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Abstract—LoRa has become one of the most promising net-
working technologies for Internet-of-Things applications. Distant
end devices have to use a low data rate to reach a LoRa
gateway, causing long in-the-air transmission time and high
energy consumption. Compared with the end devices using high
data rates, they will drain the batteries much earlier and the
network may be broken early. Such an energy unfairness can
be mitigated by deploying more gateways. However, with more
gateways, more end devices may choose small spreading factors
to reach closer gateways, increasing the collision probability.
In this paper, we propose a networking solution for LoRa
networks, namely EF-LoRa, that can achieve energy fairness
among end devices by carefully allocating network resources,
including frequency channels, spreading factors and transmission
power. We develop a LoRa network model to study the energy
consumption of the end devices, considering the unique features
of LoRa networks such as the LoRaWAN MAC protocol and
capacity limitation of a gateway. We formulate the energy
fairness allocation as an optimization problem and propose a
greedy allocation algorithm to achieve max-min fairness of energy
efficiency. Extensive simulation results show that EF-LoRa can
improve the energy fairness by 177.8%, compared to the state-
of-the-art solutions.

Index Terms—Internet-of-Things, wireless networks, LoRa,
energy fairness, resource allocation

I. INTRODUCTION

Low-Power Wide-Area Networks (LPWANs) have been
widely adopted to build autonomous wireless networks for a
variety of Internet-of-Things (IoT) applications, such as smart
city [2] and smart farming [3]. Recently, several LPWANs
technologies have been develped and deployed, such as LoRa
and SigFox operating on the unlicensed ISM bands, and
NB-IoT operating on the licensed band supported by 3GPP
cellular infrastructure. Among them, LoRa is one of the most
promising technologies due to its low complexity, open link
standard and scalability to IoT devices. According to the
LoRa specifications [4], a gateway can cover a large area up
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to several square miles with thousands of end devices that
are expected to work for several years without changing the
battery.

LoRa physical layer adopts Chirp Spread Spectrum (CSS)
modulation for reliable and low-power transmissions. Data in
LoRa is carried in different chirps, and the spreading factor
(SF) represents the number of bits per chirp. A large SF
results in low data rate and long communication range [4].
For example, by setting the spreading factor to 7 or 12, the
data rate of 125kHz bandwidth links is 5.47 kbps or 0.25 kbps,
respectively. As a result, to transmit a 100-byte packet, it takes
146 ms or 3200 ms using a high or low data rate, respectively,
indicating a large gap of 22 times difference. However, some
end devices can only use large SFs so that they can send
packets to the gateways through a long distance. As a result,
these end devices have to transmit the packets with more time
and more energy than those using smaller SFs.

The large gap in energy consumption can lead to unfairness
in lifetime of end devices, and can affect the network lifetime
which is an important design consideration in LPWANs. The
authors in [5] have evaluated the energy consumption with
spreading factor 7 and 12 (the difference could be as large
as 22x). Even end devices sleep for most of the time, the
gap of overall energy consumption between different spreading
factors can reach four times difference, which is large enough
to cause energy unfairness and affect network lifetime. For ex-
ample, a LoRa network consists of end devices using spreading
factor 7 and 12. As a result, end devices with spreading factor
7 consumes four times less energy than those with spreading
factor 12, and they would have different lifetime (e.g., one
month for spreading factor 12 while four months for spreading
factor 7). If we define that the network would be broken if the
first end device has run out of its battery [6], the network
lifetime is only one month, while a lot of end devices (i.e.,
spreading factor 7) can still work for another three months.
This indicates large potential improvement of network lifetime.

With the relatively low cost of LoRa gateways (e.g., $345.69
for TTN-gateway-915 [7] or $315 for MultiConnect Conduit
Gateway [8]), improving the fairness of energy consumption
by deploying more gateways becomes feasible, since end
devices can choose smaller spreading factors to reach a closer
gateway. However, besides data rates, spreading factors are
also used to multiplex different transmissions in LoRa net-
works. If two end devices use two different spreading factors
on the same channel, both their signals can be decoded by
the gateway simultaneously. As a result, with more gateways,
more end devices will use low spreading factors, increasing
collision probability and requiring multiple re-transmissions,
and thus increasing the energy consumption. Compared with
those end devices that have less collisions (when fewer con-
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tending nodes share the same SF), energy unfairness still
exists. Spreading factors and frequency channels can affect
collision probability and energy consumption, so they need to
be carefully allocated to achieve fair energy consumption in
multi-gateway LoRa networks.

The existing work on resource allocation in LoRa networks
mainly focuses on a single gateway scenario, aiming at the fair-
ness of collision probability [1], [9]–[11]. However, resource
allocation in multi-gateway LoRa networks is challenging.
First, a network model is required to reveal the relationship
between resource allocation and energy fairness. The network
model of multi-gateway LoRa networks is more complex
than single-gateway LoRa networks. Since a LoRa end device
does not associate with a specific gateway, its packets are
broadcast and can be received by multiple gateways, so the
packet reception ratio in multi-gateway LoRa networks differs
from the single gateway scenario. Second, power control is
more complex. LoRa packets are broadcast from end devices,
and all the surrounding gateways can receive them so that
packet reception ratio can be improved. Unlike the power
control in cellular networks, if a LoRa end device uses a
small transmission power to save energy, it will reach fewer
gateways and miss the improvement due to multiple gateways,
which may lead to lower packet reception ratio. We show the
impact of spreading factor and transmission power on energy
fairness by two illustrative examples in Section II. Third, a
typical LoRa gateway can simultaneously demodulate up to
eight packets, which limits the capability of packet reception
[12]. However, due to the randomness of packet arrival time,
we cannot determine whether there are eight packets arriving
at a gateway concurrently before the resources are allocated.
Therefore, considering this limitation on gateways is difficult
for resource allocation in LoRa networks.

In this paper, we propose a network solution EF-LoRa that
allocates resources in multi-gateway LoRa networks to realize
fairness in energy efficiency among end devices. The resource
allocation is formulated as a max-min optimization problem
which intends to maximize the lowest energy efficiency in
LoRa networks. Therefore, this max-min optimization prob-
lem considers both energy consumption and packet reception
ratio. We develop a network model for multi-gateway LoRa
networks. Our network model takes the distribution of end
devices and gateways (i.e., the distance between them) as
input. We first investigate the unique properties of spreading
factor, i.e., data rates and multiplexing, which are indicated
by transmission air time and interference in our network
model. Besides, both transmission time and packet collision
probability are included in the energy consumption model for
each end device. We also formulate the impact of frequency
channels and transmission powers in the scenarios of multiple
gateways.

