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Abstract 

 

Attrition is a major issue in the drug development process with 79% of clinical 

failures due to safety and efficacy concerns. Genetic research can provide 

supporting evidence of a clear causal relationship between the drug target and 

disease or reveal unintended effects through associations with non-relevant 

phenotypes informing on potential drug safety. However, due to the underlying 

genetic architecture, it is often unclear which gene or variant in the loci identified 

through genetic analyses is driving the association. Due to recent 

advancements in CRISPR-Cas9 gene-editing, it is now possible to relatively 

easily perform whole gene knock-out studies and single base-edits to validate 

genetic findings of the most likely causal variant and gene. Utilising a 

combination of genetic approaches and functional studies can provide 

supporting evidence of the therapeutic profile and potential effects of drug 

therapies and improve our overall understanding of biological pathways and 

disease mechanisms. 

 

The primary aim of this thesis is to provide genetic data to support the ongoing 

clinical development of hypoxia-inducible factor (HIF)-prolyl hydroxylase 

inhibitors (PHIs) for treating anaemia of chronic kidney disease (CKD). 

Genome-wide association studies (GWAS) were used to identify genetic 

variants lying within or nearby genes encoding the drug target (prolyl 

hydroxylase [PHD] enzymes). These identified variants were used in Mendelian 

Randomisation analysis and phenome-wide association studies to genetically 

mirror the pharmaceutical effects of PHIs and investigate cardiovascular safety. 

Functional validation studies were employed to functionally validate a genetic 

variant for use as a proxy and to obtain a better understanding of the 

downstream causal pathways and biological mechanisms of the drug target. 

 

In summary, this thesis demonstrates how a combination of genetic analyses 

and functional validation studies is a powerful approach to validate GWAS 

results and further characterise therapeutic effects. This PhD project identified 

relevant genetic markers to genetically proxy therapeutic modulation of 

biomarker levels through PHD inhibition and could potentially inform further 

research using patient-level clinical data from Phase III trials. 
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Overview of the Data Chapters 

 

Chapter 3 centres on the identification of a genetic variant, lying in cis with the 

EPO gene, associated with higher circulating erythropoietin (EPO) levels (the 

downstream effect of PHI treatment) by performing a GWAS meta-analysis. The 

identified genetic variant is validated as the most likely causal variant by testing 

its association with hepatic and renal gene expression and performing 

colocalisation analysis. The variant is then used as a genetic proxy for 

therapeutic modulation of endogenous EPO levels in Mendelian Randomisation 

analysis to predict the risk of cardiovascular disease (CVD) associated with 

therapeutically altered endogenous EPO levels. 

 

Chapter 4 outlines the establishment of a whole EPO gene knock-out model 

using CRISPR-Cas9 gene-editing and whole transcriptomic profiling to better 

understand downstream transcriptomic changes and pathways involved in EPO 

signalling.  

 

Chapter 5 utilises and further develops a protocol for seamless single base 

gene-editing. A relatively new technique combining CRISPR-Cas9 gene-editing 

with the piggyBac transposon system is applied to establish a heterozygous 

knock-in model of a cis-EPO variant to functionally validate the variant as 

causal in controlling EPO expression levels.  

 

Chapter 6 focuses on investigating the long-term effects of rises in circulating 

haemoglobin (Hgb) levels through therapeutic inhibition of the prolyl 

hydroxylase (PHD) enzymes with PHI treatment. Genetic variants associated 

with circulating Hgb levels lying within the genes encoding the PHDs are 

selected to genetically proxy therapeutic PHD inhibition and examine the long-

term effects of higher circulating Hgb levels on risk of cardiovascular disease or 

any other unwanted effects. 
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Chapter 1 General Introduction 

 

This chapter provides a general introduction and background into the 

overarching aim of this thesis in using genetics to investigate the long-term 

effects of therapeutic modulation on cardiovascular risk and the different 

techniques employed. 

 

Some sections have been taken directly from a literature review published in the 

Human of Molecular Genetics journal which I wrote during the first year of my 

PhD with the help of my primary supervisor Professor Tim Frayling; 

 

Mendelian randomisation in type 2 diabetes and coronary artery disease. 

Timothy M Frayling, Charli E Stoneman. Human of Molecular Genetics, PMID 

29935421, DOI 10.1016/j.gde.2018.05.010 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://doi.org/10.1016/j.gde.2018.05.010
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1.1 Anaemia of Chronic Kidney Disease 
 

 Background 
 

Chronic kidney disease (CKD) affects between 8-16% of people globally and is 

a progressive long-term condition characterised by a loss of kidney function (T. 

K. Chen et al., 2019). CKD most commonly occurs in the elderly population and 

people of African American or Hispanic ethnicities (Saran et al., 2019). CKD is 

assessed in terms of overall kidney function and the presence of kidney 

damage (Couser et al., 2011). Kidney function is measured using the estimated 

glomerular filtration rate (eGFR) with values less than 60 mL/min/1.73m2 

defining kidney disease (T. K. Chen et al., 2019; Eknoyan et al., 2013). Kidney 

damage is ascertained by the level of albuminuria (defined by a urine 

albumin/creatine ratio [ACR] > 30 mg/g), kidney biopsy, kidney transplant, 

structural abnormalities or haematuria (Eknoyan et al., 2013; Levin et al., 2013). 

CKD is classified in stages; stages 1 and 2 require the presence of proteinuria 

and reduced eGFR depicting some kidney function loss, stages 3 and 4 

represent moderate CKD with less than 50% of kidney function and stage 5 is 

defined as end-stage renal disease (ESRD) where there is little to no kidney 

function (eGFR < 15 mL/min/1.73m2) and dialysis is required (Couser et al., 

2011). These patients are denoted dialysis dependent (DD) and those not yet 

receiving dialysis are denoted non-dialysis dependent (NDD). CKD is a 

heterogenous disorder with a range of causes. The most common causes are 

diabetes, hypertension, glomerulonephritis, infection and certain genetic risk 

factors, such as the presence of two APOL1 risk alleles (Jha et al., 2013; A S 

Levey, 2021; O’Seaghdha et al., 2011; Shafi & Coresh, 2019; Tzur et al., 2010). 

CKD is associated with additional complications, such as an eight- to ten-fold 

increase in cardiovascular mortality and mineral or bone density disorders, with 

the severity of complications increasing as the CKD advances (T. K. Chen et 

al., 2019; Couser et al., 2011; R. Thomas et al., 2008). 

 

Anaemia is one of the most common complications of CKD affecting one in 

seven CKD patients (T. K. Chen et al., 2019; Stauffer & Fan, 2014). Anaemia 

increases in prevalence as kidney disease progresses affecting the majority of 

patients with stage 5 CKD (Couser et al., 2011; KDOQI, 2006). Anaemia of 

CKD is typically normocytic, normochromic and hypo proliferative (Babitt & Lin, 
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2012). Anaemia is characterised by a reduced absolute number of circulating 

erythrocytes and reduced haemoglobin (Hgb) or haematocrit (HCT) levels 

reducing oxygen-carrying capacity and oxygen tissue delivery (Figure 1.1) 

(Chaparro & Suchdev, 2019). Reduced oxygen tissue delivery can lead to 

tissue damage, organ failure and eventually death (Guowen Liu et al., 2006). 

Anaemia is associated with faster progression of CKD alongside poorer quality 

of life and increased risk of cardiovascular disease (CVD), thromboembolism, 

hospitalisation, cognitive impairment, morbidity and mortality (Di Lullo et al., 

2015; Jankowski et al., 2021; Q. Zheng et al., 2021). Multiple mechanisms lead 

to the development of anaemia in CKD including low erythropoietin (EPO) 

levels, inflammation, bleeding and reduced iron availability all resulting in a 

reduced number of healthy circulating erythrocytes (Zumbrennen-Bullough & 

Babitt, 2013). The primary driver of anaemia in CKD is the relative deficiency of 

EPO (Figure 1.1) (Jelkmann, 2011). 
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Figure 1.1: The role of EPO in the development of anaemia in CKD. (1) In the presence of low oxygen levels (hypoxia), EPO is released from the healthy 
kidneys and transported through the blood to the bone marrow (2). In the bone marrow, EPO binds to the EPO receptor (EPOR) and stimulates erythrocyte 
production and development (3). Iron is used to support the final stage of erythropoiesis producing mature erythrocytes (4). Increased number of mature 
erythrocytes results in increased circulating Hgb levels (5) leading to increased oxygen-carrying capacity within the cells and increased oxygen delivery to 
tissues. Increased oxygen delivery inhibits further EPO production through negative feedback mechanisms (6). In CKD, due to aberrant kidney function, less 
EPO is released by the kidneys in response to hypoxia (7). The lower circulating EPO levels results in decreased erythrocytosis (8) resulting in the 
production of fewer mature erythrocytes (9). Fewer erythrocytes result in reduced circulating Hgb levels and the retention of low oxygen levels resulting in 
the development of anaemia (10). Created by BioRender.com. 
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 The hypoxic response pathway 
 

The hypoxic pathway is the primary regulator of EPO production through 

controlled transcription of the EPO gene alongside other hypoxic response 

genes, such as VEGF, HAMP (encoding hepcidin), and HK1 (encoding 

hexokinase) (J. W. Lee et al., 2019; Masoud & Li, 2015; S. Ramakrishnan et al., 

2014; Watts et al., 2020). The hypoxic signalling pathway is an adaptive 

molecular mechanism activated in response to low oxygen levels (J. W. Lee et 

al., 2019). The master regulators of transcription in response to hypoxia is the 

family of transcription factors (TFs) termed the hypoxia-inducible factors (HIFs) 

(Figure 1.2) (Sormendi & Wielockx, 2018). The constitutively expressed HIFs 

consist of the nuclear HIF and the cytoplasmic oxygen-dependent HIF 

subunits (Ziello et al., 2007). In the presence of oxygen, HIF is hydroxylated at 

two prolyl residues by the oxygen- and iron-dependent HIF prolyl hydroxylase 

enzymes (PHD1-3 encoded by EGLN1-3) (Figure 1.2) (Rodriguez et al., 2021). 

Hydroxylation of HIF allows the binding of the Von Hippel-Lindau (VHL) 

protein leading to ubiquitination and proteasomal degradation (Figure 1.2) (F. S. 

