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ARTICLE

Adaptive artificial evolution of droplet protocells in
a 3D-printed fluidic chemorobotic platform with
configurable environments
Juan Manuel Parrilla-Gutierrez1, Soichiro Tsuda1, Jonathan Grizou1, James Taylor 1, Alon Henson1

& Leroy Cronin 1

Evolution via natural selection is governed by the persistence and propagation of living things

in an environment. The environment is important since it enabled life to emerge, and shapes

evolution today. Although evolution has been widely studied in a variety of fields from biology

to computer science, still little is known about the impact of environmental changes on an

artificial chemical evolving system outside of computer simulations. Here we develop a fully

automated 3D-printed chemorobotic fluidic system that is able to generate and select droplet

protocells in real time while changing the surroundings where they undergo artificial evolu-

tion. The system is produced using rapid prototyping and explicitly introduces programmable

environments as an experimental variable. Our results show that the environment not only

acts as an active selector over the genotypes, but also enhances the capacity for individual

genotypes to undergo adaptation in response to environmental pressures.
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O il and water emulsions have long been linked with the
process of abiogenesis because they provide self-
assembled compartmentalization1–3 and their composi-

tional information4 can transmit traits between generations5, 6

despite the absence of information polymers, such as DNA or
RNA. These systems are interesting since, although they lack a
highly evolved metabolism, the semipermeability of the interface
layer can maintain the emulsion integrity7, 8 similar to how the
cellular metabolism maintains a living cell. Moreover, they are
able to respond to environmental chemical stimulus9. Similar
systems can sense and interact with each other10 analogous to cell
signalling, and can be optimised with genetic algorithms11.

Abiogenesis processes are of high importance for their appli-
cation to the development of artificial life. Bio-inspired systems
are gaining traction over mechanical robots creating artificial life
because they can easily overcome some of the main dis-
advantatges12. Energy efficiency is one of the main drawbacks of
traditional robots because they require information to be trans-
formed and sent back and forth between several different layers of
abstraction13. This problem is accentuated in mobile systems
where energy efficiency and response latency between the inter-
faces are critical. Behaviour-based robots using subsumption or
reactive architectures were created to address some of these
problems14 especially the solutions which base its foundation in
the robots being situated and embodied15, 16. These two concepts
are central aspects for all forms of life known, where energy
efficiency is crucial for survivability. Evolution is a process
embodied in its environment17, 18 because it delegates the eva-
luation and selection operations into it, easing its computational
cost.

The process of evolution in the natural world occurs by selection
of the fittest individuals, which results in their long-term survival
and propagation. In the context of artificial chemical evolution, a
well-known experiment by Spiegelman has demonstrated that even
purely biochemical RNA molecules can evolve in vitro when they
undergo an iterative process of amplification and selection19. In this
experiment, RNA was replicated by viral RNA polymerase, Qβ
replicase, in a test tube and a fraction of replicated RNA was serially
transferred to a new test tube containing fresh Qβ replicase. Based
on this system, it was also shown that RNA molecules encoding the
Qβ replicase can evolve when mixed with cell-free protein expres-
sion system and compartmentalised as water-in-oil emulsions20.
However, it is important to note that this selection occurs at the
phenotype level, whereby the interaction of the living entities with
their surroundings determines life or death at the ecosystem level21.
Although the presence of complex and rapidly changing environ-
ments is the norm in the natural world, the impact of these on the
evolutionary process is rarely reported beyond computer simula-
tions22. This is important since the heterogeneity given
from the environment leads to a complex interplay between the
living species and the environment they live in, resulting in natural
selection23.

Here we develop an approach that uses rapid prototyping tools
to design and manufacture hardware24 that embodies an evolu-
tionary experiment16 based on a genetic algorithm25, 26 involving
selection of the artificial genotypes4. This approach allows us to
define the environment as an experimental variable, an aspect
that tends to be disregarded in artificial evolutionary studies
outside computer simulation27. Therefore, we are able to modify
the environment and study its effect on individuals during evo-
lutionary experiments, emulating how a population of entities
responds to sudden environmental changes and demonstrating
that evolutionary selection can occur on non-living very simple
chemical entities3. Furthermore, we can observe how these
changes act as a population filter—reshaping and biasing artificial
‘natural’ selection.

