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Abstract-

 

In many cases, it might be advisable to keep an operational time series model fixed for a given span of time, 
instead of updating it as a new datum becomes available. One common case, is represented by model–based 
deseasonalization procedures, whose time series models are updated on a regular basis by National Statistical Offices. 
In fact, in order to minimize the extent of the revisions and grant a greater stability of the already released figures, the 
interval in between two updating processes is kept "reasonably" long (e.g. one year). Other cases can be found in many 
contexts, e.g. in engineering for structural reliability analysis or in all those cases where model re–estimation is not a 
practical or even a viable options, e.g. due to time constraints or computational issues. Clearly, the inevitable trade–off 
between a fixed models

 

and its updated counterpart, e.g. in terms of fitting performances, out–of–sample prediction 
capabilities or dynamics explanation should be always accounted for. This paper is devoted at presenting a procedure 
for the prediction of the loss in terms of fitting ability of a fixed model of the type autoregressive integrated moving 
average versus its updated version – according to a suitable quadratic cost function – and

 

at giving a quantitative 
measure of the discrepancy between them.

 

Being the updating frequency customizable, the presented approach can 
also be employed for simulations purposes, according to the updating intervals, the degree of complexity of the chosen 
model and the available computing resources. Finally, an empirical experiment involving both computer simulated and 
macroeconomic time series will be presented and the related outcomes discussed.

 
Keywords:

 

ARIMA

 

models, model stability, model fitting, time series distances measure, time series 
prediction.

 I.

 

Introduction

 There are many reasons which might justify the choice of leaving a time series 

model –

 

once correctly estimated and tested –

 

unchanged for a certain time span, even 
when its performances, as expected, tend to deteriorate. The extent to which such a 
degradation can be considered acceptable, heavily depends on the specificity and the 
target a given model is built for. Under pre-specified regularity conditions, e.g. in terms 

of stability in the model’s outcomes or of the underlying Data Generating Process 
(DGP), the benefits of using the same model for a given period of time are mainly 
related to two important factors: the need of a greater stability of the model outputs 
and to keep the computational time within "reasonable" limits and within the limits of 
the available computing resources. As for the first point, its relevance is evident in the 
case of statistical providers (e.g. national and supernational statistical offices), which 
constantly check past data for consistency with the most recent official releases. It is 
not uncommon, in fact, that in the attempt of capturing new features exhibited by the 
time series at hand (which might have had an irrelevant impact on past data or even 
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gone undetected) the model is subjected to too frequent updating procedures involving, 
for example, the structure of the vector of parameters, the introduction of auxiliary 
variables (e.g. of the type dummy) or even the inference procedures. However, such 
interventions can jeopardize the coherence with data already released, validated and, 
therefore, employed in many type of official and unofficial analysis. This is, for example, 

the case of the model–based signal extraction techniques, which can be carried out by 
two widely employed deseasonalization methods, i.e. X-12-ARIMA [1] and TRAMO-
SEATS [2]. As it is well known, they might generate, as a inevitable "byproduct", the 
undesirable phenomenon of the revisions, which is due to the inclusion in the data set of 
each and every new observation as it becomes available. In more details, at the current 
end of a time series, it is not possible to use symmetric filters to estimate the trend 
because of the end  point problem. Instead, asymmetric filters are used to produce 
provisional trend estimates. However, as more data becomes available, it is possible to 
recalculate the trend using symmetric filters and improve the initial estimates. As 
expected, the impact  of the revisions is more noticeable both in the period immediately 
preceding the inclusion of the new data and the corresponding period one seasonal lag 
prior. This problem has attracted a great number of researchers, triggering a still 
ongoing discussion  on the different methods and procedure to deal with it. In particular, 
the problem has been discussed by[3], [4], [5] and, more recently, in [6]. Many other 

situations can require the use of a fixed model, e.g. when model’s outputs must be 

provided under strict time limits –  leaving not enough room for building and test a new 

model –  or the nature of the Data Generating Process (DGP) under investigation 
suggests the changes in the model only reflect temporary phenomena, for instances 
related to outlier of the type temporary change, influential data, survey issues (e.g. 
unexpected amount of missing data). Another common scenario pertains the assessment 
of model lack of fitting, in order to monitor the stability of the underlying DGP. In this 
perspective, valuable insights can be gained in economics, e.g. to detect the changes 

occurring over time –  as well as their starting points –  in the case of key variable, such 
as the industrial production or the inflation indexes. Other important applications are 

related  to on–line monitoring activities, e.g. for safety level assessment of structures –  

such as bridges, dams, TV towers –  under standard as well as abnormal conditions, e.g. 
of the type of those induced by automotive traffic, temperature changes, wind, distant 
earthquakes, landslides (for a review of the most used methods the reader is referref to 
[7] [8]). For example, in [9] the modeling of the vibration signals originating from a 
bridge has been performed using a model of the class ARIMA, whereas mode-based  

damage identification techniques have been discussed in [10]. This framework identifies 
a class of problems of the type "inverse", as their design envisions a "baseline" model, 
whose structure identification and parameter inference procedures, however, usually 
inject a not negligible amount of uncertainty in the system under investigation [11]. In 
order to control for such a source of uncertainty, the input series has been modelled 
here assuming a DGP of the type autoregressive integrated moving average (ARIMA) 
[12], which in general can guarantee a good level of robustness and, unlike other 
methods, does not assume any particular pattern in the historical data. In addition, 
other being a plausible hypothesis satisfactorily adopted for many real-life phenomena 
(e.g. in economics, physics or engineering) this class of models enjoys a well established 
theoretical framework and that many routines are nowadays available free of charge for 
its efficient estimation. The proposed procedure uses an ad hoc distance function in 
conjunction with a suitable quadratic loss function and an extrapolation method. In 
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particular, in the Empirical Section two different distance metrics – i.e. the Complexity 

Invariant and the Normalized Integrated Periodogram distances – and two 

extrapolation methods – i.e. of the type polynomial regression and double exponential 

smoothing – will be considered.Clearly, the ARIMA assumption can be easily relaxed 
and a different type of model used, without changing the structure of the proposed 
framework, provided that a suitable metric for the estimation of the distance between 

models is correctly chosen. Consistently, in the empirical section, two model–free 
distances are applied. The proposed procedure might be also a useful tool for balancing 
model fitting, prediction performances and stability of the outcomes. 

