
fevo-10-869751 May 17, 2022 Time: 14:6 # 1

REVIEW
published: 20 May 2022

doi: 10.3389/fevo.2022.869751

Edited by:
Michael Hrncir,

University of São Paulo, Brazil

Reviewed by:
Adam Kőrösi,
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Insect pollinators are affected by the spatio-temporal distribution of floral resources,
which are dynamic across time and space, and also influenced heavily by anthropogenic
activities. There is a need for spatial data describing the time-varying spatial distribution
of flowers, which can be used within behavioral and ecological studies. However, this
information is challenging to obtain. Traditional field techniques for mapping flowers are
often laborious and limited to relatively small areas, making it difficult to assess how
floral resources are perceived by pollinators to guide their behaviors. Conversely, remote
sensing of plant traits is a relatively mature technique now, and such technologies
have delivered valuable data for identifying and measuring non-floral dynamics in plant
systems, particularly leaves, stems and woody biomass in a wide range of ecosystems
from local to global scales. However, monitoring the spatial and temporal dynamics
of plant floral resources has been notably scarce in remote sensing studies. Recently,
lightweight drone technology has been adopted by the ecological community, offering a
capability for flexible deployment in the field, and delivery of centimetric resolution data,
providing a clear opportunity for capturing fine-grained information on floral resources
at key times of the flowering season. In this review, we answer three key questions of
relevance to pollination science – can remote sensing deliver information on (a) how
isolated are floral resources? (b) What resources are available within a flower patch?
And (c) how do floral patches change over time? We explain how such information
has potential to deepen ecological understanding of the distribution of floral resources
that feed pollinators and the parameters that determine their navigational and foraging
choices based on the sensory information they extract at different spatial scales. We
provide examples of how such data can be used to generate new insights into pollinator
behaviors in distinct landscape types and their resilience to environmental change.

Keywords: remote sensing, flower, insects, pollination, behaviour, foraging, drone, satellite

INTRODUCTION

Pollination of flowering plants by insects is essential to the functioning of natural and agricultural
ecosystems and to the global food supply (most recently reviewed by Khalifa et al., 2021; Montoya
et al., 2021). These pollination services depend in fundamental ways on the spatio-temporal
distribution of floral resources, which are dynamic across time and space. They are also shaped by
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anthropogenic landscape fragmentation and climate change with
a potential to reduce or eliminate relationships within intricate
ecosystems that are balanced by both the species composition
and abundance of flowering plants (e.g., Biesmeijer et al., 2006;
Memmott et al., 2007; Montero-Castaño and Vila, 2012; Goulson
et al., 2015; Wenzel et al., 2020). Alterations in the availability
of floral resources and the macro- and micronutrients they
provide may have important effects on the population strength,
health, activity and navigation patterns of pollinators across a
range of spatial scales – from the plant to the flower patch
and wider landscape. Consequently, the landscape context is
critical to understanding pollination behaviors and their effects
on pollinator populations (e.g., Winfree et al., 2007; Betts
et al., 2019; Pamminger et al., 2019; Timberlake et al., 2021;
Nicholls et al., 2022). It is timely to assess how spatial data
describing the time-varying spatial distribution of flowers can be
obtained by integrating remote sensing technology more firmly
into behavioral and ecological studies. We review here how
new technology and approaches can be applied to overcome
challenges in obtaining accurate description of landscape
structures and the dynamic distribution of floral resources that
impacts pollinator abundance, activity and movements.

Vision guides most pollinators’ behavioral repertoires, as
shown by long-standing research of vision and visually guided
behaviors in bees, flies and other insect pollinators (for reviews
see Menzel et al., 1997; Egelhaaf and Kern, 2002; Srinivasan,
2011; Hempel de Ibarra et al., 2014; Behnia and Desplan, 2015;
Kelber and Somanathan, 2019). For demonstrating causality,
the environmental conditions, typically inside the laboratory,
are often manipulated to reduce complexity and to control the
presentation of visual stimuli or landmarks. This has helped
to characterize rules of movements at different spatial scales,
unraveling how insects navigate (e.g., Collett and Collett, 2002;
Collett et al., 2006; Knaden and Graham, 2016; Webb, 2019).
However, it is still difficult to carry out behavioral experiments
over larger spatial scales, in field environments or heterogeneous
landscapes, partly because most pollinators are flying insects and
small in body size. There are limited options for tracking their
flight trajectories and these do not resolve small-scale movements
and behavioral choices during a natural foraging trip. The other
challenge is to design behavioral studies and identifying suitable
study areas based on easily quantifiable landscape parameters,
such as the distribution of foraging locations and floral densities.
Remote sensing offers opportunities to analyze floral resources
in situ along a range of spatial and temporal scales (Table 1).
This information could enhance our understanding of how and at
what scales the distribution of floral resources in the environment
affects pollinator movements. For ecological questions such
information also allows scientists to evaluate how fitness and
abundance of pollinators is affected in different landscapes.

Terrestrial remote sensing approaches, where the Earth’s
ecosystems are monitored by sensors on board satellites (e.g.,
Xie et al., 2008), airplanes (e.g., Lan et al., 2009), unpiloted
aircrafts also known as drones (Anderson and Gaston, 2013)
and ground-based platforms have transformed scientific
understanding of the dynamics in global processes, particularly
the world’s vegetated ecosystems. Remote sensing works by

TABLE 1 | Definitions for “coarse,” “medium,” and “fine” spatial resolutions and
revisit periods used in this paper.

Spatial resolution (m) Revisit period (days)

Coarse 10+ 30+
Medium 1–10 11–29
Fine <1 <10

capturing changes in the spectral signatures or structural traits
of vegetation (at different grains, depending on the sensor and
platform used) so that their physiological, biochemical and
spatial properties can be analyzed. When using remote sensing
to characterize flowering vegetation, researchers have obtained
can information in the form of multispectral images, reflectance
spectra, or point cloud data (Willcox et al., 2018; Krishnasamy
et al., 2019). Traditional field techniques involving manual
floral counts using quadrats or transects are often laborious,
time-consuming and only measure floral features detectable or
predefined by the observers’ eyes Furthermore, in an analysis
of methodologies employed by 159 studies, Szigeti et al. (2016)
found that ecologists use a wide range of manual sampling
methods but those are often not reported in sufficient detail,
leading to a lack of standardization of sampling methods within
the field. Additionally, due to the time and labor costs associated
with manual sampling, the authors conclude that many floral
samples capture only a fraction of the areas relevant to pollination
and therefore may not be truly representative of the range of
floral resources that can be accessed by pollinators. Remote
sensing approaches can increase both the spatial and temporal
efficiency of floral sampling as it allows for flowers or flower
patches to be surveyed over areas covering several hundreds of
meters (drones) to several thousands of kilometers (satellites) in
only a few hours, facilitating coverage of large portions, if not
all of, pollinators foraging and/or migration ranges. However,
it is critical to differentiate between resources that are available
to pollinators in the environment, which flowers pollinators
actually exploit and how pollinators use distinct floral resources.
Behavioral, physiological or foraging data on pollinators must
be paired with remote sensing approaches that examine various
aspects of floral resources that lie within an insect’s flight range.
In conclusion, selecting the sensors and imaging platforms
most appropriate for capturing the spatio-temporal dynamics
of floral resources depends on the ecological and behavioral
questions of interest.

