic Chemical Cellular Automata 

(CCA) which shows emergent behaviour similar to that seen in Conway’s Game of Life (25), 
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as well as by solving combinatorial optimization problems such as number partitioning (26), 

Boolean satisfiability (27), and the travelling salesman problem (28).  

 

 
 

Fig. 1: Conceptual and schematic design. (A) Conceptual diagram of the proposed hybrid 
computation architecture comprising of an array of chemical reactors. The top figure shows 
hybrid digital-chemical information processing within single and coupled hybrid logical units. 
The bottom figure demonstrates a single processing step of the hybrid state machine with 
information looping between digital and chemical domains. Here, 𝑫𝑫,𝑷𝑷,𝑪𝑪 & 𝑻𝑻  represents 
digital, physical, chemical and transfer state machines (with 𝑪𝑪𝑪𝑪𝒂𝒂 ≡ 𝑪𝑪𝑪𝑪𝒊𝒊𝒕𝒕 and 𝑪𝑪𝑪𝑪𝒅𝒅 ≡ 𝑪𝑪𝑪𝑪𝒊𝒊𝒕𝒕). (B) 
Shows a pictorial representation of how the information propagates together with local 
information processing in the chemical array. The weakly connected network in the chemical 
medium provides the global clock (SYNC signal) on which the local interactions process 
information and perform computation. (C and D) Schematic diagram of the two-dimensional 
BZ architecture showing how local cellular vortices interact by tuning the speed of the 
interfacial stirrers. The amplitude of the oscillations is controlled by the speed of the cell stirrers 
and can be used to define discrete states for information processing. Due to the well-defined 
periodic behaviour in the weak coupling limit, these oscillations can also be used to create a 
global clocking SYNC signal for decision making.  
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The Chemical Computing Platform 

The chemical array exploits the excitability of the non-linear chemical oscillations of the 

Belousov Zhabotinsky (BZ) reaction via localized spatial control (22, 23). The BZ reaction is 

highly excitable, can be maintained far from equilibrium, and it can be both spatially and 

temporally addressable. To exploit these features, we designed an experimental setup where 

we can program the addressable medium using an electronically controlled input system, see 

Fig. 1 (A, B).  The experimental architecture consists of a 3D-printed 1D and 2D grid of 

interconnected reactors supported on an array of motors equipped with magnetic heads. At the 

centre of each reactor and at the interface of neighbouring cells, magnetic stirrers are placed to 

match the position of the motor shaft. Each motor is individually addressable, and its speed is 

controlled using a Pulse Width Modulation (PWM) signal generated using a microcontroller. 

The schematic diagram and the physical implementation of the two-dimensional experimental 

setup are shown in Fig. 2 and SI Section 1 and movie SM1. At the start of each experiment, the 

reagents required to initiate the BZ reaction (solutions of malonic acid, potassium bromate, an 

iron-based redox catalyst and sulfuric acid) are added into the reactors using an automated 

liquid handling system interface (see SI section 1). The role of the central cell stirrer is to 

initiate and then maintain the chemical oscillation and amplitude by varying the stirring speed. 

The mass transfer due to the hydrodynamic coupling between the neighbouring cells leads to 

interactions between the chemical oscillations of the BZ reactions, see Fig. 1 (C, D) and movie 

SM2. By tuning the speed of the interfacial stirrers (PWM levels), we can control and program 

the strength of intercellular couplings and limit them to their nearest neighbours. The BZ 

oscillations induced in a single cell are extremely sensitive to the composition of local redox 

species and the time of the actuation of the stirrer. This extreme sensitivity on the initial state, 

localized fluctuations, and time of actuation causes the phase of the chemical oscillations in 

individual cells to show significant drift with time. We observed that these unfavourable phase 
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shifts between individual cells potentially limited the programmability of the system, and an 

error correction process to prevent decoherence was needed. 

 

Fig. 2: Schematic design and physical implementation of the experimental platform. (A) 
Schematic diagram of the automated closed-loop experimental setup showing 3D printed 
reactor, motor control, imaging unit and supporting electronics. (B) Exploded view of the 3D 
printed reactor array with stirrers mapped with motor array and fluidic connections. (C) 
Complete experimental setup inside a light controlled acrylic housing with fluidic connections 
from the pump control unit. (D) Closeup view of the 3D printed reactor array with emerging 
BZ oscillation patterns. (E)  Closeup view of the motor array with magnets connected to motor 
shafts controlling stirrer actuation. See SI Section 1 for complete details.  

 

The low amplitude Chemical State is defined digitally as (𝐶𝐶𝐶𝐶𝑖𝑖𝑡𝑡 = 0) and the high amplitude 

Chemical state (𝐶𝐶𝐶𝐶𝑖𝑖𝑡𝑡 = 1). This state is created in a cell by switching the stirrer from pulsing 

to continuous mode at a higher stirring rate. To address the potential for errors resulting from 
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state-decoherence in the oscillations, we found that the introduction of a global ‘clock’ signal 

(SYNC) between nearest neighbours produces weak oscillations, and these could be used to 

ensure the cells remained synchronised (see SI Section 2). These global weak oscillations are 

used for defining clocking signals which allows us to prevent unwanted dephasing, see Fig. 3.  

 

Fig. 3: Chemical clocking in one-dimensional BZ experiments. (A) BZ oscillations recorded 
for 60 mins in a continuously stirred single reactor, (B) BZ oscillations recorded in a single cell 
with LOW/HIGH states with programmable switching based on global clocking signal, (C) 
Deviations between the peak oscillations with time (peak number) between different 
interconnected cells with global clocking, (D) shows chemical oscillations and discrete 
chemical states by applying CNN for a single BZ cell vs. time for pure clocking tests (top) and 
cellular automata tests (down). (E) shows two different examples of cell and global clock 
interpreted from CNN output. (F) and (G) are the temporal snapshots of the actual experiments 
in a one-dimensional cell array demonstrating clocking wave without and with chemical 
mapped chemical states. 

 

As the BZ reaction proceeds and the malonic acid ‘fuel’ is consumed, the amplitudes of the 

oscillations decrease, see Fig. 3 (A, B). To consistently define discrete chemical states based 

on the observed colour amplitudes, we trained a Convolutional Neural Network (CNN) on a 

dataset of time-dependent images labelled with discrete states. The three discrete states based 

on time-dependent colour classification are red (R), light blue (LB) and blue (B) which are also 
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referred to as CNN states. In the presence of only weak oscillations, two distinct CNN states 

(Red and Light Blue) are recognized, while in the presence of weak and strong oscillations, 

three distinct states (Red, Light Blue and Blue) emerge, see Fig. 3, and we use these  to describe 

the pattern of oscillations in a Finite State Machine (rFSM) to define the chemical states. In 

our current design, the rFSM logic consists of two different states: 𝐶𝐶𝐶𝐶𝑖𝑖𝑡𝑡 = 0  and 𝐶𝐶𝐶𝐶𝑖𝑖𝑡𝑡 = 1. The 

emergence of state 𝐶𝐶𝐶𝐶𝑖𝑖𝑡𝑡 = 0  occurs when a weak wave pattern is observed (R → LB → R) and 

the emergence of state 𝐶𝐶𝐶𝐶𝑖𝑖𝑡𝑡 = 1 occurs when a stronger oscillation is observed (R → LB → B 

→ LB → R). From the chemical state readout, a feedback loop can be completed by 

implementing a deterministic digital state machine (𝑫𝑫) that reads out the chemical states of all 

or a subset of cells as inputs and returns the PWM levels of the stirrers. These new PWM levels 

were then applied to the cell and interfacial stirrers (see SI Section 3&4). 

Probabilistic Logic and One dimensional Chemical Cellular Automata (1D-CCA) 

A single information processing loop can be represented by a combination of four state 

machines (𝑪𝑪, 𝑻𝑻, 𝑫𝑫, 𝑷𝑷) acting on digital (𝐶𝐶𝐶𝐶𝑖𝑖𝑡𝑡) and an analogue representation of chemical states 

(𝐶𝐶S𝑖𝑖𝑡𝑡), see Fig. 4 (A and B). The state machine 𝑪𝑪 is probabilistic and represents the evolution 

of 𝐶𝐶S𝑖𝑖𝑡𝑡  while 𝑫𝑫 represents a deterministic digital state machine that reads  𝐶𝐶𝐶𝐶𝑖𝑖𝑡𝑡  and updates 

stirrer states (𝑫𝑫𝑪𝑪). The state machines 𝑻𝑻 and 𝑷𝑷 represents analogue to digital chemical state 

conversion (𝐶𝐶S𝑖𝑖𝑡𝑡 =  𝑻𝑻(𝐶𝐶S𝑖𝑖𝑡𝑡))  and physical effects of stirrers to the analogue chemical states, 

respectively. The time evolution of the digital and analogue representation of chemical states 

in hybrid probabilistic computation can be represented by 

𝐶𝐶S𝑖𝑖𝑡𝑡 = 𝑲𝑲𝒕𝒕−𝟏𝟏𝑲𝑲𝒕𝒕−𝟐𝟐 …𝑲𝑲𝟏𝟏𝑲𝑲𝟎𝟎(𝑪𝑪(𝑰𝑰𝑪𝑪)) 

𝑲𝑲𝒕𝒕(𝐶𝐶S𝑖𝑖𝑡𝑡) ≡ 𝑪𝑪(𝑷𝑷(𝑫𝑫(𝐶𝐶S𝑖𝑖𝑡𝑡,𝐶𝐶S𝑗𝑗𝑡𝑡)),𝐶𝐶S𝑖𝑖𝑡𝑡) 
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where 𝑲𝑲 represents hybrid state machine comprising of four state machines 𝑪𝑪, 𝑻𝑻, 𝑫𝑫, 𝑷𝑷 and i, j 

represents the central and neighbouring cells and the state machine 𝑻𝑻 in included into 𝑪𝑪 for 

simplicity. 𝑰𝑰𝑪𝑪 defines the initial conditions. The emergence of the new chemical state has both 

implicit and explicit dependence on the previous chemical states. The implicit dependence 

comes from the hysteresis effect of the oscillations and the explicit dependence comes from 

the physical interaction of the stirrer state (𝑷𝑷) on the oscillations which depends on the previous 

chemical states via finite state logic 𝑫𝑫(𝐶𝐶S𝑖𝑖𝑡𝑡,𝐶𝐶S𝑗𝑗𝑡𝑡). 

To demonstrate the working principle of the closed-loop hybrid electronic-chemical logic and 

the programmability with clocking logic, we implemented the Elementary Cellular Automata 

(CA) rules (Rule 30, 110 and 250, see SI Section 4) in a fully deterministic way, see Rule 30 

as an example Fig. 4C and movie SM3. In the deterministic model as there is a one-to-one 

mapping between stirrer (𝑫𝑫𝑪𝑪) and chemical states (𝐶𝐶𝐶𝐶𝑖𝑖𝑡𝑡), information loops through digital and 

chemical domains where the chemical state machine mirrors the digital state machine precisely, 

see Fig. 4A. Next, we introduced the probabilistic computational logic by introducing hybrid 

automaton rules, see Fig. 4B. Consequently, the new chemical states in the analogue domain 

emerge probabilistically where CA rule 30 is modified by creating asymmetric actuation on 

interfacial stirrers, see Fig 4C. and the probabilistic outcomes of the chemical states can be 

seen in a single cell with the effect of stirrer speed on the emerging peak amplitudes, see Fig. 

4D. By introducing new automaton rules that exploit the probabilistic computation mode 

enabled by the high dimensional space associated with the Chemical State Machine (𝑪𝑪), larger 

configuration spaces can be explored.  

It is possible to increase the dimensionality of the space by allowing the CAs to be controlled 

by the chemical system to give Chemical Cellular Automata (CCA); this uses exploits both 

deterministic and probabilistic logic in the digital and chemical domains respectively. As such, 
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the one-dimensional CCA rules are defined by (Crule-Irule) where Crule reads chemical states 

and updates cell stirrer digital states and Irule reads chemical states and updates interfacial stirrer 

digital states. With two different chemical states (0 and 1), there are 23=8 possible patterns for 

the central stirrer and 22=4 for each of the interfacial stirrer. The total number of possible rules 

in 1D-CCA are given by 232222=4096, see SI Section 5 for quantification of input and chemical 

states and probabilistic model of 1D CCA. 

 

Fig. 4: Implementation of one-dimensional Chemical Cellular Automata and 
Configuration Space Quantification. (A, B) Representation of hybrid electronic-chemical 
state machine working in deterministic and probabilistic computational modes. (Black arrow: 
deterministic, red arrow: probabilistic), (C) Top: Implementation of elementary CA (rule 30) 
in deterministic mode (see movie SM3) and probabilistic modes demonstrating one-to-one and 
many-to-one mappings (light blue: 0, blue: 1), bottom: observed oscillations with CNN states 
in the background. (D) Top left and bottom show examples of deviations from one-to-one 
mapping in single and multiple cells (H and L represents high and low PWM states). Top right 
shows the average peak intensity observed at different PWM levels. 

 

Two-dimensional Chemical Cellular Automata (2D-CCA) 

By extending the CCA into two dimensions it is possible to explore the dynamics and 

emergence of complex patterns based on local rules defined by the hybrid electronic-chemical 
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logic. In the 2D-CCA, we defined the basic emergent units as Chemical Entities (Chemits), 

which are comprised of a combination of five nearest-neighbouring cells in von Neumann 

neighbourhood, see Fig. 5(A&B) for experimental and pictorial representation of the Chemit. 

The positions and dynamics of Chemits are defined by the combination of digital and analogue 

representation of chemical states as described previously. We implemented a 2D-CCA digital 

state machine that takes the chemical states (𝐶𝐶𝐶𝐶𝑖𝑖𝑡𝑡 = {0,1}) emerging from the probabilistic 

outcomes of the chemical information processing and implements 4-state PWM logic with 

states { 𝐶𝐶0, 𝐶𝐶1, 𝐶𝐶2,𝐶𝐶3 }. 𝐶𝐶0  corresponds to inactive stirrer state, 𝐶𝐶1  introduces the random 

fluctuations (weak chemical oscillations on randomly selected cells), 𝐶𝐶2 creates the Chemit 

core and 𝐶𝐶3 introduces the interactions between the Chemit and surroundings. The chemical 

oscillations created by PWM state 𝐶𝐶1 in the absence of Chemits only leads to the 𝐶𝐶𝐶𝐶𝑖𝑖𝑡𝑡 = 0 

chemical state. The Chemit core defined by a high PWM value (𝐶𝐶2)  creates high 𝐶𝐶𝐶𝐶𝑖𝑖𝑡𝑡 = 1  

states. The complete closed-loop probabilistic logic of two-dimensional CCA representing the 

emergence of Chemits is shown in Fig. 5C. 

In the experiments, based on the local rules the Chemits shows propagation, replication and 

competition analogous to living species (see movie SM4). The emergence of a high chemical 

state at a specific cell could occur probabilistically due to the interaction of Chemit cells with 

local neighbours in the analogue chemical domain. These high chemical states at nearest 

neighbours or next-nearest neighbours in different configurations lead to propagation, 

replication, and competition events, see Fig. 5B. Propagation and replication events occur when 

a high chemical state occurs at nearest and next-nearest neighbours. When two Chemits 

interacts with each other, a competition event occurs, and for one Chemit, it has a 50% survival 

chance. However, in some cases, multiple strong oscillations causing high chemical states 

occur at nearest and next-nearest neighbours, which leads to random selection among multiple 

events, where a propagation, a replication or a competition event among all the neighbours was 
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selected randomly. Fig. 5A shows series of snapshots from the experiments showing 

propagation and replication dynamics of Chemit in a 7×7 two-dimensional array with periodic 

boundary conditions. The complete description of the 2D-CCA and pseudo-code is described 

in the SI Section 6. 

 

Fig. 5: Two dimensional chemically instantiated probabilistic automaton. (A) Snapshots 
of the two-dimensional experimental platform showing propagation and replication events 
starting with a single Chemical Entity (see movie SM4). (B) The basic construct of the 
experimental Chemit and demonstrates propagation (1), replication (2), competition (3-5), and 
random selection (6) between multiple events in a 5×5 array using the 2D-CCA state machine 
as a proof-of-principle. (C) Conceptual design of closed-loop chemically instantiated 
probabilistic automaton. (D) Population dynamics of Chemits on two-dimensional 
experimental step (7×7 cells) vs oscillatory time steps, (E) Number of high chemical states vs. 
time from which Chemits are derived based on PWM logic. (F) Average population dynamics 
of Chemits with different domain sizes. (G)  shows the time evolution of the average number 
of Chemits with different initial conditions which converge at a steady state depending on the 
available resource space. All simulations were run 25 times and the mean population at 
different time steps was estimated. 

 

Over a 7×7 experimental array together with periodic boundary conditions, we observed the 

emergence of peaks in the population of the Chemits due to sudden localized replication events 

which later fall due to competition events within the constrained space or resource, see Fig. 

5D. The total number of digitally representable high chemical states at a given step leading to 
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Chemits dynamics are shown in Fig. 5E.  The population and the propagation dynamics of the 

Chemits with given control parameters are governed by the initial number of Chemits, available 

spatial resource, and random fluctuations and it is interesting that the system shows highly 

complex emergent behaviour as observed in Conway’s Game of Life (25), but instantiated in a 

physical device. To investigate the emergent behaviour over a larger spatial scale, we 

developed a chemical probabilistic state machine based on the observed phenomenological 

model to simulate the dynamics of Chemits behaviour up to 150×150 cell array (see SI Section 

6 and movie SM5). Similar to the experimental observations, the simulations show the sudden 

formation of local population clusters due to fast replication and as well as annihilation due to 

competition events at local clusters of large populations. We observed unstable population 

dynamics of Chemits on an array with a smaller number of cells, however, with an increase in 

the number of cells the Chemits population stabilizes at different levels which depends on the 

available spatial resource, see Fig. 5F. We further investigated the population dynamics by 

varying the initial population of Chemits over a 100×100 array and observed convergence in 

the population at the steady state independent of the initial population, see Fig. 5G and SI 

Section 6 for more characterization. These simulations demonstrate a strong correlation 

between the global population dynamics and the local probabilistic rules emerging from digital 

and chemical state machines. The emergent population dynamics and steady-state kinetics of 

Chemits are analogous to the population behaviours observed in evolutionary biology and can 

be further extended towards computation operations.   

Solving Combinatorial Optimization Problems using Hybrid Computation Machine 

Building on the dynamic feedback loop between electronic and chemical states, we 

implemented a hybrid electronic-chemical computing algorithm to solve quadratic 

combinatorial optimization problems taking advantage of the probabilistic logic to reach the 

problem solution more efficiently than that of a deterministic logic.  In the context of Quantum 
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Adiabatic Optimization, various combinatorial optimization problems such as partitioning, 

satisfiability (SAT) and Hamilton cycles can be formulated as energy/cost minimization 

problems on an Ising lattice (29). Inspired by the Ising or equivalent Quadratic Unconstrained 

Binary Optimization (QUBO) formulations of these problems, we implemented a hybrid 

electronic-chemical state machine capable of performing energy minimization using chemical 

states or PWM states equivalent to Ising spin variables. The generalized Hamiltonian up to a 

quadratic coupling is given by, 

𝐻𝐻(𝑄𝑄1 …𝑄𝑄𝑛𝑛) = ℎ(0) + �ℎ𝑖𝑖
(1)𝑄𝑄𝑖𝑖

𝑛𝑛

𝑖𝑖=1

+ � ℎ𝑖𝑖𝑗𝑗
(2)𝑄𝑄𝑖𝑖𝑄𝑄𝑗𝑗

𝑛𝑛

1<𝑖𝑖<𝑗𝑗<𝑛𝑛

 

where, 𝑄𝑄𝑖𝑖  defines the chemical / PWM state of the cell, ℎ(0)  is an offset energy term, ℎ𝑖𝑖
(1) 

defines the self-interaction term of the spin equivalent state 𝑄𝑄𝑖𝑖 and  ℎ𝑖𝑖𝑗𝑗
(2) defines the coupling 

between states 𝑄𝑄𝑖𝑖  and 𝑄𝑄𝑗𝑗 . The Ising formulation of the optimization problem can be 

represented by a connected graph with self-interactions and pairwise couplings for Hamiltonian 

formulation and mapping to the chemical array (see SI Section 7). The sign of the coupling 

coefficients describes the positive (ferromagnetic type) and negative (anti-ferromagnetic type) 

couplings and the magnitude describes the coupling strength. In the ideal case of 

implementation of a computation algorithm in a physical system, the Ising spin equivalent 

chemical states should flip according to the interactions defined by local couplings. It should 

let the problem Hamiltonian reach the global minimum energy configuration and the 

corresponding chemical and digital states can be interpreted as solutions. 

To explore this computation, we have implemented an electronic-chemical hybrid state 

machine where the two chemical states map directly to Ising spins (−1, +1) and demonstrate 

the proof-of-principle computation through the information loop without any neighbouring 

interactions (see SI Section 7 for pseudo codes and implementation details). Based on the 
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emerging chemical states, the configurational energy is estimated from the Hamiltonian in-

silico and compared with the lowest energy configuration so far and iterated until the minimal 

energy configuration was achieved. In the extended approach, we utilized a combination of the 

digital state machine coupled with a probabilistic chemical state machine where the PWM 

states of the cell stirrers to map directly to the Ising spin variables. The flowchart of the 

complete computational scheme is shown in Fig. 6A. For the pairwise neighbouring 

interactions generating probabilistic outcomes, a lookup table of chemical states as shown in 

Fig.6B was created and the problem was mapped on the platform (see Fig. 6C). As a result, the 

emergence of the new chemical states not only depends on PWM states of stirrers but also the 

interactions within chemical states defined by the hybrid state machine. At each step, a 

comparison was made between ideal states from the lookup table and the emerging chemical 

states and was utilized for the acceptance of the step towards energy minimization. The 

probabilistic outcome of the new chemical states arises from the combination of analogue and 

digital processing. This in turn leads to the lowest energy state due to a higher connectivity in 

the configuration space. This improvement in efficiency will become more evident with the 

scaling and complexity of the problem with large local minimum configurations. By 

distributing the algorithm between the digital and chemical logic, we demonstrate large scale 

combinatorial problems can be solved efficiently (30). 

To achieve this advantage, we by map the variables of the problem to the cells such that all the 

coupling interactions can be introduced between neighbours, see Fig. 6C which shows the 

mapping of a fully connected four-number partitioning problem (primary spin cell shown in 

blue) employing multiple instantiations of the same spins (auxiliary cells shown in red) to 

accomplish pairwise coupling between all the variables of the Hamiltonian. At each step, after 

flipping the PWM states of the cell randomly, pairwise operations to estimate the energy 

change were performed in a parallel approach.  In the chemical decision-making step, if the 
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emergence of the new chemical state is consistent with the lookup table, the energy change was 

recorded as such else was recorded with a negative sign.  

 

Fig. 6: Demonstration of chemical computation in the chemical array. (A) Flow chart 
describing hybrid electronic-chemical logic for solving quadratic optimization problems using 
a chemical array. (B) Chemical states lookup table used for chemical decision making based 
on probabilistic outcomes (light blue: 𝐶𝐶𝐶𝐶𝑖𝑖𝑡𝑡 = 0 and dark blue 𝐶𝐶𝐶𝐶𝑖𝑖𝑡𝑡 = 1). (C) Left: Mapping a 
4-number partition problem on a chemical array with isolated spins with all couplings defined 
by neighbouring auxiliary cells. Right: Efficient mapping of 4-number partition problem on 
the chemical array. (Blue: principal cells, Red: auxiliary cells for spin variables). (D & E) 
Energy minimization of four-number partitioning solved using a hybrid probabilistic algorithm 
using two different approaches. (F) Pictorial representation of chemical states from an 
experiment on energy minimization for a 4-number partition problem (light blue: 𝐶𝐶𝐶𝐶𝑖𝑖𝑡𝑡 = 0, 
dark blue: 𝐶𝐶𝐶𝐶𝑖𝑖𝑡𝑡 = 0), see movie SM6. (G) The distribution of initial configurations over the 
success probability of solving an 8-number partition problem (𝐶𝐶 = {1, 3, 4, 9, 3, 5, 3, 6}) in pure 
deterministic, random and hybrid approaches. (H) Success probabilities of deterministic (index 
=1.0), random (index = 0.5) and hybrid approach (index = 0.99/0.95) vs. initial configuration 
indices for the 8-number partition problem. The deterministic index with value 1.0 corresponds 
to a pure deterministic algorithm, 0.99/0.95 as our tuneable hybrid approach and 0.5 as a 
random algorithm. 

 

The overall energy change was estimated via summation over all the pairwise spins, and the 

flipping was accepted or rejected similarly to the first hybrid logic scheme according to the 

principle of energy minimisation. Once the energy associated with the current PWM states 

estimated from the Hamiltonian reaches the global minimum, the solution to the optimization 
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problem is interpreted from the PWM states, see Fig. 6 D and E for the solution to the four-

number partitioning problem for the number set 𝐶𝐶 = {1, 3, 4, 8}  using the two-hybrid 

algorithms. The spin state configurations of the primary spin cells for the 4-number partitioning 

problem using the second hybrid algorithm with the corresponding energies are shown in Fig. 

6F. Other examples including number partitioning, Boolean Satisfiability and Travelling 

Salesman Problems are demonstrated in SI Section 7. 

To investigate the influence of probabilistic logic from the chemical state machine in the hybrid 

approach, we quantified the algorithmic performance by defining hybrid logic as a combination 

of the digital algorithm coupled with analogue chemical processing. The probabilistic decision 

making occurring in the chemical state machine is tuneable by selecting the PWM levels, see 

Fig. 4D. We formulated an 8-number partitioning problem on the number set 𝐶𝐶 =

{1, 3, 4, 9, 3, 5, 3, 6} and estimated the success probability with all possible starting (28=256) 

configurations. By calculating the stationary distribution of the possible configurations, we  

could estimate the probability of finding the configuration with global minimum energy at 

different values of the deterministic index, see SI Section 7. We observe by the reduction in 

the deterministic index taking advantage of the probabilistic chemical state machine; the 

success probability distribution shrinks leading to higher chances for finding the solution 

independent of the initial configuration (see Fig. 6G and H). The distribution shows for a given 

8-number partition problem, the hybrid approach finds a solution with all starting 

configurations however even though the deterministic algorithm shows a high probability of 

success, many configurations get trapped in local minima and gave no solution.   

We have demonstrated a novel computational architecture that processes the information in an 

electronically programmable chemical medium with tuneable probabilistic logic utilizing the 

natural behavior of physicochemical processes (see SI Section 7, Qualification of Chemical 

Computation). The distribution of information between the digital and analogue chemical state 
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machines is generic and implementable on any digitally programmable physicochemical 

process. Our architecture can not only implement novel cellular automaton rules but 

demonstrates and discovers large scale emergent behavior such as Chemits resulting from the 

local probabilistic interactions between digital and chemical state machines. We also 

demonstrated two hybrid schemes that solve combinatorial optimization problems by 

minimizing Ising Hamiltonian formulation utilizing chemical states and nearest-neighbouring 

couplings. Importantly we showed the distribution of information processing between the 

digital and the chemical domains, demonstrating that the chemistry is taking an active part in 

the computation.  

References and Notes 

1.  M. M. Waldrop, More than Moore. Nature. 530, 144–147 (2016). 

2.  Y. Taur, D. A. Buchanan, W. Chen, D. J. Frank, K. E. Ismail, L. O. Shih-Hsien, G. A. 
Sai-Halasz, R. G. Viswanathan, H. J. C. Wann, S. J. Wind, H. S. Wong, CMOS scaling 
into the nanometer regime. Proc. IEEE. 85, 486–503 (1997). 

3.  C. Hu, Future CMOS Scaling and Reliability. Proc. IEEE. 81, 682–689 (1993). 

4.  F. Arute, et al. Quantum supremacy using a programmable superconducting processor. 
Nature. 574, 505–510 (2019). 

5.  J. Gorecki, K. Gizynski, J. Guzowski, J. N. Gorecka, P. Garstecki, G. Gruenert, P. 
Dittrich, Chemical computing with reaction-diffusion processes. Philos. Trans. R. Soc. 
A Math. Phys. Eng. Sci. 373 (2015), doi:10.1098/rsta.2014.0219. 

6.  T. Rueckes, K. Kim, E. Joselevich, G. Y. Tseng, C. L. Cheung, C. M. Lieber, Carbon 
nanotube-based nonvolatile random access memory for molecular computing. Science. 
289, 94–97 (2000). 

7.  B. Schrauwen, D. Verstraeten, J. Van Campenhout, An overview of reservoir 
computing: theory, applications and implementations. Proc. 15th Eur. Symp. Artif. 
Neural Networks, 471–482 (2007). 

