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Abstract 

 

 Self-folding behavior is an exciting property of weft knit fabrics that can be created using 
just front and back stitches. This behavior is easy to create, but not easy to anticipate and currently 
cannot be predicted by existing computer aided design (CAD) software that controls the CNC 
knitting machines. This work identifies the edge deformation behaviors that lead to self-folding in 
weft knits, and methods to characterize the mechanical forces driving these behaviors with regard 
to chosen manufacturing parameters. With this data and analysis of the fabric deformations, the 
self-folding behavior was purposely controlled using calculated scaling factors. Furthermore, 
theoretical equations were developed to mathematically predict these scaling factors, minimizing 
the trial and error required to design with self-folding behavior and create textiles with novel 
engineered properties. By understanding the mechanisms responsible for creating these three-
dimensional self-folding textiles, they can then be designed in a programmable manner for use in 
technical applications.   
 
1. Introduction 

 
Using qualitative and quantitative analysis, this work aims to understand and predict self-

folding in weft-knit fabrics, an exciting behavior with potential for use in advanced manufacturing 
textile systems. While self-folding can be engineered into a variety of systems, from polymer 
assemblies to shape memory alloys, in weft knit textiles this structure driven behavior is inherent. 
Self-folding occurs naturally, due to the chosen stitch pattern. Folded textile structures can be 
created that show promise for use in deployable architecture, space exploration, defense and more, 
similar to the work that has been explored for origami structures.1-3 Unlike origami folded 
structures, no post-processing procedures are required to produce these structures.  In addition 
the folds produced by knitting are both less constrained topologically and not damaged by the 
folding process itself. If better understood, this self-folding property of weft knit textiles could be 
exploited for the development of novel engineered textiles with new and exciting properties4, such 
as auxetic behavior,5-11 increased sound absorption8, and impact resistance.12,13 

 
 

 
1.1 The weft knit structure 

 



Weft knitting is a method of textile production that creates a fabric from series of intermeshing 
loops of yarn. The geometry of the knit loop is shown in Figure 1a. When assembled in a fabric, 
these loops are referred to as stitches. In the weft knit structure, horizontal rows of stitches are 
referred to as courses and the vertical columns of stitches are referred to as wales.  

 
 

 
Figure 1. Front stitches and back stitches, simulations of a) the front stitch, b) jersey knit made from all front 
stitches, c) the back stitch, and d) jersey knit made from all back stitches, e) representative colors to indicate 

segments of front stitches and back stitches 

 
 

A knit textile made from all the same stitches is known as a jersey knit. This can be 
produced using a single bed knitting machine. Figure 1 (a and b) shows front stitch knitting, which 
can be distinguished by the small “v” shapes visible, formed by the vertical legs of the stitches. 
Figure 1 (c and d) shows back stitch knitting, which is distinguishable by the small curves visible, 
formed by the horizontal head and tails of the stitch. Front and back knit stitches are structurally 
symmetric, however the side from which they are viewed determines their nomenclature in the 
knit structure. Using a two-bed weft knitting machine, self-folding fabrics can be produced that 
incorporate both front stitches and back stitches on the same continuous side of the fabric. Stitch 
patterns presented in this study use pink to represent front stitches and the color blue to represent 
back stitches. Handknitting terminology may refer to these stitches as knit and purl respectively.  
 
 

1.2 Complex Self-Folding Structures 
 

 Yarn relaxation is a behavior that occurs after the knitting process, both by hand and by 
machine. As the yarn is pulled through to form each stitch, tension is applied on the yarn. As soon 
as the fabric leaves the needles this tension is released and the yarn starts to relax, producing the 
self-folding effect. Additionally, the three-dimensional shape of a knitted loop has been well 
documented and contributes to the presence of self-folding deformation behaviors. When 
switching between a front stitch and a back stitch, either along the course direction or wale 
direction, the yarn is moved into a second plane, bridging the gap between the front and back 



needle beds (or in the case of hand knitting, moving between the front and back of the needle). 
Figure 1. demonstrates the topology of a front to back stitch transition in both course and wale 
directions, as represented on a helicoid-based modeling system presented by Knittel et al. and 
Waedekar et al. In Figure 1a, it can be seen how the yarn traverses between the front and back bed, 
as front and back stitches are created side by side, along the wale direction. Once removed from 
the tension of the needles, the yarn that spans between the beds will relax and a curling effect will 
pull the front and back stitches closer together, producing two distinct surfaces in the finished 
fabric. Considering a transition from front to back stitch that occurs along the course direction, it 
can be seen from Figure 1b how the loop is required to deform to span the distance between the 
beds. Once removed from tension, these loops begin to relax, again producing a curling effect at 
the interface.  