II. The Method 

Throughout the paper, the time series of interest is intended to be a real–valued, 

uniformly sampled, sequence of data points of length 𝑇𝑇, denoted as 

                                            𝑥𝑥𝑡𝑡 : = �(𝑥𝑥𝑡𝑡)𝑡𝑡∈ℤ+
𝑇𝑇 �,                                            (1) 

whereas its predicted values at horizon ℎ are formalized as follows: 

                                                 𝑥𝑥𝑡𝑡(ℎ) = �(𝑥𝑥𝑡𝑡)𝑡𝑡∈ℤ+
𝑇𝑇+ℎ ;         ℎ = 1,2, . . . ,𝐻𝐻�.                       (2) 

An arbitrary, length ℋ ∈ ℤ+, windows is chosen as the time span in which a 

given model structure 𝑀𝑀• estimated conditional to the full information available at the 

time 𝑡𝑡 − 1, i.e. 𝑀𝑀•(𝑡𝑡 + ℎ) = |ℐ𝑡𝑡−1, is kept fixed for ℋ times until an upper bound ℋ�  is 

reached, i.e. 𝑡𝑡 + 1, 𝑡𝑡 + 2, … , 𝑡𝑡 + ℋ� . This model is formalized as follows: 𝑀𝑀ℋ
∘ (𝑡𝑡 + ℎ) =

|ℐ𝑡𝑡−1−ℋ     ℋ = 1,2, …ℋ� . 

Consistently, the predicted values obtained by 𝑀𝑀∘(𝑡𝑡 + ℎ) and 𝑀𝑀•(𝑡𝑡 + ℎ) are 

respectively denoted by 𝑦𝑦∘(𝑡𝑡 + ℎ) and 𝑦𝑦•(𝑡𝑡 + ℎ) therefore assuming i.e. 

𝑦𝑦𝑡𝑡•~𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑝𝑝0,𝑑𝑑0, 𝑞𝑞0);     ℋ = 1 and 𝑦𝑦𝑡𝑡∘~𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑝𝑝0,𝑑𝑑0, 𝑞𝑞0);     ℋ = 2,3 … ,ℋ� , we will have 

that 𝑦𝑦𝑡𝑡•(ℎ) ≡ 𝑦𝑦𝑡𝑡∘(ℎ) ⇐ ℋ = 1 for each horizon considered ℎ = 1,2, … ,𝐻𝐻. 

a)  The underlying stochastic process and the distance measure adopted 
The proposed procedure assumes the input time series ( 1) to be a realization of 

a DGP of the class ARIMA. Let 𝑥𝑥𝑡𝑡 be a realization of a real 2𝑛𝑛𝑛𝑛  order stationary DGP, 

with mean 𝜇𝜇. It is said [12] to admit a Autoregressive Moving Average representation of 

order 𝑝𝑝 and 𝑞𝑞 – i.e. 𝑥𝑥𝑡𝑡~𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑝𝑝, 𝑞𝑞), with (𝑝𝑝, 𝑞𝑞) ∈ ℤ+ – if for some constant 𝜙𝜙1. . . .𝜙𝜙𝑝𝑝 , 
𝜃𝜃1. . .𝜃𝜃𝑞𝑞 , it is: 

                                     ∑ ‍𝑝𝑝
𝑗𝑗=0 𝜙𝜙𝑗𝑗 (𝑋𝑋𝑡𝑡−𝑗𝑗 − 𝜇𝜇) = ∑ ‍𝑞𝑞

𝑗𝑗=0 𝜃𝜃𝑗𝑗𝛼𝛼𝑡𝑡−𝑗𝑗       (3) 

Eqn. (3) is valid under the following assumptions: a) 𝜙𝜙0 = 𝜃𝜃0 = 1; b) 

𝐸𝐸{𝛼𝛼(𝑡𝑡)|𝒮𝒮𝑡𝑡−1} = 0; c) 𝐸𝐸{𝛼𝛼2(𝑡𝑡)|𝒮𝒮𝑡𝑡−1} = 𝜎𝜎2; d) 𝐸𝐸𝛼𝛼4(𝑡𝑡) < ∞; e) ∑ ‍𝑝𝑝
𝑗𝑗=0 𝜙𝜙𝑗𝑗 𝑧𝑧

𝑗𝑗 ≠ 0, ∑ ‍𝑝𝑝
𝑗𝑗=0 𝜃𝜃𝑗𝑗 𝑧𝑧

𝑗𝑗 ≠
0, |𝑧𝑧| ≤ 1, where 𝒮𝒮𝑡𝑡 denotes the sigma algebra induced by {𝛼𝛼(𝑗𝑗), 𝑗𝑗 ≤ 𝑡𝑡} and ∑ ‍𝑝𝑝

𝑗𝑗=0 𝜙𝜙𝑗𝑗 𝑧𝑧
𝑗𝑗  

and ∑ ‍𝑝𝑝
𝑗𝑗=0 𝜃𝜃𝑗𝑗 𝑍𝑍

𝑗𝑗  are assumed not to have common zeros. When needed, 𝑥𝑥𝑡𝑡 can be 

transformed into a stationary process by differencing it 𝑑𝑑 ∈ ℤ+ times. The order of 

integration, denoted as 𝐼𝐼(𝑑𝑑), enters formally in the ARIMA scheme, i.e. 