Lee & Percy, 2011). During normoxia, the GATA2 TF is also bound to the 

promoter region of EPO preventing transcription of the EPO gene (Figure 1.2) 

(Jelkmann, 2011). During hypoxia (a condition where oxygen levels are limited), 

the PHD enzymes are less active resulting in the stabilisation of HIF subunits 

enabling the translocation to the nucleus and the formation of a heterodimeric 

complex through interaction with the nuclear HIF subunit and P300/CBP 

(Figure 1.2) (Haase, 2013; J. W. Lee et al., 2019). Due to the simultaneous 

decrease in GATA2 levels, the promoter region of hypoxic response genes 

becomes available for the binding of the HIF-P300/CBP complex subsequently 

increasing transcription of hypoxic response genes stimulating erythropoiesis 

and restoring oxygen homeostasis (Figure 1.2) (Jelkmann, 2011; 

Schönenberger & Kovacs, 2015; Shih et al., 2018). This classic hypoxic 

response pathway and ability to restore oxygen homeostasis is significantly 

hampered in CKD patients due to the unhealthy kidneys releasing less EPO 

(Koury & Haase, 2015). 
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Figure 1.2: The hypoxic response pathway. In the presence of normal oxygen levels 

(normoxia), the HIF subunits, primarily HIF-1, are hydroxylated by the PHD1-3 enzymes. 

Hydroxylation marks HIF-1 for proteasomal degradation through the ubiquitination by the 
VHL protein. The GATA2 repressive transcription factor is also bound to the hypoxia 
response element (HRE) during normoxia preventing binding of any activating transcription 
factors. During hypoxia, when oxygen levels are limiting, the PHD1-3 enzymes become 

inactive allowing stabilisation of HIF-1 and levels of GATA2 are repressed making the 

HRE available for binding. Stabilised HIF-1 is able to translocate to the nucleus where it 

forms a heterodimer complex with HIF-1 subunit enabling the recruitment of p300/CBP. 

The HIF1-HIF1-p300/CBP complex is able to bind to the HRE initiating transcription of 
the hypoxic response genes, primarily EPO. EPO is then secreted and binds to the EPO 
receptor (EPOR) where the JAK2-STAT5 signalling cascade is stimulated increasing 
erythropoiesis, cell signalling activity, proliferation, cell growth and differentiation. PHIs are 
a novel class of drugs for treating anaemia in CKD which act at the transcriptional level of 
the EPO gene. PHIs inhibit the PHD enzymes increasing activation of the hypoxic response 
pathway. HIF = hypoxia inducible factor; PHI = prolyl hydroxylase inhibitor; PHD = prolyl 
hydroxylase enzyme; VHL = Von Hippel-Lindau; HRE = hypoxic response element; JAK2 = 
Janus kinase 2; FIH-1 = factor inhibiting HIF. Created with BioRender.com. 
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 Erythropoietin 
 

Erythropoietin (EPO), a glycoprotein cytokine, is the primary hormone 

responsible for effective erythropoiesis (A. K. Singh, 2018). The main sites of 

EPO production are the kidneys and the liver (Noguchi et al., 2008). Hepatic 

EPO production predominates in the foetal and perinatal periods, whilst renal 

EPO production predominates in adulthood (Shih et al., 2018; Suresh et al., 

2020). In the kidney, EPO is produced by the interstitial fibroblasts, the 

peritubular capillary and the proximal convoluted tubule (Fisher et al., 1996; 

Nagai et al., 2014; Shih et al., 2018; Zeisberg & Kalluri, 2015). In the liver, EPO 

is produced in the perisinusoidal cells (K. U. Eckardt, 1996). EPO is regulated at 

the transcriptional level, through transcription of the EPO gene located on 

chromosome 7, in response to oxygen levels (Jelkmann, 2011). Low levels of 

EPO are constantly secreted to maintain a continuous turnover of erythrocytes 

(Suresh et al., 2020). During hypoxia, there is increased transcription of the 

EPO gene resulting in raised circulating EPO levels in an attempt to improve 

oxygen delivery by increasing the absolute number of erythrocytes (F. S. Lee & 

Percy, 2011; Souma et al., 2015). 

 

EPO exerts its effects through binding to the EPO receptor (EPOR) initiating 

intracellular cell signalling through recruitment and activation of the Janus 

kinase 2 (JAK2) signalling cascade (Figure 1.2) (Koury & Haase, 2015). JAK2 

signalling activates the STAT5, MAPK (mitogen activated protein kinase), and 

PI3K (phosphoinositide 3-kinase)-AKT pathways (Koury & Haase, 2015; F. S. 

Lee & Percy, 2011). Activation of these intracellular signalling pathways 

promote cell differentiation, cell survival, and proliferation by protecting against 

apoptosis (F. S. Lee & Percy, 2011). In this way, EPO regulates the 

differentiation, proliferation, and survival of erythrocytes. The EPOR has only 

shown to be expressed on erythroid progenitor cells and non-erythroid cells, 

such as neural cells, skeletal myoblast cells, and endothelial cells indicating a 

non-haematopoietic role for EPO which differs depending upon the tissue or 

cell-type (Broxmeyer, 2013; Lamon & Russell, 2013; Noguchi et al., 2008; 

Suresh et al., 2020). These non-haematopoietic roles are thought to include, 

but are not limited to, exerting cytoprotective, neuroprotective, and antiapoptotic 

effects, alongside energy metabolism and a response to inflammation or stress 
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(Jelkmann, 2011; Noguchi et al., 2008; Suresh et al., 2020; L. Wang et al., 

2014; Yuanyuan Zhang et al., 2014). EPO also plays an important role in the 

regulation of internal iron stores (Batchelor et al., 2020). Iron is crucial for 

effective erythropoiesis and restoration of oxygen homeostasis by controlling 

differentiation of erythroblasts into reticulocytes and forming Hgb, the oxygen 

carrier (Batchelor et al., 2020). EPO influences the majority of iron stores 

through controlled regulation of erythrocyte destruction. EPO also influences 

iron uptake, mobility, and utilisation through hypoxia-controlled expression of 

the hepcidin gene (HAMP) by increasing secretion of erythroferrone from 

erythroid cells through activation of the JAK2-STAT5 pathway (Kaplan et al., 

2018; Muckenthaler et al., 2017).  

 

This tightly coordinated regulation of EPO and iron is important for maintaining 

effective erythropoiesis and subsequent Hgb levels and oxygen homeostasis 

(Haase, 2010; Watts et al., 2020). EPO levels can be substantially intervariable 

amongst individuals which is partly driven by genetics and the environment. 

Some individuals are able to adapt to low oxygen levels experienced at high 

altitudes better than others due to the speed of EPO production which is 

thought to be driven by epigenetic modifications, particularly DNA methylation 

(Childebayeva et al., 2019; Friedmann et al., 2005). Permanent residents of 

high altitudes have acclimatised to lower oxygen levels by increasing baseline 

EPO levels and are often protected against conditions resultant of sustained 

high circulating EPO or Hgb levels, such as polycythaemia (excessive number 

of erythrocytes) (Gardie et al., 2014). Mutations have been found within hypoxic 

response genes, HIF2A, PHD2 and PPARA in permanent high-altitude 

residents as a result of genetic adaptation and selection (Haase, 2013). These 

individuals have higher resting ventilation, lower Hgb levels and more efficient 

oxygen utility but are less susceptible to chronic mountain sickness and 

associated adverse effects, such as hypertension and heart failure (Horscroft et 

al., 2017; Suresh et al., 2020). Mutations within the EPO gene in these 

individuals have not been reported. Rare gain of function mutations within the 

EPO gene and rare loss-of-function mutations within EGLN1 (encoding PHD2) 

have previously been reported (Gardie et al., 2014; Zmajkovic et al., 2018). 

These mutations result in inherited or secondary polycythaemia due to 

sustained high levels of circulating EPO, and thus erythrocyte number and 
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Hgb/HCT levels. Polycythaemia leads to increased blood viscosity and adverse 

cardiovascular risk due to the excessive EPO and/or HCT levels (Gardie et al., 

2014; Takeda et al., 2006).  

 

The significant increase in oxygen uptake and improvement in oxygen utilisation 

in response to EPO has been exploited over the years by professional athletes 

in the form of blood-doping to improve endurance and performance by 

increasing the time before muscles fatigue (Tokish et al., 2004). Blood doping 

leads to supra-physiological EPO levels resulting in an abnormally high 

erythrocyte volume which is associated with increased risk of hypertension, 

stroke, blood clots, heart attacks, embolisms, and seizures in these athletes 

(Garimella et al., 2016; La Gerche & Brosnan, 2017). As the kidneys no longer 

retain full functioning in CKD, EPO is no longer released at sufficient levels 

resulting in increased hepcidin expression, reduced iron metabolism and 

mobility and reduced erythropoiesis reducing Hgb levels and leading to 

anaemia (Sugahara et al., 2017; Weiss et al., 2019). 

 

 Treatments for Anaemia in CKD 
 

EPO deficiency is the primary cause for anaemia of CKD and therefore, the 

current standard of care for anaemia in CKD is the parenteral administration of 

recombinant human EPO (rhEPO) or its analogs, otherwise known as 

erythropoietin stimulating agents (ESAs) (Mikhail et al., 2017). Iron therapies or 

transfusions are also regularly used (Shepshelovich et al., 2016). These 

treatments aim to increase erythrocyte production in an attempt to correct the 

anaemia by restoring oxygen tissue delivery. Despite potential benefits of these 

treatments including improvement in the quality of life and less need for blood 

transfusions, they do have limitations (Q. Zheng et al., 2021). Limitations of oral 

iron include prolonged treatment regimes and poor compliance due to 

gastrointestinal adverse effects, whilst limitations of ESAs or intravenous iron 

include inconvenient administration (by injection or infusion, respectively), pain 

at the injection site and risk of adverse effects such as hypersensitivity with 

intravenous iron or hypertension with rhEPO (Baird-Gunning & Bromley, 2016; 

Bonomini et al., 2016; Clement et al., 2010; Krapf & Hulter, 2009). Despite 

ESAs alleviating EPO deficiency, there are concerns regarding safety and 
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efficacy due to the supra-physiological circulating EPO levels leading to sudden 

and/or excessive rises in circulating Hgb levels (Jelkmann, 2013). Several 

studies have reported an increased risk of stroke, myocardial infarction (MI) and 

thromboembolism with supra-physiological EPO levels (Babitt & Lin, 2012; 

Locatelli & Del Vecchio, 2003; Pfeffer et al., 2009; Santhanam et al., 2010; A. K. 

Singh et al., 2006; Yi Zhang et al., 2004). These safety concerns have led to 

ongoing efforts to develop novel treatments for anaemia in CKD. One class of 

treatments is oral HIF prolyl hydroxylase inhibitors (PHIs) which have recently 

completed Phase III clinical trials (Chertow et al., 2021; K.-U. Eckardt et al., 

2021; Provenzano et al., 2021; A. K. Singh, Carroll, McMurray, et al., 2021; A. 

K. Singh, Carroll, Perkovic, et al., 2021). PHIs stimulate endogenous EPO 

production within the physiological range by acting at the transcriptional level of 

the hypoxic response genes through inhibition of the PHD enzymes (A. K. 