Results
Evolvable oil droplet system. In order to explore the effect
of the environment in an evolutionary experiment, we used
simple oil-in-water droplets as model of protocells, which were
formed by mixing four chemical components (1-octanol, diethyl
phthalate (DEP), 1-pentanol and octanoic acid) and placing
them into a water-filled environment (containing tetra-
decyltrimethylammonium bromide (TTAB) at pH 13), see
“Methods” section. These compounds were selected to cover a
wide range of different polarities, densities, viscosities, solubility
and possible interactions that may occur at the interface (Fig. 1),
with the purpose of creating droplets that would provide a che-
mical compartment related to the aforementioned attributes,
aiming for their stability and the ability to move28 and divide29.
Previous work11 demonstrated that even very simple oil droplet
systems can display a range of complex behaviours essentially
driven by the Maragoni effect30 and furthermore that these
behaviours can be altered by artificial evolution using a genetic
algorithm (GA). The Marangoni effect stems from the partial
dissolution of the components of the droplet into the aqueous
phase. This changes the interfacial surface tension between the
droplets and their surroundings. Due to small fluctuations in the
surface of the aqueous phase, asymmetries in dissolution occur,
and this results in unbalanced forces on the droplet, causing it to
move. It is obvious that the solubility of the oil-in-water has a
huge effect on this process, but other physical properties such as
density and viscosity affect the movement of the droplets; for
example, denser droplets sink below the surface while less dense
ones spread out more on the surface. Less viscous droplets are

1-Octanol 1-PentanolOctanoic acid
TTAB DEP

a

b c

Fig. 1 Droplets as seen from the surfactant perspective. a Our droplet
system consisted of oil formulations of 1-octanol, 1-pentanol, octanoic
acid and diethyl phthalate (DEP) in the oil phase, and
tetradecyltrimethylammonium bromide (TTAB) at pH 13 in the aqueous
phase. While the oil surfactants were non-ionic, TTAB is a cationic
surfactant, meaning that the different surfactant molecules crossed the
semi permeable interface until equilibrium. At the same time, the different
oils dissolved at different rates into the aqueous phase following their
respective solubility ratios. Based on the rate that these different gradients
diminished, the droplets would b move or c divide
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more susceptible to deformation caused by their movement
through the aqueous phase. Droplets also interact, as the posi-
tively charged surfactant head groups on the surface repel each
other, preventing coalescence in most cases, while local pH gra-
dients produced by the droplet also have an effect. Together, these
physicochemical factors form a rich and complex system, which
currently cannot be approximated with a physical model.

The droplets were represented by the formulation ratio of each
oil in order to create a digital “genome”. The behaviour of the
droplets was characterised by image recognition and its results (e.g.,
number of droplets active at the end of the experiment) served as
inputs to an evolutionary algorithm. The initially random
formulations evolved during the following experiments in order
to maximise the selected fitness function. By embodying evolution
in a single device, we were able to extend its functionality not only
as a test arena, but also as an additional parameter allowing for
testing the droplet behaviours under different environments.
During our experiments, the environment was defined as a set of
obstacles which were monolithically 3D printed as a part of the
device itself. The obstacles were made, just as the device itself, using
polypropylene (PP), as it is chemically inert and does not react with
the chemical compounds used. On the other hand, the obstacles
physically played a role changing the behaviour of the droplets, for
example, increasing the number of rebounds or reducing their area
of movement. Thus, by studying how the environment changed the
behaviour of the droplets at both the individual and population
level, it was possible to study the evolutionary interplay between the
compounds that acted as “droplet metabolism” and the obstacles
that acted as artificial “ecosystem” (Fig. 2).

3D-printed fluidic chemorobotic setup. Our 3D-printed fluidic
system was designed using CAD tools and printed using a
commercially available 3D printer (see “Methods” section and

Supplementary Figs. 1 and 2). The objective was to encapsulate all
the basic functionality from a liquid handling robot into a fully
printable monolithic device. Throughout this study, the devices
used did not show any apparent degradation after hundreds of
experiments. PP is also one of the cheapest 3D printing filaments
available, which coupled with the use of fused deposition mod-
elling 3D printers, as fast prototyping tools allowed us to easily
modify, iterate, prototype and manufacture new devices based on
different requirements. Therefore, each characteristic of the
design could be modified and a new device could be produced
promptly within a short time at low cost, making our solution
suitable for a large range of different experimental and laboratory
requirements, compared to what was previously possible.

