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A Wavelet Threshold Denoising Procedure for
Multimodel Predictions: an Application to

Economic Time Series

Livio Fenga

ISTAT, National Institute of Statistics
fenga@istat.it

Abstract. Noise–affected economic time series, realizations of stochas-
tic processes exhibiting complex and possibly non-linear dynamics, are
dealt with. This is often the case of time series found in economics, which
notoriously suffer from problems such as low signal-to-noise ratios, asym-
metric cycles and multi–regimes patterns. In such a framework, even
sophisticated statistical models might generate suboptimal predictions,
whose quality can further deteriorate unless time consuming updating
or deeper model revision procedures are carried out on a regular basis.
However, when the models’ outcomes are expected to be disseminated in
timeliness manner (as in the case of Central Banks or national statistical
offices), their modification might not be a viable solution, due to time
constraints. On the other hand, if the application of simpler linear models
usually entails relatively easier tuning–up procedures, this would come
at the expenses of the quality of the predictions yielded. A mixed, self-
tuning forecasting method is therefore proposed. This is an automatic,
two–stage procedure, able to generate predictions by exploiting the de-
noising capabilities provided by the wavelet theory in conjunction with a
compounded forecasting generator. Its out–of–sample performances are
evaluated through an empirical study carried out on macroeconomic time
series.

Keywords: SARIMA models; SETAR models; Time series forecast;
Wavelet

1 Introduction

In many fields of theoretical and applied research, mathematical models aimed at
predicting the future values taken by a random variable are routinely employed.
Forecasting is a widespread and vital activity in many fields of research – such
as engineering, medicine, climatology and economics – which requires theoreti-
cal and computational efforts in an amount usually proportional to the degree
of uncertainty of the phenomenon under investigation. Economics is certainly
a major field of application of prediction methods. Here, strong uncertainty is
often paired with the need of accurate predictions, generally released in timeli-
ness fashion and yielded by ad hoc models, i.e. carefully designed according to
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the purposes envisioned, such as of monitoring key indicators, implementing or
refining decision processes, gaining precious insights about future or on-going
strategies, e.g. in terms of inflation rate, industrial production index, GNP, un-
employment rate, welfare and so forth. That economic prediction is an activity
in a constant rise and good methods are always in demand, is explainable, at
least in part, by two main phenomena: World increasing level of complexity and
data proliferation. Regarding the first aspect, as the World increases its level of
complexity, virtually all the processes related to its manifestations embody, to
a different extent, such a feature, which might appear in several forms, such as
noise, irregular or even erratic behaviors and many other types of potentially
disturbing factors. This is particularly true having in mind events – often catas-
trophic – that have characterized the first years of the 21st century. Economic
crises (speculative bubble), wars (Iraq, Afghanistan, Ukraine, Isis), terrorist at-
tacks (Twin Towers), health emergencies (the spread of Ebola virus) and several
others, have introduced, with different intensities, strong elements of uncertainty
– such as spillovers and volatility – in the economic system. As a result of that,
models successfully applied previously, need, more and more often, to be revised,
redesigned or even replaced with more appropriate alternatives, i.e. able to ac-
count for such interventions in order to yield more reliable forecasts. On the
other hand, the second aspect reflects today’s availability of bigger than ever
quality information–sets, related to a growing number of economic variables. In
this regard, it is also remarkable the extent their sampling frequencies have been
increased to, mainly thanks to the progress achieved in computer sciences and
engineering (e.g. web–based data capture techniques, satellite imaging method-
ologies, and so on). In fact, nowadays many time series are recorded at frequency
rates unattainable even in the recent past, so that sampling frequencies of few
minutes, as in the case of the electric power demand or expressed in a tick-by-
tick fashion, as in the area of financial markets, are not uncommon. The latter
is actually the case where the time interval between human (or machine-driven)
action into the real world and the generation of the related measures – often
in the form of ready-to-use statistical indicators – virtually collapses. Because
of this scenario – characterized by a spectacularly huge amount of data, often
available at virtually no cost for the end user – building, tuning up and maintain
a complex, non-linear prediction model is surely a challenging task, which can
become quickly cumbersome when time constraints are in place. On the other
hand, simpler linear models are in general easier to manage but likely unable
to fully account for the complicated patterns more and more often exhibited
by macroeconomic time series. Despite that, much statistical analysis of time
series, is still done under the linear paradigm where the use of denoising algo-
rithms appears to be quite limited. Such a framework – outside trivial cases and
ad hoc lab–controlled experiments – hardly ever do possess features compatible
with the dynamics encountered in real-world data analysis setups. Capturing
such features is the aim of the proposed forecast procedure, designed to mini-
mize human interaction, which combines the well established wavelet threshold
denoising approach, with a mixing–forecasting procedure, based on the combina-
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tion of the predictions delivered by a linear model of the class SARIMA (Seasonal
Autoregressive Moving Average) and SETAR (Self Exciting Threshold Autore-
gressive). The framework presented here is quite flexible, as it is able to capture
multi-regimes type behaviors, symmetric and asymmetric cyclical components
as well as linear features of the series at hand. It is also able to account for and
balance the relative importance of its linear and non-linear features, through an
optimal weighted combination of the predicted values yielded by the two models
considered. Such predictions are extracted from a filtered version of the original
time series and combined according to the method proposed by [1].