Singh, Carroll, McMurray, et al., 2021). PHD inhibition prevents hydroxylation of 

HIF subunits increasing stabilisation and allowing dimerization with the HIF 

subunit to initiate transcription of genes protecting against hypoxia, such as 

EPO (Figure 1.2) (Sugahara et al., 2017). PHIs also influence iron mobility and 

transport through acting upon this pathway by controlling expression of hepcidin 

(Kaplan et al., 2018). Clinical trials in DD- and NDD-CKD patients have already 

shown PHIs to be as effective as ESAs at maintaining Hgb levels over a 24-

week period with small increases in circulating EPO levels (Brigandi et al., 

2016; K.-U. Eckardt et al., 2021; Holdstock et al., 2019; Meadowcroft et al., 

2019; Provenzano et al., 2021). Recent safety and efficacy data through 

completion of Phase III trials has emerged providing evidence that PHIs are 

noninferior to ESAs with respect to Hgb levels and risk of cardiovascular 

outcomes, primarily stroke, MI or CAD (Chertow et al., 2021; K.-U. Eckardt et 

al., 2021; Provenzano et al., 2021; A. K. Singh, Carroll, McMurray, et al., 2021; 

A. K. Singh, Carroll, Perkovic, et al., 2021). Certain PHIs have already received 

approval for anaemia in CKD treatment in Japan supporting continual ongoing 

development of PHIs for anaemic CKD patients worldwide (Akizawa, Nangaku, 

et al., 2020; Nangaku et al., 2021).  
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1.2 Genetics to aid the drug development process 
 

 The drug development process 
 

The drug development process is resource-intensive, costly, time-consuming, 

and inefficient (Kaitin, 2010). For a drug candidate to be successful, it needs to 

pass through several phases, including discovery, pre-clinical development and 

clinical, before reaching the clinic with the pharmaceutical industry expending a 

considerable amount of time, effort, risk, and resources during each phase 

(Figure 1.3) (DiMasi et al., 2016; Kaitin, 2010). Although research and 

development (R&D) has improved in terms of productivity and technology over 

the years, the most difficult step is bringing potential therapeutic candidates out 

of discovery and through the cumbersome development process (Figure 1.3) 

(Kaitin, 2010). The cost of drug development continues to rise whilst the 

probability of drug candidates being approved remains low (Figure 1.3) (King et 

al., 2019). Despite success rates in late-stage development (Phase III to 

launch) improving from 50% to 66% in the most recent analysis of drug 

development, success rates of launch to Phase II and Phase II to Phase III 

remain static with <10% and 25% of potential drug candidates making it through 

these two milestones, respectively (Dowden & Munro, 2019). Attrition, therefore, 

remains a major issue with 79% of clinical failures being attributable to safety 

and efficacy issues (Dowden & Munro, 2019). For the drug development 

process to sustain its own growth, the number of clinical failures needs reducing 

whilst the number of successes needs increasing (King et al., 2019). The 

pharmaceutical industry has therefore been looking for other means to aid the 

prediction of safety and potential effects, aid drug candidate prioritisation, and 

highlight repurposing opportunities with the end goal of reducing clinical failures 

and increasing successes (Nelson et al., 2015). 
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Figure 1.3: The drug development process. See next page for figure legend. 
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Figure 1.3: The drug development process. The initial part of drug development involves the identification and validation of potential drug targets through 
identification of associations using genetic and expression data, structure-relationship analysis, over-expression experiments, transgenics, expression 
profiling, literature research, and competitor information. Potential drug targets then enter hit discovery where potential compounds (or ‘hits’) are identified. 
The compound then enters the lead discovery phase where it is undergoes high throughput screening and testing. This phase takes around 3-5 years and 
starts with thousands of potential candidates decreasing to only 10-20 which enter the pre-clinical phase. During the pre-clinical phase, which typically takes 
1-2 years, candidates undergo in vitro and in vivo testing in animal models to assess toxicity, bioreactivity and determine the no-observed-adverse-effect 
levels. Successful candidates then enter clinical development where they are tested in human subjects. Phase 1 clinical trials are carried out in around 100 
healthy volunteers to determine the safe dosage range and pharmacokinetic characteristics. Phase II trials are carried out in a few hundred patients with the 
disease. The goal of this phase is to determine drug efficacy and the minimum/maximum dose. Phase III clinical trials are then conducted in around a 
thousand individuals across several sites. These trials are randomised and are have a focus on intent-to-treat analysis and drug safety. The results from 
these trials are often published in peer reviewed journals. This process takes approximately 6-7 years and filters down the number of candidates to only a 
few (~1-10). Pharmaceutical companies then have the choice to move forward with submitting a new drug application to the FDA. The FDA review the 
submitted evidence, proposed labelling, patent information, directions for use and safety information before deciding whether the drug gets approved which 
can take 1-2 years. After approval, the compound enters the clinic and can be sold. Post-marketing monitoring is carried out for a couple of years. Created 
with BioRender.com. 
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 Human genetics and drug development 
 

One field which has made considerable advances over the last decade in 

supporting drug development and continues to hold great promise in sustaining 

the drug development process is the field of human genetics (Nelson et al., 

2015). The unprecedented increase in the amount of human genotypic and 

phenotypic information available has led to the identification of millions of 

genetic variants across the full frequency spectrum as associated with common 

diseases and traits (Visscher et al., 2017). This has revolutionised the field of 

complex diseases by providing insights into underlying genetic architecture and 

a better understanding of disease pathophysiology (Tam et al., 2019). Drug 

targets that are genetically informed are more likely to make it to Phase III 

clinical trials and the likelihood of the drug making it through to the clinic can be 

doubled if there is genetic evidence supporting drug safety and efficacy (King et 

al., 2019; Nelson et al., 2015). Therefore, one of the ultimate goals of genetic 

studies is to inform medicine by driving translational advances enabling safer 

and more effective strategies for disease prevention and treatment (Shuquan 

Rao et al., 2021). Although clinical trials are the best design for detecting small-

to-moderate clinically important effects in the diseased population, they are 

limited by cost, time, ethical issues, the often underrepresentation of women, 

their power to detect adverse effects, and the bias towards the null due to 

failure of participant adherence (Bennett & Holmes, 2017; Carey et al., 2017; 

Mo et al., 2020). Genetic studies can overcome some of these limitations. 

 

Genetic studies are often carried out at population level in large sample sizes 

using biobanks or cohorts (Uffelmann et al., 2021). Biobanks provide a more 

comprehensive understanding of the biological consequences of variants 

compared to case-control studies due to larger sample sizes, more robust and 

richer phenotyping including biomarker measurements and disease diagnosis 

and are often linked to electronic health records routinely updating the 

phenotypic data allowing for longitudinal analysis (Deaton et al., 2021; Denny et 

al., 2016; Diogo et al., 2018). Participants provide a wide-range of longitudinal 

phenotypic and genotypic data through questionnaires, electronic health 

records, biological samples, body measurements, clinical assessments and 

imaging (Sudlow et al., 2015). This wealth of readily available data provides the 
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opportunity for investigation of practically any phenotype quickly, efficiently and 

in thousands of people increasing the chance of identifying associations which 

would not be possible in clinical trials (Bycroft et al., 2018; Conroy et al., 2019). 

Furthermore, in most cases, there is no under-representation of females due to 

increased willingness to participate meaning that sex-specific effects, which 

would be unattainable in clinical trials, can be investigated alongside potential 

for other dichotomising (e.g. by smoking status or body mass index) (Carey et 

al., 2017; L. Y. Liu et al., 2012; Randall et al., 2013). Genetic evidence can be 

used throughout the drug development process to anticipate the potential to be 

efficacious and the risk of unintended effects potentially reducing attrition rates 

and saving resources (Plenge et al., 2013). The identification of relevant genetic 

markers has been predicted to reduce the number of candidates entering 

clinical development enabling a higher fraction of R&D budget to later clinical 

phases and has potential to inform further research using patient-level clinical 

data from phase III trials (Hurle et al., 2016). 

 

 Genome-wide association studies 
 

The development of high-throughput sequencing platforms has enabled large 

scale genome-wide association studies (GWAS) where single nucleotide 

polymorphisms (SNP) are tested for statistical associations with quantitative 

traits and diseases (Rohde et al., 2018). As of December 2021, 325,538 

genome-wide significant (GWS) (P  5 x 10-08) variant-trait associations in 5,527 

publications were reported in the GWAS Catalog (Buniello et al., 2019). The 

majority of genetic variants identified through GWAS are common with a minor 

allele frequency (MAF) > 1% and have low-to-modest effect sizes (Figure 1.4) 

(Shuquan Rao et al., 2021). As the cost of sequencing technologies continue to 

decrease and larger, more extensive cohorts or biobanks emerge, the power to 

detect associations of smaller effect sizes and the ability to detect rare genetic 

variants with larger effect sizes through whole-genome or exome sequencing 

will increase (Figure 1.4) (Visscher et al., 2017).  

 

GWAS primarily rely upon the principle of linkage disequilibrium (LD). LD 

describes the extent to which the allele of one SNP is correlated with the allele 

of another SNP within a given population as a result of population size, natural 
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selection, mutations and recombination rates (Bush & Moore, 2012). 

Neighbouring genetic variants tend to be highly correlated and inherited 

together (Bush & Moore, 2012; Flister et al., 2013; Hormozdiari et al., 2014). 

Not all SNPs in high LD will reach formal levels of significance (P  5x10-08), but 

those that do can be used to identify the causal SNP. GWAS is often carried out 

in the context of a consortium where GWAS summary statistics from multiple 

independent studies are combined through meta-analysis to increase sample 

size and subsequent power (Uffelmann et al., 2021). Meta-analysis can be 

performed using a fixed-effects or a random-effects model assuming equal 

variance or testing for heterogeneity, respectively (Zeggini & Ioannidis, 2009). 

Meta-analysis improves power by increasing sample size or testing more 

variants identified through genotyping on different platforms. Meta-analysis also 

overcomes issues associated with data protection and allows for more precise 

effect estimates and significance levels as the results from each cohort can be 

weighted by sample size or the inverse variance weighted (IVW) method 

(Uffelmann et al., 2021; Zeggini & Ioannidis, 2009). GWAS meta-analyses have 

already proved useful in improving our understanding of complex diseases and 

quantitative traits through identification of novel genes and pathways (Frayling 

et al., 2007; Hirschhorn, 2009; Nikpay et al., 2015; Pulit et al., 2018). The utility 

of GWAS in clinical applications has also been highlighted. First, GWAS 

associations have advanced the prediction of individual risk of disease 

improving patient outcomes through early detection, prevention or treatment by 

use of genetic risk scores (GRS) (Tam et al., 2019; Uffelmann et al., 2021). 