The main design had four inputs for the oil phases, which were
mixed using a serpentine channel. In order to control the oil
mixture, a series of liquid handling pumps were connected to the
device and programmed to dispense the oils at different flowrates,
depending on the ratio required by the experiment as defined by
the digital genome. The serpentine channel led to an outlet
situated at the bottom of the experimental arena, which generated
the droplets and directly injected them into the aqueous phase
(Supplementary Fig. 3). A typical experiment started by
generating five identical 10-μl droplets within the experimental
evolutionary arena. Once the droplets were placed into the
aqueous phase, a video of the resulting droplet behaviour was
recorded from above the arena using a camera (Supplementary
Fig. 4). The arena also contained two additional inputs for the
aqueous phase and cleaning solvent (acetone), as well as a
drainage point used to wash away the old contents such that the
system can be automatically reset for the next experiment (Fig. 3,
Supplementary Figs. 5 and 6, Supplementary Movie 1 and
Supplementary Note 1).

Lattice search. With the objective of fully exploring the for-
mulation space, an evenly spaced combinatorial “lattice search”
was conducted (see “Methods” section). The four different oils
were taken into combinations of pairs, threes and fours, with a
granularity of 10%, exploring in total 282 different oil formula-
tions. Each formulation was studied five times within each of the
three different environments. This exploration highlighted many
unexpected behaviours: (a) the pillars would act as a droplet
divider when moving droplets collided into them (Fig. 4); (b) the
pillars would attract the droplets and inhibit their pattern of
movement; (c) some droplet formulations would unhook them-
selves after a set time and then continue moving; (d) the pillars
pulled the water meniscus creating valleys between them, where
populations of low motility droplets locate; (e) the pillars could
trap the droplets in a way that they lost their integrity and became
dissolved (see Supplementary Fig. 7 for behaviours b–e).

Evolutionary experiments. After all the mechanical parts had
been individually tested, the device was subjected to a series of
evolutionary experiments in order to test its potential and check
its statistical validity as an evolutionary platform. This was done
using a fitness function that aimed to maximise the number of
active droplets after 1 min of observation time, which is the same
time scale we used in previous research11 enabling us to validate
this platform against it. More precisely, using the droplet detec-
tion algorithm described in the “Methods” section and Supple-
mentary Fig. 4, we were able to obtain the number of droplets in a
given frame by segmenting an image between foreground (dro-
plets) and background. Our fitness function returned the number
of detected droplets in the last frame of an experiment (con-
sidering experiments of 1 min and 30 frames per second, this
meant the 1800th frame). As part of the detection algorithm, a
droplet needed to move for about at least 3 s in order to be
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Fig. 2 Schematic describing the evolutionary process. In the first step, a
computer-generated random recipes using ratios of 1-octanol, octanoic
acid, 1-pentanol and diethyl phthalate. These oils were then mixed through
a serpentine channel, and populations of five droplets were generated in the
evolutionary arena. The droplet behaviours were then analysed, and ranked
using a fitness function. The best droplets were selected, and new droplet
formulations were generated after “mutation” and “crossover” operations.
This process continued through iterated generations. Because we used a
3D-printed device, we were able to change, during the course of the
experiments, the physical environment in which the droplet population
evolves. We thus explicitly studied how the genotype is modulated through
a programmable environment to express its phenotype A, in contrast to the
more studied genotype to phenotype direct approach B
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considered part of the foreground. Therefore, experiments where
the droplets underwent controlled division and movement were
assigned correspondingly high fitness values. At the end of the
initial set of experiments, a genetic algorithm (GA) was used to
evolve the droplet against this fitness function (see “Methods”
section). The GA was run for 10 generations with 20 individual
genomes per generation. For each genome, five different experi-
ments were done and the average fitness used. At the start of the
GA experiments, the genomes used in the first generation were
selected randomly, and successive generations were built using
fitness proportionate selection to choose 10 parent candidates,
and adding 10 new offspring by stochastically choosing pairs of
parents and performing a one-point crossover followed by a
mutation operation. Figure 5 shows the result from a single GA
run (see Supplementary Figs. 8–11 for more repetitions). The
average, top quartile and bottom quartile values shown in Fig. 5
were calculated per generation. Each generation had 20 indivi-
duals, and each individual was repeated five times. The fitness
value of an individual was the average of its five repetitions, and
the average fitness value of a generation was the average fitness
value of the 20 individuals, while the top quartile represented the
top 25% individual (in our case, the fifth individual), and the
bottom quartile represented the bottom 25% individual (in our
case, the fifteenth individual). In this case, the number of droplets
nearly doubled after 10 generations of droplet evolution, effec-
tively maximising the defined behaviour. This result demonstrates
that the 3D-printed device could perform evolutionary experi-
ments on the defined droplet system, replicating the capabilities
of a liquid handling robot11.

