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Introduction
Among the many denoising methods and techniques successfully 

employed for univariate time series – e.g. based on regression,1 
Kalman filter,2,3 decomposition,4 wavelet5,6 and non-linear method7– 
those based on algorithms of the type Infinite Impulse Response (IIR) 
exponential filters have been massively used, given their satisfactory 
performances (see, for example,8 and, more recently9). Such methods 
are useful for their ability to maximize the amount of relevant 
information that can be extracted from “real life” time series. In fact, 
regardless the scientific field time dependent data are collected for (e.g. 
engineering, economics, physics, environmental), they can never be 
error–free. In spite of all of the efforts and precautions one might take 
in order to provide clean data – e.g. robust data acquisition methods, 
reliable routine checks, sophisticated procedures for error correction, 
fail safe data storage and data communication lines – reality is way 
too complex for such procedures to be completely reliable.

Noise, in fact, is simply an ubiquitous entity able to affect virtually 
all the stages a given analysis of a time series can be broken into, 
showing uncountable expressions that can be only partially controlled, 
never fully removed nor exactly pinpointed. Many are the fields 
where noise reduction methods are employed: data mining, satellite 
data, radio communications, radar, sonar and automatic speech 
recognition, are just a few of them. Often, the treatment of noisy data 
is critical, as in the case of bio–medical signals, tracking systems 
for defense purposes or economics, where the trend or the seasonal 
patterns of vital economic variables can be obscured or distorted 
by noise components. However, the type of time series likely to be 
easily affected by noise – as well as by sudden or unpredictable high 
frequency variations – can be found in the economic and social fields. 
A telling example, is the great deal of data generated by web–based 
services (e.g. Google or Twitter), which are commonly and publicly 
available, in many instances free of charge. However, statistical 
estimation procedures based on this type of data can embody many 
sources of uncertainty and instability. They are related, for example, to 

technical (computer alphabetization) or psychological (e.g. emotional 
driven spikes and other form of data perturbations) reasons. Even 
when data are collected and validated by Official Organisms (e.g. 
national and super-national statistical offices or central banks), strong 
psychological components can play a significant role in determining 
erratic and/or noisy behaviors. This is the case, for instance, of the 
Economic Sentiment Indicators – provided by many National Institute 
of Statistics – which are purposely designed to capture the amount of 
optimism (pessimism) towards the future behavior of a set of economic 
variables. Being these data able to reflect, at least to some extent, the 
future decision making strategies of a population of reference, they can 
show dangerous instabilities and irregularities. In other words, when 
an opinion is in the process to form or change then many analysts are 
mostly interested in its future developments; however, this is usually 
the points in time where the data show complex structures, which are 
usually hard to capture.

The need to conduct more precise model–based investigations 
under noisy data structures has been the motivating factor of 
the proposed method. As it will be seen, it delivers interesting 
performances and is reasonably fast, the latter characteristic making 
the proposed method a viable option with high dimensional data sets, 
e.g. of the type big data. It is also risk–free, i.e. when there are no 
filtering–related benefit – according to a suitable objective function – 
the method is designed to simply leave the data unfiltered (the λ
–smoothing parameter is set to1 ). The paper proceeds as follows: 
in Section 2 the problem is defined along with the statistical model 
assumed for the underlying data generating mechanism, whereas in 
Section 3 the employed low–pass filter is illustrated, with a special 
focus on its calibration issues. The method is explained in Section 
4 and the step-by-step implementation of the algorithm is given in 
paragraph 4.3. Finally, an empirical experiment, conducted on a time 
series provided by the search engine Google and recovered in the 
repository called Google Trends (for Italy the address is https://trends.
google.it/trends/?geo=IT), is presented in section 5.
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Abstract