𝑥𝑥𝑡𝑡~𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑝𝑝,𝑑𝑑, 𝑞𝑞), so that using the back-shift operator 𝐿𝐿, i.e. 𝐿𝐿𝑋𝑋𝑡𝑡 = 𝑋𝑋𝑡𝑡−1 (therefore 

Loss of Fitting and Distance Prediction for Fixed vs Updated ARIMA Models

  

1

G
lo
ba

l
Jo

ur
na

l
of

Sc
ie
nc

e
Fr

on
tie

r
R
es
ea

rc
h 

  
  
  
 V

ol
um

e
X
V
II  

 I
ss
ue

  
  
 e

rs
io
n 

I
V

I
Y
ea

r
20

17

21

  
 

( F
)

© 2017   Global Journals Inc.  (US)

Ref

12
.G

eo
rg

e 
E

P
 B

ox
, 

G
w

il
y
m

 M
 J

en
k
in

s,
 G

re
go

ry
 C

 R
ei

n
se

l,
 a

n
d
 G

re
ta

 
M

 L
ju

n
g.

  
T

im
e 

s e
ri

es
 a

n
al

y
si

s:
 f
or

ec
as

ti
n
g 

an
d
 c

on
tr

ol
. 
 J

o
h
n
 W

il
e y

 &
 S

on
s,

 2
0
1
5
.



𝐿𝐿𝑛𝑛𝑋𝑋 = 𝑋𝑋𝑡𝑡−𝑛𝑛) and the difference operator ∇𝑑𝑑𝑋𝑋𝑡𝑡 = (1 − 𝐿𝐿)𝑑𝑑𝑋𝑋𝑡𝑡𝑑𝑑 = 0,1, …𝐷𝐷, the ARIMA 
model can more synthetically be expressed as  

                                                                      ∇𝑑𝑑(𝑥𝑥𝑡𝑡 − 𝜇𝜇) = 𝜃𝜃(𝐿𝐿)
𝜙𝜙(𝐿𝐿)

𝛼𝛼𝑡𝑡 ,                                        (4) 

with 𝜙𝜙𝑝𝑝(𝐿𝐿) = 1 − 𝜙𝜙1𝐿𝐿 − 𝜙𝜙2𝐿𝐿2−. . . .−𝜙𝜙𝑝𝑝𝐿𝐿𝑝𝑝 ; 𝜃𝜃𝑞𝑞(𝐿𝐿)       = 1 − 𝜃𝜃1𝐿𝐿      − 𝜃𝜃2𝐿𝐿2  −. . . .−𝜃𝜃𝑞𝑞𝐿𝐿𝑞𝑞 , and 

difference operator applied 𝑑𝑑  times until stationarity is reached. Here 𝜙𝜙, 𝜃𝜃  and 𝛼𝛼𝑡𝑡  are, 

respectively, the autoregressive and moving average parameters. The term 𝛼𝛼𝑡𝑡  is the 

white noise sequence with mean 𝜇𝜇 = 0  and variance 𝜎𝜎2 < ∞. The estimation of (4) is 
possible only if the stationary and invertibility conditions are satisfied for both the 

autoregressive and moving average polynomials respectively, that is when 𝜙𝜙𝑝𝑝(𝐿𝐿)𝜃𝜃𝑞𝑞(𝐿𝐿) =
0  has roots lying outside the unit circle. On the other hand, here  the estimation of the 

ARIMA order (𝑝̂𝑝, 𝑑̂𝑑, 𝑞𝑞�), is based on the Akaike Information Criterion (𝐴𝐴𝐴𝐴𝐴𝐴) [13], which 

is defined as −2maxlog(𝐿𝐿(𝜽𝜽�|𝑦𝑦)) + 2𝐾𝐾, with 𝐾𝐾  the model dimension and (𝐿𝐿(𝜽𝜽�|𝑦𝑦))  the 

log–likelihood function. The related selection strategy adopted, called 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀  (short for 

Minimum 𝐴𝐴𝐴𝐴𝐴𝐴  Expectation) [14], is a procedure aimed at extracting, among the set of 

the candidate models, the order (𝑝̂𝑝, 𝑑̂𝑑, 𝑞𝑞�)  satisfying:  

                                 (𝑝̂𝑝, 𝑑̂𝑑, 𝑞𝑞�) = arg min
𝑝𝑝≤𝑝𝑝0,𝑑𝑑≤𝑑𝑑0,𝑞𝑞≤𝑞𝑞0

𝐴𝐴𝐴𝐴𝐴𝐴(𝑝𝑝,𝑑𝑑, 𝑞𝑞).                            (5)  

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀  procedure requires the definition of an upper bound for all the AR and 
MA parameters as well as for the difference operators, as a maximum order a given 
process can reach. This choice, unfortunately, is a priori and arbitrary. As already 
pointed out, two distance measures are considered in the present paper: the complexity 

invariant (𝐶𝐶𝐶𝐶) and the one based on the normalized integrated periodogram (𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁). 

They are both model free and measure the distance between two series, say 𝐘𝐘𝑡𝑡  and 𝐗𝐗𝐭𝐭  
(1), the former exploiting a corrected version of the Euclidean distance whereas the 
latter on the basis of a normalized nonparametric spectral estimators.  

The 𝐶𝐶𝐶𝐶  metric has been recently proposed in [15] and subsequently discussed in 
[16], as a correction factor of a given distance measure driven by the complexity 
difference between two time series. In this paper, the Euclidean Distance ED(x,y), 
between two time series x and y is considered. It is made invariant through the 

correction factor 𝛾𝛾  so that the distance is expressed as follows:  

         𝛿𝛿𝑐𝑐𝑐𝑐(𝑥𝑥,𝑦𝑦) = 𝐸𝐸𝐸𝐸(𝑥𝑥,𝑦𝑦) × 𝛾𝛾(𝑥𝑥,𝑦𝑦).  

Here, 𝛾𝛾  is expressed by 𝛾𝛾(𝑥𝑥, 𝑦𝑦) = max �ℭ�(𝑥𝑥),ℭ�(𝑦𝑦)�
min �ℭ�(𝑥𝑥),ℭ�(𝑦𝑦)�

, with ℭ�  defining the series’  

complexity estimation, i.e.  

