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(is paper provides a model-based method for the forecast of the total number of currently COVID-19 positive individuals and of
the occupancy of the available intensive care units in Italy. (e predictions obtained—for a time horizon of 10 days starting from
March 29th—will be provided at a national as well as at a more disaggregated level, following a criterion based on the magnitude of
the phenomenon. While those regions hit the most by the pandemic have been kept separated, those less affected regions have
been aggregated into homogeneous macroareas. Results show that—within the forecast period considered (March 29th–April
7th)—all of the Italian regions will show a decreasing number of COVID-19 positive people. (e same will be observed for the
number of people who will need to be hospitalized in an intensive care unit. (ese estimates are valid under constancy of the
government’s current containment policies. In this scenario, northern regions will remain the most affected ones, whereas no
significant outbreaks are foreseen in the southern regions.

1. Introduction

OnMarch 19th, the death toll paid by Italy for the spread of the
virus COVID-19 amounted to 3405 deaths, the highest paid by
a single country in the world. Despite hard and relatively timely
lockdown policies implemented by the government, on March
26th this figure has risen to 8165 deaths.

In such an emergency situation, a reliable forecast
method for the infection development is essential for policy
and decision makers to design evidence-based policies and
to implement fast actions to curb the spread of the infection.
In particular, predicting the number of people currently
tested positive for COVID-19 (thereafter “positive cases”)
could be useful to draw the epidemiological curve of the
infection and therefore to predict its peak. Other than this
variable, the forecasting procedure presented in this paper is
used to predict the future values of another crucial variable,
i.e., the number of people needing hospitalization in an
intensive care unit (ICU). (e Italian ICU system is at the
moment severely stressed due to the spread of the disease;
therefore, predictions of future ICU demand could be
fruitfully considered in the design and the implementation

of operational schemes. (e forecast horizon for both the
variables is of 10 days starting from March 29th.

Since the Italian regions are affected in different extents
by the COVID-19, it has been decided to perform the
forecasting exercise for the following geographical areas:
Lombardia, Piedmont, Valle d’Aosta, Veneto, Friuli Venezia
Giulia, Trentino Alto Adige, Lazio, and Campania. (e
remaining regions have been grouped in the following
macroareas: “Center” (Marche, Umbria, and Toscana) and
“South” (Abruzzo, Molise, Puglia Basilicata, Calabria, Sicilia,
and Sardegna). At least two other reasons justify such a break
down:

(1) (e different starting times recorded for the
lockdowns

(2) (e southern regions have been hit less severely and
therefore, especially at the beginning of the obser-
vation period, show several zeroes or low numbers
across the considered time span

In essence, in this study, the available official data, de-
tailed in Section 2, have been employed in a three-step
procedure, i.e.:
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(1) Data preprocessing, in which data anomalies are
identified and corrected according to an approach of
the type a Kalman filter

(2) Univariate forecasting, based on an autoregressive
moving average (ARMA) model for number of
positive cases and ICU

(3) Bootstrap-based generation of predicted values and
confidence intervals

2. The Data

(is paper employs the data related to COVID-19, collected
and regularly updated by the Italian National Institute of
Health (an agency of the Italian Ministry of Health) and by
the Italian Civil Protection Department. (e whole data set
is freely and publicly available in a comprehensive database,
accessible on the Internet at the web address https://github.
com/pcm-dpc/COVID-19/tree/master/dati-regioni (the file
name is dpc-covid19-ita-regioni-20200323.csv). It collects
crucial data related to all the persons tested for COVID-
19—from the outbreak of the pandemics (February 24th)—
and, in particular,

(1) is a collection of 21 data points—representing 19
Italian regions plus the two autonomous provinces of
Trento and Bolzano—one for each day starting from
the disease’s outbreak,

(2) considers crucial variables, such as positive cases,
recovered cases, deaths, number of people hospi-
talized, and number of people admitted to intensive
care units (ICUs).

As already pointed out, in the present study, the variables
of interest are the number of people who have been

(1) tested positive for COVID-19 (in what follows
denoted by the bold Latin letter V),

(2) hospitalized in an ICU (which will be denoted by the
bold Latin letter U).