Moreover, to make the proposed network model more
practical, we consider the capacity limitation of LoRaWANs
gateways (i.e., one gateway can only receive up to eight
simultaneous packets using different channels or spreading
factors) and the randomness of Aloha-based LoRaWAN MAC
protocol. We analyze the complexity of the proposed optimiza-
tion problem, and propose a heuristic allocation algorithm that

significantly improves the fairness of energy efficiency.
We implement our proposed solution on the simulation

platform NS-3 and conduct large-scale simulation experiments
where 5000 end devices and 25 gateways are involved. We
represent energy fairness by the minimum energy efficiency
in a LoRa network. The results show that EF-LoRa can out-
perform the state-of-the-art work by 177.8% on average with
3 gateways and 3000 end devices. We evaluate the network
lifetime of EF-LoRa, and the experimental results show that
the network lifetime can be improved by 64% compared with
default legacy LoRa [13]. To further analyze the performance
gain of EF-LoRa, we also decompose EF-LoRa and evaluate
the benefits of the network model sensitivity to environment
changing and transmission power allocation.

In summary, this paper makes the following contributions.
1) To the best of our knowledge, this work is the first to in-

vestigate the energy fairness problem in LoRa networks.
The work is important for achieving the promising
goal of LoRa technology, i.e., large coverage and long
network lifetime.

2) We solve the energy fairness problem by proposing EF-
LoRa, which optimizes the resource allocation based on
a novel network model of multi-gateway LoRa networks.

3) We prove that the resource allocation problem is NP-
hard and then develop a greedy algorithm to obtain a
sub-optimal resource allocation solution.

4) We conduct extensive simulation experiments on NS-
3 to evaluate the performance of EF-LoRa. The ex-
perimental results show that EF-LoRa can improve the
energy fairness by 177.8%.

The rest of the paper is organized as follows. We discuss
the motivation of EF-LoRa with two illustrative examples in
Section II. Next, we present the design of EF-LoRa in Section
III. Section IV presents our experimental evaluation. Section
V discusses the related work on energy fairness and resource
allocation of LoRa networks. Section VI concludes this work.

II. MOTIVATION

In this section, we use two illustrative examples to discuss
the impact of SF allocation and transmission power allocation.

Spreading factor allocation. Figure 1(a) shows an example
with one gateway and five end devices, uplink transmissions
(i.e., from end devices to gateways) with 125 kHz bandwidth
are illustrated. We use one channel and two SFs 7 and 8.
The solid lines represent the links with SF 7, and the dashed
lines denote links with SF 8. The time for transmitting a 10-
byte packet is 14 ms and 26 ms for SF 7 and 8, respectively.
For simplicity, we represent the energy consumption by the
transmission time. With two to four end devices using the
same spreading factor for transmission, their packet reception
ratio are assumed to be 67%, 54% and 45%, respectively.
In this example, two end devices (i.e., end device 1 and 4)
can only use SF 8, while other end devices choose SF 7
to increase the data rate. We can calculate the average time
for an end device to transmit a packet, and we use the min-
max transmission time among the end devices to indicate the
fairness of the allocation. The results are shown in the second
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Fig. 1. Spreading factor allocation.
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Fig. 2. Transmission power allocation.

TABLE I
SPREADING FACTOR ALLOCATION.

Smallest SF Ajusted SF
1 39 31 26
2 26 19 17
3 26 31 26
4 39 26 21
5 26 19 26

Average 31.2 25.2 23.2
Max(transmission time) 39 31 26

End Device ID
Total transmission time (ms)

Single GW Two GWs

column in Table I. A large difference in the total transmission
time among these end devices can be observed, which implies
the significantly different energy consumption and the lifetime
of end devices.

This energy unfairness can be mitigated by using two
gateways as shown in Figure 1(b). The locations of end devices
do not change, while the original gateway is replaced by two
gateways. In this scenario, all the end devices can connect to
gateways with the smallest spreading factor, i.e., SF 7. The
new total transmission time and fairness can be calculated
and the results are shown in the third column in Table I. We
can see that the fairness is improved. However, we argue that
this allocation still faces unfairness as end devices tend to use
smaller spreading factors.

As seen in Figure 1(c), if we re-assign the spreading factors
of end devices on end device #5 from 7 to 8, the collisions
can be reduced and the fairness is further improved. The
results in Table I demonstrate that the fairness is improved by
21.5% and 33.3% compared to the single gateway scenario
and two gateways scenario where end devices choose the
smallest spreading factor. As a result, the new spreading factor
allocation can reduce collisions.

We can also calculate the network lifetime in the above
examples based on the energy consumption (transmission
time) of end devices. In this example, we define the network
lifetime as the time that the first end device has run out
of its battery. Assuming batteries of end devices have the
same initial power, we estimate the network lifetime with the
transmission time (used as the energy consumption) in Table
I. The lifetime of the network in Figure 1(c) is longer than the
single gateway scenario and two gateway scenario using the
smallest spreading factor (i.e., Figure 1(a) and (b)) by 25.8%

TABLE II
TRANSMISSION POWER ALLOCATION.

Smallest TP Adjusted TP
1 14 20.3
2 26 20.3

Average 20 20.3
Max(transmission time) 26 20.3

Total transmission time (ms)
End Device ID

and 50.1%, respectively.
Transmission power allocation. In LoRa networks, as

end devices do not associate with a pre-defined gateway, the
packets from a certain end device can be received by all the
surrounding gateways. As a result, using low transmission
power may miss the chance from multiple gateways to improve
the transmission reliability. In Figure 2(a), there are three end
devices and two gateways. The lines denote the connections
between end devices and gateways, and the end devices
have the same resource allocation except transmission power.
Spreading factor 7 is selected in this example. Every end
device uses the lowest transmission power as long as it can
reach one gateway. The packet reception ratio of the three
end devices is 100%, 54% and 54%, respectively, and the
transmission time is 14 ms, 26 ms and 26 ms, respectively.
In this case, if we increase the transmission power of the end
device on the right as shown in Figure 2(b), it can reach both
gateways, where the connections are shown by the bold lines.
As a result, the new transmission time turns to be 17 ms, 26
ms and 17 ms, respectively, which can improve the energy
fairness by 24.2%. The results are illustrated in Table II.

It can be inferred from the above examples that the spread-
ing factor and transmission power should be carefully allocated
so that they can contribute positively to the energy fairness.
Neither allocating small SFs (transmission power) nor only
using large SFs (transmission power) for end devices can
guarantee the fairness.

III. DESIGN

In this section, we describe EF-LoRa, the LoRa network
solution that achieves fair energy consumption among end
devices. We first develop the system model of the multi-
gateway LoRa networks. We formulate the resource allocation
problem to achieve the max-min fairness of energy efficiency,
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taking the impact of spreading factor, transmission power and
channels into account. Analyzing the difficulty of solving the
developed model, we propose a heuristic algorithm to calculate
fair resource allocation in LoRa networks.

A. System Model

We focus on the uplink LoRa networks where multiple
gateways are deployed and end devices are spatially distributed
around the gateways within an area, with the total number of
end devices N . Following some practical systems with mart
city, smart building, environmental monitoring [14]–[17], we
assume that the positions of end devices are known. Every end
device broadcasts its packets with the unslotted Aloha protocol
periodically with interval Tg , and all gateways within reach of
a device will receive its packets and forward them to remote
servers. The remote server then filters the redundant received
packets with de-duplication operation. Due to the low power
property, the transmission of end devices also satisfies the duty
cycle which is usually set below 1% according to ETSI [4].
According to the practical LoRaWAN systems [18]–[20], the
overall transmission rate of each end device is the same.

