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Abstract. In this paper, we consider a container leasing firm that has elementary and pre-
mium containers, which are downward substitutable and for use by elementary contract cus-
tomers (ECCs), premium contract customers (PCCs), as well as walk-in customers (WICs).
ECCs can be satisfied by elementary containers or premium ones at discounted prices while
PCCs only accept premium containers. WICs can be satisfied by any type of container at differ-
ent prices. The objective is to maximise the expected total rental revenue by managing its lim-
ited capacity. We formulate this problem as a discrete-timeMarkov Decision Process and show
the submodularity and concavity of the value function. Based on this, we show that the optimal
policy can be characterised by a series of rationing thresholds, a series of substitution thresholds
and a priority threshold, all of which depend on the system states. We further give conditions
under which the optimal policy can be simplified. Numerical experiments are conducted to
show the impact of the substitution of two items on the revenue, to compare the performance
of the optimal policy with those of the commonly used policies and to investigate the influence
of arrival rates on the optimal policy. Last, we extend the basic model to consider different
rental durations, ECCs’ acceptance behaviour and endogenous prices forWICs.
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1. Introduction
According to the United Nations Conference on Trade
and Development (UNCTAD 2022), global container
port throughput has experienced outstanding growth
from 541.76 million TEU in 2010 to 807.33 million TEU
in 2019, which shows the increasing demand from ship-
ping companies for containers. Shipping companies
either purchase from the trading market to acquire their
own fleet or lease from container leasing firms in order
to enjoy benefits such as cost saving, quick response to
demand changes, and high flexibility (Jiao et al. 2016).

In practice, container leasing firms provide multiple
types of containers to meet various customer require-
ments. Elementary containers, which are equipped with
only basic functions, are leased at a relatively low price.

Premium containers, which can provide some additional
functions and meet some advanced requirements, are
leased at a high price. Elementary containers and pre-
mium containers are generally differentiated by one
dimension in the status of containers, such as 20-foot
dry containers that are older versus 20-foot dry contain-
ers that are newer or 40-foot refrigerated containers
with a typical Partlow recorder versus 40-foot refriger-
ated containers with an electrical data recorder. Some
customers only have basic requirements and prefer to
lease elementary containers at low prices, while others
have some advanced requirements, which can only be
satisfied with premium containers. For example, ice
cream and frozen fish suppliers have to transport their
goods at extremely low temperatures (down to −35◦C)
to ensure the quality of the goods, and the transport of
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tomatoes, potatoes, or bananas requires a multitempera-
ture system during the same voyage. In these cases, the
accuracy of the temperature and the nature of the air are
extremely important. Thus, refrigerated containers with
an electrical recorder are desirable for the transportation
of these kinds of goods. Another example is that of high-
street fashion suppliers, who require garments-on-hangers
containers to transport their clothes, thereby saving time,
costs, andmoney as they canmove garments in good con-
dition directly from containers to stores. Generally, the
two types of containers are downward substitutable,
which means that the requests for elementary containers
can be satisfied by premium ones while the requests for
premium containers cannot be fulfilled by elementary
ones due to the specific functions that elementary contain-
ers cannot provide.

In addition, the majority of shipping companies sign
contracts with container leasing companies for a type
of container at a specific price. For a container leasing
firm, these companies are contract customers. In this
paper, we refer to the contract customers who prefer
elementary containers as elementary contract customers
(ECCs) and the contract customers who need premium
containers as premium contract customers (PCCs). When
contract customers arrive, the leasing firm will get a fixed
rental rate if it can provide containers for them and other-
wise has to pay a penalty cost for breach of contract. The
leasing firm also deals with walk-in customers (WICs)
with temporal demands for containers. This type of cus-
tomer may have no specific requirement for containers,
and their needs can be fulfilled by either type of container.
When they arrive, the leasing firm can either provide con-
tainers at a set price or refuse themwith no penalty.

As shown in Figure 1, in this paper, we consider a
container leasing firm to be one which owns elemen-
tary and premium containers to serve ECCs, PCCs,
and WICs. There are several classes of ECCs and
PCCs, which are differentiated by their prenegotiated
prices. The customers who pay higher prices can enjoy
better service, such as more available return depots
and a Damage Protection Plan (DPP) with more repair
clauses. Suppose that customers arrive at the leasing

firm following the Poisson processes and their rental
durations followmutually independent exponential distri-
butions. Each customer requires a single-unit of container
upon arrival. Note that “a single-unit of container” here
does not necessarily represent a TEU; it may represent 100
TEUs or 500 TEUs. When a customer arrives, the leasing
firm first needs to decide whether it accepts this customer
and if yes, which type of container to provide.

If the firm allocates the idle containers to customers
whenever they arrive, it can immediately gain
rewards, but it will lose the chance to serve potential
high-value customers and obtain higher future reve-
nue. The firm needs to balance immediate and future
revenues. The firm also needs to consider substitution
decisions for ECCs when it does not have enough ele-
mentary containers. If the firm substitutes, it can
ensure good service for ECCs, but its service level for
PCCs may be affected; otherwise, it can serve more
future PCCs but risks having many unleased pre-
mium containers. When a WIC arrives, the firm has
three choices: (1) provide an elementary container; (2)
provide a premium one; or (3) reject the request.

This problem has not been addressed well in the
relevant literature. The existing literature on container
leasing focusses on lease duration (Dong and Song
2012), flexible contracts (Liu et al. 2013), and leasing
price (Zheng et al. 2016). Jiao et al. (2016) investigated
the dynamic pricing problem for leasing firms consid-
ering one type of container. However, it is more prac-
tical to address the problem of how to manage a firm’s
capacity when there are different types of substitut-
able containers and customers with different preferen-
ces. Recently, we visited a container leasing company
in Tianjin, China. The company has several types of
substitutable containers. Since 2021, the demand for
refrigerated containers has decreased significantly,
but there is high demand for general containers. Pos-
sessing limited capacity, the managers told us that
they do not have a sensible method to guide them in
making appropriate rationing decisions. They have
generally adopted a myopic strategy because of its

Figure 1. Operation Pattern of the Leasing Firm
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easy implementation. After we told them about the
results we obtained in this study, they were very
impressed and indicated that they would apply these
results in their practice.

We formulated this problem as a dynamic program
and showed that the value function is submodular,
subconcave, and concave. We then characterised
the structure of the optimal policy and showed that
the optimal policy has a simple threshold structure
(the thresholds depend on the state). We gave condi-
tions under which the optimal policy could be further
simplified (the thresholds are independent of the
state). Based on these results, we investigated several
extensions and obtained the corresponding manage-
rial insights. Numerical experiments were conducted
to evaluate the benefit of the optimal policy and the
impacts of some parameters on the optimal policy.
Some managerial insights were derived from the
analysis.

This work is also relevant for general rental busi-
nesses (e.g., equipment rental). We can see the old
equipment as elementary equipment with low rental
rates and the new equipment as premium equipment
with high rental rates. Our model is also applicable in
this case.

Compared with the existing studies, this work
makes the following contributions and findings.

1. We prove that the optimal policy for the capacity
allocation problem with substitutable containers and
three groups of customers has a simple threshold struc-
ture, which is easy to implement.

2. We show that the firm should admit customers if
it has enough idle capacity. For ECCs andWICs, which
type of container to provide depends on the numbers
of both idle elementary containers and premium ones.

3. We give definitions for preferred class and dominated
containers and use them to deduce the conditions under
which the optimal policy can be further simplified.

4. Based on real data, we conduct numerical experi-
ments to explore the value of the optimal policy. We
find that substitution brings distinct revenue improve-
ment (3%–8%) for the firm (especially when the differ-
ence of the rental prices of the two types of containers
is small), and the optimal policy outperforms the
myopic policy (3%–12% more revenue) and the sto-
chastic rationing policy (3%–8%more revenue).

The remainder of this paper is arranged as follows.
In Section 2, we review the related literature to iden-
tify the research gaps. In Section 3, we state our model
and characterise the optimal rationing policy. In Sec-
tion 4, the results of several numerical experiments
are provided, and some insights are derived. In Sec-
tion 5, we discuss several extensions. In Section 6, we
conclude our study and discuss future topics. All
proofs and additional numerical cases are given in the
electronic companion (EC).

2. Literature Review
In this paper, we investigate the capacity allocation
problem for a container leasing firm with two types of
downward substitutable containers and three groups
of customers. There are several streams of literature
related to this study.

2.1. Admission Control for Rentals and
Queuing Systems

An extensive body of literature concerning admission
control for rentals and queuing systems exists. Miller
(1969) first studied the admission control problem with
multiple customer classes. Örmeci et al. (2001) and Savin
et al. (2005) examined the systems in which the service
durations of two customer classes followed different dis-
tributions. Altman et al. (2001) and Örmeci and Burnetas
(2004) considered the batch arrival of demands. There are
also several works that study pricing in rentals and queu-
ing systems (Gans and Savin 2007, Ahmadi and Shavandi
2015, Jiao et al. 2016, Zhuang et al. 2017). The primary dif-
ference between these studies and ours is that they
assumed homogeneity of servers or rental items, while
we consider two types of substitutable containers.

2.2. Container Leasing
There are some papers on container leasing. Dong and
Song (2012) studied the lease duration optimisation
problem. Liu et al. (2013) explored leasing contract opti-
misation for shipping companies. Zheng et al. (2016)
studied container rental price measuring with foldable
and unfoldable containers using mixed-integer program-
ming. Jiao et al. (2016) investigated dynamic pricing for
a container leasing system with customers’ hire time
and hire quantity preferences by using nonlinear pro-
gramming. Our work is different from these previous
works in that we use a dynamic program to address the
problem of capacity rationing with multiple types of cus-
tomers who arrive dynamically and stochastically.