              ℭ� = �∑ ‍𝑇𝑇−1
𝑡𝑡=1 (𝑥𝑥𝑡𝑡 − 𝑥𝑥𝑡𝑡+1)2.                                      (6) 

Following [5], it has to be emphasized how the one formalized in (6) is only one 

of the possible complexity measures –
 

as many others can be successfully employed –
 

but nevertheless it is particularly suitable for the problem at hand being model–free, 

𝒪𝒪(𝑇𝑇)
 

time complexity and 𝒪𝒪(1)
 

space. The other distance measure considered, is the 
Normalized Cumulated Periodogram Based Dissimilarity which is based on the 
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cumulative periodogram of the series and has been proposed by [17]. Given the 

periodograms of 𝐘𝐘 and 𝐗𝐗, respectively defined as 𝐼𝐼𝑋𝑋𝑡𝑡(𝜇𝜇𝑘𝑘) = 1
𝑇𝑇

|∑ ‍𝑇𝑇1 𝑋𝑋𝑡𝑡𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖 |2 and 

𝐼𝐼𝑌𝑌𝑡𝑡(𝜇𝜇𝑘𝑘) = 1
𝑇𝑇

|∑ ‍𝑇𝑇1 𝑌𝑌𝑡𝑡𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖 |2, computed at frequencies 𝜇𝜇𝑘𝑘 = 1
𝑇𝑇

2𝜋𝜋𝜋𝜋;     𝑘𝑘 = 1,2, … , 𝑇𝑇−1
2

, the 

Normalized Cumulated Periodogram Based Dissimilarity takes the form 

                                                 𝛿𝛿
𝑝𝑝𝑝𝑝𝑝𝑝 (𝐘𝐘𝑡𝑡𝐗𝐗𝐭𝐭) = ∫ ‍𝜋𝜋

−𝜋𝜋 |𝐹𝐹𝑋𝑋𝑡𝑡(𝜇𝜇) − 𝐹𝐹𝑌𝑌𝑡𝑡(𝜇𝜇)|𝑑𝑑𝑑𝑑,                   (7) 

being 𝐹𝐹𝑋𝑋𝑡𝑡(𝜇𝜇𝑗𝑗 ) = 𝐶𝐶𝑋𝑋𝑇𝑇
−1 ∑ ‍𝑗𝑗

𝑖𝑖=1 𝐼𝐼𝑋𝑋𝑡𝑡(𝜇𝜇𝑖𝑖), 𝐹𝐹𝑌𝑌𝑡𝑡(𝜇𝜇𝑗𝑗 ) = 𝐶𝐶𝑌𝑌𝑇𝑇
−1 ∑ ‍𝑗𝑗

𝑖𝑖=1 𝐼𝐼𝑌𝑌𝑡𝑡(𝜇𝜇𝑖𝑖), with 𝐶𝐶𝑋𝑋𝑡𝑡 = ∑ ‍𝑖𝑖 𝐼𝐼𝑋𝑋(𝜇𝜇𝑖𝑖)
 

and 

𝐶𝐶𝑌𝑌𝑡𝑡 = ∑ ‍𝑖𝑖 𝐼𝐼𝑌𝑌(𝜇𝜇𝑖𝑖). Following ([9]) the normalized version of (7) has been adopted, as the 

two functions 𝐹𝐹𝐹𝐹
 
in all the simulations conducted show a strong tendency to intersect. 

Finally, the adopted quadratic loss function is the 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
 
(Root Mean Square Forecast 

Error), computed on the test set 𝑇𝑇𝑇𝑇. Based on the 𝐿𝐿2 −norm, this metric is massively 
employed

 
in the performance assessment stage of time series methods and, in general, 

takes the following form:
 

                                            𝔏𝔏(𝑦𝑦𝑖𝑖 ,𝑦𝑦�𝑖𝑖) = [𝑅𝑅−1 ∑ ‍𝑅𝑅
𝑖𝑖=1 |𝑒𝑒𝑖𝑖|2]

1
2,  

 (8) 

with 𝑦𝑦𝑖𝑖
 
and 𝑦𝑦�𝑖𝑖

 
denoting the observed values and the predictions respectively, 𝑒𝑒

 
their 

difference and 𝑅𝑅
 
the sample size.

 

b)
 
The extrapolation methods

 

Empirical evidences and the nature of the problem at hand have been led to 
discarding a pure standard regression scheme to

 
make inferences on the bivariate vector 

ℒ(⋅)
 
and 𝛿𝛿(⋅). In fact, the stochastic variability in the data plus the inevitable noise 

components embedded in the system make difficult to find a solid –
 
statistically 

significant –
 
relation between the two variables. In addition, as it is well known, being 

simple regression schemes not designed to take into account the correlation structures 
embedded in the data, memory information would be lost. This is not a negligible 

hurdle, as we want our estimations to be affected by the entire process’
 
dynamic and 

possibly to take in greater account the most recent observations. However, in general 
modeling past data would require a "not small" number of observations available, 
especially in consideration of the fact that the proposed method uses block of data of 

length ℋ� . In order to satisfy these conditions, two different approaches have been 

considered, i.e. a polynomial regression (𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃) and a double exponential smoothing 

model (𝐷𝐷𝐷𝐷𝐷𝐷). An equation of the type 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
 
tries to model the functional relationship 

between two variables by employing basis functions of the type 𝑔𝑔(𝑥𝑥) ∈ ℝ𝑑𝑑𝑔𝑔 , e.g. 

