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The present paper deals with the order selection of models of the class for autoregressive moving average. A novel
method—previously designed to enhance the selection capabilities of the Akaike Information Criterion and successfully tested—is
now extended to the other three popular selectors commonly used by both theoretical statisticians and practitioners. They are the
final prediction error, the Bayesian information criterion, and the Hannan-Quinn information criterion which are employed in
conjunction with a semiparametric bootstrap scheme of the type sieve.

1. Introduction

Autoregressive moving average (ARMA) models [1] are a
popular choice for the analysis of stochastic processes in
many fields of applied and theoretical research. They are
mathematical tools employed to model the persistence, over
time and space, of a given time series. They can be used
for a variety of purposes, for example, the generation of
predictions of future values, to remove the autocorrelation
structure from a time series (prewhitening) or to achieve a
better understanding of a physical system.As it is well known,
performances of an ARMA model are critically affected by
the determination of its order: once properly built and tested,
such models can be successfully employed to describe the
reality, for example, trend patterns of economic variables and
temperature oscillations in a given area, or to build futures
scenarios through simulation exercises. Model order choice
plays a key role not only for the validity of the inference
procedures but also, from amore general point of view, for the
fulfillment of the fundamental principle of parsimony [2, 3].
Ideally, the observation of this principle leads to choosing
models showing simple structures on one hand but able to
provide an effective description of the data set under investi-
gation on the other hand. Less parsimonious models tend to
extract idiosyncratic information and therefore are prone to
introduce high variability in the estimated parameters. Such

a variability determines for the model a lack of generalization
capabilities (e.g., when new data become available), even
though, by adding more and more parameters, an excellent
fit of data is usually obtained [4]. Overfitting is more likely
to occur when the system under investigation is affected by
different sources of noise, for example, related to changes in
survey methodologies, time evolving processes, and missing
observations. These phenomena, very common and in many
cases simply unavoidable in “real life” data, might have a
significant impact on the quality of the data set at hand.
Under noisy conditions, a too complex model is likely
to fit the noise components embedded in the time series
and not just the signal and therefore it is bound to yield
poor future values’ predictions. On the other hand, bias in
the estimation process arises when underfitted models are
selected, so that only a suboptimal reconstruction of the
underlying Data Generating Process (DGP) can be provided.
As it will be seen, bias also arises as a result of the uncertainty
conveyed by the process itself of model selection. ARMA
model order selection is a difficult step in time series
analysis. This issue has attracted a lot of attention so that,
according to different philosophies, theoretical and practical
assumptions as well as several methods, both parametric and
nonparametric, have been proposed over the years as a result.
Among them, bootstrap strategies [5–9] are gaining more
and more acceptance among researchers and practitioners.
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In particular, in [6] bootstrap-based procedures applied to
the Akaike Information Criterion (AIC) [10, 11] in the case
of ARMA models, called b-MAICE (bootstrap-Minimum
AIC Estimate), has proven to enhance the small sample
performances of this selector. The aim of this work is to
extend such a procedure to different selectors, that is, final
prediction error (FPE) [12] and two information based
criteria, that is, Bayesian information criterion (BIC) [13, 14]
and Hannan-Quinn criterion (HQC) [15, 16]. In particular,
the present paper is aimed at giving empirical evidences of
the quality of the bootstrap approach in model selection, by
comparing it with the standard procedure, which, as it is well
known, is based on the minimization of a selection criterion.
In particular, the empirical study (presented in Section 4)
has been designed to contrast the performances of each of
the considered selectors both in nonbootstrap and bootstrap
world. The validity of the proposed method is assessed not
only in the case of pure ARMA processes, but also when
real life phenomena are simulated and embedded in the
artificial data. In practice, the problemof order determination
is considered also when the observed series is contaminated
with outliers and additive Gaussian noise. The last type of
contamination has been employed, for example, in [17], for
testing a model selection approach driven by information
criteria in the autoregressive fractionally integrated moving
average (ARFIMA) and ARMA cases. Such a source of dis-
turbance has been employed here in order to test the degree
of robustness of the method proposed against overfitting. As
it will be seen, computer simulations show that the addition
of white noise generates a number of incorrect specifications
comparable to those resulting from the contamination of
the process with outliers of the type innovation. Outliers
are a common phenomenon in time series, considering the
fact that real life time series from many fields, for example,
economic, sociology, and climatology, can be subjected and
severely influenced by interruptive events, such as strikes,
outbreaks of war, unexpected heat or cold waves, and natural
disasters [18, 19]. The issue is absolutely nontrivial, given that
outliers can impact virtually all the stages of the analysis of
a given time series. In particular, model identification can
be heavily affected by additive outliers, as they can induce
the selection of underfitted models as a result of the bias
elements introduced into the inference procedures. In the
simulation study (Section 4), outliers of the type additive (i.e.,
added to some observations) and innovative (i.e., embedded
in the innovation sequence driving the process) [19] will be
considered.

The remainder of the paper is organized as follows: in Sec-
tion 2, after introducing the problem of order identification
for time series, the considered selectors are illustrated along
with the related ARMA identification procedure. In Section 3
the employed bootstrap selection method is illustrated and
the bootstrap scheme briefly recalled. Finally, small sample
performances of the proposed method will be assessed via
Monte Carlo simulations in Section 4.

2. Order Selection for Time Series Models

A key concept underlying the present paper is that, in
general, “reality” generates complex structures, possibly ∞-
dimensional, so that amodel can at best capture only themain

features of the system under investigation in order to recon-
struct a simplified version of a given phenomenon. Models
are just approximations of a given (nontrivial) phenomenon
and the related identification procedures could never lead
to the determination of the “true” model. In general, there
is no true model in a finite world. What we can do is to
find the one giving the best representation of the underlying
DGP, according to a predefined rule. In this section, after
highlighting the role played by model selection procedures
in generating uncertainty, we briefly introduce the models
belonging to the class ARMA along with the order selectors
considered. Finally, the information criterion-based standard
selection procedure is illustrated.

2.1. Uncertainty in Model Selection. Uncertainty is an unfor-
tunate, pervasive, and inescapable feature characterizing real
life data which has to be faced continually by both researchers
and practitioners. The framework dealt with here is clearly
no exception: if the true model structure is an unattainable
goal, approximation strategies have to be employed. Such
strategies are generally designed on iterative basis and pro-
vide an estimate of the model structure which embodies, by
definition, a certain amount of uncertainty. Common sources
of uncertainty are those induced by the lack of discriminating
power of the employed selector and by the so-called model
selection bias [20, 21], which arises when a model is specified
and fitted on the same data set. Unfortunately, not only are
these two types of uncertainty not mutually exclusive but
also statistical theory provides little guidance to quantify their
effect in terms of bias introduced in themodel as a result [22].
Particularly dangerous is this last form of uncertainty, as it is
based upon the strong and unrealistic assumption of making
correct inference as if a model is known to be true, while its
determination has been made on the same set of data. On
the other hand, the first source of uncertainty is somehow
less serious, given its direct relationship with the size of
the competition set, which is usually included in the design
of the experiment. In practice, it is related to the fact that
very close SC minima can be found in the model selection
process, so that even small variations in the data set can cause
the identification of different model structures. In general,
trying to explain only in part the complexity conveyed in the
observed process by means of as simple as possible structures
is a way to minimize uncertainty in the model selection, as it
is likely to lead to the definition of a smaller set of candidate
models. This approach can be seen as an extension of the
principle of parsimony to the competition set. In the sequel,
how the proposed procedure, being aimed at replicating both
the original process and the related selection procedure, has
a positive effect in reducing both the considered sources of
uncertainty will be emphasized [23].