Discrete time Infinite Impulse Response low-pass filters are widely used in many 
fields such as engineering, physics and economics. Once applied to a given time 
series, they have the ability to pass low frequencies and attenuate high frequencies. As 
a result, the data are expected to be less noisy. A properly filtered signal, is generally 
more informative with positive repercussions involving qualitative aspects – e.g. 
visual inspection and interpretation – as well as quantitative ones, such as its digital 
processing and mathematical modelling. In order to effectively disentangle signal 
and noise, the filter smoothing constant, which controls the degree of smoothness 
in First Order Discrete Time Infinite Impulse Response Filters, has to be carefully 
selected. The proposed method conditions the estimation of the smoothing parameter 
to a modified version of the information criterion of the type Hannan - Quinn which 
in turns is built using the Estimated Log Likelihood Function of a model of the class 
SARIMA (Seasonal Auto Regressive Moving Average). Theoretical evidences as well 
as an empirical study conducted on a particularly noisy time series will be presented.
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Statement of the problem
Throughout the paper, the time series (also defined as signal) of 

interest is intended to be a real–valued, uniformly sampled, sequence 
of data points of length T , denoted as:

{ }:= ( ) .T
t t t

x x +∈
	                                                                           (1)

Each datum tx , being observed with an error, say tε , is called 
o
tx  in contrast with the “pure’, noise–free, unobservable one u

tx . 
Therefore, the formal set up is of the type

= .o u
t t tx x ε+

It is worth stressing that the theoretical framework we are dealing 
with, does not envision tε  as being the standard 0 –mean constant 
variance 2σ  idiosincratic component. In fact, tε  can also embody 
all the unpredictable components arising when “real–life” signals 
come into play and which, in general, are able to generate unwanted 
phenomena, like sudden outburst of energy (outliers) and noise. As 
a consequence, at least two detrimental effects are embedded in the 
signal and can affect its statistical properties: accuracy reduction and 
generation of heavy noisy components. The former relates to the 
addiction (subtraction) of significant quantities to (from) ux , so that 
we have = ; 1o ux kx k ≠ , while the latter is a subtler, but nonetheless 
dangerous, disturbing phenomenon. It arises, for example, when in 
a survey some statistical units are not longer available and must be 
replaced by “similar” ones. When such a corrupted information set 
is applied as an input to a mathematical model for any purposes, e.g. 
simulation or prediction, the related outcomes are likely to be affected.

The data generating process

The observed signal is supposed to be a realization of a statistical 
model of the class SARIMA  (Seasonal Auto Regressive Integrated 
Moving Average), which is a generalization of the ARIMA  (Auto 
Regressive Integrated Moving Average) class proposed by George 
et.,10 have been introduced to model complex dynamics i.e. of the type 
stochastic seasonal. It can be expressed as:10,11

( ) ( ) = ( ) ( )S D d S
p P S t q Q tB B X B Bφ θ εΦ ∇ ∇ Θ

where B  denotes the backward shift operator, d  and D  denote 
the non – seasonal and seasonal difference operator respectively and:

= 1d dB∇ − ;
2

1 2( ) = 1 .... p
p pB B B Bφ φ φ φ− − − − ;

2
1 2( ) = 1 .... p

q qB B B Bθ θ θ θ− − − − ;

2
1 2( ) = 1 ....S S S PS

P PB B B BΦ −Φ −Φ − −Φ ;

2
1 2( ) = 1 ....S S S QPS

Q qB B B BΘ −Θ −Θ − −Θ ;

withφ , θ , Φ , Θ , respectively, the non seasonal autoregressive 
and moving average parameters and the seasonal autoregressive 
and moving average parameters. Finally tε  is a 0 -mean and finite 
variance white noise. The model can be estimate when the stationary 
and invertibility conditions are meet for both the autoregressive 
and moving average polynomials respectively, that is ( ) ( )P pB Bφ Φ
=0 and ( ) ( )Q qB BθΘ =0 have their root lying outside the unit circle. 

Generally, this model is abbreviated as ( , , )( , , )SSARIMA p d q P D Q . 