 

 
Figure 1. Front and back stitches represented on helicoid modeling system, demonstrating the three-dimensionality of stitches. 

 
 
The rib knit structure is a self-folding structure which provides stretch and dimensionality. 

Therefore, it is often found at the cuffs and hems of sweaters (Figure 2a). It is easily produced 
using a simple repeating pattern of columns of front stitches and back stitches. Using the same two 
stitches organized into different geometric patterns, wide varieties of self-folding fabric structures 
can be formed (Figure 2b-d)). All these structures are created as a result of yarn relaxation and the 
3-dimensionality of knitted loops.  

 
 



 
Figure 2.  Examples of self-folding structures made from front and back stitch patterns. 

 
 

1.3 Modeling of weft knit structures 
 

Self-folding behavior is relatively simple to produce using combinations of front stitches 
and back stitches. The challenge, however, lies in understanding where and how the folds will 
occur, to control the specific type of structure that results as the textile relaxes and deforms. At 
present, industry standard textile modeling software cannot predict self-folding behavior in knits. 
Figure 3 shows the current modelling capability of Shima Seiki SDS-One APEX knit design 
software14. Consequently, design of these structures has been largely dependent on trial and error.  

 

 
Figure 3. Programming and modeling of self-folding behavior, a) a front and back stitch pattern, b) the 

corresponding simulation produced in Shima Seiki SDS One Apex Software43 representing the real fabric held in 
tension, and c) the resulting fabric after yarn relaxation. 



 
In literature, many approaches have been utilized to model the behavior of textiles, 

including weft knit textiles. These tend to fall within the categories of geometric15-23 and 
mechanical models,24-30 graphics models31-37, computer aided design tools,38-41 and parametrized 
models.42-44 Recently, work has been published by researchers at Carnegie Mellon University, 
describing systems that have been developed to ease the steep learning curve required for designing 
and programming for textile machinery such as weft knitting machines.38-41 This work allows the 
use of three dimensional meshes, typically used in other computer aided design systems, for the 
development of knitting machine instructions. All of these bodies of work help to translate textile 
production to a modern manufacturing platform. However, none of these available systems 
currently demonstrate prediction of the self-folding behavior in knits.  

 
This study sought to understand and predict self-folding knit structures without the need to 

model the individual stitches.  This was achieved by considering the macro-scale components 
composed of segments of front stitches or back stitches, and how these components interact with 
one another. We then identified how to measure the mechanical behaviors of these components 
and analyze how they interact, working toward a predictive system. This approach facilitates faster 
prediction and tuning of the fabric behavior as compared to complex stitch modeling, which 
require geometric and physics-based modeling of the individual stitch structures, as well as yarns. 
In addition, the resulting models are far less computing-intensive than those requiring modelling 
at the resolution of individual stitches. 

 
 
 
 
 
 

 
2. Analysis of Self-Folding Behaviors 
 

 
2.1  Materials  

 
All samples in this study were made from 100% mercerized extra fine merino wool (9037 

Supra Merino, 7,500ypp, 3.5 twists per centimeter, S-twist. Silk City Fibers, Paterson, NJ, USA), 
on a Shima Seiki SWG041N 15-gauge industrial knitting machine, using the same conditions for 
tensioning of the yarn. 

 
2.2 Qualitative Analysis: Boundary condition behaviors 

 
 



To begin to understand the self-folding behavior of weft knit structures made using front 
stitches and back stitches, a jersey knit fabric was analyzed. The jersey knit was produced from all 
front stitches. The same fabric could be produced by alternatively using all back stitches. In all 
jersey knit fabrics, regardless of yarn material, characteristic behavior occurs. The top and bottom 
edges of front stitch segments will naturally roll forwards, while the side edges will naturally roll 
backwards. The top and bottom edges of back stitch segments will naturally roll backwards, while 
the side edges will naturally roll forwards. Figure 4 depicts a jersey knit sample with an equal 
number of courses and wales, demonstrating this characteristic edge deformation behavior.  