2.3. Revenue Management with Upgrading
and Upselling

The third stream of literature is on revenue management
with upgrading and upselling. In the airline industry,
upgrades indicate that customers may be offered higher-
class seats if the seats they reserved are unavailable
(McGill and Van Ryzin 1999). Gallego and Stefanescu
(2009) investigated several upselling models and showed
the advantages of upgrades in revenue management.
Steinhardt and Gönsch (2012) proposed two dynamic
program decomposition approaches to solve the revenue
management problems with upgrades. They showed that
their approaches are tractable for practical problem scales
and have better performance than commonly used meth-
ods. Gönsch and Steinhardt (2015) developed two refor-
mulations for a dynamic programming model to address
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an airline network management issue with upgrades.
Benigno et al. (2012) investigated a truck rental problem,
in which multiple types of trucks were differentiated by
their capacities. They designed approximate methods to
solve the issue. These works focused on designing heuris-
tic algorithms to accelerate the computing processes. Cui
et al. (2017) explored an issue related to pricing for condi-
tional upgrades and constructed a fluid model to obtain
the optimal upgrade price. They also investigated the
value of offering upgrades. Yilmaz et al. (2017) investi-
gated the performance of standby upgrades in hotel man-
agement and identified the conditions under which
standby upgrades are profitable for hotels. Çakanyildirim
et al. (2020) considered the problem of dynamic pricing
for upgrades between the reserve and register time and
characterised the optimal price and number of upgrades.
We consider the admission and substitution decisions for
ECCs simultaneously and explore the structure of optimal
policy.

2.4. Substitution in Demand Management
The fourth stream related to this study is on substitu-
tion in demandmanagement. Balakrishnan and Geunes
(2000) investigated a production planning problem
with multiple types of substitutable products by using
integer programming. Hsu et al. (2005) explored multi-
product lot size problems with and without conversion
cost, and developed a heuristic method to solve them.
Lang (2009) provided a detailed review of this topic.
The aim of these works was to propose algorithms to
get the solution. Chen et al. (2010) considered a seat
capacity control problem with two types of flights and
three types of customers in which flights are substitut-
able for type-three customers. Sayah and Irnich (2019)
further investigated a case with batch demands. These
two papers explored the structure of the optimal policy.
Our study differs from them in the following respects:
(a) Our model has an extra return process. We take the
return rate of containers into consideration when dis-
cussing rationing decisions for customers; (b) The opti-
mal policies in Chen et al. (2010) and Sayah and Irnich
(2019) were characterised by several switching curves,
while our optimal policy is characterised by certain
thresholds. We further explore the conditions under
which the thresholds are independent of the system
state; (c) We consider not only contract customers but
also walk-in ones, which complicates the analyses,
especially when the rental prices for walk-in custom-
ers are endogenous; (d) They explored a finite-period
problem and modelled it as a time-based MDP, in
which the stage changes as time moves. We consider
a continuous-time problem and model it as an event-
based MDP, in which the stage changes as events
occur.

Based on the substitutability of some products, many
firms have designed flexible or opaque products to

manage their demands, and some experts have studied
opaque product management. Gallego and Phillips
(2004) defined the flexible product as a set of substi-
tutable products. The seller can allocate any type of
product in the set to those who buy the flexible prod-
uct. They showed that flexible products can enhance
the seller’s profit. Fay and Xie (2008) explored the
benefit of selling opaque products to customers in
terms of matching demand and capacity. Zhang et al.
(2015) studied probabilistic selling in a quality-
differentiated market. The aforementioned works
considered only static models. Xiao and Chen (2014)
studied the issue of opaque selling in a dynamic
environment. Huang and Yin (2020) investigated an
opaque selling case with high-value and low-value
products. The seller dynamically decided whether to
sell opaque products, the price for opaque products
and the probability of offering high-value products.
Different from these works, our aim is to characterise
the structure of the dynamic rationing policy accord-
ing to the currently available capacity, which can be
renewed through the return of rented containers.

2.5. Inventory Allocation
This study is also related to the literature on inventory
allocation. Topkis (1968) first considered a periodic
review system with diverse demand classes. Nahmias
and Demmy (1981) extended his model by consider-
ing both continuous and periodic review systems. Ha
(2000) and De Véricourt et al. (2001) concentrated on
the inventory control for make-to-stock production
systems, while Liu et al. (2015) considered an in-
ventory allocation problem with stochastic demand
processes. In recent years, the problem of inventory
allocation has been studied in various fields. Papier
(2016) studied an optimal control problem for manu-
facturing lines considering electricity cost, Sarhangian
et al. (2017) investigated the threshold rationing policy
for a red blood cell inventory system, and Chen and
Thomas (2018) explored inventory allocation in a sys-
tem with service-level agreements. All of these works
studied inventory rationing in production or inven-
tory systems, while we concentrate on a rental case
involving a physical return process.

2.6. Assortment Planning
The last stream of relevant literature is on assortment
planning. Mahajan and Van Ryzin (2001b) considered
a single-period stochastic inventory model with heter-
ogeneous customers, who had substitution behaviour
among products. Mahajan and Van Ryzin (2001a)
explored inventory competition among companies
that provide substitutable products, while Rao et al.
(2004) investigated a single-period resource planning
problem with multiple downward substitutable prod-
ucts, random demands and set-up costs. Our study
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differs from the above works because we consider a
dynamic resource allocation problem and develop the
optimal policy to guide the manager in how to meet
different types of customers with two types of
containers.

3. Model and Analysis
3.1. Mathematical Model
In this subsection, we present the mathematical model.
Consider a leasing firm that has c1 units of elementary
containers and c2 units of premium containers. The
firm faces two types of customers: contract customers
and walk-in customers (WICs). Each customer requests
a unit of container when arriving at the firm.1 There are
n classes of contract customers who sign contracts with
the firm to lease elementary containers at different
rates. These kinds of contract customers are called ele-
mentary contract customers (ECCs), and the rental rate
of class-i (i � 1, 2, : : : ,n) ECCs is r1i. There are m classes
of contract customers who will lease premium contain-
ers and are called premium contract customers (PCCs).
The rental rate of class-j ( j � 1, 2, : : : ,m) PCCs is r2j.
Without loss of generality, we assume that r11 ≤ r12 ≤ : : :
≤ r1n ≤ r21 ≤ r22 ≤ : : : ≤ r2m. When a class-i ECC arrives,
the firm has three choices: (1) provide an elementary
container, (2) provide a premium container, or (3) refuse
the request. If the firm provides an elementary container,
it will get a payment r1i. The firm could also choose to
upsell a premium container and get a payment βr1i,
where β is a constant satisfying β ≥ 1. If the rental
demand is refused, the firm has to pay a penalty of π1

for breach of contract. When a class-j PCC arrives, the
firm decides whether to accept it. If the firm accepts the
demand, it will provide the customer with a premium
container and acquire a payment r2j. Otherwise, the firm
has to pay a penalty of π2. The rental rates of an elemen-
tary container and a premium one for WICs are p1 and
p2 (r1n ≤ p1 < p2, r2m ≤ p2), respectively. If the firm
refuses a WIC, it will not be penalised.

Suppose that class-i ECCs, class-j PCCs, and WICs
arrive at the firm following independent Poisson proc-
esses with rates λ1i (1 ≤ i ≤ n), λ2j (1 ≤ j ≤m) and λ3,
respectively. The rental durations of all customers are
uncertain and follow a mutually independent expo-
nential distribution with a mean of μ−1. We use (x,y)
to represent the system state, which means that the
firm has rented out x units of elementary containers

and y units of premium containers. The system space
can then be defined as C � {(x,y) | 0 ≤ x ≤ c1, 0 ≤ y ≤
c2,x ∈N,y ∈N} where N � {0, 1, 2, : : : }.

In container leasing firms, the holding costs for con-
tainers consist of storage costs and maintenance costs.
A container leasing firm needs depots/yards for the
storage of idle containers, and it pays certain costs to
keep the depot operations, including labour costs,
depot-leasing costs, and managerial costs. In addition,
daily repairs should be undertaken to maintain the
quality of containers. In general, leasing companies
are responsible for the maintenance of idle containers,
and idle premium containers have more holding costs
than idle elementary ones since leasing companies
have to spend more on the daily maintenance of pre-
mium containers. From Drewry (2019), the average
rental price per diem for a 20-ft container is about
$0.8. The average holding cost per diem for a 20-ft
container is about $0.4. Reports from Triton and
Textainer show that holding costs of containers are
significant.2 In addition, it has been common in the
previous literature to incorporate the holding costs of
empty containers into the company’s total costs
(Cheung and Chen 1998, Li et al. 2007, Song and Dong
2012). Therefore, we consider the holding cost of con-
tainers in this paper. To simplify the analysis, we
assume that the unit holding costs (including storage
and maintenance costs) of elementary and premium
containers are h1 and h2 (h1 < h2), respectively.

We consider the revenue-maximisation problem
along an infinite time horizon with a time discount
factor α, which means that a revenue v at time t has
the present value ve−αt. Given the assumptions of
Poisson arrivals of customers and exponential distri-
bution of rental durations, the capacity rationing
problem of the system with two types of containers
can be formulated as a continuous-time Markov Deci-
sion Process (MDP). To simplify the analysis, we use
the approach introduced by Lippman (1975) and Ser-
fozo (1979) to transform the model to a discrete-time
MDP. The aggregate event rate of the discrete-time
MDP is α+ δ, where δ �∑n

i�1λ1i +∑m
j�1 λ2j +λ3 +μ(c1 + c2).

Without loss of generality, we assume that α+ δ � 1.
At any transition epoch, the probabilities of the events
are given in Table 1. Let v(x,y) be the expected total
discounted revenue3 from now on with current sys-
tem state (x,y). Then the problem can be formulated
as the dynamic program with Bellman equation as

Table 1. The Event and Probability at a Transition Epoch with System State (x,y)

Event
Arrival of a
class-i ECC

Arrival of a
class-j PCC Arrival of a WIC

Return of an
elementary
container

Return of a
premium
container

Fictitious return
process

Probability λ1i λ2j λ3 μx μy μ(c1 + c2 − x− y)

Yang et al.: Capacity Rationing for a Container Leasing System
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v(x,y) � T[v(x,y)], where

T[v(x,y)] �∑n
i�1

λ1iT1i[v(x,y)] +
∑m
j�1

λ2jT2j[v(x,y)]

+λ3T3[v(x,y)] +T4[v(x,y)]

T1i[v(x,y)] �

max{v(x+ 1,y) + r1i,v(x,y+ 1)
+βr1i,v(x,y) −π1}, x < c1,y < c2

max{v(x+ 1,y) + r1i,v(x,y) −π1}, x < c1,y � c2

max{v(x,y+ 1) + βr1i,v(x,y) −π1}, x � c1,y < c2

v(x,y) −π1, x � c1,y � c2

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
T2j[v(x,y)] �

max{v(x,y+ 1) + r2j,v(x,y) −π2}, y < c2

v(x,y) −π2, y � c2

{

T3[v(x,y)] �

max{v(x+ 1,y) + p1,v(x,y+ 1)
+p2,v(x,y)}, x < c1,y < c2

max{v(x+ 1,y) + p1,v(x,y)}, x < c1,y � c2

max{v(x,y+ 1) + p2,v(x,y)}, x � c1,y < c2

v(x,y), x � c1,y � c2

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
T4[v(x,y)] � μxv(x− 1,y) +μyv(x,y− 1)

+μ(c1 + c2 − x− y)v(x,y) − h1(c1 − x) − h2(c2 − y):

The operator T1i represents the rationing decision for
class-i ECCs. The operator T2j represents the rationing
decision for class-j PCCs. The operator T3 represents
the rationing decision for WICs. The operator T4 is
related to the return process, fictitious return process
and holding costs of the idle containers. Since the state
space, action space, and the reward in one period are
finite, there exists an optimal rationing policy for the
system (Puterman 2014). Miller (1969) considered a
case in which a queueing system with identical serv-
ers dealt with several groups of customers differenti-
ated by their service rewards. We extend the model in
Miller (1969) to a case with two kinds of substitutable
items, two groups of contract customers (ECCs and
PCCs) and WICs.