2 Signal denoising and prediction procedures

In their raw format, most of the real-world signals are available in time–domain
and, as such, have a related physical representation of the type time–amplitude.
In this regard, throughout the present paper, the time series of interest is in-
tended to be a real–valued, uniformly sampled, sequence of data points of length
T , denoted as:

xt :=

{(
xt

)T
t∈Z+

}
, (1)

whereas its predicted values at horizon h are formalized as follows:

xt(h) =

{(
xt

)T+h

t∈Z+
; h = 1, 2, ...,H

}
. (2)

This is perhaps the most intuitive representation, given the analogical basis it
is grounded upon, but not necessarily the optimal one for any sort of applications
or analysis. In the present paper, both the domains are employed in a multistage
and iterative fashion. In more details, the frequency information conveyed by the
data are used to denoise the time series – through a wavelet thresholding-type
procedure – whereas the time domain part is in charge of generating optimally
weighted predictions – minimizing a suitable forecast quadratic loss function.

In more details, the presented procedure – called FOR-WARD (short for
FORecast via Wavelet Automatic Real-valued time series Denoiser) to empha-
size its self-adjusting forecasting and denoising capabilities, is based on an iter-
ative procedure aimed at finding the optimal wavelet filter-denoising thresholds,
conditioned to the set of predictions yielded by the two models considered (which
are formalized in Eqn. 7 and 10 and the optimal weighting parameters used to
combine these predictions. In other words, the original time series is iteratively
filtered according to a set of thresholds and processed independently by opti-
mal (in a sense explained below) SARIMA and SETAR models until a suitable
quadratic loss function is minimized.



4 L. Fenga

2.1 Wavelet–based denoiser

As suggested by their name, wavelets – formalized in Eqn. 3 and 4 – are well
localized functions whose amplitude grows from zero, reaches a maximum, and
then decreases back to zero again. They play a key role in FOR–WARD proce-
dure, as it uses wavelet expansions to generate smoother versions of the original
signal. In the sequel, only the function Hilbert space L2(R) of all the squared

integrable functions is considered, i.e. f ∈ L2(R) iff:
∫ +∞
∞ |f(x)|2dx <∞, satis-

fying a function, say ψ(x), verifying

f(x) =
∑
k∈Z

ckφ0,k(x) +
∑

j<J,k∈Z
dj,kψj,k(x),

where

ck =

∫
R
f(x)φ0,k(x)dx (3) dj,k =

∫
R
f(x)ψj,k(x)dx, (4)

being J the maximum number of allowable resolutions, given the available
sample size. Here, each set of coefficients, usually referred to as crystal, is linked
to a spacial scale j, whereas every single coefficient k, called atom, accounts for
a particular location. In practice, the wavelet coefficients {djk; j = 1, 2, ..., J}
(Eqn. 4) account for and represent progressively finer and finer details whereas
smooth dynamics at the coarsest scale are captured by the crystal {ck} (Eqn.3).
The function ψ(x), called mother wavelet, generate all the wavelet functions

ψj,k(x) through the equation ψj,k(x) = 2
1
2ψ(2jx − k), so that the set {ψj,k}

defines an orthonormal basis for L2(R). By dilations and translations of ψ(x),
the space of functions Ψ(x) is generated, i.e.

Ψ =

{
ψc,b(x) = |c|−1/2ψ

x− b
c

, c, b ∈ R, c 6= 0

}
,

with the function ψ satisfying the following conditions: a)
∫∞
−∞ ψ(t)dt = 0;

b)
∫∞
−∞ |ψ(t)|dt < ∞; c)

∫∞
−∞

|ψ̂(ξ)|
|ξ| dtξ < ∞, ψ̂(ξ) being the Fourier trans-

form of ψ(t); d)
∫∞
−∞ tjψ(t)dt = 0, j = 0, 1, ..., r− 1, under the conditions

that it must exist at least a r ≥ 1 and
∫∞
−∞ trψ(t)dt <∞. Even though different

approaches are available, the proposed method has been implemented with a
signal–coefficient transformation procedure of the type Discrete Wavelet Trans-
form (DWT ), associated with boundary condition of the type periodic. Basically,
the observed time series xt is modified by artificially introducing an extension
of it, so that the unobserved samples {x}t∈Z− are assigned the observed values
xT−1, xT−2,...,x0. This method considers the series as it were periodic, and is
known as using circular boundary conditions. Now, the wavelet and scale coef-
ficients are given by:

dj,t =
1

2j/2

Lj−1∑
l=0

hj,l, xt−l mod N , SJ,t =
1

2j/2

Lj−1∑
l=0

gj,l, xt−l mod N ,
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where {hj,l} and {gj,l} are the length L, level j, wavelet and scaling (ap-
proximate) filters respectively: the former, of the type band–pass, with nominal
pass–band f ∈ [ 1

4 µj
, 1

2µj ], and the latter of the type low-pass, with a nominal

pass-band f ∈ [0, 1
4µj ], with µj denoting the scale.