2.2. The Employed Identification Criteria. Perhaps the most
well-knownmodel order selection criteria (SC), among those
considered, are the AIC and the FPE, whose asymptotic
equivalence to the 𝐹-test has been proved in [24]. AIC
has been designed on information-theoretic basis as an
asymptotically unbiased estimate of the Kullback-Leibler
divergence [25] of the fitted model relative to the true model.
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Assuming𝑋𝑇,𝑇 being the sample size, to be randomly drawn
from an unknown distribution 𝐻(𝑥) with density ℎ(𝑥), the
estimation of ℎ is done by means of a parametric family of
distributions, with densities [𝑓(𝑥 | 𝜃; 𝜃 ∈ Θ)], 𝜃 being
the unknown parameters’ vector. Denoting 𝑓(𝑧 | 𝜃) as the
predictive density function, 𝑓 as the true model, and ℎ as
the approximating one, Kullback-Leibler discrepancy can be
expressed as follows:

𝐼 (ℎ (𝑧) ; 𝑓 (𝑧 | 𝜃)) = ∫ℎ (𝑧) log ℎ (𝑧) 𝑑𝑧
− ∫ℎ (𝑧) log𝑓 (𝑧 | 𝜃) 𝑑𝑧. (1)

As the first term on the right hand side of (1) does not
depend on the model, it can be neglected so that we can
rewrite the distance in terms of the expected log likelihood,𝐿(𝑋𝑇; 𝐻); that is,

𝐿 (𝑋𝑇; 𝐻) = ∫ ℎ (𝑧) log𝑓 (𝑧 | 𝜃) 𝑑𝑧
= ∫ log𝑓 (𝑧 | 𝜃) 𝑑𝐻 (𝑧) . (2)

This quantity can be estimated by replacing 𝐻 with its
empirical distribution 𝐻̂, so that we have that 𝐿(𝑋𝑇; 𝐻̂) =(1/𝑇)∑𝑇

𝛼=1 log𝑓(𝑋𝛼 | 𝜃). This is an overestimated quantity
of the expected log likelihood, given that 𝐻̂ is closer to 𝜃 than𝐻. The related bias can be written as follows:

𝑏 (𝐻) = 𝐸𝐻 {𝐿 (𝑋𝑇; 𝐻̂) − 𝐿 (𝑋𝑇; 𝐻)} , (3)

and therefore an information criterion can be derived from
the bias-corrected log likelihood; that is, (1/𝑇)∑𝑇

𝛼 log𝑓(𝑋𝛼 |𝜃) − 𝐵(𝐻̂)
Denoting by 𝑘 and𝑇 the number of estimated parameters

and the sample size, respectively, Akaike proved that 𝑏(𝐻) is
asymptotically equal to 𝑘/𝑇, so that the information based
criterion takes the form 𝐿(𝑋𝑇; 𝐻̂) + 𝑘/𝑇. By multiplying this
quantity by −2, finally AIC is defined as −2 log𝐿(𝑋𝑇; 𝐻̂)+2𝑘.
In such a theoretical framework, AIC can be seen as a way
to solve the Akaike Prediction Problem [6], that is, to find
a model 𝑀0 producing estimation of density 𝑓 minimizing
Kullback-Leibler discrepancy (1). Originally conceived for
AR process, extended to the ARMA case by Soderstrom
and Stoica [24], FPE was designed as the minimizer of the
one-step-ahead mean square forecast error, after taking in
account the inflating effect of the estimated parameter. FPE
statistic is defined as FPE(𝑘) = [(1 + 𝑘/𝑇)/(1 − 𝑘/𝑇)]𝜎̂2𝜀 (𝑘),
where 𝜎̂2𝜀 is the estimated variance of the residuals and 𝑘
is the model’s size. A different perspective has led to the
construction of BIC-type criteria, which are grounded on the
maximization of themodel posterior probability [14]. Inmore
detail, they envision the specification of the prior distribution
on parameter values and the models, respectively, denoted by𝑃(𝜃 | 𝑘) and 𝑃(𝑘), and their introduction into the analysis
through the joint probability function𝑃(𝜃, 𝑘) = 𝑃(𝑘)𝑃(𝜃 | 𝑘).
Posterior probabilities for (𝜃, 𝑘) are then obtained through

Bayes theorem, so that the value of 𝑘 maximizing (4), that
is,

𝑃 (𝑘 | 𝑋𝑡) ∝ 𝑃 (𝑘) ∫
𝜃∈Θ

𝑓 (𝑋𝑡; 𝜃, 𝑘) 𝑃 (𝜃 | 𝑘) 𝑑𝜃, (4)

is found. With 𝑓(𝑋𝑇; 𝜃, 𝑘) being the likelihood function
associated with both the data 𝑋𝑇 and the model 𝑀𝑘, the
selected order will be 𝑘̂ = argmax𝑘𝑃(𝑘 | 𝑋𝑇). By assuming
all the models equally probable, that is, 𝑝(𝑘) = 1/(𝑘max + 1),
the BIC criterion is hence defined by −2 log𝐿(𝜃) + 2𝑘 log(𝑇).
The last criterion considered—constructed from the law of
iterated algorithm—is the BIC, in which the penalty function
grows at a very slow rate as the samples size increases. It is
defined as follows: HQC = log𝐿(𝜃) + 2𝑘 log(log(𝑇)).

All these selectors can be divided into two groups:
one achieving asymptotic optimality [26] and one selection
consistency. AIC and FPE fall in the first group, in the sense
that the selected model asymptotically tends to reach the
smallest average squared error [27, 28], if the true DGP is
not included in the competition set. On the other hand, BIC
andHQ are dimension consistent [29], in that the probability
of selection of the “true” model approaches 1 as the sample
size goes to infinity. However, it should be pointed out that
such an asymptotic property holds only if the true density is
in the set of the candidate models. In this regard, AIC and
FPE aswell as the other Shibata efficient criteria (e.g.,Mallows𝐶𝑝 [30]) fail to select the “true” model asymptotically. As
pointed out earlier,∞-dimensionality of the “truth” implies
for all the models being “wrong” to some extent—except in
trivial cases—so that no set of competition models will ever
encompass the true DGP. As long as this approach is held
true, asymptotic efficient criteria might be preferred. In this
case, one may argue a lack of significance in comparing any
finite list of candidate models when we rule out the existence
of a true one. Such an approach is justified in that, even if no
model can ever represent the truth, we can achieve the goal
to find the one being approximately correct. Conversely, if
one does believe that the true density belongs to the model
space, hence dimension consistent selection criteria can be
preferred.