8.  L. M. Adleman, Molecular computation of solutions to combinatorial problems. 
Science. 266, 1021–1024 (1994). 

9.  C. H. Bennet, D. P. DiVincenzo, Quantum Information and Computation. Nature. 404, 
247–255. 

10.  Y. Fang, V. V. Yashin, S. P. Levitan, A. C. Balazs, Pattern recognition with materials 
that compute. Sci. Adv. 2, e1601114 (2016). 

11.  G. Katsikis, J. S. Cybulski, M. Prakash, Synchronous universal droplet logic and 
control. Nat. Phys. 11, 588–596 (2015). 



19 
 

12.  X. Lin, Y. Rivenson, N. T. Yardimci, M. Veli, Y. Luo, M. Jarrahi, A. Ozcan, All-
optical machine learning using diffractive deep neural networks. Science. 1008, 
eaat8084 (2018). 

13.  A. Adamatzky, B. D. L. Costello, T. Asai, Reaction-Diffusion computers (Elsevier 
Inc., 2005). 

14.  J. Torrejon, et al. Neuromorphic computing with nanoscale spintronic oscillators. 
Nature. 547, 428–431 (2017). 

15.  L. Kuhnert, K. I. Agladze, V. I. Krinsky, Image processing using light-sensitive 
chemical waves. Nature. 337, 244–247 (1989). 

16.  J. M. Parrilla-Gutiérrez, S. Tsuda, A. Sharma, G. Cooper, G. Aragon-Camarasa, K. 
Donkers, L. Cronin, A programmable chemical computer with memory and pattern 
recognition. ChemRxiv. 7712564 (2019), doi:10.26434/chemrxiv.7712564.v1. 

17.  O. Steinbock, Á. Tóth, K. Showalter, Navigating complex labyrinths: Optimal paths 
from chemical waves. Science. 267, 868–871 (1995). 

18.  M. A. Tsompanas, C. Fullarton, A. Adamatzky, Belousov-Zhabotinsky liquid marbles 
in robot control. Sensors Actuators, B Chem. 295, 194–203 (2019). 

19.  F. Hadaeghi, H. Jaeger, Computing optimal discrete readout weights in reservoir 
computing is NP-hard. Neurocomputing. 338, 233–236 (2019). 

20.  D. Deutsch, Proc. R. Soc. London A Math. Phys. Eng. Sci. 400, 97–117 (1985). 

21.  N. Tompkins, N. Li, C. Girabawe, M. Heaymann, G. B. Ermentrout, I. R. Epstein, S. 
Fraden, Testing Turing’s theory of morphogenesis in chemical cells. Proc. Natl. Acad. 
Sci. 111, 4397–4402 (2014). 

22.  V. Horvath, D. J. Kutner, J. T. Chavis, I. R. Epstein, Pulse-coupled BZ oscillators with 
unequal coupling strengths. Phys. Chem. Chem. Phys. 17, 4664–4676 (2015). 

23.  V. Petrov, V. Gáspár, J. Masere, K. Showalter, Controlling chaos in the Belousov - 
Zhabotinsky reaction. Nature. 361, 240–243 (1993). 

24.  S. Wolfram, Mathematical Physics Computation Theory of Cellular Automata. 
Commun. Math. Phys. 96, 15–57 (1984). 

25.  M. Gardner, The fantastic combinations of John Conway’s new solitaire game “life.” 
Sci. Am. 223, 120-123. (1970). 

26.  R. E. Korf, Artificial Intelligence A complete anytime algorithm for number 
partitioning. Artif. Intell. 106, 181–203 (1998). 

27.  P. Hansen, B. Jaumard, Algorithms for the Maximum Satisfability Problem. 
Computing. 44, 279–303 (1990). 

28.  D. L. Applegate, R. E. Bixby, V. Chvatal, W. J. Cook, The Traveling Salesman 
Problem: A Computational Study (Princeton University Press, Princeton, NJ, USA, 
2007). 

29.  S. Y. Guo, et al. A molecular computing approach to solving optimization problems 
via programmable microdroplet arrays. Matter. 4, 1107–1124 (2021). 

30.  D. Pierangeli, G. Marcucci, C. Conti, Large-Scale Photonic Ising Machine by Spatial 



20 
 

Light Modulation. Physical Review Letters 122, 213902 (2019). 

Acknowledgements 
We would like to thank Hessam Mehr and Liam Wilbraham of the University of Glasgow for 
discussions.  
 
Funding Sources 
The authors gratefully acknowledge financial support from the EPSRC (Grant Nos 
EP/H024107/1, EP/I033459/1, EP/J00135X/1, EP/J015156/1, EP/K021966/1, EP/K023004/1, 
EP/K038885/1, EP/L015668/1, EP/L023652/1), the ERC (project 670467 SMART-POM), and 
the DARPA molecular informatics project. 
 
Author Contributions 
L.C. conceived the original idea and together with A.S. designed the project and the research 
plan. L.C. designed the reactor array and A.S. and M.T.-K.N. designed and built the robotic 
platform with help from J.M.P.G. J.M.P.G. implemented the computer vision and chemical 
clocking algorithms, and M.T.-K.N. created the training dataset. M.T.-K.N and A.S. 
implemented the 1D-CCA. A.S., Y.J. and M.T.-K.N implemented the 2D-CCA. A.S. and Y.J. 
implemented the chemical computation and M.T.-K.N, Y.J and A.S. performed the 
experiments. A.S. did the data analysis, and developed models and ran the simulations with 
help from Y.J. A.S. helped benchmark the system with L.C. Finally, A.S and L.C wrote the 
paper with help from the rest of the authors. 
 
Data and Code availability  
Due to the large total size (>500 Gb) of the experimental and theoretical data, the data used in 
this work are available upon request to the corresponding author at lee.cronin@glasgow.ac.uk. 
The code used to operate the platform and various implemented simulation models are 
available of <https://github.com/croningp/BZComputation>. 
 
Supplementary Materials 
Materials and Methods 
Figs. S1 to S69 
Tables S1 to S4 
References 31 to 36 
Movies SM1 to SM6 
 
Supplementary Video 1: SM1 Description of the automated experimental platform. 
Supplementary Video 2: SM2 Hydrodynamic coupling between nearest neighbouring cells 
monitor using ink as a tracer. 
Supplementary Video 3: SM3 Implementation of elementary cellular automata rule 30 using 
a dynamic feedback loop. 
Supplementary Video 4: SM4 Experimental implementation of 2D-CCA. 
Supplementary Video 5: SM5 Simulation of Chemits on 100 ×100 array with different initial 
conditions. 
Supplementary Video 6: SM6 Solving four number partitioning problem demonstrating 
chemical decision making. 

mailto:lee.cronin@glasgow.ac.uk


S1 
 

Supplementary Information for 

 

A Probabilistic Chemical Programmable Computer 

Abhishek Sharma, Marcus Tze-Kiat Ng, Juan Manuel Parrilla Gutierrez, Yibin Jiang and 
Leroy Cronin*  

School of Chemistry,  

The University of Glasgow, University Avenue, Glasgow G12 8QQ, UK, *Corresponding 
author email: Lee.Cronin@glasgow.ac.uk 

Table of Contents 
 

1 Overview of the automated platform ...................................................................................... 3 

1.1 Materials ...................................................................................................................... 4 

1.2 Platform description .................................................................................................... 6 

1.2.1 DC motors for stirrer control ............................................................................... 8 

1.2.2 Electronics............................................................................................................ 9 

1.2.3 Control software................................................................................................. 10 

1.2.4 3D-parts and hardware ....................................................................................... 11 

1.3 Chemical oscillator ......................................................................................................... 22 

1.4 Experimental protocols .................................................................................................. 23 

1.5 Camera and configurations............................................................................................. 24 

2 Control experiments .............................................................................................................. 26 

2.1 Basic oscillation test and recording ................................................................................ 26 

2.3 Chemical and hydrodynamic tests to investigate the effect of depth ............................. 32 

2.4 Effect of stirring rate on chemical oscillations ............................................................... 34 

2.5 Phenomenological behaviour of the hybrid electronic-chemical system ....................... 35 

2.5.1 Chemical oscillator as a forced and damped oscillator ........................................... 36 

2.5.2 Interactions between nearest neighbour cell oscillations ........................................ 39 

3 Image processing .................................................................................................................. 42 

3.1 Data preparation ............................................................................................................. 43 

3.2 Convolutional neural network (CNN) ............................................................................ 46 

3.3 State classification .......................................................................................................... 48 

3.4 Mapping between stirrer PWM levels and the Chemical States .................................... 50 

4 Dynamic feedback ................................................................................................................ 53 

mailto:Lee.Cronin@glasgow.ac.uk


S2 
 

4.1 Synchronization between the computing cells using a Chemical Clock ........................ 55 

4.2 Implementation of elementary Cellular Automata ......................................................... 60 

5 1D-CCA: Configuration space and novel 1D-CCA rules ..................................................... 63 

5.1 Estimation of BZ input and chemical state space .......................................................... 63 

5.2 Phenomenological model for 1D Chemical Cellular Automata rules ............................ 65 

6 The Chemits: 2D hybrid electronic Chemical Automata ...................................................... 70 

6.1 2D-CCA state machine................................................................................................... 70 

6.2 Phenomenological model ............................................................................................... 72 

6.3 Simulations and results .................................................................................................. 78 

6.3.1 Variable initial population ....................................................................................... 78 

6.3.2 Variable total cell grid size ...................................................................................... 80 

7 BZ Computation.................................................................................................................... 81 

7.1 Ising model and implementation of combinatorial optimization Problems ................... 81 

7.2 Qualification of chemical computation .......................................................................... 93 

7.2.1 Time stepping in hybrid electronic-chemical logic ................................................. 98 

7.2.2 Chemical computation towards combinatorial optimization problems ................. 104 

7.2.3 Conclusions ........................................................................................................... 108 

7.3 Towards fully Chemical Computation Logic ............................................................... 109 

8 References ........................................................................................................................... 112 

 

 

 

 

 

 

 

 

 

 

 

 

  



S3 
 

1 Overview of the automated platform 
 

The overall hybrid electronic-chemical computational platform consists of three main control 

domains as shown in Fig. S1, namely the (1) chemical domain which consists of stock solutions 

required for BZ reaction that were pumped using syringe pumps sequentially in the right 

proportion into the mixing chamber. The mixing chamber contains a magnetic stirrer bar that 

rotates at 140 RPM constantly to ensure the stock solutions were well mixed. Using another 

pair of syringe pumps, the reaction mixture in the mixing chamber was then transferred to the 

3D printed experimental arena with stirrers in the (2) experimental setup as shown in Fig. S4. 

In this experimental setup, the rotation of stirrers is controlled by DC motors equipped with 

Neodymium-based permanent magnets located at the bottom of the arena. Each motor speed 

and direction can be individually addressed by the supported electronics control. The BZ 

chemical oscillations occurring in the experimental arena on the response of stirrer actuation 

were then observed and recorded by a camera. 

 

Fig. S1: Complete schematic of the experimental setup. The schematic diagram shows three 
main parts of the automated experimental platform, chemical inputs, experimental setup and 
digital domain. The chemical inputs create the BZ mixture from the stock solutions using pump 
control. The experimental setup runs the experiment with motor control and imaging. The 
digital domain runs real-time data analysis and state machines for hybrid electronic-chemical 
information processing. 

 

These temporal oscillatory patterns were then passed into the (3) digital domain where further 

information processing occurs. The oscillatory patterns were classified into three different 

states using a convolutional neural network (CNN). There are three different classification 
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states, RED, LIGHT BLUE and BLUE. These classified states were used for creating a 

common chemical clock over all the cells as well as the basic programmable chemical states 

(CS) for computation. The chemical clocking logic is used over all the experiments as a sync 

signal for a single feedback loop step. These patterns in the given time frame were then 

converted into the observed chemical states, high state: CS=1 and low state CS=0 by using a 

Finite State Machine (FSM). This FSM reads the temporal CNN states over a given time and 

return the digital CA state based on the observed oscillatory behaviour and resets. The hybrid 

electronic-chemical computational logic is then implemented on these chemical states using 

various problem-dependent state machines which are discussed further in the later sections. 

The hybrid electronic-chemical computational logic utilizes these chemical states which then 

dynamically controls the stirrers speed and completes the feedback control loop over the 

complete experimental period. This feedback loop together with the chemical clocking logic 

were used to create novel one-dimensional and two-dimensional Chemical Cellular Automata 

(CCA) and performing useful computation by solving combinatorial optimization problems. 

Once an experiment is finished, the remaining solution was drained into the waste container 

using a pair of syringe pumps and the experimental arena underwent a series of rinsing and 

cleaning cycles to get ready for the next experiment. This is the overall description of the 

complete experimental protocol and full details of individual steps and experimental protocols 

is discussed in the following sections. The video of the platform working can be found in 

Supplementary Video 1. 

1.1 Materials 
 

Sulphuric acid was sourced from Fisher Scientific, ≥95 % analytical reagent grade. Malonic 

acid was sourced from Sigma Aldrich, Reagent Plus 99%. Ferrous sulphate heptahydrate was 

sourced from Sigma Aldrich, ≥ 98%. 1,10-phenanthroline was sourced from Sigma Aldrich, ≥ 

99%. Potassium bromate was sourced from VWR and Sigma Aldrich > 99%. The 3D-printed 

parts were designed using a cloud-based CAD software OnShape and printed with Stratasys 

Connex500 3D printer using the VeroWhitePlus, for the batch system that holds the chemical 

mixtures and FullCure 720 material for the rest of the platforms, detailed descriptions of the 

CAD designs are shown in Section 1.2.4. The TriContinent C3000 syringe pumps were used 

for fluid handling over the complete platform. The supporting structures for the experimental 

box enclosure were purchased from Ooznest Ltd and acrylic sheets were purchased from 
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www.plasticsheets.com (Wanna Ltd.). Table S1 gives the details of the various components 

used in the experimental arena.  

Table S1: Details of the various parts used in the complete experimental setup 

 Part Description 

Stirrers Two different types of stirrers for cells and interface 

1. VWR micro. 7 x 2 mm 
2. VWR micro. 5 x 2 mm 

DC motors (6V) 1. 200 RPM Mini Metal Gear Motor with 
Gearwheel Model: N20 3 mm Shaft Diameter 

2. RS PRO, 6 V dc, 73 gcm, Brushed DC Geared 
Motor, Output Speed 1490 rpm 

Magnets for motor shaft First4Magnets 2 x 2 mm Neodymium Magnet – 0.15 kg 
Pull 

Arduino  Arduino Uno REV3 SMD 

PWM servo driver shield Adafruit 16-Channel 12-bit PWM/Servo Shield – I2C 
interface 

Power Supply Unit Programmable Two-Channel Power Supply unit (RS 
Components) 

Computers 1. Ubuntu 18.04 LTS, Intel Core i7 8700 3.20 
GHz, 32 Gb RAM 

2. Arch Linux AMD Ryzen 7 2700, 32 Gb RAM 

Both are capable to run Python 3.7.X, OpenCV 3.X, and 
TensorFlow for image processing 

Camera Logitech C 920 HD PRO WEBCAM 

Syringe Pumps TriContinent C3000 Syringe Pumps 

Tubing and fluidic connections 1. Flangeless fittings Cole Palmer Ltd. 
2. PTFE tubing (1/8- and 1/16-inch diameter) 

Experimental Arena Housing 5 mm Translucent Acrylic Sheets and support structure 
using v-slot linear rails (Ooznest Ltd.) 

Arena/ stir bar array 3D printed 

Motor array 3D printed 

Arena support structures 3D printed 

Motor shaft magnet holder 3D printed 
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1.2 Platform description 
 

The complete description of the experimental setup where the platform was placed in a light-

controlled box made up of translucent acrylic sheets with a matt finish is shown in Fig. S2. 

This ensures an even light distribution in the platform as well as minimises the reflection of the 

solution when in contact with direct background light. The light levels were kept consistent 

over all the experiments to avoid problems in classifying the three discrete states from the 

analogue signal of the chemical oscillator. The coordinates of the experimental platforms and 

the height of the cameras were fixed to ensure consistent and reliable image acquisition in every 

experiment. Two different types of stirrers are placed in the experimental platform and 

input/output flows are selected such that no stirrer moves from its position when BZ reaction 

mixtures flow in or experimental waste goes out.  

 

Fig. S2: Pictorial representation of the experimental setup. The experimental set-up which 
comprises of the BZ platform (3D printed reactor assembly, addressable motors and electronic 
control assembly), a camera that does the image acquisition. The data recorded from the camera 
was then passed to the digital domain of the platform, depending upon the state machine 
implemented, new stirrers’ operation was delivered to the DC-motors via microcontroller 
prototype units (Arduino UNO). 

 

The exploded view of the one- and two- dimensional 3D printed reactors is shown in Fig. S3. 

The actual implemented of the complete experimental setup is shown in Fig. S4. The complete 

details are described in the Section 1.2.4, OnShape (CAD) links and STL files are also available 

for download from <https://github.com/croningp/BZComputation>. The experimental 
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hardware, electronic components and control software in complete detail will be discussed in 

the subsection below. 

 

Fig. S3: Exploded views of one- and two- dimensional setup. Figure shows exploded view of 
one- (left) and two- (right) dimensional experimental setup as designed by using CAD software 
OnShape. Full description of the setup with CAD drawings is shown in detail in Section 1.2.4. 

          

Fig. S4: One- and two-dimensional experimental setup. Real experimental set-up of the 1D 
platform (left) and 2D platform (right) where the PTFE tubes act as inlets and outlets for the 
various reagents and wastes. The cameras were mounted above the platform in a fixed height 
to have a clear and complete image of the 3D printed platform. The motor housing setup and 
wire connectivity go beneath the experimental setup. 

Camera 

Camera 

Tubes and 
Manifold 

Motors Motors 

BZ Reaction 
Cells BZ Reaction 

Cells 
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1.2.1 DC motors for stirrer control 
 

Two types of DC geared motors were used with different RPMs for cell and interfacial stirrers 

for different speed requirements. Cell stirrers used to initiate BZ chemical oscillations requires 

high-speed motors and interfacial stirrers require lower speed for coupling localized between 

nearest neighbouring cells. For one-dimensional setup, 7 cell motors and 6 interfacial motors 

and for two-dimensional setup, 49 cell motors and 84 interfacial stirrer motors were used. 

 The description of these motors are as follows,   

1) Cell Motors: The active cells motors used were purchased from RS Components under 

the description of “RS PRO, 6 V dc, 73 gcm, Brushed DC Geared Motor, Output Speed 

1490 rpm” 

2) Interface Motors: The interfacial cells motors used were bought from “AliExpress” 

under the description of “DC 6V 200 RPM Mini Metal Gear Motor with Gearwheel 

Model: N20 3mm Shaft Diameter” 

 

Fig. S5: Motor Numbering Scheme for Cell and Interfacial motors. The figure shows a motor 
numbering scheme for cell (magenta) and interfacial motors (green) which allows direct 
command of the neighbouring interfacial and cell motors. These motor IDs were stored as a 
variable in the firmware on the microcontroller board for fast access to the motor.  
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The motors were placed in a periodic array aligned with 3D printed reactor cells. For the two-

dimensional setup, the placement scheme together with motor Ids for both cell (magenta) and 

interface (green) motors is shown in Fig. S5. The same scheme was used in the control software 

to address individual motors. 

  

1.2.2 Electronics 
 

The DC motor speed (RPM) was controlled by applying a modulated voltage between 0-6V 

using a Pulse Width Modulation (PWM) signals from the microcontroller prototype board 

Arduino UNO. To control both motor speed and direction, Adafruit Motor Shields (Ver. 2) 

which were stacked to control multiple DC motors for each Arduino UNO. The exact number 

of Arduino Uno, Adafruit Motor Shields and the total DC Motors controlled by the one- and 

two- dimensional set-up can be found in Table S2. The motors were directly connected to the 

Motor Shield using pin-screw terminals with a wire connection scheme to separate cell motors 

and interfacial motors. Each shield can control the speed and direction of four motors and uses 

I2C communication protocol to communicate with the microcontroller unit. Each motor shield 

consists of 5 address-select pins (via soldering) to provide an address for communication to the 

specific shield. By stacking multiple shields for the overall platform, each motor can be 

addressed by a combination of shield address and motor ID (1-4) on the shield. To power all 

the motors, programmable 2-channel external power supply unit (RS Components Ltd.) 

capable of supplying enough current to power all 133 DC motors were used. To simplify the 

nomenclature of the motors and addressing, four Arduino UNO boards, two each for cell stirrer 

and interfacial stirrer motors were used. These four microcontroller units allowed us to 

individually address 133 motors for the two-dimensional platform. Table S2 shows the number 

of motors, shields and prototype boards used for one- and two-dimensional setup. Each motor 

address is given by the combination of three addresses: {Arduino UNO ID, Motor Shield 

Address, Motor Number}. The TriContinent C3000 pump control uses daisy-chaining to 

connect with a physical address pin (0-15) on each pump. An in-house designed PCB for daisy-

chaining pumps data and power pins were employed for the TriContinent C3000 pumps.  

A 24 V power supply from RS Components Ltd. were used to power the pumps. 
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Table S2. Electronic components required in the 1D and the 2D platform. 

Platform No. of Arduino 

Uno 

No. of proto shields per 

Arduino Uno 

Total DC Motors 

controlled 

1D 1 x Active Cells 
+ Interfaces 

2 x Active Cells  

2x Interfaces 

7 x Active Cells 

6 x Interfaces 

2D 2 x Active Cells 

2x Interfaces 

13 x Active Cells 

21 x Interfaces 

49 x Active Cells 

84 x Interfaces 

 

 

1.2.3 Control software 
 

The software layer that is responsible for controlling the platform can be divided into two parts, 

namely (i) The firmware that runs on all the Arduino UNO boards to activate all the individual 

motors with I2C communication and (ii) A Python script that communicates between the 

Arduino and Python via the serial interface as well as an in-house developed library to control 

TriContinent C3000 series pumps via a python script. The firmware for Arduino UNOs was 

written using opensource Arduino IDE and an available library from Adafruit Industries Ltd. 

were used to communicate with the stacked motor shields. A high-level interface python script 

was written to communicate with the Arduino via serial interface (using pyserial). This ensures 

a more intuitive way to program the experimental system by a researcher.  

Adafruit 16-Channel 12-bit PWM/Servo Shield – 12C interface is employed to generate the 

PWM signals that would actuate the motors. By using the corresponding Arduino library: 

https://github.com/adafruit/Adafruit-PWM-Servo-Driver-Library, any users can send different 

commands for PWM signals. The function is as followed “setPWM (pin, direction, speed)”, 

where pin refers to a unique motor and direction refers to the direction of the motor i.e. 0 is 

clock-wise and 1 is anti-clockwise and speed generate a PWM signal resulting in specific RPM. 
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1.2.4 3D-parts and hardware 
 

Detailed computer-aided software (CAD) images with detailed descriptions of the 

specifications of the platforms can be found in this section. More information can be found in 

<https://github.com/croningp/BZComputation>. The main 3D printed parts are as follows: 

 Experimental arena: Located at the top of the platform, where the BZ-solution is held, 

programmed, and imaged. 

 Motors holder: Located at the bottom of the platform, where the DC-motors are fitted 

and held at the coordinates that mapped directly to the experimental arena. 

 Columns and stand: Elevate and fix the platforms in a static position. 

 Magnets holder: Act as an adaptor that mounts magnets and DC-motors together.   

Note that the 3D designs were first created with OnShape and exported to Autodesk® 

Inventor® Student Edition to generate the figures. The various components used in the 

experimental setup are shown in Fig. S6– S15. 

 

 

 

  

https://github.com/croningp/BZComputation
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Fig. S6: Overall set-up of the one-dimensional platform with a bill of materials. 
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Fig. S7: Overall set-up of the two-dimensional platform with a bill of materials. 
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Fig. S8: One dimensional experimental arena with an interconnected network of reactors. 
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Fig. S9: One-dimensional setup for holding motors to map with reactor cells. 
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Fig. S10: Supporting column structure to hold the complete 1D experimental setup. 
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Fig. S11: Two-dimensional experimental arena with an interconnected network of reactor cells. 
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Fig. S12: Two-dimensional setup for holding motors to map with reactor cells. 
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Fig. S13: Supporting column structure to hold the complete 2d experimental setup. 
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Fig. S14: Magnets, magnets holders and DC motors used in 1D and 2D platforms. 
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Fig. S15: Laser cuts for guiding wires from DC motors to respective motor shield (cell and 
interfacial motors). 
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1.3 Chemical oscillator 
 

Amongst the oscillatory reactions, the Belousov-Zhabotinsky (BZ) reaction was chosen due to 

its robustness and easily accessible reagents. For instance, the BZ reaction can last up to an 

hour or more with consistent oscillations even in a closed system. This allows the system to be 

programmed and observed without the necessity of constant replenishment of reactants. 

Admitedly, continuous-stirred tank reactor (CSTR) system would allow lengthier experiment 

and a more controlled O2 uptake may provide a more consistent period and aplitude of 

oscillation. Reports have shown the oxygen inhibition effect (31) which may change the 

behaviour of the system ever so slightly with the decarboxylation of malonic acid which cause 

CO2 bubbles. However, we have opted to a batch reactor system due to its simplicity and we 

have implemented chemical clocking logic which would compensate any phase-drift and 

change in amplitude of the oscillation that may occur in the experiment which is discussed in 

Section 4. An upside of the closed system with 3D compartments, as opposed to  CSTR can be 

attributed to the fact that the state of localized chemical oscillations and hysteresis effects can 

be preserved and could be utilized for implementing logic and computation. This localized 

memory-like effect provides the key towards the implementation of closed-loop dynamic logic 

and computation. The iron-catalysed variant (ferroin) of the BZ reaction was used in all the 

experiments. Ferroin was used as the indicator and a single-electron redox catalyst, which 

results in colour changes from red when the iron is in (+2) state and blue when the iron is in 

(+3) state as shown in the equations below. 

 𝐹𝐹𝐹𝐹2+(𝑝𝑝ℎ𝐹𝐹𝑛𝑛)3  ↔  𝐹𝐹𝐹𝐹3+(𝑝𝑝ℎ𝐹𝐹𝑛𝑛)3 + 𝐹𝐹−                        (1) 

𝑅𝑅𝐹𝐹𝑅𝑅 (𝑅𝑅𝐹𝐹𝑅𝑅𝑅𝑅𝑅𝑅𝐹𝐹𝑅𝑅)  ↔   𝐵𝐵𝐵𝐵𝑅𝑅𝐹𝐹 (𝑂𝑂𝑂𝑂𝑂𝑂𝑅𝑅𝑂𝑂𝑂𝑂𝐹𝐹𝑅𝑅)                        (2) 

The oscillation of the BZ reaction can be easily stimulated mechanically (32) and 

photochemically (33). Mechanical stimuli via magnetic stirring were employed in this system 

due to its simplicity towards large-scale implementation and its capability to create a well-

controlled local coupling between the nearest neighbouring cells. 

The stock solutions for the automated platforms were prepared as followed: 

• Ferroin: 0.1 M of the solution was prepared by dissolving 2.78 g of ferrous sulphate 

heptahydrate and 5.40 g of 1,10-phenanthroline in 10 mL of deionised water. The 

solution was then further diluted to 0.001 M for the experiment. 
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• Sulfuric Acid: 1.0 M of the solution was prepared by diluting 56 ml of concentrated 

H2SO4 to 1 L of deionised water. 

• Potassium Bromate: 0.5 M of KBrO3 solution was prepared by dissolving 83.5 g of 

KBrO3 in 1 L of 1 M H2SO4. 

• Malonic Acid: 1.0 M of the solution was prepared by dissolving 104 g of 

CH2(COOH)2 in 1 L of deionised water. 

• Deionised water:  PURELAB® Option-S/R 7/15 was used as the source of all 

water used in the experiments and preparation of stock solutions. 

1.4 Experimental protocols 
 

The complete schematic diagram of the single experiment protocol is shown in Fig. S16. A 

single experiment takes the following steps.  

The following reagents were added sequentially via Tricontinent C-Series syringe pumps into 

the mixing chamber during the sequential chemical inputs stage: 

1) 18 mL of water 

2) 18.0 mL of 1.0 M malonic acid 

3) 12.5 mL of 1.0 M sulfuric acid 

4) 19.0 mL of 0.5 M potassium bromate in 1 M sulfuric acid 

5) 2.5 mL of 0.001 M ferroin indicator 

When the ferroin indicator was added into the reaction mixture, immediate colour change from 

red to blue was observed whilst the mixture was stirred. The reaction mixture was then pumped 

into the respective platforms; note that the volume of reagents mentioned above was used in 

the 1D platform and they were scaled up by four times for the 2D platform.  