Second, GWAS have improved disease classification and subtyping e.g. in the 

diagnosis of maturity-onset diabetes of the young (MODY) (Owen et al., 2010; 

Thanabalasingham et al., 2011). Third, GWAS have optimised treatments 

based on genotypes informing drug selection and preventing adverse effects 

(Giacomini et al., 2017; Muir et al., 2014; Tanaka et al., 2009). Fourth, GWAS 

have identified subgroups (e.g. ethnicities or genders) which may be at an 

increased risk of developing certain diseases (Tam et al., 2019; Visscher et al., 

2017). These few examples highlight the potential of GWAS findings in 

improving our understanding of the underlying genetic architecture and biology 

of disease and positively impacting future disease prevention and treatment as 

sample sizes increase further and additional associations are identified. 
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Figure 1.4: Genetic predisposition and architecture of complex traits. Genetic variants associated with complex traits have a spectrum of effects based 
on allele frequency. GWAS typically identify common genetic variants (allele frequency > 0.01) with small effect sizes (bottom right) but can also identify 
common variants with large effect sizes (top right). Rare genetic variants (allele frequency < 0.005) often have much larger effects, but are harder to identify 
and rely upon alternative methods such as whole-genome or whole-exome sequencing (top left). These rare, large-effect variants are often the cause of 
Mendelian disorders. Rare variants of small effect size are hard to identify genetically (bottom left). The majority of genetic associations identified lie on the 
diagonal denoted by the dotted lines. Figure adapted from Bush & Moore (2012).
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 Using association data to investigate long-term effects of 
therapeutic modulation.  

 

Several previous studies have shown the utility of using genetic variants, 

identified through GWAS, as a tool to identify causal associations between the 

drug target and intended therapeutic indication and potential unintended effects 

to inform possible drug safety (Gill et al., 2019; Lotta et al., 2016; Nelson et al., 

2015; Nguyen et al., 2019; Plenge et al., 2013; Scott et al., 2016; Swerdlow et 

al., 2015). For example, genetic variants mimicking glucose-lowering GLP1R 

agonists are associated with lower glucose levels and decreased risk of type 2 

diabetes as expected and are not associated with excess cardiovascular risk 

indicating the treatments likely safe (Scott et al., 2016), whilst variants 

mimicking low-density lipoprotein (LDL)-lowering agents (e.g. statins) are 

associated with lower LDL levels as expected but also higher risk of type 2 

diabetes, providing an insight into the potential adverse effects of these LDL-

lowering treatments (Lotta et al., 2016). These studies have altered the causal 

relevance of some biomarkers in relation to disease and highlight the 

importance of genetic studies in aiding prediction of drug safety and efficacy to 

inform drug development.  

 

 Mendelian Randomisation  
 

Genetic variants lying within or nearby the gene encoding the drug target are 

most likely to have functional impact on the protein product. These genetic 

variants can be used as unconfounded, unbiased proxies for pharmacological 

action through the Mendelian Randomisation (MR) principle (Davey Smith & 

Hemani, 2014; Schmidt et al., 2020; Swerdlow et al., 2016; Walker et al., 2017). 

MR is an analytical method analogous to a randomised control trial (RCT) 

(Figure 1.5A). MR relies upon the principal that if a modifiable exposure (e.g. a 

biomarker) is causal for disease, then a genetic variant associated with or 

mirroring the biological effects of the exposure will also be associated with the 

disease (Burgess et al., 2012) (Figure 1.5A). MR relies on the identification of 

genetic variants associated with the exposure trait, i.e. the biomarker or drug 

target, and is based upon three main assumptions: 1) the genetic variant is 

associated with the exposure, 2) the genetic variant is not associated with 

confounders of the exposure-outcome relationship, and 3) the genetic variant 
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only associates with the outcome through the exposure trait (Figure 1.5B) 

(Bennett & Holmes, 2017; Davies et al., 2018; Richmond & Davey Smith, 2021). 

Genetic variants can be used as instruments to test for causality between the 

exposure and outcome trait providing an estimate of long-term effects (Figure 

1.5B) (reviewed by myself and Tim Frayling in (Frayling & Stoneman, 2018)). 

The causal estimate between exposure and outcome is calculated by dividing 

the SNP-outcome association by the SNP-exposure association which in the 

presence of a single genetic instrument is the Wald ratio (Figure 1.5B) 

(Burgess, Small, et al., 2017). 

 

Similar to RCTs, MR exploits the power of randomisation through the random 

allocation of genetic variants at conception. The genetic variants randomly 

divide the study population into, on average, two identical groups apart from the 

levels of the exposure under investigation (Figure 1.5A) (Davey Smith & 

Ebrahim, 2003). The differences observed in the outcomes between the two 

groups can therefore be inferred to be a result of lifetime differences in 

exposure levels providing the MR assumptions are met (Ference et al., 2021). 

Compared to RCTs, MR limits participant risk, makes use of already available 

data decreasing cost, and provides an estimate of long-term effects (Frayling & 

Stoneman, 2018; Lawlor et al., 2008). MR can also overcome several types of 

confounding that may exist in RCTs (Bennett & Holmes, 2017; Richmond & 

Davey Smith, 2021; Smith & Ebrahim, 2005). First, as genetic variants are fixed 

at conception, they are non-modifiable and therefore reduce the risk of reverse 

causation (Lawlor et al., 2008; Richmond & Davey Smith, 2021). Second, due to 

inheritance of one trait being independent of inheritance of another trait, genetic 

variants should not be influenced by confounding (Smith et al., 2005). Third, 

genetic variants indicate lifetime differences in the exposure; associations will 

therefore not be attenuated by measurement error decreasing risk of regression 

dilution bias (Bennett & Holmes, 2017). Fourth, genetic variants reduce the risk 

of selection bias as they are unlikely to be influenced by how participants are 

selected (Smith & Ebrahim, 2005). 

 

Careful consideration is needed when selecting genetic variants for proxies of 

drug treatments as violation of the MR assumptions can result in bias and 

unreliable estimates of causality (Figure 1.5B-C) (Bennett & Holmes, 2017; 
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Davey Smith & Ebrahim, 2003; Frayling & Stoneman, 2018; Nelson et al., 2015; 

Plenge, 2016). The presence of pleiotropy, a term used to describe associations 

where a genetic variant directly influences traits other than just the risk factor 

under investigation, limits the ability to make accurate casual inferences (Figure 

1.5A). Pleiotropy may be the result of correlation between the genetic variant 

being used and a nearby variant that alters another trait directly (Figure 1.5C) 

(VanderWeele et al., 2014). Pleiotropy can be graphically assessed and 

violation may not always be problematic (Sheehan et al., 2008). Another 

potential problem in MR studies is population stratification. Population 

stratification occurs when allele frequencies vary between subgroups of the 

background population who also vary in disease risk (Frayling & Stoneman, 

2018). This problem can cause spurious associations and would occur in 

metabolic disease, if, for example, people of South Asian ancestry were in the 

same study as people of European ancestry, and these differences were not 

accounted for. Any allele that was more frequent in South Asians would be 

more likely spuriously associated with metabolic disease because of the higher 

frequency of these conditions in South Asians. However, population 

stratification is well-controlled using approaches such as genomic relationship 

matrices (GRM) to account for close and distant relatedness (Loh et al., 2015). 

 

Several MR methodological advances are used to reduce risk of bias and 

increase chances of obtaining true causal estimates. Initial MR studies used a 

single variant to infer causality between a modifiable phenotype and outcome in 

a single sample (Frayling & Stoneman, 2018; Sheehan et al., 2008). However, 

the increasing availability of data from large-scale GWAS means multiple 

genetic variants can be combined into a GRS and used as an instrument. 

Multiple variants increase the specificity of the genetic instrument, minimise the 

risk of weak instrument bias, increase power and provide a more precise causal 

estimate (Burgess & Thompson, 2010; Richmond & Davey Smith, 2021). Due to 

the increasing number of consortia, summary-level data can be obtained from 

separate GWAS studies on the exposure and outcome trait (Sheehan & 

Didelez, 2019). This method, known as two-sample MR, further enhances 

power as the SNP-exposure and SNP-outcome associations can be taken from 

the largest available datasets and independent populations (Burgess et al., 

2015; Sheehan & Didelez, 2019). MR tests of causality usually include 
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sensitivity analyses to help verify the validity of the genetic instruments and the 

estimated causal associations (Bowden et al., 2015; Hemani, Bowden, et al., 

2017; Hemani, Tilling, et al., 2017). These sensitivity analyses include Egger 

regression (Bowden et al., 2015), weighted-median methods (Bowden et al., 

2016) and Steiger filtering (Hemani, Bowden, et al., 2017; Hemani, Tilling, et al., 

2017). Steiger filtering is used to verify the validity of the instruments and 

reduces the risk of reverse causation by limiting variants to those with a greater 

effect on the exposure than the outcome (R2 [exposure] > R2 [outcome]) 

(Hemani, Bowden, et al., 2017; Hemani, Tilling, et al., 2017). Egger regression 

and weighted-median methods assess the validity of the causal association. 

Egger regression tests for pleiotropy and assumes that genetic variants more 

strongly associated with the exposure should more reliably estimate the causal 

effect on the outcome than weaker genetic variants (Bowden et al., 2015; 

Burgess & Thompson, 2017). Weighted-median assigns more weight to more 

precise genetic variants and assumes over 50% of the genetic variants are valid 

instruments (Burgess, Bowden, et al., 2017). Both these sensitivity analyses are 

robust to weaker assumptions than standard MR. For example, they can 

include, and account for the effects of, some variants that are not specifically 

influencing the exposure trait (Bowden et al., 2015).  

 

Although MR cannot be used to replace RCTs, it can be used as a 

complementary approach to provide evidence on which drug targets to pursue, 

for what indication and evidence of drug safety or efficacy supporting clinical 

trial data (Ference et al., 2021). Several studies have already corroborated the 

utility of MR (Ference et al., 2016; Schmidt et al., 2017, 2020). 
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Figure 1.5: The principal of Mendelian Randomisation analysis. A: Mendelian 
randomisation (MR) analysis is analogous to a randomised controlled trial (RCT) in that 
genetic variants are randomly allocated at conception similar way to random allocation of a 
drug treatment in RCTs. Genetic variants associated with expression levels of a drug target 
can be used to mimic the effects of a drug to predict the risk of adverse effects. B: MR uses 
genetic variants as instruments to assess the causal association between an exposure and 
outcome of interest. MR uses association data from published studies (ZX and ZY) to 
estimate an overall causal effect. The causal estimate (XY) is calculated by dividing the 
effect of the variant on the outcome (ZY) by the effect of the variant on the exposure (ZX). 
MR is based upon three assumptions (numbered in the diagram). (1) The genetic variant is 
associated with exposure. (2) The genetic variant is not associated with confounders of the 
exposure-outcome relationship. (3) The genetic variant is only associated with the outcome 
through the exposure trait. C: Three possible explanations for the observed association 
between an exposure and outcome through genetic variation; causality (measured by MR) 
where the effect of the variant on the outcome is mediated through the exposure, pleiotropy 
where the genetic variant has direct effects on the exposure and the outcome and linkage 
where there are two variants in high LD - one variant alters the exposure whilst the other 
variant alters the outcome. Created with BioRender.com.  
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 Phenome-wide association studies 
 

Another method which is increasingly being employed to characterise the 

therapeutic profile of drugs is a phenome-wide association study (PheWAS). 