It is worth outlining how, according to the regulations
issued by the Italian government, only the people showing
moderate to severe symptoms, generally associated with the
infection, or who have been in close proximity with at least
one positive person, are tested. (erefore, the predictions
obtained are to be referred to the sample, as no attempt have
been made to carry out inference procedures for the esti-
mation of the variables at the population level.

In order to correctly process the data, all the regions
showing no positive cases at the beginning of the recording
period and/or low values along the whole time span have
been aggregated into macroareas. (is has been done to (i)
give more meaningful results and (ii) save degrees of free-
dom (which are always precious in short time series).

In details, the prediction exercise will be performed on
the following regions/macroareas:

(A) Nothtern regions

(1) Lombardia
(2) Piedmont

(3) Valle d’ Aosta
(4) Veneto
(5) Friuli Venezia Giulia
(6) Emilia-Romagna
(7) Liguria
(8) Macroarea “Trentino Alto Adige” (Trento and

Bolzano)

(B) Center regions

(1) Lazio
(2) Macroarea “Center”: Marche, Umbria, and

Toscana

(C) Southern regions

(1) Campania
(2) Macroarea “South”: Abruzzo, Molise, Puglia,

Basilicata, Calabria, Sicilia, and Sardegna

(e north Italy regions—at the moment the more se-
verely affected by the pandemic—have been treated sepa-
rately along with two other regions, i.e., Lazio and
Campania, since their major cities—Rome and
Naples—deserve special attention for the institutional role
played and their population density. On the other hand, the
regions showing less worrying figures have been aggregated
into macroareas according to their geolocation. (e only
exception is Valle d’Aosta, which has been left separated as
no aggregation options could be found.

To simplify notation, for both the variables of interest V
and U, the following convention is introduced:

KVj. (1)

Here, the upper left superscript (denoted by the upper
case Latin letter K) refers to the geographical areas (i.e.,
North, Center, and South), whereas the subscript j is as-
sociated with the number the different regions or macro-
areas are codified with, as above detailed. For example, by
the symbols AV6 and BV2 the number of positive cases for
the Emilia-Romagna region and the Center macroarea
“Marche-Umbria-Toscana” are respectively identified.

3. Data Preprocessing

Missing data and other anomalies become the first challenge
when designing predictive models, as statistical methods, in
general, are designed and tested under the assumption of no
missing observations [1]. Before delving into the details of
the proposed procedure, a word of caution is needed since,
unfortunately, a visual inspection of the data suggests the
presence of a number of anomalous data, both at a regional
and a country level. (e detected anomalies might be as-
sociated with the biological sample collecting process and
the related testing procedures. In fact, the typical lab
workflow is governed by a set of rigid protocols which might
be critically affected by factors such as the availability of
manpower, swabs, reagents, and other laboratory materials.
In emergency situations, such a workflow can be disrupted,
and temporal inconsistency might appear as a result. For
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example, a set of samples might be delivered to a laboratory
with longer than usual delays with respect to the time of
collection, or a given lab can only complete the screening
process for a certain number of samples. In both the cases, a
shift of one day (or more) in the release of the lab results can
be reasonably expected. A further source of anomalies is
represented by the data entry and data editing processes,
carried out in working environment likely affected by the
risk of contagious and under rigid deadlines.

An example of such anomalous data is given in Figure 1,
where the series 1Vt,1 (Lombardia) is depicted. Here, some
data points showing values inconsistent with the overall
pattern are clearly noticeable. Given the (very small)
available sample size, the relative weight of such data is
almost surely not negligible and can introduce severe dis-
tortions in the model parameter inference procedures and
thus in the predicted values.

In order to correct those data, a Kalman smoother state-
space model [2] has been applied. In particular, the Kalman
smoother adopted is of the type fixed-point smoothing. (is
algorithm is designed to obtain the estimate of a realization
􏽢wN (the time tN is fixed N<K) of a given random variable
Wt, given a set of observations Zk � zk | 0≤N≤ k􏼈 􏼉. A
thorough explanation of this method goes beyond the scope
of the paper; therefore, the interested reader is referred to the
excellent paper by Sage and Melsa [3].