Taking advantage of the modular and digital design of our
device, the arena could be transformed into different environ-
ments in which the evolutionary experiments are conducted, thus
adding a new degree of freedom to the system. In addition to the
empty arena that defines the first environment, we developed two
other environmental arenas: an arena consisting of pillars, and
one generated using a Lidenmayer system31. The pillar-based
arena is composed of a matrix of pillars, and was manually
designed in order to be densely populated with obstacles
providing a significant set of barriers to the droplets. This was
to ensure some interaction between the arena environment and
the protocell droplets undergoing the artificial evolution process.
The other arena was algorithmically generated using an L-system,
which is a digitally defined and parameterised environment-
generating system (see “Methods” section). L-systems are widely
used in biomimetic robotics to describe procedurally generated
organisms and ecosystems32. Introducing stochastic decision
rules in the procedure, we were able to generate a wide range of
unique landscapes, and one of them was deliberately chosen
based on its structural arrangement as a cave-like shape of
obstacles, because we expected this type of arena to have a
substantial impact on droplet behaviours. We repeated the GA
with these two new arenas, and the fitness of the populations also
increased through generations (Supplementary Figs. 12–15). This
demonstrates that our device is suitable for evolving populations
of droplets in heterogeneous environments.

Chemical inputs

Droplet generator

Evo arena

Image analysis

Flow mixer

Fig. 3 Schematic of the 3D-printed system. Chemical inputs: Seven liquid handling pumps were used for the oil phases, aqueous phase and cleaning
processes. Droplet generator: The oil phases were mixed through a serpentine channel, and droplets were generated into an evolutionary arena. Evo arena:
A camera recorded the arena from above. Image processing algorithms were used to analyse and categorise the droplets behaviours
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5 6 7 8

9 10 12 13

Fig. 4 Droplet interactions with the obstacles. Time lapse images from 1 to
13. A droplet bounced against a pillar towards a second pillar that facilitated
a split
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In order to emulate how rapid environmental changes affect
evolution, a GA run was performed where the initial 10
generations used the empty arena, the following 10 generations
used the pillared arena and the last 10 generations used the

L-system arena, see Fig. 6 and Supplementary Fig. 16. After the
first environmental change, the fitness of the droplets population
dropped by nearly half, proving that our environmental
modifications had an impact over the droplet’s behaviours. In
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fact, we observed a “filtering” effect due to the environmental
change, as indicated by the fitness landscape models where the
optimal genotypes of the pillars environment were a subset of the
genotypes selected in the first environment (Fig. 6, bottom
ternary plots, highlighted as “A”). In contrast, the second change
of arena introduced a different effect on the evolution dynamics,
because the third environment resulted in a fitness landscape
where new suboptimal behaviours appeared (highlighted as “B”
with an orange broken circle in Fig. 6), where no peaks were
observed in the first environment, analogous to the concept of
phenotypic plasticity33. See Supplementary Movies 2 and 3.

Statistical analysis. A genomic analysis showed that after 10
generations of our single GA run, the fitness-weighted average
genome (WG) for each of the environments was (octanol%,
dep%, octanoic%, pentanol%): (15± 11, 23± 7, 13± 11, 49± 14,
mean ± s.d.) for the empty arena, (13± 7, 22± 5, 10± 11,
55± 15) for the pillars arena and (17± 9, 30± 12, 8± 10, 44±
11) for the L-system arena. A one-way ANOVA test comparing
the WG of each of the arenas gives statistical significant p values
for the DEP (0.01) and 1-pentanol (0.002) components.