[(1, 𝑥𝑥)] →
𝑔𝑔

[1, 𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑖𝑖2, …𝑥𝑥𝑖𝑖𝑑𝑑 ]. Its general expression, being 𝑦𝑦
 

and 𝑥𝑥
 

respectively the 

independent and the dependent variable, takes the form 𝔼𝔼[𝑦𝑦] = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥 + ⋯+ 𝛽𝛽𝑑𝑑𝑥𝑥𝑑𝑑 , 
which in matrix forms becomes 𝐲𝐲 = 𝐗𝐗𝑎𝑎 + 𝐞𝐞. In this framework, the problem is in general 
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formalized by considering a model of the form 𝑦𝑦𝑐𝑐 = 𝑎𝑎0𝑁𝑁0(𝑥𝑥𝑐𝑐) + 𝑎𝑎1𝑁𝑁1(𝑥𝑥𝑐𝑐) +
⋯𝑎𝑎𝑑𝑑𝑁𝑁𝑑𝑑(𝑥𝑥𝑐𝑐)𝜀𝜀𝑐𝑐 , 𝑐𝑐 = 1, … ,𝑛𝑛 which is to to be fitted. Notice that the estimation of the 

term 𝑎𝑎 is done by ordinary least square, i.e. 𝑎𝑎 = (𝐗𝐗𝑇𝑇𝐗𝐗)−1𝐗𝐗𝑇𝑇𝐲𝐲 which, for 𝑎𝑎𝑗𝑗 take the 

form [𝑎𝑎�𝑗𝑗 =
∑ ‍𝑛𝑛
𝑐𝑐=1 𝑁𝑁𝑗𝑗 (𝑥𝑥𝑗𝑗 )𝑦𝑦𝑗𝑗
∑ ‍𝑛𝑛
𝑐𝑐=1 𝑁𝑁𝑗𝑗

2(𝑥𝑥𝑐𝑐)
; 𝑗𝑗 = 1,2, … ,𝑑𝑑], whose variance is 𝑉𝑉(𝑎𝑎�𝑗𝑗 ) = 𝜎𝜎2

∑ ‍𝑛𝑛
𝑐𝑐=1

[𝑁𝑁𝑗𝑗 (𝑥𝑥𝑐𝑐)]2, being the 
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     1.  𝐶𝐶𝑡𝑡 = 𝛼𝛼𝑦𝑦𝑡𝑡 + (1 − 𝛼𝛼)(𝐶𝐶𝑡𝑡−1 + 𝑇𝑇𝑡𝑡−1)

     2.  𝑇𝑇𝑡𝑡 = 𝛽𝛽(𝐶𝐶𝑡𝑡 − 𝐶𝐶𝑡𝑡−1) + (1 − 𝛽𝛽)𝑇𝑇𝑇𝑇−1)
     3.  𝐹𝐹𝑇𝑇+1 = 𝐶𝐶𝑡𝑡 + 𝑇𝑇𝑡𝑡, 

 
being:  𝛽𝛽

 
= trend-smoothing constant, 𝐶𝐶𝑡𝑡

 
= smoothed constant-process value for period 

𝑡𝑡, 𝑇𝑇𝑡𝑡
 

= smoothed trend value for period t, 𝐹𝐹𝑡𝑡+1= forecast value for period 𝑡𝑡 + 1. The use 

of such an approach is justified by the fact that –
 

as expected –
 

in the empirical 

experiment always linear memory structures have been always found in the 𝛿𝛿
 

and ℒ
 sequences. Regarding the parameters estimation procedure, it is based on the 

minimization of the in sample Mean Square Error. However, a drawback of the 𝐷𝐷𝐷𝐷𝐷𝐷
 approach is that in our simulations it has proved to yield more unstable predictions 

with smaller sample sizes than POLY.
 c)

 
The algorithm

 Without loss of generality, in what follows it is assumed that:  
 1.

 
Assumptions:  

 
        (a) ℎ ≡ 𝐻𝐻 = 1,  (ℎ,𝐻𝐻) ∈ ℤ+; 

 
        (b) ℋ ≡ ℋ� ≥ 2,  (ℋ,ℋ�) ∈ ℤ+

 
(in the empirical experiment it will be set to 4); 

 
        (c) 

𝑇𝑇
ℋ

= 𝑘𝑘,  𝑘𝑘 ∈ ℤ+; 
 

2.
 

Time Series Segmentation:  
 

        (a) the training set 𝒳𝒳𝑡𝑡 , with length 𝑁𝑁𝑡𝑡𝑡𝑡  
, is defined ; 

 
        (b) the test set 𝒴𝒴𝑡𝑡  

with length 𝑁𝑁𝑡𝑡𝑡𝑡  
, is defined ;

 
3.

 
Forecast Generation:
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generic term 𝑁𝑁𝑝𝑝(𝑥𝑥𝑐𝑐) the 𝑝𝑝𝑡𝑡ℎ𝑜𝑜𝑝𝑝𝑑𝑑𝑒𝑒𝑝𝑝 orthogonal polynomial. This type of regression scheme 
has been considered here as it might allow meaningful interpretations of the 
extrapolation mechanism and can work satisfactorily with a (reasonably) small set of 
data. In addition, its estimation is in general easy given both the availability of fast and 
reliable routines and by design: in fact, due to the orthogonality of the polynomials 

involved, no recomputation of (𝑋𝑋𝑇𝑇𝑋𝑋)−1 or of any other 𝑎𝑎𝑗𝑗 (𝑗𝑗 ≠ 𝑘𝑘 + 1) is required, so that 

higher orders polynomial can be introduced at s small cost into the model, e.g. to 
attempt estimations on a trial and error basis. In this regard, it should be emphasized 
how the procedure can be easily iterated until a satisfactorily fitting is found. Finally, 

being technically a special case of multiple linear regression, 𝑁𝑁𝑃𝑃𝐿𝐿𝑌𝑌 shares with it the 
whole, well known, theoretical framework. However, its outcomes can be affected by the 
non-local nature of the polynomial basis functions, so that the fitted (as well as the 
extrapolated) values, depend on all the data set, regardless the location in time of the 

single observations. For the problem at hand, 𝑁𝑁𝑃𝑃𝐿𝐿𝑌𝑌 has been employed to model the 

non-linear relationship ℒ(⋅)–time and 𝛿𝛿(⋅)–time and the polynomial degree 𝑑𝑑 = 3
seemed to yield acceptable predictions. While in 𝑁𝑁𝑃𝑃𝐿𝐿𝑌𝑌 the past observations are 

processed being assigned equal weights, in the second model considered (𝐷𝐷𝐸𝐸𝑅𝑅) more 
recent observations are given higher weights than the older ones, so that the forecast is 

generated accordingly. In particular, 𝐷𝐷𝐸𝐸𝑅𝑅 is generally represented by the following set of 
equations:  