3.2. The Characteristics of the Optimal
Rationing Policy

In this subsection, we analyse the property of the
value function v(x,y) and characterise the optimal pol-
icy for the system.

Define the first-order and second-order differences
as Δxv(x,y) � v(x+ 1,y) − v(x,y), Δyv(x,y) � v(x,y+ 1)−
v(x,y), Δx,xv(x,y) � v(x+ 2,y) − 2v(x+ 1,y) + v(x,y), Δy,y

v(x,y) � v(x,y+ 2) − 2v(x,y+ 1) + v(x,y), and Δx,yv(x,y)
� v(x+ 1,y+ 1) − v(x+ 1,y) − v(x,y+ 1) + v(x,y). The im-
mediate explanation for Δxv(x,y) (Δyv(x,y)) is the sys-
tem’s revenue change from leasing out one more
elementary (premium) container at state (x,y). Then
−Δxv(x,y) and −Δyv(x,y) are the opportunity costs of

leasing an elementary container and a premium one,
respectively. The opportunity cost means the potential
loss incurred by leasing a container because the firm
has less opportunity to serve customers in the future.
The difference Δx,xv(x,y) reflects how the opportunity
cost of leasing out an elementary container changes
with respect to x; Δy,yv(x,y) reflects how the opportu-
nity cost of leasing out a premium container changes
with respect to y; and Δx,yv(x,y) reflects how the oppor-
tunity cost of leasing out an elementary (premium) con-
tainer changes with respect to y (x). We then show how
these differences help us analyse the firm’s decision.

When a customer arrives, the firm needs to decide
whether to accept the request for a container. If the
firm accepts the customer, it will get immediate pay-
ment. If not, it will pay a penalty if the customer is a
contract customer. The admission decision depends
on the difference between −Δxv(x,y) or −Δyv(x,y) and
a certain constant. We give a detailed analysis for
operator T1i, which reflects the admission policy for
class-i ECCs, to demonstrate how the firm makes a
decision (other operators can be analysed similarly).
First, the firm judges whether it is profitable to pro-
vide an elementary container when a class-i ECC
arrives. That is, the firm examines the difference between
v(x+ 1,y) + r1i and v(x,y) −π1, which is equivalent to
a comparison of r1i +π1 with −Δxv(x,y). If r1i +π1 ≥
−Δxv(x,y), it is profitable to provide an elementary
container rather than to reject the customer. Second,
the firm needs to judge whether it is profitable to pro-
vide a premium container. That is, the firm has to
compare βr1i +π1 with −Δyv(x,y). If βr1i +π1 ≥ −Δy
v(x,y), then it is profitable to provide a premium con-
tainer rather than to reject the customer. Finally, if it
is beneficial for the firm to provide any type of con-
tainer for the customer, the firm has to determine
which type to provide. Thus, the firm examines the
difference between v(x+ 1,y) + r1i and v(x,y+ 1) + βr1i,
which is equivalent to a comparison of v(x+ 1,y) −
v(x,y+ 1) and (β− 1)r1i. It should provide an elemen-
tary container if v(x+ 1,y) − v(x,y+ 1) ≥ (β− 1)r1i and
provide a premium one otherwise.

From this analysis, we can see that if we figure out
how −Δxv(x,y), −Δyv(x,y), and v(x+ 1,y) − v(x,y+ 1)
change with respect to (x,y) by proving some properties
of v(x,y), it will be easy to characterise the optimal ration-
ing policy. We will next show submodularity, subconcav-
ity, and concavity of v(x,y), which are defined as follows:

1. submodularity: Δx,yv(x,y) ≤ 0;
2. subconcavity: Δxv(x+ 1,y) ≤ Δxv(x,y+ 1), Δyv(x,y+ 1)

≤ Δyv(x+ 1,y);
3. concavity: Δx,xv(x,y) ≤ 0, Δy,yv(x,y) ≤ 0.
If we can show that T[v(x,y)] is also submodular, sub-

concave, and concave under the assumption that v(x, y)
is submodular, subconcave, and concave, v(x, y) itself
has these properties according to Puterman (2014).
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Lemma 1. T[v(x,y)]is submodular, subconcave, and con-
cave with respect to (x, y) if v(x, y) has these properties.
Then v(x, y) itself is submodular, subconcave, and concave.

The submodularity of v(x, y) indicates that the oppor-
tunity cost of leasing out an elementary (premium) con-
tainer increases in y (x).4 The subconcavity means that
the opportunity cost of leasing out an elementary (pre-
mium) container increases faster in x (y) than in y (x).
The concavity signifies that the opportunity cost of leas-
ing out an elementary (premium) container increases in
x (y). We subsequently demonstrate how these proper-
ties take effect.

For each customer, the rental rate of a container and
the penalty for breach of contract (if it exists) are fixed
and independent of (x,y). Consequently, the firm is
inclined to keep its capacity for potential high-value
customers as x or y becomes larger since the opportu-
nity cost of leasing out a container is increasing.

If an arriving class-j PCC is accepted at state (x0,y0),
then we have −Δyv(x0,y0) ≤ π2 + r2j. From Lemma 1,
we have −Δyv(x1,y1) ≤ π2 + r2j for any (x1,y1) that x1 ≤ x0
and y1 ≤ y0. Thus, it is also optimal to accept class-j
PCCs at state (x1,y1). Until −Δyv(x,y) exceeds π2 + r2j,
the arriving PCC is rejected. Then the PCCs with
lower rental rates should also be refused as well.

Different from PCCs, when ECCs or WICs arrive,
the firm needs to decide not only whether to accept
them but also which type of container to provide. The
analysis of the first problem is similar to that of the
preceding discussion. We now discuss the second
problem in detail.

Let g(x,y) � v(x+ 1,y) − v(x,y+ 1). This is the differ-
ence between the revenue of leasing one more elemen-
tary container and that of leasing one more premium
container at state (x, y).

Lemma 2. g(x, y) is increasing in y and decreasing in x.

Lemma 2 means that the difference between the reve-
nue of leasing one more elementary container and that of
leasing one more premium container decreases in x and
increases in y. This property can help the firm decide
which kind of container to provide when an ECC orWIC
arrives. When a class-i ECC arrives and the firm deter-
mines which kind of container to provide, it needs to
compare v(x+ 1,y) − v(x,y+ 1) and (β− 1)r1i. If the firm
should provide an elementary container at state (x0,y0),
then we have g(x0,y0) ≥ (β− 1)r1i. From Lemma 2, we
have g(x1,y1) ≥ (β− 1)r1i for any (x1,y1) that satisfies
x1 ≤ x0 and y1 ≥ y0. As a result, it is also optimal to pro-
vide an elementary container at state (x1,y1). Until g(x, y)
becomes less than (β− 1)r1i, it is more profitable to pro-
vide premium containers to class-i ECCs. When a WIC
arrives, the firm should compare v(x+ 1,y) − v(x,y+ 1)
and p2 − p1. If the firm provides an elementary container
at state (x2,y2), then we have g(x2,y2) ≥ p2 − p1. Similarly,

for any (x3,y3) that satisfies x3 ≤ x2 and y3 ≥ y2, the
leasing firm still chooses an elementary container. It
is more profitable to provide premium containers for
WICs until g(x,y) < p2 − p1. From the above analysis,
the optimal capacity rationing policy can be charac-
terised in the following Theorem.

Theorem 1. The optimal capacity rationing policy can be
characterised as follows.

(a) For class-i ECCs, there exist rationing thresholds
K1i(y) and K2i(x) and a substitution threshold K3i(y) such
that

where

K1i(y) �
c1, −Δxv(c1 − 1,y) ≤ π1 + r1i
0, −Δxv(0,y) > π1 + r1i
k, −Δxv(k,y) > π1 + r1i ≥ −Δxv(k− 1,y),

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
K2i(x) �

c2, −Δyv(x, c2 − 1) ≤ π1 + βr1i
0, −Δyv(x, 0) > π1 + βr1i
k, −Δyv(x,k) > π1 + βr1i ≥ −Δyv(x,k− 1),

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
K3i(y) �

c1, v(c1,y) − v(c1 − 1,y+ 1) ≥ (β− 1)r1i
0, v(1,y) − v(0,y+ 1) < (β− 1)r1i
k, v(k+ 1,y) − v(k,y+ 1) < (β− 1)r1i

≤ v(k,y) − v(k− 1,y+ 1);

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(b) For class-j PCCs, there exists a rationing threshold

Lj(x).A class-j PCC should be provided with a premium con-
tainer when y < Lj(x) and rejected otherwise, where

Lj(x) �
c2, −Δyv(x, c2 − 1) ≤ π2 + r2j
0, −Δyv(x, 0) > π2 + r2j
k, −Δyv(x,k) > π2 + r2j ≥ −Δyv(x, k− 1);

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(c) For WICs, there exist rationing thresholds R1(y) and

R2(x) and a priority threshold R3(y) such that

Conditions

x ≥ K1i(y)
and

y ≥ K2i(x)

x < K1i(y)
and

y ≥ K2i(x)

x <min{K1i(y),
K3i(y)} and
y < K2i(x)

x ≥ K1i(y)
and

y < K2i(x)