The WG for the pillars environment after 20 generations using
the empty environment during the first 10 generations was (11±
6, 39± 6, 7± 7, 43± 9). An ANOVA test comparing this
population, against a GA run, where only pillars were used
shows significant p values in DEP, octanoic acid and 1-pentanol
(1.25e−17, 0.004, 1.99e−07). Finally, the WG when the first 10
generations used the empty environment, the following 10 pillars
environment and the last 10 that used the L-system environment
(Fig. 6) was (10± 10, 38± 7, 7± 6, 45± 8). An ANOVA test
comparing this population (evolved on empty then pillars then L-
system) against a GA where only the L-system environment was
used shows significant p values in the DEP (0.0004) and 1-octanol
components (0.006).

This analysis shows that the evolution in each of the arenas
leads to a differentiation of droplet population in each
environment as indicated by their significant genome differences.
In addition, and in every case, the final genome differed when
environmental changes were introduced as opposed to when a
single environmental was used all along. This is shown in Fig. 7
whereby a genetic colour “heat map” is shown and shows that the
genome at the end of the empty arena run is “GACB”, which then
changes to “EAEB” after evolution in the pillars-array, to finally
“FAEC”, after evolution in the “caves” arena (Supplementary
Figs. 17–19 for more information). This suggests that the

evolutionary pathway was influenced by the environmental
history, effectively driving the evolutionary process into a
different fitness niche than the immutable environment. It
illustrates that the environment and its changes through time
plays an active role in the development and expression of our
droplet system.

To further study the impact of environmental modifications in
our droplet system, we tested the last generation of droplets
evolved in each environment (in Fig. 6, these generations were
marked with “i”, “iii” and “v”) in the other environments
(Supplementary Tables 1 and 2). Our results show that while the
best individuals from the empty arena had reduced fitness when
placed in the pillars or caves arena, the best individuals from both
the pillars and caves arena kept a similar fitness when tested in
the empty arena. This seems to indicate that the empty arena
provided a “wider environmental niche”, where droplets evolved
to, but which were not able to survive in more constrained
environments. On the other hand, both pillars and caves seem to
have narrower environmental niches, requiring the droplets to
evolve specific traits to survive, producing more robust recipes.
Such recipes could perform well in the other environments
because of a stronger environmental pressure for the traits that
are important for “survival”, resulting in a final subset of recipes
able to perform in each arena. These results are similar to the
biological concept of phenotypic plasticity, which is the ability of
an organism to change its phenotype in response to changes in
the environment. Our system was able to manifest this
phenomena, but instead of using full-fledged biological entities,
we used simple chemical ones, only formed by lipid molecules,
thus reinforcing the idea that such simple entities could have had
a role during abiogenesis.

Discussion
By using a 3D-printed fluidic device with programmable envir-
onments, we were able to embody evolution in an experimental
monolithic setup. This means that it was the interplay between
chemistry and the generated physical obstacles that allowed us to
explore the potential of oil droplets to evolve under a set of given
conditions, and then adapt and continue evolving once these
conditions were modified. We have shown that simple oil-in-
water droplet formulations are a viable model for evolvable
protocells even though they do not contain any kind of sequential
information. Moreover, we showed that populations of droplets
can overcome rapid environmental changes and continue their
evolutionary process in the new arena, akin to how living entities
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be seen how the different environments introduced significant genome variation in two of the components for each new environment. “5ol”= 1-Pentanol,
“8ic”= octanoic acid, “DEP”= diethyl phthalate and “8ol”= 1-octanol
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adapt to new habitats. Not only can our platform be used to
optimise oil-in-water droplet formulations, but it can be easily
extended by increasing the number of inputs, adding different
reagents or evolving the physical experimental arena itself. This
research also highlights that engineering the environment itself as
a variable is a promising approach for the optimisation of com-
plex systems34. Indeed, our platform is flexible and can act as a
sandbox for probing chemical spaces for the discovery of new
types of formulations or soft materials, whereby the environ-
mental parameters are set as “engineering specifications”. Our
results show that by reshaping the physical environment, we were
able to influence the evolutionary pathway through a dynamic
modification of the fitness landscape, akin to natural evolution.