There are five configurable parameters of LoRa which may
have impact on the performance of LoRa signal transmissions
such as energy consumption and transmission efficiency:

1) Spreading factor (SF), which impacts the communica-
tion range and data rate;

2) Transmission power (TP), which impacts the communi-
cation range and energy consumption;

3) Frequency channel (FC), which multiplexes the trans-
missions to reduce interference;

4) Bandwidth (BD), which can also impact the communi-
cation range and data rate;

5) Coding rate (CR), which represents the bit error correc-
tion capability.

The set of all the available SFs is denoted by SF =
{7, 8, 9, 10, 11, 12}, implying the number of information bits
that are encoded in one chirp. The available TP in the
Europe can be set from 2dBm to 14dBm, with 2dBm per
step. S = {s1, s2, ..., sN} and P = {p1, p2, ..., pN} denote
the spreading factor and transmission power allocation for the
N end devices, respectively.

According to [12], LoRa networks in the 868 MHz fre-
quency band and have 10 channels in Europe. Eight of them
are used for uplinks from end devices to gateways with 125
KHz bandwidth, and the other two channels are used for
downlinks transmissions with 500 KHz bandwidth. Although
there are more than sixty frequency channels in the U.S.
specification [12], in a LoRa network, only eight of them
are selected for gateways receiving packets to make sure that
end devices can be heard by all the surrounding gateways to
increase transmission reliability. LoRa uses Hamming code
for error correction with coding rate from 4/5 to 4/8, where
4/x means four information bits and (x-4) redundant bits.
However, Hamming coding rates 4/5 and 4/6 are not capable
of correcting bit errors while coding rates 4/7 and 4/8 are
both used for correcting only one single bit error [21]. We use
coding rate 4/7 so that a bit error can be corrected without

TABLE III
NOTATIONS USED IN THIS PAPER

Symbols Notations
si, pi, ci Spreading factor, transmission power and channel of end-device i

EEi Energy efficiency of end-device i

PL Payload size of a packet

Energy consumption for a successful transmission

Energy consumption for single transmission

Set of end devices

Set of gateways

λ Density of end-devices
epi Energy consumption with power pi within a time unit

Ti Time for single transmission of end-device i
npr, npl Number of symbols of packet preamble and payload
Tsymbol Time for transmitting a symbol

Binary indicating whether gateway k is available at time t

D Maximum available simultaneously received packets for gateways
thSF SNR threshold of spreading factor SF
ssk receicver sensitivity of gateway k

SNRi,k SNR of link from end-device i to gateway k
prx Received power strength
di,k Distance between end-device i to gateway k

Binary indicating whether end-device j transmits at time t
Ns,c Number of end-devices using spreading factor s and channel c
Tc Size of contention window

𝐸𝐸𝑠𝑠𝑖𝑖

𝜒𝜒𝑘𝑘𝑡𝑡

𝑏𝑏𝑗𝑗𝑡𝑡

𝐸𝐸𝑝𝑝𝑖𝑖

unnecessary redundant bits (i.e., coding rate 4/8). It is worth
noting that, bandwidth is often fixed for a given LoRa network.
We assume that the parameter settings follow the regional
regulations [12] and assume bandwidth is fixed for the same
network. However, it is also reasonable to assume the two
parameters can be tuned in experimental scenarios. In this
case, for different bandwidths, we can treat all nodes with the
same bandwidth as a new subnet and then apply our model
(section III-A) to all subnets. Similarly, for different coding
rates, we can consider its impact in the calculation of PDR
and energy consumption presented in Section III-B. In this
paper, we consider them as fixed for a given network.

Different SFs induce significantly different time-on-air for
transmitting a symbol. With SF = n, a symbol can encode
n information bits into a chirp, and the bit rate is given by
Rnb = n · 1

2n/BW , so the symbol period is calculated by
Tsymbol = 2n

BW . When SF = n + 1, the symbol period of
one symbol equals to 2n+1

BW , which doubles the transmission
time by sending only one more bit. However, larger SF means
more robustness to interference and noise, leading to a larger
communication range. According to [5], two packets with the
same SF and channel will collide once their transmissions
overlap with each other regardless of the size of overlapping.

The notations used throughout this paper are summarized
in Table III.
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B. Energy-Fairness Problem Formulation

We consider the problem of realizing energy fairness by
allocating resources including spreading factors, transmission
powers and channels to end devices within the coverage of
multiple gateways. We are interested in the energy efficiency
of end devices, which refers to the number of delivered data
bits per energy consumption for an end device.

EF-LoRa aims at balancing the energy efficiency of all
of the end devices in LoRa networks to realize fairness.
We promote the fairness of energy efficiency by achieving
max-min fairness, which intends to maximize the minimum
energy efficiency among the end devices. Let us denote the
energy efficiency of end device i as EEi, the problem can be
formulated as Equation (1) to attain the max-min fairness for
multi-gateway LoRa networks.

max min
i∈N

EEi(S,P,C),

s.t.∀i ∈ N , 7 ≤ si ≤ 12 (C2)

∀i ∈ N , 10 ≤ pi ≤ 30 (C1)

∀i ∈ N , 1 ≤ ci ≤ 8 (C3)

(1)

where S = {s1, s2, ...},P = {p1, p2, ...},C = {c1, c2, ...}
denote the allocation of spreading factor, transmission power
and channel, respectively. The objective of the problem is to
maximize the energy efficiency of the worst case end device.
The constraints C1, C2 and C3 limit lower and upper bounds
for the available transmission power, spreading factors and
channels for end devices.

According to the definition, we can calculate EEi(S,P,C)
as follows:

EEi(S,P,C) =
L

Eip(S,P,C)

=
L

Eis · 1
PRRi(S,P,C)

,
(2)

where L denotes the payload size of a packet, Eip denotes the
energy consumption for successfully transmitting this packet
from end device i, Eis represents the energy consumption
for transmitting one single packet, and PRRi represents
the packet reception ratio of end device i. The second line
in Equation (2) comes from the existence of interference,
because a packet may be retransmitted several times causing
extra energy consumption. The term 1

PRRi(S,P,C) calculates
the expected number of transmissions (ETX), including the
packet retransimissions. For LoRa classes/applications without
retransmissions, the ETX calculation becomes constant for
each cycle as a fixed number of attempts will be used.

Energy consumption model. To calculate the energy con-
sumption Eis, we analyze the energy consumption model in
LoRa networks. According to Casals et al. [22], the energy
consumption for a single transmission can be divided into
several actions, accounting for end device waking up, radio
preparation, signal transmission, radio off and postprocessing,
respectively. These actions, except the signal transmission,
accounts for a little portion of the total energy consumption
and is slightly or not related to the resource allocation such as
SF, so they are considered identical for every end device in the
proposed model. The consumed energy for signal transmission

Etx is dependent on both transmission power and the different
transmission time caused by SF, and Eitx is defined as:

Eitx = epi · Ti, (3)

where epi denotes the energy consumption of transmission in
a time unit with power pi. Ti denotes the transmission time
for end device i to transmit a packet and can be calculated by:

Ti = (npr + npl) · Tsymbol

= (20.25 + max(d8L− 4si + 28 + 16

4(si − 2DE)
eCR, 0))× 2si

BW
,

(4)
with npr and npl representing the number of symbols of packet
preamble and payload, and DE = 1 when the low data rate
optimization is enabled, otherwise DE = 0, CR is the coding
rate ranging from 5 to 8, as described before, coding rate is
set to 4/7 thus CR equals 7.