Statement of the Problem Since real–life data are always supposed to be
observed with error, no direct access to the theoretical, uncorrupted realizations
yt ∼M(·), with M the statistical model followed by the DGP, is possible. In fact,
one is only able to observe the realization xt (Eqn. 1) – i.e. xt = yt + εt – which
is supposed to be measured with additive, independent noise εt. In this case,
wavelet theory can be fruitfully employed to achieve a better signal–to–noise
ratio, for the benefit of virtually all the stages of the analysis. For example, the
investigation of the probabilistic structure of the time series at hand via the Em-
pirical Autocorrelation Functions, the inference methods of the type Maximum
Likelihood as well as the model order selection and validation procedures can be,
to varying degrees, biased due to the presence of noise components. The conse-
quences are in general not negligible and range from instability of the parameter
estimates (resulting in significant amount of model uncertainty), to the selection
of the wrong model. The adopted theoretical framework is now illustrated: given
the observed data {x1, . . . xi, . . . xn}, assume the model

xi = f(ti) + σεi, (5)

with ti = 1
n , to be measured with additive, independent noise, i.e. the se-

quence {ε}n1 , with unknown variance. The function f has to be estimated from
the available stretch of data xi, according to a suitable quadratic loss function L,
so that, defining f̂ the estimated function, we have: f̂ = min

L
||f̂ − f ||2. Defining

xj,k as the j–level crystal (j ⊂ J) – with k being the index–identifier for the
k–atom – the wavelet-based denoiser enter this setup by considering that Eqn. 5
– in the wavelet domain – under wavelet orthogonality and periodic conditions–
reads as

xj,k = wj,k + σηj,k,

where wj,k are the noise–free wavelet coefficients and η is the N(0,1) iid
sequence. Taking advantage of the sparse structure of the crystal (as many 0–
coefficients are likely to be embedded in the theoretical pure signal), the problem
can now be restated as follows: instead of focusing on the unknown function f ,
we think in terms of those atoms whose magnitude is above (below) a certain
threshold in order to retain them as an integral part of the signal (discard them as
an unwanted component). Such a discriminating operation is conducted on those
crystals accounting for higher frequencies, as they are usually the most affected
by noise, unlike the crystals accounting for the lowest frequencies. Thresholding
methods usually are level dependent – i.e. λ = λ(j) or, in more complex cases,
based on both level and atoms – i.e. λ = λ(j, k). Once estimated, the threshold
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can be applied according to different rules; the one denominated hard threshold
scheme, expressed as follows,

δ(λ) =

{
0, if dj,k ≤ λ
dj,k, if dj,k > λ,

(6)

is the one adopted in the present paper.

2.2 The Prediction Models and Selectors employed

In what follows, the stochastic models considered in the present study are briefly
summarized. As popular statistical tools, they have been often employed to cap-
ture various types of linear – as in the case of the SARIMA models, popularized
by [2] – and non linear dynamics – as in the case of models of the type SE-
TAR, introduced by [3] and further developed by [4]. In particular, the former
has been successfully employed in many econometric applications concerning the
prediction of different variables, such as electric power load – see, for example,
[5], [6], [7] – tourism demand [8] or inflation rate [9]. On the other hand, SE-
TAR models are useful in those circumstances when the non–linear features of
the time series at hand are not properly accounted for by pure linear models.
This is, for instance, the case when a significant part of the total information
is stored in the non linear components of the time series under investigation,
such as asymmetric cycles, multimodal jumps or multiple regime dependency.
Empirical exploration of their performances may be found in many sources (e.g.
[10] and [11]), whereas specific econometric applications can be found in different
contexts, such as interest rates ([12], [13]), output growth [14] and stock market
([15], [16]).

With regard to the selection of the “best” model order, it should be empha-
sized that many identification strategies and selectors are nowadays available,
also in the form of ready-to-use fast routines, implemented in many commer-
cial and free of charge software package. Among them, information criteria have
gained widespread acceptance by both theoretical statisticians and practitioners.
An excellent summary of this criteria can be found in [17] whereas a through
discussion, limited to the ARMA case, is available in [18]. In essence, information
criteria provide a metric for balancing between goodness of fit and complexity of
the model and select an order that minimizes a quantity expressed by the max-
imized log likelihood plus a penalty term. The Information Criterion of Akaike
(AIC), proposed by [19] – probably one of the most well-known and successfully
employed order selector – is the criterion applied in the present paper. Based
on an estimate of the expected relative entropy (the Kullback - Leibler diver-
gence) contained in an estimated model – i.e. the degree of divergence from
the “true” theoretical model – it has the desirable properties of belonging to
the class of Shibata efficient criteria and of being designed for problems of the
type ∞–dimensional. Unfortunately, as it has been proven by [20], AIC penalty
term does not guarantee consistency of the selector so that, by adding more and
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more structure to candidate models, it becomes negatively biased and, a result,
overfitting will arise with non zero probability. This Criterion can be defined as
follows:

AIC = −2 max log(L(θ̂|x)) + 2K,

where K is the dimension of the model and (L(θ̂|x)) is the log likelihood
function. Finally, for the sake of notation convenience, in the sequel SARIMA
and SETAR models will be respectively referred to, either in the text and in
the formulae, as model a and b and identified through the indicator variable
I = {a, b}.