Methods
Experimental protocol. Once the computer provided a recipe as described via a
genetic algorithm, a lattice search or any other method, the 3D-printed device was
programmed to prepare the mixture, execute five experiments and clean the arena
in order to get ready for the next recipe. In order to mix the oils through the
serpentine channel, the oil with the highest value in the recipe was set to a volume
of 400 μl, while all the other oils were given a volume proportional to 400 μl based
on the ratio defined in the recipe. These volumes were then pumped into the device
and through the serpentine channel at a flowrate derived from the proportional
ratios. The oil with the highest volume was pumped in at 2.5 μl per second, while
the other oils were pumped in at a slower speed proportional to the recipe. These
oil mixtures were dispensed into the device arena, and once the mixture was
completed the device removed the contents into a waste drum, and the arena was
washed with 2.5 ml of acetone. This process was not only used to prepare a new
mixture, but also to remove the contents from the previous mixture. This mixing
process was repeated three times. After this, a series of cleaning cycles were exe-
cuted in order to be sure that the arena was fully cleaned. The first step was to wash
it with 3 ml of acetone, and remove the contents. Then 2.5 ml of aqueous phase,
and remove its content. Then 10 ml of acetone, and remove its content. This step
was executed twice. Finally, 3.75 ml of aqueous phase, and remove its content. This
step was executed twice. The next objective was to perform the experiment. In
order to do so, the arena was initially filled with 3.75 ml of aqueous phase, and then
five oil injections of 10 μl were executed in order to generate the oil droplets. At this
point, the experiment was performed and it was recorded using a camera. Each
experiment lasted 1 min. The next objective was to clean the arena in order to
perform the next experiment. In order to do so, the arena was initially filled with
7.5 ml of acetone, and its contents removed. Then it was filled with 3.5 ml of
aqueous phase, and its contents removed. This last step was repeated twice. Once
this last step was performed, the device would fill the arena with aqueous phase to
execute again the same recipe (each recipe was tested five times), or a new recipe
would have been sent from the computer, in which case the device would start
again with the mixing procedure.

Preparation of solutions. Initially, NaOH (20.0 g) was dissolved in distilled water
(ca 4.8 l), then TTAB (33.65 g) was added. Finally, the pH was adjusted to pH 13
using 6 M NaOH solution, and the volume was adjusted to 5 l. The pH metre used
was calibrated between pH 7 and 10. The oils 1-octanol, 1-pentanol and DEP were
prepared in 200 ml aliquots in reagent bottles, while octanoic acid was diluted with
1-pentanol (20% octanoic acid 80% 1-pentanol), and also prepared in
200 ml aliquot in a reagent bottle. DEP and 1-octanol were dyed with 0.25 mgml−1

Sudan II blue and vortexed to mix. 1-Pentanol and octanoic acid were dyed with
0.25 mgml−1 Sudan III red and vortexed to mix.

3D-printed device manufacturing. The devices were designed using the CAD
software “Rhinoceros 5”. The 3D models were exported into STL files, and the STL
files were transformed into “G-code” using the software “Bits from Bytes Axon 2”,
see Supplementary Fig. 1 for the configuration used. The devices were printed using
the 3D printer “Bits from Bytes 3D touch”. PP filament with 3 mm diameter was
used. Both transparent and white filament were used without any significant dif-
ference. Supplementary Fig. 2 shows the base design of the device used during the
experiments. Different variations of this device only added obstacles into the arena.
Once a device was 3D printed, the only manual operation required was to tap its
inlets in order to be connected to tube connectors. In order to do so, a thread of
size M6 was used.

3D-printed fluidic platform. A fully automated fluidic device capable of producing
droplets in a Petri dish-like arena with aqueous subphase was constructed. The
device was a monolithic 3D-printed piece using a commercial 3D printer in its
standard configuration. The device had a series of inputs and outlets connected to
commercial liquid pumps. The pumps used were defective “Tricontinent C-Series
Syringe Pumps”. Their stepper motors were connected to “Pololu a4988” drivers.
The drivers were controlled using an “Arduino Due” board. A homemade PCB

shield was used to easily connect the stepper drivers to the Arduino board (Sup-
plementary Fig. 5), and custom firmware was written using the Arduino suite in
order to control the pumps. The syringe pumps used 500 μl syringes for the four oil
phases, and 5 ml syringes for all the other pumps. The pumps used three-way
PEEK valves, as provided by Tricontinent. FEP tubing was used to connect all the
liquid components. Above the arena, there was a camera for video recording/image
analysis. Supplementary Fig. 6 shows an overall picture of the platform with the
main parts highlighted.

Droplet generation calibration. Although the devices were always printed the
same way, the final result was always slightly different. This difference was
important in the case of the droplet generator outlet, as can be seen in Supple-
mentary Fig. 3. In order to have a homogeneous droplet generation through all the
devices with potential different outlet sizes, the speed at which the pulses were
generated from the pumps was calibrated in order to obtain a perfect droplet
generation when only 1-octanol was present in the mixture.