Packet reception ratio modeling. Since an end device
transmits a packet in a broadcast manner, all the surrounding
gateways can receive this packet and then send them to the
remote server. The impact of redundant packet reception at
multiple gateways in LoRaWANs is studied by [23]. The
transmission from an end device is considered successful as
long as it is received by one gateway. To get PRRi(S,P,C),
we refer to the calculation of packet delivery ratio (PDR),
which is the PDR of end device i sending packets to a
single gateway. If end device i transmits at time t, the packet
reception ratio can be calculated as follows:

PRRi(S,P,C) = 1−
∏
k∈G

(1− χti,k · PDRi,k(S,P,C)), (5)

where PDRi,k represents the PDR of end device i transmitting
to gateway k, χti,k is a binary variable indicating if gateway
k is available to receive packets from end device i at time
t. χti,k is set necessarily because gateways are limited to
simultaneously receive up to 8 packets, which is related to
the hardware of LoRa gateway chips. The constraint of this
capacity limitation can be written by:

∀i ∈ N , k ∈ G,
∑
i

χti,k ≤ 8, (6)

According to [24], an uplink packet from end device i can
be successfully decoded by a gateway when satisfying two
conditions. First, the received signal-to-noise-ratio (SNR) is
higher than a relative threshold thsi . The second one is that the
received signal power pr should exceed the receiver (gateway)
sensitivity ssk. So the PDR of end device i to gateway k can be
calculated as the probability that SNR is above the threshold
while signal power is above the sensitivity [25]:

PDRi,k(S,P,C) = P{SNRi,k(S,P,C) ≥ thsi}
· P{pr(S,P,C) ≥ ssk}

(7)

It is also worth noting that some well established mod-
els [26], [27] can effectively calculate the throughput under
ALOHA access protocol in LoRaWAN, which could poten-
tially enhance our model when we further study the throughput
fairness in our future work.

Interference model. The received SNR of end device i is
affected by the transmission power pi and transmissions from
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all the other end devices which uses the same spreading factor
and channel as it. It can be modeled as follows,

SNRi,k(S,P,C) =
pi · gi,k · a(di,k)

N∑
sj=si,
cj=ci,
j 6=i

btj · pj · gj,k · a(dj,k) +N0

, (8)

where gi,k is Rayleigh fading channel between end device
i and gateway k, and can be modeled as a zero mean and
independent circularly-symmetric complex Gaussian random
variable. btj is a binary indicating whether end device j
transmits at the same time t as end device i, and N0 denotes
the power of additive white Gaussian noise (AWGN) with
zero-mean. a(di,k) denotes the path loss attenuation function
which follows from the Friis transmission equation and can
be defined as:

a(di,k) = (
c

4πfdi,k
)β , (9)

where c is the velocity of electromagnetic wave, f is the carrier
frequency and β is the path loss exponent.

With SNRi,k and received signal power ri = pi · gi,k ·
a(di,k), we have:

PDRi,k(S,P,C) = P{SNRi,k(S,P,C) ≥ thsi}
· P{tprx(S,P,C) ≥ ssk}

= P{gi,k ≥

thsi

 N∑
sj=si,
cj=ci,
j 6=i

btj · pj · gj,k · a(dj,k) +N0


pi · a(di,k)

}

× P{gi,k ≥
ssk

pi · a(di,k)
},

= exp(−

thsi

 N∑
sj=si,
cj=ci,
j 6=i

btj · pj · gj,k · a(dj,k) +N0

+ ssk

pi · a(di,k)
),

(10)
which follows the fact that g ∼ exp(1). The value of the SNR
threshold and receiver sensitivity depends on the spreading
factor and bandwidth selected by the end device. For example,
according to [25], the minimum received SNR required is -
20dBm when using SF=12 and BW=125kHz. The sensitivity
threshold is calculated as [4]:

ssk = −174 + 10log10(BW ) +NF + thsi , (11)

where the first term describes thermal noise in 1Hz of band-
width and is constant without changing the temperature of the
receiver. NF is the receiver noise figure and is fixed for given
hardware implementation.

Impact of transmission power. The above equations can
imply the significant impact of transmission power allocation
on packet delivery ratio. In Equation (10), with a larger trans-
mission power, the SNR and thus the packet reception ratio of
an end device PRRi can be improved, so that the packets
can be received by gateways with fewer retransmissions,

avoiding unnecessary energy consumption. However, accord-
ing to Equation (3), the increased transmission power will also
increase the energy consumption for a single transmission Eis,
which will negatively impact the energy efficiency. Besides,
this will also behave as a stronger interference to other
end devices and affect their energy efficiency. This trade-off
will make the energy fairness resource allocation in LoRa
networks complex. Our proposed model aims to find the best
transmission power allocation to deal with the above trade-off
by realizing the max-min fairness of energy efficiency.

To make the proposed model more practical, we consider the
properties of LoRa networks such as its limitation on gateway
reception capacity and randomness of the LoRaWANs MAC
protocol, as described in the following.

Capacity of LoRa gateways. LoRa gateways are based
on chips called SX1301, which can only decode eight LoRa
signals concurrently. This limits the capacity of LoRa gate-
ways: although spreading factors allow for multiplexing, and
theoretically at most 48 LoRa signals (eight channels and six
spreading factors) can be decoded without interference, a LoRa
gateway can receive only at most eight concurrent packets at
a time.

We use χi,k to denote this capacity limitation in Equation
(5). However, it is difficult to determine the value of χi,k due
to the lossy nature of wireless communication and random
starting time of end devices. We cannot determine whether a
gateway has received the maximum concurrent packets at a
time, thus it is impossible to determine the value of χi,k in
advance. On this occasion, we replace χti,k with θtk,i, which
denotes the probability that the number of packets which
gateway k successfully receives is less than 8.

θtk,i = P{N t ≤ 7}

=
Ti

Tc − Ti

7∑
m=1

∑
S

∏
n∈S′

S′⊂S,
|S′|=m

PDRn,k
∏

u∈S−S′

(1− PDRu,k),

(12)
where N t is the number of successfully received packets
transmitted at time t, and S = {1, 2, ...,

⌊
N Ti
Tc

⌋
}. Thus PRRi

is approximated by:

PRRi(S,P,C) = 1−
∏
k∈G

(1− θti,k · PDRi,k(S,P,C)), (13)

Combining Equation (1) with Equation (12) to (13), we
can eliminate χti,k by replacing the binary indicator into the
probability.

Considering contending end devices. LoRaWANs consti-
tute the MAC and network layers of LoRa networks and are
proposed by the LoRa Alliance [4]. Due to the low power
and low duty cycle of LoRaWANs, the transmissions work
according to Aloha protocol. As a result, interference does
not happen from all the end devices using the same spreading
factor. It is hard to determine whether any node transmits
at time t under a random access protocol, so we propose a
variable hi to represent the overlap probability between end
device i and other end devices with the same SF and channel,
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it also means there is a proportion of hi end devices interfering
with end device i at the time when i transmits.