When the process is stationary and no seasonal patterns are detected, 
the model collapses to a pure ( , )ARMA p q  model. The explanation 
of the ARIMA theory is outside the scope of this paper, therefore the 
interested reader is referred to Makridakis8 and Stock.12

Under Gaussianity, the SARIMA parameter vector
2( , , , , )p q P Qφ θ σ≡ Φ ΘG 	                                                                       (2)

can be estimated via Conditional MLE  (Maximum Likelihood 
Estimation) method, which:

In the version employed to run the empirical experiment (Section 
5), uses the joint probability density function for 1, , Tε ε , i.e.

2 /2 2
1 2

=1

1( , , | = (2 ) exp{ };
2

T
T

T
t

f ε ε πσ ε
σ

− − ∑G

and

i)	 Maximizes the function given by

2 2
0 2

=1

1log ( | = 0; ) = log 2 ,
2 2

T

t
t

Tf x ε πσ ε
σ

− − ∑G

with [ ; = 1, , ]t t Tε   being recursively estimated using

1= .t t txε ε −−G 	                                                                      (3)

Equation (3) holds by equating the first ( )P Q+  observations to 0, 
i.e. 0 1 ( ), , , = 0P Qy y y− − +  and setting the first 1Q −  innovations to 

0: 0 1 ( 1), , = 0Qε ε ε− − − .

The employed filter
By the Central Limit Theorem, by “properly” averaging sub-

sequences of a noisy signal, a better approximation of the “true” ones 
is obtained as a result.13 Consistently, one strategy for noise control 
relies on a filter of the type discrete time Infinite Impulse Reponse.14 
This class of filters is a powerful tool for handling noise in many 
fields: in15 its performances has been compared with many other 
methods on environmental data (other than simulated ones) whereas 
its application for standard control-chart procedures is documented 
in Layth et al.,16 and Stuart Hunter.17 Its usefulness for interactive 
systems and information extraction for complex turbulent flows has 
been discussed respectively in Casiez18 and Adrien Cahuzac,19 whereas 
the effectiveness of smoothing–driven approaches in economic time 
series forecasting is documented in the excellent book from Hyndman 
et al.,20 and in Codrut.21

IIR filters envision the level of the stochastic process (1) at a given 
time t , say tξ  to be dependent to the present and past observations 
according to

2
1 2

=0

= (1 ) (1 ) = (1 ) .j
t t t t t j

j

x x x xξ λ λ λ λ λ λ λ
∞

− − −+ − + − + −∑

Using the lag operator L , such that =k
t t kL x x − , (4) can be re-

expressed as

2 2 1= [1 (1 ) (1 ) ) = [1 (1 ) ]t B B Bξ λ λ λ λ −+ − + − + − − 	                 (4)

and rewritten as
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= [1 (1 ) ] = .t t tB xξ λ ξ λ− − 	                                                       (5)

From (5) it is evident that tξ  is a weighted average of tx  
(current datum) and the previous level 1tξ − , whose weight sequence 
is determined by the smoothing parameter λ . Finally, (4) can be 
expressed, by skipping the lag operator, in a recurrence form as

1 0 0= (1 ) ; = ,t t tx xξ λ λ ξ ξ−+ − 	                                                       (6)

or in a error correction form, i.e. determined by the equation 
1= ( )t t te x λ −− , as follows:

1= .t t teξ ξ λ− +

The form (6) is the one used in the sequel. Here, the first term 
represents the contribution added by each and every datum updating 
our time series whereas the second one accounts for the inertia from 
the previous observations. Therefore, the amount of noise left in the 
signal as well as the system lag (the responsiveness of the system 
output to changes in the input) are both proportional to λ .