In Figure 2, the corrected version of the series
1Vt,1—resulting by applying the Kalman smoother—is
depicted. Not only this series lends itself to a better visual
inspection but, more importantly, is more suitable to be
processed by the adopted prediction model.

4. Theoretical Framework

(e approach used in this paper relies on (i) the theory of
stochastic process and (ii) a resampling method. While the
former is necessary to generate the input (predicted values) of
the bootstrap algorithm, as well as to justify the employment of
the outlier correction method, the latter serves the purpose of

(1) generating the final predictions, which are affected
by a reduced amount of uncertainty (with respect to
those generated by the stochastic model),

(2) yielding the related confidence intervals.

4.1. �e Stochastic Processes Paradigm. (e approach pro-
posed in the present paper relies on the assumption that the
(transformed) time series KVj,t and KVj,t are approximately
a realization of a process of the type ARMA (autoregressive
moving average) [4].

Let X � (Xt)t∈Z be a real 2nd order stationary process,
and it is said to admit a ARMA(p, q) representation
(p, q ∈ Z) if, for some constant a1, . . . , ap, b1, . . . , bq, will be

􏽘

p

j�0
ajX(t − j)􏼐 􏼑 � 􏽘

q

j�0
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(2)

under the following conditions:

E ε(t) | Ft−1􏼈 􏼉 � 0,

E ε2(t)
􏼌􏼌􏼌􏼌 Ft−1􏽮 􏽯 � σ2,

Eε4(t)<∞,

􏽘

p

j�0
ajZ

j ≠ 0,

􏽘

p

j�0
bjZ

j ≠ 0, |Z|≤ 1.

(3)

Here, Ft denotes the sigma algebra induced by ε(j),j≤ t,
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Figure 1: Number of people tested positive (Lombardia) (original
data).
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Figure 2: Number of people tested positive (Lombardia) (data
adjusted via Kalman filter).
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with βj decreasing to 0 at geometric rate.
(e dynamics of the series under investigations are not

suitable for this theoretical framework as it requires 2nd-
order stationarity and homoscedasticity; those conditions
are simultaneously achieved by preprocessing the series
according to the following filter: log(∇d), being the symbol∇
the difference operator and the exponent d indicating the
order of the difference. To fully understand the role played
by∇, the backward operator B is now introduced. In essence,
B moves the time index of an observation back by p time
intervals, i.e., Bpxt � Xt−p, and thus we have

∇dlog Xt( 􏼁 � (1 − B)
dlog Xt( 􏼁. (5)

4.2. �e Resampling Method. In order to extract valuable
information from our data and, at the same time, decrease
the total amount of uncertainty associated with the out-
comes of the ARMA model, a resampling procedure has
been employed. Among the several resampling methods for
dependent data available—many of which are freely and
publicly available in the form of powerful routines working
under software packages such as Python® or R®—the
adopted resamplingmethod is of the typemaximum entropy
bootstrap (MEB). Proposed by Vinod [5] and subsequently
improved (see, e.g., Vinod [6]), it is based on basic as-
sumptions which are different from those usually followed
by standard schemes. In more details, while in the classic
bootstrap an ensemble Ω represents the population of ref-
erence the observed time series is drawn from, in MEB a
large number of ensembles (subsets), say ω1, . . . ,ωN􏼈 􏼉 be-
comes the elements belonging toΩ, each of them containing
a large number of replicates x1, . . . , xJ􏽮 􏽯.

Unlike standard bootstrap schemes, in the MEB case the
resample set Ω mimics the observed realization of the un-
derlying stochastic process, in MEB a large number of
subsets, say ω1, . . . ,ωN􏼈 􏼉 becomes the elements belonging to
Ω, each of them containing a large number of replicates
x1, . . . , xJ􏽮 􏽯. Among the important features of the MEB
scheme, it is worth mentioning the consistency of its
bootstrap samples with the ergodic theorem (see, e.g.,
Birkhoff [7]) and with the probabilistic structure of the
observed time series. In Figure 3, an example of the ap-
plication of MEB for the variable 1Vt,1 is given.

