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ABSTRACT We present the genomes of two isolated bacteriophages infecting
Pelagibacter ubique HTCC1062. Pelagibacter phage Mosig EXVC030M (Myoviridae)
and Pelagibacter phage Lederberg EXVC029P (Podoviridae) were isolated by dilution-
to-extinction culturing from the oxygen minimum zone at Devil’s Hole (Harrington
Sound, Bermuda).

Viruses infecting the heterotrophic bacterial clade of Pelagibacterales are an impor-
tant component of marine microbial communities throughout global oceans (1).

Since the discovery and first isolation of four pelagiphages in 2013 (2), 38 more have
been isolated and sequenced (3–5). Out of the 38 isolated pelagiphages, 36 belong to
the Podoviridae family, with only one species each of Myoviridae and Siphoviridae.
Here, we report the draft genome sequences of a novel pelagimyophage and a novel
pelagipodophage, both isolated on Pelagibacter ubique HTCC1062.

A 2-liter water sample was taken (12 July 2019) using a hand-held Niskin bottle,
fired at a 20-m depth at Devil’s Hole, Bermuda, a seasonal oxygen minimum zone in
Bermuda (6) (latitude 32.32421, longitude 264.71849). The water sample was taken to
the Bermuda Institute of Ocean Sciences for processing, where planktonic cells were
removed with 0.1-mm polyethersulfone filters. Viruses were concentrated by tangential
flow filtration (50R VivaFlow 100-kDa Hydrosart filter; Sartorius Lab Instruments,
Göttingen, Germany). We used previously described dilution-to-extinction-based meth-
ods (4) with HTCC1062 as a bait host (grown in artificial seawater medium ASM1 [7]) in
96-well Teflon plates, which does not rely on plaque formation, because the host does
not grow on solid medium. The purification process was repeated five times; nonethe-
less, final sequence data contained two genomes, suggesting an impure culture.

For DNA isolation, a 50-ml HTCC1062 culture (106 cells/ml), amended with 5ml of
0.1-mm-filtered lysate, was grown in ASM1 (18°C) until cell death (detected via flow
cytometry). Debris was removed using 0.1-mm-pore polyvinylidene difluoride (PVDF)
filters, and lysate was subjected to PEG8000/NaCl DNA isolation (modified from https://
doi.org/10.17504/protocols.io.c36yrd, as described previously (4).

DNA libraries (Nextera XT) were prepared and sequenced by the Exeter Sequencing
Service (Illumina paired end [2 � 250 bp], NovaSeq S Prime [SP], targeting 30-fold cov-
erage). Raw reads (13.18 million) were trimmed, quality controlled, and error corrected
using tadpole (default settings [8] within BBMap v38.22 [https://sourceforge.net/
projects/bbmap/]) and assembled with SPAdes v3.13 (7). Viral contigs were confirmed
and gene called with VirSorter v1.05 (9) and imported into DNA Master v5.23.3 (10) for
manual curation with additional gene calls using GenMark v2.5 (11), GeneMarkS v4.28
(12), GeneMarkS-2 v1.14 (13), GeneMark.hmm v3.25 (14), Glimmer v3.02 (15), and
Prodigal v2.6.3 (16). Open reading frames were annotated with NCBI’s nonredundant
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protein database (17) and phmmer v2.41.1 (18) against the UniProtKB, uniprotrefprot (19),
SWISS PROT (20), and Pfam (21) databases (accessed May 2020) and were evaluated using
a previously described scoring system (10). Genome completion was verified with CheckV
(22). Sequences similar to our isolates were identified with ClusterGenomes v5.1 (https://
github.com/simroux/ClusterGenomes) and vConTACT 2 v0.9.19 (23) using previously iso-
lated Pelagiphages (2, 3, 5), fosmid-derived contigs from Mediterranean metagenomes
(uvMed) (24), and putative pelagimyophages from genome-resolved metagenomics (PMP-
MAVG) (25). Conserved genes were identified (GET_HOMOLOGUES v09072020 [22]),
aligned (MUSCLE v3.8.1551 [26]), curated (Gblocks v0.91b [27]), and concatenated man-
ually (all with default settings). Bayesian inference trees were generated via Phylogeny.fr

FIG 1 Bayesian inference tree from conserved genes found in pelagiphages (2, 3, 5), contigs from Mediterranean metagenomes (uvMed) (24), and putative
pelagimyophages from genome-resolved metagenomics (PMP-MAVG) (25). (A) Terminase large subunit, tail sheath protein, and tail tube protein; (B) head-
tail connector protein, capsid assembly protein, major capsid protein, tail tubular protein A, and putative acetyltransferase. Branch support values of 1 were
omitted for clarity. The scale bar represents the estimated substitution per site.
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(28) using MRBAYES v3.2.7 (29) (100,000 generations, sampled every 10 generations, 5,000
tree burn-in) (Fig. 1).

Pelagimyophage Mosig (named after microbiologist Gisela Mosig in recognition of
her work on Escherichia coli phage T4) was 141,462 bp long (348� coverage; GC con-
tent, 30.01%), linear, and 75.73% complete (CheckV [22]). Out of 208 genes, 98 were
putative, 3 were tRNAs, 30 were structural, and 77 were associated with DNA
replication.

Pelagibacter phage Lederberg (named after microbiologist Esther Lederberg in rec-
ognition of her work on the E. coli phage l) was 33,623 bp long (5,849� coverage; GC
content, 33.13%) and predicted as circularly permuted/complete. Lederberg had a total
of 71 genes, out of which 9 were structural, 8 were associated with DNA replication,
and 54 were without known function.

Data availability. The complete genome sequences were deposited under GenBank
accession numbers MT647605 (Lederberg) and MT647606 (Mosig). The corresponding
read data were deposited in the Sequence Read Archive (SRA) under BioProject number
PRJNA625644 and SRA accession number SRR12024324.
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