PheWAS is a cross-phenotype association approach that investigates the 

impact of genetic variants across a broad range of phenotypes (Verma & 

Ritchie, 2017). PheWAS infers an association in the reverse direction of GWAS 

by selecting a genetic variant of special interest, i.e. with known functional 

impact or prior disease association, and testing its association with any 

phenotype (Ye et al., 2015). PheWAS has the advantage that it allows 

investigation of known comorbidities of certain diseases, effects of 

environmental exposures, effects at particular life-stages and causal routes to 

elucidate mechanism (Bush et al., 2016; Verma & Ritchie, 2017). PheWAS offer 

the potential to 1) identify the risk of unwanted effects or secondary diseases 

that may not be considered as the primary area for concern in RCTs, 2) 

highlight safety concerns associated with drug targets early on in the drug 

development process 3) identify additional indications for disease expansion or 

drug repurposing and 4) improve our understanding of biological mechanism of 

action (Denny et al., 2016; Hebbring, 2014; Pulley et al., 2017; Robinson et al., 

2018). Additionally, PheWAS can reveal violations of the exclusion restriction 

assumption (where a genetic variant is only associated with an outcome 

through the exposure trait [vertical pleiotropy]) and the independence 

assumption (where a genetic variant is not associated with confounders of the 

exposure-outcome association) made during MR (Davies et al., 2018; 

Richmond & Davey Smith, 2021; Sheehan & Didelez, 2019). PheWAS can be 

used to detect both horizontal and vertical pleiotropy by identifying associations 

between the genetic instrument and additional traits which may act through the 

same pathway (vertical pleiotropy) or different pathways (horizontal pleiotropy) 

(Hebbring, 2014; Pendergrass & Ritchie, 2015; Richmond & Davey Smith, 

2021). Understanding pleiotropic effects and thus the shared genetic aetiology 

of many diseases can provide new insights into underlying pathophysiology 

highlighting potential new treatment strategies minimising research costs 

(Hebbring, 2014). However, in some cases, if power is inadequate or a trait on 

the pleiotropic pathway is absent, truly horizontal pleiotropic variants may be 

missed (Richmond & Davey Smith, 2021). 
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 Limitations of using association data as proxies for therapeutic 
action. 

 

Several problems can arise when using GWAS data to select genetic 

instruments for use to proxy pharmaceutical effects and test for causal 

associations and detect unintended effects (Porcu et al., 2019). First, it is often 

difficult to distinguish the true causal variant driving the association identified 

through GWAS due to underlying LD patterns (Flister et al., 2013; Hormozdiari 

et al., 2014; Pers et al., 2015; Schaid et al., 2018). Second, most genetic 

variants identified through GWAS do not directly affect the coding sequence 

due to the genomic location within non-coding regions (Dixon et al., 2007; Nica 

et al., 2010). These variants can lie within genomic regulatory elements, overlap 

promoters, enhancers or open-chromatin regions, and may affect gene 

expression by altering transcription factor binding (Lichou & Trynka, 2020). Non-

coding variants can be highly cell-type, context- and disease-specific, and can 

bind to numerous transcription factors influencing gene expression in a 

microenvironment-dependent context (Broekema et al., 2020). Third, disease 

associated loci often contain multiple genes making it difficult to determine 

which gene is disease-relevant and is affected by the identified variant (Cano-

Gamez & Trynka, 2020). These complexities make it challenging to not only 

determine which variant is the true driver of disease but to also interpret how 

GWAS loci influence their associated trait, and has hampered direct 

interpretation and clinical application of GWAS findings (Broekema et al., 2020; 

Cano-Gamez & Trynka, 2020).  

 

1.3 Statistical validation of genetic variants 
 

To address the complexities associated with interpreting GWAS findings and to 

obtain clearer biological insights, additional statistical genetic approaches have 

been developed to provide more confidence of the true casual variant and 

target gene driving the association (Broekema et al., 2020). These approaches, 

such as fine mapping, colocalisation, or quantitative trait loci (QTL) analysis, 

help refine the causal variant and gene (Benner et al., 2016; Giambartolomei et 

al., 2014; Nica et al., 2010; Nicolae et al., 2010; Porcu et al., 2019; Wallace, 

2020). These post-GWAS approaches have importantly aided in understanding 

the link between the causal variant, target gene and molecular phenotype and 
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in interpreting the biological impact on disease (Broekema et al., 2020; 

Shuquan Rao et al., 2021).  

 

 Fine mapping 
 

Fine mapping aims to define the causal variant(s) and gene(s) responsible for a 

given trait and interpret their likely biological impact (Broekema et al., 2020). 

Fine mapping assumes there is at least one causal variant and uses a list of 

associated SNPs from GWAS to identify regions of interest (Schaid et al., 

2018). The LD structure and genes mapped to each region are explored and 

statistical methods, primarily the Bayesian framework, are employed to 

determine the most likely causal SNPs and genes (Benner et al., 2016; 

Newcombe et al., 2016). These selected SNPs are evaluated for their likely 

function based on publicly available annotation data (Schaid et al., 2018). The 

majority of fine mapping approaches assume there is one true causal variant in 

each locus, which is often not the case due to additive or epistatic effects 

(Broekema et al., 2020). Due to the underlying LD structure responsible for 

highly correlated variants, fine mapping is challenging (Gao Wang et al., 2020). 

Novel approaches building upon the Bayesian framework have been developed 

to account for multiple causal variants and to assess the uncertainty of which 

highly correlated variants to select (Gao Wang et al., 2020). Several tools exist 

to implement fine mapping, such as FINEMAP and SuSIE (Benner et al., 2016; 

Gao Wang et al., 2020). These tools are continuously being refined and 

additional tools developed as statistical methods improve. Fine mapping is 

computationally fast, requires summary-level data and is useful in prioritising 

downstream functional studies (Hutchinson et al., 2020; Schaid et al., 2018).  

 

 Expression Quantitative trait loci analysis  
 

As mentioned above (in 1.2.7), the majority of identified GWAS signals reside in 

the non-coding regions of the genome (Nica & Dermitzakis, 2013). Several 

studies have shown these variants to be enriched in cis-regulatory elements 

regulating gene expression through altering transcription, splicing, chromatin 

accessibility, and mRNA stability (Gallagher & Chen-Plotkin, 2018). Trait-

associated SNPs have been proposed to three times more likely be associated 
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with messenger RNA (mRNA) expression suggesting that many associations 

are driven through gene expression changes (Hernandez et al., 2012; Nicolae 

et al., 2010; Porcu et al., 2019). SNPs associated with mRNA expression levels 

are termed expression quantitative trait loci (eQTL) and have already proved 

useful in refining GWAS results by providing additional supporting evidence of 

the target gene in particular tissues (Hormozdiari et al., 2016; Lawrenson et al., 

2015; Nicolae et al., 2010). Standard eQTL analysis is performed by testing the 

association between a SNP and mRNA expression levels obtained from 

microarrays. The analysis can be performed proximally or distally to the gene 

without any prior knowledge of cis- or trans-acting regulatory regions (Albert & 

Kruglyak, 2015; Nica & Dermitzakis, 2013). eQTLs affect gene expression in cis 

or trans; the definition of cis is arbitrary but typically includes variants lying 

within 100 kilobases (kb) of the gene affected by the eQTL (Cookson et al., 

2009). The majority of already identified eQTLs are cis-acting but this may be 

attributable to lack of power and computational complexity to detect trans-

eQTLs across the genome (Cookson et al., 2009; Nica & Dermitzakis, 2013). As 

larger studies become available, the number of genes with eQTLs is expected 

to increase and the power to detect trans-eQTLs will increase (Nica & 

Dermitzakis, 2013). Cis-acting eQTLs predominantly have stronger effects than 

trans-acting eQTLs, despite the number of trans-eQTLs predicted to be greater 

(Hernandez et al., 2012). eQTL analyses can be performed in any tissue with 

the most common being liver, kidney, brain, blood and subcutaneous adipose 

tissue enabling the identification of cell-type specific and disease-relevant 

effects (Hernandez et al., 2012). Several eQTL datasets are publicly available, 

e.g. through the GTEx portal (https://gtexportal.org/home/), meaning it is 

relatively easy to interrogate the effects of GWAS signals in cell-types of 

interest; it is important to note that the majority of eQTL data is from bulk tissue 

samples as opposed to individual cell-types so some eQTLs may be missed 

(Choi et al., 2020). Previous studies have shown that eQTL effects are often 

detected in the expected disease-relevant cell-type providing validation of the 

most likely causal variant and target gene identified through GWAS and the link 

between the variant and the biological process (Albert & Kruglyak, 2015; 

Gallagher & Chen-Plotkin, 2018; Lawrenson et al., 2015; Raj et al., 2014). 

However, it is important to test the effects in a range of tissues as eQTLs can 

change dynamically during differentiation and in response to certain stimuli and 
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some variants may be pleiotropic affecting different genes in different tissues 

(Albert & Kruglyak, 2015; Nica & Dermitzakis, 2013). Additional datasets 

measuring the association between genetic markers and additional molecular 

phenotypes, such as protein expression (pQTL) or DNA methylation (mQTL) 

levels, have been curated to further investigate how variants exert their effects 

and contribute to phenotypic changes (Albert & Kruglyak, 2015; Cookson et al., 

2009). These datasets help bridge the gap between gene and phenotype by 

eluding to cell-type specific effects and provide an immediate understanding of 

the biological mechanisms driving associations (Cookson et al., 2009).  