5. The Forecasting Method

In what follows, the proposed procedure is presented in a
step-by-step fashion:

(1) Equation (2) is estimated for both Vt and Ut so that
the model orders (equation (2)) M1 and M2 become
available.

(2) For each time seriesVt andUt, the MEB procedure is
applied so that the sets V and U—each containing
B � 500 “bonafide” replications—are available, i.e.,
V ≡ [V ∗1 , V∗2 , . . . , V∗B ] and U ≡ [U∗1 , U∗2 , . . . , U∗B ]

(in Figure 4, the set V for the variable 1Vt,1 is given).

(3) For each of the replications stored in V, equation (2)
is estimated according to the model order selected,
i.e., M1, and the 1- to 10-step-ahead predictions—as
well as the 5% and 95% bootstrap confidence
interval—are generated.

(4) (e B predictions and the confidence intervals ob-
tained in the previous step are stored in the B × 3
matrix [FV(h), h � 1, 2, . . . , 10], whose columns are
lower bootstrap confidence interval, bootstrap pre-
diction, and upper bootstrap confidence interval,
respectively, denoted by the symbols CI∗L,b(h), V∗t,b,
and CI∗U,b(h) b � 1, . . . , B.

(5) (e median value 􏽢V
∗

� X(V∗t,b) is then extracted
along with the ≈ 95% confidence intervals CI∗L,b(h �

1) and CI∗U,b(h � 1), computed according to the
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Figure 3: Lombardia: B� 500 bootstrap replications performed via
the MEB algorithm on the adjusted, log-transformed, data (in red,
the original time series is depicted).
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Figure 4: Italy, time series data of positive (data corrected via
Kalman filter, left side axis) and of the number of people hospi-
talized in ICUs (right side axis).

4 Journal of Probability and Statistics



t-percentile method. (e explanation of this pro-
cedure goes beyond the scope of this paper; there-
fore, the interested reader is referred to the excellent
paper by Berkowitz and Kilian [8].

(6) CI∗L (h � 2, . . . , 10) and CI∗U (h � 2, . . . , 10) (the
subscript b is omitted for brevity) are computed
conditional to a subset of V, say 􏽥V, made up of the
bootstrap replications whose range falls between the
minimum and maximum values of the values of the
confidence intervals computed for h � 1. In symbols,

min CI∗U (h � 1)( 􏼁≤ [􏽥V ⊂ tV]≤max CI∗U (h � 1)( 􏼁. (6)

(7) Steps 1–6 are repeated forUt, so that a new matrix of
prediction of dimension B × 3 is built, i.e.,
[FV(h), h � 1, 2, . . . , 10], whose columns are as in
FU(h) and denoted by the symbols CI∗U (h), 􏽢U∗t , and
CI∗U (h).

Unfortunately, the whole procedure cannot be consid-
ered fully automatic since the estimation of equation (2)
(step 1) is required.

5.1. �e Adopted Models. (e stochastic model structures
identified for both Vt and Ut are almost always of the type
ARMA (1, 0), with the exception of Campania (ARMA(0, 1),
for both the variables Vt and Ut) and Emilia-Romagna, for
which the best model for the variable Ut is of the type
ARMA(1, 1). (e most suitable prefilter (equation (5)) has
been always of the type d� 3 difference of the natural log of
the variables of interest.

6. Empirical Evidences

At the national level (data have been plotted in Figure 4), the
peak in the number of COVID-19 positives will be reached
on April 2nd, with a number of predicted positive close to
77,000. (e maximum forecasted value for the occupied
ICU—expected for April 4th—will be 4280. (ese values
have been calculated using an indirect methodology, i.e., by
summing up the estimates obtained at a disaggregated level.
(e results related to COVID-19 positives and the ICU
occupancy are reported, respectively, in Tables 1 and 2,
where the bootstrap standard deviations of the quantities 􏽢V∗t
and 􏽢U∗t —respectively denoted with the symbols [􏽢σ(Vt)]

∗

and [􏽢σ(Ut)]
∗—are reported along with their confidence

intervals, i.e., CI∗L (h) (lower) and CI∗U (h) (upper). In what
follows, the main results reported in these tables are
commented:

(i) Lombardia—the most affected region—will reach
the peak of positive cases (25963) and of the de-
mand of ICUs (1425), respectively, on April 2nd
and 4th.