2.3. ARMAModel Selection throughMinimization of Selection
Criteria. In what follows, it is assumed that the observed
time series {𝑋𝑡}𝑡∈Z+ is a realization of a real valued, 0–mean,
second-order stationary process, admitting an autoregressive
moving average representation of orders 𝑝 and 𝑞; that is, 𝑥𝑡 ∼
ARMA (𝑝, 𝑞), with (𝑝, 𝑞) ∈ Z+. Its mathematical expression
is as follows:

𝜙 (𝐵) (𝑥𝑡) = 𝜃 (𝐵) 𝜀𝑡; 𝑡 ∈ Z
+, (5)

with 𝜙(𝑧) = (1 − ∑𝑝
𝑖=1 𝜙𝑖𝑧𝑖) and 𝜃(𝑧) = (1 − ∑𝑞

𝑖=1 𝜃𝑖𝑧𝑖), being𝜙𝑖 ∈ R and 𝜃𝑖 ∈ R, AR polynomial, and MA polynomial,
respectively. With 𝐵 the backward shift operator, such that𝐵𝑘𝑌𝑡 = 𝑌𝑡−𝑘, is denoted whereas 𝜀𝑡 is assumed to be sequence
of centered, uncorrelated variables with common variance𝜎2.
The parameters vector is denoted by Γ. Standard assumptions
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of stationarity and invertibility, respectively, of AR and MA
polynomials, that is,

󵄨󵄨󵄨󵄨𝜙 (𝑧)󵄨󵄨󵄨󵄨 ̸= 0 |𝑧| ≤ 1, (6)

|𝜃 (𝑧)| ̸= 0 |𝑧| ≤ 1, (7)

are supposed to be satisfied. Finally, the ARMA parameters
of the true underlying DGP (5) are denoted by (𝑝∘, 𝑞∘) (i.e.,{𝑋}𝑇𝑡 ∼ ARMA (𝑝∘, 𝑞∘)) and the related model by𝑀0(Γ).

Identification procedures of the best approximating
model for 𝑀0 is carried out on a priori specified set Λ of
plausible candidate models𝑀𝑔; that is,

{Λ ⊇ 𝑀𝑔 (Γ̂) 𝑔 = 1, 2, . . . , 𝐺} , (8)

where the chosen model, say 𝑀0(Γ̂) = (𝑝0, 𝑞0), is selected
from (i.e., [𝑀0(Γ̂) ≡ (𝑝0, 𝑞0) ⊂ Λ] ≈ 𝑀0(Γ)). In the ARMA
case, each model 𝑀𝑔 ∈ Λ represents a specific combination
of autoregressive and moving average parameters (𝑝, 𝑞). The
set Λ is upper bounded by the two integers 𝑃 and 𝑄 for the
AR and MA part, respectively; that is,

Λ = {(𝑝, 𝑞) : 0 ≤ 𝑝0 ≤ 𝑃, 0 ≤ 𝑞0 ≤ 𝑄} . (9)

This assumption is a necessary condition for the above-
mentioned Shibata efficiency and dimension consistency
properties to hold other than for the practical implementa-
tion of the procedure (themodel space needs to be bounded).
From an operational point of view, the four SC considered in
this work, when applied to models of the class ARMA, take
the following form:

AIC (𝑝, 𝑞) = 𝑇 ln 𝜎̂2𝑝,𝑞 + 2 (𝑝 + 𝑞 + 1) , (10)

FPE (𝑝, 𝑞) = 𝜎̂2𝑝,𝑞 {𝑇 − (𝑝 + 𝑞 + 1)𝑇 + (𝑝 + 𝑞 + 1)} , (11)

BIC (𝑝, 𝑞) = 𝑇 ln [𝜎̂2𝑝,𝑞] + [(𝑝 + 𝑞 + 1) ln (𝑇)] , (12)

HQC (𝑝, 𝑞) = 𝑇 ln [𝜎̂2𝑝,𝑞]
+ [2 (𝑝 + 𝑞 + 1) ln (ln (𝑇))] , (13)

where 𝜎̂𝑝,𝑞 is an estimate of the Gaussian pseudo-maximum
likelihood residual variance when fitting ARMA (𝑝, 𝑞) mod-
els; that is,

𝜎̂2𝑝,𝑞 = 1𝑇 − (𝑝 + 𝑞 + 1)
⋅ 𝑇∑
max(𝑝,𝑞)

[
[𝑦𝑡 − (

𝑃∑
𝑗=0

𝜙𝑗𝑦𝑡−𝑗 − 𝑄∑
𝑖=0

𝜃𝑖𝑦𝑡−𝑖)]]
2

.
(14)

Equations (10)–(13) can be synthetically expressed as
follows:

SC (𝑝, 𝑞) = 𝑓 (𝜎̂2𝑝,𝑞, 𝜉𝑝𝑞) , (15)

where 𝜎̂2𝑝,𝑞 is defined in Section 3 and 𝜉 is the penalty term as
a function of model complexity.

The standard identification procedure, here called for
convenience Minimum Selection Criterion Estimation
(MSCE), is based on the minimization of the SC. In practice,
the model𝑀0 minimizing a given SC is the winner; that is,

𝑀0 : (𝑝0, 𝑞0) = arg min
𝑝<𝑃,𝑞<𝑄

SC (𝑝, 𝑞) . (16)

3. The Bootstrap Method

As already pointed out, in [6] a bootstrap selection method
has been proposed to perform AIC-based ARMA structure
identification. The comparative Monte Carlo experiment
with its nonbootstrap counterpart, commonly referred to
as MAICE (Minimum Akaike Information Criterion Expec-
tation) procedure, gave empirical evidences in favor of 𝑏-
MAICE procedure. Such results motivated us to extend this
approach to other selectors (see (11), (12), and (13)). For
convenience, the proposed generalized version of 𝑏-MAICE
procedure has been called bMSE (BootstrapMinimum Selec-
tor Expectation) procedure. Finally, in order to keep the paper
as self-contained as possible, and to reduce uncertainty in the
experimental outcomes, AIC has also been included in the
experiment.

3.1. The Bootstrapped Selection Criteria. The proposed bMSE
method relies on the bootstrapped version of a given SC,
obtained by bootstrapping both the residual variance term 𝜎̂2𝜀
and the penalty term, so that (15) becomes

SC∗ = 𝑓 [(𝜎̂2𝑝,𝑞)∗ , 𝜉∗] . (17)

The particularization of (17) to the criteria object of
this study is straightforward and yields their bootstrapped
versions; that is,

AIC∗ (𝑝, 𝑞) = 𝑇 ln (𝜎̂2𝑝,𝑞)∗ + 2 (𝑝 + 𝑞 + 1)∗ ,
FPE∗ (𝑝, 𝑞) = (𝜎̂2𝑝,𝑞)∗ {𝑇 − (𝑝 + 𝑞 + 1)𝑇 + (𝑝 + 𝑞 + 1)}

∗ ,
BIC∗ (𝑝, 𝑞) = 𝑇 ln [𝜎̂2𝑝,𝑞]∗ + [(𝑝 + 𝑞 + 1) ln (𝑇)]∗ ,

HQC∗ (𝑝, 𝑞) = 𝑇 ln [𝜎̂2𝑝,𝑞]∗
+ [2 (𝑝 + 𝑞 + 1) ln (ln (𝑇))]∗ ,

(18)

with𝑇, 𝑝, 𝑞 being as above defined and 𝜎2𝑝,𝑞 being the residual
variance of the residuals from the fitting of the bootstrapped
series 𝑦∗𝑡 with its ARMA estimate 𝑦∗𝑡 . In symbols,

(𝜎̂2𝑝,𝑞)∗ = [ 1𝑇 − (𝑝 + 𝑞 + 1)]
∗

⋅ 𝑇∑
[max(𝑝,𝑞)]∗

[
[𝑦

∗
𝑡 − (𝑃∗∑

𝑗=0

𝜙𝑗𝑦∗𝑡−𝑗 − 𝑄∗∑
𝑖=0

𝜃𝑖𝑦∗𝑡−𝑖)]]
2

.
(19)
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In essence, bMSE method works as follows: MSCE pro-
cedure is applied iteratively on each𝑋∗

𝑏 bootstrap replication𝑏 = 1, . . . , 𝐵 of the observed series. A winner model 𝑀𝑔 is
selected at each iteration on the basis of a given SC, which
in turns works exploiting the bootstrap estimated variances
of the residuals. The final model is chosen on the basis of its
relative frequency over the 𝐵 bootstrap replication.