Notes

(a) a maximum ARIMA order (𝑝𝑝0,𝑑𝑑0, 𝑞𝑞0,𝑁𝑁0,𝐷𝐷0,𝑄𝑄0), likely to encompass the              
true model order, is arbitrarily chosen;



 
 

(b)

 

optimal MAICE–wise (5) ARIMA model is fitted to the time series at 

hand (1) conditioned to Tr, i.e. 𝑀𝑀•|ℐ𝑇𝑇𝑇𝑇 ≡ 𝑀𝑀∘|ℐ𝑇𝑇𝑇𝑇 ; 
(c)

 

ITERATE (3b) [𝑁𝑁𝑁𝑁𝑁𝑁 − 1]

 

times, i.e. every 𝑥𝑥𝑡𝑡∀𝑡𝑡 = 𝑥𝑥𝑁𝑁𝑁𝑁𝑠𝑠 , … , 𝑥𝑥𝑇𝑇

 

s.t. the 
OSH predicted values are stored in the vector conditioned to the last 
available datum is generated, i.e.

 

                                                

𝐲𝐲• ≡ (𝑦𝑦(𝑇𝑇𝑇𝑇+1)
• |ℐ𝑇𝑇𝑇𝑇),    (𝑦𝑦(𝑇𝑇𝑇𝑇+2)

• |ℐ𝑇𝑇𝑇𝑇+1),    …,    (𝑦𝑦(𝑇𝑇𝑇𝑇)
• |ℐ𝑇𝑇𝑇𝑇−1);         (9) 

(d)

 

ITERATE (3b) 𝑘𝑘

 

times, i.e. every ℋ�

 

observations s.t. the OSH 

predicted values vector 𝑦𝑦∘

 

conditioned to the model fixed every ℋ�

 
observations, is generated, i.e.

 

                                                      

𝐲𝐲∘ ≡ (𝑦𝑦(𝑇𝑇𝑇𝑇+1)
∘ |ℐ𝑇𝑇𝑇𝑇), (𝑦𝑦(𝑇𝑇𝑇𝑇+2)

∘ |ℐ𝑇𝑇𝑇𝑇), … , (𝑦𝑦(𝑇𝑇𝑇𝑇+ℋ�−1)
∘ |ℐ𝑇𝑇𝑇𝑇),

                                             (𝑦𝑦(𝑇𝑇𝑇𝑇+ℋ�)
∘ |ℐ𝑇𝑇𝑇𝑇+ℋ�−1), … , (𝑦𝑦(𝑇𝑇𝑇𝑇−𝑘𝑘ℋ�)

∘ |ℐ𝑇𝑇𝑇𝑇−𝑘𝑘ℋ�−1), … , (𝑦𝑦𝑇𝑇𝑇𝑇∘ |ℐ𝑇𝑇𝑇𝑇−𝑘𝑘ℋ�−1);       (10) 

4. Distance and Loss of Fitting Prediction 
 

(a) The distance measure is sequentially computed on window of length (ℋ�) 
of 𝑦𝑦∘ and 𝑦𝑦•, i.e. 𝛿𝛿(𝑦𝑦∘,𝑦𝑦•)𝑇𝑇𝑇𝑇+𝑎𝑎ℋ� ;     𝑎𝑎 = 1,2, … 𝑘𝑘; 

(b) The loss function is sequentially computed on window of length (ℒ̅) of 𝑦𝑦∘ 
and 𝑦𝑦•, i.e. ℒ(𝑦𝑦∘,𝑦𝑦•)𝑇𝑇𝑇𝑇+𝑎𝑎ℋ� ;     𝑎𝑎 = 1,2, … 𝑘𝑘; 

(c) Standard polynomial regression–based extrapolation scheme is applied to 

both the functions ℒ(⋅) and 𝛿𝛿(⋅) for the 𝑁𝑁𝑁𝑁𝑁𝑁 + ℋ�  period i.e. ℒ̂(ℋ�) =
𝐏𝐏[ℒ(𝑦𝑦∘,𝑦𝑦•)]𝑁𝑁𝑁𝑁𝑁𝑁+1,…,𝑁𝑁𝑁𝑁𝑁𝑁+ℋ�   and  𝛿𝛿(ℋ� ) = 𝐏𝐏[𝛿𝛿(𝑦𝑦∘,𝑦𝑦•)]𝑁𝑁𝑁𝑁𝑁𝑁+1,…,𝑁𝑁𝑁𝑁𝑁𝑁+ℋ� ; 

(d) The related expected values are taken, i.e. ℒ̃ = 𝐄𝐄[ℒ(𝑦𝑦∘,𝑦𝑦•)]𝑁𝑁𝑁𝑁𝑁𝑁+1,…,𝑁𝑁𝑁𝑁𝑁𝑁+ℋ�   

and  𝛿𝛿 = 𝐄𝐄[𝛿𝛿(𝑦𝑦∘, 𝑦𝑦•)]𝑁𝑁𝑁𝑁𝑁𝑁+1,…,𝑁𝑁𝑁𝑁𝑁𝑁+ℋ� , i.e. ℒ̂(ℋ�) = 1
ℋ�
∑ ‍ℋ�
𝑗𝑗=1 𝐏𝐏[ℒ(𝑦𝑦∘,𝑦𝑦•)]𝑁𝑁𝑁𝑁𝑁𝑁+𝑗𝑗   

and  𝛿𝛿(ℋ� ) = 1
ℋ�
∑ ‍ℋ�
𝑗𝑗=1 𝐏𝐏[ℒ(𝑦𝑦∘,𝑦𝑦•)]𝑁𝑁𝑁𝑁𝑁𝑁+𝑗𝑗 . 