 

 Colocalisation 
 

Colocalisation analysis is used to integrate multiple association data, such as 

GWAS and eQTL analysis, to further nominate the most likely target gene and 

improve understanding of the molecular basis of these associations 

(Giambartolomei et al., 2013). Colocalisation explores whether two traits (e.g. 

disease and gene expression) are driven by the same causal variant in a given 

genomic region which may prove useful in understanding how variants lead to 

different disease risks (Wallace, 2021). Two main methods exist for performing 

colocalisation; summary-data based MR (SMR) and coloc. SMR, an extension 

of MR, tests if the effect of a variant on a trait (obtained from GWAS) is 

mediated by gene expression and uses heterogeneity measures to filter 

associations and detect pleiotropy (Zhu et al., 2016). SMR uses the Wald ratio 

( [SNP-outcome] /  [SNP-exposure]) to calculate the causal estimate (xy) 

and performs a heterogeneity in dependant instruments (HEDI) test to detect 

linkage from pleiotropy (Zhu et al., 2016). Consistent causal estimates imply a 

single shared causal SNP due to a greater likelihood of pleiotropy, whilst 

inconsistent causal estimates imply a greater likelihood of linkage suggesting 

distinct causal variants for the two traits (Zhu et al., 2018). SMR is unable to 

distinguish between linkage or pleiotropy if the two causal variants are in perfect 

LD (Hannon et al., 2017). Coloc employs a Bayesian framework by considering 

all possible configurations of causal variants for the two traits. Coloc utilises 

summary statistics and calculates an easily interpreted posterior probability (the 

probability of an event occurring after taking into account prior information) in 
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support of each hypothesis (Giambartolomei et al., 2013, 2014). The five 

mutually-exclusive hypotheses tested are:  

 

H1: No association with either trait in the region 

H2: Association with trait one only 

H3: Association with trait two only 

H4: Association with both traits, but there are two independent SNPs 

H5: Association with both traits, and the same single causal SNP is shared 

 

Initially, coloc assumed only one causal variant within a locus for each trait but 

has recently been updated to allow for multiple causal variants within a region 

(Wallace, 2021). Unlike SMR, coloc assesses a pair of causal variants at a time, 

avoids MR assumptions and through prior probabilities incorporates any 

expectation that the causal variants are likely shared (Wallace, 2020, 2021). 

Colocalisation analysis is essential for functional follow-up, for validating genetic 

studies and for identifying tissue-specific signals (Giambartolomei et al., 2013).  

 

1.4 Functional studies to further validate genetic findings 
 

An association between a variant at a genomic locus and a trait is not directly 

informative with respect to the underlying mechanism driving the phenotypic 

difference (Visscher et al., 2017). Functional studies are, therefore, still 

essential in bridging the gap between sequence and consequence. In order for 

genetic variants to aid the drug development process, functional studies of 

variants suspected to predispose to disease are necessary for a clearer and 

better understanding of the physiologically relevant, cell-type specific and 

microenvironment-dependant effects, for the correct interpretation of results in 

clinical diagnosis and the elucidation of therapeutic targets (Bonjoch et al., 

2019; Cano-Gamez & Trynka, 2020). Functional approaches can provide 

additional validation of the links between the genomic architecture and 

phenotype improving understanding of cellular function and underlying 

biological mechanisms in health and disease as well as downstream effects of 

gene perturbations (Bonjoch et al., 2019; Shuquan Rao et al., 2021). 

 

 Traditional functional approaches to validate genetic findings  
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Several assays are well-established and widely used to explore the effects of 

regulatory genetic variants in cell-lines. One assay is the cell culture-based 

reporter assay where the candidate regulatory variant is cloned into a 

physiologically relevant position with respect to the reported gene and 

transfected into a cell-type of choice (Gallagher & Chen-Plotkin, 2018). The 

effect of different alleles on the reported gene is then compared. However, this 

technique can be laborious due to having to test constructs one-by-one. 

Massively-parallel reporter assays (MPRAs) have therefore been developed 

which can test the effect of thousands of variants in a single experiment (Choi et 

al., 2020). Despite these assays proving useful in determining the function of 

regulatory variants, MPRAs are not always reproducible due to transcriptional 

noise, are not representative of the true native genomic context as the variant is 

present in plasmid DNA so could produce false-positive or false-negative 

results, and unavoidable small differences in concentrations of the transfected 

plasmid DNA make inference of the effect difficult (Gallagher & Chen-Plotkin, 

2018; Inoue & Ahituv, 2015). Alternative technologies for targeted gene knock-

down include RNA interference which is fast and inexpensive but is limited in 

terms of not always being complete, risk of unpredictable off-target effects and 

short-term inhibition of gene function (Gaj et al., 2013). 

 

 Gene-editing 
 

Gene-editing has come to the forefront of epidemiological molecular 

approaches and recent technological advancements have made functional 

validation of genetic findings more straightforward. Gene-editing enables 

investigation of variant effects in a physiologically relevant context and has 

increased chances of detecting true differences compared to previously used 

techniques (Bonjoch et al., 2019). Gene-editing can provide additional evidence 

to support the role of genetic variants in controlling expected gene expression 

and validate these variants as proxies for therapeutic action in MR (Lichou & 

Trynka, 2020; H. Wang et al., 2016; L. Yang et al., 2013). Recent 

advancements have made it possible to perform whole gene knock-out studies 

and SNP knock-in models relatively easily enabling validation of whether an 

expected allele alters gene expression, and to what extent, in relevant cell-types 
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(Courtney et al., 2016; H. Li et al., 2020; J. Lin & Musunuru, 2018; Okamoto et 

al., 2019; G. Zhao et al., 2018).  

 

Since the identification of modifiable nucleases, there has been a rapid rise in 

the development and optimisation of gene-editing technologies enabling 

manipulation of any gene in a wide-range of in-vivo and in-vitro investigations 

(Gaj et al., 2013). Gene-editing relies upon the targeted introduction of a 

double-stranded break (DSB) by the nucleases which initiates one of the two 

major DNA repair mechanisms in mammalian cells; non-homologous end 

joining (NHEJ) or homology directed repair (HDR) resulting in targeted gene 

disruption, modification or insertion (Figure 1.6) (H. Li et al., 2020). In 

mammalian cells, DSBs are most commonly repaired by the efficient, simpler, 

error-prone NHEJ pathway which results in the loss of nucleotides from the 

ends of the DSBs (Chapman et al., 2012; Lino et al., 2018). This can result in 

the formation of large insertions or deletions (indels) which, if present in the 

coding sequence, can induce frameshift mutations and subsequent nonsense-

mediated decay (Figure 1.6) (Chu et al., 2015; Hsu et al., 2013; Ran, Hsu, 

Wright, et al., 2013). Alternatively, the HDR pathway can be initiated in the 

presence of an exogenous repair template enabling the introduction of precise 

modifications such as specific mutations or desired insertions (Figure 1.6) 

(Hockemeyer et al., 2009).  

 

The first targeted nuclease gene-editing technology was the zinc-finger 

nucleases (ZFNs) which comprise a specific trinucleotide DNA binding domain 

complementary to a site on the target DNA (Hockemeyer et al., 2009; Urnov et 

al., 2005, 2010). Multiple ZFNs can be combined to increase specificity (Carroll, 

2011). The ZFNs are fused to the FokI endonuclease which introduces the site-

specific DSB (Gaj et al., 2016). ZFNs function as dimers meaning two 

constructs need designing (one targeting the sense strand and one targeting 

the antisense strand) increasing time and resources (Carroll, 2011; H. Li et al., 

2020). The major limitations of ZFNs are the poor targeting density, the risk of 

off-target mutations and the difficulty of constructing the ZFNs (Table 1.1) 

(Gabriel et al., 2011; Gaj et al., 2013; H. Kim & Kim, 2014; Pattanayak et al., 

2011; A. M. Singh et al., 2015). The discovery of the transcription activator-like 

effector (TALE) protein led to the development of the next generation of gene-
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editing technologies called transcriptional activator-like effector nucleases 

(TALENs) (Becker & Boch, 2021; Boch et al., 2009). TALE proteins are 

naturally secreted by the Xanthomonas bacteria and comprise a DNA binding 

domain consisting of a series of highly conserved 33-35 base-pair (bp) domains 

which each recognise a single bp (Gaj et al., 2013, 2016; H. Kim & Kim, 2014). 

The specificity of TALEs to a single bp is determined by the hypervariable 

amino acids at position 12 and 13 (Boch et al., 2009; Joung & Sander, 2013). 

Similar to ZFNs, the TALEs can be linked together to recognise specific sites of 

the DNA and are typically fused with the FOKI endonuclease to enable the 

introduction of a DSB (Joung & Sander, 2013). TALEs can also be fused with 

site-specific recombinases and transcriptional activators to achieve targeted 

genomic rearrangements and regulated gene transcription, respectively (Becker 

& Boch, 2021). TALENs offer greater flexibility than ZFNs due to the single-

base recognition and have been reported to be more specific and less toxic (Gaj 

et al., 2013, 2016). However, they are again limited by the difficult and time-

consuming construction alongside the difficult cell delivery due to being large 

and needing a thymine (T) at the start of the binding site (Table 1.1) (Doudna & 

Charpentier, 2014; Lamb et al., 2013; H. Li et al., 2020; Nemudryi et al., 2014; 

A. M. Singh et al., 2015).  
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Figure 1.6: The two major DNA repair mechanisms in mammalian cells. Upon the introduction of a double-stranded break (DSB) in the genomic DNA, 
one of the two DNA repair mechanisms is initiated. The non-homologous end joining (NHEJ) pathway is the most common pathway to be stimulated. NHEJ 
is error-prone and results in the random insertion or deletion of nucleotides surrounding the DSB. The deletion or addition of nucleotides can result in a 
frameshift mutation disrupting the coding sequencing through the introduction of a premature stop codon or the translation of a faulty protein. NHEJ often 
results in gene disruption and can lead to mRNA degradation. The alternative pathway is homology-directed repair (HDR). HDR is less common and relies 
upon the presence of a homologous sequence which is complementary to the flanking regions of the DSB. HDR results in the precise insertion of a desired 
genomic sequence or correction of a mutation. Created with BioRender.com. 
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 CRISPR-Cas9 gene-editing 
 

The most recent addition to the gene-editing toolbox is the versatile CRISPR-

Cas9 system (clustered, regularly interspaced, short palindromic repeats 

[CRISPR]–CRISPR-associated 9 [Cas9] protein) which enables the introduction 

of site-specific genomic DSBs by guide RNAs (gRNAs) (Mali et al., 2013; Ran, 

Hsu, Wright, et al., 2013). The CRISPR-Cas9 system has been derived from the 

most common type II system acquired by prokaryotes as a form of adaptive 

immunity protecting bacteria from viruses or phages through initiation of RNA-

guided DNA cleavage (Gaj et al., 2016; Wiedenheft et al., 2012). Upon 

infection, viral DNA sections (termed spacers) are integrated into the CRISPR 

locus which are in turn transcribed into precursor CRISPR RNA (pre-crRNA) 

molecules alongside transcription of the cas9 genes (Figure 1.7A) (Rath et al., 

2015). The pre-crRNA is processed into crRNA by accessory factors where it 

can anneal to trans-activating crRNA (tracrRNA) to direct site-specific 

degradation of the foreign material by Cas9 (Figure 1.7A) (Jinek et al., 2012; 

Rath et al., 2015). Binding of the Cas9 endonuclease to the target DNA relies 

upon the presence of a ‘seed’ sequence (10-12 bp at the 3’ end of the 20 bp 

sequence complementary to the target DNA) and a protospacer adjacent motif 

(PAM) upstream of the binding site (Jiang & Doudna, 2017). The PAM 

sequence, recognised by Cas9, is essential for DNA cleavage (Hsu et al., 

2013). The CRISPR-Cas9 system has been simplified for use in gene-editing by 

incorporating only the Cas9 endonuclease and a single gRNA consisting of the 

essential tracrRNA and crRNA elements (Figure 1.7B-D) (Cong et al., 2013; Gaj 

et al., 2016). CRISPR-Cas9 can be efficiently engineered to target any site on 

the genomic DNA by modifying the ~20 bp crRNA of the gRNA providing the 20 

bp are unique compared to the rest of the genome and is immediately adjacent 

to the PAM (Figure 1.7C) (Lino et al., 2018; X.-H. Zhang et al., 2015). The PAM 

sequence alters depending upon the Cas9 used; for the most popular S. 

pyogenes Cas9 (SpCas9), the PAM sequence is 5’-NGG-3’ (Hsu et al., 2013; H. 