SARIMA models A generalization of the ARIMA class proposed by [2],
SARIMA models have been introduced to model complex dynamics of the type
stochastic seasonal. Let xt be an observed stretch of data with mean µ satisfying
(Eqn. 1), SARIMA model can be expressed as:

φp(B)ΦP (BS)5DS 5d(xt − µ) = θq(B)ΘQ(BS)αt, (7)

where – denoting with B the backward shift operator, d and D the non-
seasonal and seasonal difference operator respectively, defining 5d = 1 − Bd

and 5D = 1 − BD – we have φp(B) = 1 − φ1B − φ2B
2 − .... − φpBp, θq(B) =

1− θ1B − θ2B
2 − ....− θqBp, ΦP (BS) = 1−Φ1B

S −Φ2B
2S − ....−ΦPBPS and

ΘQ(BS) = 1 − Θ1B
S − Θ2B

2S − .... − ΘqBQPS . Here, φ, θ, Φ, Θ, respectively
denote the non-seasonal autoregressive and moving average parameters and the
seasonal autoregressive and moving average parameters. Finally αt is a 0-mean
white noise with finite variance. The SARIMA vector of parameters, in the sequel
denoted with the Greek letter aξ, is expressed as

aξ ≡ (φ1, . . . , φp, θ1, . . . , θq, Φ1, . . . , ΦP , Θ1, . . . , ΘQ;µ, σ2),

whereas the SARIMA order space is formalized as

aΞ ≡ (p, d, q, P,D,Q). (8)

Eqn. 7 can be estimate when the stationary and invertibility conditions are
met for both the autoregressive and moving average polynomials respectively,
that is when the equations φP (B)Φp(B)=0 and ΘQ(B)θq(B)=0 have their root
lying outside the unit circle. Generally, SARIMA(p, d, q)(P,D,Q)S is how Eqn.
7 is abbreviated. Finally, following [21], the AIC for this class of models can be
expressed through Eqn 9, i.e.:

AIC(p, q, P,Q) = T ln σ̂2
ε +2

{
T

T − (d+D)

}
+2(p+q+P+Q)+2+T log 2π+T,

(9)
whose parameters are as above defined.
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SETAR models An observed stretch of data, say (x−U+1, , x−1, x0, x1, , xT ),
is a realization of a SETAR–type DGP when can be represented as

xt = ϕj0 +

pj∑
k=1

ϕjkyt−k + εjt γj−1 < yt−d ≤ γj , (10)

where ϕjk (k = 1, ...pj) are the parameters in state j, (j = 1, 2, ..., l), εjt is a
0-mean variance σ2 Gaussian White Noise, −∞ = γ0 < γ1... < γl = +∞ are the
threshold values and d is the delay parameter. Finally, with U the number of
the initial conditions is denoted, i.e. U = max(pj , d); j = 1, 2, .., l. The vector
of parameters of model 10, in the sequel denoted with the Greek letter bξ, is as
follows:

bξ ≡ (φ10, φ11, ..., φ1p1 , ..., φl0, ..., φlpl ; γ1, ..., γl, d, σ
2
1 , ..., σ

2
pl

),

whereas the SETAR order space is formalized as

bΞ ≡ (j, l, d). (11)

Model estimation strategies can be carried out under stationary and ergodic
conditions of Eqn. 10, finiteness of its second moments and positiveness (ev-
erywhere) of its associated density (x1, x2, · · · , xT )′. One of the most common
is simply based on the conditional least squares and the minimization of the
predictive sum of squared errors obtained as a result.

On the other hand, the identification of the structures for these models is
a much more complicated task. In this regard, FOR–WARD uses an objective
function for each of the considered horizons h ∈ H and the filtered version of
the time series, so that a sequential exhaustive search on a pre-specified model
order space (11) is performed. The final conditional model is then selected via
MAICE (Minimum AIC Expectation) procedure, whose optimality has been dis-
cussed by [22] and [23] and which will be briefly summarized in Paragraph 2.3.
A suitable version of the AIC, called pooled-AIC – employed in different appli-
cations, e.g. in [24] and [25] – will be used in the empirical study. Its estimation
is conditional upon both a specified threshold delay and a fixed threshold value.
Given the complexity of the likelihood function for SETAR models, the exact
maximum likelihood is not defined, so the pooled AIC has been derived from
the conditional maximum likelihood, i.e.

LogL(y | θ) = −
T

2
log(2π)−

1

2

k∑
j=1

(Tj log σ2
εj +

S(φj , γj−1, γj)

σ2
εj

),

being pj and σ̂2
εj respectively the lag length and the residual variances for

the j − th generic regime, whereas T , φj , d, γ have already been defined (Eqn.
10) and S(φj , γj−1, γj) =

∑
γj−1≤yt−d<γj

ε2
jt, j = 1, ..., l.
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For a generic model, realization of a l-regimes SETAR process, pooled AIC
is defined as follows:

AIC(p1, ..., pl) =
∑
j

{
Tj ln σ̂2

εj + 2(pj + 1)
}
, j = 1, .., l. (12)

Being the sum of the AIC’s computed for each of the l regimes, this com-
pound statistic is able to balance fitness and complexity by taking into account
the peculiar dynamic structures inherent to each state of the process under in-
vestigation.