(ii) Emilia-Romagna is the second most affected re-
gion by COVID-19 but still shows a very high
number of victims. (e trend of infected people
will reach its peak on April 5th, whereas the

Table 1: 10-step-ahead predictions for the variable Vt (number of
persons tested positive).

Italy
CI∗L (h) 􏽢V∗t CI∗U (h) [􏽢σ(Vt)]

∗

29 March 66504 71586 76647 6911
30 March 69753 73409 79373 12785.3
31 March 70760 75696 82773 16989.7
1 April 70817 76723 86430 20353.4
2 April 69925 77811 90800 28812.7
3 April 69309 76952 96806 35454.1
4 April 68480 75927 102946 42234.7
5 April 66531 74860 109265 58238.4
6 April 64940 75006 117550 72145.3
7 April 60197 74875 126205 91586.4

Lombardia
29 March 22538 25214 26384 5001.4
30 March 23296 25456 26790 5010.8
31 March 23969 25792 27565 5167.0
1 April 23864 25842 27634 5301.3
2 April 23662 25963 28230 6248.7
3 April 23209 25675 28342 7123.5
4 April 22709 25717 28781 8307.2
5 April 21964 25067 29524 9972.6
6 April 20802 24431 30131 12368.5
7 April 19619 23752 30628 14375.8

Piedmont
29 March 6115 6635 7017 1136.4
30 March 6264 6610 7193 1253.0
31 March 6209 6568 7481 1759.2
1 April 6079 6401 7942 2531.6
2 April 5837 6152 8271 3357.0
3 April 5502 5898 8590 4025.1
4 April 5134 5566 8753 4985.6
5 April 4666 5135 8995 5893.4
6 April 4178 4732 9279 6809.7
7 April 3707 4289 9417 7986.3

Liguria
29 March 2026 2062 2217 220.9
30 March 2007 2048 2242 299.7
31 March 1955 2019 2361 476.0
1 April 1891 1969 2416 634.1
2 April 1804 1900 2515 803.5
3 April 1701 1805 2580 988.9
4 April 1589 1709 2645 1178.1
5 April 1470 1590 2748 1445.7
6 April 1344 1440 2917 1878.3
7 April 1214 1311 3090 2158.2

Valle d’Aosta
29 March 404 480 512 111.7
30 March 410 491 524 121.6
31 March 417 501 546 142.2
1 April 420 500 551 146.0
2 April 411 494 551 152.3
3 April 382 483 542 179.3
4 April 359 462 526 188.9
5 April 339 443 541 222.6
6 April 301 412 530 254.5
7 April 267 383 516 280.3

Veneto
29 March 6346 7145 7559 1730.7
30 March 6569 7213 7749 1745.4
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Table 1: Continued.

Italy
CI∗L (h) 􏽢V∗t CI∗U (h) [􏽢σ(Vt)]

∗

31 March 6706 7431 8067 1888.1
1 April 6721 7463 8144 2031.5
2 April 6535 7539 8415 2443.8
3 April 6414 7469 8758 3121.9
4 April 6073 7374 9168 4423.1
5 April 5703 7182 9214 4957.7
6 April 5303 6842 9593 6023.7
7 April 4798 6537 10203 7743.4

Friuli Venezia Giulia
29 March 1029 1124 1167 180.2
30 March 1083 1138 1195 141.6
31 March 1100 1169 1226 153.6
1 April 1104 1189 1269 211.4
2 April 1109 1212 1267 201.2
3 April 1097 1209 1272 207.6
4 April 1060 1230 1287 287.8
5 April 1035 1203 1305 321.4
6 April 1005 1202 1333 413.2
7 April 976 1208 1343 445.7