 

 
Figure 4. Characteristic edge rolling behavior of jersey knit fabric, as seen from a) the front stitch side, and b) the 

back stitch side. 

 
This effect is magnified when considering fabric samples in which the number of courses 

far exceeds the number of wales, or vice-versa, as shown in Figure 5. When the number of wales 
is much smaller than the number of courses, the rolling effect on the side edges overtakes the 
rolling effect on the top and bottom edges, and the entire structure rolls into a scroll shape towards 
the back stitch side. In the opposite case, the opposite effect is observed in which a scroll shape is 
formed, consisting of the back stitch side rolling completely towards the front stitch side, as shown 
in the right side of Figure 5.  

 



 
Figure 5. Jersey knit fabric samples, with isolated course or wale direction rolling behavior. 

 
 
 
 

2.3 Qualitative Analysis: Combined edge effects 
 

When combining fields of front and back stitch segments as shown in Figure 6, it can be 
observed that out of plain deformation is formed as a result of the competing edge rolling behavior 
of each segment. The fields can be combined sequentially as the courses are knit (one row 
occurring after the other during knitting), creating a horizontal transition between front stitches 
and back stitches, or fields can be placed side by side, changing from one wale to another, creating 
a vertical transition between the fields of front stitches and back stitches. Figure 6 demonstrates 
the resulting fabric that occurs from these two basic combinations of front and back stitches. The 
type of transition between front and back stitches determines the direction in which the fabric will 
fold, based on the boundary condition behavior of the individual segments. In the case of the 
horizontal transition, the top edge of the back stitch segment rolls over the front stitch segment at 
the border. In the case of the vertical transition, the front stitch segment rolls over the back stitch 
segment at the border. Since a weft knit structure consists of a grid of courses and wales of stitches, 
it follows that on the individual stitch level, any complex self-folding pattern can be broken down 
into these horizontal or vertical transitions between front stitches and back stitches. Understanding 
the deformation behavior of these simple patterns serves as a building block for prediction of 
behavior in more complex stitch patterns.   

 



 
Figure 6. Self-folding behavior resulting from competition of edge rolling behavior. 

 
 

2.4  Quantitative Analysis: Mechanical Testing Methods 
 

Four types of knit samples were produced for mechanical characterization to develop a 
method to transition from qualitative to quantitative evaluation of these boundary condition 
behaviors. The stitch patterns of these samples are shown in Table 1, showing the locations of the 
grip portions of the fabric that were held between the two plates of the metal grips during testing. 
Jersey samples were made to be approximately 25mm in width and height (not including the grip 
portion of the fabric). Horizontal and vertical transition samples were made to be approximately 
25mm in width and height when completely unfolded (not including the grip portion of the fabric).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table 1. Front and back stitch patterns for mechanical characterization testing samples. 

 
 
 To produce these samples, the stitch dimensions required to produce samples of 25mm in 

height and width at varying stitch values were calculated using Equations (1) and (2). A reference 
sample (R) was produced, and its measurements  (course (CR) and wale (WR)) were used to 
calculate the dimensions of the new sample (N) with the desired. 

 
    𝑊𝑊𝑁𝑁 = (𝑊𝑊𝑅𝑅)𝑤𝑤𝑁𝑁

𝑤𝑤𝑅𝑅
                                                           (1) 

  

and 𝐶𝐶𝑁𝑁 = (𝐶𝐶𝑅𝑅)ℎ𝑁𝑁
ℎ𝑅𝑅

                                                            (2) 

 
Where, wR is the measured width of the number of wales in the reference sample, hR is the 

measured height of the number of courses in the reference sample, and WN, and CN, are the required 
number wales and courses, to achieve the desired sample width and height (wN and hN).These 
calculations are required because the aspect ratio of a stitch is rarely 1:1, so to achieve a sample of 
equal width and height, different amounts of courses and wales will likely be needed. Plain jersey 
samples (sample types J1 and J2, Table 1) were characterized to provide a comparison of jersey 
extension behavior to that of the self-folding samples. These stitch patterns were then split 
horizontally or vertically into one field of front stitches and one field of back stitches, creating two 
different folding samples that were proportionally equivalent (sample types H and V, Table 1).  
 