2.3 Model selection procedure

MAICE selection strategy (for a thorough account of this approach, the reader is
referred to [26]) is a procedure aimed at extracting, among the candidate models
in the competition set

{
M; M1, . . . ,Mm

}
, a model structure, T0 satisfying:

M ⊃M0 = arg min
Ξ

AIC(M), (13)

where Ξ is as defined in Eqn. 8. MAICE procedure requires the a priori
and arbitrary definition of appropriate upper bound for each of the models’
meta–parameters. Particularization of (13) for our operative ...framework is
straightforward and leads to the definition of their respective competition sets,
i.e.

{
aM

}
and

{
bM

}
, and the related MAICE procedures, that is aM ⊃a

M0 = arg min
aΞ

AIC(aM) and bM ⊃bM0 = arg min
bΞ

AIC(bM).

2.4 Optimal Wavelet Filtering and Forecast Combination

Let γ ≡ (γ1, ..., γω) be a ω-dimensional vector of competitive wavelet thresholds,
we want to find, for each horizon h ∈ H (Eqn. 2), the H–dimensional vector of
“best” threshold parameters, according to a predefined rule. In order to make
the explanation simpler, without loss of generality, only one horizon will be
considered – kept fixed throughout the paper and equal to h0 ≡ OSH (One
Step Ahead), i.e. H = h0. Also, it will be assumed the vector γ to be restricted
to only two competitive thresholds parameters and equal for the two models a
and b, i.e. γ ≡ δ ≡ (γ1 = δ1, γ2 = δ2).

MAICE procedure is carried out on the competition sets aM and bM, after
the model fitting procedure has been conducted on the two filtered versions
of the original time series – i.e. (xt|γ1 ⊂ γ) and (xt|γ2 ⊂ γ) – in symbols:
MAICE(IM(xt|γc ⊂ γ)); c = 1, 2, so that the prediction residual variances
can be estimated and stored in a matrix, say IΣ, i.e.

Σ =

[
aσ̂2
ε(γ1) bσ̂2

ε(γ1)
aσ̂2
ε(γ2) bσ̂2

ε(γ2)

]
,
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whose generic entry I σ̂2
ε(xt|γc) is the conditional residual variance of pre-

diction generated by the selected models of each type, a and b. Column–wise
minimization of Σ, leads to the determination of the optimal thresholds – i.e.
Iγ∗ = min

γ∈γ
σ̂2
ε(IMAICE) – as well as the prediction residual variances.

At this point, the procedure proposed by Bates and Granger is applied and
the optimal pair of weights are found – i.e. ω and (1−ω) – which will be associ-
ated to the two prediction sets generated by the two models, for the particular
horizon(s) chosen (h0, in our case). To do so, being (I)σ2

ε the objective function,
the variance of the combination of the two prediction sets is given by

(I)σ2
ε = ω2 aσ2

ε + (1− ω)2 bσ2
ε + 2ρω aσε (1− ω)bσε, (14)

with ρ = corr(aεt ; bεt); corr = correlation coefficient. Finally, the min-
imization of the overall variance (I)σ2

ε – achieved by differenciating Eqn. 14
w.r.t. ω and equating the derivative to zero – leads to the determination of the
optimal weight ω∗, i.e.

ω∗ =
bσ2
ε − ρ aσbεσε

aσ2
ε + bσ2

ε − 2ρ aσbεσε

The choice of ω∗ can be performed only provided that a certain number of
predictions are evaluated, therefore a portion of the available data set (in the
sequel referred to as the validation set) must be devoted to this task.

2.5 The algorithm

FOR–WARD procedure is now detailed in a step–by–step fashion. For an easier
readability, the algorithm has been broken down into three parts: the first ac-
counts for the a priori choices and the standard procedure – based on the simple
combination of the predictions – whereas the second focuses on how the optimal
weights aw∗ and bw∗ are obtained. The application of the method in real-life
and for simulation purposes is illustrated in the third part.