K3i(y) ≤ x
< K1i(y)
and

y < K2i(x)

Policy Reject Provide an
elementary
container

Provide a
premium
container

Conditions

x ≥ R1(y)
and

y ≥ R2(x)

x < R1(y)
and

y ≥ R2(x)

x <min{R1(y),
R3(y)}
and

y < R2(x)

x ≥ R1(y)
and

y < R2(x)

R3(y) ≤ x
< R1(y)
and

y < R2(x)

Policy Reject Provide an
elementary
container

Provide a
premium
container
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where

R1(y) �
c1, −Δxv(c1 − 1,y) ≤ p1
0, −Δxv(0,y) > p1
k, −Δxv(k,y) > p1 ≥ −Δxv(k− 1,y),

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
R2(x) �

c2, −Δyv(x, c2 − 1) ≤ p2
0, −Δyv(x, 0) > p2
k, −Δyv(x, k) > p2 ≥ −Δyv(x,k− 1),

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
R3(y) �

c1, v(c1,y) − v(c1 − 1,y+ 1) ≥ p2 − p1
0, v(1,y) − v(0,y+ 1) < p2 − p1
k, v(k+ 1,y) − v(k,y+ 1) < p2 − p1 ≤ v(k,y)

−v(k− 1,y+ 1):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
Theorem 1 characterises the structure of the optimal
policy. It shows that the optimal policy still has a sim-
ple threshold structure although the firm leases two
types of containers, and ECCs and WICs can be satis-
fied by either type. In addition, the thresholds depend
on the system state. The optimal policies for ECCs
and WICs are characterised by tables in which each
decision is jointly determined by several conditions.
The optimal policy for PCCs depends on only one
condition, the relation between the number of on-hire
premium containers and the corresponding threshold.

The policy for ECCs and WICs is relatively compli-
cated since the firm needs to decide not only whether
to accept them but also the type of container to pro-
vide. When making rationing decisions, the firm
should consider at the same time the numbers of
on-hire elementary containers and premium contain-
ers. The thresholds that decide the optimal policy are
also related to both the number of on-hire elementary
containers and that of premium ones.

Theorem 1(a) and (c) imply that when an ECC
(WIC) arrives, the optimal allocation policy depends
on the system state. It is optimal to (a) reject the cus-
tomer if many elementary and premium containers
are rented out, (b) provide an elementary container if
there are many idle elementary containers but few
available premium containers or (c) provide a pre-
mium container if many elementary containers are
leased out but there are few on-hire premium contain-
ers. There exist several boundaries which are con-
cerned with system parameters and states to separate
each decision. The simplicity of the tables in Theorem
1(a) and (c) allow the firm to easily perform the policy
according to the system states once the thresholds
have been determined. Theorem 1(b) means that
when a PCC arrives, it is optimal to provide a pre-
mium container if the number of rented premium con-
tainers is small and to reject the customer otherwise.
To conclude, under the optimal allocation policy, the firm
always chooses to keep capacity when there are few con-
tainers and to ration capacity when there are enough idle

containers. When two types of containers are acceptable
for customers, the type of container to be provided
depends on the number of the two types of containers
that are available.

The thresholds K1i(y), K2i(x), Lj(x), R1(y) and R2(x)
are rationing thresholds, which are used to determine
whether the firm can or cannot benefit from providing
a container. K3i(y) is the substitution threshold which
indicates whether the firm can benefit from replacing
an elementary container with a premium one (upsell-
ing for ECCs). R3(y) is the priority threshold that can
be used to determine which type of container has pri-
ority in being offered to WICs.

Miller (1969) studied the issue of admission control
for a queueing system with identical servers and mul-
tiple customer classes, in which the decision maker
just needed to decide whether to accept arriving cus-
tomers. The author showed that the optimal policy
has a threshold structure. We generalise these results
to our case with two types of downward substitutable
items and three groups of customers. Theorem 1
shows that the system still has a simple threshold
type policy.

The optimal policy in this work differs in two ways
from those of previous studies, in which one type of
resource was considered. First, we consider two types
of containers. In addition to rationing thresholds,
there are substitution and priority thresholds which
also affect the firm’s optimal allocation policy. Second,
the optimal rationing policy depends on the inventory
level of two types of containers. When the firm decides
whether to provide elementary (premium) containers
for customers, it should consider not only the number
of idle elementary (premium) containers but also that
of idle premium (elementary) ones.

To illustrate Theorem 1, we give a numerical case in
Section EC.1. From this experiment, we have an inter-
esting finding that it may be optimal to provide a pre-
mium container when an ECC arrives even if there
are still some idle elementary containers. This phe-
nomenon is inconsistent with our intuition but can be
explained from two aspects.

(i) Idle premium containers have higher holding
costs than idle elementary ones. Satisfying ECCs with
premium containers rather than elementary ones will
decrease the holding cost but not reduce service quality
for PCCs and WICs as long as the firm has enough idle
premium containers.

(ii) When the firm has many premium containers
but few elementary ones on hand, it has enough pre-
mium containers for future PCCs. In this situation,
the firm should lease premium containers as early as
possible. The reason is that leasing premium contain-
ers earlier can bring more revenue to the firm. Also,
the leased premium containers will be returned
earlier.
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Corollary 1. (a) K1i(y) and R1(y) are nonincreasing in y;
K2i(x), Lj(x) and R2(x) are nonincreasing in x. (b) K3i(y)
and R3(y) are nondecreasing in y.

Corollary 1(a) implies that the firm is reluctant to
provide elementary (premium) containers and would
rather reject customers as more premium (elementary)
containers are rented out. From the submodularity of
the value function, the opportunity cost of leasing an
elementary (premium) container increases with the
number of on-hire premium (elementary) containers.
Therefore, the leasing firm is inclined to keep elemen-
tary (premium) containers as there are fewer premium
(elementary) containers on hand. Corollary 1(b)
means that the firm is willing to provide elementary
containers rather than premium ones for ECCs and
WICs as there are more on-hire premium containers.
From the subconcavity of the value function, as more
premium containers are rented out, the opportunity
cost of leasing a premium container increases faster
than that of an elementary one. Compared with pre-
mium containers, the firm is more willing to provide
elementary ones. To conclude, under the optimal pol-
icy, the firm is unwilling to provide one type of con-
tainer for customers as the inventory level for the
other type of container becomes less. In addition, the
firm is willing to provide elementary (premium) con-
tainers for customers instead of premium (elemen-
tary) ones as more premium (elementary) containers
are rented out.

3.3. Simplifying the Optimal Policy
Theorem 1 shows that the optimal policy has a simple
structure. However, the thresholds depend on the cur-
rent system state (x,y). In this subsection, we give con-
ditions under which the thresholds are independent
of the system state.

Definition 1. Class-i ECCs are preferred for elemen-
tary containers if K1i(y) � c1 for any 0 ≤ y ≤ c2 and for
premium containers if K2i(x) � c2 for any 0 ≤ x ≤ c1;
class-j PCCs are preferred if Lj(x) � c2 for any
0 ≤ x ≤ c1; WICs are preferred for elementary contain-
ers if R1(y) � c1 for any 0 ≤ y ≤ c2 and for premium
containers if R2(x) � c2 for any 0 ≤ x ≤ c1.

In Gans and Savin (2007), Örmeci and Burnetas
(2004), and Savin et al. (2005), the firm had only two
options (accept or refuse) when customers arrived. A
preferred customer class was always accepted when
idle capacity existed. In our work, the firm has three
choices (refuse or accept with an elementary container
or accept with a premium one) when an ECC or WIC
arrives. Then we generalise the concept of preferred
class in Gans and Savin (2007), Örmeci and Burnetas
(2004) and Savin et al. (2005) to present two types of

preferences for ECCs and WICs (preferred for elemen-
tary containers or premium containers).

From Theorem 1, the conditions for a certain cus-
tomer class to be preferred can be characterised by
determining the upper bounds of −Δxv(x,y) and
−Δyv(x,y). To this end, we define

ρ1(t) � t−
∑n

i�1λ1imax(t, r1i +π1) +λ3max(t,p1) − h1∑n
i�1λ1i +λ3 +μ+α

,

ρ2(t) � t−

∑n
i�1λ1imax(t,βr1i +π1)

+∑m
j�1λ2jmax(t, r2j +π2) +λ3max(t,p2) − h2

∑n
i�1λ1i +∑m

j�1λ2j +λ3 +μ+ α
:

Lemma 3 (Simplifying Rationing Thresholds).
(a) ρ1(t) and ρ2(t) are increasing in t and the equations

ρ1(t) � 0 and ρ2(t) � 0 have unique solutions b∗1 and b∗2,
respectively. Moreover, b∗1 ≥max(x,y)∈(C\C1) −Δxv(x,y) and
b∗2 ≥max(x,y)∈(C\C2) −Δyv(x,y), where C1 � {(c1,y) | 0 ≤
y ≤ c2} and C2 � {(x, c2) | 0 ≤ x ≤ c1}.

(b) The class-i ECCs are preferred for elementary contain-
ers if r1i ≥ b∗1 −π1 and for premium containers if r1i ≥
(b∗2 −π1) =β; the class-j PCCs are preferred if r2j ≥ b∗2 −π2;
WICs are preferred for elementary containers if p1 ≥ b∗1 and
for premium containers if p2 ≥ b∗2.

In Lemma 3(a), the functions ρ1(t) and ρ2(t) are
defined to find the upper bound of −Δxv(x,y) and
−Δyv(x,y), respectively. From the submodularity and
concavity of the value function v(x,y), we have
max(x,y)∈(C\C1) −Δxv(x,y) � −Δxv(c1 − 1, c2). The solution of
the equation ρ1(t) � 0 is large enough to be an upper
bound of −Δxv(c1 − 1, c2). Results are similar for the
function ρ2(t). Lemma 3(b) implies that the rationing
thresholds K1i(y), K2i(x), Lj(x), R1(y) and R2(x) have
simpler forms that are independent of system state
(x,y). Gans and Savin (2007) gave conditions under
which customers are preferred for a leasing system
with one kind of rental item. We generalise their
results to the case with two kinds of rental items. The
expression of b∗2 in our study is more complicated
than in theirs since premium containers can be pro-
vided for ECCs and WICs. Thus, b∗2 is also affected by
the arrival rates of ECCs and WICs.