3.2. The Applied Bootstrap Scheme. Sieve [31] [32, 33] is
the bootstrap scheme employed here. It is an effective and
conceptually simple tool to borrow randomness from white
noise residuals, generated by the fitting procedure of a “long”
autoregression to the observed time series. This autoregres-
sion, here supposed to be 0–mean, is of the type 𝑦𝑡 =∑𝑝

𝑗=1 𝑎𝑡(𝑦𝑡−𝑗) + 𝜀𝑡, 𝑡 ∈ Z, under the stationarity conditions as
in (6). Its use is here motivated by the AR(∞) representation
of process of type (5); that is,

𝑋𝑡 = ∞∑
𝑗=1

𝑎𝑗 (𝑋𝑡−𝑗) + 𝜀𝑡 𝑡 = 1, 2, . . . , 𝑇, (20)

with (𝜀𝑡)𝑡∈Z being a sequence of iid variables with 𝐸[𝜀𝑡] = 0
and ∑∞

𝑗=0 𝑎2𝑗 < ∞. In essence, 𝑠𝑖𝑒V𝑒 bootstrap approximates a
given process by a finite autoregressive process, whose order𝑝 = 𝑝(𝑇) increases with the sample size 𝑇 such that 𝑝(𝑇) →∞, 𝑝(𝑇) = 𝑜(𝑇), 𝑇 → ∞. In this regard, in the empirical
study the estimation of the𝑝-vector of coefficients (𝑎1, . . . , 𝑎𝑝)
has been carried out through the Yule-Walker equations. The
residuals 𝜀𝑡 = ∑𝑝

𝑗=1 𝑎𝑗𝑋𝑡−𝑗 + 𝜀𝑡 𝑡 = 1, 2, . . . , 𝑇 obtained from
the fitting procedure of this autoregression to the original
data are then employed to build up the centered empirical
distribution function, which is defined as

𝐹𝜀 (𝑥) = 𝑃̂ [𝜀𝑡 ≤ 𝑥] = (𝑇 − 𝑝)−1 𝑛∑
𝑡=𝑝+1

1[𝑆𝑡−𝑆≤𝑥], (21)

where 𝑆𝑡 = 𝑋𝑡 − ∑𝑝
𝑗=1 𝑎𝑗𝑋𝑡−𝑗, with 𝑆 being the mean value of

the available residuals, that is, 𝑆𝑡, 𝑡 = 𝑝 + 1, . . . , 𝑇. From 𝐹𝜀
bootstrap samples X∗

𝑇 = (𝑋∗
1−𝑝, . . . , 𝑋∗

𝑇) are generated by the
recursion

𝑝∑
𝑗=1

𝑎𝑗 (𝑋∗
𝑡−𝑗 − 𝑋) = 𝜀∗𝑡 𝑡 ∈ (𝑝, . . . , 𝑇) , (22)

with starting values 𝑋∗
𝑡 = 0, 𝜀∗𝑡 = 0 for 𝑡 ≤ −max(𝑝, 𝑞),𝑡 = 𝑇 + 1, . . . , 2𝑇.

3.3.The Proposed bMSE Procedure. Let {𝑥𝑡}𝑇𝑡 be the observed
time series realization of ARIMA (𝑝, 𝑞) DGP (5), from which𝐵 bootstrap replications {𝑥∗𝑏,𝑡; 𝑏 = 1, 2, . . . , 𝐵}𝑇𝑡 are generated
via 𝑠𝑖𝑒V𝑒 method (Section 3). Our B-MSCE procedure is
based on the minimization, over all the combinations of
ARMAstructures, of a given SCby applyingMSCEprocedure
to each bootstrap replication𝑥∗𝑡,𝑏 of the original time series 𝑥𝑡.

In what follows the proposed procedure is summarized in
a step-by-step fashion.

(1) AmaximumARMAorder (𝑃,𝑄) is arbitrarily chosen,
so that exhaustive set Λ of tentative ARMA models,
that is, {𝑀𝑔, 𝑔 = 0, 1, . . . , 𝐺}, with 𝑝 ≤ 𝑃, 𝑞 ≤ 𝑄, of
size ((𝑃 = 𝑄) + 1)2, is defined.

(2) The number 𝐵 of bootstrap replications is chosen.
(3) A bootstrap replication, 𝑥∗𝑏 , of the original time series𝑥𝑡 is generated via 𝑠𝑖𝑒V𝑒method.
(4) The competition setΛ is iteratively fitted to 𝑥∗𝑏 so that𝐺 values (one for each of the models in Λ) of the SC∗

are computed and stored in the 𝐺-dimension vector
V𝐺.

(5) Minimum SC∗ value is extracted from V𝐺 so that a
winner model,𝑀∗

0,𝑏, is selected; that is,

𝑀∗
0,𝑏 : (𝑝∗, 𝑞∗) = arg min

𝑝<𝑃, 𝑞<𝑄
SC∗ (𝑝, 𝑞) . (23)

(6) By repeating 𝐵 times steps (3) to (5), the final model𝑀∗
0 is chosen according to a mode-based criterion,

that is, on the basis of its more frequent occurrence in
the set of the bootstrap replications. In practice, the
selected model is chosen according to the following
rule:

# [SC∗ (𝑀0,𝑏) < SC∗ (𝑀𝑔,𝑏)] ,
𝑔 = 0, . . . , 𝐺 − 1, 𝑏 = 1, 2, . . . , 𝐵, (24)

with the symbol # being used as a counter of the number of
the cases satisfying the inequality condition expressed in (24).

The order 𝑝𝑠𝑖𝑒V𝑒
0 of the 𝑠𝑖𝑒V𝑒 autoregression is chosen

by iteratively computing the Ljung-Box statistic [34] on the
residuals resulting from the fitting of tentative autoregression
on the original time serieswith sample size𝑇0. Further orders,
say 𝑝𝑠𝑖𝑒V𝑒

𝑖 , 𝑖 = 1, 2, . . ., for increasing sample sizes, 𝑇𝑖, 𝑖 =1, 2, . . ., are selected according to the relation 𝑝𝑠𝑖𝑒V𝑒
𝑖 = 𝑐(𝑇𝑖)1/3,

where 𝑐 = 𝑝𝑠𝑖𝑒V𝑒
0 /𝑇1/3

0 (in [6] 𝑝𝑠𝑖𝑒V𝑒
0 is chosen by iteratively

computing the spectral density on the residuals resulting
from the fitting of tentative autoregression on the original
time series; the order 𝑝 for which the spectral density is
approximately constant is then selected).