This review focuses on the little explored nexus of remote
sensing and pollination studies, concentrating on a discussion
of the various ways that remote sensing data can be used to
characterize floral resources in the field for integration into
pollination studies. We explore how different remote sensing
platforms can be used to address three critical questions relevant
to pollination science which are:

• How isolated are floral resources?
• What resources are available within a flower patch?
• How do floral patches change over time?
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FIGURE 1 | The approximate operating altitudes of satellite-, airplane-, and drone-based imaging platforms. The corresponding fields of view used to capture
vegetation from these different altitudes illustrate the extent of the landscape that can be viewed from a single image by sensors onboard each imaging platform.

Background: Remote Sensing
Approaches for Landscape Ecological
Assessment
The spatio-temporal distribution of flowering vegetation can
be measured using a variety of sensors carried by satellites,
airplanes and drones. To frame the technical methods presented
in the rest of this paper, we provide some technical specifications
of platform survey heights and resultant spatial data grains
(Figure 1); temporal vs. spatial trade-offs (Figure 2) and details of
combined platform-sensor capabilities with examples (Table 2).
Sensors carried by these platforms may be passive, and measure
sunlight reflected from the Earth or may be active, producing
their own source of light that is subsequently reflected back
and measured. Passive satellite systems such as those used on
the NASA Landsat (30 m spatial resolution in the visible, near-
infrared, and short-wave infrared portions of the light spectrum,
i.e., VIS, NIR, SWIR—for a list of abbreviations and terminology
used throughout this paper see Table 3) and Sentinel-2 (10–20 m
spatial resolution in the VIS, NIR, SWIR) missions can capture
landscape features at coarse and moderate spatial resolutions
from a few spectral bands using multispectral sensors. However,
commercial satellites such as Worldview-3 (1.24 m VIS and NIR,
3.7 m SWIR) are capable of generating fine spatial resolution
datasets, allowing for more detailed explorations of vegetation
features, albeit at relatively high financial cost. Additionally,

hyperspectral datasets that sample the light spectrum across
hundreds of narrow band-width channels can be generated
from research satellites (e.g., Hyperion, Gaofen-5) and from
hyperspectral sensors mounted on drones, but the mechanisms
to understand how the complex hyperspectral metrics measured
over moderate resolution pixels relate to ecological phenomena
need further exploration (Roberts et al., 2011). Yet some
efforts are ongoing to explore these complexities and find
new information sources (e.g., ‘Spectranomics’ approach where
spectral diversity might provide a proxy for ecosystem diversity –
explored by Asner and Martin, 2016). In the context of
vegetation studies, multispectral and hyperspectral data obtained
from sensors mounted on satellites, airplanes and drones are
often processed using vegetation indices (VIs), which are the
reflectance ratios of two or more spectral bands (Table 4).
Probably the most widely used VI is the normalized difference
vegetation index (NDVI; Gao et al., 2020). NDVI ratios
reflectance in the near infra-red (NIR) to the red portion of
the visible spectrum because healthy plants tend to absorb
red light and reflect it strongly from their spongy mesophyll
layer in the NIR. This reflectance ratio can be used in a
simple way to determine the probability that a given pixel
represents vegetation on the ground, allowing researchers to
build up a map of the spatial distribution of vegetation over
a given area. It can also be used in a more complex sense
to serve as a proxy for other vegetation parameters where the
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FIGURE 2 | Satellites, airplanes, and drones usually carry sensors that measure flowering vegetation at distinct temporal revisit periods and spatial grains. Typical
vegetation features that can be efficiently measured by each of these remote sensing platforms are shown in relation to the temporal and spatial capabilities of each
system.

TABLE 2 | Examples of the types of data acquired by satellite, airplane, and drone-based imaging platforms, their approximate range of spatial resolutions (at typical
flight heights), extents, temporal resolutions and costs to the user.

Platform Spectral data Structural
data

Typical range of
spatial resolution

Maximum
extent

Maximum temporal
resolution

Cost

Satellite -Multispectral
-Hyperspectral (mostly from
commercial satellites)

LiDAR
Radar systems*

0.3 m–1 km** Up to tens of
thousands of
km

2 days to 1 week+ -Data cost: Free (most research
satellites), $ 1- 40 + /km2

(commercial satellites)
Airplane -Multispectral

-RGB photographs
-Hyperspectral

LiDAR ∼1 m Up to a few
thousand km

Unlimited -Cost of chartering airplane: ∼
$1,000- $10,000/h
-Sensor cost: ∼$1,000–$50,000

Drone -Multispectral
-RGB photographs
-Hyperspectral

LiDAR
Structure from
motion
photogrammetry

∼0.01 m Up to ∼ 10 km Unlimited -Drone cost:
∼$50-$10,000 with inbuilt
camera
-Sensor cost:
∼ $100 (Go-Pro)- $50,000
(hyperspectral sensor)

Ground-
based
sensor

-Multispectral
-RGB photographs
-Hyperspectral

Terrestrial Laser
Scanner (TLS)
Structure from
motion
photogrammetry

∼0.01 m Less than 1 km Unlimited -Sensor mount cost: ∼$10
(stationary tripod)- $1,000
(moving platform)
-Sensor cost: ∼ $100 (Go-Pro)-
$50,000 (hyperspectral sensor)

**Commercial satellites often have sensors with finer spatial resolutions than research satellites. *We limit discussion in this paper to LiDAR because radar systems deliver
different structural information which is more complex to analyze.

magnitude of NDVI is linked to vegetation features such as
canopy structural parameters e.g., leaf area index (Roberts et al.,
2011; Gao et al., 2020). Note that there are a great number
of vegetation indices, all slightly varying in their algorithms,
but many widely used for similar purposes (Elvidge and Chen,
1995; Viña et al., 2011; Table 4). Most published research using
VIs to examine flowering vegetation come from agriculture
(e.g., Fang et al., 2016; Wan et al., 2018; Yang et al., 2022)

or conservation (e.g., Hunt and Williams, 2006; Tvostik et al.,
2019) and use VIs to quantify flower number or patch size of
the same floral species and do not differentiate between distinct
flower types within the same patch. Such studies have reported
differing accuracies depending on the flower type and VI used,
for example, Wan et al. (2018) compared the accuracies of
ten different VIs to quantify oilseed rape crops, and reported
classification accuracies ranging between 0.61 and 0.91. There are
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TABLE 3 | Abbreviations and terminology.