The solution for ρ1(t) � 0 is not less than the maxi-
mum opportunity cost of leasing an elementary con-
tainer.5 From the definition of ρ1(t), b∗1 satisfies

b∗1
∑n
i�1

λ1i +λ3 +μ+ α

[ ]
�∑n

i�1
λ1imax(b∗1, r1i +π1)

+λ3max(b∗1,p1) − h1: (1)

On the one hand, the left of (1) is the maximum oppor-
tunity cost of leasing an elementary container times the
sum of the arrival rate of ECCs, the arrival rate of

Yang et al.: Capacity Rationing for a Container Leasing System
Management Science, Articles in Advance, pp. 1–18, © 2022 INFORMS 9



WICs, the return rate of a container and the discount
rate. The sum of the arrival rate of ECCs and that of
WICs represents the total arrival of customers who
require elementary containers. The return rate of a con-
tainer and the discount rate are also involved since
they are concerned with the opportunity cost of leasing
an elementary container. The left of (1) can then be seen
as a type of “adjusted total opportunity cost.” On the
other hand, max{b∗1, r1i +π1} (max{b∗1,p1}) is the maxi-
mum opportunity cost of leasing an elementary con-
tainer after a class-i ECC (WIC) arrives, which indicates
that the operator T1i (T3) should be performed and the
value function is iterated. The right of (1) is the sum of
the arrival rates of customers who require elementary
containers times the corresponding opportunity cost
and then minus the unit holding cost of elementary
containers. We can see it as a type of “iterated total
opportunity cost.” Therefore, we can conclude that the
maximum opportunity cost always ensures that the
adjusted total opportunity cost is equal to the iterated
total opportunity cost. The definition of ρ2(t) can be
explained in a similar way.

Lemma 3 gives the sufficient condition for a cus-
tomer class to be preferred. We can judge whether a
customer class is preferred by comparing the rental
price and an upper bound calculated from Lemma 3.
If the immediate benefit brought by a customer class
is larger than b∗1 (b∗2), it is profitable for the firm to pro-
vide elementary (premium) containers unless there is
no idle capacity. Moreover, if a customer class is pre-
ferred, then any customer classes that pay higher
rental prices are also preferred. Note that r1n +π1 is
the immediate benefit of providing an elementary
container for a class-i ECC and p1 is the immediate
benefit of providing an elementary container for a
WIC. Among all customers who accept elementary
containers, class-n ECCs (WICs) are the highest-
valued customers for the elementary containers if r1i +
π1 > p1 (r1n +π1 ≤ p1). It is obvious that max{r1n +
π1,p1} > b∗1 since ρ1(max{r1n +π1,p1}) > 0, which indi-
cates that the highest-valued customers are always
preferred. The firm should always satisfy the demand
from the highest-valued customers unless there are
no idle containers. We can also find that b∗1 < 0 when
h1 is very large. In this situation, all customers are
preferred for elementary containers due to the unaf-
fordable holding cost. Similarly, all customers are pre-
ferred for premium containers when h2 is very large.
In these conditions, the firm is glad to rent all of the
idle containers out. The optimal policy is a myopic-
type policy, in which the firm provides elementary
(premium) containers for ECCs (PCCs) and WICs
until there is no idle capacity. In addition, when a cus-
tomer class pays high rental rates for both elementary
containers and premium ones, it may be preferred for
elementary containers and preferred for premium containers

at the same time. In this case, which type of container
should be provided for them depends on the difference
between the rental price of elementary containers and
that of premium ones. We will discuss this topic in the
next theorem.

Definition 2. Class-i ECCs are elementary container
dominated if K3i(y) � c1 for any 0 ≤ y ≤ c2 − 1 and are
premium container dominated if K3i(y) � 0 for any
0 ≤ y ≤ c2 − 1; WICs are elementary container domi-
nated if R3(y) � c1 for any 0 ≤ y ≤ c2 − 1 and are pre-
mium container dominated if R3(y) � 0 for any
0 ≤ y ≤ c2 − 1.

Elementary (premium) container domination means
that it is always more profitable to provide elementary
(premium) containers than to offer premium (elemen-
tary) ones when the firm has two types of containers
on hand. From Theorem 1, it will be helpful for us to
characterise the conditions under which customers
are elementary container dominated or premium container
dominated if we can figure out the upper and lower
bounds of v(x+ 1,y) − v(x,y+ 1).

To this end, let σ1i(t) �max[t, (β− 1)r1i,βr1i +π1 − b∗3,b∗2
−r1i −π1], σ2j(t) �max(t, r2j +π2 − b∗3), σ3(t) �max(t,p2 − p1,
p2 − b∗3,b∗2 − p1), ω1i(t) �min[t, (β− 1)r1i, −b∗1 + βr1i +π1,
b∗4 −π1 − r1i], ω2j(t) �min(t, − b∗1 + r2j +π2), ω3(t) �min
(t,p2 − p1, − b∗1 + p2,b∗4 − p1), b∗3 �min(x,y)∈(C\C1) −Δxv(x,y),
b∗4 �min(x,y)∈(C\C2) −Δyv(x,y). We then define

ρ3(t) � t−
∑m

i�1λ1iσ1i(t) +∑n
j�1λ2jσ2j(t) +λ3σ3(t) + h1 − h2∑m

i�1λ1i +∑n
j�1λ2j +λ3 + μ+ α

,

ρ4(t) � t−
∑m

i�1λ1iω1i(t) +∑n
j�1λ2jω2j(t) +λ3ω3(t) + h1 − h2∑m

i�1λ1i +∑n
j�1λ2j +λ3 +μ+ α

:

Lemma4 (Simplifying Substitution andPriority Thresholds).
(a) ρ3(t) and ρ4(t) are increasing in t and the equations

ρ3(t) � 0 and ρ4(t) � 0 have unique solutions b∗5 and b∗6,
respectively. Then b∗5 ≥max(x,y)∈(C\C3) g(x,y) and b∗6 ≤
min(x,y)∈(C\C3) g(x,y), where C3 � {(x,y) | x � c1, 0 ≤ y ≤
c2 ory � c2, 0 ≤ x ≤ c1}.

(b) Class-i ECCs are elementary container dominated if b∗6 ≥(β− 1)r1i and premium container dominated if b∗5 < (β− 1)r1i;
WICs are elementary container dominated if b∗6 ≥ p2 − p1 and
premium container dominated if b∗5 < p2 − p1.

In Lemma 4, we give upper and lower bounds for
v(x+ 1,y) − v(x,y+ 1) by solving the equations ρ3(t) �
0 and ρ4(t) � 0, respectively. The functions ρ3(t) and
ρ4(t) have similar properties to ρ1(t). From Lemma 4,
for WICs or a certain class of ECCs, if the difference
between the rental price of premium containers and
that of elementary ones is sufficiently large (small), it
is always more profitable to provide them with pre-
mium (elementary) containers rather than elementary
(premium) ones. Therefore, the firm should either pro-
vide them with premium (elementary) containers or
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refuse them. To conclude, if a customer class is elemen-
tary container dominated (premium container dominated),
then it is better to provide the class with elementary
(premium) containers instead of premium (elemen-
tary) ones once idle elementary (premium) containers
exist.

Summarizing Lemmas 3 and 4, we get Theorem 2,
which completely characterises the simplified optimal
rationing policy.

Theorem 2. For any (x,y) ∈ (C \C3), the optimal rationing
policy is characterised as follows:

(a) For class-i ECCs, the optimal policy is

(b) For class-j PCCs, the optimal policy is to provide pre-
mium containers if r2j ≥ b∗2 −π2.

(c) For WICs, the optimal policy is

Theorem 2(a) and (c) imply that for ECCs (WICs)
preferred for elementary or premium containers, the
firm should provide them with elementary containers
if the difference between the rental rates of premium
and elementary containers for them is very small and
with premium containers if the difference is very large.
Theorem 2(b) means that the firm always provides pre-
mium containers for PCCs if their rental rate is suffi-
ciently large. Therefore, the policy can be characterised
as a simpler format and be more easily implemented.

4. Benefits of the Optimal Policy
In this subsection, we carry out numerical studies to
show the value of the model and the optimal policy
based on the data from Drewry (2019) and a real leas-
ing firm located in Tianjin, China. The detailed data
used in this part are presented in Section EC.2. We
also conduct numerical experiments to investigate the
influence of customers’ arrival rates on the optimal
policy, which are presented in Section EC.3.

4.1. Benefits of Substitution
This work assumes that the firm has two types of con-
tainers and premium containers have a substitution

effect. If ECCs can only be satisfied by elementary con-
tainers and WICs can only be satisfied by one type of
container, then the system can be reduced to the system
in Miller (1969). To demonstrate the value of this work,
we explore the benefits of substitution. Let v1(x,y) be
the expected total discounted revenue without substitu-
tion. Then the dynamic program model of the system
without substitution is v1(x,y) � T1[v1(x,y)], where

T1[v1(x,y)] �
∑n
i�1

λ1iT1
1i[v1(x,y)] +

∑m
j�1

λ2jT2j[v1(x,y)]

+λ3T3[v1(x,y)] +T4[v1(x,y)]

T1
1i[v1(x,y)] �

max{v1(x+ 1,y)
+r1i,v1(x,y) −π1}, x < c1

v1(x,y) −π1, x � c1:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Other than that the firm does not provide premium
containers for ECCs, other settings of this system are
the same as those of the system in Section 3. Without
loss of generality, we suppose that both systems begin
at state (0, 0). Let ε1 � (v(0, 0) − v1(0, 0))=(v1(0, 0)) × 100.
We use the relative improvement percentage of expected
rental revenue to measure the value of our system. To
explore the benefits of substitution, we further consider
the difference between the rental prices of the two types
of containers for WICs. To this end, we keep p1 as a con-
stant and change p2. Let p2 � φp1, where φ � 1, 2, : : : , 10.
Other parameters are provided in Section EC.2.

From Figure 2, we find that ε1 is positive. This
means that the downward substitution considered in
this study can bring much revenue improvement to
the firm (between 3% and 8%, with an average of
4.50%). Moreover, the smaller φ is, the larger is the
revenue improvement brought by substitution. This
phenomenon can be explained as follows. When φ is
small, the rental price difference of the two types of
containers for WICs is small. The firm has more flexi-
bility to use both types of containers to satisfy WICs.
Thus, the firm can satisfy more ECCs in our system.
As φ grows, the difference between the rental prices
of the two types of containers for WICs is large, and
the firm will prefer to use premium containers to sat-
isfy WICs in both systems, which decreases the reve-
nue improvement brought by substitution.