Samples were produced at three different stitch values, 22, 28 and 40 to assess the effects 
of changes in manufacturing parameters on the self-folding behavior. This stitch value determines 
the amount by which the needle pulls down on a stitch during the knitting process, and thus the 
stitch density of the resulting fabric. The measured fabric gauges for swatches made at stitch values 
22, 28 and 40 are depicted in Table 2, along with representative horizontal and vertical transition 
samples shown to scale.  In order to maintain consistent physical dimensions between all three 
stitch values, the stitch dimensions differ between the three sets. While these stitch values are 
specific to Shima Seiki machines, and may result in different fabric densities based on yarn 
selection, these stitch value numbers are used within this manuscript as a convenient way to 
reference and differentiate between the samples that were tested.  

 
 

Table 2. Horizontal and vertical folding samples with corresponding gauge measurements. 

 
 

All samples were tested at least 24 hours after fabrication. Fabric samples were affixed to 
a card and placed into the grips of an Instron tabletop testing machine with a 5 Newton load cell. 
The sample card sides were cut before the test began, and each sample was “pre-stretched” by 
extending to the full unfolded length, then returning to the initial gauge length.  All tests were then 
carried out at a rate of 25 mm/min. Force and extension data was recorded. Jersey samples (J1 and 
J2) began tests in their relaxed, flat state, and were extended to 150% of their original relaxed 
length. Transition samples (H and V) began tests in their fully relaxed, folded state, and were 
extended to an end gauge length of 25mm. This ensured that the transition samples were pulled 
just to the point of being completely unfolded. Therefore, the final gauge length of the transition 
samples was approximately the same as the initial gauge length of the jersey samples. Engineering 
strain was calculated and graphed against “stitch force,” the force recorded by the load frame, 



divided by the number of stitches in the width or height of the sample (perpendicular to the 
direction of extension). Graphed data for these sample were averaged from sample sets of 9 
specimens of each type. 

 
 
3. Results 
 

3.1 Quantitative Analysis: Mechanical Characterization Data 
 

Figure 7 presents the stitch force plots for extension of jersey sample types J1 and J2 at the 
three different stitch values, average from three samples each. Looking at the stitch structure, 
anisotropic properties can be assumed and are observed during mechanical characterization. As 
the fabric is pulled so that the spacing between each wale increases (J2), the stitches are pulled 
open before the load is distributed to the yarn.  As the fabric is pulled so that the spacing between 
each course increases (J1), the force is distributed more immediately to the fibers of the yarns. 

 

 
Figure 7. Averaged J1 and J2 extension at varying stitch values. 

 
Figures 8, 9 and 10 present the stitch force plots for horizontal and vertical transition 

folding sample types at the three different stitch values, calculated using the collected load-
extension data. The range of standard deviation along the curve is shown. The normalized data 
demonstrates that on average, the horizontal transitions are stronger than the vertical transitions, 
regardless of the stitch value used. Plots with all sample curves are available in the Supplemental 
Data section (a-c). Figure 11 compares the datasets for horizontal and vertical transition folding 
sample at three different stitch values.  
 
 



 
Figure 8. Characterization of horizontal and vertical folding samples made at stitch value 22. 

 

 
Figure 9. Characterization of horizontal and vertical folding samples made at stitch value 28. 

 

 
Figure 10. Characterization of horizontal and vertical folding samples made at stitch value 40. 

 



 
Figure 11. Comparison of all horizontal and vertical folding transitions 

 
Considering the generalized shape of the curves recorded for the horizontal and vertical 

folding samples, three regions of behavior were identified as shown in Figure 12. The shape of 
these curves are comparable to those measured for elastomeric materials, which present three 
distinct regions of behavior; a) initial stiff response, b) strain induced softening, and c) strain 
induced hardening.45 For the three regions measured here, they can be described more specifically 
as follows; (a) Region I is the region where the unfolding begins. A certain threshold of force must 
be reached before Region II can begin; (b) Region II can be considered the ‘stable unrolling 
region’. In this region, the samples exhibit a linear behavior; (c) Region III is the region in which 
the sample approaches the completely unfolded state. Physically the behavior begins to transition 
into that of a plain jersey fabric. As the sample is completely unfolded, the applied force begins to 
pull on the stitches themselves, rather than the fold. Therefore, similarities can be observed 
between the shape of this region of the curve and the shape of the stitch force curve for the jersey 
samples in Figure 7.  An interesting analogy can be made between knit fabrics and elastomeric 
materials; the properties of the knit are a combination of the properties of the fibers, of the yarn 
made from the fibers and of the geometry of the knit, while the properties of the elastomer is a 
combination of the physical properties of the individual macromolecules, and the geometry in 
terms of entanglements, knots, and crosslinks.  