After the mixture was pumped into the platform, the mixtures went through a series of pre-

experiment treatment using magnetic stir bars that were controlled by DC-motors as followed: 

1) All the stirrers were activated at 50 PWM (max PWM: 255, 8-bit) for a minute  

2) Deactivation of all stirrers and the solution was rested for four minutes 

3) Activation of interfacial stirrers and pulsing of cell stirrers for five minutes 



S24 
 

4) The initialisation of the experiment 

The pre-treatment before each of the experiments as shown in the list above ensures the bulk 

oscillations of the BZ reaction appearing due to the filling step break down as well as the 

emergence of the synchronous periodicity of every cell before the start of the experiment. The 

initialisation of the experiment was based on the type of experiment that was carried out.  

Once the experiment was finished, a series of draining and rinsing sequences were carried out 

on the platform to ensure most of the reagents from the current experiment goes to waste 

container. Upon cleaning, the platform either stops or performs a new experiment depending 

on the condition that was set before starting the experiment.  

 

Fig. S16: The workflow of a single experiment. The schematic figure shows experimental 
protocols carried out in every experiment which consists of the stabilisation period, a 
synchronised oscillation in all the cells, actual experiment, cleaning, and a pre-defined logic to 
run the following experiments. 

 

1.5 Camera and configurations 
 

The 1D and the 2D platforms used Logitech C920 HD PRO Webcam. The webcam was 

situated 20.5 cm above the 1D platform arena and 33.4 cm for the 2D platform arena. These 

distances were chosen carefully to fill the complete field-of-view to get the best resolution. The 

video was configured to 1280 × 720 pixels and 10 frames per second (FPS) for the 1D platform 

while the 2D platform was configured to 800 × 600 pixels and 15 FPS. The camera was 

configured using the opensource GUVCView software with camera configuration details as 

given in Table S3. It is important to note that the selected parameters were chosen based on the 
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light levels in the experimental enclosure such that oscillatory coloured patterns are distinct 

and clear for image processing. XVID compression was used in both of the platforms.  During 

the experiment, the camera stream was fed into a running Python (3.7.1) OpenCV (3.4.4) script.  

Table S3. Camera configuration of the 1D platform (left) and 2D platform (right): The 
configuration mode for all the camera settings were set to manual and fixed accordingly to 
ensure the lighting and colour of the oscillation produced in each experiment were consistent. 

Platform 

Settings 

1D 2D 

Brightness 145 155 

Contrast 222 222 

Saturation 200 255 

Gain 140 85 

Power Line Frequency 50 Hz 50 Hz 

White Balance Temperature 2900 2900 

Sharpness 128 128 

Backlight Compensation 0 0 

Exposure Mode Manual Manual 

Exposure 300 400 

Pan 0 0 

Tilt 0 0 

Focus 10 10 

Zoom 120 125 

LED 1 Mode Auto Off 

LED 1 Frequency 0 0 

Frame Rate 10 fps 15 fps 

Resolution 1280 x 720 800 x 600 

Camera Output RGB3 – RGB3 RGB3 –RGB3 

 

  



S26 
 

2 Control experiments 
 

Multiple control experiments were performed to find the optimal parameters for controlling the 

stirrers to initiate strong or weak oscillations and localized nearest neighbour couplings 

between the cells necessary for the implementation of programmable hybrid electronic-

chemical logic. This also includes the selection of appropriate dimension of individual reactor 

cells, stirrers’ positions and wall dimensions to create ideal hydrodynamic coupling between 

the nearest neighbouring cells. Depending on the requirements, experiments were performed 

in one- and two- dimensional platforms. The details can be found in the following sections, 2.1 

to 2.3.  

2.1 Basic oscillation test and recording 
 

As an initial step to estimate the time scale and stability of chemical oscillations in the closed 

system, basic actuation test by constantly stirring the cell stirrers up to an hour was carried out 

and the oscillations over all the cells in the one-dimensional platform was recorded. Constant 

oscillations over all the cells with a minor decrease in measured intensity up to one hour was 

observed. This provides the evidence for running each experiment up to an hour without 

changing chemical reagents. Fig. S17(A-C) shows stable oscillations with the same frequency 

and intensity over three neighbouring central cells of the one-dimensional platform which 

comprises of seven cells in total.  

 

Fig. S17: Basic oscillations with constant stirring in a one-dimensional experimental setup. 
The figure shows BZ oscillations recorded over an hour on three neighbouring cells by 
actuating the individual cell stirrers at the same PWM level.  

 

To prove that the effect of the cell stirrers is localized to the specific cell in the absence of the 

interfacial stirrers, experiments on the one-dimensional platform was carried out by actuating 
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every alternate cell (1, 3, 5 & 7) up to 5 seconds and record the oscillations. The recorded 

oscillation data over all the seven cells is shown in Fig. S18, where activated cells (1, 3, 5, and 

7) shows strong oscillations due to stirrer actuation as well as dampening effect when the 

stirrers were inactivated. 

The other cells 2, 4, 6 shows almost negligible oscillations due to extremely weak interactions 

in the absence of hydrodynamic coupling when the interfacial stirrers were inactivated. This 

proves that actuation of only cell stirrers creates only local interactions and hence, can be used 

to program localized chemical states in a controlled manner. 

 

 

Fig. S18: Experiments to demonstrate actuation of cell stirrers is localized to the specific cell. 
The figure shows oscillations recorded over all the seven cells of the one-dimensional platform 
with cell 1, cell 3, cell 5 and cell 7 were activated with periodic actuation from cell stirrers. 
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2.2 Hydrodynamic tests with markers to test neighbouring cell coupling 

 

To investigate the coupling between the neighbouring cells by activating interfacial stirrers, we 

performed hydrodynamic tests by using ink as a tracer to monitor fluid flow by tracking the 

colour change between the cells. The interfacial stirrer was placed symmetrically between the 

two cells, such that the interfacial stirrer couples the two vortices of the neighbouring cells 

where the cell stirrers were active. Utilizing this concept, the experimental setup was designed 

considering three important criteria, 

The cells architecture was built based on three main criteria: 

1. Vortex of the fluid must be localised within a single cell when the cell stirrer is turned 

on and the interfacial stirrer is inactive. The vortex in the cell must be contained. 

2. On activating the interfacial stirrer when the two neighbouring cell stirrers are also 

active, the interfacial stirrer should be able to couple the two cell vortices causing 

neighbours to interact with one another. 

3. The fluid flow at the interface should create a symmetric bidirectional flow between 

the two cells. 

Fig. S19 shows a pictorial representation of the two neighbouring cells whose vortices do not 

couple with each other when interfacial stirrer is inactive and hence no coupling and symmetric 

bidirectional coupling occurs when interfacial stirrer is active. All the active cell stirrers rotate 

in the same direction and interfacial stirrers rotate in the opposite direction to the active stirrers. 

 

Fig. S19: Hydrodynamic coupling between two neighbouring cells with inactive and active 
interfacial cells. 

 

In principle, it is possible to run Computational Fluid Dynamics (CFD) simulations to simulate 

the fluid flow over the network of cells with interacting vortices. However, CFD simulations 

with moving objects are usually computationally intensive. Hence, experiments using ink as a 
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marker to monitor fluid flow were carried out. Diluted “Sumi” ink was used as a fluid marker 

to monitor the fluid flow.  

As the first example, two neighbouring cell stirrers were activated at the same PWM level or 

RPM. It was then followed by the activation of the shared interfacial stirrer between the two 

cells. A drop of ink using a fine syringe needle was placed on the interface and the flow of the 

ink was recorded by a camera. Due to symmetric flow of fluid between the neighbouring cells, 

the ink flows symmetrically between two neighbouring cells and as soon as the ink boundary 

travelled close to the centre of the cell stirrer, it coupled strongly with the inner vortex in the 

cell and this led to homogeneous mixing in both cells, see snapshots in Fig. S20. So, by 

activating the interfacial stirrer, the two neighbouring cells with the same PWM values can be 

coupled with each other symmetrically which could be used for programming the couplings 

between the cells for computation experiments. Video of the described phenomena can be 

found in Supplementary Video 2. 

 

Fig. S20: Hydrodynamic tests towards symmetric coupling.  Shows snapshots at different times 
demonstrating symmetric coupling between the two cells. 

 

As an additional test, we performed a similar experiment with two active cell stirrers but with 

different PWM levels and activating the interfacial stirrer between them. Due to the difference 

in the speed of the cell stirrers, the cell-cell coupling becomes asymmetric as demonstrated in 
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Fig. S21. The PWM of the right cell is stronger as compared to the left cell. At the start, the 

coupling appears to be symmetric, but as soon as the ink boundary reaches strong vortex of the 

right cell, it starts mixing well throughout the cell, which was not observed in the left cell at 

the same time. The asymmetric coupling between the cells is much harder to quantify at 

different speed levels as compared to the symmetric coupling due to non-linear coupling 

between the interactions fluid flow within the cells and at the interface. Thus, symmetric 

coupling was used as the basis for computation experiments.   

 
 

Fig. S21: Hydrodynamic tests towards asymmetric coupling. Shows snapshots at a different 
time demonstrating symmetric coupling between the two cells. 

 

Additionally, hydrodynamic coupling tests in the two-dimensional platform were performed to 

demonstrate coupling between neighbouring cells occurs only when interfacial stirrers between 

them are active. To demonstrate this effect, a 3 × 3 grid of cells with only one set of cell stirrers 

and interfacial stirrer between them was activated. In this case, instead of dropping ink at the 

interface, a drop of ink was placed in the central cell and then activate the cell stirrer. 

Subsequently, we activate the interfacial stirrer between the central and the left cell. A series 

of snapshots in Fig. S22 shows mass transfer between the two active cells and as a result the 

concentration of the ink in the central cell decreases and increase in concentration on the left 

cell. No mixing was observed in the rest of the cells where interfacial stirrers were inactive, 
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note that the apparent leakage observed on the right, top and bottom of the cell is due to the 

experimenter whilst injecting the ink.  

These hydrodynamic tests gave a good indication about developing electronic actuation 

operations which could be used for creating a hybrid electronic-chemical logic. However, 

understanding the effect of stirring on the oscillation of BZ reaction together with the mass 

transfer is complex phenomena. In the later sections, further tests were carried out to investigate 

BZ oscillations and their coupling between cells. Based on these hydrodynamic tests, the 

optimized parameters for the cells and the experimental arena are shown in Table S4.  

 

Fig. S22: Hydrodynamic tests towards programmable coupling. (A-Y) shows snapshots of the 
two-dimensional platform at different times showing the coupling between the centre and left 
cell by activating interfacial stirrer between them. No mass transfer was observed between 
other neighbours.  
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2.3 Chemical and hydrodynamic tests to investigate the effect of depth 
 

In order the investigate the effect of the depth of fluid layer as compared to the size of the stirrer 

on the homogeneity of the chemical oscillations, we performed and characterized experiments 

on 3D printed single cell reactor with higher transparency (VeroClear). The 3D printed single 

cell reactor was designed with dimensions exactly similar to the single cell from the reactor 

array as described in Table S4 (26.0 x 26.0 x 13.5 mm). The oscillations were observed from 

the side by mounting a webcam horizontally. With the mechanical actuation i.e. stirring in this 

case, the emerging chemical oscillations appeared to be homogeneous throughout the majority 

of the cell in both horizontal and vertical directions. The temporal snapshots of the chemical 

oscillations with a time interval of 10 seconds are shown in Fig. S23. 

 

Fig. S23: Snapshot of the cross section of the BZ oscillation at different time points. 

 

Inhomogeneities in colours at the edges and boundaries are expected due to lack of fluid flow 

which is constrained by the no-slip boundary conditions of the fluid-solid interface. However, 

during the image acquisition and its analysis using CNN, the observed colour at the 

edges/boundaries were not considered. This confirms that the fluid profile of the vortex created 

by actuation of the stirrer is homogeneous along the vertical axis over the complete depth across 

the observational domain. 

A further experimental investigation was performed to visualize the temporal pattern of the 

emerging fluid vortex on the stirrer actuation. Initially, the cell was filled with water with ink 

(Sumi) as a fluid flow marker, was carefully injected at the bottom of the well. Upon activation 

of the stirrer, the ink disperses quickly and creates a steady state profile along the complete 

cross section. The temporal snapshots of the profile create by ink dispersion along the cell is 

shown in Fig. S24.  

t = 0s t = 10s t = 20s t = 30s t = 40s t = 50s

t = 60s t = 70s t = 80s t = 90s t = 100s t = 110s
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Fig. S24: Snapshot of the cross section of the vortex induced by cell stirrer at different time 
point, tracked by patterns of the ink (Sumi). 

 

The temporal snapshots as shown in Fig. S24 demonstrates the homogeneous mixing of the ink 

in approximately 12-14 seconds. The no fluid flow zone at the edges of the cells can be seen 

clearly at times 12-18 seconds. This no flow zone at the edges helps to avoid the interactions 

between next-nearest neighbours. The interactions between the nearest neighbours occurs due 

to the coupling of vortices due to interfacial stirrers and the no fluid flow zone minimizes the 

coupling between diagonally placed cells. Fig. S25 (A, B) pictorially shows the permitted pair-

wise interactions and forbidden interactions leading to complete fluid flow loops which is the 

basis of the design criteria.  

 

 

Fig. S25: Interaction between neighbouring cells via hydrodynamic coupling. (A) Permitted 
bidirectional interactions between the neighbouring cells. (B) Forbidden interactions involving 
next nearest neighbours due to loops in fluid flow. (C) Left: Chemical oscillation of a single 
cell imaged from the top showing no oscillation in no flow zones at the edges, Right: the region 
of interest detected by the CNN (indicated by the blue square showing that CNN detected Blue 
colour). 

t = 0s t = 2s t = 4s t = 6s t = 8s

t = 10s t = 12s t = 14s t = 16s t = 18s
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Due to the presence of no flow zone at the edges, no oscillations occur at the edges which leads 

could lead to inhomogeneity in the measurement. However, the region of interest detected by 

the CNN is smaller than the dimension of the cell such that the measurement does not suffers 

from the spatial inhomogeneity (see Fig. S25(C)). The details of the data preparation can be 

found in Supplementary Information Section 3.1. 

Table S4. Parameters of the optimised cell design.  

Cell dimension  26 x 26 mm 

Cell wall thickness 2 mm 

Cell stirrer’s rotation Anti-clockwise  

Interfacial stirrer’s rotation Clockwise 

Size of the magnetic stir bar for the cells 7 x 2 mm 

Size of the magnetic stir bar for the interfaces 5 x 2 mm 

 
2.4 Effect of stirring rate on chemical oscillations  
 

In this section, we investigate the effect of stirring rate i.e. PWM levels on the observed 

amplitude of the chemical oscillations. We used one-dimensional BZ platform and scan the 

PWM levels in the range [20, 80] with the interval of 2 unit in forward direction and waiting 

for 40 seconds at each PWM value. Fig. S26 shows the observed chemical oscillations scanning 

in the forward direction. We observed continuous increase in the amplitude of oscillations with 

increase the in stirring rate. At the lower PWM levels, the rate of increase in amplitude is slow 

and weaker oscillation persists in the PWM range 20-30. In the range 30-60, the oscillation 

amplitude increases at higher rate which eventually saturates in the range 60-80. This transition 

in amplitudes from the lower to higher PWM levels allows us to select from a range PWM 

levels to define programmable states based on temporal oscillation patterns as discussed in 

detail in the next section. 
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Fig. S26: Peak intensity of the oscillation vs stirring speed defined by PWM levels. Figure 
shows peak mean and deviation of measured peak amplitude of oscillations based on two 
different experiments vs. applied PWM level on single cell. 

 

2.5 Phenomenological behaviour of the hybrid electronic-chemical system 
 

Besides the optimization of the cell dimensions and enhancing control of the cell-to-cell 

coupling, the oscillator chemistry plays a significant role in the observed spatiotemporal 

behaviour of the overall experimental platform. In this section, we will investigate the 

dynamics of chemical oscillations within a single cell as well as coupling dynamics between 

the nearest neighbouring cells due to the actuation of the cell and the interfacial stirrers. The 

different behaviours observed were later used to define hybrid electronic-chemical logic for 

dynamic closed-loop experiments for implementing cellular automata and computation. The 

various phenomenological behaviours as described are as followed: 

1. Single cell  

a. Chemical oscillations only appear when the cell stirrer is active which is 

equivalent to a forced oscillator. 

b. Once the active cell stirrer is deactivated, the forced oscillator turns into a 

damped oscillator and after a few cycles, the chemical oscillations disappear. 

 

2. Coupled neighbouring cells 
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a. Neighbouring cells do not interact with each other when the interfacial stirrer is 

inactive. 

b. On activating interfacial stirrer, weakly coupled neighbouring cells come in 

phase independent of their initial phase differences. 

c. Interactions between two or more cells in one and two-dimensional geometry 

are confined to nearest neighbours only. 

 

2.5.1 Chemical oscillator as a forced and damped oscillator 
 

BZ chemical reaction oscillating under the actuation of a cell stirrer and falling back to the 

ground state once the stirring actuation is turned off can be described as a combination of a 

forced and a damped oscillator. As soon as the cell stirrer is active, the system reaches an active 

oscillating state in around 1-2 oscillations. However, it takes at least three oscillations to come 

back to the ground state once the cell stirrer is deactivated. This damped oscillatory behaviour 

can be used as short-term localized chemical memory for developing key components of the 

hybrid electronic-chemical logic such as clocking signal, self-interactions etc. To estimate the 

time scale of the dampening effect, we performed experiments on the one-dimensional 

experimental setup by activating the cells for a finite amount of time and followed by 

deactivating them. The oscillations over the complete setup were recorded over the whole 

experimental time.  

Fig. S27 shows the oscillations of three different cells and the position of the peaks with time. 

In all three cells, it only took time scale of one oscillation ca. 30-40 seconds to reach the forced 

oscillation state from the ground state, and around 3-5 oscillations to arrive ground state once 

the cell stirrer was deactivated. 
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Fig. S27: BZ Oscillator as a forced-damped oscillation. (A-C) The left column shows the actual 
oscillations detected from the camera and the right column shows the peak intensity for all 
individual peaks detected when the cell stirrer was active (blue) and turned off (red). 

 

Fig. S28: Average Intensity of oscillations of the cells showing forced-damped oscillator. The 
figure shows oscillation peaks when cell stirrer is turned on (blue) and dampening oscillation 
when cell stirrer is turned off (red). The damped oscillation characteristic time scale is ca. 1.5 
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mins, which acts as a short-term memory for the feedback control experiments including 
cellular automata and computation. 

 

Fig. S29: BZ Oscillator as a forced-damped oscillation for a longer time scale up to 30mins. 
(A-C) The left column shows the actual oscillations detected from the camera per and right 
column shows the peak intensity for all individual peaks detected when the cell stirrer was 
active (blue) and turned off (red). 

 

From the experimental data presented in Fig. S27, the average oscillation intensity and the time 

of the peak position together with the standard deviations as shown in Fig. S28. The position 

of the peak of all the oscillations seems well-defined and the characteristic timescale for 

damping can be estimated. Additional experiment for a longer time scale and another set of 

results for three cells in one-dimensional setup is shown in Fig. S29 and Fig. S30. 
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Fig. S30: Average Intensity of oscillations of the cells showing forced-damped oscillator. The 
figure shows oscillation peaks when cell stirrer is turned on (blue) and dampening oscillation 
when cell stirrer is turned off (red). The damped oscillation characteristic time scale is ca. 1.5 
mins, which acts as a short-term memory for the feedback control experiments including 
cellular automata and computation. 

 

2.5.2 Interactions between nearest neighbour cell oscillations 
 

A key feature necessary for the experimental platform towards efficient computation is to 

develop a “decision-making” logic based on the observed chemical oscillations. As the 

chemical oscillations within different cells could emerge at different times, it is important to 

create a clocking logic which acts as a sync signal, analogous to the one used in electronic 

devices, to update the temporal oscillatory states occurring in all the cells. This decision-

making logic could be massively simplified if all the oscillations occurring in the cells stays in 

the same phase. This could be possible by creating a weak interaction amongst all the cells by 

utilizing combinations of cell and interfacial stirrers. To investigate the effect of interfacial 

stirrers between the two oscillating nearest neighbouring cells with cell stirrers activated, we 

monitored the phase difference between the oscillations. We started by actuating two cells 

stirrers at different initial times so that we can observe an initial phase difference between the 

emerging chemical oscillations. Then, the interfacial stirrer was activated between them 

followed by monitoring the phase difference between the two neighbouring cells. Fig. S31 

shows the observed BZ oscillations and their peak positions recorded over the time scale of 35 

mins. When the interfacial stirrer was turned on, minor change in the intensity of the BZ 

oscillations was observed. This is due to stronger hydrodynamic coupling between two cells 

leading to mass transfer. The phase difference between the chemical oscillations occurring in 

the two cells can be estimated by taking the difference between the nearest peak position times 
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between two cells. Fig. S32 shows observed phase difference estimated at the peak positions 

between the two weakly coupled cells.  

 

Fig. S31: Chemical oscillations and peak positions of two coupled neighbouring cells. Left (A, 
B) shows BZ oscillations recorded over two cells once the interfacial stirrer is active and Right 
(A, B) shows the corresponding peak positions vs. time.  

A consistent decrease in the phase difference between the two cells was observed and within 

the time scale of 7-8 oscillation cycles, the two cells arrived the same phase as an outcome of 

the weak coupling. The temporal oscillatory state of each cell is due to the time-dependent 

localized concentration of the reagents. Due to symmetric weak coupling, mass transfer leads 

to the exchange of various ionic species which eventually lead to a similar state of 

concentration in both cells. Once the two coupled cells arrived at the same phase, as long as 

the weak coupling is active, the phases of the two cells stay consistent with minor deviation 

over the full experimental period as evident by the Fig. S32. 

 

Fig. S32: The phase difference between two weakly coupled cells. The figure shows the phase 
difference between the two neighbouring cells when the interfacial stirrer was active. 
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The investigation was further extended by coupling three adjacent cells of the one-dimensional 

platform cells to demonstrate that the weakly coupling scheme could be extended over a long-

range by utilizing localized neighbouring interactions. Analogous to the two-cell case, we 

started activating three cell stirrers with initial time shifts so that they are out-of-phase before 

the two interfacial stirrers get activated.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. S33: Chemical oscillations and peak positions of two coupled neighbouring cells. Left (A-
C) shows BZ oscillations recorded over three adjacent cells once the interfacial stirrers were 
active and Right (A-C) shows the corresponding peak positions vs. time.  

 

Once the two interfacial stirrers were active, the oscillations over all the three cells were 

recorded. Fig. S33 shows chemical oscillations and the peak positions vs. time of all the three 

cells. The phase differences between the central cell (cell 2) and two other two neighbouring 

cells (cell 1 and 3) were calculated as shown in Fig. S34. Similar to the two-cell case, all the 

three cells came into the same phase in around ten oscillations. This proves that in a similar 

way all the cells in an experiment can be bought to the same phase due to the weak coupling 

between neighbouring cells by activating all the interfacial stirrers. This global coupling 

created by weak interfacial stirring action was later used for clocking logic for hybrid decision 
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making which is described in detail in later sections on Chemical Cellular Automata and 

computation.  

 

Fig. S34: Pairwise peak differences between the three neighbouring cells. The figure shows 
the calculated phase differences at the peak positions with the central cell (2) as the reference.  

 

3 Image processing 
 

The BZ reaction is a chemical oscillator that oscillates in the analogue domain which shows a 

continuous transition between the red and the blue colour. Visually, it is easy to identify at least 

three distinct states, red, light blue and blue. As discussed in Section 1.5, a camera was placed 

on the top of the 3D printed reactor array to visually analyse the evolution of the oscillatory 

states. The video and corresponding frames captured from the camera during the experiment 

were processed by different image recognition algorithms which could classify the analogue 

signals into discretized signals with three distinct states. The temporal patterns of these 

discretized states were then interpreted as chemical states to define further operations 

throughout the experiment in a closed-loop approach. This approach of translating the analogue 

signal into a digital signal creates an information link between the chemical oscillations 

(analogue domain) and chemical states (digital equivalent) such that any Finite State Machine 

(FSM) can be implemented into the analogue domain via chemical states.  
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3.1 Data preparation 
 

To characterise and recognise the colour of the oscillation waves, a “supervised learning” 

strategy (X features → y label) was followed. Thus, it was required to create a dataset that 

would relate images representing individual cells from the BZ medium in our platform (X), to 

three possible categories that related to their colour: “red”, “light blue” and “ blue” (y). To 

build this dataset, the following steps were executed (see Fig. S35): 

1. Multiple experiments with different stirring sequences, speed and positions were 

performed on the experimental setup. Each experiment was recorded from a camera 

placed on top of the 3d printed reactor array (see Fig. S4) and saved as a video in MKV 

and AVI format. 

2. A researcher would invoke the “generate_dataset.py” Python script to individually load 

each one of the videos. This script would play the video, overlaying on top of the 

displayed platform a grid of squares which aligned with the platform cells. This script 

would wait for user input. 

3. A researcher would press the “space” key to either pause or play the video. When the 

video was paused, the researcher would then click on some of the squares/cells to label 

them in one of the three categories based on his/her judgement. To label a cell as “red” 

a right-click was needed. “Light blue” needed a middle click, while “ blue” needed a 

left-click. 

4. Once a square was clicked, a Portable Network Graphics (PNG) file of the cell was 

saved. Each of these PNG files was saved with a unique file name which included five 

random characters followed by the RGB value of the average global colour of the 

previous 3000 frames. The PNG file was automatically placed on a folder named as 

“Red”, “Light blue” or “ Blue” depending on the mouse button (left, right or middle) 

that the user used to click on it. 

Following this procedure, two databases were created. Database 1 was comprised of colour 

tagged images from the one-dimensional experimental setup and it contained >13,000 images. 

Database 2 was comprised of tagged images from the two-dimensional experimental setup and 

it contained >7,000 images.  
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Fig. S35: Flow diagram describing steps to create the data set for image classification.  

 

The dataset was generated using user input following the workflow as shown in Fig. S35.  

A researcher would load a video containing an experiment. The researcher would then stop the 

video at different times and click on the cells labelling them as “Red”, “Light blue”, or “Blue”. 

Once a cell was clicked, an RGB image was extracted from its contents, saved as Portable 

Network Graphics (PNG), and stored in a folder named following one of the three labels. All 

the data gathered for the 1D and 2D platforms underwent the same workflow. 

Initially, a simple linear discriminator was tested to classify the differences between the three 

different classes of colour. However, during a BZ experiment, the concentration of KBrO3 

decreases over time in a non-linear way, and this dramatically changes the colour of the solution 

towards a more reddish shade. The ‘Red’ and ‘Light Blue’ discrete states emerging at the 

beginning of an experiment may look like the ‘Light Blue’ and ‘Blue’ states emerging at the 

middle and the later stage of the experiment, as illustrated in Fig. S36, which makes them 

indistinguishable. Several classifiers such as Support Vector Machine (SVM), K-Nearest 

Neighbours (KNN), Multilayer Perceptron (MLP) and Random Forests, were tested, but none 

of them was able to distinguish the difference between light blue and blue reliably. To 

overcome this issue, Deep Learning, and in particular, Convolutional Neural Networks (CNN) 

was employed as this architecture has shown it can detect objects with higher accuracy than 

humans. Therefore, we expected that CNN would be able to classify correctly the three labels 

(red, light blue, and blue) throughout a full experiment. 
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Fig. S36: Visual representation of the transformation of the colours at different stages of an 
experiment. 

 

Before training the CNN, further data pre-processing was needed. As shown in Fig. S35, the 

PNG files generated using the user input were placed in folders named as their respective labels, 

namely Red, Light Blue and Blue. Using this set-up, a script would execute the following 

instructions to prepare the data to be inputted to the CNN: 

1. A Python list was created where each element was a tuple. This tuple contained the 

filename of each PNG file and its label. The label was extracted based on the name of 

the folder where the PNG file was stored. The label was coded as an integer number, 

being 0 for Blue, 1 for Light Blue and 2 for Red colour. 

2. For each element of this list, the first step was to extract the average background colour, 

which was hardcoded in the filename of the PNG file, as described on step 4 in the 

previous list. 

3. For each element of the list described the in the first step, each PNG file was loaded 

into a 3D Numpy array using OpenCV, being the 3 dimensions: height, width and 

channels (RGB). All the elements of this array were divided by 255 to keep their values 

between 0 and 1. 

4. The Numpy array (3D) was then split into three different arrays representing each of 

the RGB channels. Green channel was discarded. 

5. From both blue and red channels, the average background colour from step 2 was 

subtracted. These two channels were then merged into a 3D array, representing width, 

height and channel (red or blue). 