 It is worth emphasizing that the order of a low–pass filter reflects 
the amount of strength it uses to attenuate a predetermined frequency 
band. First order filters of the type (4) reduce the signal amplitude by 
half for each frequency doubling while higher order filters amplify 
this effect proportionally with their order. For the purpose pursued 
here, the order 1 appeared to be appropriate since the filter is:

[(a)] 

1.	 “Only” required to denoise (e.g. no forecasting purposes are 
pursued); 

2.	 Easier to tune; 

3.	 More interpretable. 

However, properly tuning the constant parameter is not a trivial 
task nor something that – at least in general – can be left to subjective 
judgment. In fact, a too high λ  can leave significant amount of 
idiosincratic components in the signal while too low values determine 
the speed at which the older data are dampened to be too slow (over 
smoothing).

The smoothing constant and the objective function

As already pointed out, the smoothing parameter (also called 
smoothing factor or smoothing constant), controls the amount 
of past information contributing to the formation of the present 
signal level. Formally, a point in time distant ( 1) =t k m+ −  lags 
influences the level of the signal at time 1t +  by an amount given by

1
1 = (1 )t m

tξ λ λ + −
+ − . Even though the proposed method is designed 

to provide an estimate of λ , it might be interesting to investigate 
the frequency property of the filter, in order to obtain meaningful 
information from the selected λ . The related cut–off frequency can 
be derived15,22 by z –transorming (6), i.e.

1
ˆ ˆ( ) = ( ),

1 (1 )
z x z

z
λξ
λ −− −

which can be regarded as the digital version of the analog filter 
(6). By defining t∆  as the sampling period and equating z  to the 

frequency ω , i.e. ( )= i tz e ω∆ ; = ( 1)i − , the power spectra of tξ  

and tx , respectively called 2ˆ| ( ) |ξ ω  and 2ˆ| ( ) |x ω  are related to each 

other through
2

2 2
( ) 2

ˆ ˆ| ( ) | = | ( ) | .
| (1 ) |i t

x
e ω

λξ ω ω
λ∆ − −

	                                      (7)

By equating the first term in (7) to 1
2

, the cut–off frequency at 

which the amplitude is reduced by a factor of 2, say F , is found, i.e.

2 21= 6(1 cos( ) (1 cos( ) (1 cos( )) 3.62579 .
3 3

t
t t t t

Fw w w Fπλ ∆
− ∆ + − ∆ − − ∆ ≈ ≈ ∆





  

and therefore

2 21= 6(1 cos( ) (1 cos( ) (1 cos( )) 3.62579 .
3 3

t
t t t t

Fw w w Fπλ ∆
− ∆ + − ∆ − − ∆ ≈ ≈ ∆





  

The above approximation is possible being in practice << 1tw∆ , 
for the temporal integration to be possible.

The Hannan–Quinn information criterion

As it will be outlined in the sequel, the smoothing constant is the 
minimiser of a penalized Log-Likelihood function, estimated on a 
model of the class SARIMA applied to both the original and filtered 
time series t̂ξ . The objective function chosen belongs to the class of 
the information criterion, i.e. the Hannan-Quinn criterion.23 This order 
selector has been constructed from the law of iterated algorithm and 
shows a penalty function growing at a very slow rate, as the samples 
size increases. It is defined as follows:

ˆ= log ( | ) 2 log(log( )),tHQc L X k T+G

being ˆ (f , ,q, , )σ≡G F Q  the vector of the estimated SARIMA 
parameters of (??) whereas L  is the Likelihood function.

By estimating the log–likelihood function ˆlog ( | )tL XG  with 
2 ˆˆ( | )σ G  and writing the penalty term as = 2ρ k log(log( ))T , the 

Hannan Quinn information criterion can be written as

2ˆ= ( , ( )) | ),o
o tHQc f Xσ ρ G

where also the subscript ( )o , stands for “observed”.

 The standard identification procedure for the selection of the 
best SARIMA model order under this information criterion, follows 
the general rule as the other Information Criteria and is denoted as 
Minimum Information Criterion Estimation ( MICE ). In essence, it is 
based on the minimization of the information criterion itself. Here, the 
model 0M  minimizing the HQ criterion, is the winning one, that is:

2
0 ˆ

ˆ ˆ: ( ) = arg ( , | ),mino o
tM f Xσ

G
G G 	                                                  (8)

with Γ  as defined in (2).