Image processing and droplet detection. A Microsoft LifeCam Cinema Web
camera was situated above the arena in order to record the experiment. While the
experiment happened, the camera stream was fed into a running Python (2.7.11)
OpenCV (2.4.12) script, which performed the image analysis and returned the
number of droplets active at the end of the experiment. The video was configured
to 800 × 600 pixels, and 30 frames per second (FPS). The first step consisted of
defining a circular area with 275 pixels of radius. This area overlapped with the
experimental circular arena, and only the pixels inside this area were considered for
image processing. The image processing was performed using a mixture of gaus-
sians (MoG) model for background subtraction. OpenCV’s MoG was used for this
purpose using the default configuration values. The MoG model was reinitialised
before each experiment. It is important to remark that everything in the scene
remained constant except the oil droplets, therefore, all the pixels marked as
foreground were droplets. The foreground subtracted was then used with a find
contours operation from OpenCV in order to describe the droplets. At the end of
the experiment, the number of droplets active was returned as a fitness value. By
using a MoG with a small window, all the droplets that remained static a few
seconds were considered as part of the background and discarded. This way, only
the droplets that always moved were considered part of the foreground. See Sup-
plementary Fig. 4 for pictures of how the different steps were performed.

Lattice search. Combinations of the four oils individually, in pairs, threes or fours
with a granularity of 10% were tested in order to execute the lattice search. In the
case of the oils being tested individually, only one experiment was performed,
where one of the oils was active, and all the other ones were inactive. In all the
other cases, a sequential and evenly spaced search was performed, where every step
represented 10%. In this way, for example, in the case of two oils, there would be
nine possible combinations (ignoring the extremes were only one of the oils is
active): 0.1/0.9–0.2/0.8–0.3/0.7–0.4/0.6–0.5/0.5–0.6/0.4–0.7/0.3–0.8/0.2–0.9/0.1.
The same procedure was applied to combinations of three or four oils. In total,
there were 11 different combinations, six for pairs, four for triples and one for
fours. Therefore, our lattice search consisted of 282 different oil formulations. As
before, each formulation was tested five times, generating 1410 videos. Supple-
mentary Fig. 7 shows the most interesting results.

Genetic algorithm and fitness function. A genetic algorithm was programmed
using LabView 2015 standard libraries. Each GA run, except when described
otherwise, consisted of 10 generations, and each generation had a population of 20
individuals. Each individual was defined by its recipe, which was the ratio between
the four oils used (1-octanol, DEP, octanoic acid and 1-pentanol). Each of the oils
was assigned a real number between 0 and 1, and the sum of the four oils for a
given recipe was always 1. The first generation was constructed by assigning
randomly generated recipes to each individual. Each individual was tested five
times using the protocol described, and the average of these five executions was
returned as its fitness value. Once all the individuals from a generation were given a
fitness value, a new generation was constructed by choosing 10 parents from the
just finished generation using the roulette wheel algorithm, where the individuals
were selected with probability directly proportional to their fitness value. A given
parent could only appear once in the following generation. The other 10 indivi-
duals were constructed by crossing the parents in randomly chosen pairs (each
individual was chosen twice as parent), applying a random position one-point
crossover, and a Gaussian 10% mutation (noise sample from a Gaussian dis-
tribution of mean 0 and variance 0.1). The final recipe was then normalised to 1.

Fitness function. Given a frame as provided by the camera stream, the droplets in
that frame were detected using the algorithm described in the “Image processing
and droplet detection” within this “Methods” section. Given an experiment, the
fitness function calculated its fitness value as the number of droplets detected in the
last frame of the provided camera stream. Because the experiments ran for 1 min,
and we used 30 frames per second, this means that our fitness function can be
exactly defined as the number of droplets detected by our algorithm in frame 1800.
Because our droplet detection algorithm is based on a background subtraction
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where we considered the droplets as foreground, if a droplet did not move for a set
period of time (roughly 3 s) it was marked as part of the background, and removed
from the count.