Abbreviations

RGB Red, green, blue
VI Vegetation index
UV, VIS, NIR,
SWIR

Ultraviolet spectrum: 300–400, visible spectrum: 400–700 nm,
near-infrared spectrum: 780–1,400 nm, short-wave infrared
spectrum: 1,400–3,000

NDVI Normalized difference vegetation index
LiDAR Light detection and ranging
TLS Terrestrial laser scanner
FOV Field of view of a camera
Terminology
Multispectral
imagery

Imagery produced using many different portions of the light
spectrum, usually 3-10 distinct spectral bands. Bands are
broader than those used in hyperspectral imagery, typically over
20 nm.

Hyperspectral
imagery

Imagery produced using sensors which typically use hundreds
of contiguous (overlapping), narrow spectral bands with the
capability to produce a continuous spectrum. These usually
operate across the visible, near-infra-red and
short-wave-infrared regions of the spectrum. As hyperspectral
sensors are heavier than multispectral sensors, they are usually
deployed on platforms with high payload capacities.

Point cloud A set of data points in space representing an object. Each point
contains a set of Cartesian coordinates (X, Y, Z).

Structure from
Motion (SfM)
photogrammetry

A method for generating 3D point clouds describing object
structures, based on overlapping 2D photographs.
Photographs captured from distinct viewing angles are
analysed using computer vision algorithms and processed via
bundle adjustment to deliver information about the structural
qualities of surface objects.

Discrete LiDAR A remote sensing system where a laser emits a pulse of light
that hits 3D objects and records only a few (typically 3–5) light
returns from each laser pulse.

Waveform LiDAR A remote sensing system where a laser emits a pulse of light
that hits 3D objects and records a profile of light returns over
time.

fewer studies examining floral diversity using vegetation indices,
and these studies are tasked with maximizing the reflectance of
different floral types from each other and against the background.
While distinguishing floral species based on reflectance spectra
is possible both manually and by using classification algorithms,
this task is complicated when flowers are spectrally similar.
Therefore, object-based analyses on RGB imagery are often
employed for detection of individual floral species based on
different floral features such as size and shape, although these
methods can sometimes be computationally intensive, involving
machine learning. Despite their relatively high computational
demands, such studies have typically reported accuracies in
distinguishing floral types ranging between around 0.70 to over
0.90 (Gogul and Kumar, 2017; Cibuk et al., 2019 Islam et al., 2020;
Togacar et al., 2020) depending on the features extracted and the
algorithms employed.

The structures of vegetation can be resolved through light
detection and ranging (LiDAR) sensors mounted on ground-
based (“terrestrial laser scanning,” TLS), drone and airplane
platforms. While LiDAR doesn’t provide information on
floral distribution (since most LiDARs record only structural
rather than spectral parameters), it can be used to resolve
landscape elevation and plant structures, allowing researchers

to understand the spatial and volumetric distribution of floral
patches when integrated with optical and infra-red products from
different systems (Sellars and Jolls, 2007; Hosoi and Omasa,
2009; Wu et al., 2019). LiDAR emits pulses of light and captures
backscatter from vegetation stored in point clouds to measure
the height of objects within landscapes, with capabilities for
describing the 2.5-D or 3-D representations of their structures.
Discrete LiDAR systems provide information about the top
of canopies and the underlying terrain allowing basic metrics
of canopy height to be determined, but missing the detail of
what lies between the tree tops and the ground (hence, “2.5-
D”). Conversely, TLS can deliver 3D information by scanning
canopies from the ground up; whilst waveform LiDAR can
resolve full volumetric canopy structure by measuring how the
emitted light interacts with vegetation between the treetops and
the ground. There are now waveform LiDARs in the air (Hancock
et al., 2017; Coops et al., 2021) and on the International Space
Station (NASA GEDI mission). Additionally, LiDAR data can be
used within models of radiative transfer to simulate processes
of light penetration which can provide information about the
amount of light reaching forest understories (Salas, 2020).
New innovations in multispectral LiDAR might provide novel
opportunities for pollination scientists because this potentially
allows for both spectral and structural data to be captured.

At the landscape scale, data obtained from satellites can
be used to analyze patches of floral resources at coarse- and
moderate- grain, such that each pixel represents light reflected
over an area of several dozen to hundreds of meters on the ground
(e.g., Hofmann et al., 2011; Leong and Roderick, 2015; Beduschi
et al., 2018). Compared to other remote sensing platforms,
the use of satellite data is a relatively mature technique for
assessing vegetation and is often used in landscape studies to
map vegetation and flower patches. Although aerial imagery
captured from airplanes can provide spatial information at
moderate-grain, the use of this platform for mapping vegetation
is comparatively rare in the pollination literature, likely due to
the high financial and logistical costs associated with chartering
airplanes to obtain data (Table 2, Willcox et al., 2018).
Consequently, governmental organizations with relatively large
amounts of funding typically charter airplanes to capture new
geo-spatial data which may in some situations be made available
to researchers and members of the public at little or no cost on a
post hoc basis (e.g., in the UK the Environment Agency makes
all airplane-acquired remote sensing data available to citizens
through data.gov.uk).

Important platforms for use in field studies are consumer-
grade fixed-wing and rotor-based drones (take-off weight totals
less than 30 kg; Anderson and Gaston, 2013; Krishnasamy
et al., 2019; Rominger et al., 2021). They are typically also
equipped with GPS so that the captured images can be geo-
referenced. Drones may be useful for capturing floral data
relevant to pollination research as they can be operated over
spatial areas that roughly match the distances covered by
many foraging pollinators (Osborne et al., 2008; Danner et al.,
2016), with maximum operating distances of up to 10 km,
depending on the aircraft model, and limited by legislative
restrictions (Duffy et al., 2018). Their proximity to the Earth’s
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TABLE 4 | Examples of vegetation indices that are expressed as ratios between different portions of the electromagnetic spectrum reflected by vegetation on
earth’s surface.

Vegetation index (VI) Vegetation feature Measurement Formula Example

Normalized difference
vegetation index (NDVI)

The amount of green vegetation cover,
used to measure biomass, vegetation
density

Reflectance in the
near-infrared (NIR)
(800–2,500 nm) and red
(620–750 nm) portions of
the light spectrum

NIR−Red
(NIR+Red) • Dixon et al., 2021

• Hofmann et al., 2011
• Many examples in the literature

Leaf-Area Index (LAI) The amount of green leaf area per unit
ground area, used to characterize
forest canopies

Average leaf area (based on
vegetation type), the
ground area sampled

Leaf area
(
m2
)

Ground cover (m2)
• Zarate-Valdez et al., 2012
• Sun et al., 2018
• Many examples in the literature

Enhanced Bloom Index
(EBI)

Flowering intensity, originally used to
characterize almond flowers

Reflectance in the red
(620–750 nm), green
(500–565 nm), blue
(450–485 nm)

Red+Green+Blue
( Green

Blue )∗(Red−Blue+1)
• Developed by Chen et al., 2019
• Dixon et al., 2021

Photochemical reflectance
index (PRI)

An indicator of photosynthetic radiation
use by plants, related to light use
efficiency and plant health and function

Reflectance at 531 nm,
reflectance at 570 nm

(R531 − R570)/(R531 − R570) • Developed by Gamon et al., 1997
• Chen et al., 2020
• Many examples in the literature

Hyperspectral image-based
vegetation index (HSVI)

The amount of green vegetation in
urban areas, reduces the effects of
shadows from buildings, the saturation
due to the clustered nature of urban
vegetation, and the effects of novel
materials present in cities.