The packet transmissions for each node are periodic, and
the time points of the transmission attempts within each cycle
follow Poisson distribution [28]. Defining Ns,c and Tc as the
total number of end devices using SF s and channel c, and the
size of contention window, given the number of end devices
trying to transmit packets according to a Poisson distribution
in the unslotted Aloha, hi is calculated as:

hi = 1− e−αNs,c , (14)

where α is the duty cycle and Ns,c is the number of end
devices that using the same SF and channel as end device i.

Note that end devices with different SFs follow different
duty cycles, because their transmission time is different while
end devices transmit packets periodically every Tg time. Duty
cycle of end device i, αi can be calculated as follows:

αi =
Ti
Tg
, (15)

where Ti is the time-on-air of a packet on end device i, and Tg
denotes the packet transmission interval. As a result, the SNR
of end device i to gateway k can be rewritten by replacing btj
to hi:

SNRi,k(S,P,C) =
pi · gi,k · a(di,k)

hi
N∑

sj=si,
cj=ci,
j 6=i

pj · gj,k · a(dj,k) +N0

, (16)

Reducing computational overhead. From the above anal-
ysis, we formulate energy efficiency as:

EEi(S,P,C) =

L

(
1−

∏
k∈G

(1− PDRi,k(S,P,C)θti,k

)
Eis(S,P,C)

=

L− L
∏
k∈G

(
1− exp(− thsi Iihi+N0+ssk

pi·a(di,k) )θti,k

)
Eis(S,P,C)

,

(17)
where Ii is the cumulative interference on end device i from
other end devices using the same spreading factor and channel.

Note that obtaining Ii is extremely difficult as all the inter-
fering end devices have to be considered for every end device
i. Note that obtaining Ii needs the information and allocation
of all the other end devices, while those end devices have
to refer to the allocation of end device i, this deadlock will
greatly hinder the calculation of resource allocation. To break
it and reduce the computational overhead, Laplace transform
is adopted to reduce the search space of the cumulative
interference since Laplace transform can effectively convert
a complex problem into an easier algebraic problem [29].
With the Poisson Point Process distribution of end devices, we

denote the Laplace transform of the cumulative interference as
LIi(s), then the energy efficiency can be expressed as follows,

EEi(S,P,C) =
L

Eis(S,P,C))
− L·

∏
k∈G

(
1− LIi(

thsihi
pi·a(di,k) )exp(−

N0+ssk
pi·a(di,k) )θ

t
i,k

)
Eis(S,P,C)

,

(18)

Taking the Rayleigh fading model and probability generating
functional of PPP into account, we can calculate the Laplace
transform LIi(s) according to [30]:

LIi(s) = exp(−2πλsi,ci(s · pi)
2
β

∫ ∞
0

r

∫ ∞
0

e−t(1+r
β) dt dr),

(19)
where λsi,ci is the density of end devices using SF si and
channel ci and can be expressed by:

λsi,ci = λ
Ns,c
N

. (20)

In this way, the impact of other end devices on end device
i can be reduced from the cumulative interference to Ns,c.
The packet delivery ratio of all the other end devices can be
estimated using Equation (19), so the gateway capacity factor
θ can be obtained, which is calculated by these PDRs.

C. Complexity Analysis

Our problem is mainly based on the scenario that end
devices are statically deployed. The server has the knowledge
of the distances between end devices and gateways, which
can be obtained by collecting the location information of end
devices when they join the networks.

To analyze the complexity of the proposed model, let us
consider the scenario of a single gateway, so that the packet
reception ratio equals to the probability that this packet is suc-
cessfully received by this gateway. If we relax the allocation
problem by making spreading factors and channels constant,
in this way, the model is to achieve max-min fairness of energy
efficiency by allocating transmission power based on the SNR
model. The optimization problem can be expressed with a
function of power allocation P.

max min
i∈N

L

Eip(P)

=
L · PDRi(P)

Eis(P)

=
L · f(SNRi(P))

Eis(P)

(21)

where f(.) is a function for calculating the PDR. According
to [31], the problem of max-min SNR is non-convex and can
be reduced to the Partition Problem which is known to be
NP-complete. Therefore, the problem of Equation (21) is also
NP-complete because it is a problem of max-min a function of
SNR. The NP-completeness of the problem of multi-gateway
resource allocation in Equation (1) can be inferred because it
is more complex to solve.
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Fig. 3. Allocation algorithm example.

D. Allocation Algorithm of EF-LoRa.

A lightweight algorithm is necessary because: 1) LoRa’s
coverage is large, yet each node can still cover only one
interesting location spot. Therefore, the network size could
be very large in a star topology (e.g., 6000 nodes in [5]
and 10,000 nodes in [32]). 2) In many practical systems
[33], [34], addition and removal of LoRa end devices are
frequent (mis-placement, additional interesting spots, etc.),
which requires adjusting the parameters of LoRa end devices.
With N end devices, ns spreading factors, nc frequency
channels and nt available transmission power levels, there
are totally (nc · ns · nt)N possible allocations and it is very
difficult to traverse all of them to find the optimal solution.
We propose an greedy solution to achieve an energy-fairness
resource allocation with low complexity, and Figure 3 gives
an illustrative example of the algorithm.

Assuming there are three end devices in a LoRa network,
we allocate the resources for end devices iteratively. An initial
resource allocation Alloc0 is first generated for all the end
devices. Starting from the end device with the most neighbor-
ing/contending end devices (density-first selection), we assign
the minimum available SF to it according to the device-
gateway distance. EF-LoRa then calculates energy efficiency
for all the possible resource allocation for this end device.
The reason is that such devices affect more devices, if we
deal with them in the first place, the decision space for other
devices will be limited. As a result, the algorithm can be
boosted. We conduct simulations to confirm the impact of
density-first selection of the starting device. Compared with
random selection of the starting device, the execution delay of
the algorithm is reduced by 10.3% on average with a network
size of 1000 nodes.

On the premise that the allocations of other end devices
keep constant. As a result, the allocation that can maximize
the energy fairness Alloc1 is obtained. We only change the
allocation of one end device, so the complexity of this step is
low. After the allocation of the first end device is updated, and
EF-LoRa goes to the second end device and allocates optimal
resources Alloc2 for it. Similarly, the optimal allocation for
the last end device Alloc3 is calculated. With the above iter-
ative allocation, we can calculate the improvement of energy
fairness ∆EE through the allocation of all the end devices.
If δEE is larger than a threshold δ, it means that we have
improved the energy fairness a lot, and it is highly possible
the energy fairness can be further improved by a new iteration.
So the algorithm repeats the above procedure and continues

Algorithm 1: Energy-fairness resource allocation

1 Alloc = DensityFirst(S,P,C);
2 EE = Min(Alloc);
3 δ = 0.01;
4 do
5 EE0 = EE;
6 for each k ∈ N do
7 for each (si,k, pi,k, ci,k) ∈ (S,P,C) do
8 minEE = Min(si,k, pi,k, ci,k);
9 if minEE > EE then

10 EE = minEE
11 Alloc(k) = (si,k, pi,k, ci,k)
12 while(EE − EE0 > δ)
13 Function Min(Alloc)#Minimum energy efficiency
14 {
15 temp = 999;
16 for eachk ∈ N do
17 EE = CalculateEE(k);
18 if EE < temp then
19 temp = EE;
20 Return temp;
21 }

to find better resource allocation to improve energy fairness.
Otherwise, it is considered that there is little improvement
space and the iteration stops, and the new allocation is output.
δ can be set by the operators as the expected accuracy of
allocation. The detailed description of the resource allocation
process is shown in Algorithm 1.