6. This 3D array was resized to be 50 by 50 (and by 2 for the blue and red channels) using 

cubic interpolation. 
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7. All the 3D arrays generated this way, with their associated label, were randomly split 

into the train and test dataset. The split ratio was 95% for training and 5% for testing. 

8. Both train and test datasets were shuffled using Numpy’s “shuffle” functionality. 

 

3.2 Convolutional neural network (CNN) 
 

The input to the CNN consisted of (50,50,2) Numpy arrays. The CNN was trained using 

batches of size 100. The output of the CNN was a single integer value representing the class of 

the input array. These integer values could be 0, 1 or 2, being 0 for Blue, 1 for Light Blue and 

2 for Red. The architecture of the CNN used to classify the experimental output in three 

different discrete states is shown in Fig. S35. 

Tensorflow 1.X was used to define the architecture shown on Fig. S37. Within the Tensorflow 

library, “Conv2D” was used as the convolutional layers. The stride was set to 1 in all of them, 

and the padding was set to “same”. Tensorflow “nn_max_pool” was used as the max-pool 

layers. When specified, the dropout was 30% (using Tensorflow layers dropout). Unless 

specified, the activation function is the rectified linear unit (ReLU).  

The model of the CNN is as follows: 

 Two Conv2D with a kernel size of 9 and 64 filters 

 Max-pool with kernel size [1, 2, 2, 1], strides [1, 2, 2, 1]. 

 A dropout layer. 

 Two Conv2D with kernel size 3 and 128 filters 

 Max-pool with kernel size [1, 2, 2, 1], strides [1, 2, 2, 1].  

 A dropout layer. 

 Dense layer with 64 neurons.  

 A dropout layer. 

 Dense later with 3 neurons  

 Softmax layer  

The network was trained using Adam’s optimizer. Its parameters were left to the default values. 

The loss function was “tensorflow.reduce_mean” paired with “minimize” from Adam’s 

optimizer. Finally, it was trained over 1000 epochs. 
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Fig. S37: The architecture of the CNN used to train the images generated by the user.  
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3.3 State classification 
 

Using the CNN, our system could visually detect three distinct colour levels of BZ oscillations 

in real-time: Red, Light Blue, and Blue. In order to perform logic operations, the next step was 

to transform this visual information into binary data, similar to the digital states 0 and 1 used 

in almost every electronic device. We call the three distinct colour states from the analogue 

oscillatory signal using the CNN as CNN states. The binary states emerging from the temporal 

patterns of CNN states are called as Chemical States (CS). The Chemical States defined here 

are the digital representation of the analogue Chemical State which exists as oscillations in the 

chemical domain. It is important to note that, our Chemical States do not need to be binary, it 

could be generalized to n distinct chemical states. However, in this work, we developed our 

hybrid electronic-chemical logic based on two distinct chemical states (low state: CS=0 and 

high state: CS=1). These chemical states when defined as binary states, also represented as “0” 

and “1” states in this section for simplicity.  

The step from the three levels of visual oscillations to the digital states of CS=0 and CS=1 was 

performed using a Finite State Machine (FSM), also referred as a recognition Finite State 

Machine (rFSM). It is important to distinguish the recognition FSM from the digital Finite 

State Machine which is used for digital processing in the Chemical Cellular Automata and 

Computation in later sections. Given the colour of a cell and the colour of the same cell in the 

next iteration, the FSM would define the chemical state of that cell as CS=0 or CS=1, see Fig. 

S38. We further introduce an accumulator, in which the CS from several clocking cycles are 

recorded and accumulated. This increases the robustness and minimises the error when 

observing the state of the cell. 

 

Fig. S38: Finite State Machine detailing the transition rules between BZ states. The figure 
shows the basic implementation of the FSM to binarized chemical states where state “0” 
represents the chemical state CS=0 and “1” represents the chemical state CS=1. 
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Every experiment always started with all the cells at the red BZ visual state. This is the default 

BZ colour when the cells are unstirred. At this colour, the binarized chemical state of the cell 

is defined as “0”. Once an experiment starts and the chemical medium is stirred, it will initially 

oscillate between the red and the light blue colours, and while the BZ medium is following this 

pattern, the state of each cell would be “0”. When a cell is stirred at a high speed, that cell 

would oscillate into blue, and only at this point the binary state of that cell would be “1”, and 

as soon as this cell oscillated back to red or light blue, it returned to “0”, see Fig. S39-Top.  

Fig. S39-Bottom shows images from the one-dimensional experiment platform of (a) image 

acquisition from the camera and (b) detected by the CNN in real-time, followed by (c) 

transformation of the detected signals to two distinct states of 1s and 0s using the described 

FSM. 

 

 

Fig. S39: Discretization of continuous oscillation using CNN. Top: If a given cell detects 
strong oscillation (indicated by blue detected by the CNN), the state of the cell becomes “1”. 
The cell that was detected as weak oscillation or no oscillation at all was classified as the state 
“0”. Bottom: (a) Unprocessed video from the camera which was followed by (b) colour 
recognition from the CNN and (c) the digitisation of oscillation to state (0: light blue, 1: blue 
in figure C). 
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Initially, the FSM described on Fig. S38 was implemented using the “Transitions” Python 

library. This worked well when used with the one-dimensional experimental platform, as it 

only had to update 7 cells, but in the 2D platform, when it was updated to 49 cells, this library 

became the bottleneck of the whole data pipeline and therefore it was not possible to run the 

system at 20 FPS. Thus, it was decided to simplify the FSM, by implementing an in-house 

FSM by using Numpy. Initially, the state of a cell would only swap to 1 if it follows the pattern 

“red – light blue – blue”, but the condition was relaxed in this case, and a cell could also swap 

to 1 if it also followed a pattern “red – blue”. Even though a cell can only go to blue after being 

light blue, sometimes this transition happened very fast and the CNN was not able to detect it, 

therefore the straight transition from red to blue was also enabled to represent a state “1” for a 

cell. 

 

3.4 Mapping between stirrer PWM levels and the Chemical States 
 

In the previous section, we have demonstrated our BZ chemical system with programmable 

stirrer control act as a damped oscillator which shows strong hysteresis behaviour when the 

oscillations are classified as the Chemical States based on a convolutional neural network and 

a recognition state machine. If we assume a one-to-one mapping between PWM states and the 

emerging Chemical States, then at each step we should have chemical state 0 for low PWM 

and high chemical state 1 for high PWM. This is possible only in the absence of the hysteresis 

effect and weak or no interactions between the nearest neighbouring cells. To investigate both 

hysteresis effect and local interactions, we perform simple test experiments on a single cell and 

nearest neighbouring cells to demonstrate deviations from one-to-one mapping. 
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Probabilistic Mapping in Isolated Cells due to the Hysteresis Effect: 

 

Fig. S40: Deviation from one-to-one mapping of single cell. In both (A) and (B), the cell was 
first stirred in high PWM (50) producing high chemical state by strong oscillation and when 
the same cell switches to low PWM (30), it can decay to chemical state 0 (a) or retain chemical 
state 1 (b), which is recognised by the CNN. 

 

To study the hysteresis effect, we investigated the changes in the chemical states from an 

isolated cell. In a single cell experiment, we activated the cell stirrer at a high PWM for 2 mins 

so that the chemical state 1 appears. Then we switched to low PWM. If it is indeed the case of 

one-to-one mapping, we should expect the emergence of chemical state 0. We can observe the 

system decay to chemical state 0 or retains the chemical state 1, which occurs due to the 

damping effect from the stronger oscillation. In Fig. S40, we showed that the chemical state 

produced can either fade away or retain its original chemical state 1 after changing the PWM 

from high to low. The probabilistic mapping is more pronounced when local interactions with 

the nearest neighbours are introduced in the system.  
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Probabilistic Mapping in Interacting Cells due to the Local Interactions: 

  

Fig. S41: Deviation from one-to-one mapping of single cell with nearest neighbours. (A) 
Shows the cell was first stirred in low PWM (30) producing low chemical state by weak 
oscillation, and due to the effect from the nearby high PWM (50), the chemical state switched 
to high. (B) The opposite case of (A) which shows the decay of the high chemical state to low 
due to the nearby low PWM interactions.  

To study the local interactions between cells, we further investigate the change of the chemical 

states when the nearest neighbouring cells are interacting with the central cells. The chemical 

state of the central cell is not retained and is dominated by the PWM states of the neighbouring 

cells instead, as shown in Fig. S41. In both cases, we activated the central cell stirrer at a 

high(low) PWM and the nearby cells at low (high) PWMs, and obverse the transformation of 

chemical state from high (low) to low (high).  

 

 

 

 



S53 
 

4 Dynamic feedback 
 

So far, the description on the BZ medium oscillates between different colours following the 

stirring patterns executed by DC motors were mentioned. A camera records the chemical 

oscillations based on colours, and the CNN classifies it between three different colour levels: 

Red, Light Blue and Blue. Finally, the state recognition FSM (rFSM, see Section 3.3) defines 

the chemical state of a cell as either CS=0 (“0”) or CS=1 (“1”) depending on the colour history 

of the cell. This step translates the emerging chemical oscillations (chemical domain) into 

equivalent chemical states on which any state machine can be implemented (digital domain). 

By using these current set of chemical states of all the cells, any state machine can be 

implemented which takes these chemical states as inputs and outputs the RPM states of the 

motors called as PWM states. These PWM states will update the motor speed, thus generating 

new oscillatory patterns. This step defines the single closed-loop operation in the context of 

dynamic feedback. We also defined this process as an information loop, where analogue 

information from the chemical oscillations accurately enters the digital domain on which 

various state machines could be implemented. These state machines then dynamically transfer 

the information back into the chemical domain. Using this approach, complex information 

processing is possible by distributing information within the chemical and electronic domains. 

Both chemistry and electronics provide different roles in the framework of information 

processing, which can be seen in the implementation of chemical cellular automata (CCA) and 

chemical entity (Chemit) in the later sections. 

Here, we describe two different models of the dynamic feedback scheme which were later used 

in the experiments on cellular automaton and computation. Fig. S42 shows two different 

models of updating the chemical states in the closed-loop. In both of the models, the electronic 

state machine connects the chemical oscillations using via mechanical actuation of stirrers. The 

chemical oscillations were then recorded and processed using CNN and updates the chemical 

states. However, in the first case, the state machine (shown in red) as the chemical state which 

is defined as a cellular automata state is updated directly in-silico. This is only possible if there 

is a direct one-to-one mapping between the chemical state and electronic state (PWM levels of 

stirrers in our case) and all the individual chemical oscillations directly translate back into the 

chemical states. In this case, there are no interactions between the analogue chemical states. 

The exact information from the digital states loops through the analogue domain without 
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providing any additional benefit towards computation using hybrid electronic-chemical logic. 

We call this implementation as a “display screen” due to direct mapping to the digital domain. 

  

 

Fig. S42: Two models of the dynamic-feedback loop. (A) Shows that the FSM logic is 
embedded in silico such that the new state can be predicted within the digital domain and (B) 
on the other hand shows that the FSM logic is based on the chemical system. 

 

In the second case, the state machine shown in red reads the chemical states and applies state 

machine logic to the PWM states of the stirrers, which is shown as an electronic state. In this 

scenario, it is not possible to predict the evolution of chemical oscillations in the analogue 

domain and the emerging chemical states. So, there is no direct one-to-one mapping between 

the chemical states to the digital states. This dynamic loop model describes the true picture 

where the information processing operations can be split into chemical and digital domains. In 

the chemical domain, analogue information processing occurs due to interactions between the 

cells with different oscillatory states, and digital information processing occurs using state 

machines utilizing the chemical states of the information loop. We have implemented both 

states machines, the first model to demonstrate successful implementation information loops 

over the complete experimental time scale by implementing elementary Cellular Automata 

(ECA). The second model was used to further develop novel one-dimensional chemical cellular 

automata rules (1D-CCA), two-dimensional chemical cellular automata (2D-CCA) 

implementation, and computation experiments. In the next step, we introduce the concept of 

chemical clocking logic which is critical towards implementing logic to develop hybrid 

electronic-chemical decision-making machine.  
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4.1 Synchronization between the computing cells using a Chemical Clock 
 

As the BZ chemical medium starts oscillating in our experimental platform, we observed a 

minor phase shift between the different cells due to hysteresis effects of the oscillating reaction 

and possibly a little stochasticity associated to the stirring actuation signals. Thus, there is a 

finite phase difference between the oscillations across the whole platform. To get rid of this 

initial phase difference and not creating strong oscillations which could distort the actual 

signals, we used the strategy discussed in Section 2.5.2. From our observations as discussed 

previously, if interfacial stirrers are active, the neighbouring cells come into the same phase 

and oscillate together. To fix the phase drifting problem, we activate the interfacial stirrers so 

that all the cells can interact with nearest neighbours and global phase synchronicity can be 

achieved. Instead of activating the cell stirrers all the time, we pulse them between ON and 

OFF states. This creates a weak but detectable in-phase oscillation over all the cells. Instead of 

using no oscillation state as the low state, we use the weak oscillatory state as chemical state 

CS=0.  

Fig. S43(A-G) shows BZ oscillations over all the seven cells of the one-dimensional array with 

peak positions highlighted with interfacial stirrers active and pulsing cell stirrers. Fig. S43 H 

shows the time difference of the oscillations occurring at the seven cells of the 1D platform 

throughout a full experiment when compared against the central cell. We observed an increase 

in the phase difference as the experiment progresses, up to 10 seconds at the end of the 

experiment. However, as the difference between the consecutive peaks is ca. 40 seconds, the 

phase drift of 10 seconds does not pose any problem to implement any programmable logic 

into the system.  



S56 
 

 

Fig. S43: Time difference between peaks amongst all the cell as the function of peak numbers. 
(A-G) shows oscillations observed in seven cells of the one-dimensional BZ platform. (H) 
shows the phase difference between all the cells with respect to the central cell. 

 

To perform computations, we define windows of time where all the BZ cells oscillate are 

needed, despite the drift of oscillations over time. Initially, it was decided to set a fixed quantity 

of time for each window, based on the average periodicity of the oscillations, but as the 

temporal phase between oscillations drifted through time, this solution was not suitable. 

Therefore, it was decided to dynamically alter the windows of computation based on the 

chemical oscillations. This was implemented similar to the clock element used in digital 

computers. In a digital computer, when the clock signal goes from 0 to 1 it is often called “tick” 

and when it goes from 1 to 0 it is often called “tock”. Usually, computation only happens during 
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the “tick” phase – that is, when the clock is set to 1. In digital computers, the clock signal is 

perfectly periodical with a square shape – a 1:1 ratio between tick and tock – while in our case, 

as it can be seen on Fig. S44(A, C), the portion of time when the BZ medium did not oscillate 

was much bigger than the portion of time it oscillated. 

Following this idea, it was decided to define a “chemical clock” that would track the BZ 

oscillations. This clock would be 0 when no oscillations happened, and it would be 1 while the 

BZ medium oscillated. Because each cell could oscillate individually, there were two types of 

chemical clocks defined: local clocks which represented each of the individual clocks, and a 

global clock signal, which represented how the BZ medium oscillated as a whole, and it was 

calculated based on the local clocks.  

Each local chemical clock could have three states: 

1. None – which meant the medium was not oscillating, i.e. the CNN classified the 

medium as red colour. 

2. Tick – which meant the BZ medium went from red to blue. 

3. Tock – which meant the BZ medium went from blue to red. 

There were three states defined for the global chemical clock: 

1. None – which meant the medium was not oscillating: all the local clocks were in the 

“none” state. 

2. Tick – which meant at least one cell oscillated: at least one local clock went into “tick” 

state. 

3. Tock – which meant all the cells had oscillated: all the local clocks were into “tock” 

state. 

Once a global Tock signal was executed, all the calculations related to the computations using 

the BZ state would be performed, and the global clock would reset and go back to “None”, and 

it would also set to “None” all the local clocks, see Fig. S45 for schematic diagram. The 

transitions between these three states were as follows: 

1. To Tick – Once the first local clock “tick” happened (red to blue), the global chemical 

clock signal went from none to tick. 

2. To Tock – Once all the local clocks were in “tock”, the global clock signal went from 

tick to tock. 
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3. To none – Once the computations related to the BZ states were performed, the clock 

signal went from tock to none. 

In the case of the 1D platform, this workflow worked perfectly well, because it was only 

required that 7 cells would fully go through an oscillation. In the case of the 2D platforms these 

conditions had to be loosened, this is because the 49 cells may not oscillate in a similar period. 

Therefore, in the case of the 2D platform the To Tock step was as follows: 

2. To Tock - Once at least 15 cells have oscillated – thus their local clock was on the tock 

state - and all of the 49 cells were back in red colour, the clock signal went from tick to 

tock. 

 

Fig. S44: Chemical Clocking logic with one and two chemical states in the one-dimensional 
experimental platform. (A) Chemical oscillations of all the seven cells in one-dimensional 
setup testing basic clocking logic without chemical states and corresponding CNN states and 
(B) Individual cell clocks and the global clock operations from CNN states as shown in (A). 
(C) Chemical oscillations of all the seven cells in one-dimensional setup demonstrating 
clocking logic on elementary cellular automaton and corresponding CNN states. (D) Individual 
cell clocks and the global clock operations from CNN states as shown in (C).  
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To perform a computation based on the states described by the BZ medium, it was required 

that the chemical clock signal fully oscillated twice before a decision was taken. This was done 

to improve the reliability of the chemical state as acquired by the camera and minimise any 

error that could arise from the phase-drift of the oscillations. 

A simplified analysis was performed on clocking mechanism after experiments were complete 

for representing local clock for individual cells and global clocking scheme for basic clocking 

test and tests performed with dynamic loops to implement elementary cellular automata (see 

later sections). The chemical clocking logic was observed as 

1. The initial state is when all cells are red. 
2. Once a cell oscillates (it only needs one cell), the cell goes to TICK, and global clock 

also goes to TICK. 
3. Once the cell stops oscillating (going from blue to red), the cell goes to TOCK and 

global clock tests if global TOCK is possible. 
4. Global TOCK is only possible if all the seven cells are red and at least two of them 

are in TOCK. 
5. After global TOCK the clock resets.  

The condition for every decision to be taken place is that the global clock is required to ‘tock’ 

twice, this further improves the reliability of the chemical state acquired by the camera.  

 

 

Fig. S45: Flow diagram of the logic for the chemical clock in an experiment. 
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The simplified pseudo-code to analyse the experimental data for representing the clocking logic 

is shown as, 

cell_Lists 0: None, 1: Tick, 2: Tock 
global_States 0: Tick, 1: Tock  
------------------------------------------------------------------------------------------ 
Updating cell_Lists:  
 
if (cell_Lists[[cell]] == 0 && cnn_State[[cell]] == 0):  
  cell_Lists[[cell]] = 2 (cell Tock) 
 
else if (cell_Lists[[cell]] == 1 && cnn_State[[cell]] == 0):  
 cell_Ticks[[cell]] = 2 (cell Tock) 
 
else if (cell_Lists[[cell]] == 2 && cnn_State[[cell]] == 0):  
 cell_Ticks[[cell]] = 2 (cell Tock) 
 
else if (cell_Lists[[cell]] == 0 && cnn_State[[cell]] == 1):  
 cell_Lists[[cell]] = 1 (cell Tick) 
  
else if (cell_Lists[[cell]] == 1 && cnn_State[[cell]] == 1):  
 cell_Lists[[cell]] = 1 (cell Tick) 
  
else if (cell_Lists[[cell]] == 2 && cnn_State[[cell]] == 1):  
 cell_Lists[[cell]] = 1 (cell Tick) 
------------------------------------------------------------------------------------------ 
Updating global_states 
 
if (global_state == 0 && any cell_List[[cell]] == 1) 
 global_state = 1 (Global Tick) 
 
else if (global_state == 1 && all cell_List[[cell]] == 2) 
  global_state = 0 (Global Tock) 
  all cell_Lists[[cell]] = 0 (reset cell_Lists) 
 
else if (global_state == 1 && at least n(cell_List[[cell]] == 2) ≥ 2) 
 global_state = 0 (global Tock)  
 all cell_Lists[[cell]] = 0 (reset cell_Lists) 
------------------------------------------------------------------------------------------ 
 

4.2 Implementation of elementary Cellular Automata 
 

To demonstrate the successful implementation of the dynamic feedback loop of the information 

transfer back and forth in chemical and digital domains, experimentally, we implemented three 

elementary cellular automata rules, Rule 30, 110 and 250 in the one-dimensional experimental 

setup. In this case, we have a direct one-to-one mapping between the PWM state of the cell 
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stirrer and emerging chemical state. In brief, all the interfacial stirrers were turned on to allow 

coupling between the cells and their nearest neighbouring cells. The cell stirrers can either be 

CS=0 achieved by constant pulsing (activate stirrer at 16 PWM for 5 seconds and deactivate of 

stirrer for 15 seconds) and CS=1 achieved by strong stirring operations (activate stirrer at 50 

PWM). We implemented these rules to demonstrate successful information propagation from 

digital logic to analogue oscillatory chemical oscillations which read back into the electronic 

state via optical imaging and discretization using Convolutional Neural Networks (CNN) as 

discussed in previous sections. The basic strategy was shown in Fig. S42(A). A detailed 

description of the BZ oscillations and the CNN states emerging in the elementary CA rule 30 

in the one-dimensional experimental setup is shown in Fig. S46(experimental video can be 

found in Supplementary Video 3). The intensity versus time plot of cell 2 indicated clearly for 

the lower intensity oscillations, chemical state CS=0 achieved by basic pulsing operation of the 

cell stirrers and the higher intensity oscillation, chemical state CS=1 strong stirring operations. 

As seen in the figure, the period of an oscillation varied from 30 seconds to 40 seconds.  

 

Fig. S46: Chemical oscillations and the state detected by the CNN of ECA rule 30. The left 
figure shows chemical oscillations emerging in the one-dimensional experimental platform, 
with three discrete CNN states (shown in red, light blue and dark blue) in the background for 
all seven cells in the one-dimensional platform. The right figure shows the detailed zoomed-in 
image of the chemical oscillations of the second cell, where lower peaks correspond to 
chemical state CS=0 and higher peak corresponds to CS=1 state.  

 

The chemical states of emerging rules in elementary CA rules 110, 30 and 250 are shown in 

Fig. S47 with chemical states, CS=0 shown in light blue and CS=1 shown in dark blue. All the 

three implemented rules implemented as chemical states mapped perfectly with the in-silico 

elementary CA rules. As discussed in the dynamic feedback model, elementary CA rules can 

be predicted in-silico, with the direct one-to-one mapping as the information loops through 



S62 
 

chemical and electronic domains. To bypass this limitation, we updated the implementation of 

elementary CA rules by introducing asymmetric coupling between the nearest neighbouring 

cells to create novel rules which cannot be predicted directly.  

 

 

Fig. S47: Implementation of three elementary cellular automata. (A) Rule 110, (B) Rule 30 
and (C) Rule 250 were implemented on the one-dimensional experimental platform. The figure 
shows two different cellular automata states where light blue is equivalent to chemical state 
CS=0 and dark blue corresponds to chemical state CS=1. 

 

We also extended the definition of the elementary CA and implemented novel CA rules using 

our experimental platform. These novel rules are defined as 1D-CCA rule, where we use the 

dynamic feedback loop scheme as shown in Fig. S42(B), see full implementation details in the 

next section. The novel rules emerge by expanding the state space using chemical states as well 

as PWM states. Fig. S48(A) shows an experimental implementation of elementary CA rule 30 

and (B) shows modified 1D-CCA rule with novel states emerging due to asymmetric 

interactions between nearest neighbouring cells. In the logic of the asymmetric variation, the 

interface is only turned on when the left neighbour is at CS=1 whilst the cell is at CS=0 (see 

Section 5.3). 
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Fig. S48: Implementation cellular automata rule 30 together with modified form. (A) Rule 30 
with symmetric interactions on both sides of each cell. (B) Rule 30 asymmetric interactions on 
both sides which creates a novel cellular automata rule. 

 

5 1D-CCA: Configuration space and novel 1D-CCA rules 
 

5.1 Estimation of BZ input and chemical state space 
 

Consider an experimental set up with 𝑛𝑛 ×  𝑛𝑛 interconnected network of cells, with cell and 

interfacial stirrers which can be addressed independently. If we assume 𝑝𝑝 possible cell stirrer 

states and 𝑞𝑞 possible interfacial stirrer states, the total number of possible combinations (Input 

States: IS) are given by 𝐼𝐼𝐼𝐼 = 𝑝𝑝𝑛𝑛.𝑛𝑛𝑞𝑞2𝑛𝑛(𝑛𝑛−1). The first term 𝑝𝑝𝑛𝑛.𝑛𝑛 corresponds to all the operations 

on the cell stirrers where 𝑛𝑛. 𝑛𝑛 corresponds to the total number of stirrers in the two-dimensional 

experimental platform. The second term 𝑞𝑞2𝑛𝑛(𝑛𝑛−1)  corresponds a total number of possible 

combinations of interfacial stirrers which are present in both horizontal and vertical 

connections. All combinations of cell stirrer and interfacial stirrer states are a subset of the 

complete input space. Similar to the input space, we can also estimate the total number of 

chemical states which can be interpreted from the chemical oscillation patterns by classification 

using CNN as discussed in previous sections. Assuming, 𝑘𝑘 different possible chemical states 

on each cell, the total number of possible global chemical states is given by 𝐶𝐶𝐼𝐼 = 𝑘𝑘𝑛𝑛.𝑛𝑛 . 

Depending on the type of operations on our computational platform, we explore through the 

subset of this input space. Various operations include Chemical Cellular Automata, solving 

combinatorial optimization problems based on chemical computation logic etc. Each 
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experimental rule or logic creates a trajectory in both input and chemical state space. Fig. S49 

shows scaling of total input and chemical states for a two-dimensional set up with the number 

of cells. 

 

Fig. S49: Global input and chemical states in the computational platform. (A) Global inputs 
states vs. grid size with k possible states on each cell stirrer and two different states on each 
interfacial stirrer (B) Global chemical states vs. grid size with k possible detectable chemical 
states on each oscillating cell. 

 

For the implemented computational architecture with 7×7 array with four distinct PWM states 

for cell stirrers (as used in two-dimensional chemical cellular automata) and two PWM states 

for interfacial stirrers, the total number of input states are given by 47×7214×6 = 6.12 × 1054. 

The total number of possible chemical states are given by 27×7 = 5.6 × 1014.  

In the presence of one-to-one mapping between the input and chemical states, the total number 

of input and chemical states are equal. Hence, the information loops between input and 

chemical states without any additional benefit towards efficient computation. However, in the 

current case with many-to-many mapping and for the given initial chemical state, same new 

chemical state can be observed with various input state configuration in a probabilistic manner. 

These novel paths leading to the same chemical state is an outcome of the increase in the 

connectivity in the configuration space in the hybrid electronic-chemical probabilistic 

computation. In the one- and two-dimensional chemical cellular automata and computation as 

described in the later sections, the hybrid chemical-electronic state machine uses these 

probabilistic pathways for the novel computation. This state expansion of many-to-many as 

compared to one-to-one mappings can be simply quantified by the ratio of input states (many-

to-many) and chemical states (equivalent to input states in one-to-one) which is given by 

𝑝𝑝𝑛𝑛.𝑛𝑛𝑞𝑞2𝑛𝑛(𝑛𝑛−1)𝑘𝑘−𝑛𝑛.𝑛𝑛. For the n×n array, with two possible PWM levels for each central and 

interfacial stirrer such that 𝑝𝑝, 𝑞𝑞, 𝑘𝑘 = 2, the state expansion ratio is 284 = 1.9 × 1025. 
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5.2 Phenomenological model for 1D Chemical Cellular Automata rules 
 

Inspired from the elementary CA rules, we also developed a family of One-dimensional 

Chemical Cellular Automata(1D-CCA) rules based on a closed-loop state machine utilizing 

PWM and chemical states. As described in the previous section, a CCA rule can be defined on 

an experimental platform where based on the observed chemical states, PWM levels of 

interfacial and cell stirrers selected. In the absence of interfacial stirrers, we can recreate 

elementary CA rules within a closed feedback loop due to one-to-one mapping between PWM 

states of cell stirrers and observed chemical states. However, when the interfacial stirrers are 

active, due to hydrodynamic coupling between the neighbouring cells and coupled hysteresis 

effects, one-to-one mapping between PWM and chemical states does not exist and novel 

patterns can emerge out.  