Experimental reproducibility and control tests. The result showed on Fig. 5 was
repeated four times with similar results, see Supplementary Figs. 8, 9, 10 and 11.
The same experiment but using an arena with pillars was repeated twice, see
Supplementary Figs. 12 and 13. The same experiment but using an arena with a
procedurally generated environment was repeated twice, see Supplementary
Figs. 14 and 15. The experiment described in Fig. 6 was repeated once, with similar
results, see Supplementary Fig. 16.

In order to study the drop in the evolutionary trajectories, the same hybrid GA
run was performed but the first empty arena device was swapped by another empty
arena device. In this case, the evolutionary trajectory kept a similar value, see
Supplementary Figs. 20 and 21. The opposite experiment was also performed,
where an initial GA run using the pillars arena was then swapped by one with the
empty arena. The evolutionary trajectories grew slightly, see Supplementary Fig. 22.
The experiment where an empty environment was swapped by one procedurally
generated was also performed, see Supplementary Figs. 23 and 24. In both cases,
the evolutionary trajectories dropped, but not as much as before. This reinforces
the results seen on Fig. 6.

Arena obstacles specification. The pillars used both in the “pillars environment”
and in the “cave environment” had a diameter of 2 mm. Their height was variable
depending on their position, because the base of the arena has a slope. The shortest
ones had a height around 4.7 mm, while the longest ones had a height of around
6.2 mm. In the “pillars environment”, the pillars were placed in a grid, where each
pillar had a neighbour in each of the possible four directions (north, south, east and
west) when possible. The distance between pillars was 3 mm. See Supplementary
Fig. 25.

The second custom arena used the same pillars as before, but instead of
manually placing them in a linear/grid way, an algorithm was used to generate a
pattern. The algorithm used was a Lindenmayer system. Examples of the patterns
generated using this approach can be seen in Supplementary Fig. 26. The actual
device used can be seen on Supplementary Fig. 27.

Fitness landscape model. The fitness landscapes shown in Fig. 6 were generated
using support vector regression (SVR) with a radial basis function kernel. The
experiment consisted of the described GA run where the 10 first generations used
an empty environment, the following 10 used an environment populated with
pillars and the last 10 used an environment with cave-like structures. For each of
the three environments, data from a full GA run was collected, resulting in a data
set of 200 experiments each. Because each experiment was repeated five times, each
fitness landscape represents 1000 data points. To find the most accurate repre-
sentation, best parameters for the SVR were estimated using 10-fold cross-vali-
dation and with respect to the mean squared error on the training set. Fitness
landscapes are shown as ternary plot, a way to represent on a 2D plane three-
coupled variables, which sum to a constant. In our case, we represent three out of
the four components (with the fourth parameter held constant at zero). Our
parameters represent percentage of each oils, the sum is thus constrained to 1. The
C (penalty parameter of the error term) parameter was searched within [0.01, 0.1,
1, 10, 100]. The best parameters were C= 100 and gramma= 10. Supplementary
Fig. 28 shows all the fitness landscapes produced this way with the collected data.
The third row of this figure represents the fitness landscapes, which can be seen in
Fig. 6.

Each one of the environments was also tested individually, meaning isolated GA
runs for each environment where the first generation was generated randomly.
Supplementary Fig. 29 shows the fitness landscapes generated with this data, which
were also generated using a SVR. For each environment (empty, pillars and caves),
data from two full GA runs were collated resulting in a data set of 400 experiments
each. Because every experiment was repeated five times, 2000 points were used. The
fitness landscapes were then generated using the method just described. For the
empty environment, the best parameters were {‘C’: 100, ‘gamma’: 10} for an
average mean square error of 6.83 (std= 4.00). For the pillars environment, the
best parameters were {‘C’: 10, ‘gamma’: 100} for an average mean square error of
21.30 (std= 10.68). For the caves environment, the best parameters were {‘C’: 10,
‘gamma’: 100} for an average mean square error of 11.50 (std= 4.50).

In Supplementary Movie 3 describing the evolution of the fitness landscapes
through the different environments, the fitness landscapes were calculated from the
same data set as Fig. 6 in the main manuscript, but in this case the method used
was kernel ridge regression with a radial basis function kernel as before. The main
difference is that in this case the same kernel was used to calculate all the fitness
landscapes. The parameters here used for the kernel were {‘alpha’: 10,
‘gamma’: 100}.

Computer code availability. All relevant computer code is available from the
authors on reasonable request.

Data availability. All relevant data are available from the authors on reasonable
request.
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