Reflectance at 760, 689,
861, 889, and 520 nm.

[(
2p760

−1
)
−p689+a ∗(p861−p889)

]
(p520+p689)

Where p760, p689, p861, p889,
and p520 represent spectral
bands (i.e., reflectance) with
760, 689, 861, 889, and
520 nm, respectively.

• Developed by Sun et al., 2021

surface means that the grain of such observations has capacity
to capture flower-scale information (e.g., Wan et al., 2018;
Xavier et al., 2018; Chen et al., 2019; López-Granados et al.,
2019). Furthermore, drones with high-quality inbuilt cameras
are becoming more affordable (£500–£2000) for the everyday
field ecologist, and there is the possibility to further modify
these with customized sensors. Drones are particularly useful
for monitoring pollinator resources as they can be deployed
at shorter intervals compared to satellites, their measurements
are less affected by cloud cover, their viewing angle can be
adjusted in real-time and they can be used to capture high
spatial resolution imagery in remote or inaccessible terrains
(Landmann et al., 2015; López-Granados et al., 2019; Smigaj and
Gaulton, 2021). Drones have also emerged as useful platforms for
acquiring data describing volumetric vegetation structure – as an
alternative to LiDAR. To do so requires a Structure from Motion
(SfM) photogrammetry workflow to be applied to overlapping
aerial photographs (examples can be found in Cunliffe et al.,
2016; López-Granados et al., 2019; Smigaj and Gaulton, 2021).
The workflow requires a drone with standard camera, plus
optional ground control equipment. If validation is required this
includes ground control targets and high accuracy geographic
positioning system (GPS). A computer vision algorithm uses
a bundle adjustment approach to determine 2.5D vegetation
structures and stores this information in point clouds. Critical
to the successful application of this method is the capture
of images from distinct viewing angles and high convergence
of images—i.e. high overlap in front and lateral extents, so
that features with structure exhibit image parallax which can
be modeled to generate a virtual rendering of their relative
height and volume. This technique was facilitated by the use
of drones and pioneered in geosciences for the measurement
of stable structures (Jackson et al., 2020). It has also recently

been applied successfully to vegetation for measuring crop height
in agricultural fields (Holman et al., 2016), generating biomass
estimates in drylands (Cunliffe et al., 2016), or for measuring
forest structures with equivalent accuracies to LiDAR (Filippelli
et al., 2019). Acquisition of such volumetric information can
be achieved with very low hardware costs. This is relevant for
pollination ecologists because such data can be combined with
spectral information on floral resources to deliver information
about the structural properties of foraging patches (e.g., ground
elevation, tree/hedge height, building height) which could affect
habitat use, microclimate (Duffy et al., 2021), and thus timing of
flowering and navigational strategies employed by pollinators.

In addition to satellites, piloted aircrafts, and drones, ground-
based sensors are frequently used to monitor the health and
growth of individual plants. However, they capture information
at very fine spatial scales (e.g., 3.5◦ field of view), which is
relatively inefficient for assessing an entire floral patch or for
capturing flowering patches across a landscape at all spatial
scales relevant to pollinators’ foraging behaviors. Although
a discussion of ground-based sensors is omitted from this
review for the aforementioned reasons, these approaches are
widely used for monitoring individual crops in agricultural
research (Hong et al., 2007; Raper et al., 2013; Quemada
et al., 2014), and we acknowledge that data from close-range
spectroscopy could also provide useful insights for discriminating
different flowers based on spectral signatures, that could
benefit (via calibration/validation) some of the other techniques
discussed herein.

Remote sensing techniques exploiting drone, airplane and
satellite-borne sensors are therefore mature with respect to
generalized landscape ecology applications, but there is limited
research that diverts these approaches toward characterization of
floristic resources. The next sections will discuss the capabilities
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of state-of-the-art remote sensing techniques that can be used
to examine relationships between pollinators and changing
foraging landscapes. Furthermore, discussion is warranted on
the level to which remote sensing approaches can deliver new
insights into how future climate change and intensification
of landscape management may affect pollination services in
particular landscape types.

HOW ISOLATED ARE FLORAL
RESOURCES?

Landscape fragmentation can isolate flowers in time and space.
For example, as natural grasslands containing diverse floral
resources are modified to create fields for agriculture or
for human recreation, flowers offering preferred and valuable
nutritional resources to pollinators can become separated from
each other and from nesting or egg-laying areas within the
landscape. As a result of this fragmentation and landscape
homogenization, pollinators may be required to travel further
on foraging trips to obtain a sufficient quantity and diversity
of floral resources to sustain their survival and reproduction.
Small-sized pollinators with smaller flight ranges, such as solitary
bees, (Greenleaf et al., 2007; Garibaldi et al., 2011; Frasnelli
et al., 2021), or insects with specialized diets (Winfree et al.,
2007; Bommarco et al., 2010; Woodard and Jha, 2017), differ
in their foraging strategies and choices and may particularly
struggle to obtain food resources in highly fragmented habitats
compared to large-sized, generalist pollinators that can travel
farther to obtain food, such as bumblebees and honeybees
(Gibb and Hochuli, 2002; Memmott et al., 2007; Martinson and
Fagan, 2014; Wilson et al., 2021). However, even pollinators
capable of covering large distances on foraging trips may face
fitness consequences in highly fragmented and resource-poor
environments, including reduced population, forager and colony
sizes and changes to their foraging behaviors in the field. The
effects of landscape composition on pollinators are particularly
relevant due to the rapid expansion of agricultural activities and
urbanization over the past 200 years, which have driven and
accelerated fragmentation in many landscapes, such as forests
and grasslands (Ghazoul, 2005; Libran-Embid et al., 2021).

However, how and along which spatial scales landscape
composition affects the fitness and foraging behaviors of insect
pollinators remains a largely open question. Remote sensing can
provide new tools to map floral resources using multispectral
imaging platforms that deliver data at distinct spatial grain.
Research satellites are the most common platforms from which
data on floral resources can be acquired. However, as discussed
previously - most free-to-use data from public research satellites
(e.g., Landsat, MODIS) deliver only relatively coarse spatial
resolution data ranging from tens to hundreds of meters per
pixel. Despite this, such data can have sufficient spatial resolution
to identify patches of dense flowering vegetation found in
meadows, urban parks, and mass flowering agricultural crops
(Beduschi et al., 2018; Lane et al., 2020; Kowe et al., 2021),
although it is not possible to distinguish between individual
floral species within a single patch using such coarse-grain data.