Pre–specification and standard procedure

1. Let {x}T1 (Eqn. 1–2) be the time series of interest, on which no particu-
lar assumptions are made. The data are split into three disjoint segments:
training set {xtr}t ; t = 1, 2, ..., T − (S + V ), validation set, {xva}t t =
T − (S + V ) + 1, ..., (T − V ) and test set, {xts}t t = T − V + 1, ..., T ), V
and S being respectively the length of the validation and the test set;

2. the competition set M, formed by all the arbitrary chosen models (m’s),

i.e.
{
M ≡ aM ∪ bM ;

}
, with

{I
M ≡ (am1,

am2, . . . ,
amMa), {I = a}

}
and

{I
M ≡ (bm1,

bm2, . . . ,
bmMb

), {I = b}
}

, is built;
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3. two vectors – i.e. {γω; ω = 1, 2, . . . , Ω} and {δω; ω = 1, 2, . . . , Ω} – con-
taining the tentative thresholds, respectively for the model a and the model
b, are built. Without loss of generality, they are assumed to have the same
dimension Ω;

4. the vector h ≡ (1, 2, ...,H)′ containing the (arbitrary) forecast horizons is
defined;

5. the set IS(Ξ); I = (a, b) containing reasonable, arbitrarily chosen, bound-
aries for the model structures, is built;

6. an appropriate waveform is chosen;
7. the models in {M} are iterativelly fitted, up to IS(Ξ) and ∀h ∈ H, on the

training set and on its extensions {x}T−(S+V−1−h)
1 , . . . , {x}T−(S−h)

1 , which
are obtained by adding one at a time the observations belonging to the
validation set to {xtr};

8. the AIC is extracted – according to Equations 9 and 12, ∀ Im ∈ IM , and
stored in the two H–dimensional vectors I% = AIC(IM);

9. MAICE procedure is applied to I%, i.e. MAICE(a%) and MAICE(b%), so

that the set
{
M∗

}
containing the winner models generated by the model a,

say aM∗ and model b, say bM∗, is built, i.e.:
{
M∗ ≡ aM∗ ∪ bM∗

}
⊂M;

10. {M∗} is employed to generate h = 1, 2, . . . ,H–step ahead predictions, which
are stored in two matrices, i.e.

{
IP ; I = (a, b)

}
, both of dimension V ×H,

i.e.

IP̂h ≡



x̂h=1
T−(S+V−1)+1 . . . . . . . . . . . . . . .

x̂h=1
T−(S+V−1)+2 x̂h=2

T−(S+V−1)+2 . . . . . . . . . . . .

x̂h=1
T−(S+V−1)+3 x̂h=2

T−(S+V−1)+3 x̂h=3
T−(S+V−1)+3 . . . . . . . . .

. . . . . . . . . . . . . . . . . .
x̂h=1
T−(S+V−1)+H x̂h=2

T−(S+V−1)+H x̂h=3
T−(S+V−1)+H . . . . . . x̂h=H

T−(S+V−1)+H

. . . . . . . . . . . . . . . . . .
x̂h=1
T−S x̂h=2

T−S x̂h=3
T−S . . . . . . x̂h=H

T−S


;

11. ∀h ∈ H, the residual variances of the validation set, i.e. IΠH ≡ E(xva −
IP )2 – being xva the V ×H matrix of the observed and shifted data (equal
to IP̂h but with the observed data instead of their estimates) and E the
expectation operator – are stored in the H–dimensional vector IΠH , whose
generic element is given by

I σ̂2
ε(h) =

1

V

∑
v∈V

(xv+h− I x̂v+h)2 =
1

V

∑
v∈V

( Iεv+h )2; ∀h = 1, . . . ,H; I = (a, b);

(15)
12. validation set optimal weights aωh and bωh, for each forecast horizon h, are

computed according to

aωh =
bσ̂2
ε(h)− ρh[aσ̂ε(h)bσ̂ε(h)]

bσ̂2
ε(h) +a σ̂2

ε(h)− 2ρh[aσ̂ε(h)bσ̂ε(h)]
; bωh = 1−a ωh, ∀h ∈ H,

(16)
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where ρh is the correlation coefficient between the h–step ahead errors gen-
erated by the two set of predictions;

13. the pair (aωh,
bωh) is applied to the h–step ahead, out-of-sample predictions

provided by the models a and b, i.e.

x̂T−V+h = aωhx̂T−V+h + bωhx̂T−V+h ∀h ∈ H; (17)

14. the remaining test data are sequentially drawn, one at a time, from {xts}t t =
T −(V −h−1), ..., T ) and used to iteratively recompute the weights. In prac-
tice, steps 7 – 12 are repeated S − 1 times. The related predictions are then
generated according to Eqn. 17;

15. a quadratic loss function, i.e.

L(ω) = E(xT−V+h − x̂T−V+h)2, (18)

is computed.

Training and Validation

15. Two tentative threshold parameters, say γ0 ∈ γ and δ0 ∈ δ, are selected;
16. the training set is filtered according to γ0 and δ0, i.e. xtrt (γ0) and xtrt (δ0);
17. conditioning to the first pair of thresholds, the vector of the H residual

variances is obtained applying Eqn. 15, i.e.:

I σ̂2
ε (hj , γ0, δ0) ≡ [ I σ̂2

ε(1, γ0, δ0), I σ̂2
ε(2, γ0, δ0), . . . , I σ̂2

ε(H, γ0, δ0)]; (19)

18. steps 7 – 11 are repeated for the remaining Ω − 1 thresholds so that the
Ω×H matrices aΣ̂ε(h, γω) and bΣ̂ε(h, δω), containing the residual variances
for each of the thresholds and horizons considered, are generated, i.e.:

aΣ̂ε ≡



aσ̂2
ε(1, γ1) aσ̂2

ε(2, γ1) . . . aσ̂2
ε(H, γ1)

aσ̂2
ε(1, γ2) aσ̂2

ε(2, γ2) . . . aσ̂2
ε(H, γ2)