Here, we describe the 1D-CCA state machines and phenomenological model which was then 

used to simulate the emergence of patterns in a one-dimensional geometry. 1D-CCA rules 

which define the state machine to act on stirrer based on chemical states comprises of two 

different values, {Rule_A}-{Rule_B}. Rule_A updates the central cell stirrer PWM state based 

on chemical states of nearest neighbouring cells (𝐶𝐶𝑖𝑖
𝑡𝑡, 𝐶𝐶𝑖𝑖−1

𝑡𝑡 , 𝐶𝐶𝑖𝑖+1
𝑡𝑡 ) similar to the elementary CA 

rule table. Rule_B updates the PWM states of the two interfacial stirrers based on the chemical 

states of the two connecting cells (𝐶𝐶𝑖𝑖−1
𝑡𝑡 , 𝐶𝐶𝑖𝑖

𝑡𝑡)  and (𝐶𝐶𝑖𝑖
𝑡𝑡, 𝐶𝐶𝑖𝑖+1

𝑡𝑡 ) . Under this scheme, there are  

23 = 8 possible chemical states for three neighbouring cells. Similarly, to the elementary CA 

rules, there are 28 = 256 possible rules for Rule_A. There are 22 possible chemical states for 

two neighbouring connecting cells at the interfacial stirrer, hence total 2222 = 16 rules are 

possible for Rule_B for both interfacial stirrer. The total number of 1D-CCA rules possible is 

2824 = 4096.  

Fig. S50 (A) shows rule tables for rules defined by 30-{i} where i is between 1 and 16, as 

defined by Rule_B. In each of the rule table, the top row (in black and white) are the two 

chemical states (CS0: black/CS1: white) and the bottom row corresponds to the PWM values 

of the central cell stirrer and the two interfacial stirrers. There are two possible PWM states for 

central cell stirrers (drawn as Red and Green) as well as for interfacial stirrers (drawn as Red 

and Blue).  
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As an example, the eighth rule table as shown in Fig. S50 (A) is equivalent to, 

 Cell Stirrers  

{{1,1,1} → 0, {1,1,0} → 0, {1,0,1} → 0, {1,0,0} → 1, {0,1,1} → 1, {0,1,0} → 1, 

{0,0,1} → 1, {0,0,0} → 0} 

 Interfacial Stirrers  

{{1,1,1} → {1, 1}, {1,1,0} → {1, 1}, {1,0,1} → {1,1}, {1,0,0} → {1, 0}, {0,1,1} → {1,1}, 

{0,1,0} → {1, 1}, {0,0,1} → {0, 1}, {0,0,0} → {0,0}} 

 
Fig. S50: Rule table and evolution of 1D-CCA rule 30-{i} with i ∈ [1, 16]. (A) shows rule 
table for all 16 rules for interfacial stirrers with CA rule 30 for cell stirrers and (B) Simulated 
1D-CCA rule 30-{i} with i ∈ [1, 16] using a phenomenological model. 

 

To simulate the 1D-CCA, we used a simple phenomenological model based on probabiluistic 

outcomes which updates the chemical states of all the cells based on the PWM values of cell 

and interfacial stirrers. Here, we define S𝑖𝑖
𝑡𝑡 as the PWM state of the cell stirrer, I𝑖𝑖,𝑖𝑖+1

𝑡𝑡  as the 

PWM state of interfacial stirrer between ith and i + 1th cells. Here, we define the chemical state 

of the ith cell is given by 𝐶𝐶𝐼𝐼𝑖𝑖
𝑡𝑡+1 . Assuming two different PWM states for both cell and 

interfacial stirrers, and two different chemical states, we can define the probability for the 
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chemical states purely based on PWM levels of cells and interfacial stirrers. The probabilities 

for the high chemical state (1) at different conditions are,  

 

�
S𝑖𝑖

𝑡𝑡 == 1 𝑎𝑎𝑛𝑛𝑅𝑅 S𝑖𝑖−1
𝑡𝑡 == 1 0⁄  𝑎𝑎𝑛𝑛𝑅𝑅 S𝑖𝑖+1

𝑡𝑡 == 1 0⁄ 𝑎𝑎𝑛𝑛𝑅𝑅
I𝑖𝑖,𝑖𝑖+1

𝑡𝑡 == 1 0⁄ 𝑎𝑎𝑛𝑛𝑅𝑅 I𝑖𝑖,𝑖𝑖−1
𝑡𝑡 == 1 0⁄ � ∶ 𝐶𝐶𝐼𝐼𝑖𝑖

𝑡𝑡+1 → 𝓟𝓟(𝟏𝟏) = 1 

 

�
S𝑖𝑖

𝑡𝑡 == 0 𝑎𝑎𝑛𝑛𝑅𝑅 S𝑖𝑖−1
𝑡𝑡 == 0 𝑎𝑎𝑛𝑛𝑅𝑅 S𝑖𝑖+1

𝑡𝑡 == 0 𝑎𝑎𝑛𝑛𝑅𝑅
I𝑖𝑖,𝑖𝑖+1

𝑡𝑡 == 1 0⁄  𝑎𝑎𝑛𝑛𝑅𝑅 I𝑖𝑖,𝑖𝑖−1
𝑡𝑡 == 1 0⁄ � : 𝐶𝐶𝐼𝐼𝑖𝑖

𝑡𝑡+1 → 𝓟𝓟(𝟏𝟏) = 0 

 

�
S𝑖𝑖

𝑡𝑡 == 0 𝑎𝑎𝑛𝑛𝑅𝑅 S𝑖𝑖−1
𝑡𝑡 == 1 0⁄ 𝑎𝑎𝑛𝑛𝑅𝑅 S𝑖𝑖+1

𝑡𝑡 == 1 0⁄  𝑎𝑎𝑛𝑛𝑅𝑅
I𝑖𝑖,𝑖𝑖+1

𝑡𝑡 == 0 𝑎𝑎𝑛𝑛𝑅𝑅 I𝑖𝑖,𝑖𝑖−1
𝑡𝑡 == 0 � : 𝐶𝐶𝐼𝐼𝑖𝑖

𝑡𝑡+1 → 𝓟𝓟(𝟏𝟏) = 0 

 

�
S𝑖𝑖

𝑡𝑡 == 0 𝑎𝑎𝑛𝑛𝑅𝑅 S𝑖𝑖−1
𝑡𝑡 == 1 𝑎𝑎𝑛𝑛𝑅𝑅 S𝑖𝑖+1

𝑡𝑡 == 1 𝑎𝑎𝑛𝑛𝑅𝑅
I𝑖𝑖,𝑖𝑖+1

𝑡𝑡 == 1 𝑎𝑎𝑛𝑛𝑅𝑅 I𝑖𝑖,𝑖𝑖−1
𝑡𝑡 == 1 � : 𝐶𝐶𝐼𝐼𝑖𝑖

𝑡𝑡+1 → 𝓟𝓟(𝟏𝟏) = 0.8 

 

�
S𝑖𝑖

𝑡𝑡 == 0 𝑎𝑎𝑛𝑛𝑅𝑅 S𝑖𝑖−1
𝑡𝑡 == 1 𝑎𝑎𝑛𝑛𝑅𝑅 S𝑖𝑖+1

𝑡𝑡 == 1 0⁄  𝑎𝑎𝑛𝑛𝑅𝑅
I𝑖𝑖,𝑖𝑖+1

𝑡𝑡 == 0 𝑎𝑎𝑛𝑛𝑅𝑅 I𝑖𝑖,𝑖𝑖−1
𝑡𝑡 == 1 � : 𝐶𝐶𝐼𝐼𝑖𝑖

𝑡𝑡+1 → 𝓟𝓟(𝟏𝟏) = 0.5 

 

�
S𝑖𝑖

𝑡𝑡 == 0 𝑎𝑎𝑛𝑛𝑅𝑅 S𝑖𝑖−1
𝑡𝑡 == 1 0⁄  𝑎𝑎𝑛𝑛𝑅𝑅 S𝑖𝑖+1

𝑡𝑡 == 1 𝑎𝑎𝑛𝑛𝑅𝑅
I𝑖𝑖,𝑖𝑖+1

𝑡𝑡 == 1 𝑎𝑎𝑛𝑛𝑅𝑅 I𝑖𝑖,𝑖𝑖−1
𝑡𝑡 == 0 � ∶ 𝐶𝐶𝐼𝐼𝑖𝑖

𝑡𝑡+1 → 𝓟𝓟(𝟏𝟏) = 0.5 

 

�
S𝑖𝑖

𝑡𝑡 == 0, S𝑖𝑖−1
𝑡𝑡 == 1, S𝑖𝑖+1

𝑡𝑡 == 0,
I𝑖𝑖,𝑖𝑖+1

𝑡𝑡 == 1 0⁄ , I𝑖𝑖,𝑖𝑖−1
𝑡𝑡 == 1 � : 𝐶𝐶𝐼𝐼𝑖𝑖

𝑡𝑡+1 → 𝓟𝓟(𝟏𝟏) = 0.5 

 

�
S𝑖𝑖

𝑡𝑡 == 0, S𝑖𝑖−1
𝑡𝑡 == 0, S𝑖𝑖+1

𝑡𝑡 == 1,
I𝑖𝑖,𝑖𝑖+1

𝑡𝑡 == 1, I𝑖𝑖,𝑖𝑖−1
𝑡𝑡 == 1 0⁄ � ∶ 𝐶𝐶𝐼𝐼𝑖𝑖

𝑡𝑡+1 → 𝓟𝓟 (𝟏𝟏) = 0.5 

 

These probabilities were assigned based on our knowledge on how the experimental setup 

behaves on the actuation of cell and interfacial stirrers. These probabilities were assigned based 

on the expected outcome such as, in the first case if the cell stirrer of the central cell is active 

(PWM state S𝑖𝑖
𝑡𝑡= 1) independent of the other controls, the probability of the occurrence of the 

high chemical state is 1 as due to the stirrer action the chemical state of the cell will be high. If 
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the central cell stirrer is inactive, however, both the neighbouring cells and the interfacial 

stirrers between them are active (see condition 4 above), the probability of occurrence of the 

high chemical state was chosen to be 0.8. This high probability is due to the combined 

interaction from both neighbours together when the interfacial stirrers are also active. 

Similarly, instead of two neighbouring cells if only one neighbouring cell stirrer is active 

together with the active interfacial stirrers, the probability for the occurrence of high chemical 

state was chosen to be 0.5. It is important to note that, these assign probabilities are based on 

the certain values of PWM levels of cells and interfacial stirrers. We can tune these probabilities 

by selecting another set of PWM values. 

 

The single step of the simulation consists of running both 1D-CCA state machine for a given 

rule and phenomenological state machine to update the new chemical states as described by 

the two-state machines 𝑫𝑫 and 𝑪𝑪.  

{S𝑖𝑖
𝑡𝑡, 𝐼𝐼𝑖𝑖,𝑖𝑖−1

𝑡𝑡 , 𝐼𝐼𝑖𝑖,𝑖𝑖+1
𝑡𝑡 } ← 𝑫𝑫 (𝐶𝐶𝐼𝐼𝑖𝑖

𝑡𝑡, 𝐶𝐶𝐼𝐼𝑖𝑖−1
𝑡𝑡 , 𝐶𝐶𝐼𝐼𝑖𝑖+1

𝑡𝑡 ) 

 

𝐶𝐶𝐼𝐼𝑖𝑖
𝑡𝑡+1 ← 𝑪𝑪 (S𝑖𝑖

𝑡𝑡, S𝑖𝑖−1
𝑡𝑡 , S𝑖𝑖+1

𝑡𝑡 , I𝑖𝑖,𝑖𝑖+1
𝑡𝑡 , I𝑖𝑖,𝑖𝑖−1

𝑡𝑡 ) 

 

where 𝑫𝑫 is the 1D-CCA rule and 𝑪𝑪 is the probabilistic state machine as defined above. We 

implemented the 1D-CCA simulation in Mathematica 12 (Wolfram Ltd.) where based on the 

probabilities, new chemical states are calculated using random choice between the states (0/1) 

based on weights defined by the probabilities. An example code for 1D-CCA is available on 

GitHub. Fig. S50 B shows a simulation of 1D-CCA rule 30-{i}with i ∈ [1, 16], where the first 

rule is similar to elementary CA rule 30 and shows the perfect one-to-one mapping between 

chemical states and PWM states of cell stirrers. Significant deviations from the basic rule can 

be observed by introducing the effect of interfacial stirrers, which gives rise to new behaviours. 

However, it is important to mention that 1D-CCA rules are not completely deterministic. Due 

to strong hysteresis effects and hydrodynamic coupling, there is associated stochasticity for 

switching between chemical states. 1D-CCA allows us to program the stochastic effects in the 

system by selecting PWM levels for cell stirrers as well as interfacial stirrers. We have also 

demonstrated an experimental example of the emergence of new chemical states by running 

elementary cellular automata rule 30 with symmetric and antisymmetric couplings (see Fig. 

S48). Additional 1D CCA examples are shown in Fig. S51 and Fig. S52. 
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Fig. S51: One-dimensional 1D-CCA rule Examples 1-4. (A) 1D-CCA Rule 101-{1-16} (B) 
1D-CCA Rule 110-{1-16} (C) 1D-CCA Rule 105-{1-16} (D) 1D-CCA Rule 109-{1-16}. Here, 
{1-16} means set of 16 different rules. 

 

 

Fig. S52: One-dimensional 1D-CCA rule Examples 5-8. (A) 1D-CCA Rule 133-{1-16} (B) 
1D-CCA Rule 145-{1-16} (C) 1D-CCA Rule 149-{1-16} (D) 1D-CCA Rule 250-{1-16}. Here, 
{1-16} means set of 16 different rules. 
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 6 The Chemits: 2D hybrid electronic Chemical Automata 
 

Two-Dimensional Chemical Cellular Automata (2D-CCA) is a zero-player two-dimensional 

Cellular Automata with chemical entities (Chemits) driven by the Chemical Cellular Automata 

(CCA), which are triggered by chemical oscillations. The key feature is that the Chemit is 

extended and comprised of 5 cells, with one central cell and its four neighbours. The central 

cell is the Chemit’s core which is essential for existence. The four surrounding cells are used 

to interact with the fluctuating environment. These cells are not crucial for the existence of the 

Chemit and they can disappear and appear again during propagation, replication and 

competition events. Further details of events are described in the later subsections. 

In the 2D-CCA experiments, we used four different PWM levels of the cell stirrers defined as 

𝑃𝑃𝑃𝑃𝑃𝑃1 = 0 (maximum PWM value is 255) for no interaction such that chemical state of the 

cell returns to the lower state, 𝑃𝑃𝑃𝑃𝑃𝑃2 = 22 to create random fluctuations in the environment 

as BZ chemical oscillator is a damped oscillator, 𝑃𝑃𝑃𝑃𝑃𝑃3 = 50 to create the core cell of the 

Chemit, 𝑃𝑃𝑃𝑃𝑃𝑃4 = 30 for the nearest neighbours of the core cell of the Chemit which is used 

for interaction with other Chemits and random fluctuations. The experimental loop consists of 

applying PWM states to the cells together with clocking logic, readout the chemical states as 

described in the previous sections. We use the 2D-CCA State Machine to update the new PWM 

states of all the cell stirrers. We give a detailed description of the 2D-CCA State Machine in 

the next subsection. 

 

6.1 2D-CCA state machine 
 

The pseudo-code of the state machine which reads in the observed chemical states and updated 

the PWM levels of all the stirrers is described as follows, 

Input: 
 Distance(x, y): Returns the geometrical distance between x and y. 
PWMs with stirring speed for every cell, in which the element can be: 

0 (OFF),  
1 (RANDOM FLUCTUATION),  
2 (NEAREST NEIGHBOUR),  
3 (CENTER OF THE CHEMIT). 

 
 CCA is the chemical cellular automata states for every cell, in which the element can 
be   blue or lightblue. 
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 Output: 

 PWM_new with updated stirring speed for every cell. 
 PWM_interfacial with stirring speed for interfacial stirrers, which can be  

1 (HIGH speed) or  
0 (LOW speed). 

 
Initialize element ← 0 in Freeze. 
(Freeze is an array recording if we can change a specific cell (1) or not (0)) 
Initialize element ← 0 in PWMs_new. 
Initialize element ← 0 in PWMs_interfacial. 

 
 For cell satisfying PWM(cell) == 3: 
  If SUM(CCA_neighbor(cell) == blue) == 0: 
   pass 
  Else: 
   cell_p←RandomSelection(cell satisfying CCA_neighbor(cell) == 
blue) 
 
   If distance(cell_p, cell) == 1 AND PWM(cell_p) == 3: 
   (competition event) 
    Probability (PWM_new(cell) ← 1) = 0.5 
    Probability (PWM_new(cell) ← 3) = 0.5 
 
   If distance(cell_p, cell) = 1 AND PWM(cell_p) ≠ 3:   
    (propagation event) 
    PWM_new(cell) ← 1 
    Freeze(cell) ← 1 
    PWM_new(cell_p) ← 3 
 
   If distance (cell_p, cell)>1 AND PWM(cell_p) ≠3:     
   (replication event) 
    PWM_new(cell_p) ← 3 
 
 For cell satisfying PWM_new(cell)==3: 
  PWM_intefacial(cell) ← On 
  For cell_p satisfying Distance(cell_p←cell)==1 AND Freeze(cell_p)==0: 
   PWM_new(cell_p) ← 2 

Freeze(cell_p) ← 1 
  Freeze(cell) ← 1 
 

For cell satisfying Freeze(cell) =0, 
random(PWM_new(cell) ←1) 
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6.2 Phenomenological model 
 

To simulate the dynamics of the Chemits emerging in the 2D-CCA, we developed a simple 

model of the evolution of chemical states based on the PWM actuation of the cell stirrers. We 

avoid details of physical models describing hydrodynamic interactions between and cells and 

its coupling to BZ oscillator kinetics. Computational models of BZ reaction coupled with 

hydrodynamic interactions are extremely complex to simulate and computationally intensive. 

Our phenomenological model comprises of two different state machines,  

1. 2D-CCA State Machine (𝑫𝑫): Same state machine as used in experiments which read 

in chemical states and update the PWM states. 

2. Phenomenological State Machine (𝑪𝑪): Based on the observed phenomena in 2D-CCA 

experiments, it reads in PWM states and previous chemical states and outputs the new 

chemical states. 

The time-stepping the simulation occurs in two steps, at each step first the new PWM states of 

all the cells were calculated from the state machine 𝑫𝑫,  

𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖
𝑡𝑡 = 𝑫𝑫(𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖

𝑡𝑡 , 𝑃𝑃𝑃𝑃𝑃𝑃𝑝𝑝𝑝𝑝
𝑡𝑡 , 𝐶𝐶𝐼𝐼𝑖𝑖𝑖𝑖

𝑡𝑡 , 𝐶𝐶𝐼𝐼𝑝𝑝𝑝𝑝
𝑡𝑡 , 𝐶𝐶𝐼𝐼𝑚𝑚𝑛𝑛

𝑡𝑡 ) 

where 𝐶𝐶𝐼𝐼𝑖𝑖𝑖𝑖
𝑡𝑡  is the chemical state of ijth cell, 𝐶𝐶𝐼𝐼𝑝𝑝𝑝𝑝

𝑡𝑡 , 𝐶𝐶𝐼𝐼𝑚𝑚𝑛𝑛
𝑡𝑡  are the chemical states of the nearest 

and next-nearest neighbours and 𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖
𝑡𝑡 , 𝑃𝑃𝑃𝑃𝑃𝑃𝑝𝑝𝑝𝑝

𝑡𝑡  are the PWM states of the central and the 

neighbouring cells. Once the PWM states were updated, new chemical states were calculated 

from the second phenomenological state machine 𝑪𝑪, 

𝐶𝐶𝐼𝐼𝑖𝑖𝑖𝑖
𝑡𝑡+1 = 𝑪𝑪(𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖

𝑡𝑡 , 𝑃𝑃𝑃𝑃𝑃𝑃𝑝𝑝𝑝𝑝
𝑡𝑡 , 𝐶𝐶𝐼𝐼𝑖𝑖𝑖𝑖

𝑡𝑡 , 𝐶𝐶𝐼𝐼𝑝𝑝𝑝𝑝
𝑡𝑡 ) 

where 𝐶𝐶𝐼𝐼𝑖𝑖𝑖𝑖
𝑡𝑡  defines the chemical state of the ijth cell and 𝐶𝐶𝐼𝐼𝑝𝑝𝑝𝑝

𝑡𝑡 , 𝐶𝐶𝐼𝐼𝑚𝑚𝑛𝑛
𝑡𝑡  describes of chemical 

states of nearest neighbours and the next-nearest neighbours. To describe the state machine 𝑪𝑪, 

we define a list of probabilities for switching chemical states for different scenarios of previous 

chemical states and the applied PWM levels. Out of the four different PWM levels, for nearest 

neighbouring interactions, we only consider the effect of 𝑃𝑃𝑃𝑃𝑃𝑃3 and 𝑃𝑃𝑃𝑃𝑃𝑃4. 

nPWMj: Number of neighbouring cells with PWM value j.  

If (nPWM3 ≥ 3): Cij = P1 

Else If (nPWM3 ≥ 1 and nPWM3 < 3): Cij = P2 

Else If (nPWM4 ≥ 3 and nPWM3 == 0): Cij = P3 
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Else If (nPWM4 ≥ 1 and nPWM1 ≤ 3 and nPWM3): Cij = P4 

 Else: Cij = 0 

 

We defined additional parameter based on the PWM state of the central cell given by Q which 

can take three different values {Q1, Q2, Q4} for PWM level of the central cell 

{𝑃𝑃𝑃𝑃𝑃𝑃1, 𝑃𝑃𝑃𝑃𝑃𝑃2, 𝑃𝑃𝑃𝑃𝑃𝑃4} respectively. When the PWM of the central cell is 𝑃𝑃𝑃𝑃𝑃𝑃3, in that 

case, there is a high probability that the next chemical state will be High (1), so the effect of 

neighbours is irrelevant. We also introduced an additional factor K which introduces the effect 

of the current chemical state due to the hysteresis effect, whether 𝐶𝐶𝐼𝐼𝑖𝑖𝑖𝑖
𝑡𝑡  == 0 or 1. We defined 

K for ijth cell as, 

𝑲𝑲𝒊𝒊𝒊𝒊 = �
0.7           𝑂𝑂𝑖𝑖 𝐶𝐶𝐼𝐼𝑖𝑖𝑖𝑖

𝑡𝑡 == 0
1              𝑂𝑂𝑖𝑖 𝐶𝐶𝐼𝐼𝑖𝑖𝑖𝑖

𝑡𝑡 == 1
 

 Using these parameters, for a given cell the probability of the high chemical state (1) is given 

by, 

𝑃𝑃𝑖𝑖𝑖𝑖(1) = 𝑲𝑲𝒊𝒊𝒊𝒊

⎩
⎪
⎨

⎪
⎧𝑸𝑸𝟏𝟏𝑪𝑪𝒊𝒊𝒊𝒊       𝒊𝒊𝒊𝒊 𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖 == 𝟏𝟏 

𝑸𝑸𝟐𝟐𝑪𝑪𝒊𝒊𝒊𝒊       𝒊𝒊𝒊𝒊 𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖 == 𝟐𝟐 
𝑸𝑸𝟑𝟑            𝒊𝒊𝒊𝒊 𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖 == 𝟑𝟑 
𝑸𝑸𝟒𝟒𝑪𝑪𝒊𝒊𝒊𝒊       𝒊𝒊𝒊𝒊 𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖 == 𝟒𝟒 

 

By estimating the probabilities for all the cells, new chemical states were updated by randomly 

selecting chemical states {0/1} based on weights given by {1 − 𝑃𝑃𝑖𝑖𝑖𝑖(1), 𝑃𝑃𝑖𝑖𝑖𝑖(1)}. The simulation 

requires eight different variables for estimating the probabilities {P1, P2, P3, P4, Q1, Q2, Q3, Q4, 

K}. The simulations were performed in Mathematica 12 (Wolfram Ltd.) with basic 

implementation and source code available on < https://github.com/croningp/BZComputation>. 

The simulation parameters we chose are, 

{P1 = 0.5, P2 = 0.3, P3 = 0.25, P4 = 0.1, Q1 = 0.0, Q2 = 0.1, Q3 = 0.5, Q4 = 0.5} 

The simulation parameters were chosen similarly as described in the phenomenological model 

for one-dimensional CCA. As discussed previously, the probabilities can be easily modified by 

selecting different PWM levels. A single partial step of the simulation for a two-dimensional 

geometry with 50 × 50 cells to update the PWM states from chemical states using the 

phenomenological state machine is shown in Fig. S53.  
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Fig. S53: A single simulated step of 2D-CCA using a phenomenological model on 50×50 grid. 
Left shows Chemical states (RED: 1 and WHITE: 0) which goes as input in the 
phenomenological state machine. Right shows new PWM states as an output of the state 
machine. (WHITE: 𝑷𝑷𝑷𝑷𝑷𝑷𝟏𝟏, ORANGE: 𝑷𝑷𝑷𝑷𝑷𝑷𝟐𝟐, RED: 𝑷𝑷𝑷𝑷𝑷𝑷𝟑𝟑, BLUE: 𝑷𝑷𝑷𝑷𝑷𝑷𝟒𝟒) 

 

As a first step, we tested the outcomes 2D-CCA state machine to test the emergence of 

propagation, replication and competition events. We created the initial Chemit defined by 

PWM values 𝑃𝑃𝑃𝑃𝑃𝑃3  (core) and 𝑃𝑃𝑃𝑃𝑃𝑃4  (interacting nearest neighbours) on 5 × 5 grid. We 

created the chemical states ourselves to monitor the emergence of new PWM states showing 

the expected behaviour. 

Propagation Event 

As a first example, to demonstrate the chemical state we created a high chemical state at one 

of the nearest neighbours (right cell) as shown in Fig. S54. Using the old PWM states and the 

chemical states, we used the 2D-CCA state machine as described above and create the new 

PWM states. As shown in the figure, the Chemit propagated in the expected direction. It is 

important to note that the position of the Chemit can be precisely defined by the position of 

𝑃𝑃𝑃𝑃𝑃𝑃3  core cell. The surrounding interaction cells can appear or disappear and are not 

considered as a necessary feature of the Chemit. In the right figure, the core cell of the Chemit 

propagated to right with some additional random fluctuations (𝑃𝑃𝑃𝑃𝑃𝑃2) occurring as an outcome 

of the 2D-CCA state machine. 
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Fig. S54: Demonstration of propagation event in simulation over the 5×5 grid. Left shows the 
initial state of the Chemit described by PWM levels. The middle shows input chemical state 
which could lead to propagation event (High chemical state at one of the nearest neighbours). 
Right shows updated PWM state using the 2D-CCA state machine showing the propagation of 
Chemit.  

 

Replication Event 

Similar to the propagation event, with initial PWM levels describing the position of the Chemit, 

we created the high chemical state at one of the next nearest neighbour (bottom right) and used 

the 2D-CCA state machine to get the new PWM state as shown in Fig. S55. In our construction 

of state machine, we chose replication events possible when the chemical state at the next 

nearest neighbour is high to limit the replication events relative to propagation events. We 

observed replication event as expected in the 5 × 5 grid, see Fig. S55.  

   

 

Fig. S55: Demonstration of replication event in simulation over the 5×5 grid. Left shows the 
initial state of the Chemit described by PWM levels. The middle shows input chemical state 
which could lead to replication event (High chemical state at one of the next nearest 
neighbours). Right shows updated PWM state using the 2D-CCA state machine showing 
replication of Chemit.  

 

Competition Events 

When the density of Chemits increases due to the replication event, two Chemits can meet with 

each other and a competition event may happen. In the competition event, the Chemit observes 

a high chemical state which is already the core of another Chemit and interact with it. There is 

a 50% chance to survive. Since we loop through all the Chemits, if two Chemits are competing 

with each other, the probability for (i) both of them survive, (ii) both of them die and (iii) one 
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of them survives are 25%, 25% and 50% respectively. Fig. S56 shows three different scenarios, 

in the first case both Chemits survive, in the second case both Chemits annihilate each other, 

and in the third case a single Chemit survives.  

 

Fig. S56: Demonstration of competition events in simulation over the 5×5 grid. The left column 
shows the initial state of the Chemit described by PWM levels. The middle shows input 
chemical states with different possibilities of competition events which are same for all the 
three cases. Right shows updated PWM states using the 2D-CCA showing survival of both, 
none of the two and single species. 

 

Random selection among Multiple Events 

In the propagation and replication events, only one of the nearest or the next nearest neighbour 

was at high chemical state. However, in the experiments, we observed the occurrence of 

multiple chemical high chemical states simultaneously due to strong coupling among the 

nearest neighbours and hysteresis in chemical oscillations. In this case, among all the high 

chemical states, we randomly chose one cell among nearest and next-nearest neighbours, which 

define competition between possible propagation and replication events. Fig. S57 shows three 

different examples of multiple events showing propagation in the first and the third case, 

replication in the second case. 
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Fig. S57: Demonstration of random selection during multiple events in simulation over the 5×5 
grid. The left column shows the initial state of the Chemit described by PWM levels. The 
middle shows input chemical states with different possibilities of competition events (1) two 
high chemical state nearest neighbours, (2) two high state next-nearest neighbours, and (3) 
presence of nearest and next-nearest neighbours simultaneously. Right shows updated PWM 
states using the 2D-CCA state machine showing propagation or replication of Chemits 
depending on the random selection between the various high chemical states.  