d) Empirical Experiment  
This section is devoted to the empirical experiment which has been designed and 

caried outin order to test the validity of the proposed procedure. It consists of two 
parts: a Monte Carlo experiment, based on computer generated time series and an 
analysis of four real-life time series, two of the type Macroeconomic and two related to 

tourism variables. Regarding the Monte Carlo experiment, four different DGPs – whose 
parametrization is given in Tab.1 along with the codification used for brevity and 

reported in the column labeled "DGP" – have been employed to generate 1000 

realizations (250 realizations for each model), with sample size 𝑡𝑡 = 300. The main 
reason behind the choice of series showing such a limited sample size is that instabilities 
in the ARIMA parameters are more likely to occur under small sample sizes and 

therefore greater uncertainty is expected in terms of both 𝛿𝛿(𝑦𝑦∘,𝑦𝑦•) and ℒ(𝑦𝑦∘, 𝑦𝑦•). In 
addition, such a situation is common in economic time series but also in all the cases 
where only a small set of past data is subjected to investigation, e.g. due to 

computational reasons. In order to mimic reality, realizations of DGP 1–4 are corrupted 
with short bursts of noise (iid shocks) in the form of outliers of the type additive (AO). 
Such a sequence of isolated spikes have been introduced to represent those noticeable 
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Notes



departures –  consistently found across the empirical experiment –  that sporadically 

might take place in the series 𝛿𝛿(⋅)  and ℒ(⋅), as a result of the effect of sudden changes 

on the  models. To do so, 𝐎𝐎 = 3  Additive Outliers have been embedded in the test set 

𝒴𝒴𝑡𝑡 , so that the resulting set up can be formalized as follows:  

                                                          𝒴𝒴𝑡𝑡∗ = ∑ ‍𝐎𝐎
𝑗𝑗=1 𝜉𝜉𝑗𝑗 (𝐵𝐵)𝛾𝛾𝑗𝑗 𝐼𝐼𝑡𝑡

�𝜓𝜓𝑗𝑗 � + 𝒴𝒴𝑡𝑡  ,                                                    (11)  

being 𝒴𝒴𝑡𝑡∗  the stretch of data corrupted by the outliers, 𝒴𝒴𝑡𝑡  its outlier-free, unobservable, 

counterpart (3) and 𝛾𝛾𝑗𝑗  
represents the outlier’s impact at 𝜓𝜓𝑗𝑗  

and 𝐼𝐼𝑡𝑡  
is a switching 

variable allowing the system to (not) include the outlier in 𝑡𝑡 = 𝜓𝜓𝑗𝑗  
when 𝐼𝐼 = 1(0). 

Training and Test sets’
 

sample sizes have been set respectively at 𝑛𝑛𝑛𝑛𝑛𝑛 =180 and 

𝑛𝑛𝑛𝑛𝑛𝑛 =120 whereas the outliers have been embedded in the test set at observations 

𝑡𝑡 = 𝑁𝑁𝑁𝑁𝑁𝑁/4,𝑁𝑁𝑁𝑁𝑁𝑁/3,𝑁𝑁𝑁𝑁𝑁𝑁/2. Their values have been kept fixed and set to 6  𝜎𝜎2, being
 

𝜎𝜎2 = 1  ∀  𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷. 

DGP

 

number

 ARIMA

 

order

 
𝝓𝝓

 

𝝓𝝓
 

DGP1

 

(0,1,1)
 

–
 

-.6

 

DGP2

 

(1,1,2)
 

-.65

 

.6;  -.45

 

DGP3

 

(2,0,1)
 

.7;  -.5

 

-.5

 

DGP4

 

(1,0,2)
 

-.6;

 

.5;  -.4

 

 

DGP

 

𝕷𝕷�%(𝒚𝒚•,𝒚𝒚∘)

 

Poly     

 

DES

 
𝜹𝜹𝑪𝑪𝑪𝑪� %(𝒚𝒚•,𝒚𝒚∘)

 

Poly      DES

 
𝜹𝜹𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵�

%(𝒚𝒚•,𝒚𝒚∘)

 

Poly       DES 
Ntr Nts 

DGP1

 

10.2 11.6 10.5 11.9 11.1 12.2 220 80 
DGP2

 

12.4 14.3 10.4 11.2 12.6 10.9 220 80 
DGP3

 

8.0

 

7.2

 

9.4

 

4.7

 

8 6.3

 

100 200 
DGP4

 

6.2

 

5.8

 

9.5

 

5.4

 

8.2

 

7.5

 

100 200 
 

 

DGP

 

𝕷𝕷�%(𝒚𝒚•,𝒚𝒚∘)

 

Poly         DES

 
𝜹𝜹𝑪𝑪𝑪𝑪� %(𝒚𝒚•,𝒚𝒚∘)

 
 

    Poly      DES

 
𝜹𝜹𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵�

%(𝒚𝒚•,𝒚𝒚∘)

 

Poly     DES

 

Ntr Nts 

DGP1

 

15.3 18.9 16.5 19.9 22.1 19.6 300 56 
DGP2

 

15.4 10.1 14.4 12.5 22.6 20.1 300 120 
DGP3

 

8.9

 

9.5

 

15.6 7.3

 

10.7 10.7 219 120 
DGP4

 

9.7

 

8.6

 

10.5 6.8

 

8.7

 

8.7

 

219 120 
 

 

Code

 

Variable Source

 

Seas

 

Units 

Data range

 

(Number of 
obs)

 

X1 
Housing: mortgage 
interest payments

 Data Set MM23 
(San Louis 

Fed)

 No 
Index, base

 

1987 = 100

 1987-02 to 2016-
09(356)  
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Table  1: Parametrization of the simulated 𝐷𝐷𝐷𝐷𝑁𝑁s 

Table  2: Actual vs predicted distances and loss functions in the simulated
time series case: percentage difference