Emilia-Romagna
29 March 9163 10500 11265 2912.4
30 March 9464 10975 11717 3323.8
31 March 9535 11360 12176 3591.6
1 April 9587 11613 12562 4123.3
2 April 9476 11815 12954 4783.0
3 April 9276 11943 13291 5547.1
4 April 9002 12132 13539 6471.6
5 April 8528 12244 13720 7240.6
6 April 8034 12125 13995 8173.0
7 April 7311 11966 14189 9017.2

Trentino Alto Adige
29 March 2021 2147 2324 325.1
30 March 2076 2158 2488 426.1
31 March 2114 2124 2617 581.6
1 April 2110 2083 2707 685.9
2 April 2097 1988 2787 761.4
3 April 2064 1868 2764 817.6
4 April 2023 1725 2742 827.9
5 April 1944 1548 2751 902.1
6 April 1851 1373 2718 991.0
7 April 1707 1200 2641 1041.3

Lazio
29 March 2013 2208 2355 429.0
30 March 2160 2244 2436 348.2
31 March 2182 2298 2553 413.7
1 April 2153 2279 2666 612.4
2 April 2161 2256 2785 723.5
3 April 2140 2222 2991 1016.0
4 April 2100 2154 3132 1278.3
5 April 2041 2046 3233 1480.3
6 April 1908 1956 3485 1817.4
7 April 1768 1821 3782 2128.3

Macroarea Center
29 March 6822 7499 7911 1459.1
30 March 7104 7671 8087 1403.7
31 March 7130 7864 8396 1740.8
1 April 7001 7896 8741 2316.0

Table 1: Continued.

Italy
CI∗L (h) 􏽢V∗t CI∗U (h) [􏽢σ(Vt)]

∗

2 April 6758 7889 8987 3019.6
3 April 6424 7851 9156 3800.7
4 April 6078 7813 9695 5015.6
5 April 5512 7718 10081 5917.4
6 April 4925 7494 10580 7727.4
7 April 4397 7238 10941 9036.2

Campania
29 March 1169 1453 1549 499.7
30 March 1267 1494 1662 513.7
31 March 1293 1527 1747 600.4
1 April 1287 1548 1835 709.3
2 April 1280 1582 1898 817.0
3 April 1252 1619 1953 901.6
4 April 1222 1640 1972 998.3
5 April 1160 1649 2020 1047.3
6 April 1090 1648 2063 1218.5
7 April 994 1645 2145 1418.8

Macroarea South
29 March 4380 5226 5662 1501.9
30 March 4646 5406 5846 1504.8
31 March 4689 5648 6246 1981.0
1 April 4705 5791 6528 2312.2
2 April 4496 5931 6902 3100.9
3 April 4122 6129 7325 3973.6
4 April 3841 6169 7695 4984.0
5 April 3445 6346 8141 6118.4
6 April 2981 6355 8787 7459.2
7 April 2512 6345 9397 8918.4

Table 2: 10-step-ahead predictions for the variable Ut (people in
ICUs).

Italy
CI∗L (h) 􏽢V∗t CI∗U (h) [􏽢σ(Vt)]

∗

29 March 3681 3960 4086 570.4
30 March 3751 4009 4170 601.3
31 March 3730 4075 4264 784.2
1 April 3732 4141 4350 880.0
2 April 3707 4185 4386 945.2
3 April 3667 4262 4493 1012.7
4 April 3608 4280 4610 1402.6
5 April 3492 4275 4701 1611.8
6 April 3347 4249 4814 2097.0
7 April 3143 4243 4899 2418.4

Lombardia
29 March 1272 1369 1426 202.6
30 March 1286 1389 1458 237.4
31 March 1287 1402 1482 242.4
1 April 1291 1412 1490 274.7
2 April 1289 1420 1509 304.6
3 April 1286 1427 1526 325.6
4 April 1270 1425 1537 386.4
5 April 1252 1421 1558 423.7
6 April 1227 1416 1578 501.5
7 April 1191 1412 1599 580.3

6 Journal of Probability and Statistics



Table 2: Continued.