The method 

The proposed method can be regarded as an optimal averaging 
procedure under a penalized log–likelihood function. “Properly” 
averaging a signal as a noise reduction method is consistent to the 
principle that, if repeated measures are conducted many times on 
a given signal, part will tend to accumulate but the noise will be 
irregular and tend to cancel itself. This result is connected to the fact 
that the mean standard deviation of N measurements is smaller by 
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a factor of N than the standard deviation of a single measurement. 
Practically, if one compute the average of “many” samples of a noisy 
signal the noise–induced random fluctuations tend to die out and the 
signal is therefore stronger.

 In more details, when one records the signal o
tx  (1) t  times (the 

sampling rate) over a predefined time interval, say τ , being Tτ ≤

, he can compute l  averages each of length l
τ

. Two critical points 

arise at this time, i.e. how many data points should be averaged and in 
which manner. The latter question has been already answered (Section 
3) whereas the former – which is strictly related with the smoothing 
parameter λ  – controls the number of observations of o

tx  to be 

averaged (and to what extent), so that the noise which randomly 

fluctuate with equal probability above or below the “true” level u
tx  

tends to cancel out while the signal builds up.

The λ  parameter is chosen as the minimizer of (8) once a “great” 
number of candidates ; = 1, ,j jλ Λ  is tried. Therefore, (8) is 
modified as

2
0 ˆˆ ,

ˆˆ ˆ= ( , ) = arg ( ( ), | ( )),min o
tM fξ

λ
λ σ ε ξ λ

G
G G 	                                        (9)

being = ( ( ))o
t f xξ λ .

What presented in (9) is a slightly modified version of the Hannan 
Quinn criterion, called here mHQ  (which will be justified below), 
whose minimum value delivers the optimal smoothing parameter λ∗ .

From the last equation, it is clear that both the optimal model and 
the optimal λ  are simultaneously estimated. However, while the 
ML  parameters’ estimation is conducted on the filtered versions tξ  
of the observed signal, the variance parameter is estimated using the 
observed data ox . Such an operation is possible assuming [ ] = 0tε  
and serves the purpose to “force” the filtered output to be “not too far” 
from the observed signal o

tx . In practice, the Information Criterion 
selects an “optimal” model – built on a λ∗ –filtered version of the 
data (which therefore are used to build the ML estimations of the 
SARIMA  parameters) whose goodness of fit is computed with respect 
the observed (noisy) signal o

tx . In other words, mHQ criterion has 
a stronger penalty than the standard one. Such an additional weight 
(the penalty associated with the residual variance computed on ox
) is proportional to 2 2| ( ) |o tσ σ ξ−  and serves the purpose to prevent 
the H-Q criterion from choosing λ  values that can lead to over 
smoothing. In fact, the greater the value of λ  the greater the distance 
between o

tx  and tξ  and therefore the greater the absolute values 

of the difference 2 2| ( ) |o tσ σ ξ− . When no benefit can be obtained 
by applying the filter, we have 0( )M HQ Mξ ≥  therefore ox  and 

ξ  coincide and 2 2| ( ) |= 0o t tσ σ ξ− , i.e. the best SARIMA model is 
built on o

tx  and its order selection follows the MICE rule according 
to equation (8). On the contrary, when a benefit from filtering is 
detected – i.e. <mHQ HQ  – therefore the best model is the one built 
on the filtered time series according to a λ  value ( λ∗ ) at which the 
information criterion (9) is minimized and its order selection follows 
the MICE rule. Again, such a conclusion is justified as the error term 
is “average out” by the filter. At this point, we have two different 
SARIMA models fitting ox  and tξ  and generating two error vectors. 

Recalling (3), and consistently with the notation so far used, it will be

1 0= ; = 1, , ; = 0.o o o o
t t tx x Tε ε ε−−G  	                                     (10)

and ξε  found in a similar way, replacing the superscript identified 
by the letter o  with the Greek letter ξ .