It is worth noting that we assume that the positions of all
nodes are known [15]–[17]. If the positions are unknown in
the first place, we can also collect the positions in the initial
stage after deployment. However, for the cases where the
end devices are not even equipped with GPS/other localizing
sensors, our algorithm cannot work. We may consider solving
this problem by inferring the pairwise collision probabilities
according to the packet reception traces. We will continue to
work on parameter optimization without the pre-knowledge of
end device positions.

E. Discussions

Different transmission rates of end devices. In this work,
we assume that the same transmission rate (transmissions per
time unit) for all end devices following the practical system
settings [18], [19], [35]. However, in experimental scenarios
with practical developments, it is also feasible to use different
transmission rates for different LoRa EDs. In this case, the
calculation of collision probability will be affected. To incor-
porate the impact of the different transmission rates, we need
to change the modeling and calculation of interference model
(the potential number of contending end devices). Instead of
using distribution-based probabilities, we need to employ the
transmission rates of all end devices in the model. Another
feasible way is to find out an accurate distribution by curve
fitting with the transmission rates from all end devices.
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TABLE IV
THRESHOLD FOR SNR AND SENSITIVITY.

Spreading factor 7 8 9 10 11 12

SNR threshold (dBm) -6 -9 -12 -15 -17.5 -20

Sensitivity (dBm) -123 -126 -129 -132 -134.5 -137

Incremental algorithms for device additions/removals.
Following our current algorithm design, every time when
there are device additions/removals, all parameters will be
re-assigned, which may lead to interruptions to the network
operations. Therefore, in our future work, we will study
incremental algorithms to adjust the parameters of LoRa end
device with the minimum change on the existing parameter
settings. Besides, as the problem can be reduced as a par-
tition problem, we will study the optimum of the proposed
algorithms following the derivations of the similar greedy
algorithm [36] in our future work.

Inter-SF interference. Some studies have identified inter-
SF interference exist due to the imperfect orthogonality in
LoRa communications [27], [37], [38]. Such interference will
affect our fairness models. Specifically, in the calculation of
contending end devices, we need to additionally consider the
nodes with different SF and use the inter-SF interference
models to evaluate its impact on the SNR estimation in Eq.
(14-16). We plan to incorporate the inter-SF interference in
our future work.

IV. EVALUATION

We conducted a series of large scale experiments on the
simulation platform NS-3. Up to 25 gateways and 5000 end
devices are deployed within a disc of 5 kilometers radius. The
simulation with NS-3 is based on the LoRa network module
proposed by [13], which supports the packet transmission in
multiple gateway scenarios. Each simulation with a given set
of parameters is repeated 100 times. All the gateways and end
devices were configured to use the channel frequency from
902.3 MHz to 903.7 MHz with 125kHz bandwidth. Duty cycle
was set to 1%, the uplink packets had an application payload
of 8 bytes, which implied a PHY payload of 21 bytes. The
energy is consumed by both active transmission and sleep.
Based on the experiments in [5], the sleep duration of end
devices includes MCU sleep duration and radio sleep duration.

The region was meshed and gateways were deployed on
the cross positions of these meshes according to the number
of gateways. If we deployed one gateway, it was set at the
center of the region. If multiple gateways were used, they were
uniformly deployed inside the coverage, and end devices were
also uniformly deployed. The trigger parameter of allocation
algorithm iteration termination δ was set to 0.01.

SNR threshold and receiver sensitivity could be configured
according to Semtech specification [4]. Table IV illustrates
them with different spreading factors.

Benchmarks. In our experiments, we compared EF-LoRa
with legacy LoRa [13] and RS-LoRa [6] which introduces
the state-of-the-art resource allocation works. Legacy LoRa
[13] chooses the smallest available spreading factors for end
devices, which are calculated according to the estimated SNR

while not considering the interference from other end devices
in the networks. RS-LoRa considered the collision probability
of end devices that use the same spreading factor. It tries to
realize the fairness of collision probability among all the SFs.
The percentage of end devices using different SFs is calculated
by the following equation,

ps =
s/2s∑
i∈SF i/2

i
(22)

where s denotes a certain spreading factor, and SF represents
the set of all the available spreading factors. This indicates that
every end device is possible to choose the largest SF, which
can lead to energy unfairness.

A. Energy fairness in the networks

Energy efficiency among end devices. We first investigate
the energy efficiency in LoRa networks in Figure 4. 3000
end devices along with three gateways and five gateways
are picked as examples of network deployment. The energy
efficiency of all the end devices in the networks is collected
and calculated, and different methods (i.e., RS-LoRa, Legacy-
LoRa and EF-LoRa) are depicted with different colors. As
can be observed, the great fluctuation in Figure 4(a) and (b)
indicates that the energy efficiency of legacy LoRa and RS-
LoRa is not well balanced. As a result, the batteries of some
end devices in RS-LoRa and Legacy-LoRa drain much faster
than others, reducing the lifetime of the networks. Although
the overall energy efficiency is improved in legacy LoRa and
RS-LoRa with more gateways, the unfairness problem among
end devices still exists and is even worse. Besides, the average
energy efficiency of all the three methods is improved when
the number of gateways increases from three to five. However,
the fluctuation of energy efficiency (energy unfairness) is
exacerbated. The reason is that with more gateways, packets
have more chances to be received and packet reception ratio
is improved, but the difference of reception ratio among end
devices also increases since different end devices can be
received by different number of gateways and use different
spreading factors. In that case, the allocation induces more
fluctuations and unfairness in energy efficiency.

It can be also observed in Figure 4 that the average energy
efficiency of RS-LoRa and EF-LoRa is similar. This is because
EF-LoRa tries to achieve the fairness of both packet reception
ratio and transmission time, while RS-LoRa aims at only the
fairness of packet reception ratio, the energy efficiency in RS-
LoRa is then differentiated by transmission time (spreading
factor). As a result, the average energy efficiency between RS-
LoRa and EF-LoRa is similar but the stability is different.