The presented method is exhaustive and then highly
computer intensive, as for all the (𝑝 + 1) ∗ (𝑞 + 1) possible
pairs (in the attempt to reduce such a burden, sometimes, see,
e.g., [35], the set of the ARMA orders under investigation is
restricted toΛ = {(𝜓, 𝜓−1): 0 ≤ 𝜓 ≤ Ψ}; i.e., the competition
set is made up of ARMA (𝜓, 𝜓 − 1); however, the fact that
such an approach entails the obvious drawback of not being
able to identify common processes, such as ARMA (2, 0), has
appeared to be a too strong limitation; therefore, in spite of
its ability to drastically reduce the computational time, such
an approach has not been followed here), the values of the
given SC∗ must be computed for each of the 𝐵 bootstrap
replications.

4. Empirical Study

In this section, the outcomes of a simulation study will be
reported. It has been designed with the twofold purpose of
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Table 1: ARMA DGPs.

Set Parameters DGP 1 DGP 2 DGP 3 DGP 4 DGP 5 DGP 6 DGP 7 DGP 8 DGP 9 DGP 10

J1

𝜙1 −.85 −.75 −.65 −.60 −.45 .50 .65 .70 .60 .7𝜙2 — — — — — — — — —𝜃1 .50 .40 −.40 .40 −.65 −.25 −.50 −.40 −.40 −.5𝜃2 — — — — — — — — —

J2

𝜙1 −1.2 −1.1 −0.9 −0.8 −0.6 −.5 − 0.4 0.35 0.7 0.4𝜙2 −.9 −0.9 −0.9 −0.8 −0.5 −4 −0.35 −0.6 −0.8 0.65𝜃1 .5 .5 0.5 0.5 0.5 .35 0.35 .50 −.5 −.5𝜃2 — — — — — — — — — —

J3

𝜙1 −0.9 −0.8 −0.7 −0.60 −0.5 −0.4 0.4 0.5 0.7 0.80𝜙2 — — — — — — — — — —𝜃1 −0.50 −0.35 −0.35 0.5 0. 0.35 0.70 −0.9 −0.5 −0.5𝜃2 0.35 0.50 0.35 0.35 −0.5 0.35 0.25 −0.5 − 0.5 0.35

(i) evaluating bMSE procedure’s small sample performances
and (ii) giving some evidences of its behavior for increasing
sample sizes. As a measure of performances, the percentage
frequency of selection of the true order (𝑝0, 𝑞0), in the
sequel denoted as 𝑔 and 𝑔∗ for MSCE and bMSE procedure,
respectively, has been adopted; that is,

𝑔 = 100 ∗ [# time series correctly identified𝑆 ] , (25)

with 𝑆 denoting the number of the artificial time series
employed in the experiment and # the quantifier symbol,
expressing the number of times the statement “time series
correctly identified” is true. Its extension to the bootstrap case𝑔∗ is straightforward.

Aspect (i) consists of a series of Monte Carlo experiments
carried out on three different sets of time series, 10 for each
set, detailed in Table 1, which (1) are realization of three
prespecified ARMA orders, that is, (1, 1), (2, 1), and (1, 2)
(one order for each set), and (2) differ from each other,
within the same set, only for the coefficients’ values, but not
for the order (𝑝, 𝑞). Two sample sizes will be considered,
that is, 𝑇 = 100, 200. Formally, these sets are, respectively,
denoted as {(J1,J2,J3)} and supposed to belong to the
order subspaceI: {I ⊇ J𝑗; 𝑗 = 1, 2, 3}. For each DGP ∈ I,
10 different coefficient vectors are specified, that is, {I ⊇
J ≡ (𝑝1, 𝑞1), . . . , (𝑝10, 𝑞10)}. The validity of the presented
method is assessed on comparative basis, using as benchmark
the standard MSCE procedure. For the sake of concision, the
values 𝑔 and 𝑔∗ will be computed averaging over all theDGPs
belonging to either the same set J𝑗 or I. In practice, two
indicators, that is, the PercentageAverageDiscrepancy (PAD)
and the Overall Percentage Average Discrepancy (OPAD),
depending on weather only one set J𝑗 or the whole order
subspace I𝑗 is considered, will be employed. They are
formalized as follows:

PAD (SC) = [𝑔∗[J,SC] − 𝑔[J,SC]] ∀J ⊆ I, (26)

OPAD (SC) = 1|I|
|I|∑
J=1

[𝑔∗[J,SC] − 𝑔[J,SC]] ∀J ⊆ I, (27)

where with the symbol | ⋅ | being the cardinality of a set is
denoted. In other words, the average percentage differences
in the frequency of selection of the true model is used as
a measure of the gain/loss generated by bMSE procedure
with regard to a single J (26) or by averaging over the
sets I (27). As already outlined, in analyzing aspect (ii)
the attention is focused on the behavior of the proposed
method for increasing sample sizes, that is, 𝑇 = 100, 200,
500, 1000. In Table 4, the results obtained for the case of 4
DGPs—detailed in the same table—will be given. In both (i)
and (ii), for each DGP ∈ (J1,J2,J3), a set of 𝑆 = 500 time
series has been generated. Each time series 𝑠𝑖 (𝑖 = 1, 2, . . . , 𝑆)
has been artificially replicated 𝐵 = 125 times using the
bootstrap scheme outlined in Section 3.2 (the simulations
have been implemented using the software R (8.1 version) and
performed using the hardware resources of the University
of California, San Diego; in particular, the computer server
EULER (maintained by the Mathematical Department) and
the supercomputer IBM-TERAGRID have been employed).
The number of bootstrap replications 𝐵 employed has been
chosen on empirical basis, as the best compromise between
performances yielded by the method and computational
time.

The parameter space of all the DGPs considered always
satisfies the invertibility and stationarity conditions (see (6),
(7)), whereas the maximum order 𝑃 and 𝑄 investigated has
been kept fixed and low throughout the whole experiment(𝑃 = 𝑄 = 3) mainly to keep the overall computational
time reasonably low.However, such an arbitrary choice seems
to be able to reflect time series usually encountered in
practice in a number of fields, such as economy, ecology, or
hydrology. However, it should be emphasized that in many
other contexts (e.g., signal processing) higher orders must be
considered.

4.1. The Experiments. Other than on the pure ARMA signal,
aspect (i) has been investigated in terms of the robustness
shown against outliers and noisy conditions. In practice, the
simulated DGPs are assumed to be
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a: a pure process (no contamination),
b: contaminated with outliers of the type IO (experi-

ments b1, b2) and AO (experiment b3),
c: contaminated with Gaussian additive noise.

The first set of simulations (experiment a) is designed
to give empirical evidences for the case of noise-free,
uncontaminated ARMA process of type (5). Experiment b
is aimed at mimicking a situation where a given dynamic
system is perturbed by shocks resulting in aberrant data,
commonly referred to as outliers. As already pointed out,
such abnormal observations might be generated by unpre-
dictable phenomena (e.g., sudden events related to strikes,
wars, and exceptional meteorological conditions) or noise
components which have the ability to lead to an inappropriate
model identification, other than to biased inference, low
quality forecast performances, and, if seasonality is present
in the data, poor decomposition.Without any doubt, outliers
represent a serious issue in time series analysis; therefore
testing the degree of robustness of any procedure against such
potentially disruptive source of distortion is an important
task. This topic has attracted much attention from both
theoretical statisticians and practitioners. Detection of time
series outliers was first studied by Fox [19], whose results
have been extended to ARIMA models by Chang et al. [36].
Other references include [37–39]. In addition,more andmore
often outlier detection algorithms are provided in the form
of stand-alone efficient routines—for example, the library
TSO of the software “R,” based on the procedure of Chen
and Liu (1993) [37]—or included in automatic model iden-
tification procedures provided by many software packages,
as in the case of the statistical program TRAMO (Time
series Regression with ARIMA noise, Missing observations,
and Outliers [40]) or SCA (Scientific Computing Associates
[41]). Following [19], two common types of outliers, that is,
additive (AO) and innovational (IO), will be considered. As
it will be illustrated, unfortunately the proposed identification
procedure shows sensitivity to outliers, as they are liable, even
though to different extents, to noticeable deterioration of the
selecting performances.