 
 



 
 

Figure 12. Generalized stitch force curve for folding samples, Region I) threshold unrolling force, Region II) stable 
unrolling, Region III) transition into jersey behavior 

 
In addition to the general trends, in region I the force thresholds vary both with orientation 

of the front stitch to back stitch transition (horizontal vs. vertical folds) as well as stitch value, as 
shown in Table 3. The longest linear segment (in region II) was identified by drawing tangent lines 
along the edges of the curve until the longest continuous section was identified, and the slope of 
this segment was used to determine the stitch modulus. Threshold force was determined as the 
beginning point of this linear region. 

 
 

Table 3. Region I Average Threshold Force and Region II Average Stitch Moduli for Transition Samples 

Orientation of Front 
Stitch to Back Stitch 

Transition 

Stitch Value Threshold Force 
(mN/stitch) 

Region II Stitch Modulus 
(mN/Stitch) 

Horizontal 22 15.3 +/- 5.4 1.5 +/- 0.2 
Horizontal 28 9.8 +/- 2.9 1.6 +/- 0.6 
Horizontal 40 5.4 +/- 0.8  1.9 +/- 0.4 

Vertical 22 5.4 +/- 1.7 0.9 +/- 0.1 
Vertical 28 7.3 +/- 3.6 0.6 +/- 0.3 
Vertical 40 2.6 +/- 0.5  0.8 +/- 0.1 

* For samples made at stitch value 22; values shown in Table 2 were calculated from a set of 8 specimens, due to the 
inability to identify a linear region II segment in the data collected from one of the specimens. 

 
The trend in the horizontal transition samples is logical with regards to friction effects, in 

the denser samples (made using a lower stitch value), yarns are held more tightly together, making 
it harder for stitches to move and shift past one another as the sample unfolds.  In the vertical 
transition samples, it is still observed that samples made at stitch value 40 (the least dense) exhibit 
the weakest folding forces. Samples made at stitch value 22 and 28 however, do not follow the 
same trend, and the measured forces are closer to one another than in the horizontal transition 
samples. Considering the physical meaning of stitch value, the amount by which the needle pulls 
down on the stitch, this could be explained by the fact that stitch value more directly affects the 



stitch length and only indirectly affects the stitch width. The measured gauges of the fabric reflect 
this, showing a greater change in height of the stitch, than width of the stitch between samples 
made at stitch value 22 and 28.  Since the vertical transition samples change from front stitch to 
back stitch across the width of the fabric, the resulting change in the border conditions is less than 
in the horizontal transition, where the change from front stitch to back stitch occurs across the 
length of the fabric. The change in dimensions of the stitch value 40 samples on the other hand, 
are significant enough in both height and width, to exhibit the weakest folding forces in both 
sample types.  

Observing the region II moduli in Table 3, the values for all horizontal transition samples 
are of similar magnitude regardless of stitch value used. Similarly, the modulus for all vertical 
transition samples are of similar magnitude, regardless of stitch value used. This trend suggests 
that once deformation has begun, the force driving the behavior in this region are more dependent 
on the type of fold (i.e., the specific stitch pattern/structure) than on the stitch value.  
 

3.2 Combining Qualitative Observations and Quantitative Data to Control the Self-
folding Behavior  

  
To map the folding pattern effects, the developed understanding of boundary condition 

edge deformations was used to analyze a stitch pattern and identify the directionality of folding 
between segments of front stitches and back stitches. Next, the measured threshold force ratios 
were incorporated. This allowed for improved prediction of folding by understanding where 
horizontal transition folding overpowers vertical transition and vice-versa.  Figure 13 demonstrates 
the application of the mechanical characterization results to a front and back stitch pattern, showing 
how a specific behavior that occurs can, firstly, be predicted and then, by changing the force ratios, 
be purposely changed.  