. . . . . . . . . . . .

aσ̂2
ε(1, γΩ) aσ̂2

ε(2, γΩ) . . . aσ̂2
ε(H, γΩ , )


and

bΣ̂ε ≡



bσ̂2
ε(1, δ1) bσ̂2

ε(2, δ1) . . . bσ̂2
ε(H, δ1)

bσ̂2
ε(1, δ2) bσ̂2

ε(2, δ2) . . . bσ̂2
ε(H, δ2)

. . . . . . . . . . . .

bσ̂2
ε(1, δΩ) bσ̂2

ε(2, δΩ) . . . bσ̂2
ε(H, δΩ , )


;
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19. the H–dimensional vectors γ∗
H ≡ (γ∗1 , . . . , γ

∗
H)′ and δ∗H ≡ (δ∗1 , . . . , δ

∗
H)′ of

optimal thresholds – i.e. conditioned to each horizon h – is generated by
applying column-wise the minimization operation on IΣ̂ε , i.e. (γ∗ | hj) =
arg min

γ
(IΣ(· ; h)); and (δ∗ | hj) = arg min

δ
(IΣ(· ; h)), for I = a, b respec-

tively;
20. the optimal pair ω∗h of weights, for each horizon h is found through

aω∗h =
bσ̂2
ε(δ∗;h)− ρh[aσ̂ε(γ

∗;h)bσ̂ε(δ
∗;h)]

bσ̂2
ε(δ∗;h) +a σ̂2

ε(γ∗;h)− 2ρh[aσ̂ε(γ∗;h)bσ̂ε(δ∗;h)]
; bω∗h = 1−aω∗h, ∀h ∈ H

(20)
where ρh is as already defined (Eqn. 16).

Performances’ assessment and Real-life employment

21. The pair (aω∗h,
bω∗h) is applied to the h–step ahead, out-of-sample predictions

provided by the models a and b, i.e.

x̂∗T−V+h = aω∗hx̂T−V+h(γ∗h) + bω∗hx̂T−V+h(δ∗h) ∀h ∈ H; (21)

22. the remaining test data are sequentially drawn one at a time from {xts}t t =
T − (V − h − 1), ..., T ), and used to iteratively recompute the weights. In
practice, steps 15 – 21 are repeated S − 1 times. The related predictions are
then generated according to Eqn. 21;

23. a quadratic loss function, i.e. L∗(ω) = E(xT−V+h− x̂∗T−V+h)2, is computed;
24. under L > L∗ (Eqn. 18), FOR–WARD procedure is chosen and real-life

predictions are generated according to

x̂T+h = aω∗hx̂T+h(γ∗h) + bω∗hx̂T+h(δ∗h) ∀h ∈ H.

3 Empirical Analysis.

In this section, the outcomes of an empirical study, based on four macroeco-
nomic time series, are presented. They are: Civilian Labor Force Participation
Rate (Percent, Monthly, Not Seasonally Adjusted), ISM Manufacturing: New
Orders Index c© (Monthly, Seasonally Adjusted), Civilian Unemployment Rate
(Percent, Monthly, Not Seasonally Adjusted), Effective Federal Funds Rate (Per-
cent, Monthly, Not Seasonally Adjusted). These series, in the sequel denoted
respectively as TS1, TS2, TS3, TS4, are graphically portrayed in Figure 1 and
detailed in Table 1, whereas their empirical autocorrelation functions (EACF )
are displayed in Figure (2). They have been selected for the substantial dif-
ferences shown in many regards such as type of phenomenon measured, in-
herent characteristics (e.g. time span, probabilistic structure, seasonality and
frequency components) and degree of smoothness. The latter is high in the
case of TS4, whereas in TS3 the high frequency components seem to super-
impose the signal and to generate a pronounced overall roughness as a result.
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The analysis of the dynamics suggests, for TS1-3-4, a non stationary pattern
(especially TS4), with some evidences of multiregime behavior, whereas TS2
show a mean reverting behavior and a tendency towards omoschedasicity. Fi-
nally, Figure 2 emphasizes rapidly decaying memory structures for TS2 and, to
a less extent, TS3 whereas the remaining series exhibit long term linear memory
behavior. In order to quantitatively measure the quality of the predictions gen-
erated, the following three metrics – computed on the test set {xtst}t∈Z+) – will

be employed: RMSE(h) =
√

1
S

∑
|xtst − x̂tst|2, MPE(h) = 100 1

S

∑
[x

tst−x̂tst

xtst ],

MAPE(h) = 100 1
S

∑
|x

tst−x̂tst

xtst |, S, as above specified, being the length of xtst

and hi; i = 1, .., 4.

Regarding the waveform, its choice is in general system–dependent and hard
to automatize. In the case of the considered time series, an analysis of their
characteristics, along with an approach of the type trial-and- error, has lead
to the choice of a nearly symmetric wavelet of the type Symmlet S8, with 8
vanishing moments. A thorough investigation of this popular type of wavelet
may be found in many sources (e.g. [27]); [28]). Finally, the threshold scheme
adopted, formalized in Eqn. 6, has been discussed in [29] and [30].