Inmore detail, the observed time series𝑥𝑡 is considered as
being affected by a certain number 𝜌 of deterministic shocks
at different time 𝑡 = 𝜏1, . . . , 𝜏𝜌; that is,

𝑥𝑡 = 𝑛∑
𝑗=1

ℎ𝑗𝜉𝑗 (𝐵) 𝐼(𝜏𝑗)𝑡 + 𝑧𝑡, (28)

where 𝑧𝑡 is the uncontaminated one of type (5), ℎ𝑗 measures
the impact of the outlier at time 𝑡 = 𝜏𝑗, and 𝐼(𝜏𝑗)𝑡 is an indicator
variable taking the value 1 for 𝑡 = 𝜏𝑗 and 0 otherwise. Outlier-
induced dynamics are described by the function 𝜉(𝐵) which
takes the form

𝜉𝑗 (𝐵) = {{{{{
1, for AO
𝜃 (𝐵)𝜙 (𝐵) for IO. (29)

As the onset of an external cause, outliers of the type
IO have the ability to affect the level of the series at the

time they occur until a lag 𝜏𝑗, whose localization depends
on the memory mechanism encoded in the ARMA model.
Their effect can be even temporally unbounded, for example,
under ARIMA DGPs with nonzero integrating stationary
inducing constant 𝐼. Conversely, AOs affect only the level
of the observations at the time of its occurrence (in this
regard, typical examples are errors related to the recording
process or to the measurement device employed). They are
liable to corrupting the spectral representation of a process,
which tends to be of the type white noise and in general
the autocorrelations are pulled towards zero (their effect on
the Autocorrelation Function (ACF) and the spectral density
level has been discussed in the literature (see, e.g., [42]
and the references therein)), so that meaningful conclusion
based on these functions—depending on their location,
magnitude, and probability of occurrence—might be severely
compromised. On the other hand, the effects produced by
IOs are usually less dramatic as the ACF tends to maintain
the pattern of the uncontaminated process 𝑧𝑡 and the spectral
density 𝐺𝑥(𝜔), 𝜔 being the frequency, roughly shows a shape
consistent with the one computed on 𝑧𝑡 (i.e., 𝐺𝑥(𝜔) ∝𝐺𝑧(𝜔)). The outcomes of the simulations conducted are
consistent with the above.

In the present study, IOs have been randomized and
introduced according to a Bernoulli (BER) distribution with
parameter 𝜋 = .04. In order to better assess the sensitivity of
the proposed procedure to outlying observations, experiment
b has been conducted considering two different levels of
standard errors, that is, 𝜎 = 3 (experiment b1) and 𝜎 = 4
(experiment b2); in symbols, recalling (5), we have

𝜀𝑡 = (1 − 𝑄𝑡) 𝜀1,𝑡 + 𝑄𝑡𝜀2,𝑡 𝑄𝑡 ∼ BER (𝜋) 𝜋 = 0.04,
𝜀1,𝑡 ∼ NID (0, 𝜎2) 𝜀2,𝑡 ∼ NID (0, 𝑘𝜎2) 𝑘 = √3, 2. (30)

In b3, AOs have been placed according to the following
scheme:

𝐼(𝜏𝑗)𝑡 =
{{{{{{{{{

1 𝑗 = 25, 35, 65, 75 𝑇 = 100
1, 𝑗 = 125, 135, 165, 175 𝑇 = 200
0, Otherwise.

(31)

The last experiment, that is, c, has been designed tomimic
a situation characterized by low quality data, induced, for
example, by phenomena like changes in survey methodolo-
gies (e.g., sampling design or data collecting procedures) or in
the imputation techniques. Practically, a Gaussian-type noise
]𝑡 is added to the output signal, so that 𝑥𝑡 = 𝑧𝑡 + ]𝑡, 𝑧𝑡
being the pure ARMA process. Using (5), we have 𝑥𝑡 =[𝜙(𝐵)/𝜃(𝐵)]𝜀𝑡 + ]𝑡, where 𝜀𝑡 ∼ nid(0, 𝜎2) and ]𝑡 ∼ nid(0, 𝑤2)
is additive noise, independent of 𝑧𝑡.The variance of ]𝑡, say𝑤2,
has been chosen according to the relation𝑤2 = (1/10)𝜎2(𝑥𝑡).
4.2. Results. The empirical results pertaining to aspect (i) are
summarized in Tables 2 and 3 for the sample sizes 𝑇 = 100
and 𝑇 = 200, respectively. By inspecting these tables it is
possible to notice that, with the exception of experiment 𝑏3,
in all the other cases bMSE procedure gives no negligible
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Table 2: Frequency of selection of the true model in the nonbootstrap (𝑛𝑏) and bootstrap (𝑏) world for 𝑇 = 100.
Model Test AIC FPE BIC HQC𝑔 𝑔∗ 𝑔 𝑔∗ 𝑔 𝑔∗ 𝑔 𝑔∗

ARMA (1, 1) (SETJ1)

𝑎 42.3 52.4 41.5 50.2 52.4 62.7 47.7 60.2𝑏1 37.9 44.7 36.3 42.5 42.1 50.3 44.2 52.7𝑏2 36.3 42.4 32.7 38.1 38.4 45.4 42.0 49.3𝑏3 23.1 20.3 21.9 18.5 29.8 26.7 25.8 24.5𝑐 31.2 38.3 26.1 32.5 39.9 48.8 43.1 52.3

ARMA (2, 1) (SETJ2)

𝑎 49.0 59.6 47.1 55.5 59.2 71.3 52.4 65.5𝑏1 47.5 53.4 41.0 46.6 51.8 59.4 53.5 62.7𝑏2 42.0 47.2 39.2 43.6 46.0 53.5 47.6 55.6𝑏3 28.2 26.3 24.2 21.5 27.6 30.2 31.5 33.4𝑐 38.3 44.1 34.3 39.4 43.5 51.8 45.9 57.0

ARMA (1, 2) (SETJ3)

𝑎 47.5 57.9 43.6 53.2 55.4 67.0 48.5 61.3𝑏1 32.4 38.4 29.3 34.6 45.3 52.8 48.1 56.3𝑏2 31.6 36.7 28.1 32.4 34.7 41.3 38.5 45.7𝑏3 25.8 23.3 19.6 16.5 24.6 23.7 29.4 28.3𝑐 35.1 41.4 32.2 37.6 46.4 54.2 44.7 54.4

Table 3: Frequency of selection of the true model in the nonbootstrap (𝑔∗) and bootstrap (𝑔∗) world for 𝑇 = 200.
Model Test AIC FPE BIC HQC𝑔 𝑔∗ 𝑔 𝑔∗ 𝑔 𝑔∗ 𝑔 𝑔∗

ARMA (1, 1) (SET I)