Starting with a programed checkerboard pattern of front and back stitch segments where 
each square has equal amounts of stitches in the width and height, i.e. 20x20 stitches, (Figure 13A), 
the fabric produced shows only the back stitches on the face of the fabric, pushing all of the front 
stitch segments underneath. However, in some cases, design specifications may require a fabric 
with the same type of folding, that instead equally balances the contributions of horizontal and 
vertical folds. To achieve this, the front and back stitch program can be scaled by the measured 
fabric gauge, using Equations (1) and (2) described in Section 2.3 to produce segments of front 
and back stitch stitches that are the same physical height and width dimensions (Figure 13B). This 
produces a fabric where the back stitches remain dominant, and the front stitches, though more 
visible, are still pushed below the surface.  If the program is then scaled further, by the measured 
ratio of threshold forces (horizontal/vertical) (Figure 13C), a fabric can be produced that equally 
balances the contributions of horizontal and vertical folds. Both front and back stitch segments are 
present on the surface of the fabric, and the overall fabric shape is no longer skewed diagonally.  



 
Figure 13. Controlling the self-folding behavior in the weft knit structure; a) original stitch pattern, b) stitch pattern 

scaled using stitch gauge, c) stitch pattern scaled using threshold forces.  
 

 
3.3 Theoretical Equations  
 

While the experimentally determined scaling-ratio is useful in creating a specific self-
folding behavior, it is unrealistic to fabricate test samples and carry out the mechanical 
characterization tests each time a fabrication parameter is changed. Therefore, an equation was 
developed to theoretically predict the stitch force curves and therefore the scaling factor, of fabrics 
made at varying stitch values, circumventing the need to repeat the characterization experiment 
for each. Instead, characterization of folding samples could be carried out at a single “reference 
stitch value” which is then used to theoretically calculate the behavior at other stitch values, only 
requiring the knowledge of courses per cm and wales per cm at the other stitch values . These 
equations were developed first for horizontal front-to-back stitch transition samples, then for 
vertical front -to-back stitch transition samples.  

 

3.3.1 Predicting the Horizontal Transition Extension Behavior  

Using the experimental data collected for the horizontal transition folding samples made at 
stitch values 22, 28 and 40, the following equation was determined.  



Stitch force (HN) = (𝐵𝐵
𝐴𝐴

)HR                                                       (3)  

where A= 𝑁𝑁
𝑅𝑅

                                                                    (4)  

and B= ℎ𝑤𝑤𝑁𝑁
ℎ𝑤𝑤𝑅𝑅

                                                   (5) 

where HN is the theoretically determined stitch force curve for samples made at the new stitch 
value N. HR is the best fit equation for the experimentally determined stitch force curve 
determined from a set of samples made at reference stitch value R. (This equation was 
determined using was identified using the “trendline” data fitting function of Microsoft Excel.) 
hwN is the number of wales in a 25mm width for the new stitch value, and hwR is the number of 
wales in a 25mm width for the reference stitch value. Equation (3) utilizes both the input stitch 
value (from equation (4)) and the measured stitch dimensions (from equation (5). This reflects 
the fact stitch dimensions can change with a change in yarn, tension or other variables, even 
when the stitch value remains the same.  
 

Each stitch value was tested as a reference value to use to predict the stitch force curves 
of the samples made at the remaining two stitch values (Figure 14). The predicted curves agree 
with the experimental curves in Region I, and the beginning of Region II, providing predicted 
threshold forces. The predicted curves do not match for Region III, however only the threshold 
force was necessary to determine the scaling ratio that was used to control the self-folding 
behavior. Further work will be conducted in the future to explore development of robust 
equations capable of predicting the entire data curve.  

 

Figure 14. Theoretical prediction of stitch force curves in horizontal transition samples 

 



Equation 3 was then used to predict the curve that should result if the horizontal transition 
samples were produced at a stitch value of 34. In this case, 28 was used as the reference stitch 
value. Afterwards, samples were fabricated at this new stitch value of 34 and the mechanical 
characterization tests were repeated, showing agreement between the theoretical and experimental 
results (Figure 15).  

 

 

Figure 15. Predicting the stitch force curve of a horizontal transition sample made at stitch value 34. 