Name Variable Source Period Span

TS1 Civilian Labor Force Participation Rate
Federal Reserve Bank of St. Louis

(Economic Research Division)

Jan. 1980 –

Jan. 2015
432

TS2 ISM Manufacturing: New Orders Index
Institute for Supply Management

(Manufacturing ISM Report on Business)

Jan. 1985 –

Jan. 2015
372

TS3 Civilian Unemployment Rate
US Bureau of Labor Statistics

(Household Survey)

Jan. 1990 –

Dec. 2015
312

TS4 Effective Federal Funds Rate Federal Reserve Bank of St. Louis
Jan. 1990 –

Dec. 2015
312

Table 1: The time series employed in the empirical analysis: main details

3.1 Results

The results of the empirical experiment are now reported, along the arbitrary
choices made on the model hyperparameters and the employed grid sets. To
maintain the computational time at acceptable levels, γ = δ sets’ cardinality
has been kept small and fixed to 6 for both the models a and b, i.e. γ ≡ (γ1 =
.1, γ2 = .4, γ3 = .6, γ4 = .8, γ5 = 1.1, γ6 = 1.5). A two–regimes SETAR model
has been considered, with maximum order set to 6 for both the regimes and with
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delay parameter ranging from 0 to 2. The SARIMA model has its maximum di-
mensionality set to 3 for the regular AR and MA parameters and to 2 for the
seasonal part. Maximum order of integration is d=2 (for the regular difference)
and D=1 (for the seasonal difference). The segmentation of the data sets (train-
ing, validation and test) is as reported in Table 2. Finally, as a benchmark, the
unfiltered version of the method – i.e. generating the compounded predictions
using the original time series only with no filtering – has been employed.

The good performance of FOR-WARD procedure can be noticed by inspect-
ing Tables 3 and 4. In particular, the predictions delivered at the shortest hori-
zons (h=1,2) can be considered interesting: looking at TS1-2, the RMSE values
are equal to .103 and .550 for the filtered time series versus .205 and 1.007 re-
spectively. The values for h=2 are .199 and .931 versus .277 and 1.322. The
higher the horizon the less impressive seem to be FOR-WARD’s performances.
However, worth of mentioning seems the fact that the values for the MAPE and
the MPE recorded at horizon h=3 are still consistently better than those yielded
by the unfiltered version of the model. TS4 is the case where FOR–WARD per-
formances are basically in line with those of its competitor: they are in general
very close to each other and, in some cases, even slightly worse. This can be
explained by the intrinsic characteristic of the time series itself, which seems to
be quite smooth and, as such, not susceptible to benefit from the filtering capa-
bilities delivered by the proposed procedure. This fact is confirmed by the small
values selected for the thresholds at all the considered horizons. Conversely, as
expected, the other thresholds show bigger threshold values, see for example
TS3, whose roughness has been above pointed out.

HHH
HHSet

Size
TS1 TS2 TS3 TS4

Training 372 312 264 264

Validation 36 36 24 24

Test 24 24 24 24

Table 2: Size of each subset the original time series have been broken into
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Horizon aγ∗ bγ∗ RMSE MPE MAPE Horizon aγ∗ bγ∗ RMSE MPE MAPE

1 .3 .3 .103 .062 .129 1 .2 .2 .550 .300 .842

TS1 2 .2 .2 .199 - .112 .233 TS2 2 .2 .1 .931 .308 1.38

3 .3 .3 .318 .267 .440 3 .3 .3 2.313 1.255 3.368

4 .5 .3 .461 .447 .639 4 .8 .8 2.853 2.842 4.140

1 .5 .5 0.189 -0.453 2.619 1 .1 .1 .017 .695 14.133

TS3 2 .5 .5 0.295 -3.664 4.791 TS4 2 .1 .1 .0370 7.499 25.025

3 .8 .8 .403 - .729 5.712 3 .1 .1 .051 9.989 33.983

4 .8 .8 0.971 11.327 12.375 4 .1 .1 .062 -7.09 55.564

Table 3: Goodness of fit statistics computed on the test set for the four time series considered –
Filtered case

Horizon RMSE MPE MAPE Horizon RMSE MPE MAPE

1 .205 .147 .282 1 1.007 1.522 1.576

TS1 2 .277 .095 .367 TS2 2 1.322 .690 1.949

3 .414 .322 .570 3 2.972 1.792 4.301

4 .560 .421 .641 4 2.457 1.420 3.571

1 0.380 -1.550 5.435 1 .017 .792 14.093

TS3 2 0.432 -4.796 6.908 TS4 2 .032 7.907 22.138

3 0.506 1.888 6.517 3 .043 13.445 27.372

4 1.384 11.442 16.980 4 .062 -7.178 55.624

Table 4: Goodness of fit statistics computed on the test set for the four time series considered –
Unfiltered case
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Fig. 1: Graphical representation of the time series used in the empirical experiment
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Fig. 2: Graphical representation of the time series used in the empirical experiment
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