𝑎 49.6 58.7 46.3 54.1 56.7 66.8 53.2 64.4𝑏1 45.5 51.0 39.5 44.7 47.9 54.8 51.9 59.4𝑏2 39.0 43.4 37.1 41.2 45.4 51.2 48.6 54.7𝑏3 29.5 26.4 26.8 23.6 33.4 30.7 30.9 27.4𝑐 42.4 48.4 39.5 44.7 48.3 55.6 50.6 58.3

ARMA (2, 1) (SET II)

𝑎 58.7 68.9 53.5 62.3 65.4 77.2 60.4 73.1𝑏1 51.9 57.6 48.1 53.4 55.7 62.8 57.6 66.5𝑏2 49.0 53.3 44.6 48.8 51.5 57.2 53.0 59.8𝑏3 33.8 30.7 22.7 25.3 31.4 33.6 36.3 37.4𝑐 50.3 56.4 43.0 48.6 57.2 64.6 58.1 66.3

ARMA (1, 2) (SET III)

𝑎 52.4 62.1 50.5 58.6 60.3 71.3 57.6 69.7𝑏1 48.9 54.2 42.5 47.4 51.1 57.2 54.5 61.7𝑏2 44.2 48.3 35.4 38.6 47.2 52.3 50.8 56.2𝑏3 24.7 22.6 21.0 18.4 26.1 24.2 32.0 29.8𝑐 44.4 50.6 36.2 41.3 55.0 61.2 56.3 62.9

improvements over the standard procedure. In particular, it
proves to perform particularly well in the pure ARMA case
(experiment 𝑎) where, for 𝑇 = 100, it brings the frequency of
selection of the true model (𝑔∗), averaging over all the three
sets of orders, from 45.2% and 52.1% to 54.8% and 64.7%
in the case of Shibata efficient and dimension consistent
criteria, respectively. Considering the latter, the PAD values
recorded are between 11.3 (BIC) and 13.8 (HQC). On the
other hand, the bootstrapped version of AIC still shows
good improvements (PAD over 10) whereas FPE provides the
smaller gains (PAD between 8.4 for J2 and 9.6 for J3). As
expected, for 𝑇 = 200 both the methods show an increasing
average frequency of selection of the correct model for all

the SC: averaging over I and all the SC the values of 55.4%
and 65.6% have been recorded for 𝑔 and 𝑔∗, respectively.
Regarding the gains over the standard procedure, now BIC
and HQC show PAD values above 10 (with a spike of 12.7 of
HQC in the case of J2), whereas the performances for the
AIC (PAD above 9) are still good. Less satisfactory job is done
by the FPE (PAD = 8.2). Finally, it is worth mentioning that
the greatest gains pertain to the HQC, with PAD(J1) = 15.5
for 𝑇 = 100 and PAD(J2) = 12.7 for 𝑇 = 200.

Even though to different extents, both the procedures are
affected by the presence of outliers, especially in the case of
the smaller sample size. However, as long as IOs (experiments𝑏1 and 𝑏2) are involved, bMSE seems to do a good job in
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Table 4: Frequency of selection of the true model in the nonbootstrap (𝑔) and bootstrap (𝑔∗) world, for different sample sizes.

DGP Γ SC 𝑇 = 100 𝑇 = 200 𝑇 = 500 𝑇 = 1000𝑔 𝑔∗ 𝑔 𝑔∗ 𝑔 𝑔∗ 𝑔 𝑔∗

𝐴 𝜙1 = −.9𝜙2 = −.9𝜃 = .6
AIC 59.2 72.0 71.5 80.5 79.1 84.3 81.8 85.5
FPE 56.2 65.6 68.5 76.1 75.4 80.2 78.5 82.3
BIC 65.5 79.7 78.7 89.8 87.3 93.8 92.6 95.5
HQC 63.3 77.2 76.4 85.3 86.6 91.2 91.5 93.4

𝐵 𝜙1 = −.8𝜙2 = −.8𝜃 = .5
AIC 52.5 61.2 65.7 73.6 74.3 80.3 79.6 82.8
FPE 51.4 59.1 66.0 71.5 72.9 78.7 75.5 80.4
BIC 57.3 67.5 72.4 79.7 80.7 84.6 85.2 87.1
HQC 50.8 63.5 67.4 74.2 76.3 79.4 81.5 83.7

𝐶 𝜙1 = −.6𝜙2 = −.5𝜃 = .5
AIC 45.3 55.7 60.5 69.3 70.2 75.6 73.7 77.2
FPE 42.5 54.1 57.0 64.9 64.4 70.1 67.6 71.7
BIC 53.1 65.8 67.3 77.6 76.5 83.1 82.7 84.9
HQC 50.7 65.4 67.5 75.6 76.0 80.6 81.3 83.1

𝐷 𝜙1 = −.8𝜙2 = −.6𝜃 = .4
AIC 47.8 58.1 61.2 68.4 68.3 72.6 69.7 73.7
FPE 44.2 53.8 56.5 62.7 64.7 68.6 66.6 70.8
BIC 51.9 64.2 65.3 71.8 72.5 76.6 74.7 77.5
HQC 49.7 62.3 66.4 75.0 73.3 79.4 78.0 80.6

counteracting their adverse effects. In fact, for 𝑇 = 200, this
procedure, applied to dimension consistent criteria, selects
the right model always more than 50% (experiment 𝑏2) and
approximately 55%of the times in experiment 𝑏1. For this type
of criteria, the average gain over the standard procedure is
noticeable, especially in the case of experiment 𝑏1 (OPAD =6.7 for BIC and 7.9 for HQC). On the other hand, Shibata
efficient criteria achieve less remarkable results: with PAD
values ranging from 4.9 for the FPE (PAD(J3)) to 5.7 for the
AIC (PAD(J2)). As expected, for 𝑇 = 100 the impact of the
IOs is stronger: applied to Shibata consistent criteria, bMSE
procedure selects the right model in average approximately
43.4% of the time with a minimum of 34.6% recorded
for FPE in the case of J2, whereas dimension consistent
criteria show a 𝑔∗ value in average equal to 55.7%. Selecting
performances granted by the proposed method, even though
still acceptable, tended to deteriorate to a greater extent
considering the experiment 𝑏2, especially with 𝑇 = 100:
here the frequency of selection of the true model for Shibata
efficient SC is around 40.1% versus 35% of the standard
procedure, for a recorded OPAD amounting to 5.5 for the
AIC and 4.7 for the FPE. Slightly better results for 𝑇 = 200
are recorded, where the correct model has been identified by
dimension consistent criteria 55.2% (OPAD = 5.8%) of the
times versus 49.4% of the standard procedure.

Experiment 𝑏3 is where the proposed procedure crashes
and offers little or no improvements over the standard one.
The most seriously affected selector is the FPE, which shows
an ability to select the correct model in average only 18.9%
and 22.4% of the times, versus 21% and 25.2% recorded for
the nonbootstrap counterpart, respectively, for 𝑇 = 100
and 200. Finally the effect of the injection of a Gaussian
noise to the output signal (experiment 𝑐) is commented
on. Here, the performances of the method appear to be

adequate: averaging over I, the value recorded for 𝑔∗ is
61.8% (𝑔 = 54.6) for dimension consistent criteria (𝑇 =200) with particularly interesting improvements over the
standard procedure yielded by HQC, which shows OPAD
values amounting to 10% and 7.5% for 𝑇 = 100 and 200,
respectively. The bootstrapped version of HQC performs
consistently better than the other criteria: in fact it chooses
the correct model in average 63.2% and 56.6% of the times
for 𝑇 = 100 and 𝑇 = 200, respectively. On the other hand,
FPE detects the true model with the smallest probability
by reaching the average frequency of selection of the true
model of 39.8 (𝑇 = 100) and 45.1 (𝑇 = 200). Shibata
consistent criteria show also the smallest gains over the
standard procedure; for example, for 𝑇 = 100 the maximum
PAD is equal to 7.1 and 6.4 for AIC and FPE, respectively
(both values’ recorder forJ2), whereas dimension consistent
criteria, for the same sample sizes, show a maximum PAD
of 8.9 and 11.1, in the case of BIC (J1) and HQC (J2),
respectively.