 

As a next step, we tested the simulation step by coupling phenomenological state machine 

together with 2D-CCA state machine as shown in Fig. S58. For a single step, we start with 

initial PWM states created using randomly placed Chemits over 50 × 50 array. Fig. S58 (left) 

shows all four PWM states present in the initial state. Using the phenomenological state 

machine, we updated the chemical states which are shown in Fig. S58 (middle). It is easy to 

observe a high density of chemical states at the positions of 𝑃𝑃𝑃𝑃𝑃𝑃3  core cells and their 

neighbours. As a second step, we update the PWM states from the chemical states using 2D-

CCA state machine as shown in Fig. S58 (right). We used two-dimensional Periodic Boundary 

Conditions (PBC) for the Chemits if they cross the boundary cells. Comparing the initial and 

final PWM states, we can observe propagation, replication and competition events at a different 

location on the two-dimensional grid.   
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Fig. S58: Single simulation time step over the 50×50 array. The left figure shows the initial 
state of the Chemits described by PWM levels with all four PWM values (Red pixels shows 
the position of the Chemit core). The middle figure shows updated chemical states using 
phenomenological state machine using initial PWM states as inputs. Right shows updated 
PWM states using 2D-CCA state machine completing a full single step of the simulation. 

6.3 Simulations and results 
 

Using the simulation scheme as described in the previous subsection, we ran simulations over 

100 × 100 grid and up to 15000 simulation steps with various initial conditions and parameters. 

Due to the stochastic nature of the simulations, we ran the same simulation 25 times and 

estimated the average properties such as the population of Chemits, propagation, replication 

events over the total simulation time. An example code written in Mathematica 12 notebook is 

available to download from <https://github.com/croningp/BZComputation>. We ran up to 8 

simulations in parallel using Mathematica’s parallel kernels. Once the simulation is completed, 

chemical states and PWM states at each time step were stored and dumped and Mathematica 

matrix object files (*.mx). A separate script also based on Mathematica was used to analyse 

the data and estimate the useful properties. In the next subsections, we will show results from 

simulations with variations in input parameters such as initial populations, size of the 

experimental space, frequency of random events.  

6.3.1 Variable initial population 
We ran simulations with various numbers of initial Chemits {1, 10, 100, 1000} over a 100 × 

100 experimental grids for 15000 steps with 500 random actuation events at each time step. 

With the different initial numbers of Chemits, we ran simulations 25 times for each case. A 

complete movie of the simulations is available as Supplementary Video 5. From the simulation 

data, we estimate the number of Chemits by estimating the number of  𝑃𝑃𝑃𝑃𝑃𝑃3 states at each 

time step. We also quantified propagation, replication and annihilation events throughout the 
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simulation. To estimate these quantities, we first create a list of positions of all Chemits using 

𝑃𝑃𝑃𝑃𝑃𝑃3 states. At each time step, as a first step, we calculate the number of still states by finding 

the intersection between 𝑃𝑃𝑃𝑃𝑃𝑃3 states at time t and t−1. The disappeared states between two 

consecutive steps occur due to propagation and annihilation events. The new appearing states 

between two consecutive steps occur due to propagation and replication events. For each of the 

new species appeared, we calculated the list of nearest neighbour and next-nearest neighbours. 

Based on the positions of new states and neighbours from the old states, we estimate the 

propagation and replication events. We estimate the annihilation events by subtracting the 

difference between new and old states from the replication events. 

 

 
 

Fig. S59: Overall propagation and replication kinetics with different iunitial number of 
chemits. (A) shows overall propagation events, (B) net cumulative replication events, (C) 
cumulative replication events, (D) cumulative annihilation (death) events, with different initial 
number of chemits 1, 10, 100, 1000. 

 

A Mathematica Notebook to analyse the simulation data is available on 

<https://github.com/croningp/BZComputation>. Fig. S59 (A, B) shows propagation and net 

cumulative replication events defined as a difference between replication and annhilation 



S80 
 

events averaged over 25 runs with different initial conditions.  Fig. S59 (C, D) shows 

cumulative replication and annihilation events over the total time scale of the simulation. We 

observe with the single Chemit, as shown by , replication and propagation kinetics is slow at 

the start of the simulation. Once the number of species has crossed a threshold value, the growth 

rate, propagation and replication events start accelerating and reach steady-state value near the 

end of the simulation.  

6.3.2 Variable total cell grid size 
 

We investigated the effect of overall space available for Chemits to proliferate by changing the 

total cell grid size which can be 10 × 10, 20 × 20, 50 × 50, 100 × 100, 150 × 150. The total 

simulation steps were 10000 for each case and the given set of conditions, each simulation was 

performed 25 times and averaged properties were estimated.  

 

Fig. S60: Overall propagation and replication kinetics on a different number of cell grids. (A) 
shows overall propagation events, (B) cumulative replication events, (C) cumulative 
replication events, (D) cumulative annihilation (death) events, in five different number of cell 
grids of 10×10, 20×20, 50×50, 100×100, 150×150. 

The initial population of Chemits in each case was kept the same (10 Chemits). The total 

random events at each time (defined by PWM2) states were chosen based on a fixed ratio of 
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the total number of available cells (1/10). As shown previously in the case of a different number 

of initial populations, that the Chemits show the tendency to achieve a steady-state population, 

the number of Chemits at the steady-state is controlled by the total amount of available space. 

The available space can be seen as an available spatial resource for the Chemits to proliferate 

or as a parameter which constraints the population of the Chemits and sets an upper bound (for 

the given set of other conditions such as random fluctuations). The variations in the propagation 

and replication dynamics at a different number of cell grid size is shown in Fig. S60. 

7 BZ Computation 
 

7.1 Ising model and implementation of combinatorial optimization 
Problems 
 

Ising model is a mathematical formulation use in statistical mechanics to describe 

ferromagnetism. It comprises of magnetic spins 𝑂𝑂 ∈ (+1, −1) defined on a lattice, where each 

spin can interact with nearest neighbours and external magnetic field. The generalized 

Hamiltonian for a given configuration of spins (𝑂𝑂1 … 𝑂𝑂𝑛𝑛) is given by, 

𝐻𝐻(𝑂𝑂1 … 𝑂𝑂𝑛𝑛) = − � ℎ𝑖𝑖𝑂𝑂𝑖𝑖

𝑛𝑛

𝑖𝑖=1

− � ℎ𝑖𝑖𝑖𝑖𝑂𝑂𝑖𝑖𝑂𝑂𝑖𝑖

𝑛𝑛

𝑖𝑖<𝑖𝑖

 

The generalized version for quadratic combinatorial optimization model can be described as 

𝐻𝐻(𝑂𝑂1 … 𝑂𝑂𝑛𝑛) = − � 𝑝𝑝𝑖𝑖𝑂𝑂𝑖𝑖

𝑛𝑛

𝑖𝑖=1

− � 𝑞𝑞𝑖𝑖𝑖𝑖𝑂𝑂𝑖𝑖𝑂𝑂𝑖𝑖

𝑛𝑛

𝑖𝑖<𝑖𝑖

 

where 𝑝𝑝𝑖𝑖 and 𝑞𝑞𝑖𝑖𝑖𝑖 are the coefficients which can be derived from cost/energy function of the 

combinatorial optimization problem. This Hamiltonian can be neatly formulated as the 

Quadratic Unconstrained Binary Optimization (QUBO),  

𝐻𝐻(𝑂𝑂1 … 𝑂𝑂𝑛𝑛) = ℎ(0) + � ℎ𝑖𝑖
(1)𝑂𝑂𝑖𝑖

𝑛𝑛

𝑖𝑖=1

+ � ℎ𝑖𝑖𝑖𝑖
(2)𝑂𝑂𝑖𝑖𝑂𝑂𝑖𝑖

𝑛𝑛

𝑖𝑖,𝑖𝑖

 

ℎ(0) is the offset value, ℎ𝑖𝑖
(1) is the linear term, ℎ𝑖𝑖𝑖𝑖

(2) is a second rank tensor describing pairwise 

interaction between the two variables 𝑂𝑂𝑖𝑖  and 𝑂𝑂𝑖𝑖  and 𝑂𝑂 ∈ (+1,0 ). Here, we describe three 
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different combinatorial optimization problems and defines the corresponding Hamiltonians for 

each problem. 

Number Partitioning Problem  

The number partition problem is defined as, for a given set of N positive numbers P={n1, n2, n3 

… nN}, find a partition, if possible, to two disjoint subsets R and P-R such that sum of all the 

numbers in both sets is equal. As an example, consider a set P = {1, 4, 6, 9}, the two disjoint 

subsets with sum of all elements equal are {1, 9}, {4, 6}. 

The Hamiltonian for Number Partitioning for n-variables is given by (34), 

𝐻𝐻 = 𝐴𝐴 �� 𝑛𝑛𝑖𝑖𝑂𝑂𝑖𝑖

𝑁𝑁

𝑖𝑖=1

�

2

 

where 𝑛𝑛𝑖𝑖 is the ith number in the set and 𝑂𝑂𝑖𝑖 is the associated spin variable. Here, we define 

Hamiltonians for two different sets of numbers with 4 and 6 numbers respectively, which can 

be solved in a digital computer using stochastic gradient descent, Fig. S61. 

Four number example 

Consider a set 𝐼𝐼 = {1, 3, 4, 8} which needs to be partitioned into two disjoint subsets (𝐼𝐼1, 𝐼𝐼2) 

such that sum of all the elements in both sets is equal. For the given set 𝐼𝐼, the Hamiltonian 𝐻𝐻 

in the QUBO formulation using Ising to QUBO transformation 𝑂𝑂𝑖𝑖 = 2 𝑂𝑂𝑖𝑖 + 1 is given by,   

𝐻𝐻 = 256 − 64𝑂𝑂1 + 4𝑂𝑂1
2 − 192𝑂𝑂2 + 24𝑂𝑂1𝑂𝑂2 + 36𝑂𝑂2

2 − 256𝑂𝑂3 + 32𝑂𝑂1𝑂𝑂3 + 96𝑂𝑂2𝑂𝑂3 + 64𝑂𝑂3
2

− 512𝑂𝑂4 + 64𝑂𝑂1𝑂𝑂4 + 192𝑂𝑂2𝑂𝑂4 + 256𝑂𝑂3𝑂𝑂4 + 256𝑂𝑂4
2 

where {𝑂𝑂1, 𝑂𝑂2, 𝑂𝑂3, 𝑂𝑂4} are the associated QUBO variables mapped to chemical states of the 

experimental setup. As in the QUBO model, we have 𝑂𝑂𝑖𝑖 = 𝑂𝑂𝑖𝑖
2 , the Hamiltonian can be 

reformulated as, 

𝐻𝐻 = 256 − 60𝑂𝑂1 − 156𝑂𝑂2 + 24𝑂𝑂1𝑂𝑂2 − 192𝑂𝑂3 + 32𝑂𝑂1𝑂𝑂3 + 96𝑂𝑂2𝑂𝑂3 − 256𝑂𝑂4 + 64𝑂𝑂1𝑂𝑂4

+ 192𝑂𝑂2𝑂𝑂4 + 256𝑂𝑂3𝑂𝑂4 

The various coefficients of the generalized Hamiltonian corresponding to offset value, linear 

and coupling terms are given by, 

ℎ(0) = 256 
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ℎ(1) = (−60, −156, −192, −256) 

ℎ(2) = �

0 12 16 32
12 0 48 96
16 48 0 128
32 96 128 0

� 

To test the Hamiltonian formulation, we solved the problem by minimizing the energy using 

Stochastic Gradient Descent method.  

Six number example 

Similar to the previous case, consider a six-number set 𝐼𝐼 = {1, 3, 4, 6, 5, 1}, Hamiltonian is 
given by, 

𝐻𝐻 = 400 − 80𝑂𝑂1 + 4𝑂𝑂1
2 − 240𝑂𝑂2 + 24𝑂𝑂1𝑂𝑂2 + 36𝑂𝑂2

2 − 320𝑂𝑂3 + 32𝑂𝑂1𝑂𝑂3 + 96𝑂𝑂2𝑂𝑂3 + 64𝑂𝑂3
2

− 480𝑂𝑂4 + 48𝑂𝑂1𝑂𝑂4 + 144𝑂𝑂2𝑂𝑂4 + 192𝑂𝑂3𝑂𝑂4 + 144𝑂𝑂4
2 − 400𝑂𝑂5 + 40𝑂𝑂1𝑂𝑂5

+ 120𝑂𝑂2𝑂𝑂5 + 160𝑂𝑂3𝑂𝑂5 + 240𝑂𝑂4𝑂𝑂5 + 100𝑂𝑂5
2 − 80𝑂𝑂6 + 8𝑂𝑂1𝑂𝑂6 + 24𝑂𝑂2𝑂𝑂6

+ 32𝑂𝑂3𝑂𝑂6 + 48𝑂𝑂4𝑂𝑂6 + 40𝑂𝑂5𝑂𝑂6 + 4𝑂𝑂6
2 

 

where {𝑂𝑂1, 𝑂𝑂2, 𝑂𝑂3, 𝑂𝑂4, 𝑂𝑂5, 𝑂𝑂6} are the associated QUBO variables mapped to chemical states of 

the experimental setup. As in the QUBO model, we have 𝑂𝑂𝑖𝑖 = 𝑂𝑂𝑖𝑖
2, the Hamiltonian can be 

reformulated as, 

𝐻𝐻 = 400 − 76𝑂𝑂1 − 204𝑂𝑂2 + 24𝑂𝑂1𝑂𝑂2 − 256𝑂𝑂3 + 32𝑂𝑂1𝑂𝑂3 + 96𝑂𝑂2𝑂𝑂3 − 336𝑂𝑂4 + 48𝑂𝑂1𝑂𝑂4

+ 144𝑂𝑂2𝑂𝑂4 + 192𝑂𝑂3𝑂𝑂4 − 300𝑂𝑂5 + 40𝑂𝑂1𝑂𝑂5 + 120𝑂𝑂2𝑂𝑂5 + 160𝑂𝑂3𝑂𝑂5

+ 240𝑂𝑂4𝑂𝑂5 − 76𝑂𝑂6 + 8𝑂𝑂1𝑂𝑂6 + 24𝑂𝑂2𝑂𝑂6 + 32𝑂𝑂3𝑂𝑂6 + 48𝑂𝑂4𝑂𝑂6 + 40𝑂𝑂5𝑂𝑂6 

The coefficients of the Hamiltonian are given by, 

ℎ(0) = 400 

ℎ(1) = (−76, −204, −256, −336, −200, −76) 

ℎ(2) =

⎝

⎜⎜
⎛

0 12 16 24 20 4
12 0 48 72 60 12
16 48 0 96 80 16
24 72 96 0 120 24
20 60 80 120 0 20
4 12 16 24 20 4 ⎠

⎟⎟
⎞

 

 

To test the Hamiltonian formulation, we solved the problem using Stochastic Gradient Descent 

method. 
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Fig. S61: Energy minimization of Number Partitioning Hamiltonian using Stochastic 
Gradient Descent. (A) shows energy minimization in four-number partitioning problem {1, 3, 
4, 8} with the solution as {1, 3, 4} and {8}. (B) shows energy minimization for 6 number 
partitioning problem {1, 3, 4, 6, 5, 1} where we achieved two different solutions, {1, 3, 5, 1} 
shown in black and {4, 6} as well as {1, 3, 6}, {4, 5, 1} shown in red. 

Boolean Satisfiability problem 

The generalized Hamiltonian for the 2-SAT Boolean Satisfiability problem is given by , 

𝐻𝐻 = 𝐴𝐴 � �(1 − 𝑤𝑤𝑖𝑖,𝑖𝑖𝑂𝑂𝑖𝑖,𝑖𝑖)
2

𝑖𝑖

𝑁𝑁

𝑖𝑖

 

where 𝑤𝑤𝑖𝑖,𝑖𝑖 ∈ {−1, +1} and 𝑤𝑤𝑖𝑖,𝑖𝑖 is -1 and +1 for 𝑂𝑂𝚤𝚤,𝚥𝚥���� and 𝑂𝑂𝑖𝑖,𝑖𝑖 respectively and A is a constant. 

This is based on the genralized definition of k-SAT problem (35). We formulate Hamiltonian 

for different two different examples. 

Example 1: 

The 2-SAT problem with 4 variables and 3 clauses in the conjunctive normal form is given by, 

𝐼𝐼 = (𝑂𝑂1 ∨  𝑂𝑂2) ⋀ (𝑂𝑂2  ∨  𝑂𝑂4) ⋀ (𝑂𝑂3  ∨  𝑂𝑂4) 

The Hamiltonian corresponding to this problem is given by, 

𝐻𝐻 = 8 − 4𝑂𝑂1 − 4𝑂𝑂2 + 4𝑂𝑂1𝑂𝑂2 − 4𝑂𝑂3 − 4𝑂𝑂2𝑂𝑂4 + 4𝑂𝑂3𝑂𝑂4 

The coefficients of the Hamiltonian including offset, linear and quadratic terms are given by, 

ℎ(0) = 8 

ℎ(1) = (−4, −4, −4, 0) 

ℎ(2) = �

0 2 0 0
2 0 0 −2
0 0 0 2
0 −2 2 0

� 
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Example 2: 

Another example of the 2-SAT problem with 4 variables and 6 clauses in the conjunctive 
normal form is given by, 

𝐼𝐼 = (𝑂𝑂1 ∨  𝑂𝑂2) ⋀ (𝑂𝑂2  ∨  𝑂𝑂4) ⋀ (𝑂𝑂3  ∨  𝑂𝑂4) ⋀ (𝑂𝑂1  ∨  𝑂𝑂3) ⋀ (𝑂𝑂1  ∨  𝑂𝑂2) ⋀ (𝑂𝑂3  ∨  𝑂𝑂4) 

 

Similarly to the previous example, the Hamiltonian, offset, linear and quadratic terms are given 
by, 

𝐻𝐻 = 8 − 4𝑂𝑂1 + 4𝑂𝑂3 − 4𝑂𝑂1𝑂𝑂3 − 4𝑂𝑂2𝑂𝑂4 

 

ℎ0 = 8 

ℎ(1) = (−4, 0, 4, 0) 

 

ℎ(2) = �

0 0 −2 0
0 0 0 −2

−2 0 0 0
0 −2 0 0

� 

 

Travelling Salesman Problem 

The Hamiltonian for n-cities Travelling Salesman Problem is given by (34), 

 

𝐻𝐻 = 𝐴𝐴 �(1 − � 𝑂𝑂𝑖𝑖,𝑖𝑖

𝑁𝑁

𝑖𝑖

)2
𝑁𝑁

𝑖𝑖

+ 𝐴𝐴 �(1 − � 𝑂𝑂𝑖𝑖,𝑖𝑖

𝑁𝑁

𝑖𝑖

)2
𝑁𝑁

𝑖𝑖

+ 𝐴𝐴 � � 𝑂𝑂𝑖𝑖,𝑖𝑖𝑂𝑂𝑖𝑖+1,𝑖𝑖

𝑁𝑁

𝑖𝑖

𝑁𝑁

𝑖𝑖

 

where if i+1 is larger than N, i+1 is replaced by 1 and A is a constant. 

We consider a 4-city travelling salesman problem, with four cities coordinates are given by 

City A: {0, 0}, City B: {1, 0}, City C: {3, 3}, City D: {0, 10}. The Ising Hamiltonian expression 

for these cities is given by, 
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As in the QUBO model, we have 𝑂𝑂𝑖𝑖 = 𝑂𝑂𝑖𝑖
2, the Hamiltonian can be reformulated as, 

 

The coefficients of the Hamiltonian are given by, 

ℎ0 = 8 

ℎ(1) = (−2, −2, −2, −2, −2, −2, −2, −2, −2, −2, −2, −2, −2, −2, −2, −2) 

 

Implementation of Hybrid Electronic-chemical Logic  

Similar to those in 2D-CCA, we implemented a Finite State Machine logic in silico which reads 

in chemical states and updates the PWM states which are applied to the cell and interfacial 

stirrers. The evolution of chemical states is dominated by physicochemical principles which 

leads to the emergence of short-term memory or hysteresis effects in the system. In the current 
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strategies to implement hybrid electronic-chemical computation logic, the combinatorial 

optimization problem is initialized by formulating an Ising Hamiltonian as a function of spin 

variables. Depending on the number of pairwise couplings, the computational problem was 

mapped to the two-dimensional experimental setup such that all the pairwise coupling variables 

in the Hamiltonian can exist as nearest neighbours. In the two-dimensional geometry, if all the 

couplings cannot be described by nearest neighbours, multiple instantiations of the same 

variables were created to map all the necessary pairs. These additional cells were called as 

auxiliary cells, and they flow the same logic as the primary cell associated with the given 

variable. Either the chemical states or PWM states were interpreted as Ising equivalent spins. 

At the start, all the spins are initialized randomly making sure that the auxiliary spins have the 

same states as the primary spins using. The emerging chemical states were read into the hybrid 

state machine, which updates the new PWM states. This information processing loop between 

digital and chemical domains was applied until the minimal energy configuration was achieved. 

Once the minimal energy configuration was achieved, the state of spin variables was 

interpreted as the solution to the combinatorial optimization problem.  

 

Electronic-Chemical State Machine Type 1 

In this hybrid electronic-chemical state machine, we used chemical states of the cells as the 

representation of Ising equivalent spins, where high chemical state CS1 corresponds to +1 state 

and low chemical state CS0 corresponds to -1. The Hamiltonian function was created in-silico 

and the system was initialized to random spins (chemical states). The basic pseudocode is 

defined as, 

1. Initialize PWM states to randomly assign the Chemical States to all the cell associated 

with Hamiltonian variables. 

2. Assign the lowest energy to be infinity. 

3. While True: 

a. Randomly flip the PWM state of a cell and observe the emergence of all the 

new Chemical States. 

b. Calculate current Energy based on the Chemical States. 
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c. If current Energy ≤ lowest energy: 

lowest energy = current Energy 

d. Accept or Reject the flipping based on the estimated energy difference and 

update the lowest energy. The probability of accepting the change is: 

𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑝𝑝𝑡𝑡 = 𝑃𝑃𝑎𝑎𝑂𝑂(𝐹𝐹
−∆𝐸𝐸

𝑘𝑘 , 1) 

where ∆𝐸𝐸 is the energy difference after flipping the spin and we set 𝑘𝑘 = 5. 

e. If the lowest energy cannot be further reduced (termination): 

Save current spins and interpret them as a solution. 

Break 

This is the simplistic approach, where most of the information processing occurs in the digital 

domain, however the information loops through the chemical and digital domain. There is also 

inherent hysteresis in the system from the physicochemical processes which also influences the 

chemical states and prevents the system to get stuck in local minima. This step is crucial 

towards implementing more advanced logic and computational algorithms. Using this 

approach, we solved three different combinatorial optimization problems, whose associated 

Hamiltonians have been described in the previous subsection.  

Example 1: 4 number partition Problem: {1,3, 4, 8} 

The stepwise spins, associated energy and minimum energy of the system are given by: 

1. [-1, -1, -1, -1], {E = 256.0, Emin=256.0} 

2. [-1, 1, -1, -1], {E = 100.0,  Emin=100.0} 

3. [1, 1, -1, -1], {E = 64.0,  Emin=64.0} 

4. [-1, 1, -1, 1], {E = 36.0, Emin=36.0} 

5. [-1, 1, -1, -1], {E = 100.0, Emin=36.0} 

6. [-1, 1, 1, 1], {E = 196.0, Emin=36.0} 

7. [-1, 1, -1, 1], {E = 36.0, Emin=36.0} 

8. [1., 1, -1, 1], {E = 64.0, Emin=36.0} 

9. [-1, -1, -1, -1], {E = 256.0, Emin=36.0} 

10. [-1, -1, -1, 1], {E = 0.0, Emin=0.0} 
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The final configuration of spins [-1, -1, -1, 1] for the 4 number set {1,3, 4, 8} splits the set into 

two disjoint subsets with -1 and +1 spins, {1, 3, 4} and {8} as the solution to the problem. 

Example 2: 6 number partition Problem {1, 3, 4, 6, 5, 1} 

Similar to the 4-number partition problem, for 6 number partition problem, the initial spins 

were assigned as, {-1, -1, -1, -1, -1, -1} with E=400. The hybrid logic was able to minimize the 

energy with the spin configuration, {-1, -1, 1, 1, -1, -1}. So, based on the achieved spins states, 

the six-number set splits into two disjoint subsets with -1 and +1 spins, {1, 3, 5, 1} and {4, 6} 

respectively. 

Example 3: Travelling Salesman Problem: Four cities coordinate City A: {0, 0}, City B: {1, 

0}, City C: {3, 3}, City D: {0, 10}. For 4 cities Travelling Salesman Problem, we initialized 

the system with 16 spins for pairwise interaction between the city connections as shown in the 

Hamiltonian in the previous subsection. The system was initialized with spins, 

{{-1, -1, 1, -1}, {1, -1, -1, 1}, {1, -1, 1, 1}, {-1, -1, -1, -1}} with E=8.492. The hybrid logic 

was able to minize the energy with the final spin configuration, 

{{-1, -1, -1, 1}, {1, -1, -1, -1}, {-1, 1, -1, -1}, {-1, -1, 1, -1}} with E=0.221. This configuration 

can be interpreted as the solution to the 4-cities Travelling Salesman Problem where the 

optimal path is defined as linking the +1 spin variables. The indices of spin +1 are {{1, 4},{2, 

1}, {3, 2}, {4, 3}}, which defines the links between the cities and the solution to the Travelling 

Salesman Problem. 

Electronic-Chemical State Machine Type 2 (Extended Approach) 

In this hybrid electronic-chemical state machine, we used PWM states of the cell stirrers to 

represent Ising spin variables. The Ising spin variables based on all the pairwise coupling terms 

were mapped into the experimental domain using primary and auxiliary cells. Similar to the 

previous case, the Hamiltonian function was created in-silico and the system was initialized to 

random spins (PWM states). The hydrodynamic interactions between the neighbouring cells 

were introduced as a part of the hybrid logic. The quadratic formulation of the Hamiltonian 

allows writing the energy terms specific to a given cell (both primary and auxiliary) as the 

summation of interactions between the given cell and neighbouring cells. Similar to the first 

hybrid state machine, we flipped the PWM state randomly and introduce the effect of local 
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interactions between the cells when we estimate the energy change for the pairwise 

interactions. To introduce chemical decision making, a comparison was made between the 

emerging chemical states and the lookup table which describes the ideal emergence of chemical 

states in the absence of hysteresis and noise effects (see Fig. 6 in the main text). Even though 

the phenomenological state machine is probabilistic, we can still estimate the most probable 

results from the local interactions logic. The overall energy change was calculated pair-wise 

and while calculating for a specific pair, if the observation of new chemical state is inconsistent 

with the lookup table, we change the sign of the energy change of this pair. The overall energy 

changed is accumulated pair-wisely and, similar to that in the first strategy, a decision is made 

to accept or reject the change of the PWM state using a Finite State Machine. The basic 

pseudocode is defined as, 

1. Initialize PWM states randomly for all Ising spin variables associated with the problem 

Hamiltonian. 

2. While True: 

a. Randomly flip the PWM state of the primary cell and create auxiliary cells 

related to all pairwise interactions.  

b. Set energy_benefit = 0 

c. For all possible pair interaction including primary cell: 

Calculate pairwise energy change after flipping the PWM state 

Create the auxiliary cell and activate interfacial stirrers for interactions 

If the new Chemical States consistent with lookup table: 

 d_energy = pairwise energy change 

Else: 

d_energy = - pairwise energy change 

Energy benefit = Energy benefit + d_energy 

f. Accept the flipping if Energy benefit <= 0.  

g. If the configuration energy reached minima (termination): 

Save current spins and interpret them as a solution. 
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Break 

 

In this approach, we introduced a hybrid electronic-chemical logic where information 

processing loops between chemical and electronic domains. Similar to the previous logic, 

calculation of energy occurs in the electronic domain, however, energy benefit for each step is 

based on the chemical decision making which occurs due to strong hysteresis, non-linear 

couplings and noise which are inherent in the system. Using this approach, we solved three 

different combinatorial optimization problems, whose associated Hamiltonians have been 

described in the previous subsection.  