FIGURE 3 | The relationship between flying height and extent of image. As an
example, the DJI Mavic 2 Pro, a relatively commonly used drone for capturing
spatial information in scientific research, and the camera has a field of view of
77◦ and an image size in pixels of 5472 × 3468.

In contrast, there are commercial satellite products available
which can deliver moderate- and fine- grain data (e.g., Geo-Eye1
multispectral resolution of 1.65 m, Worldview-3 multispectral
resolution of 0.30 m), but the spatial resolution of these
data would still be insufficient to resolve individual flower
heads or inflorescences. The relatively high financial costs of
purchasing such data have led to relatively few pollination
studies employing commercial satellite data to study foraging
landscapes (for examples see Beduschi et al., 2018; Chen et al.,
2019). Additionally, satellite imagery can be used to identify
distinct vegetation patches, such as densely forested areas,
or cropped fields, that may serve as nesting and egg-laying
habitats to pollinators or barriers to their dispersal. One of
many examples in which research satellite data was used to
characterize fragmentation of vegetation in pollinators’ foraging
habitats has examined how distinct types of landscape patches
affected pollinators’ dispersal from the nest site (Tscheulin et al.,
2011). In this study, the authors obtained freely available satellite
data (Landsat Thematic Mapper 5) and used algorithms to
classify landscape patches surrounding their sampling sites.
This information was paired with data on the proportions of
differently sized pollinators along a transect. Therefore, it was
possible to relate landscape composition surrounding the study
sites to habitat use and the dispersal abilities of differently
sized bee species, leading to observed differences in their
spatial distributions across the landscape. Combining objective
measures of spatial information at the landscape scale from
remote sensing with data on pollinator abundance, size, diets,
and navigation can lead to new insights into how landscape
composition affects pollinators and pollination services.

One way to acquire scale-appropriate data describing detailed
spatial variations in floral imagery is to obtain it from close
range using low-flying drones (Figure 3), or in some cases,
airplane-mounted sensors. The type of spatial information
captured from airplane platforms may be particularly useful
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FIGURE 4 | Scale-varying views of flower-scapes from satellites to drones. (A) Shows a regional perspective imaged in optical (RGB) wavelengths from the
Sentinel-2 satellite at 10 m spatial resolution. (B) Is a local perspective of the highlighted region in (A), also at 10 m spatial resolution showing a neighborhood view
comprising a mixed agricultural and residential area with various floristic resources including private gardens, woodlands and hedgerows. (C) Shows the same area
as (B) but viewed using a false color composite (Bands 8, 4, 3). (D) Is a drone captured image from the region highlighted in (B,C) in optical wavelengths (RGB)
acquired from a survey height of 25 m during spring budburst (April 2020). Gorse (Ulex europaeus; yellow) and blackthorn (Prunus spinosa; white) flowers can be
seen in the hedgerow. The spatial resolution of this image is finer than 1 cm. (E) Is a highlight of the image shown in (D), over the area highlighted showing in detail a
bunch of gorse flowers.

to surveying floral species that are highly dispersed, enabling
the capture of small patches of floral resources scattered across
hundreds of km (Carson et al., 1995). Carson et al. (1995)
for instance, investigated the abundance of hawkweed flowers
in experimental plots using multispectral imagery (1 m spatial
resolution blue-green, green, 2 bands in NIR) captured from an
airplane. As this floral species occurs at low densities in nature,
small patches of hawkweed comprised of only a few individual
flowers (of 2–3 cm diameter approximately) would likely be
impossible to distinguish from the surrounding vegetation using
coarse spatial resolution data provided by satellite platforms
such as Landsat.

From a drone perspective, the grain of data is even finer
compared to those captured by airplanes – with a capability to
measure individual flowers at sub-centimetric spatial resolution,
depending on flying altitude, though there is a trade-off between
spatial resolution and image extent (Figure 3). We therefore
assert that it is particularly the fine-grained nature of drone
data that lends itself strongly to the analysis of abundance and

distribution of floral resources within a foraging patch, e.g.,
within forest, grassland, gardens, crop fields, and hedgerows
(Figure 4). This information could be paired with data on the
movements, foraging preferences, and individual and colony
sizes of pollinators to provide insights on how changes to
floral abundance along fine spatial scales affect pollinators
(Woodard and Jha, 2017; Kremen et al., 2018; Lázaro and
Tur, 2018). Fine-scale spatial data acquired by drones could
be especially critical to facilitating investigations into habitat
use by ecologically specialized pollinators and the effects of
habitat fragmentation on their populations (Winfree et al.,
2011). Although this approach remains novel within the field
of pollination research, drones are increasingly used to study
flowering plants within the agricultural sector, and this approach
has been used in some conservation studies to map suitable
habitats for animals threatened by habitat loss (Mangewa
et al., 2019). Habel et al. (2018), for example, used a small
commercial-grade multirotor platform (DJI Phantom 3, inbuilt
RGB camera and CMOS Red + NIR sensor) to identify suitable
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habitats for three butterfly species that display varying degrees
of diet specialization within a 45-ha managed grassland site.
They found that high quality vegetation for the two specialized
butterfly species were spatially restricted to a greater degree
than for the generalist species, supporting the idea that habitat
loss may have greater consequences for specialized species that
rely on spatially restricted patches of vegetation for survival.
Furthermore, the drone-obtained data showed that high quality
vegetation for all three species were more frequently located in
the verges of paths and roads than in open grassland, which may
serve as important food resources for pollinators in urban and in
agricultural landscapes.

In agricultural biology, data obtained from drones has been
critical to assessing the growth of individual crops and predicting
their yields (Wan et al., 2018; Chen et al., 2019; López-Granados
et al., 2019). Fine-grain data acquired by drones could also
be important to studying the efficacy of alternative agricultural
practices, such as those seeking to enhance crop yields by
providing a mix of diverse floral resources to attract pollinators.
These studies could be carried out using relatively simple-to-
use and cheap consumer-grade technologies as evidenced by
Xavier et al. (2018), who used a drone (Solo-3DR) and GoPro
Hero 4 RGB camera (12-megapixel photos) to capture spatial
data on floral resources. The study assessed the suitability
of wildflower strips in attracting pollinators in two distinct
types of environments: one in which the wildflower strips were
adjacent to woodland, and another in which the wildflower strips
were adjacent to agricultural crops. The researchers quantified
individual wildflower species arranged in mixed 34 m × 10 m
plots and sampled pollinator abundance within these plots. They
found that the abundance and cover of floral resources was
positively correlated with the number of pollinator visits at both
sites, with an increase of just 0.12 m2 in floral cover resulting in
6–8 additional pollinator visits.

WHAT RESOURCES ARE AVAILABLE
WITHIN FLORAL PATCHES?