4.2. Optimal Policy vs. Myopic Policy
In this part, we compare the revenues brought by the
optimal policy and the myopic policy (a commonly
used heuristic policy which is also used by the firm
we recently visited). The myopic policy can be charac-
terised as follows. The firm always provides ECCs
and WICs with elementary containers when it has ele-
mentary containers on hand, provides them with pre-
mium containers when it has idle premium containers
but does not have idle elementary containers and

Conditions

r1i ≥ b∗1 −π1 or r1i ≥ (b∗2 −π1)=β
b∗6 ≥ (β− 1)r1i b∗5 < (β− 1)r1i

Policy Provide elementary
containers

Provide premium
containers

Conditions

p1 ≥ b∗1 or r2 ≥ b∗2

b∗6 ≥ p2 − p1 b∗5 < p2 − p1

Policy Provide elementary
containers

Provide premium
containers
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refuses them only when there is no idle container. The
firm always provides PCCs with premium containers
when there are idle premium containers and other-
wise refuses them.

Let the expected total discounted revenue of the firm
under the myopic policy be v2(x,y) when the system
state is (x, y). We still use the relative improvement per-
centage of the total revenue to measure the value of the
optimal policy. Let ε2 � (v(0, 0) − v2(0, 0))=(v2(0, 0)) × 100.
We shall see how customers’ arrival rates affect the per-
formance of the optimal policy. Set λ11 � 0, 10, : : : , 120,
130.6 Other parameters are provided in Section EC.2.
Under this setting, the revenue, v2(0, 0), brought by the
myopic policy can be regarded as the firm’s real reve-
nue. From Table 2, we find that the total revenues of
the firm under the optimal and myopic policies first
increase and then decrease in λ11. The myopic policy
brings the maximum revenue when λ11 � 50, while the
optimal policy results in the maximum revenue when
λ11 � 60. This indicates that the optimal policy can help
the firm to better utilise its capacity and serve more cus-
tomers. We also find that the optimal policy brings
more revenue for the firm (between 3% and 12%, with
an average of 6.48%) than the myopic policy does.
Moreover, ε2 decreases in λ11 when λ11 ≤ 50 and
increases in λ11 when λ11 ≥ 50, which means that the

optimal policy performs better when the arrival rate is
either small or large.

To explain this, we introduce two symbols:
- � (∑n

i�1λ1i +∑m
j�1λ2j +λ3)=μ (which represents the number

of customers that the firm deals with in an average leas-
ing duration) and τ � -=(c1 + c2) (which represents the
matching degree of the supplies and demands). When τ
is close to 1, supply and demand are matched. When τ
is much larger or smaller than 1, supply and demand
are mismatched. We have τ � 1:02 when λ11 � 50. When
τ < 1:02, the firm’s capacity is adequate. Supply and
demand are mismatched. Each customer is reasonably
valuable and their demand should be met in an appro-
priate way. In this case, the optimal policy helps the firm
make the most profitable decision for each customer,
and thus it performs much better than the myopic pol-
icy. As τ increases, the capacity will be insufficient and
the value of customers will decrease; then the revenue
improvement brought by the optimal policy decreases.
When τ � 1:02, supply and demand match well, and
then the myopic policy also performs well. The opti-
mal policy brings the least revenue improvement.
When τ > 1:02, there is a shortage of containers com-
pared with customers, in which case containers
become more valuable. Supply and demand do not
match well. The firm should make use of each con-
tainer to meet customers properly and earn more
profit. In this case, the optimal policy helps the firm
make better rationing decisions than the myopic pol-
icy does. As τ increases, the value of each container
increases and the revenue improvement brought by
the optimal policy also increases.

4.3. Optimal Policy vs. Stochastic Rationing Policy
In this subsection, we compare the performance of the
optimal policy and a stochastic rationing policy. We
consulted some container leasing companies and
found that their commonly used capacity rationing
policy is very similar to the stochastic rationing policy
we will characterise. Under the stochastic rationing
policy, the firm randomly provides idle elementary
and premium containers for ECCs and WICs. Each
idle container has the same probability of being

Figure 2. (Color online) The Benefits of Substitution

Table 2. Optimal Policy vs. Myopic Policy

λ11 0 10 20 30 40 50 60

v2(0, 0)/million dollars 99.498 112.470 126.160 139.570 149.282 153.064 152.547
v(0, 0)/million dollars 107.872 120.665 133.423 145.552 154.288 157.909 158.033
ε2 8.42 7.29 5.76 4.29 3.35 3.17 3.60
λ11 70 80 90 100 110 120 130
v2(0, 0)/million dollars 149.758 145.818 141.272 136.390 131.315 126.128 120.875
v(0, 0)/million dollars 156.334 153.675 150.453 146.884 143.062 139.068 134.934
ε2 4.39 5.39 6.50 7.69 8.95 10.26 11.63
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selected. The firm always provides premium contain-
ers for PCCs unless it does not have premium contain-
ers on hand.

Let the expected total discounted revenue under the
stochastic rationing policy be v3(x,y). We use the rela-
tive improvement percentage of the total revenue to
measure the value of the optimal policy. Let
ε3 � (v(0, 0) − v3(0, 0))=(v3(0, 0)) × 100. We investigate
how ε3 changes with respect to the arrival rate of
class-2 PCCs. Let λ22 � 0, 15,30, : : : , 120,135. Other
parameters are also set in Section EC.2.

From Figure 3, we find that the optimal policy
brings 3%–8% (average 6.10%) more revenue than the
stochastic rationing policy does. We observe that ε3
decreases in λ22 when λ22 ≤ 30 (τ ≤ 0:90) and increases
in λ22 when λ22 ≥ 30 (τ ≥ 0:90). This means that when
supply and demand are mismatched, our policy per-
forms much better than the stochastic rationing policy.
The reason is as follows. When λ22 ≤ 30, the firm has
adequate capacity to meet customers’ demands.
Under the optimal policy, the firm will use more pre-
mium containers to satisfy ECCs and WICs to earn
more income and pay fewer holding costs than under
the stochastic rationing policy. As λ22 increases, more
premium containers should be allocated to PCCs,
while fewer premium containers should be provided
for ECCs and WICs. There is then less difference in
the performances of the two policies. Thus, the opti-
mal policy brings less revenue improvement. When
λ22 ≥ 30 and increases, the firm cannot meet all cus-
tomers’ demands. PCCs can only be satisfied by pre-
mium containers. However, the stochastic rationing
policy still allocates some premium containers to
ECCs and WICs. This will decrease the service level
for PCCs and reduce revenue. Therefore, the optimal
policy performs much better than the stochastic
rationing policy. When λ22 � 30, the optimal policy
brings the least revenue improvement.

5. Extension
5.1. Different Expected Rental Durations
In this subsection, we relax the assumption of identi-
cal expected rental duration for elementary and pre-
mium containers and consider different expected
rental durations for them. We give a counter example
to show that the value function is not necessarily sub-
concave. Therefore, the optimal policy does not have a
threshold-type structure. The counter example and
the corresponding explanations are presented in Sec-
tion EC.4.

5.2. ECCs’ Acceptance Behaviours
In this subsection, we consider ECCs’ acceptance
behaviours and investigate the following two cases:
(a) ECCs accept substitution at a constant probability
p (0 < p < 1); and (b) the acceptance probability is a
function of the rental price of premium containers
determined by the firm.

5.2.1. Constant Acceptance Probability. In this case,
ECCs accept the premium containers offered by the
firm at a constant acceptance probability p and refuse
the substitution at the probability 1− p. If ECCs accept
the substitution, they pay a rental rate (βr1i for class-i
ECCs) to get a premium container. If they refuse the
substitution, they will receive a penalty π1 from the
firm. The other setting is the same as in Section 3. Let
u(x, y) be the expected total discounted revenue of the
firm when the state is (x, y). Then the optimality equa-
tion is given by u(x,y) � Tcp[u(x,y)] where Si(x,y) �
p(u(x,y+ 1) + βr1i) + (1− p)(u(x,y) −π1), Tcp[u(x,y)] �∑n

i�1λ1iT
cp
1i [u(x,y)] +∑m

j�1λ2jT2j[u(x,y)] +λ3T3[u(x,y)]
+T4[u(x,y)],

Tcp
1i [u(x,y)] �

max{u(x+ 1,y) + r1i,Si(x,y),
u(x,y) −π1}, x < c1,y < c2

max{u(x+ 1,y) + r1i,u(x,y) −π1}, x < c1,y � c2
max{Si(x,y),u(x,y) −π1}, x � c1,y < c2
u(x,y) −π1, x � c1,y � c2:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
The operator Tcp

1i represents the firm’s rationing deci-
sion for class-i ECCs. The operators T2j, T3 and T4 are
the same as those in Section 3. We also give a counter
example to show that the value function is not neces-
sarily subconcave. The counter example is given in
Section EC.5.1.

In the following, we give the conditions under which
the value function u(x, y) has submodularity, subcon-
cavity, and concavity. Using similar arguments as those
used to prove Lemma 1, we can show that the opera-
tors T2j, T3, and T4 can preserve the submodularity,
subconcavity, and concavity of the value function. The
following Lemma shows that when λ1i (i � 1, 2, : : : ,n) is

Figure 3. (Color online) Optimal Policy vs. Stochastic
Rationing Policy
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small enough, Tcp can also preserve the submodularity,
subconcavity, and concavity.

Lemma 5. There exists a vector l � (l1, l2, : : : , ln) such that
the value function u(x, y) is submodular, subconcave, and
concave when λ1i ≤ li for each i � 1, 2, : : : ,n. The value of l
depends on system parameters.

From Lemma 5, the firm’s optimal rationing policy
can be characterised under some conditions. Since the
optimal rationing policy for PCCs and WICs has a
similar formation to those in Section 3, we only give
the optimal policy for ECCs in the following theorem.