CDF of energy efficiency. To further analyze the three
methods, Figure 5 depicts the CDF (cumulative distribution
function) of energy efficiency for the three methods according
to Figure 4. As expected, the energy efficiency of EF-LoRa
distributes within a narrow interval for both three gateways
and five gateways scenarios (3GW and 5GW in the figure),
and their cumulative probability increases with similar speed.
On the contrary, energy efficiency in RS-LoRa spreads over
a wide region from 0.69 bits/mJ to 1.61 bits/mJ and 0.98
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(a) RS-LoRa (b) Legacy-LoRa (c) EF-LoRa

Fig. 4. Energy efficiency for different allocations.
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Fig. 7. Minimum energy efficiency.

bits/mJ to 2.29 bits/mJ. Besides, a small portion of end devices
suffers from relatively low energy efficiency. Note that for RS-
LoRa with five gateways, there is a relatively fast increasing
of cumulative probability when the energy efficiency is small,
due to the choice of large spreading factors. End devices in RS-
LoRa are possible to choose large spreading factors regardless
of the network deployment, leading to a long transmission
time. As the packet reception ratio can be greatly improved
by multiple gateways, a larger spreading factor will result in
lower energy efficiency as illustrated in Figure 5. Similarly,
legacy LoRa also shows wide distribution in energy efficiency
(i.e., 0.3 bits/mJ to 1.2 bits/mJ for three gateways and 0.1
bits/mJ to 1.6 bits/mJ for five gateways). The reason is that
all the end devices intend to use small spreading factors, as a
result, end devices that use large spreading factors do not face
as severe interference as end devices using small spreading
factors, and the spreading factors of some end devices are
not very large (e.g., SF9), the energy efficiency will be very
high compared with those end devices using small spreading
factors.

Comparison of energy fairness. We use the minimum
energy efficiency in a network to represent the energy fairness.

Figure 6 illustrates the minimum energy efficiency of the three
methods with three gateways, and the network deployment
changes by different number of end devices (i.e., from 500
to 5,000). It can be seen that the minimum energy efficiency
decreases when more end devices were deployed, and EF-
LoRa performs better than both RS-LoRa and legacy LoRa.
This is because the collision probability increases, leading to
the lower reception ratio and lower energy efficiency with
more end devices, while for legacy LoRa, the minimum energy
efficiency keeps low even with a small number of end devices
due to the severe collisions.

Another important insight delivered from Figure 6 is that
the minimum energy efficiency of EF-LoRa is larger than
that of legacy LoRa and RS-LoRa when the number of end
devices is small, while this gap is reduced as the number
of end devices increases. This is because when the number
of end devices is small, the end devices in EF-LoRa can
choose smaller spreading factors without many collisions in
the coverage of multiple gateways, leading to several times
faster transmissions. As a result, the energy efficiency of EF-
LoRa is generally high. While for RS-LoRa, there are always
some end devices choosing large spreading factors such as
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11 and 12 because it tries to balance the collision probability
of all the spreading factors. Since the transmission time of a
packet exponentially increases when larger spreading factors
are used, the bottleneck of minimum energy efficiency is
usually dependent on those end devices with large spreading
factors. In this case, a large gap of minimum energy efficiency
appears. However, if there are too many end devices such as
5000 in Figure 6, both RS-LoRa and EF-LoRa have to use
large spreading factors and low transmission power to balance
the collisions among end devices, so the gap of minimum
energy efficiency is greatly impacted by the reception ratio
and the energy fairness between RS-LoRa and EF-LoRa is
similar.

In Figure 7, we consider energy fairness of the networks
with 3000 end devices, and the deployment is changed by
different number of gateways. Figure 7 demonstrates that the
minimum energy efficiency of EF-LoRa is larger than that of
both legacy LoRa and RS-LoRa, and this benefit increases
as more gateways are deployed. The reason behind this is
similar to Figure 6. With one gateway, end devices have to use
large spreading factors to reach the gateway, so the minimum
energy efficiency is relatively high due to the low data rate,
and both RS-LoRa and EF-LoRa could balance the collision
probability. As the number of gateways increases, collisions
can be reduced, at the same time, end devices of EF-LoRa
can choose smaller spreading factors to reach the gateways.
However, RS-LoRa still experiences a low energy efficiency
because it always has some end devices using large spreading
factors, which can be the bottleneck of energy efficiency. For
legacy LoRa, more gateways means that more end devices can
use small spreading factors, and they still suffer from severe
collisions. On the other hand, the minimum energy efficiency
decreases after a certain number of gateways. The reason is
that with a very dense gateway deployment, all the end devices
use the smallest spreading factor, and the extremely low packet
reception ratio will limit the minimum energy efficiency.

Network lifetime. Since energy inefficiency can affect
network lifetime, which is a very important consideration for
low power wireless networks, we evaluate the performance
gain of network lifetime for EF-LoRa. The network lifetime
is defined as the time that 10% of the end devices have run out
of their batteries, Figure 8 depicts the comparison of network
lifetime with different network deployment. 3GW and 5000ED
denote the network deployment with three gateways and 5000
end devices, respectively. The results show that EF-LoRa can
improve network lifetime of RS-LoRa and legacy LoRa by
15.3% and 41.5% on average, respectively. This benefit comes
from the improved energy fairness in the network. Besides,
network lifetime of RS-LoRa also outperforms legacy LoRa.
This is because many end devices in legacy LoRa choose
small spreading factors and the overall collision probability
is higher than that in RS-LoRa. It can also be observed that
the network lifetime of all the three methods increases as
the deployment density decreases (we first reduce the number
of end devices, and then increase the number of gateways),
because the collision probability is reduced and the lifetime
of individual end devices is improved.

B. Performance decomposition

Sensitivity to path loss exponent β. To further analyze
the benefits of EF-LoRa, we decompose the performance
gain of EF-LoRa. We first evaluate the performance gain
from the network model. To obtain the path loss attenuation
function a(di,k), not only the distances between end devices
and gateways have to be considered, the path loss exponent β
can also impact the final resource allocation by the calculation
of a(di,k). In this paper, β is set to 2.7 for line-of-sight
end devices and 4 for non-line-of-sight end devices, which
are usually considered for suburban and urban scenarios [25].
However, the resource allocation may be different with differ-
ent path loss exponent. To verify the sensitivity of EF-LoRa
to the path loss exponent, we conducted experiments with
different β with more path loss and less path loss. Figure 9
first shows the comparison of energy fairness between different
path loss exponent. It can be seen that the energy efficiency
and its fairness slightly changes with different β. Specifically,
the energy fairness decreases by 25% with less path loss (β
is 2.4 for line-of-sight and 3.7 for non-line-of-sight) and 3%
with more path loss (β is 3 for line-of-sight and 4.3 for non-
line-of-sight). The reduction implies that the testbed on the
campus experiences high path loss which may be caused by
the tall trees and buildings with many walls. Finally, the energy
fairness of all the path loss exponent settings still outperforms
the legacy LoRa and RS-LoRa, and EF-LoRa is robust to the
change of path loss exponent β.

Transmission power allocation. LoRa networks have sev-
eral configurable resources such as spreading factor and
transmission power. The importance of spreading factor and
channel allocation has been well studied in previous work
for improving data rate or reducing interference. However,
transmission power allocation can also significantly affect the
energy fairness. Figure 9 also depicts the impact of transmis-
sion power allocation. For comparison, we set up a LoRa
network that does not have transmission power allocation,
where all the end devices use the largest transmission power,
14 dBm (EF-LoRa-14dBm in Figure 9).