An important factor in the ability of landscapes to sustain
pollinator populations is the quality of foraging patches within
the landscape. Not all foraging patches are equal by virtue of
their variable floristic composition that can provide different
resources to pollinators. Floral abundance and floral richness
are two established metrics by which the quality of foraging
patches is typically assessed in landscape ecology. These metrics
correlate broadly with higher pollinator visitation rates (Hegland
and Boeke, 2006; Lázaro et al., 2020). However, this comes often
at a cost of resolving the differences between different pollinators,
their movements and behaviors and their role in intricate
plant-pollinator networks (Lima et al., 2020; Ropars et al.,
2020; Chakraborty et al., 2021). To facilitate more integrated
empirical and modeling approaches, such as combining remote
sensing data with network data and behavioral observations, it
is useful to differentiate between floral species across patches.
Remote-sensing techniques are best placed to capture spatial
data at fine-grain over sufficiently large areas for quantifying

different floral resources at ecologically relevant spatial scales.
By segregating flowers in the images from the surrounding
vegetation on the basis of their spectral reflectance profiles, novel
information on the richness and abundance of floral resources
within flower patches can be obtained.

So far, most studies that have used remote sensing to quantify
flower number within foraging patches have come from precision
agriculture, where flowering phenology and abundance have been
used to predict crop yields (Wan et al., 2018; Chen et al., 2019;
López-Granados et al., 2019). However, the quantification of
floral species is also important for comparing the quantity and
diversity of resources provided to pollinators by different types
of floral patches, from fields of monocrops to patches of natural
grassland and urban green spaces (Vrdoljak et al., 2016; Kremen
et al., 2018; Ziaje et al., 2018 Prado et al., 2021; Tew et al.,
2021). To detect individual flowers at fine-grain using remote
sensing, it is possible to utilize imagery from drones flown at low
altitudes. Spectral data obtained through these remote sensing
platforms are often processed using specialized VIs that have been
developed to track small differences in the spectral reflectance of
flowers across distinct color channels.

Using these VIs, the availability and development of distinct
floral species can be precisely quantified and subsequently related
to the quantity and quality of floral resources available within
a foraging patch. Chen et al. (2019), for example, developed
an enhanced bloom index (EBI) using multispectral data for
quantifying the bloom intensity of individual almond flowers
grown in orchards ranging in size between 21.5 and 222.5
hectares. EBI compared floral brightness in red, blue, and
green channels against the low reflectivity of soil background
reflectance in the red and blue channels and high reflectivity of
leaves in the green channel (equation [1]):

EBI =
brighness

greenness × soil signature
=

R + G + B
G
B × (R – B + ε)

(1)
Where R, B, and G represent reflectance in the red, blue and

green channels and ε represents an adjusting constant.
Furthermore, optical images (R,G,B) acquired by standard

cameras on drones can be processed using SfM photogrammetry
workflows to generate 3D models of vegetation patches. These
models can help researchers quantify flowers in structurally
complex floral patches which would be beyond the visual reach
of a ground-based observer, such as in flowering tree canopies
and along hedgerows, which can serve as important foraging
resources for pollinators (Carl et al., 2017; Smigaj and Gaulton,
2021; Figure 2). This technique allows reconstruction of the
structure and distribution of floral patches for investigating
relationships with pollinator fitness, abundance, and behaviors.
Carl et al. (2017), for instance, used a MAPIR Survey2 RGB
camera (6.17472 mm × 4.63104 mm FOV, focal distance of
3.97 mm) mounted on a hexacopter drone to obtain RGB imagery
of black locust tree (Robinia pseudoacacia) flowers, which serve as
an important food resource to honeybees. This allowed the crown
structure to be resolved, while flowers were distinguished from
the surrounding vegetation using reflectance intensity in the blue
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channel. The precise quantification of flowers across the trees’
3D structures allowed the researchers to make predictions about
the population of honeybees that the landscape could support.
Similarly, Smigaj and Gaulton (2021) captured overlapping
multi-spectral and RGB images using two different drones (DJI
Matrice 600 with Micasense RedEdge-M multispectral camera,
RGB, near red, NIR and DJI Phantom 4 Pro inbuilt RGB/NIR
camera) to generate SfM-based models of hedgerow structures
in an agricultural setting. The researchers were able to quantify
and compare floral abundance within different hedgerow types
using reflectance data in the red, green, blue and NIR channels,
providing information on the quantity and quality of resources
available to pollinators.

HOW DO FLORAL PATCHES CHANGE
OVER TIME?

The synchronization of flowering and pollinator emergence
times are critical to sustaining plant-pollinator relationships. The
availability of flowers within a foraging patch is dynamic across
time and is affected by change in micro- and macroclimatic
conditions and the spatial heterogeneity of the landscape, with
differences in light exposure which leads to changes in the growth
and flowering phenology of plants (Alsanius et al., 2017; Ogilvie
and Forrest, 2017; Swierszcz et al., 2019). These effects are easily
illustrated in urban environments, where plants grow in small,
heterogenous patches that are often located near anthropogenic
structures such as roads and buildings, which create a variety of
microclimatic conditions, resulting in differences in the growth
and abundance of floral species (Habel et al., 2018; Jung et al.,
2020). As such, some pollinators in highly fragmented urban
environments may face favorable conditions for foraging on
diverse flowers (Rollings and Goulson, 2019; Ropars et al., 2019;
Staab et al., 2020; Tew et al., 2021). However, across broad
spatial scales, many natural landscapes which previously would
have contained diverse floral resources have been homogenized
into agricultural monocrops and urban lawns. Therefore, the
limited floral diversity available to pollinators may also limit
floral availability across the foraging season, potentially leading to
dips in floral resource availability for pollinators at various times
across the season.

Across broader spatial scales, changes in local environmental
conditions driven by climate change have altered many species’
temporal distributions and the onset, peak and durations
of flowering periods, changing the distribution of floral
resources at given points in time (Chen et al., 2019). These
environmental changes often have uneven effects on plants and
pollinator populations, leading to “bottom-up” effects, limiting
the food supply of pollinators, or “top–down” effects, limiting
the reproductive potential of plants (Hegland et al., 2009).
The flexibility of these relationships also remains unclear as
pollinators may avoid the negative consequences of shifts in
flowering emergence times depending on their ability to exploit
a range of floral resources in the environment.

Answering questions about timing of phenological
phenomena from remote sensing data requires, beyond all

else, regular repeat survey coverage (Figure 2). The frequency
with which flowers can be surveyed depends on the remote
sensing platform utilized. The temporal resolution of satellite
datasets are pre-determined by the satellite’s orbital period
and are typically used to examine vegetation along coarse
and moderate temporal scales. Additionally, there are trade-
offs between enhanced spatial and temporal resolution, as
satellites in low orbit that provide fine spatial resolution data
have longer re-visit periods. By comparison, airplane and
drone pilots have much greater control over the temporal
resolution of the data collected. Airplanes and drones can be
deployed according to the user’s demands (albeit at substantially
higher costs with airplanes), allowing for very fine temporal
resolution data to be collected. The ability to choose when
an aircraft is deployed additionally allows researchers to
select when floral surveys are carried out and select the
optimal lighting conditions to maximize the visibility of
flowers against the background. The latter is important to
distinguishing flowers from green vegetation in photographs
taken by RGB cameras mounted on drones flown at several
meters in altitude (Figure 5). This is particularly relevant
to drone-acquired imagery as many recreational drones
carry inbuilt RGB cameras that could facilitate the capture
of floral resources at low financial cost and with little need
for further processing, increasing the accessibility of these
technologies to scientists and conservationists with limited
research funding.