Moreover, by virtue of Granger theorem,24 it is always possible 
for an estimated SARIMA model order to depart from the “true” one 
when the input is affected by white noise components. In such a case, 
the CSS estimates resulting from the function ˆlog ( | )oLik xΓ  can be 
regarded as converging to the pseudo–true value of the parameters’ 
vector and therefore the order detected by means of the mHQ  – 
which employs the function ˆlog ( | )tLik xiΓ  for the estimation of the 
parameters – criterion will be closer to the “true” model order.

Signal improvement assessment

At this point, it is clear that for 0 = ( )ξΓ Γ  the lower bound in the 
gain delivered by the procedure is attained (i.e. no gain and = 1λ ). 
In this section, a simple way for assessing the performances of the 
filter (if delivered) is presented. At this point it might be worthwhile 
emphasizing that the method presented in this paper is not designed 
to improve the forecasting performance of SARIMA models. In fact, 
the observations coming from the future, under an unchanged data 
generation mechanism, will be affected, in average, by the same 
noise components affecting the previous observations. However, 
projecting the filtered observations into the future is a useful exercise 
for at least two reasons: i) to verify that the forecasting performances 
delivered by the two SARIMA models are “not too far” from each 
other (meaning that the tξ  is a “bona fide” version of the original 
one; ii) in many cases, improvements in the forecasting performances 
have been observed. This can be explained by the fact that the order 
selection and estimation procedures tend to work better under less 
noisy signals.

With that said, the signal-to-noise ratio (SNR) has been used as an 
indicator of the quality of the filtered signal. It is defined as the ratio of 
the power of the signal (the meaningful information) to the power of 
the noise (the unwanted portion of the signal). In its “pure” form it is

= signal

noise

P
SNR

P
, P  being the average power. In the framework at hand, 

both the power levels are estimated by their respective variances
2

2

ˆ

ˆ
xt

tε

σ

σ
, 

being the error terms obtained using (10). Practically, by comparing 
2

2

ˆ
=

ˆ
oxo t

o
t

SNR
ε

σ

σ
 with

2

2

ˆ
=

ˆ
t

t

SNR ξξ

ξε

σ

σ
, one is able to assess how much of 

the unwanted components has been removed under λ∗ .

The algorithm

In what follows, the method is presented in the form of a step–by–
step algorithm. In particular, steps 2-6 are conducted on the training 
set whereas the remaining 7–8 use the test set.

1.	 The time series under investigation is split in two sets: training 
and test; 

A grid of tentative smoothing constant ; = 1,j jλ Λ∈ L  is built; 
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A SARIMA model is estimated on the original time series ox  
using the H–Q criterion; 

Λ  SARIMA models are estimated on Λ  filtered time series 
( ) = ( ); = 1, ,o
j jx jλξ λ Λ ; 

If mHQ HQ≥  stop and use the unfiltered time series otherwise 
proceed; 

The λ∗  smoothing constant associated with the winner model 
(according to the modified H–Q criterion mHQ) is then chosen; 

Horizon ; = 1, ,h h H  forecast mean square errors are computed 

for both the filtered and unfiltered series; 

Both the statistics are compared for consistency. 

Clearly, if one is not interested in forecast comparison – e.g. to 
speed up the computations and have faster outcomes – then steps 1, 7 
and 8 can be skipped.

Empirical experiment
The experiment presented in this paragraph is aimed at showing 

the capabilities of the proposed method. A time series – collected 
by the popular search engine Google and recovered in an “ad hoc” 
repository called Google Trends – will be employed. It refers to the 
relative number of Italian Internet users which inputted the keyword 
“caviar” (caviale, in Italian) into the search engine Google, between 
January 2004 and June 2018. The data have been download on June 
6th 2018 (h 03:29 PM GMT). Time series length is 174, split in 
training set – ending in December 2014 (132 data) – and test set (42 
data), ending in June 2018. The last datum has been purposely left in 
the data set, for it is an even more unstable one (in fact, it is supported 
only by a small portion of the month of reference). A visual inspection 
of the series, depicted in Figure 1, shows many irregularities, a 
pronounced, non stationary seasonality as well as a non stationary 
trend. Eteroschedasticity is also an issue. Such a behavior might be 
considered typical for a luxury good especially when observed, as in 
the present case, for a long period of time.