 

3.3.2. Predicting the Vertical Transition Extension Behavior  

First it was noted that the vertical transition samples made at stitch value 22 did not follow 
the same trend as all other samples (where an increase in stitch value resulted in a decrease in 
folding strength) (Figure 11 - Average Vertical Transition). To eliminate experimental error as a 
source of this result, a second sample set for horizontal and vertical transition folding samples 
made at stitch value 22 were fabricated and tested. The same results were observed. Considering 
the higher stitch density of these samples it was hypothesized that past a certain threshold, stitches 
are no longer able to move and slide as easily past their neighboring stitches, therefore affecting 
the deformation mechanisms, and requiring additional variables in the predictive equation. 
Therefore, at this time, vertical transition samples were produced at stitch value 34, to provide an 
additional data set for testing. The experimental results of stitch value 34 vertical transition 
samples are compared to the results at stitch values 28 and 40 in Figure 16 



 

Figure 16. Comparing the stitch force curves of vertical transition samples made at stitch values 22,28, and 40. 

 

Next, Equation 3 was applied similarly to the vertical transition samples, however this did 
not produce theoretical curves that matched the experimental data. It was therefore, hypothesized 
that the vertical transition sample exhibited nonlinear behavior. The following equation was 
determined that could be used to predict the vertical transition behaviors,  

Stitch force (VN) = VR(𝐵𝐵
𝐶𝐶

)𝑝𝑝                                                               (6)  

where, C=𝑅𝑅
𝑁𝑁

                                                                  (7)  

and B=  𝑣𝑣𝑣𝑣𝑁𝑁
𝑣𝑣𝑣𝑣𝑅𝑅 

                                                  (8) 

and p=10.5, where VN is the theoretically determined stitch force curve for samples made at the 
new stitch value N, and VR is the best fit equation for the experimentally determined stitch force 
curve determined from a set of samples made at reference stitch value R. vcN is the number of 
course in a 25mm height for the new stitch value, and vcR is the number of course in a 25mm 
height for the reference stitch value.\Once again, each stitch value was used as a reference value 
to predict the other stitch value results, showing agreement between theoretical and experimental 
results (Figure 17). Additional work will be required to determine how to mathematically account 
for the difference in behavior of the higher stitch density samples.  



 
Figure 17. Theoretical prediction of stitch force curves in vertical transition samples 

 
 
4. Conclusions 

 
In order to predict and control the self-folding behavior of weft knit textiles, a novel system 

of analyzing the behavior of plain front and back stitch segments has been developed. By 
understanding that self-folding is a result of interacting edge deformations, the direction of the 
rolling behavior can be predicted, based on the fabrics tendency to roll towards the front stitch side 
or back stitch side at a course or wale boundary. The forces driving these rolling behaviors were 
then quantified, by measuring the interaction between front and back stitch segments that occurred 
horizontally or vertically across the fabrics. A method was developed to measure and compare the 
forces driving this behavior in horizontal and vertical transitions between front and back stitches, 
and how these forces changed with variations in stitch value. It was then demonstrated how this 
characterization data could be used to begin to control the outcome of self-folding stitch patterns 
using scaling factors, and furthermore how we can begin to predict this scaling factor 
mathematically. Future work will further refine the developed equations, to predict the entire data 
curve as well as to account for fabrics of more extreme density or porosity. While only front and 
back stitches were studied here, this work lays the foundation for understanding how to study the 
deformations behaviors of more complex stitch patterns incorporating additional stitches such as 
tuck, miss. Furthermore, although this study focused on one yarn material, the authors have already 
begun studying the effects of yarn material changes on self-folding behavior. While yarn material 
affects the magnitude of the measured data curves, the relationship between horizontal to vertical 
folding forces remains similar due to the dependance of the folding mechanisms on the knit 
structure, rather than the yarn structure. By understanding the mechanisms behind self-folding in 
weft knit fabrics, we have created systems for predicting and controlling this behavior. As we 



improve the ability to precisely engineer folding behaviors, we can begin to use these fabric 
structures for technical applications. It is envisioned that the unique self-folding behaviors can be 
explored for creation of new types of devices such as textile springs and actuators, deployable 
fabric architectures, new approaches to composite materials, conformable garments and more.  
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Supplemental Data 
 

 

Figure a. Characterization of horizontal and vertical folding samples made at stitch value 22. 

 
Figure b. Characterization of horizontal and vertical folding samples made at stitch value 28. 



 
Figure c. Characterization of horizontal and vertical folding samples made at stitch value 40. 

 