Data obtained from satellites have been used to characterize
temporal changes to flower patches over broad areas of landscape
(e.g., hundreds to thousands of kilometers), and particularly
in agricultural research to study changes to patches of mass
flowering crops across various time scales (e.g., weeks, years,
decades) (Zhang et al., 2003; Leong and Roderick, 2015;
Dixon et al., 2021). Changes to mass flowering crops may be
important to studying pollinator populations in agricultural
environments, as crop fields dense in flowering plants may
become deserts to pollinators within short periods of time. If
such agricultural fields occupy extensive areas, the landscape
may be unsuitable for sustaining pollinators in the long-term
(Kovács-Hostyánszki et al., 2017). A growing number of studies
are using satellite data to track changes in flowering phenology
across landscapes in relation to the abundance or emergence
times of pollinators. Leong and Roderick (2015), for example,
analyzed changes in vegetation within natural and human-
altered grassland landscapes in California. The researchers used
spectral data obtained from MODIS to examine changes in
normalized vegetation index (NDVI) and enhanced vegetation
index (EVI) across agricultural, urban and natural landscapes
comprising a 50 × 50 km region. They observed different
trends in phenology across the three landscape types and
corresponding differences in bee abundance over the 14-year
(2000–2014) study period. Therefore, when paired with data
on the richness, abundance and behaviors of distinct pollinator
types, temporal data obtained from satellites can help uncover
relationships between the availability of flower patches over time
and the types of pollinators or pollination services that the
landscape can support.
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FIGURE 5 | The visibility of flowering bindweed (Convolvulus) when imaged under varying natural light intensities at approximately the same location (A) 9:30 (light
intensity: 1792 lum/ft2), (B) 12:00 (light intensity: 4096 lum/ft2), and (C) 17:30 (light intensity: 2688 lum/ft2) using an RBG camera (DJI Mavic Mini inbuilt camera) on
October 9th, 2021. Light intensity was measured using a HOBO Pendant temperature/light data logger (Onset, Bourne, MA, United States). The ability to
discriminate the flowers from the background can be impaired under some viewing and lighting conditions.

Drone data could be useful for examining how floral patches
change in terms of their reward availability to pollinators (for
a review see Bloch et al., 2017). Drones could be particularly
useful to studying changes to flower patches over fine temporal
scales (Neumann et al., 2019) especially when the floral species
or its pollinators are only available for short periods of time
(Xu and Servedio, 2021), and to track the development of
individual flowers in patches containing mixed floral species.
Shifts in flowering time within mixed floral patches may not
be apparent when the whole patch is studied as a single
unit. Investigations into the flowering dynamics of distinct
floral species may be critical to understanding the use of
the foraging patch as a food resource to different pollinator
species over time (Simba et al., 2018; Kehrbergerand Holzschuh,
2019).

Changes to patches of mixed floral species can be measured
using a variety of sensors, from consumer-grade RGB cameras to
hyperspectral scanners, depending on a variety of environmental
and study-specific factors, such as the reflectance spectra of the
flowers studied and the lighting conditions under which the
data are acquired. Few studies have attempted to investigate
flowering in such heterogeneous environments at such fine
spatial grain as it is difficult to obtain accurate floral counts due
to the spectral complexity of the reflectance from the ground.
Landmann et al. (2015), for example, used a hyperspectral
remote sensor, the AISA/Eagle pushbroom scanner that produces
images in 64 spectral bands (max spectral resolution of 2.9 nm),
mounted on a drone to track the spatial availability of floral
resources at a 100 km2 study site in the African savannah.
This hyperspectral dataset allowed the researchers to detect
different flower types against the background. In addition to
tracking shifts in the spatial distribution of floral resources
over this time period, the researchers found an overall increase
in floral resources from 2013 to 2014. This example shows
how drones can help researchers detect small-scale shifts
in floral resource availability over long periods for a better
understanding of the consequences for the pollinator populations
present within it. Furthermore, there is an increasing demand
for information on how changes to floral resources affect
pollinator populations, which are vital to the production of
many human food crops. For example, actions by government

agencies, such as the European Commission’s EU Pollinators
Initiative calls for research investigating the effects of climate
and landscape change on pollinators and their food resources.
Remote sensing approaches could contribute to increasing
the scale, efficiency, and quantity of information required
for such research.

DISCUSSION

Remote sensing offers unparalleled means of measuring
flowering vegetation at various grains, extents and timescales.
Alterations to floral resources can have long-lasting effects
on pollinator fitness, abundance and behaviors over a range
of spatial and temporal scales (Hegland et al., 2009; Ogilvie
and Forrest, 2017) and can include changes to populations,
forager sizes, and colony sizes, as well as shifts to their foraging
strategies. The ability to use remote sensing data to rapidly and
accurately acquire spatial information pertaining to pollinators’
foraging habitats and their floral richness and abundance could
vastly improve understanding of how landscapes affect insect
pollinators and their populations. Remote sensing approaches
can facilitate the capture of large portions or the entirety of
pollinators’ foraging or migration ranges, which may allow for
more spatially representative sampling of floral resources and
can reduce the time and labor costs associated with manual
sampling. Pollinating insects vary widely in how far they travel
to forage or during migrations, with small-sized pollinators
typically traveling shorter distances up to 1.4 km (Nicholls et al.,
2022). Larger-sized, generalist pollinators travel further (e.g.,
social bees typically travel 1–2 km while the bumblebee-tailed
bumblebee and Western honeybee can travel 12–15 km), while
some species of butterfly can travel hundreds to thousands of
kilometers during migrations (e.g., Chowdhury et al., 2020).
Additionally, the required sampling timescales vary depending
on individual or colony lifespans. Therefore, both flight range and
lifespan of an individual or colony will determine which remote
sensing platform is most appropriate for capturing information
pertaining to their food, nesting and mating resources. While a
variety of manual methods exist for tracking insect movements in
the field (see Kissling et al., 2014; Montgomery et al., 2021) using
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existing technologies for tracking individual insect movements
is particularly challenging given their small body sizes paired
with quick movements, leading to rapidly changing backgrounds
against which they must be detected. Therefore, the objective
is to pair remote sensing approaches with novel or traditional
means of quantifying insect movements or behaviors in the
field. Also, remote sensing approaches can provide an efficient
and potentially accurate means for understanding the landscape
context in which behaviors occur. Additionally, both natural and
human-made structures have the potential to affect pollinator
dispersal and habitat use, facilitating or reducing access to
flowers across landscapes or changing microclimatic conditions
(Morandin and Kremen, 2013; Habel et al., 2018). This is
particularly relevant due to the rapid development of many rural
habitats into agricultural fields or urban environments both in
the UK and globally (Haddad et al., 2015; Wenzel et al., 2020).
Not only can remote sensors capture changes to the spectral
signatures of flowering vegetation over time, but changes to
the volumetric characteristics of a landscape can be resolved
using LiDAR sensors carried by drones or airplanes, or SfM
photogrammetry, which generates models of 3D structures using
overlapping images. However, the remote sensing platforms,
sensors and data types utilized to measure floral resources
must facilitate studying pollination at the spatial and temporal
scales of interest.