Li et al., 2020). Numerous resources have been developed to aid target site 

selection and the design of the most effective gRNAs by calculating on- and off-

target scores using the latest algorithms to estimate the likelihood of introducing 

a DSB at the desired genomic locus making it user-friendly and relatively easy 

(C.-L. Chen et al., 2020; Concordet & Haeussler, 2018; Doench et al., 2014, 
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2016; Heigwer et al., 2014; Hsu et al., 2013). Additionally, the Cas9 and gRNA 

can easily and effectively be delivered into cells on the same (or separate) 

plasmids making the gene-editing platform advantageous over ZFNs and 

TALENs in terms of flexibility, robustness and ease of use (Table 1.1) (Cong et 

al., 2013; Mali et al., 2013). CRISPR-Cas9 has shown huge versatility and utility 

in modulating gene expression including genomic sequence alterations, 

epigenetic modifications, transcriptional modifications and multiplexing for 

disrupting multiple genes as well as functionally validating GWAS findings 

(Cong et al., 2013; Gilbert et al., 2013; Perez-Pinera et al., 2013; Pickar-Oliver 

& Gersbach, 2019; Qi et al., 2013; Vora et al., 2016). Alternative CRISPR-Cas9 

systems have been identified and modifications made to the Cas9 enzyme, 

including conversion to a nickase or creation of a dead Cas9, which has 

extended the utility of CRISPR-Cas by enabling selective repression or 

activation, purification of target regions, precise modification of DNA or RNA 

through increased specificity and control of the DNA repair pathway alongside 

scalability for use in genome-wide screens (Adli, 2018; Doudna & Charpentier, 

2014; Jiang & Doudna, 2017; Pickar-Oliver & Gersbach, 2019; Ran, Hsu, Lin, et 

al., 2013; Shuquan Rao et al., 2021; Rath et al., 2015; H. Wang et al., 2016; 

Tim Wang et al., 2014). 
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Figure 1.7: The CRISPR-Cas9 gene-editing system. A: The CRISPR-Cas9 system forms 
the adaptive innate immune response in prokaryote cells. Upon infection of bacteria by 
viruses or phages (1), part of the foreign material becomes inserted into the CRISPR locus 
as a spacer (2). The CRISPR locus is then transcribed producing pre-crRNA (pre-CRISPR 
RNA) (3). The pre-crRNA is modified by adapter sequences and cleaved by RNase III to 
form separate mature crRNAs specific to each spacer. The mature crRNA can anneal 
tracrRNA (trans-activating crRNA) which targets the crRNA to the Cas9 proteins to form a 
ribonucleoprotein complex. If the bacteria is infected by the same virus, the Cas9-crRNA-
tracrRNA complex recognises and binds to the viral sequence introducing a double-
stranded break (DSB) in the viral DNA leading to degradation. B: The CRISPR-Cas9 
system has been simplified and modified for use in gene-editing. The gRNA which can be 
designed to target virtually any region in the DNA consists only of the crRNA and the 
tracrRNA components. C: The gRNA is designed to target a unique 20 bp region of the 
target DNA. The target sequence must have a PAM sequence (5’-NGG-3’ for S. 
pyogenesis Cas9) directly adjacent to it for successful targeting via CRISPR-Cas9. The 
PAM sequence is recognised by the Cas9 protein enabling Cas9-mediated cleavage. D: 
The CRISPR-Cas9 system is used in gene-editing techniques to enable the introduction of 
a DSB into the genomic DNA at the target site (complementary to the gRNA sequence). 
The DSB initiates either the non-homologous end joining (NHEJ) or homology directed 
repair (HDR) pathways in mammalian cells resulting in either the random insertion or 
deletion of nucleotides or the precise insertion of desired sequences. Created with 
BioRender.com.Table 1.1: A comparison of the three approaches that have been 
developed for gene-editing through the use of modifiable nucleases. Scaling ranges 
from high (+++++) to low (+). ZFNs = Zinc finger nucleases; TALENs = Transcription 
Activator-Like Effector Nucleases; CRISPR = Clustered Regularly Interspaced Short 
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Palindromic Repeats; TALE = Transcription Activator-Like Effector proteins; gRNA = guide RNA; bp = base-pairs; PAM = Protospacer Adjacent Motif; kb = 
kilobases;  

 ZFNs TALENs CRISPR-Cas9 

DNA targeting determinant Zinc-finger 
proteins 

TALE gRNA 

Length of DNA targeting 
determinant 

18-36 bp  30 – 40 bp 23 bp (including PAM) 

Requirements in target site G-rich Start with a T and end with an 
A 

PAM sequence at the 3’ end (5’-NGG-3’ for S. pyogenes 
Cas9)  

Design density One per 100bp One per 1 bp One per 8 bp (for NGG) 

Nuclease FokI FokI Cas9 

Size 2 x ~1 kb  2 x ~3 kb 4.3 kb  

Cost +++++ +++ ++ 

Efficiency +++ ++++ +++++ 

Off-target effects ++ ++ +++++ 

Design limitations +++ + ++ 

Target design simplicity + + +++++ 
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Transfection difficulty ++ ++++ + 

Cytotoxicity +++ + + 

Multiplex reactions ++ ++ +++++ 
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 Single-base gene-editing using CRISPR-Cas9 and piggyBacTM 
system. 

 

The introduction of a precise mutation or desired gene insertion (e.g. the 

insertion of a fluorophore or selectable marker) is achievable by providing a 

homologous sequence on an exogenous pre-designed donor plasmid which 

upon transfection triggers homologous recombination (HR) (H. Li et al., 2020; 

Lino et al., 2018). The HDR repair template must contain the desired gene 

modification alongside additional homologous sequences (termed homology 

arms) up- and downstream of the target; the length of these homology arms is 

dependent upon the size of the desired edit (Au et al., 2019; Boel et al., 2018; 

Yusa et al., 2011). The standard approach of introducing homologous 

sequences is through electroporation (Sharan et al., 2009; Zwaka & Thomson, 

2009). However, this approach is limited in terms of its efficiency with <10% of 

cells containing the modified allele (H. Kim & Kim, 2014).  

 

Efficiency can be improved through the introduction of DSBs close to the 

desired gene-edit site by using genetically engineered nucleases, such as 

CRISPR-Cas9 (S. Liu et al., 2018; Maruyama et al., 2015; J.-P. Zhang et al., 

2017). Traditionally, the simple and easy-to-construct singe stranded 

oligodeoxynucleotides (ssODNs) have been used as the donor template to 

initiate HDR after introduction of DSBs with CRISPR-Cas9. However, extensive 

screening of genome-edited cells is required due to the inability to perform drug 

selection and mutations are required in the PAM sequence to prevent re-cutting 

by Cas9 leaving behind unwanted marks in the genomic DNA which could affect 

transcriptional regulation of surrounding genes (Hendriks et al., 2015; A. M. 

Singh et al., 2016). The incorporation of a selection cassette, normally drug 

resistance, into the genome has therefore become the standard approach to 

improve the screening and/or isolation of correctly-modified cells (Ishida et al., 

2018). Depending upon the technology used, the selection cassette is removed 

by Cre-loxP mediated recombination, site-specific nuclease mediated excision 

or piggyBacTM transposon-based excision (Ishida et al., 2018). The benefit of 

combining CRISPR-Cas9 with the piggyBacTM transposon system is that, unlike 

the former two, no genomic marks remain in the DNA after removal of the 

transposon resulting in seamless, footprint free modification (A. M. Singh et al., 

2016; Gang Wang et al., 2017; Yusa et al., 2011). The piggyBacTM system has 
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already been widely used for transgenesis, engineering of pluripotent stem 

cells, gene therapy, production of recombinant proteins and the expression of 

multi-subunit protein complexes (Q. Chen et al., 2020; Z. Li et al., 2013; 

Schertzer et al., 2019; Yusa et al., 2009, 2021). Similar to all transposons, the 

piggyBacTM system consists of a transposon and transposase. The piggyBacTM 

transposon, which is held within an HDR template vector, contains a selection 

marker (often the puromycin [puro] resistance gene for positive selection and 

thymidine kinase [tk] gene for negative selection) facilitating the enrichment of 

correctly-modified cells (Yusa, 2013). The transposase enables the integration 

and removal of the piggyBacTM transposon at any ‘TTAA’ site within the 

genomic DNA (Z. Li et al., 2013; Schertzer et al., 2019). These ‘TTAA’ sites are 

dispersed randomly throughout the genome at a rate of 1 every 246 bp (Yusa, 

2013). The piggyBacTM vector is designed to contain two homology arms (one 

with the desired gene-edit) complementary to the target DNA flanking the 

piggyBacTM transposon (Figure 1.8) (Yusa, 2013). Upon site-specific cleavage 

of the genomic DNA at the target site by Cas9, the presence of the homology 

arms in the piggyBacTM vector initiates HDR resulting in the incorporation of the 

desired gene-edit and the piggyBacTM transposon into the genome at a ‘TTAA’ 

site nearby the target-site (Figure 1.8) (M. A. Li et al., 2013; Paquet et al., 2016; 

Yusa, 2013). A modified excision-only piggyBacTM transposase is then used to 

remove the piggyBacTM transposon from the genomic DNA (Figure 1.8) (X. Li et 

al., 2013). The excision-only transposase prevents potential random 

reintegration of the transposon elsewhere in the DNA (X. Li et al., 2013; A. M. 