Theorem 3.When λ1i, ∀i � 1, 2, : : : ,n is small enough, the
value function is submodular, subconcave, and concave.
And for class-i ECCs, there exist rationing thresholds

Kcp
1i (y) and Kcp

2i (x) and a substitution threshold Kcp
3i (y) such

that

where

Kcp
1i (y) �

c1, −Δxu(c1 − 1,y) ≤ π1 + r1i
0, −Δxu(0,y) > π1 + r1i
k, −Δxu(k,y) > π1 + r1i ≥ −Δxu(k− 1,y),

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Kcp
2i (x) �

{
c2, −Δyu(x, c2 − 1) ≤ π1 + βr1i
0, −Δyu(x, 0) > π1 + βr1i
k, −Δyu(x,k) > π1 + βr1i ≥ −Δyu(x,k− 1),

Kcp
3i (y) �

c1, (1− p)Δxu(c1 − 1,y) + p[u(c1,y) − u(c1 − 1,y+ 1)]
≥ (βp− 1)r1i − (1− p)π1

0, (1− p)Δxu(0,y) + p[u(1,y) − u(0,y+ 1)]
< (βp− 1)r1i − (1− p)π1

k, k �min{x | (1− p)Δxu(x,y) + p[u(x+ 1,y)
−u(x,y+ 1)] < (βp− 1)r1i − (1− p)π1}:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
From Theorem 3, we can see that the optimal policy still
has a simple threshold structure under certain condi-
tions. Due to the existence of the probability that ECCs
may refuse premium containers offered by the firm, the
operators for ECCs are more complicated. Therefore, the
substitution threshold Kcp

3i (y) is more complicated than
in the original model. Although ECCs may refuse the
substitution, it is still optimal to provide them with pre-
mium containers when the firm has few elementary con-
tainers but many premium ones on hand.

5.2.2. Rental Price-Related Acceptance Probability. In
this part, we consider the case in which ECCs’ accept-
ance probability depends on the rental price of pre-
mium containers for ECCs.

Suppose that the firm chooses a price from a limited
set Qi � {q1i ,q2i , : : : ,qJii } (where Ji is the number of alter-
native prices for class-i ECCs) when it offers premium
containers to class-i ECCs. If the firm chooses a price
qjii (1 ≤ ji ≤ Ji), class-i ECCs’ acceptance probability is
fi(qjii ) and the probability of refusing the firm’s offer is
1− fi(qjii ). If class-i ECCs accept, they should pay the
price qjii to get premium containers; if they refuse, the
firm pays a penalty π1. Without loss of generality, we
assume q1i ≤ q2i ≤ : : : ≤ qJii (∀i � 1, 2, : : : ,n) and that
ECCs are price-sensitive such that fi(q1i ) ≥ fi(q2i )
≥ : : : ≥ fi(qJii ) � 0.7 Let the expected total discounted
revenue of the firm under state (x, y) be υ(x,y). The
optimality equation of this MDP is given by υ(x,y) �
Tvp[υ(x,y)]where

Tvp[υ(x,y)] �∑n
i�1

λ1iT
vp
1i [υ(x,y)] +

∑m
j�1

λ2jT2j[υ(x,y)]

+λ3T3[υ(x,y)] +T4[υ(x,y)]

Tvp
1i [υ(x,y)] �

max{υ(x+ 1,y) + r1i,Ri(x,y),
υ(x,y) −π1}, x < c1,y < c2

max{υ(x+ 1,y)
+r1i,υ(x,y) −π1}, x < c1,y � c2

max{Ri(x,y),υ(x,y) −π1}, x � c1,y < c2
υ(x,y) −π1, x � c1,y � c2

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
Ri(x,y) �max

qi∈Qi

{ fi(qi)[υ(x,y+ 1) + qi]
+ [1− fi(qi)][υ(x,y) −π1]}:

The operator Tvp
1i reflects the firm’s decisions for a

class-i ECC, which consists of directly providing an ele-
mentary container at the prenegotiated price, offering a
premium container at a certain price and refusing.
Other operators are the same as those in Section 3.

Define a new function as R′
i (x,y) �maxqi∈Qi{ fi(qi)

[υ(x,y+ 1) − υ(x,y) + qi +π1]}: By calculation, we have
Ri(x,y) � R′

i (x,y) + υ(x,y) −π1. The function R′
i (x,y) is

the additional revenue function, which represents the
immediate expected reward brought by the substitu-
tion decision for a class-i ECC. Define qi(x,y) �
argmaxqi∈Qi{ fi(qi)[υ(x,y+ 1) − υ(x,y) + qi +π1]} as the
firm’s pricing function. When the firm makes deci-
sions, it first calculates the optimal price that maxi-
mises R′

i (x,y) and then compares the benefits of
providing an elementary container at a prenegotiated
price, providing a premium one at its optimal price
and refusing. However, in this situation, the subcon-
cavity of the value function may not hold. This is
shown by the counter example in Section EC.5.2.

Conditions

x ≥ Kcp
1i (y)

and
y ≥ Kcp

2i (x)

x < Kcp
1i (y)

and
y ≥ Kcp

2i (x)

x <
min{Kcp

1i (y),
Kcp
3i (y)}
and

y < Kcp
2i (x)

x ≥ Kcp
1i (y)

and
y < Kcp

2i (x)

Kcp
3i (y) ≤ x
< Kcp

1i (y)
and

y < Kcp
2i (x)

Rationing
policy

Reject Provide an elementary
container

Provide a premium
container
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Note that the only difference between this model
and the model in Section 3 is that the operator T1i is
replaced by T3

1i. We can show the submodularity, sub-
concavity, and concavity of the value function under
the assumption that λ1i (i � 1, 2, : : : ,n) is small.

Lemma 6. There exists a vector h � (η1,η2, : : : ,ηn) such
that the value function υ(x,y) is submodular, subconcave,
and concave when λ1i ≤ ηi (i � 1, 2, : : : ,n). The value of h
depends on the system parameters.

Lemma 6 shows that the value function is submod-
ular, subconcave, and concave under certain condi-
tions. To explore the firm’s optimal policy, we also
need to discuss the properties of R′

i (x,y) and qi(x,y).
To this end, define the functions hi(a) �maxqi∈Qi{ fi(qi)
(a+ qi +π1)} and qi(a) � argmaxqi∈Qi{ fi(qi)(a+ qi +π1)}.
We then have the following lemma.

Lemma 7. The function hi(a) increases in a; the function
qi(a) decreases in a.

From Lemma 7, we can see that the additional reve-
nue function R′

i (x,y) decreases with the opportunity
cost of leasing out a premium container and the pric-
ing function qi(x,y) increases with the opportunity
cost. Combining these properties and Lemma 6, we
can characterise the optimal policy as follows.

Theorem 4. When λ1i is sufficiently small, the value func-
tion is submodular, subconcave, and concave, and the opti-
mal policy for class-i ECCs can be characterised as follows.

(a) For the optimal price of premium containers for class-i
ECCs, we have qi(x,y) ≤ qi(x+ 1,y) ≤ qi(x,y+ 1).

(b) When the firm has no container on hand, it will reject
the arriving customer. When the firm only has idle elemen-
tary containers, there is a threshold Kvp

1i (y) such that it pro-
vides an elementary container if x < Kvp

1i (y) and otherwise
refuses the customer. When the firm only has idle premium
containers, it provides a premium container at the optimal
price. When the firm has two types of containers on hand,
there exists a threshold Kvp

3i (y) such that the firm provides an
elementary container when x < Kvp

3i (y) and otherwise pro-
vides a premium one at its optimal price, where

Kvp
1i (y) �

c1, −Δxυ(c1 − 1,y) ≤ π1 + r1i

0, −Δxυ(0,y) > π1 + r1i

k, −Δxυ(k,y) > π1 + r1i ≥ −Δxυ(k− 1,y),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
Kvp
3i (y) �

c1, Δxυ(c1 − 1,y) −R′
1i(c1 − 1,y) + r1i +π1 ≥ 0

0, Δxυ(0,y) −R′
1i(0,y) + r1i +π1 < 0

k, k �min{x | Δxυ(x,y) −R′
1i(x,y) + r1i +π1 < 0}:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
5.3. Endogenous Rental Prices for WICs
In this subsection, we consider the case in which
the rental prices for WICs are endogenous decision

variables and WICs are price-sensitive. In this situa-
tion, when a WIC arrives, the firm first decides the
optimal rental prices of the two types of containers
and then specifies the container type and its corre-
sponding price. Assume that the prices of elementary
and premium containers are selected from the sets
P1 � {p11,p21, : : : ,pL11 } and P2 � {p12,p22, : : : ,pL22 }, respec-
tively. If a WIC is provided with a price pl1 as the
rental price of elementary containers, they accept the
offer with probability t1(pl1). If the customer is pro-
vided with a price pl2 as the rental price of premium
containers, they accept the offer with probability
t2(pl2). Without loss of generality, we assume that 0 ≤
p11 ≤ p21 ≤ : : : ≤ pL11 , 0 ≤ p12 ≤ p22 ≤ : : : ≤ pL22 , t1(pl1) ≥ t1(p21)
≥ : : : ≥ t1(pL11 ) � 0 and t2(pl2) ≥ t2(p22) ≥ : : : ≥ t2(pL22 ) � 0. Let
the expected total discounted revenue of the firm
under state (x, y) be w(x, y). Then the optimality equa-
tion of the model is w(x,y) � Tew[w(x,y)], where
D1(x,y) �maxp1∈P1{t1(p1)(w(x+ 1,y) −w(x,y) + p1)}, D2(x,y)
�maxp2∈P2{t2(p2) (w(x,y+ 1) −w(x,y) + p2)},
Tew[w(x,y)] �∑n

i�1
λ1iT1i[w(x,y)] +

∑m
j�1

λ2jT2j[w(x,y)]

+λ3Tew
3 [w(x,y)] +T4[w(x,y)],

Tew
3 [w(x,y)] �

max{D1(x,y) +w(x,y),D2(x,y)
+w(x,y),w(x,y)}, x < c1,y < c2

max{D1(x,y) +w(x,y),w(x,y)}, x < c1,y � c2
max{D2(x,y) +w(x,y),w(x,y)}, x � c1,y < c2
w(x,y), x � c1,y � c2:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
The operator Tew

3 represents the firm’s pricing decision
for WICs. D1(x,y) and D2(x,y) are the additional reve-
nue functions under optimal pricing decisions for ele-
mentary containers and premium ones, respectively.
Define p1(x,y) � argmaxp1∈P1{t1(p1)[w(x+ 1,y) −w(x,y) + p1]}
and p2(x,y) � argmaxp2∈P2{t2(p2)[w(x,y+ 1) −w(x,y) + p2]}
as the firm’s optimal pricing functions for elementary
and premium containers, respectively. When a WIC
arrives, if the firm has both types of containers on hand,
it calculates the optimal prices of the two types of con-
tainers and then decides which type of container to pro-
vide at the optimal price. When the firm has one type of
container on hand, the firm calculates the optimal price
of this kind of container and announce the price to the
WIC. When the firm has no idle container, the firm
refuses the WIC. Under this situation, the value function
w(x, y) is not necessarily subconcave. A counter example
is presented in Section EC.6.