Example 1: 4 number partition Problem: {1, 3, 4, 8} 

The stepwise spins, associated energy of the system are given by: 

1. [-1, 1, 1, -1], {E = 4.0} 

2. [-1, 1, 1, 1], {E = 196.0} 

3. [-1, 1, -1, 1], {E = 36.0} 

4. [-1, 1, -1, -1], {E = 100.0} 

5. [1, 1, -1, -1], {E = 64.0} 

6. [1, 1, -1, -1], {E = 64.0} 

7. [1, 1, -1, 1], {E = 64.0} 

8. [-1, -1, -1, 1], {E = 0.0} 

9. [-1, -1, -1, 1], {E = 0.0} 

The final configuration of spins [-1, -1, -1, 1] for the 4 number set {1,3, 4, 8} splits the set into 

two disjoint subsets with -1 and +1 spins, {1, 3, 4} and {8} as the solution to the problem. 

Example 2: 2 SAT problem (4 variable, 3 clauses) 

In conjunctive normal form, the 2-SAT problem with 4 variables and 3 clauses is given by,  

𝐼𝐼 = (𝑂𝑂1 ∨  𝑂𝑂2) ⋀ (𝑂𝑂2  ∨  𝑂𝑂4)  ⋀ (𝑂𝑂3  ∨  𝑂𝑂4) 

The system was initialized with spins [-1, -1, -1, -1] with total energy 8.0. The minimized 

energy configuration reached was [1, -1, 1, -1] with total energy 0.0. On these spin states, the 

solution is interpreted with +1 corresponds to 1 and -1 corresponds to 0. Hence, the solution 

becomes [1, 0, 1, 0], where the solution matches correctly ((1 or 0) and (0 and not 0), (1 and 

0)). 
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Example 3: 2 SAT problem (4 variable, 6 clauses) 

In conjunctive normal form, the 2-SAT problem with 4 variables and 6 clauses is given by, 

𝐼𝐼 = (𝑂𝑂1 ∨  𝑂𝑂2) ⋀ (𝑂𝑂2  ∨  𝑂𝑂4) ⋀ (𝑂𝑂3  ∨  𝑂𝑂4) ⋀ (𝑂𝑂1  ∨  𝑂𝑂3) ⋀ (𝑂𝑂1  ∨  𝑂𝑂2) ⋀ (𝑂𝑂3  ∨  𝑂𝑂4) 

The system was initialized with spins [-1, -1, -1, -1] with total energy 8.0. The minimized 

energy configuration reached was [1, 1, -1, 1] with total energy 0.0. On these spin states, the 

solution is interpreted with +1 corresponds to 1 and -1 corresponds to 0. Hence, the solution 

corresponds to minimum energy (0.0) is [1, 1, 0, 1]. 
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7.2 Qualification of chemical computation 
 

In this section, we describe the role of chemistry in the computational logic as implemented in 

the proposed hybrid electronic-chemical computer. To demonstrate the computation in hybrid 

electronic-chemical architecture, we redefine the question as follows: 

 

1. Do one- & two-dimensional Chemical Cellular Automata and solving combinatorial 

optimization problems using the computational architecture give the complete picture 

towards hybrid computation?  

2. Is there a one-to-one mapping between the electronic and chemical domain, such that 

digital logic controls all the phenomena and information just loops between electronic 

and chemical domain without any additional benefit? 

3. What does the mapping between input PWM states and emerging chemical states look 

like? 

4. Is it possible to simulate the complete electronic-chemical computational model in-

silico?  

 

In the following sections, we will describe our computational hybrid state machine in context 

to one- and two-dimensional Chemical Cellular Automata (CCA) as well as for chemical 

computation logic for combinatorial optimization problems. Based on our description, we aim 

to answer all four proposed questions. In the implemented hybrid computational logic, at each 

step the information loops between digital and chemical domains, where different parts of 

computation take place. To describe them clearly, as a first step we distinguish two different 

aspects of our hybrid computational architecture including information transfer and processing. 

1. Information Transfer and Time Stepping 

The information transfer from the electronic to the chemical domain and vice versa is based 

on time-stepping logic which is essential for the proposed computational architecture. As 

the hybrid logic uses state machines in both digital and chemical domains, dynamic 

communication between them is essential and is considered as a separate process from 

Information Processing. The two information communication processes between electronic 

and chemical domains are described below. 
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a. Electronic to Chemical: Information transfer form electronic domain to chemical 

domain occurs by mapping the output of digital Finite State Machine to the PWM levels 

of mechanical stirrers, which influences the emergence of chemical states.  

 

b. Chemical to Electronic: Information transfer from the chemical state to the electronic 

state occurs through imaging and a recognition state machine based on a neural network 

(CNN) that converts analogue chemical states (𝐶𝐶𝐼𝐼) to the digital equivalent of chemical 

states (𝐶𝐶𝐼𝐼). 

  

c. Time Stepping: Time stepping is an essential feature to synchronize chemical and 

electronic logic and is defined by the chemical oscillation clock in the chemical domain. 

 

2. Information Processing and Computational Operations 

The information processing logic and the implemented algorithms utilise both electronic 

and chemical processes. These include the digital and chemical states as well as the various 

state machines which act on chemical and digital states. Here, we define all states and state 

machines, 

1. 𝑪𝑪𝑪𝑪𝒊𝒊
𝒕𝒕 : defines the analogue chemical state of the ith cell at time step t which is equivalent 

to the chemical oscillation.  

2. 𝑪𝑪𝑪𝑪𝒊𝒊
𝒕𝒕 : defines the digital chemical state of the ith cell at time step t which is the outcome 

of the recognition finite state machine (rFSM) based on a neural network (𝑪𝑪𝑪𝑪𝑪𝑪) 

applied on the analogue chemical state. 

3. 𝑪𝑪𝒊𝒊
𝒕𝒕 : defines the digital PWM state of the cell stirrer of the ith cell at time t. 

4. 𝑰𝑰𝒊𝒊,𝒊𝒊
𝒕𝒕  : defines the digital PWM state of the interfacial stirrer placed between the ith and 

jth cell at time t, where i and j are neighbouring cells. 

5. 𝑻𝑻(𝑪𝑪𝑪𝑪𝑪𝑪): defines the state machine which acts on the analogue chemical state (𝑪𝑪𝑪𝑪𝒊𝒊
𝒕𝒕) 

and converts it into the digital chemical state (𝑪𝑪𝑪𝑪𝒊𝒊
𝒕𝒕). 

6. 𝑫𝑫 : defines the digital Finite State Machine which acts on 𝑪𝑪𝑪𝑪𝒊𝒊
𝒕𝒕 and updates cell stirrer 

states (𝑪𝑪𝒊𝒊
𝒕𝒕) and the interfacial stirrer states (𝑰𝑰𝒊𝒊,𝒊𝒊

𝒕𝒕 ). 

7. 𝑷𝑷 : defines the function which reads the PWM states and brings their effect to chemical 

analogue states in a physical world. 
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8. 𝑪𝑪 : defines the chemical state machine which reads in the previous analogue chemical 

state (𝑪𝑪𝑪𝑪𝒊𝒊
𝒕𝒕) and analogue equivalent physical interaction of the stirrer using function 𝑷𝑷. 

Here, we include the 𝑻𝑻(𝑪𝑪𝑪𝑪𝑪𝑪) state machine within 𝑪𝑪 for simplicity and hence directly 

updates the digital chemical state 𝑪𝑪𝑪𝑪𝒊𝒊
𝒕𝒕. It is important to note that even CNN occurs in 

the digital medium, we still consider it as a part of 𝑪𝑪 as it links two different versions 

of the chemical state. 

9. 𝑲𝑲 : defines the hybrid state machine which includes all the state machines (𝑻𝑻, C, P, D),  

such that it reads digital chemical state and outputs directly the new chemical state.  

 

 

Fig. S62: Hybrid Electronic-Chemical Computational State Machine. The figure shows the 
information flow between the electronic 𝑫𝑫𝑪𝑪 ≡ {𝑪𝑪𝒊𝒊

𝒕𝒕, 𝑰𝑰𝒊𝒊,𝒊𝒊
𝒕𝒕 } and chemical domains (𝑪𝑪𝑪𝑪𝒂𝒂 ≡ 𝑪𝑪𝑪𝑪𝒊𝒊

𝒕𝒕 
and 𝑪𝑪𝑪𝑪𝒅𝒅 ≡ 𝑪𝑪𝑪𝑪𝒊𝒊

𝒕𝒕). We show transfer (T, which is CNN) as a separate unit from 𝑪𝑪 only because 
it occurs in the digital domain. However, it is included in 𝑪𝑪 in the state machine logic. 

 

The complete representation of the hybrid electronic-chemical state machine is shown in 

Fig. S62, where information loops between the chemical and the digital domain. Based on 

the definition of various state variables and machines, we describe the electronic and 

chemical operations in details. 

Electronic Computation comprises the digital Finite State Machine (D) which takes the 

digital chemical states of the cell and its neighbours as inputs and updates the new PWM 

states to be applied on the stirrers. Assuming only nearest neighbours in one-dimensional 

CCA, the new cell stirrer state and the two interfacial stirrers states can be defined as,  

{S𝑖𝑖
𝑡𝑡, 𝐼𝐼𝑖𝑖,𝑖𝑖−1

𝑡𝑡 , 𝐼𝐼𝑖𝑖,𝑖𝑖+1
𝑡𝑡 } = 𝑫𝑫 (𝐶𝐶𝐼𝐼𝑖𝑖

𝑡𝑡, 𝐶𝐶𝐼𝐼𝑖𝑖−1
𝑡𝑡 , 𝐶𝐶𝐼𝐼𝑖𝑖+1

𝑡𝑡 ) 
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This general formulation of the state machine can be defined for any dimensions and 

higher-order neighbours as well. The digital state machine is deterministic and activates by 

the chemical clock signal. 

Chemical Computation comprises a combination of two different state machines 𝑷𝑷 and 

𝑪𝑪, hence reads the digital PWM states and updates the new chemical states based on the 

physical phenomena which include temporal BZ oscillation chemistry coupled with 

hydrodynamic interactions from the stirrers.  

It is important to note that the emergence of a new chemical state has both implicit and 

explicit dependence on the previous chemical state. By explicit, we mean the previous 

states determine the PWM level explicitly through P and this PWM level influences the 

emergence of CS, while the hysteresis effect from previous operations is implicit.  

Furthermore, the emergence of a new digital chemical state is a complex function of the 

previous chemical state and multiple physical interactions which include neighbouring 

interactions and interaction of stirrers on the ongoing chemical oscillation. So, for one-

dimensional CCA, we can write a new digital chemical state as, 

𝐶𝐶𝐼𝐼𝑖𝑖
𝑡𝑡+1 = 𝒊𝒊 (𝐶𝐶𝐼𝐼𝑖𝑖

𝑡𝑡, S𝑖𝑖
𝑡𝑡, S𝑖𝑖−1

𝑡𝑡 , S𝑖𝑖+1
𝑡𝑡 , I𝑖𝑖,𝑖𝑖+1

𝑡𝑡 , I𝑖𝑖,𝑖𝑖−1
𝑡𝑡 ) 

where we assume there is no direct dependence on the chemical states of the neighbouring 

cells and 𝒊𝒊 is a function that takes into account all the physical effects related to the given 

variables. We start with simplifying the function by excluding the neighbouring 

interactions and considering the central cell chemical state and PWM state of the cell 

stirrers. The functional relationship between current and previous chemical state is defined 

by (which has both hybrid electronic and chemical interaction components) 

𝐶𝐶𝐼𝐼𝑖𝑖
𝑡𝑡+1 = 𝒊𝒊 (𝐶𝐶𝐼𝐼𝑖𝑖

𝑡𝑡, S𝑖𝑖
𝑡𝑡) 

Even we expect 𝒊𝒊(x) to be a non-linear function, we split it into two different parts to 

distinguish chemical and electronic processing by assuming linear combinations of explicit 

(digital) and implicit (chemical) dependence of the previous chemical state with 𝜶𝜶 is the 

weighting factor.  

𝐶𝐶𝐼𝐼𝑖𝑖
𝑡𝑡+1 = 𝜶𝜶 �𝐶𝐶𝐼𝐼𝑖𝑖

𝑡𝑡� + (1 − 𝜶𝜶) 𝑷𝑷(S𝑖𝑖
𝑡𝑡) =  𝜶𝜶 �𝐶𝐶𝐼𝐼𝑖𝑖

𝑡𝑡� + (1 − 𝜶𝜶) 𝑷𝑷(𝑫𝑫(𝐶𝐶𝐼𝐼𝑖𝑖
𝑡𝑡) ) 
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It is important to understand the difference between functions which involves 𝐶𝐶𝐼𝐼𝑖𝑖
𝑡𝑡 and 𝐶𝐶𝐼𝐼𝑖𝑖

𝑡𝑡 

even when both represent different aspects of the same chemical state. The two terms in 

the equation clearly show the separation of chemical and electronic processes in hybrid 

computation. 

1. 𝜶𝜶 �𝐶𝐶𝐼𝐼𝑖𝑖
𝑡𝑡�: occurs in a chemical medium and relates to the Hysteresis effect and 

noise. 

2. (1 − 𝜶𝜶) 𝑷𝑷(S𝑖𝑖
𝑡𝑡): occurs in the chemical medium and is a physical process that 

includes hydrodynamic interaction between existing chemical oscillation that 

occurs over a single clocking step. 

3. S𝑖𝑖
𝑡𝑡 =  𝑫𝑫(𝑻𝑻(𝐶𝐶𝐼𝐼𝑖𝑖

𝑡𝑡)): occurs in the digital medium using a Finite State Machine (𝑫𝑫). 

 

Term 1 and 2 corresponds to chemical information processing and are probabilistic 

while Term 3 corresponds to digital information processing which is deterministic. In 

our experimental design, the parameter 𝜶𝜶 also tunable by careful selection of PWM levels. 

This flexibility in our computational architecture allows us to switch between deterministic 

and probabilistic domains for the efficient implementation of hybrid computation 

algorithms.  

As a next step, we extend our formulation by introducing the effect of nearest neighbours. 

In the case of one-dimensional CCA, as discussed previously the functional relationship 

can be defined as, 

𝐶𝐶𝐼𝐼𝑖𝑖
𝑡𝑡+1 = 𝒊𝒊 (𝐶𝐶𝐼𝐼𝑖𝑖

𝑡𝑡, S𝑖𝑖
𝑡𝑡, S𝑖𝑖−1

𝑡𝑡 , S𝑖𝑖+1
𝑡𝑡 , I𝑖𝑖,𝑖𝑖+1

𝑡𝑡 , I𝑖𝑖,𝑖𝑖−1
𝑡𝑡 ) 

Similarly, we formulate 𝒊𝒊 as a linear combination of different interactions which can be 

described as 

𝐶𝐶𝐼𝐼𝑖𝑖
𝑡𝑡+1 = 𝜶𝜶 �𝐶𝐶𝐼𝐼𝑖𝑖

𝑡𝑡� + 𝜷𝜷 𝑷𝑷𝑪𝑪(S𝑖𝑖
𝑡𝑡) + (1 − 𝜶𝜶 − 𝜷𝜷)𝑷𝑷(S𝑖𝑖

𝑡𝑡, S𝑖𝑖−1
𝑡𝑡 , S𝑖𝑖+1

𝑡𝑡 , 𝐼𝐼𝑖𝑖,𝑖𝑖−1
𝑡𝑡 , 𝐼𝐼𝑖𝑖,𝑖𝑖+1

𝑡𝑡 ) 

Here, we introduced two different types of transfer functions for different coupling 

interactions 

𝑷𝑷𝑪𝑪 ≡ 𝑷𝑷𝑪𝑪(S𝑖𝑖
𝑡𝑡)  describes the physical effect of the central cell stirrer on the chemical 

oscillation. 
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𝑷𝑷𝑰𝑰 ≡ 𝑷𝑷𝑰𝑰(S𝑖𝑖
𝑡𝑡, S𝑖𝑖−1

𝑡𝑡 , S𝑖𝑖+1
𝑡𝑡 , 𝐼𝐼𝑖𝑖,𝑖𝑖−1

𝑡𝑡 , 𝐼𝐼𝑖𝑖,𝑖𝑖+1
𝑡𝑡 )  describes the physical effect of the interactions 

between neighbouring cells. This is complex phenomena due to the coupling vortices of 

three neighbouring cells via interfacial stirrers. 

The various electronic operations which use the digital finite state machine 𝑫𝑫 are defined 

as, 

𝐒𝐒𝒊𝒊
𝒕𝒕 ≡ S𝑖𝑖

𝑡𝑡(𝐶𝐶𝐼𝐼𝑖𝑖
𝑡𝑡, 𝐶𝐶𝐼𝐼𝑖𝑖+1

𝑡𝑡 , 𝐶𝐶𝐼𝐼𝑖𝑖−1
𝑡𝑡 ) 

𝐈𝐈𝒊𝒊,𝒊𝒊−𝟏𝟏
𝒕𝒕 ≡ I𝑖𝑖,𝑖𝑖−1

𝑡𝑡 (𝐶𝐶𝐼𝐼𝑖𝑖
𝑡𝑡, 𝐶𝐶𝐼𝐼𝑖𝑖−1

𝑡𝑡 ) 

𝐈𝐈𝒊𝒊,𝒊𝒊+𝟏𝟏
𝒕𝒕 ≡ I𝑖𝑖,𝑖𝑖+1

𝑡𝑡 (𝐶𝐶𝐼𝐼𝑖𝑖
𝑡𝑡, 𝐶𝐶𝐼𝐼𝑖𝑖+1

𝑡𝑡 ) 

𝐒𝐒𝒊𝒊
𝒕𝒕, 𝐈𝐈𝒊𝒊,𝒊𝒊−𝟏𝟏

𝒕𝒕 , 𝐈𝐈𝒊𝒊,𝒊𝒊+𝟏𝟏
𝒕𝒕 = 𝑫𝑫(𝐶𝐶𝐼𝐼𝑖𝑖

𝑡𝑡, 𝐶𝐶𝐼𝐼𝑖𝑖+1
𝑡𝑡 , 𝐶𝐶𝐼𝐼𝑖𝑖−1

𝑡𝑡 ) 

In this formulation, the role of digital and chemical information processing can be separated 

and can be described by the following, 

1. 𝜶𝜶 �𝐶𝐶𝐼𝐼𝑖𝑖
𝑡𝑡�: occurs in a chemical medium and relates to the Hysteresis effect and 

noise 

2. 𝜷𝜷 𝑷𝑷𝑪𝑪(𝐒𝐒𝒊𝒊
𝒕𝒕): occurs in a chemical medium describes the physical effect of the central 

cell stirrer on the oscillations. 

3. (1 − 𝜶𝜶 − 𝜷𝜷)𝑷𝑷𝑰𝑰(𝐒𝐒𝒊𝒊
𝒕𝒕, 𝐒𝐒𝒊𝒊−𝟏𝟏

𝒕𝒕 , 𝐒𝐒𝒊𝒊+𝟏𝟏
𝒕𝒕 , 𝑰𝑰𝒊𝒊,𝒊𝒊−𝟏𝟏

𝒕𝒕 , 𝑰𝑰𝒊𝒊,𝒊𝒊+𝟏𝟏
𝒕𝒕 ) : occurs in the chemical medium 

describes the physical effects of hydrodynamic coupling between neighbouring 

cells on the existing chemical oscillations. 

4. {𝐒𝐒𝒊𝒊
𝒕𝒕, 𝐈𝐈𝒊𝒊,𝒊𝒊−𝟏𝟏

𝒕𝒕 , 𝐈𝐈𝒊𝒊,𝒊𝒊+𝟏𝟏
𝒕𝒕 }: occurs in the electronic domain controlled by the digital Finite 

State Machine which is defined as  𝐒𝐒𝒊𝒊
𝒕𝒕, 𝐈𝐈𝒊𝒊,𝒊𝒊−𝟏𝟏

𝒕𝒕 , 𝐈𝐈𝒊𝒊,𝒊𝒊+𝟏𝟏
𝒕𝒕 = 𝑫𝑫(𝐶𝐶𝐼𝐼𝑖𝑖

𝑡𝑡, 𝐶𝐶𝐼𝐼𝑖𝑖+1
𝑡𝑡 , 𝐶𝐶𝐼𝐼𝑖𝑖−1

𝑡𝑡 ) 
 

7.2.1 Time stepping in hybrid electronic-chemical logic 
 

Using the description of state machine and variables which distributes information processing 

in electronic and chemical domains, we now describe the complete hybrid state machine 𝑲𝑲, 

and formulate time-stepping logic where at each step the information loops through chemical 

and electronic domains. The hybrid state machine uses digital processing (𝑫𝑫) and physical and 

chemical processing state machines (𝑷𝑷, C). To distinguish the initial state from the generalized 

state at time step t, we describe an additional state machine 𝑪𝑪𝟎𝟎 which represents the initial 

condition. The hybrid chemical-digital state machine 𝑲𝑲 acting on a chemical state is defined as  
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𝑲𝑲𝒕𝒕(𝐶𝐶𝐼𝐼𝑖𝑖) ≡ 𝑪𝑪(𝑷𝑷(𝑫𝑫�𝐶𝐶𝐼𝐼𝑖𝑖, 𝐶𝐶𝐼𝐼𝑖𝑖�), 𝐶𝐶𝐼𝐼𝑖𝑖) 

such that, we can describe time-stepping of the digital chemical state as, 

𝐶𝐶𝐼𝐼𝑖𝑖
𝑡𝑡+1 = 𝑲𝑲𝒕𝒕(𝐶𝐶𝐼𝐼𝑖𝑖

𝑡𝑡, 𝐶𝐶𝐼𝐼𝑖𝑖) 

where 𝐶𝐶𝐼𝐼𝑖𝑖
𝑡𝑡  represents the digital chemical state of the central cell and 𝐶𝐶𝐼𝐼𝑖𝑖 describes the 

combined digital chemical state of all the neighbouring cells. At the initial state, for any  CCA, 

the chemical state and PWM state of the underlying stirrer has one-to-one mapping which is 

controlled by the initial chemical state machine 𝑪𝑪𝟎𝟎 without any surrounding hysteresis effects 

and noise effects from chemical fluctuations.  

The initial condition is well-defined by digital chemical states or equivalent stirrer operations 

and at this point, chemical interactions start.  

𝑰𝑰𝑪𝑪 = 𝐶𝐶𝐼𝐼𝑖𝑖
0 = 𝑪𝑪𝟎𝟎�S𝑖𝑖

0, I𝑖𝑖,𝑖𝑖
0 � 

𝑰𝑰𝑪𝑪 = (S𝑖𝑖
0, I𝑖𝑖,𝑖𝑖

0 ) = 𝑫𝑫(𝐶𝐶S𝑖𝑖
0) 

The temporal evolution is given by the interaction of the cell with its neighbouring cells 

together with hysteresis, hydrodynamic coupling and noise effects defined by chemical state 

machines 𝑪𝑪 and P with the given initial conditions,  

Step 1: 

𝐶𝐶𝐼𝐼𝑖𝑖
1 = 𝑪𝑪 �𝑷𝑷(S𝑖𝑖

0, I𝑖𝑖,𝑖𝑖
0 ), 𝐶𝐶𝐼𝐼𝑖𝑖

0� = 𝑪𝑪(𝑰𝑰𝑪𝑪) 

(S𝑖𝑖
1, I𝑖𝑖,𝑖𝑖

1 ) = 𝑫𝑫(𝐶𝐶S𝑖𝑖
1, 𝐶𝐶S𝑖𝑖

1) 

For the next step, to update the digital chemical state 𝐶𝐶𝐼𝐼𝑖𝑖
2, we can write Step 2 as: 

Step 2: 

𝐶𝐶𝐼𝐼𝑖𝑖
2 = 𝑪𝑪 �𝑷𝑷(S𝑖𝑖

1, I𝑖𝑖,𝑖𝑖
1 ), 𝐶𝐶𝐼𝐼𝑖𝑖

1� = 𝑪𝑪(𝑷𝑷(𝑫𝑫�𝐶𝐶S𝑖𝑖
1, 𝐶𝐶S𝑖𝑖

1�), 𝐶𝐶𝐼𝐼𝑖𝑖
1) = 𝑲𝑲𝟏𝟏(𝑪𝑪(𝑰𝑰𝑪𝑪)) 

(S𝑖𝑖
2, I𝑖𝑖,𝑖𝑖

2 ) = 𝑫𝑫(𝐶𝐶S𝑖𝑖
2, 𝐶𝐶S𝑖𝑖

2) 

where the hybrid state machine can be expanded as,  

𝑲𝑲𝟏𝟏(𝑪𝑪(𝑰𝑰𝑪𝑪)) = 𝑪𝑪(𝑷𝑷(𝑫𝑫(𝑪𝑪(𝑰𝑰𝑪𝑪))), 𝑪𝑪(𝑰𝑰𝑪𝑪)) 
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Step 3: 

𝐶𝐶𝐼𝐼𝑖𝑖
3 = 𝑪𝑪 �(S𝑖𝑖

2, I𝑖𝑖,𝑖𝑖
2 ), 𝐶𝐶𝐼𝐼𝑖𝑖

2� = 𝑪𝑪 �𝑷𝑷(𝑫𝑫�𝐶𝐶S𝑖𝑖
2, 𝐶𝐶S𝑖𝑖

2�), 𝐶𝐶𝐼𝐼𝑖𝑖
2� = 𝑲𝑲𝟐𝟐(𝑲𝑲𝟏𝟏(𝑪𝑪(𝑰𝑰𝑪𝑪))) 

(S𝑖𝑖
3, I𝑖𝑖,𝑖𝑖

3 ) = 𝑫𝑫(𝐶𝐶S𝑖𝑖
3, 𝐶𝐶S𝑖𝑖

3) 

Step N: 

𝐶𝐶𝐼𝐼𝑖𝑖
𝑁𝑁 = 𝑪𝑪 �𝑷𝑷�S𝑖𝑖

𝑁𝑁−1, I𝑖𝑖,𝑖𝑖
𝑁𝑁−1�, 𝐶𝐶𝐼𝐼𝑖𝑖

𝑁𝑁−1� = 𝑪𝑪 �𝑷𝑷(𝑫𝑫�𝐶𝐶S𝑖𝑖
𝑁𝑁−1, 𝐶𝐶S𝑖𝑖

𝑁𝑁−1�), 𝐶𝐶𝐼𝐼𝑖𝑖
𝑁𝑁−1�

= 𝑲𝑲𝑪𝑪−𝟏𝟏𝑲𝑲𝑪𝑪−𝟐𝟐 … 𝑲𝑲𝟏𝟏(𝑪𝑪(𝑰𝑰𝑪𝑪)) 

(S𝑖𝑖
𝑁𝑁 , I𝑖𝑖,𝑖𝑖

𝑁𝑁 ) = 𝑫𝑫(𝐶𝐶S𝑖𝑖
𝑁𝑁, 𝐶𝐶S𝑖𝑖

𝑁𝑁) 

Hence, the general formulation for the digital chemical state at the tth time step to a hybrid 

chemical-electronic state machine is defined as, 

𝐶𝐶𝐼𝐼𝑖𝑖
𝑡𝑡 = 𝑲𝑲𝒕𝒕−𝟏𝟏𝑲𝑲𝒕𝒕−𝟐𝟐 … 𝑲𝑲𝟏𝟏(𝑪𝑪(𝑰𝑰𝑪𝑪)) 

𝑲𝑲𝒕𝒕(𝐶𝐶𝐼𝐼𝑖𝑖) ≡ 𝑪𝑪(𝑷𝑷(𝑫𝑫(𝐶𝐶S𝑖𝑖
𝑡𝑡, 𝐶𝐶S𝑖𝑖

𝑡𝑡)), 𝐶𝐶S𝑖𝑖
𝑡𝑡) 

So, a hybrid chemical-electronic state machine 𝑲𝑲  comprised of three different operations 

which occur in the digital and analogue domain defined by three state machines 𝑫𝑫, 𝑷𝑷 and𝑪𝑪. 