Table  3: Actual vs predicted distances and loss functions in the real time series case: 
percentage difference

Table  4: Real  time series employed in the empirical section: sources and main details

Notes



Index for All 
Urban Consumers: 

All Items

 
Labor Statistics

 

1984 = 100

 

09(420) 

X3 
OS visits to UK:  

Earnings: £ 
Millions

 
U.K. Office for 

National 
Statistics

 YES £ Millions

 1980-01 to 2016-
07 (439) 

X4 
OS visits to UK: 

All visits

 U.K. Office for 
National 
Statistics

 YES 
Thousands of 

visitors

 1980-01 to 2016-
07 (439) 

  

Regarding the second part of the experiment, in Table 4, the four time series 
employed in the empirical study are detailed along with their conventional name, in the 

sequel adopted for brevity, stored in the column labeled "Code". Series X1 – X2 are of 
the type macroeconomic, whereas the remaining ones refer to tourism-related variables. 
All the time series are characterized by a limited sample sizes (not too far from the one 
of the computer generated time series), the presence of outliers – e.g. of the type 

additive, as clearly noticeable in the series X4 (May 2013 2006) and X3 (July 2007) – 
and, to a different extent, non stationary behaviors. All the series have not been 
adjusted for seasonality nor corrected for outliers. Finally, the variable "seas" in Table 
4 indicates the presence of a significant seasonal component in the series, which has 
been properly captured by the seasonal parameters of the seasonal version of the 
ARIMA model. 

i. Experiment’s outcomes 
Regarding the Monte Carlo experiment, the mean values of the loss function and 

the distance metrics have been computed over each set (250 series), i.e. 𝛿𝛿𝑚𝑚𝑚𝑚 (ℋ�) =
1

250
∑ ‍250

1=1 (∑ ‍4
𝑗𝑗=1 𝛿𝛿(ℋ𝑗𝑗 )) and ℒ̂𝑚𝑚𝑚𝑚 (ℋ�) = 1

250
∑ ‍250

1=1 (∑ ‍4
𝑗𝑗=1 ℒ̂(ℋ𝑗𝑗 )), with ℋ� = 4 and the 

subscript "mc" standing for Monte Carlo. In Tables 2 and 3 – where the results of the 

empirical experiment are reported – the following two indicators are employed to 
evaluate the usefulness of the proposed procedure, i.e. the Loss function discrepancy 
percentage change and the the Distance Discrepancy percentage, respectively defined as 

follows: 𝔏𝔏�%(𝑦𝑦•,𝑦𝑦∘) = 100 𝔏𝔏�𝑚𝑚𝑚𝑚 (ℋ�)−𝔏𝔏𝑚𝑚𝑚𝑚 (ℋ�)
𝔏𝔏�𝑚𝑚𝑚𝑚 (ℋ�)

 and 𝛿𝛿%(𝑦𝑦•,𝑦𝑦∘) = 100 𝛿𝛿�𝑚𝑚𝑚𝑚 (ℋ�)−𝛿𝛿𝑚𝑚𝑚𝑚 (ℋ�)
𝛿𝛿�𝑚𝑚𝑚𝑚 (ℋ�)

. 

The results obtained indicate the interesting prediction capabilities provided by 
the proposed procedure, which can be considered adequate to gain valuable insights on 
the discrepancies resulting from the use of a fixed ARIMA model instead of its updated 
version. With both artificially generated and real time series, the best performances are 

obtained – under the condition of a test set of "sufficient" length – by using the 
exponential smoothing extrapolation technique in conjunction with a distance metric of 

the type 𝐶𝐶𝐶𝐶. On the other hand, less impressive outcomes are obtained with small test 
sets. In this case the polynomial regression has yielded slightly better outcomes than the 

exponential smoothing scheme. However, even for small values of 𝑁𝑁𝑁𝑁𝑁𝑁, the approach still 
seems to provide useful information, especially in terms of expected loss function, where 
the percentage difference under polynomial regression recorded is around 10.2% and 
11.6% in the case of the artificial time series DGP1 and DGP2 respectively and slightly 

higher (15.3%) for the real time series TS1. For larger test sets the 𝐷𝐷𝐷𝐷𝐷𝐷 extrapolation 

technique does a better job than the regression–based technique: the recorded value for 
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X2 Consumer Price US. Bureau of No Index, base 1981-10 to 2016-

Notes



ℒ%(𝑦𝑦•,𝑦𝑦∘)  and 𝛿𝛿%
𝐶𝐶𝐶𝐶(𝑦𝑦•,𝑦𝑦∘)  is always less than approx 10% and 12.5% respectively. In the 

set of the real time series, the best performances have been obtained in the case of TS4, 

where an error of 6.8% and 8.6% have been recorded for the distance 𝐶𝐶𝐶𝐶  and the RMSE 

values respectively, computed via 𝐷𝐷𝐷𝐷𝐷𝐷  equations. Throughout the empirical experiment, 

the values recorded for 𝛿𝛿𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁  has been consistently less remarkable results. A possible 
explanation is related to the sensitivity of the periodogram towards aberrant 
observations, so that bias components might have been introduced into its estimation as 
a result.  
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III. Conclusion

In this paper, it has been illustrated a procedure for the prediction of the lack of 

fit and the distance between the outcomes of two models, when one of them is re–
estimated at the highest possible frequency (i.e. the sample frequency of the time series 
under investigation) and the other one is left unchanged for a certain span of time. This 
technique has been presented using time series models belonging to the class ARIMA, 
however, such a conditions can be easily relaxed and basically left to be decided on a 
case-by-case basis. All the simulations have been carried out having in mind a short 
span of time, set to 4, between two updating processes and the results turned out to be 
encouraging. In particular, consistency in terms of empirical outcomes has been found 
across the statistical tools employed and the time series used. Finally, out of the sets of 
the available extrapolation techniques and distances measures, only two pair of them
have been here considered, so that future directions will include the analysis of a larger 
portfolio of these tools.

Figure  1: Actual Time Series

Notes
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