In what follows, we identify conditions under
which the subconcavity of the value function holds.
Define the functions d1(a) �maxp1∈P1{t1(p1)(−a+ p1)}
and d2(a) �maxp2∈P2{t2(p2)(−a+ p2)}. From the similar-
ity of d1(a), d2(a) and hi(a) in Section 5.2, we know that
d1(a) and d2(a) decrease in a by similar arguments to
those in Lemma 7. Then we obtain that the function
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D1(x,y) (D2(x,y)) decreases with the opportunity cost
of leasing an elementary (premium) container.

To study the properties of d1(a) and d2(a), we make
the following assumption.

Assumption 1. (d2(a2) − d2(a1))=(a2 − a1) � (d1(a2) − d1(a1))=
(a2 − a1) � γ for any a1 and a2 where γ is a constant.

If a is the opportunity cost of leasing an elementary
(premium) container, d1(a) (d2(a)) is by definition the
expected revenue of leasing an elementary (premium)
container to a WIC. In Assumption 1, (d2(a2) − d2(a1))=
(a2 − a1) and (d1(a2) − d1(a1))=(a2 − a1) are the revenue-
cost ratios of leasing an elementary and premium con-
tainer to WICs, respectively. Assumption 1 indicates
that the revenue-cost ratios (which do not change
with the system state) of leasing the two types of con-
tainers to WICs are the same. Then the two types of
containers have the same importance in terms of serv-
ing WICs.

Lemma 8.Under Assumption 1, we have −1 ≤ γ ≤ 0.

Lemma 9.Under Assumption 1, the value function w(x, y)
is submodular, subconcave, and concave.

Based on Lemma 9, we can characterise the struc-
ture of the optimal policy. Since the optimal rationing
policy for ECCs and PCCs in this situation has a simi-
lar structure to those in Section 3, we only give the
firm’s optimal pricing policy for WICs.

Theorem 5. The optimal pricing policy for WICs can be
characterised as follows.

(a) For the optimal prices for elementary and premium
containers, we have p1(x,y) ≤ p1(x,y+ 1) ≤ p1(x+ 1,y) and
p2(x,y) ≤ p2(x+ 1,y) ≤ p2(x,y+ 1).

(b)When the firm has no container on hand, it refuses the
arriving customer. When the firm has only elementary (pre-
mium) containers on hand, it provides an elementary (pre-
mium) container for the customer at its optimal price. When
the firm has both types of containers on hand, a pricing
threshold Rew

3 (y) exists such that the firm provides an ele-
mentary container at its optimal price if x < Rew

3 (y) and oth-
erwise provides a premium container at its optimal price,
where

Rew
3 (y) �

c1, D1(c1 − 1,y) −D2(c1 − 1,y) ≥ 0
0, D1(0,y) −D2(0,y) < 0
k, D1(k,y) −D2(k,y) < 0 ≤D1(k− 1,y)

−D2(k− 1,y):

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
6. Conclusion
In this paper, we studied the problem of capacity
rationing for a firm with two types of containers deal-
ing with two groups of contract customers (ECCs and
PCCs) and WICs. ECCs and WICs can be satisfied by
either elementary or premium containers, while PCCs

can only be satisfied by premium ones. We formulated
the problem as an event-based MDP problem. Under the
assumptions that the customers’ rental durations follow
the same distribution, ECCs accept the substitution with
certainty and the rental prices are exogenous, we ana-
lysed the properties of the value function, derived the
optimal rationing policy and characterised its structure.
Specifically, we proved that there exist three types of
thresholds that can provide a guideline for the firm.
Rationing thresholds are used to determine whether it is
profitable to provide elementary or premium containers
for customers according to the current system state. Sub-
stitution thresholds determine whether it is profitable to
substitute elementary containers with premium ones
when an ECC arrives. A priority threshold can be
applied to determine whether elementary containers
have priority in being offered toWICs. By combining the
three types of thresholds, the firm can make the optimal
decision at any system state. Furthermore, we provided
the conditions under which the optimal policy can be
further simplified and is easier to implement.

To show the effectiveness of our model and the opti-
mal policy, we conducted several numerical experi-
ments based on the data from Drewry (2019) as well as
real data from a container leasing company in China. We
first showed that the optimal policy brings 3%–8% (aver-
age 4.50%) more revenue than when the firm separately
manages the different types of containers. We then com-
pared the performances of the optimal policy with those
of the two commonly used policies, namelymyopic policy
and stochastic rationing policy. We found that the optimal
policy can bring 3%–12% (average 6.48%) more revenue
than the myopic policy, and 3%–8% (average 6.10%)
more revenue than the stochastic rationing policy.

Moreover, we discussed some extensions considering
different rental durations, ECCs’ acceptance behaviours
for premium containers and endogenous prices for
WICs. In the case of different rental durations, we gave a
counter example to show that the value function is not
necessarily subconcave. In the case of ECCs’ acceptance
behaviours for premium containers, we showed that the
subconcavity of the value function does not generally
hold and gave conditions under which the optimal pol-
icy has a simple threshold-type structure. In the case of
endogenous prices for WICs, we gave conditions under
which the value function is submodular, subconcave,
and concave. We then characterised how the optimal
prices change with the system state, and the optimal
rationing policy still has a threshold-type structure.

Based on this work, there are several topics that can
be studied further.

• We consider two types of rental items and three
groups of customers. In reality, a container leasing firm
may have more than two kinds of items, and customers
may have more complex preference behaviours. It is an
interesting topic to generalise the results to a system
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with multi-items and customers with more complex
preference behaviours.

• In this study, we assume that each customer upon
arrival has one unit of demand. In reality, customers
may require different units of containers. Thus, one
future research direction could be to generalise the
results to a case in which customers request more than
one unit of containers.

• In this paper, we consider one firm’s rental prob-
lem at a single location. In reality, containers can be
rented from one location but returned to another one.
Extending this study to the case of multiple-locations
needs to be studied further.

• Only one leasing firm is discussed in this study.
In reality, there is more than one firm in the container
leasing market, and they compete for customers. Gen-
eralizing the results of this study to a competitive
environment is an interesting and challenging topic
for further study.

• In this paper, we consider a short-term lease in the
container leasing industry, and thenwe assume stationary
parameter settings. In practice, shipping companies can
also choose a long-term lease in which they lease a whole
fleet of containers for a couple of years (up to 8–10 years).
Hence, it would also be interesting to generalise this study
to a casewith fluctuating parameters.
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Endnotes
1 To simplify the description, we use “a container” to represent “a
unit of container” in the discussion.
2 Triton (2020) showed that the operating lease revenue and the
direct operating cost in the fourth quarter of 2019 were $321.626
million and $23.718 million, respectively. From Textainer (2019),
container expense can be influenced by storage cost: “Direct
container expense—owned fleet, increased $1.1 million com-
pared with the second quarter of 2019, primarily due to an
increase in storage costs, partially offset by reductions in other
direct costs. Direct container expense—owned fleets, decreased
$2.3 million compared with the third quarter of 2018 from a
reduction in repositioning expense, partially offset by higher
storage costs.”
3 Throughout this paper, we use “revenue” to represent the firm’s
rental incomes deducting holding costs of containers and potential
penalties for breach of contracts.
4 In the discussion, the words “increase” and “decrease” indicate
“non-strictly increase” and “non-strictly decrease,” respectively,
unless we use “strictly increase” and “strictly decrease.”
5 To better understand the definition of ρ1(t), we view the solution
as the maximum opportunity cost in the explanations.
6 We observe a similar phenomenon when the arrival of ECCs is
kept at a constant rate and the arrival rate of PCCs changes.

7 The assumption of fi(qJii ) � 0 means that providing a premium con-
tainer for class-i ECCs at the price qJii is equivalent to rejecting them.
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Çakanyildirim M, Özalp Ö, Zhang X (2020) Dynamic pricing and
timing of upgrades. Available at SSRN: https://ssrn.com/
abstract=3056060.

Chen CM, Thomas DJ (2018) Inventory allocation in the presence of
service-level agreements. Production Oper. Management 27(3):
553–577.

Chen S, Gallego G, Li MZ, Lin B (2010) Optimal seat allocation for
two-flight problems with a flexible demand segment. Eur. J.
Oper. Res. 201(3):897–908.

Cheung RK, Chen CY (1998) A two-stage stochastic network model
and solution methods for the dynamic empty container alloca-
tion problem. Transportation Sci. 32(2):142–162.

Cui Y, Duenyas I, Sahin O (2017) Pricing of conditional upgrades in the
presence of strategic consumers. Management Sci. 64(7):3208–3226.

De Véricourt F, Karaesmen F, Dallery Y (2001) Assessing the bene-
fits of different stock-allocation policies for a make-to-stock pro-
duction system. Manufacturing Service Oper. Management 3(2):
105–121.

Dong JX, Song DP (2012) Lease term optimisation in container ship-
ping systems. Internat. J. Logist. Res. Appl. 15(2):87–107.

Drewry (2019) Container census & leasing survey and forecast of
global container units annual report 2019/20. Accessed July 19,
2021, https://www.drewry.co.uk/maritime-research-products/
maritime-research-products/container-census–leasing-and-
equipment-forecaster-annual-subscription.

Fay S, Xie J (2008) Probabilistic goods: A creative way of selling
products and services. Marketing Sci. 27(4):674–690.

Gallego G, Phillips R (2004) Revenue management of flexible prod-
ucts. Manufacturing Service Oper. Management 6(4):321–337.

Gallego G, Stefanescu C (2009) Upgrades, upsells and pricing in reve-
nue management. Available at SSRN: https://ssrn.com/abstract
=1334341.

Gans N, Savin S (2007) Pricing and capacity rationing for rentals
with uncertain durations. Management Sci. 53(3):390–407.
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