Italy
CI∗L (h) 􏽢V∗t CI∗U (h) [􏽢σ(Vt)]

∗

Piedmont
29 March 422 433 451 32.7
30 March 428 436 457 40.1
31 March 428 438 470 58.3
1 April 427 436 478 70.2
2 April 424 434 491 92.0
3 April 419 427 498 111.7
4 April 409 417 508 134.0
5 April 395 406 512 163.1
6 April 373 396 523 204.5
7 April 354 383 535 254.3

Liguria
29 March 156 163 168 15.1
30 March 159 163 171 16.1
31 March 158 163 174 21.4
1 April 158 162 178 26.8
2 April 158 161 181 30.9
3 April 156 159 185 39.5
4 April 153 157 187 47.8
5 April 148 153 191 60.0
6 April 143 151 193 70.6
7 April 137 145 195 82.4

Valle Aosta
29 March 24 25 27 2.4
30 March 25 25 29 3.1
31 March 24 25 30 4.0
1 April 24 24 31 4.3
2 April 23 22 32 5.5
3 April 22 21 33 6.8
4 April 21 19 34 8.2
5 April 19 16 36 12.3
6 April 18 14 36 13.3
7 April 15 12 37 18.4

Veneto
29 March 331 357 367 48.5
30 March 335 360 375 53.7
31 March 335 365 382 65.3
1 April 334 370 391 80.6
2 April 332 375 401 96.7
3 April 324 378 409 119.4
4 April 312 375 424 156.7
5 April 298 376 440 200.4
6 April 286 370 448 231.1
7 April 267 369 461 268.0

Friuli Venezia Giulia
29 March 56 57 60 4.3
30 March 56 58 60 4.8
31 March 56 58 63 4.5
1 April 55 58 63 5.2
2 April 54 57 65 7.0
3 April 52 56 66 8.3
4 April 51 56 67 10.2
5 April 49 55 69 11.4
6 April 48 53 71 12.0
7 April 44 52 72 15.3

Table 2: Continued.

Italy
CI∗L (h) 􏽢V∗t CI∗U (h) [􏽢σ(Vt)]

∗

Emilia-Romagna
29 March 306 349 379 100.5
30 March 309 365 394 116.7
31 March 309 369 409 136.5
1 April 312 372. 421 148.5
2 April 313 379 433 152.7
3 April 314 386 439 174.1
4 April 311 388 442 180.7
5 April 307 392 442 188.6
6 April 298 399 447 212.6
7 April 288 401 444 212.5

Trentino Alto Adige
29 March 110 124 135 20.4
30 March 113 127 144 27.4
31 March 114 130 150 33.5
1 April 113 132 155 40.5
2 April 113 133 158 42.6
3 April 111 133 160 48.5
4 April 107 131 161 54.8
5 April 101 130 164 60.3
6 April 94 126 171 76.8
7 April 87 123 175 87.3

Lazio
29 March 120 136 146 29.8
30 March 125 139 157 35.4
31 March 123 141 171 58.6
1 April 118 144 179 71.0
2 April 111 145 200 109.5
3 April 104 145 219 135.3
4 April 95 141 235 160.3
5 April 84 139 264 196.8
6 April 73 134 294 253.8
7 April 61 131 343 321.5

Macroarea Center
29 March 476 491 509 40.6
30 March 485 492 519 45.3
31 March 484 492 534 64.9
1 April 482 489 547 85.6
2 April 479 484 565 116.2
3 April 475 478 586 142.0
4 April 468 469 608 193.6
5 April 460 460 624 224.0
6 April 448 448 649 273.3
7 April 438 438 681 331.9

Campania
29 March 126 142 167 41.2
30 March 133 159 197 68.5
31 March 138 176 228 97.4
1 April 144 189 257 114.9
2 April 147 201 293 150.8
3 April 148 206 326 197.8
4 April 143 211 348 212.4
5 April 134 203 382 246.2
6 April 120 197 411 311.7
7 April 109 192 447 370.1
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number of cases in intensive care will continue to
grow at a progressively slower rate over the
forecasting period.