Based on this formulation of the hybrid chemical-electronic state machine, we can write our 

state machine in computation and “display screen” mode can be defined, 

𝑲𝑲𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄
𝒕𝒕 (𝐶𝐶S𝑖𝑖

𝑡𝑡) ≡ 𝑪𝑪(𝑷𝑷(𝑫𝑫(𝐶𝐶S𝑖𝑖
𝑡𝑡, 𝐶𝐶S𝑖𝑖

𝑡𝑡)), 𝐶𝐶S𝑖𝑖
𝑡𝑡) 

𝑲𝑲𝒅𝒅𝒊𝒊𝒅𝒅𝒄𝒄
𝒕𝒕 (𝐶𝐶S𝑖𝑖

𝑡𝑡) ≡ 𝑪𝑪(𝑷𝑷(𝑫𝑫(𝐶𝐶S𝑖𝑖
𝑡𝑡 , 𝐶𝐶S𝑖𝑖

𝑡𝑡))) = 𝑯𝑯(𝑫𝑫(𝐶𝐶S𝑖𝑖
𝑡𝑡 , 𝐶𝐶S𝑖𝑖

𝑡𝑡) − 𝒄𝒄) 

𝑯𝑯(𝑂𝑂) = �0, 𝑂𝑂 < 0
1, 𝑂𝑂 ≥ 0 

where, 𝑲𝑲𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄
𝒕𝒕  is the hybrid state machine in computation mode, 𝑲𝑲𝒅𝒅𝒊𝒊𝒅𝒅𝒄𝒄

𝒕𝒕  is the hybrid state 

machine in a fully deterministic display screen mode, 𝑯𝑯(𝑂𝑂) is a piecewise function and 𝒄𝒄 is 

the threshold stirrer level at which the digital chemical state changes. In the display screen 

mode, there are no hysteresis, physical coupling and noise effects, so that there exists a one-to-

one mapping in the digital PWM states and chemical states. The pictorial representation of the 

hybrid chemical-electronic state machine in computation mode and in “display screen” mode 

is shown in Fig. S63 and Fig. S64.  
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Fig. S63: Hybrid Electronic-Chemical Computational State Machine. (A-C) shows the concept 
of the proposed hybrid state machine showing information flow in chemical and electronic 
domains. The chemical domain comprises of two state machines 𝑷𝑷 and 𝑪𝑪 which computes in a 
probabilistic manner (shown in dotted) and the digital state machine 𝑫𝑫 computes in the digital 
domain in the deterministic manner (shown in continuous). The information transfer domain 
𝑻𝑻(𝑪𝑪𝑪𝑪𝑪𝑪) converts analogue chemical state (𝑪𝑪𝐒𝐒𝒊𝒊

𝒕𝒕) into the digital equivalent of a chemical state 
(𝑪𝑪𝐒𝐒𝒊𝒊

𝒕𝒕). 

 

 

Fig. S64: Hybrid Electronic-Chemical “Display Screen” State Machine showing one-to-one 
mapping. (A, B) shows the concept of the proposed hybrid state machine in “display screen” 
mode where information loops between chemical and digital domains in the absence of 
hysteresis and probabilistic effects. Due to a complete deterministic information loop with one-
to-one mapping, the information flow is equivalent to processing in a purely digital domain as 
shown in B. 

 

Emergence of Probabilistic Behaviour in Hybrid Computational Architecture 

In this section, we will describe the emergence of the probabilistic nature of computation in 

our proposed computational architecture. Given an initial state, we define response as the effect 

on the initial state due to the added stimulus of control input. Starting from the digital PWM 

states which are the output of the digital state machine, the response of the PWM value on the 

stirrer (motor) can be assumed to be linear. If we define emerging states based on only the 

response of the stirrer, we can distinct two output states as shown in Fig. S65 A and hence, 

well-defined deterministic output. Chemical response to stirrer input becomes non-linear, with 
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a region where the stirrer response on emerging chemical states is strong (see Fig. S65 B). We 

have demonstrated similar behaviour experimentally (see SI Section 2.4, Fig. S26), where the 

peak oscillation amplitude rises strongly with the change in PWM values by creating a step 

function to increase the PWM values from 20 to 80.  

 

Fig. S65: Representation of probabilistic outcomes in hybrid computational architecture. (A) 
shows the simple linear response of the PWM value on the stirrer which is classified to 
deterministic digital states. (B) Chemical response on stirrer control input creating a non-linear 
response. (C) Hysteresis effects creating probabilistic outputs of the chemical states due to 
complex hydrodynamic interaction with the ongoing chemical oscillations. (D) Expanded 
probabilistic outcome space due to the non-linear response of PWM input, hysteresis effects 
and hydrodynamic couplings between neighbours.  

 

Due to short term memory in the chemical system (forced-damped oscillator), the system 

shows strong hysteresis behaviour which leads to a complex interaction between the previous 

oscillatory state and non-linear chemical response from the stirrer. These emergent analogue 

chemical states when classified with CNN leads to probabilistic chemical states Fig. S65 C. 

However, during the actual computation, the interaction is not limited to the previous chemical 

oscillatory states and stirrer response, but also with the interactions of nearest neighbours and 

response from the multiple interacting cells and interfacial stirrers. The coupled oscillatory 

chemical states with high-dimensional nearest neighbours, hysteresis and stirrer interactions 

expand the probabilistic space, which when gets classified by CNN leads to probabilistic 

outcomes as shown in Fig. S65 D.   
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Based on the defined hybrid chemical-electronic state machine above, we further extend our 

formulation towards computation in one- and two-dimensional Chemical Cellular Automata 

(CCA) and identifying the role of chemistry in the computational architecture. 

Example 1: One-dimensional Chemical Cellular Automata 

In the one-dimensional CCA implementation, consider a 1D-CCA rule defined by 𝑫𝑫𝑪𝑪-𝑫𝑫𝑰𝑰 

where the finite state machine 𝑫𝑫𝑪𝑪 updates the central cell stirrer and 𝑫𝑫𝑰𝑰 updates the interfacial 

cell stirrers based on readout of digital chemical states. In this case, the transfer function state 

machine takes the output from two digital finite state machines (𝑫𝑫𝑪𝑪 and 𝑫𝑫𝑰𝑰) and transfers both 

cell and interfacial stirrer operations into the chemical analogue domain. Hence, the 

generalized 1D-CCA hybrid chemical-electronic state machine is defined as, 

𝑲𝑲𝒕𝒕(𝐶𝐶S𝑖𝑖
𝑡𝑡) ≡ 𝑪𝑪 �𝑷𝑷��𝑫𝑫𝑪𝑪�𝐶𝐶S𝑖𝑖

𝑡𝑡, 𝐶𝐶S𝑖𝑖
𝑡𝑡�, 𝑫𝑫𝑰𝑰�𝐶𝐶S𝑖𝑖

𝑡𝑡, 𝐶𝐶S𝑖𝑖
𝑡𝑡���, 𝐶𝐶S𝑖𝑖

𝑡𝑡� 

The various implemented 1D CCA rules utilize the generalized hybrid state machine, where 

digital state machines (𝑫𝑫𝑪𝑪 and 𝑫𝑫𝑰𝑰) were defined in a deterministic way and chemical/physical 

state machines (𝑫𝑫, 𝑪𝑪) was implemented using a phenomenological probabilistic model. The 

emergence of novel patterns occurs due to increased connectivity in configuration space due to 

chemical information processing defined by (𝑫𝑫, 𝑪𝑪).  

Similarly, the implemented elementary CA rule state machine (“display screen mode”) can be 

defined from the generalized state machine as, 

𝑲𝑲𝒆𝒆𝒆𝒆
𝒕𝒕 (𝐶𝐶S𝑖𝑖

𝑡𝑡) ≡ 𝑪𝑪 �𝑷𝑷��𝑫𝑫𝑪𝑪�𝐶𝐶S𝑖𝑖
𝑡𝑡, 𝐶𝐶S𝑖𝑖

𝑡𝑡���� = 𝑯𝑯�𝑫𝑫𝑪𝑪�𝐶𝐶S𝑖𝑖
𝑡𝑡, 𝐶𝐶S𝑖𝑖

𝑡𝑡� − 𝒄𝒄� 

which is equivalent to the 1D-CCA rule 𝑫𝑫𝑪𝑪-0, where there is no interaction between the 

neighbouring cells as interfacial stirrers are off and direct one-to-one mapping on the central 

cell for the given rule defined by 𝑫𝑫𝑪𝑪. 

Example 2: Two-dimensional Chemical Cellular Automata 

In the 2D CCA, the digital finite state machine that leads to propagation, replication, 

competition and multiple events of chemical entities (Chemits) is defined by 𝑫𝑫𝑪𝑪(𝐶𝐶S𝑖𝑖,𝑖𝑖
𝑡𝑡 , 𝐶𝐶S𝑚𝑚,𝑛𝑛

𝑡𝑡 ), 

which reads the local digital chemical states between the nearest and next-nearest neighbours 

where 𝐶𝐶S𝑖𝑖,𝑖𝑖
𝑡𝑡  represents the central cell and 𝐶𝐶S𝑚𝑚,𝑛𝑛

𝑡𝑡  represents all the neighbours collectively. 

𝑲𝑲𝑪𝑪
𝒕𝒕 (𝐶𝐶S𝑖𝑖,𝑖𝑖

𝑡𝑡 , 𝐶𝐶S𝑚𝑚,𝑛𝑛
𝑡𝑡 ) ≡ 𝑪𝑪(𝑷𝑷(𝑫𝑫𝑪𝑪(𝐶𝐶S𝑖𝑖,𝑖𝑖

𝑡𝑡 , 𝐶𝐶S𝑚𝑚,𝑛𝑛
𝑡𝑡 )), (𝐶𝐶S𝑖𝑖,𝑖𝑖

𝑡𝑡 , 𝐶𝐶S𝑚𝑚,𝑛𝑛
𝑡𝑡 )) 
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The finite state machine 𝑫𝑫𝑪𝑪(𝐶𝐶S𝑖𝑖,𝑖𝑖
𝑡𝑡 , 𝐶𝐶S𝑚𝑚,𝑛𝑛

𝑡𝑡 ) for Chemits comprises two different parts which 

output four different PWM states of cell stirrers and two for interfacial stirrers, 

1. 𝑫𝑫𝟏𝟏�𝐶𝐶S𝑖𝑖,𝑖𝑖
𝑡𝑡 , 𝐶𝐶S𝑖𝑖,𝑖𝑖

𝑡𝑡 � → {1𝑖𝑖,𝑖𝑖
𝑡𝑡 , 3𝑖𝑖,𝑖𝑖

𝑡𝑡 , 4𝑖𝑖,𝑖𝑖
𝑡𝑡 } with 1, 3 and 4 are PWM levels corresponding to 

inactive, cell core and interaction stirrers. 

 

2. 𝑫𝑫𝟐𝟐�𝐶𝐶S𝑖𝑖,𝑖𝑖
𝑡𝑡 � → {1𝑖𝑖,𝑖𝑖

𝑡𝑡 , 2𝑖𝑖,𝑖𝑖
𝑡𝑡 } with 1 and 2 are PWM levels corresponding to inactive and 

random fluctuations stirrer to create surrounding weak oscillations. 

The implementation of Chemical Entities (Chemits) in both experiments and simulations 

demonstrated emergent behaviour in the hybrid chemical-electronic state machine, where the 

Chemits interact with the fluctuating medium.  

 

7.2.2 Chemical computation towards combinatorial optimization problems 
 

In the previous section, we defined a hybrid state machine where both chemical and electronic 

state machines take part in the probabilistic computation. The computation in the two-

dimensional Chemical Cellular Automata (CCA) shared between the chemical and digital 

domain, where the emergence of the chemical state drives the digital state machine. In this 

section, we extend the qualification of chemical computation by demonstrating the role of 

chemistry in solving combinatorial optimization problems. 

The introduction of chemical logic into the hybrid algorithm increases the number of the 

trajectories to connect different configurations in an Ising system in BZ computation, and we 

use a discrete-time Markov chain to understand and analyze it. To emphasize the role of 

chemistry, we started to introduce a greedy search algorithm and later combined it with 

chemical states which form our chemical computation strategy. 

For a system with 𝑁𝑁  spins, the total number of the configurations 𝐶𝐶  is 2𝑁𝑁 , where a 

configuration 𝑅𝑅  is defined as a set of specific spins values. The transition between 

configurations forms the key to our optimization. If in two configurations, there is only 1 spin 

with different values and the rest of the spins are the same, they are neighbouring 

configurations.  In a greedy algorithm, only the transition to neighbouring configurations with 

lower energy is allowed. Although it helps with fast convergence, this algorithm can be easily 
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trapped in a local minimum and starting with some configurations, it will never reach the global 

minimum due to the limited number of configuration connections.  

Chemistry is probabilistic in the sense even though we define the current PWM level, the 

emerged CS is not purely dependent on the current PWM values but a probabilistic distribution. 

Although this distribution depends on the accumulation of all the previous operations, we can 

control the PWM values so that this distribution is not completely random but quite consistent 

with our look-up table with a probability 𝑝𝑝𝑎𝑎ℎ𝑎𝑎𝑚𝑚 ± ∆𝑝𝑝, where ∆𝑝𝑝 is a small value counting the 

effects from previous states. We use a discrete-time Markov chain to analyze the optimization 

process given ∆𝑝𝑝 is small.  

First, the set of configurations are defined as 𝑪𝑪 = {𝑅𝑅1, 𝑅𝑅2, … , 𝑅𝑅2𝑁𝑁}  with that the individual 

configuration is a representation of the spins. Probability distribution in this configuration set 

is further defined with the initial condition  𝑷𝑷𝟎𝟎 = {𝑝𝑝1,0, 𝑝𝑝2,0, … , 𝑝𝑝2𝑁𝑁,0} . The probability 

distribution at time step t is represented by 𝑷𝑷𝒕𝒕 = {𝑝𝑝1,𝑡𝑡, 𝑝𝑝2,𝑡𝑡, … , 𝑝𝑝2𝑁𝑁,𝑡𝑡} with 𝑷𝑷𝒕𝒕 =  𝑷𝑷𝟎𝟎 𝑻𝑻𝑡𝑡, where 

𝑻𝑻 is the transition matrix with a size of 2𝑁𝑁 × 2𝑁𝑁 and the summation within a row to be 1.  

The ( 𝑂𝑂𝑡𝑡ℎ , 𝑗𝑗𝑡𝑡ℎ ) element in the transition matrix described the probability of configuration 

transition from 𝑅𝑅𝑖𝑖 to 𝑅𝑅𝑖𝑖. It is important to note that only the transition between neighbouring 

configurations is allowed. Now the problem remains to compare the energy of two 

neighbouring configurations 𝑅𝑅𝑖𝑖 and 𝑅𝑅𝑖𝑖 which defines the (𝑂𝑂𝑡𝑡ℎ, 𝑗𝑗𝑡𝑡ℎ) element in 𝑻𝑻. If the energy 

𝑅𝑅𝑖𝑖 is smaller than 𝑅𝑅𝑖𝑖, we change the configuration from 𝑅𝑅𝑖𝑖 to 𝑅𝑅𝑖𝑖, else the configuration is still 𝑅𝑅𝑖𝑖. 

𝑷𝑷𝒕𝒕 will be converged given t is large enough.  

We only need to consider the transition of neighbouring configurations and those that are non-

neighbouring are 0. Let us assume we flip the spin 𝑂𝑂ℎ1 to 𝑂𝑂ℎ2. Then the energy difference can 

be calculated as: 

∆𝐸𝐸 = (𝑂𝑂ℎ2 − 𝑂𝑂ℎ1) � 𝐻𝐻𝑜𝑜𝑜𝑜𝑜𝑜,(ℎ,𝑖𝑖)𝐾𝐾ℎ,𝑖𝑖𝑂𝑂𝑖𝑖
𝑖𝑖≠ℎ

 

Note the summation goes through all the 2𝑁𝑁spins except for spin h and 𝐾𝐾ℎ,𝑖𝑖 is the coefficients 

of the spin interactions. 𝑯𝑯𝒄𝒄𝒐𝒐𝒅𝒅,(𝒉𝒉,𝒊𝒊) is from the comparison between observation and the look-up 

table, which is the crucial step for us to introduce probabilistic effects from chemistry. If they 

are consistent, 𝐻𝐻𝑜𝑜𝑜𝑜𝑜𝑜,(ℎ,𝑖𝑖) = +1 else 𝐻𝐻𝑜𝑜𝑜𝑜𝑜𝑜,(ℎ,𝑖𝑖) =  −1.  



S106 
 

Since ∆𝐸𝐸 is calculated from individual interaction terms, the chance of 𝐻𝐻𝑜𝑜𝑜𝑜𝑜𝑜,(ℎ,𝑖𝑖) being 1 is 

𝑝𝑝𝑎𝑎ℎ𝑎𝑎𝑚𝑚 for one term, which makes the overall distribution of ∆𝐸𝐸 being polynomial. If ∆𝐸𝐸 > 0, 

this transition is rejected and ∆𝐸𝐸 ≤ 0 is accepted, which contributes to the probability in the 

diagonal (no change) and (𝑂𝑂𝑡𝑡ℎ, 𝑗𝑗𝑡𝑡ℎ)  element in the transition matrix respectively. 

If 𝑝𝑝𝑎𝑎ℎ𝑎𝑎𝑚𝑚 is 1, our algorithm reduces to the greedy search purely in the digital domain. If 𝑝𝑝𝑎𝑎ℎ𝑎𝑎𝑚𝑚 

is 0.5, regardless of the spins, the probability of ∆𝐸𝐸 ≤ 0 is 0.5 where the system loses the 

tendency to minimize energy and become ergodic. By programming the chemical computer, 

we tune the value of 𝑝𝑝𝑎𝑎ℎ𝑎𝑎𝑚𝑚 and introduce the ergodicity from chemistry while enabling its 

tendency to minimize energy. 

 

Implementation via Chemical and Digital State Machines 

1.  A set of spins 𝐼𝐼 = {𝑂𝑂1, 𝑂𝑂2, … , 𝑂𝑂𝑁𝑁} is randomized and stored in the digital computer. 

2. The HIGH or LOW PWM values in the corresponding cells are applied according to 

the spin state. (The digital finite state machine) 

3. One spin 𝑂𝑂ℎ is randomly flipped from 𝑂𝑂ℎ1 to 𝑂𝑂ℎ2 and the pair-wise energy change was 

calculated in the digital computer. (Which is (𝑂𝑂ℎ2 − 𝑂𝑂ℎ1)𝐾𝐾ℎ,𝑖𝑖𝑂𝑂𝑖𝑖 for every i spins) (The 

digital finite state machine) 

4. Update the PWM values to the latest spin values, and the corresponding 𝐻𝐻𝑜𝑜𝑜𝑜𝑜𝑜,(ℎ,𝑖𝑖) was 

calculated from the chemical finite state machine. If the observation is consistent with 

the look-up table, 𝐻𝐻𝑜𝑜𝑜𝑜𝑜𝑜,(ℎ,𝑖𝑖) = +1  else 𝐻𝐻𝑜𝑜𝑜𝑜𝑜𝑜,(ℎ,𝑖𝑖) = −1 . (The chemical finite state 

machine) 

5. The overall energy change is calculated via ∆𝐸𝐸 = (𝑂𝑂ℎ2 − 𝑂𝑂ℎ1) ∑ 𝐻𝐻𝑜𝑜𝑜𝑜𝑜𝑜,(ℎ,𝑖𝑖)𝐾𝐾ℎ,𝑖𝑖𝑂𝑂𝑖𝑖𝑖𝑖≠ℎ  and 

if ∆𝐸𝐸 < 0, the change of the spin is accepted otherwise rejected. 

Example: Number Partitioning Problem 

Consider a number set 𝐼𝐼 = {1, 3, 4, 9, 3, 5, 3, 6} which needs to be partitioned into two disjoint 

subsets (𝐼𝐼1, 𝐼𝐼2) such as the sum of all the elements of 𝐼𝐼1and 𝐼𝐼2 is equal. We compare the 

performance of a purely digital and hybrid strategy. We started with setting 𝑝𝑝𝑎𝑎ℎ𝑎𝑎𝑚𝑚 = 1, which 

creates a purely digital greedy algorithm. In this case, some initial configurations are already 

trapped in a local minimum, or they can lead to a local minimum, which means the probability 

of reaching the global minimum (thus solve the problem) is not possible. By slightly reducing 



S107 
 

𝑝𝑝𝑎𝑎ℎ𝑎𝑎𝑚𝑚 to 0.99, the ergodicity of the system is enabled and all the configurations can reach the 

global minimum, by sacrificing the performance of some configurations.  

 

 

Fig. S66: Probability to reach minimum energy configuration using deterministic and 
probabilistic computational machines for a number partition problem. The figure shows the 
probability to reach minimal energy configuration starting at different initial configurations at 
different deterministic indices whose value describes digital, ergodic and hybrid algorithms. A 
deterministic index equals 1 (shown in red) corresponds to the purely digital deterministic 
greedy algorithm, and 0.5 corresponds to ergodic (shown in Blue) and 0.99/0.95 (shown in 
green/orange) corresponds to hybrid logic.    

 

Here we drew the probability of reaching global minimum starting with different 

configurations under different 𝑝𝑝𝑎𝑎ℎ𝑎𝑎𝑚𝑚. With decreased 𝑝𝑝𝑎𝑎ℎ𝑎𝑎𝑚𝑚, this distribution is shrunk which 

means the preference of selecting a “good” configuration is decreased after introducing the 

ergodicity (see Fig. S66). As an example, Fig. S67 shows an example of the trajectory in the 

configurational space towards the solution to the number partitioning problem starting at 

configuration no. 50 in the configuration space. In the pure deterministic case (index=1), the 

system stuck into local minima and no part of the trajectory overlaps with solution 

configuration (red). In a pure ergodic approach (index=0.5), the algorithm spans through 

configurational space randomly and hence can find the solution but inefficiently. However, in 
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the hybrid approach (index=0.99, 0.95), the trajectory overlaps with the solutions substantially 

and demonstrates an efficient combination using a probabilistic approach. 

 

 

Fig. S67: Configuration Trajectories in 8-number partition problem. The figure shows 
trajectories of finding the solution of the number partitioning problem at different deterministic 
indices. A deterministic index equals 1 corresponds to the purely deterministic greedy 
algorithm, and other indices demonstrate the role of chemistry. The black lines are the actual 
trajectories spanned by the algorithms and the red lines correspond to the solution 
configurations. 

 

7.2.3 Conclusions 
 
In this section, we described the functionality of the proposed hybrid computation architecture 

and using the state-machine algebra, we demonstrated the role of electronic and chemical logic 

in constructing algorithms using the hybrid architecture. We posed questions at the start of the 

document which could be used to qualify our computational architecture towards the 

probabilistic chemical computer, which were answered in different aspects in various 

subsections. To answer these questions, we defined state variables and machines to describe 

information flow between electronic and chemical domains at each step in the hybrid 

computation with example in one- and two-dimensional CCA and combinatorial optimization 

problems. The roles of electronics and chemistry were shown by separating digital processing 

(deterministic finite state machine) from physical and chemical processes (probabilistic state 

machine). Hence, demonstrating that one-to-one mapping is a subset of probabilistic mapping 

between electronic and chemical states. Using the one- and two-dimensional CCA, we 

demonstrated that the computational architecture could work in both deterministic and 
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probabilistic modes, which increases the configurational paths through which the system can 

evolve. We extended further by demonstrating a hybrid-computation algorithm to solve 

combinatorial optimization problem mapped to the Ising lattice ground state problem. We 

demonstrated the power of programmable probabilistic hybrid computation logic over 

deterministic algorithm by simplifying it to a Markovian process. The description of the 

probabilistic algorithm as the Markov process was considered due to the simplicity of the 

model to describe the role of chemical and physical phenomena. As the problem size scales, 

hybrid logic prevents the system from getting stuck into local minima. For a very large system, 

we expect a large number of iterations with various initial configurations are required to find 

the global minima. Instead, using hybrid computation logic, a single run is enough to find the 

minima as it utilizes the probabilistic logic and has the capacity to explore alternate paths 

towards convergence with less tendency of getting stuck to local minima.  

In a conclusion, we have demonstrated that our computational architecture is probabilistic in 

nature where the information processing distributes between electronic and chemical domains 

and the implementation of simple algorithms towards useful computation. The computational 

architectural design is quite generic and there is a large scope of implementing more efficient 

algorithms over a diverse range of mathematical problems. 

 

7.3 Towards fully Chemical Computation Logic 
 

Based on our current computational approach, using hybrid chemical electronic logic, we can 

further increase the information processing in the chemical domain and utilize the full potential 

of massively parallel interactions. This is possible by mapping the energy/cost minimization 

problem completely into the physical behaviour of the chemical system governed by time 

evolution. There exists a variety of physicochemical systems capable of spontaneously 

minimizing energy but it becomes extremely complex to program the system such that 

mathematical problems can be mapped precisely and solution can be readout. This is a big 

challenge that exists in molecular computation frameworks. Our computational architecture 

bypasses this limitation and is capable of utilizing precise digital control for I/O and massively 

parallel information processing in the chemical domain.  

As an example, by increasing the accuracy of the couplings between the cells and finding the 

input controls to create perfectly symmetric chemical states, the combinatorial optimization 
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problem can be directly mapped to the experimental platform without defining a state machine 

in the digital domain. Fig. S68 A shows a fully coupled graph with four variables which could 

be equivalent to 4-number partitioning problem, where each edge defines the couplings 

coefficients. The direct mapping of this graph to the interconnected chemical oscillator is 

shown in Fig. S68 B. The four-variables are mapped directly to the chemical states of the active 

cells. We define four cells to introduce self-interactions and four additional auxiliary cells to 

complete the connectivity between the diagonally placed spins (x2, x3) and (x1, x4). The cell-

cell interface can be activated with the weights proportional to the coupling coefficients. At 

each step, all neighbouring interactions occur and based on purely chemical decision making, 

new chemical states should emerge. This emergence of these chemical states can be directly 

enhanced using digital control, such as PWM states of cell stirrers. By utilizing the natural 

tendency of the physicochemical system and precise control of couplings using digital control, 

highly efficient computing hardware can be developed. In this way, complete chemical 

processing occurs in the chemical domain and digital electronics state machine act as an 

amplifier to sustain chemical states and precise control of I/O. A viable solution towards a fully 

chemical computational platform is to switch to electrochemical framework coupled with 

chemical oscillators, where electrochemical potential or current could be used to precisely 

define the coupling strength. 

 

 

 

 

 

 

 

 

 

 

 

Fig. S68: Implementation of fully chemical computation logic. (A) Fully connected graph with 
4-variables with edges defining the coupling coefficients for self and pairwise coupling 
interactions. (B) shows mapping to a two-dimensional computational architecture where 

(A) (B) 
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couplings between neighbouring cells can be precisely defined and weighted by the coupling 
coefficients from the fully-connected Hamiltonian.   

 

Due to mapping of fully connected Hamiltonian on the two-dimensional computational 

architecture, with the increase in the number of variables and coupling coefficients mapping a 

large-scale combinatorial optimization problem could be inefficient due to requirement of a 

large number of auxiliary cells to satisfy all the pairwise interactions such as number 

partitioning problem on large set or Travelling Salesman Problem with a large number of cities. 

One simpler solution is to use a network of denser grids such as hexagonal, where each cell 

can interact up to six neighbours as compared to four neighbour interaction for a square grid. 

This could lead to more efficient mapping of strongly coupled Hamiltonian and reducing the 

number of auxiliary cells. Here, we propose an alternative approach to couple cells beyond the 

nearest neighbours inspired from the idea of implementing high dimensional quasispaces (36) 

in lower-dimensional geometries. The idea is to miniaturize the computational platform such 

that the coupling between cells can be instantiated by evolving travelling waves of the reaction-

diffusion system. In this case, the coupling between non nearest neighbouring cells can be 

achieved by programming the path lengths of the interface connecting the cells. By 

programming the pathlengths in the interconnected network of cells, waves propagating from 

one cell can reach nearest and next-nearest neighbours at the same time if the path lengths 

joining them are same. Fig. S69 A shows our current strategy to map Ising spins on a square 

grid and use auxiliary cells to instantiate interactions between diagonally placed cells. 

However, based on the proposed strategy, a fully connected four-cell network is achievable 

without using auxiliary cells as shown in Fig. S69 (B, C). Here, path lengths between S1-S2, 

S1-S3 and S1-S4 have been increased by creating meander like structures such that all the 

connections have same path length. In Fig. S69 B, assuming an equilateral triangle (S2-S3-S4) 

with length L, the path lengths between S1-S2, S1-S2 and S1-S4 should be increased to L.  
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Fig. S69: Efficient implementation of non-nearest neighbouring couplings. (A) shows the 
current approach to map 4 variable full coupled graph on our computational architecture. (B 
and C) shows efficient mapping by programming path lengths between the cells avoiding the 
need for auxiliary cells using single layer and multilayer geometries. (C) shows an example of 
efficient mapping on large scale networks with multi-layered structure and programmed 
pathlengths for up to next-nearest neighbour couplings. 

 

These mappings can be made more efficient and compact by using multilayer structure as 

shown in Fig. S69 C, where path lengths between S1-S2, S2-S3, S3-S4 and S4-S1 can be 

increases to √2𝐿𝐿 to match the path lengths between diagonally placed elements. Fig. S69 D 

shows a large scale implementation of the strategy shown in Fig. S69 C to couple next-nearest 

neighbours. Based on the current approach towards chemical computation together with 

efficient mappings of non-nearest neighbour couplings, a very efficient computation 

architecture based on Ising models can be created towards highly efficient computation. 
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