Using remote sensing to measure floral resources in situ
remains relatively novel within the field of pollination research.
Most existing studies have used coarse-grain satellite imagery
to examine one or a few species of mass flowering crops over
large spatial areas and relate broad measures and categorization
of floral availability (e.g., field, hedge, forest, urban green space
coverage) to the abundance, physiology and behaviors of insect
pollinators. The relative popularity of using coarse-grain satellite
imagery in pollination research can be explained by the low
(often free) cost of satellite imagery, the amount of publicly
available information on how to process satellite data, prior
knowledge of the coloration of the flowers under study and
the narrow spectral variation within flower patches containing
a single species, all of which makes it easy to broadly outline
areas of floral growth. However, this information typically
does not tell us about differences in abundance and flowering
characteristics between individual plants, the availability of
wild flowers and other sparsely distributed flowers across the
landscape, or the floral diversity and volumetric character of
foraging patches.

Although relatively novel within the field of pollination
research, drones can capture imagery along very fine spatial
scales, such that individual flowers can be detected and
quantified. The use of drone imagery to quantify the spatial
distributions and timing of distinct floral species could facilitate
studies examining how pollinators interact with different floral
types and vegetation structures along fine spatial scales in
the field and their reliance on particular food resources for
survival. Additionally, combining drone imagery with behavioral
observations of insect pollinators could show how gradual shifts
in flower number, species richness and flowering onset influence
their populations from year-to-year or across decades and

could be critical to modeling habitat requirements for different
pollinators and identifying areas of suitable habitat across a
landscape. Furthermore, drones can be deployed according to
the researcher’s demands, allowing the researcher to select the
optimal environmental conditions under which to capture floral
imagery. The ability to control when and how often flowers
are sampled also facilitates repeated sampling along very fine
temporal scales, whereas existing data acquired by airplanes and
satellites have fixed temporal resolutions. However, there are
trade-offs between spatial resolution and the extent of landscape
that can be covered. Drones, for instance, can provide spatial data
at very fine grain and cover much larger areas than traditional
methods, such as transect measurements. However, they are
inefficient for capturing vast areas of landscape in comparison to
satellites and airplanes.

Sensors carried on-board remote sensing platforms are critical
to defining what flower types and floral features can be analyzed.
In agricultural research, the interest is focused on specific
crops, and flower colors are therefore known for selecting
appropriate sensors to maximize the visibility of the flowers
against the background. However, in natural habitats and in
urban environments, where differently colored flowers frequently
exist in mixed distributions, selecting the appropriate sensors
to capture flowering dynamics within the patch would be
more difficult. One solution is to use hyperspectral sensors
capable of simultaneously sampling multiple wavelengths of
light and develop vegetation indices that maximize the visibility
of distinct floral species against the background (Landmann
et al., 2015). Although using hyperspectral remote sensing to
study vegetation is relatively novel compared to the use of
multispectral remote sensing, advancements in this field may
be critical to capturing the health and flowering dynamics of
different species at fine spatial and temporal grain. This may
facilitate detecting changes in flowering over short periods
of time and corresponding shifts to floral rewards, which
can influence pollinators’ foraging decisions (Ito et al., 2021).
Furthermore, some studies have used hyperspectral datasets to
establish relationships between species biodiversity and spectral
diversity. The Spectral Variability Hypothesis, for example, argues
that the reflectance spectra of vegetation are related to plant
biodiversity (Palmer et al., 2000, 2002). Therefore, advances in
hyperspectral remote sensing may help uncover relationships
between the spectral diversity of a given area and its ability to
sustain pollinator populations, and could be a ripe area for future
exploration by pollination ecologists.

Another means of capturing floral richness at fine-grain is to
use multispectral sensors or RGB cameras mounted on drones
flown at low altitudes to capture floral imagery. While this option
can be relatively cost-efficient and simple to deploy, the image
quality can be greatly affected by environmental conditions in the
field, which could potentially make it difficult to resolve flowers
against the background.

One important barrier to using drones in ecological fieldwork
is the increased adoption of legislation limiting the use of
drones over public and private land and airspace. As the
debates over who has the right to use airspace over privately-
and government-owned lands intensify, the potential benefits
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to using drones for assessing landscape change are often
overlooked. The conflicts over the use of airspace come at a time
when recent developments in drones, sensors, and processing
software have revolutionized researchers’ abilities to analyze the
spectral and structural properties of vegetation along fine spatial
scales. Simultaneously, the increase in cost-effective consumer-
grade drones and cameras could allow for their widespread
use in pollination research. The costs of drones can be further
reduced by using DIY drone kits or by altering existing pieces
of hardware to capture floral resources1, making them accessible
to researchers on low budgets (Moudrý et al., 2019). Along
with reductions in cost, the rise in the number of hobbyists
operating drones has allowed online communities to flourish.
Such communities may stimulate innovation and make operating
drones increasingly accessible to beginner pilots.

CONCLUSION

Across the globe, anthropogenic activities are accelerating
changes to landscapes in which pollinating insects forage.
These changes can affect the size, shape and number of
foraging patches in the landscape and the quantity and
quality of floral resources they contain. Spatial and temporal
changes to floral resources may have diverse consequences for
pollinator behaviors, population sizes, reproductive strategies,
and pollination services. However, the extent to which changes
to floral resources affect different types of pollinating insects
and along which spatial and temporal scales remains relatively
unknown. Traditional methods for floral sampling, such as
manually counting flowers using transects and quadrats can be
difficult to use along diverse spatial and temporal scales, as they
can be laborious, time-consuming, limited by floral features that
are detectable by the human eye and may not accurately reflect
floral distributions present across a pollinator’s entire foraging
1 http://diydrones.com/

or migration range. However, drones and satellites are well-
suited to capturing changes in the richness and abundance of
floral resources through RGB images, spectral, and structural
data. Additionally, many of the methods for capturing and
processing drone and satellite data established in geographical
and computer sciences have now become streamlined, simplified
and reduced in cost. This has made them much more accessible
to ecologists and conservationists who often operate on small
research budgets and may not have specialist knowledge of
remote sensing technologies. This trend is exemplified by the
recent widespread availability of consumer-grade drones, free or
cost-effective apps for piloting drones, recreational drone use
and online communities aimed at improving drone hardware
and software. Satellites, airplanes and drones can be used to
generate datasets on floral resources and can revolutionize our
understanding of the spatial and temporal scales along which
pollinator species are affected by environmental change.
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