Experimental results in Figure 9 depict that with identical
transmission power on end devices, the energy fairness is
reduced by 26%. The reason is that with the maximum
transmission power, all the end devices have a long commu-
nication range. As a consequence, the interference increases
significantly, and it is harder to achieve energy fairness than
with the schemes that allocate different transmission power
to end devices. Furthermore, it can be seen that even with
identical transmission power, the minimum energy efficiency
of EF-LoRa still outperforms that of legacy LoRa and RS-
LoRa by 71% and 3%, respectively. This also reveals that
the EF-LoRa can significantly improve the energy fairness of
LoRa networks.

C. Convergence of the algorithm

Although the EF-LoRa algorithm reduces the computation
overhead of the optimal allocation from an exponential level
to the multiplication by introducing a termination parameter δ,
the convergence for running the proposed algorithm could be
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greatly influenced by the scale of the network. Figure 10 shows
the convergence time for calculating the allocation according
to the EF-LoRa algorithm, by varying the number of end
devices from 1000 to 3000 and gateways from three to nine,
we measure the running time it takes for EF-LoRa to stabilize.

The hardware we used for algorithm calculation was a
Lenovo ThinkPad X1 Carbon laptop with 2.2GHz i5-5200
CPU and 4GB RAM. The running time for EF-LoRa imple-
mented with Python 3.4 represents the algorithm convergence
for the computation overhead with the termination parameter.
As shown in Figure 10, the convergence time of EF-LoRa
algorithm increases as more end devices and gateways were
deployed. Besides, the convergence time increasing resulting
from both more end devices and more gateways shows a near-
linear trend. Specifically, by using 1000 more end devices, the
increased convergence time is similar to that by deploying two
more gateways.

As a result, the convergence time of EF-LoRa will not
increase unlimitedly as the scale of the network expands.
Despite the long convergence time on the simulation laptop,
the calculation for resource allocation only has to run once
when setting up the networks, and it will be running on the
high-performance LoRa application servers, which can greatly
reduce the convergence time. In this case, EF-LoRa algorithm
can be practically implemented and deployed on large scale
LoRa networks and achieve energy fairness.

V. RELATED WORK

In this section, we study the existing work on energy
fairness and resource allocation of LoRa networks and other
networks, respectively.

Reducing energy consumption in LoRa networks. Net-
work lifetime is one of the most important design consid-
erations in low-power wireless networks. Prior work [39]–
[42] mainly focuses on reducing the energy consumption on
individual end devices through more efficient and reliable
transmissions. For example, unnecessary re-transmissions can
be avoided by Charm [40] (i.e., recovering weak LoRa signals
from the copies received by multiple gateways) and Ftrack [41]
(i.e., concurrently identifying and decoding multiple colliding
LoRa signals). However, the energy fairness problem has not
received sufficient attention.

Resource allocation in LoRa networks Due to the ex-
tremely low battery power of LoRa end devices, the existing

works on resource allocation in LoRa networks also aim
at fairness [6], [10], [43], [44]. In [10], Reyndder et al.
achieve the fairness of collision probability of end devices
in a single gateway scenario. Based on this allocation, [6]
proposed a MAC layer protocol to schedule end devices and
their spreading factors. However, they do not consider the
energy consumption gap of different spreading factors, and the
allocation is obtained assuming that end devices are deployed
following a uniform distribution around the gateway. Besides,
the above allocation is obtained with a single gateway, which
does not consider the impact of other gateways due to the
broadcast transmission of end devices, thus cannot efficiently
reflect the performance of multi-gateway LoRa networks.

Energy fairness in wireless sensor networks. Wireless
sensor networks (WSNs) consist of low-cost and energy-
constrained sensors to monitor the environment such as fire
alarming. Since wireless sensors work in low power manner,
there have been considerable studies tailored for achieving en-
ergy fairness to prolong the network lifetime of wireless sensor
networks. Given that the communication range of sensors is
small, wireless sensor networks connect sensor nodes and sink
nodes in a multi-hop manner, that is, sensor nodes collect
data and send the data to sink nodes by multiple relaying
from other nodes, so the prior work on energy fairness mainly
focuses on the routing and rate control [45]–[48]. However,
in LoRa networks, end devices broadcast their packets to
gateways within a single hop, so there is no routing problem.
Besides, spreading factor not only performs orthogonally but
also indicates different data rates. These two properties should
be jointly considered in resource allocation.

Adaptive Data Rate in LoRaWAN. The Adaptive Data
Rate (ADR) protocol is one of the key techniques in Lo-
RaWAN, which can adjust the parameters of end devices
according to the network conditions. The topic of ADR has
attracted increasing research attention in recent years.

Cuomo et al. [49] proposed Explora, which aims at ensuring
equal time occupation for different SFs. Garlisi et al. [26]
further extended the work by considering the multi-gateway
scenarios and obtained further improvements by considering
the channel capture effect. Abdelfadeel et al. [50] aimed at
achieving fair ADR by assigning SF and transmission power.
Marini et al. [51] proposed a collision-aware adaptive data
rate algorithm for LoRaWAN, which aims at minimizing the
collision probability when assigning data rates while keeping
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the link-level performance under control. Coutaud et al. [52]
proposed an ADR proposal for multi-gateway LoRaWAN
Networks. The work relies on the accurate estimation of
the effective channel, dynamically adapts to the number of
gateways and exploits the macro-diversity. Li et al. [53]
analyzed the performance of ADR in terms of agility and
identified that convergence is a bottleneck for the performance
of ADR.

Compared with the above works, our work in this paper
focuses more on modeling the max-min fairness (energy
efficiency) of the whole network and tries to provide a global
view of the fairness of LoRa networks.

Resource allocation in cellular/WiFi/Edge networks. Re-
source allocation problem in cellular networks such as spec-
trum assignment and power control has been widely studied
[54]–[56]. For example, techniques like partial frequency reuse
(PFR) [54] or soft frequency reuse (SFR) [56] are used
to mitigate the inter-cell interference in cellular networks.
In WiFi networks, spectrum assignment and power control
schemes can also help with improving the throughput and
capacity of the networks.

Different from cellular/WiFi networks, in multi-gateway
LoRa networks, the spreading factors should be considered not
only due to orthogonality but also due to data rates which mean
different transmission time and coverage. This combination of
the properties of channels and data rate makes it difficult to
allocate spreading factors in LoRa networks. Thus, realizing
energy fairness with resource allocation in LoRa networks is
more difficult than that in cellular networks or WiFi networks.

VI. CONCLUSION

In this paper, we proposed EF-LoRa, a networking solution
that achieves energy fairness among end devices and extends
the network lifetime. Specifically, we proposed a mathematical
model of energy efficiency in multi-gateway LoRa networks
and formulated the resource allocation problem to achieve
max-min fairness. The properties of SFs, channels and data
rates were considered in the formulation to make the op-
timization more efficient and practical. We also formulated
the impact of channel and transmission power allocation.
The interference and load of gateways were alleviated by
controlling the transmission power of end devices. Finally, we
proposed a greedy algorithm to solve the problem and got
the resource allocation. The simulation results show that the
allocation calculated by the proposed algorithm can achieve
better fairness of energy efficiency than the state-of-the-art
works in LoRa resource allocation.
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