In the analysis of aspect (ii), the performances yielded
by the two procedures, in terms of frequency of selection
of the correct model, are considered for increasing sample
sizes (𝑇 = 100, 200, 500, 1000). The results for four different
ARMA (2, 1) models, along with their details, are presented
in Table 4. As possibly seen by inspecting this table, all
the SC under test exhibit roughly a similar pattern: for the
small sample size, remarkable disclosures in selecting per-
formances between the two methods are noticeable whereas
such discrepancies become less pronounced for 𝑇 = 500 and
very small for 𝑇 = 1000. For example, considering all the 4
DGPs, BIC shows a PAD ranging from 12.6 (series D) to 14.7
(series C) with sample size 𝑇 = 100, whereas for 𝑇 = 1000,
PAD is in the range 1.9–2.9 for the series B andA, respectively.
For this sample size, the smallest PAD has been recorded
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Figure 1: Frequency of selection of the true model, DGP C, Table 4: SC (continuous line) and SC∗ (dashed line).

for the HQC, whose values range from 1.8 (series C) to 2.6
(series D). Graphical evidence of such a behavior is finally
given in Figure 1, where the results recorded for series C are
considered.

Among themany factors influencing the performances of
the method, the sample size is clearly one of the most crucial
ones. Unreported simulations conducted with a sample size𝑇 = 60 confirm a still acceptable selection rate of the
right model, provided that the time series is either noise-
and outlier-free and generated by a robust parametric DGP
structure. Under such conditions—met, for instance, in the
case of DGPs 1-2 (set J2)—no substantial reductions in
the selection performances have been noticed between the
smallest sample size considered, that is, 𝑇 = 60 and 𝑇 = 100.

For instance, for 𝑇 = 60 and averaging between DGPs 1 and
2 (setJ2), the bootstrap procedure applied to the dimension
consistent criteria identifies the right model approx 64% and
61% of the times, versus 49.6% and 42.3% achieved by their
nonbootstrap counterpart, for the BIC and HQC, receptively.
However, with time series subjected to disturbances and
characterized by weaker ARMA structures, as in the case
of DGP 6 (set J2), the proposed method tends to perform
poorly and to select the correct model a number of times not
far from the standard MAICE procedure.

It is worth pointing out that, unlike artificial setups, in real
life data set the truemodel order is generally unknown; there-
fore the optimality of the bootstrap method can be inferred
on empirical basis, that is, by using the relative frequency of
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selection of the different tentative ARMAmodels. In practice,
the 𝐵 winning models generated at each and every bootstrap
replication are ranked according to their relative frequency of
selection of the true model. In this way, our confidence in the
bootstrap selection procedure is linked to the difference in
the relative frequency of selection of the winner model (with
the highest selection rate) compared to the ones achieved by
its closest competitors. Ideal situations are characterized by
high rate of choices of the winnermodel, which drops sharply
considering the rest of the competition set. In such a case,
we can reasonably be sure that the selected model is closer
to the true order than the one found by using the standard
MAICE procedure (clearly if different models are selected).
On the other hand, slight discrepancies (say 3-4%) between
the winning model and the others should be regarded with
suspicion and carefully evaluated on a case-by-case basis.

5. Final Remarks and Future Directions

In this paper two pairs of selectors, differing for their
derivation and properties, have been brought in a bootstrap
framework with the purpose of enhancing their selecting
capabilities. A set of Monte Carlo-type experiments has
been employed in order to assess the magnitude of the
improvements achieved. These encouraging results obtained
can be explained in terms of the reduction of uncertainty
induced by the bootstrap approach. Identification procedures
of the type MSCE, in fact, base the choice of the final model
on the minimum value attained by a given SC, no matter
how small the differences in the values showed by other
competing models might be. When they are actually small,
standardMSCE procedures are likely to introduce significant
amount of uncertainty in the selection procedure; that is,
different order choices can be determined by small variations
in the data set. The proposed procedure accounts for such a
source of uncertainty, by reestimating the competing models
and recomputing the related SC value 𝐵 times (one for
each bootstrap replication). In doing so the identification
procedure is based on 𝐵 different data replications each of
them embodying random variations. Also the improvements
achieved by the proposed method in the case of IOs can also
be explained in the light of reduction of uncertainty. Basically,
what the procedure does is to reallocate these outliers 𝐵
times, so that the related selection procedure can control
for such anomalous observations. On the other hand, bMSE
procedure breaks down in the case of AOs, probably because
of the fact that the employedmaximum likelihood estimation
procedure is carried out on the residuals, which are severely
affected by these types of outliers. Consistently with other
Monte Carlo experiments, in the proposed simulations the
best results are achieved by dimension consistent criteria,
especially by BIC. However, two drawbacks affect this cri-
terion: tendency in the selection of underfitted models and
consistency achieved only in case of very large sample [4],
under the condition that the true model is included in the
competition set. The last assumption implies the existence of
a model able to provide full explanation of the reality and the
“existence” of an analyst able to include it in the competition

set. Unfortunately, even assuming finite dimensionality of
real life problems, reality is still very complex so that a
large number of models are likely to be included in the
competition set. As a result of that, selection uncertainty
will rise. Superiority of BIC should also be reconsidered in
the light of different empirical framework, as Monte Carlo
experiment cannot capture the aforementioned problems. It
is in fact characterized by the presence of the true model in
the portfolio of candidate models. This appears unfair if we
consider that criteria of the types AIC and FPE are designed
to relax such a strong, in practice unverifiable, assumption
and that they enjoy the nice Shibata efficiency property. In
addition, in order to keep the computational time acceptable,
in Monte Carlo experiments the true DGP is generally of low
order, so that BIC underestimation tendency is likely to be
masked or, at least, to appear less serious. For these reasons,
from a more operational point of view, it can be advisable to
consider the indications provided by both AIC∗ and BIC∗,
which are the best selectors in their respective categories,
according to the simulation experiment. This is particularly
true when the sample size is “small” and the information
criteria, either considered in their standard or bootstrap
form, tend to yield values close to each other for closer
models. As a result of that, significant amount of uncertainty
can be introduced in the selection process. Finally, as a future
direction, itmight beworth emphasizing that the purpose of a
givenmodel is built and thus identified, which can be usefully
considered to assess the selector’s performances. For instance,
in many cases computational time is a critical factor, so that
one might be willing to accept less accurate model outcomes
by reducing the number of bootstrap replications. In fact,
global fitting is not necessarily the only interesting feature one
wants to look at, as a model might be also evaluated on the
basis of the potential ability in solving the specific problems
it has been built for. In this regard, selection procedures
optimized on a case-by-case basis and implemented in the
bootstrap world might result in a more efficient tool for a
better understanding of the reality.
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