(iii) Veneto is the third region for number of deaths. Here,
the number of positive cases, as well as the number of
cases in ICU, will reach the peak on April 3rd.

(iv) For Piedmont—the fourth region for number of
victims—the predicted positive cases will reach the
peak onMarch 29th (6635), whereas the persons in
ICU will be 431 on March 31st, when the peak is
predicted.

(v) Liguria will begin a process of relative reduction of
positive cases as early as March 29th. (e number
of cases in intensive care, after a period of stability
(lasting until March 31st), will start a slow de-
creasing path.

(vi) Positive cases in Trentino Alto Adige—which in-
corporates the cities of Trento and Bolzano—are
projected to be 2158 on March 30th and then a
decreasing trend is expected.(e ICU beds occupied
in this region will reach its peak on around April 3rd.

(vii) (e positive cases in Friuli Venezia Giulia show a
relatively stable trend in the first half of the pre-
diction interval with a peak around April 4th, after
that the absolute number of cases will start de-
creasing.(e number of cases in ICUwill reach the
peak between March 30th and April 1st.

(viii) Valle d’Aosta is a small region which has been
relatively less impacted by the virus. Here, a
downward trend is expected to start on March 31st
(for the positive cases) and around March 31st
(cases in ICUs).

(ix) (e upward trend in the number of positive cases
of Lazio is estimated to stop on March 31st and to
reach the minimum at the end of the forecasting
people (1821 cases). (e number of ICU cases is
estimated to reach its peak on the period 1–3 April.

(x) (e macroarea Center will reach its peak at the
very beginning of the month of April (for the
variable V), whereas for the variable U the esti-
mated peak day is around 31st March.

(xi) Campania will reach the peak of contagions on April
5th, whereas ICU cases will do on the previous day.

(xii) (e remaining southern regions (Abruzzo, Molise,
Puglia, Basilicata, Calabria, Sicily, and Sardinia)
will show an upward trend in the number of future
positive cases lasting until April 6th, where 6355
cases are predicted. (e number of persons re-
quiring an ICU will reach the peak on April 4th
(348 is the estimated number of cases).

7. Conclusion

A forecasting method for two variables typically crucial
during a pandemic—i.e., the number of positives and the
future occupancy of ICU beds—has been proposed. (e
whole procedure has been designed to fulfill such a need-to-
know goal using a minimal set of data; that is, the time series
related to the positives and the ICU occupancy. (is is a
point of strength, as, especially in the initial stages of a
pandemic, the available time series are limited to only basic
variables (such as the ones considered in this paper) and are
necessarily short, a fact that in general rules out multivariate
approaches. In addition to that, this procedure uses two
powerful tools, i.e., ARIMAmodels and theMEB resampling
scheme, to generate estimates and confidence intervals of
those quantities which are less affected by uncertainty
components than it would be without using the bootstrap
step. Finally, the procedure includes a filter of the type
Kalman, which proved to be effective in correcting irregu-
larities and anomalies (e.g., outliers) typically found in this
type of data. At least two are the points of weakness of the
proposed method: firstly, the assumption that both the time
series of interest are both realizations of (unknown) data
generating processes of the type ARIMA is arbitrary and
entails the introduction of not negligible amount of un-
certainty into the analysis (order selection uncertainty).
Secondly, once the “best” model order is found, the inference
process inevitably leads to the loss of precious degrees of
freedom. Future research directions include exploring dif-
ferent prediction models (e.g., of the type exponential
smoothing) and combining the predictions generated by
them.
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Table 2: Continued.

Italy
CI∗L (h) 􏽢V∗t CI∗U (h) [􏽢σ(Vt)]

∗

Macroarea South
29 March 296 319 342 52.2
30 March 303 326 348 55.4
31 March 312 335 367 64.8
1 April 306 340 367 70.3
2 April 302 343 383 100.4
3 April 298 346 394 118.5
4 April 289 348 408 130.7
5 April 278 342 421 171.6
6 April 264 334 441 212.7
7 April 244 318 462 270.5
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