Figure 1 Relative number of the keyword “caviar” searched by the Italian 
Internet users. Training set (continuous line) and test set (dashed line).

The whiteness of the residuals has been tested using a test of the 
type “Portmanteau’, i.e. the Ljung-Box test,25 which is designed to 
account for the sum of the autocorrelations (denoted by the Greek 
letter ρ ) until a predetermined, arbitrary lag K , i.e.

Publication 
	

2 0 2 2
( ) (1 , )

=1

ˆ
= ( 2) ; > .

K H
rejk

K K
k

Q T T Q
T K α
ρ χ χ −+
−∑ 

Here rejQ  is, for significance level α , the critical region for 

rejection of the hypothesis of randomness under the 2χ  distribution.

 The estimated SARIMA order in the case of ox  is 
(1,1,0) (2,0,0)×  with an HQ criterion of 4.97. In the case of tξ , the 
estimated SARIMA order is (0,0,1) (0,1,1,)× , for a modified HQ 
criterion equal to 4.05. Therefore, the filter is applied. The effects of 
its application are presented in Figure 2, where a more regular signal 
can be noticed. Such an impression is confirmed by looking at the 
SNRs, which is equal to 6.88 and 7.06 respectively for the unfiltered 
and filtered time series. The optimal smoothing constant = .805λ∗ , 

has been obtained at iteration number 82 (see Figure 3), using a grid 
of 121 λ  values (equally spaced from 0.400 to 1; incremental step= 
0.005). The residuals (computed in both the cases on the original time 
series) pass the ‘Portmanteau’ test (computed for the lags 1–24) only 
in the case of tξ  (p value = 0.382 ), whereas for the raw signal we 

have p value 0≈ . Such a conclusion is consistent with the patterns 
shown by the empirical autocorrelation functions (see Figure 4) for 

0x  (graph a) and tξ  (graph b). In the same graph, the residual density 

distributions for 0x  (graph c) and tξ  (graph d) confirm a better 
behavior when the proposed method is applied. Finally, in Figure 5, 
the prediction performances obtained using tξ  appears to be slightly 
better until lag 8.

Figure 2 Unfiltered (continuous line) and filtered (dashed line) time series.
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Figure 3 Values of the modified Hanna–Quinn information criterion for each 
iteration (attempted λ  value). The vertical line shows the iteration number at 
which the minimum mHQ value is found.

Figure 4 Autocorrelation functions for o
tx  (graph a), tξ  (graph b) and 

residual density for o
tx  (graph c) and tξ  (graph d).

Figure 5 Mean Absolute Error of the predictions obtained from the two 
SARIMA models applied on the raw time series (continuous line) and the 
filtered time series (dashed line). Time horizon 1–12.

Conclusion
One effective way to reduce noise components affecting our time 

series is to use a First Order Discrete Time Infinite Impulse Response 
Filter. As it is well known, its filtering performances are critically 
dependent on the smoothing constant, which therefore has to be 
carefully fine–tuned. The method proposed in this paper provides the 
practitioner with a useful – and reasonably fast – tool to filter out such 
unwanted components. However, that the objective function used – 
based on the Hannan Quinn information criterion – has given good 
results, does not imply that is the best possible one. For example, with 
small data set it could be worth considering different information 
criteria, specifically designed for such a case, e.g. the second-order 
AIC.26 Finally, different stochastic models can be always considered, 
according to the underlying data generating process. For instance, 
whenever the time series shows memory characteristics of the type 
long range, the proposed procedure can be associated to a suitable 
model (e.g. of the class Autorgressive Fractional Integrated Moving 
Average).
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