Singh et al., 2016). After successful removal of the transposon, cells undergo a 

negative selection step killing cells retaining the piggyBacTM transposon (Figure 

1.8) (A. M. Singh et al., 2015). This results in relatively easy isolation of 

successful, footprint free, gene-edited clones (Fei Xie et al., 2014). The 

piggyBacTM system has been found to prefer integration at promoter or exonic 

regions highlighting the potential for aiding single-base gene-editing and 

functional characterisation of GWAS signals that lie within the regulatory 

regions (M. A. Li et al., 2013). The only drawback with CRISPR-Cas9 and the 

piggyBacTM system is the timeframe required for the construction of the HDR 

template and the selection steps. Despite this, fewer clones need screening to 

identify successfully gene-edited clones due to the selection steps and the 

actual ‘hands-on’ time is less (A. M. Singh et al., 2015). The combination of 
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CRISPR-Cas9 and piggyBacTM provides one of the most robust, efficient and 

precise gene-editing approaches to achieve seamless single-base gene-edits 

and has already proved useful in functionally validating genetic variants as 

causal in controlling expected gene expression levels (S. Liu et al., 2018; 

Shuquan Rao et al., 2021; A. M. Singh et al., 2015, 2016; G. Zhao et al., 2018). 
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Figure 1.8: Site-specific footprint free gene-editing using CRISPR-Cas9 and the 
piggyBacTM transposon system. See figure legend on next page 
 
 
 
 
 
 
 
 
 
 
Figure 1.8: Site-specific footprint free gene-editing using CRISPR-Cas9 and the 
piggyBacTM transposon system. (1) Two homology arms (5’hom arm & 3’hom arm) 
flanking a ‘TTAA’ site nearby the target-site are designed with one containing the desired 
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gene-edit (whether that be a single base change or insertion of particular sequence 
[depicted here by the star]). The two arms are inserted into the piggyBacTM vector either 
side of the piggyBacTM transposon which consists of two inverted terminal repeats (5’ITR & 

3’ITR) and cargo (normally positive and negative selection genes, e.g. puro and tk. The 
ITRs are essential for recognition by transposases. (2) The CRIPSR-Cas9 targeting 
construct is designed as close as possible to the desired gene-edit site. (3): Upon 
transfection into cells, the CRISPR-Cas9 system introduces a site-specific double-stranded 
break (DSB) to the genomic DNA. (4) Cells are simultaneously treated with the piggyBacTM 

vector containing the homology arms. (5) The presence of the homology arms in the 
piggyBacTM vector stimulates DNA repair of the DSB via HDR resulting in homologous 
recombination (HR) between the genomic DNA and the homology arms replacing the 
genomic sequence with the desired gene-edit. (6) As a result of HR, the piggyBacTM 
transposon is inserted into the genomic DNA at the nearby TTAA site enabling the positive 
selection of cells containing the transposon and potentially the desired gene-edit. (7) After 
positive selection, cells are treated with excision-only transposases (Pbx). (8) The 
transposases recognise the ITRs of the transposon resulting in footprint free removal of the 
transposon from the DNA sequence. Cells can then be put under negative selection to 
select for clones which no longer contain the transposon and have been successfully 
edited. Created with BioRender.com.  
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1.5 Drug metabolism 
 
Xenobiotic metabolism refers to the metabolic breakdown of foreign substances 

(called xenobiotics) that differ to an organism’s normal biochemistry, such as a 

drug, by a living organism (Patterson et al., 2010). This process is carried out by 

a series of metabolic pathways controlled by specialised enzymes that modify 

the chemical structure of the foreign substance resulting in its breakdown and 

excretion from the body. Drug metabolism is divided into three main phases 

(Esteves et al., 2021). During phase I, reactive or polar groups are added to the 

xenobiotics by enzymes, in particular the cytochrome P450s (Omiecinski et al., 

2011). Cytochrome P450s are the most important enzymes in xenobiotic 

metabolism as they can determine the rate xenobiotics are metabolised into 

inactive products (McGinnity & Grime, 2017). The P450s detoxify and/or 

bioactivate xenobiotics and catalyse functionalisation reactions by controlling N- 

and O-dealkylation, deamination, N- and S-oxidation, and hydroxylation 

(Omiecinski et al., 2011). During phase II, conjugation of the modified 

xenobiotics occurs rendering them less toxic. Conjugation includes 

sulphonation, methylation, glucuronidation, and amino acid conjugation. 

Specific classes of transferase enzymes are responsible for phase II e.g. UDP-

glucuronosyltransferases, sulfotransferases, N-acetyltransferases, and 

glutathione S-transferases (Crocco et al., 2019). Conjugates are often more 

hydrophilic making them more excretable (McGinnity & Grime, 2017). The 

phase I and II enzymes work together to carefully control and regulate the 

metabolism, detoxification and bioactivation of xenobiotics. In phase III, 

conjugates are further metabolised ready for removal from the cell (Crocco et 

al., 2019). Conjugates and their metabolites are processed so they contain an 

anionic group which is recognised by efflux transporters which form the 

multidrug resistance protein family and catalyse, in an ATP-dependant manner, 

removal into the extracellular medium (Omiecinski et al., 2011).  

 

The intensity and duration of drug action is reduced when activity of the 

enzymes and thus the rate of metabolism is increased. However, if the 

metabolising enzymes are responsible for converting a pro-drug into a drug, 

enzyme induction speeds up conversion and active drug levels, potentially 

leading to toxicity (Palleria et al., 2013). Several physiological and pathological 

factors influence drug metabolism including age (drugs are metabolised slower 
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during foetal and neonatal periods and in the elderly), ethnicity, gender, 

nutrition, liver disease, kidney disease, and importantly pharmacogenetics 

(Ahmed et al., 2016). SNPs have been identified in genes encoding the drug 

metabolising enzymes which determines xenobiotic-related toxicity, adverse 

drug reactions, and the efficacy of drugs (Wormhoudt et al., 1999). Some of 

these variants have been found associated with altered cancer incidence and 

toxicity derived from chemical exposure (Kiyohara, 2000; Tomalik-Scharte et al., 

2008). Polymorphisms are thought to be critical in controlling interindividual 

susceptibility to toxicity arising from exposure to certain drugs. For example, 

variants within the N-acetyltransferases have shown to have a considerable 

impact on the speed of acetylation with those carrying variants that lead to slow 

acetylation being at a higher risk of dose-dependent toxicity (Emilien et al., 

2000; Hickman & Sim, 1991; Lazar et al., 2004).  

 

1.6 General aims of this thesis 
 
There is a growing body of evidence supporting the use of human genetics to 

proxy therapeutic modulation to provide genetic evidence of drug safety. 

Supporting genetic evidence increases the chances of therapies reaching the 

clinic reducing attrition rates and saving pharmaceutical companies 

considerable time and effort. Phase III noninferiority clinical trials of novel PHIs 

have recently been completed for the treatment of anaemia in CKD and show 

PHIs to be noninferior to ESAs for haematological efficacy and cardiovascular 

safety (Chertow et al., 2021; K.-U. Eckardt et al., 2021; Provenzano et al., 2021; 

A. K. Singh, Carroll, McMurray, et al., 2021; A. K. Singh, Carroll, Perkovic, et 

al., 2021). However, these clinical trials are only powered to achieve 

noninferiority on cardiovascular risk and not to detect risk of additional 

unwanted effects. There is also currently no genetic evidence supporting these 

trials. Therefore, in this thesis, I aim to identify genetic variants for use as 

proxies to investigate the long-term effects of therapeutic modulation of 

biomarker levels (EPO or Hgb) as a result of therapeutic PHD inhibition by PHI 

treatment. These results will further characterise the effects of long-term rises in 

Hgb or EPO levels and will provide additional evidence of drug safety to support 

the ongoing development of PHIs for treating anaemia in CKD. There are three 

overarching aims of my thesis:  
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1. To identify genetic variants associated with higher circulating EPO levels 

for use as genetic proxies for therapeutic modulation of endogenous 

EPO levels, the downstream effect of therapeutic PHD inhibition. I then 

use these variants to examine the cardiovascular risk and potential 

additional unintended effects associated with long-term higher 

endogenous EPO levels.  

 

2. To functionally validate the identified genetic variants as causal in 

controlling EPO levels using gene-editing techniques.  

 

3. To identify genetic variants associated with higher circulating Hgb levels 

to genetically proxy PHD inhibition and predict the long-term effects of 

higher circulating Hgb levels on cardiovascular risk or other unwanted 

effects. 

 
These aims are addressed across four empirical chapters: 

 

In my first empirical chapter (Chapter 3), I perform a GWAS meta-analysis of 

circulating EPO levels and identify a genetic variant associated with higher 

endogenous EPO levels lying in cis with the EPO gene. I use this cis-EPO 

genetic variant as a natural mimic for therapeutic increases in endogenous EPO 

levels in MR to investigate the risk of cardiovascular disease (CVD) with higher 

endogenous EPO levels. I also perform PheWAS to further investigate the 

effects of long-term higher circulating EPO levels.  

 

In my second empirical chapter (Chapter 4), I perform whole EPO gene knock-

out using CRISPR-Cas9 gene-editing to first establish a protocol for gene-

editing in Human Embryonic Kidney (HEK-293) cells and to second establish a 

better understanding of the downstream biological mechanisms and pathways 

of EPO in a relevant human cell-line.  

 

In my third empirical chapter (Chapter 5), I utilise CRISPR-Cas9 technology 

alongside the piggyBacTM system to perform single-base gene-editing to 

functionally validate the cis-EPO variant (identified in Chapter 3) as causal in 
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controlling EPO levels and therefore a valid proxy for long-term therapeutic 

modulation of endogenous EPO levels. 

 

In my fourth empirical chapter (Chapter 6), I investigate the effects of higher 

circulating Hgb as a result of therapeutic PHD inhibition on cardiovascular risk 

and also test for any additional unwanted effects.  

 

Figure 1.9 provides a graphical summary of the integration of the chapters in 

this thesis.  

 

  



 67 

 

 

Figure 1.9: Graphical overview of the integration of the Chapters in this thesis. The 
overarching aim of this thesis is to provide genetic evidence into the therapeutic profile of 
PHD inhibition to support the ongoing development of novel treatments (PHIs) for anaemia 
in CKD. CKD = chronic kidney disease; PHI = prolyl hydroxylase inhibitors; CVD = 
cardiovascular disease; Hgb = haemoglobin; EPO = erythropoietin; SNP = single 
nucleotide polymorphism; HIF = hypoxia inducible factor; VHL = von Hippel-Lindau; HRE = 
hypoxia response element; eQTL = expression quantitative trait loci; GWAS = genome-
wide association study; Ref = reference; KO = knock-out; WT = wild-type. Created with 
BioRender.com. 
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Chapter 2 General Methods 

 
This chapter details the general materials and methods used throughout this 

thesis in multiple chapters. Detailed descriptions of methods and analysis 

specific to the chapter is given in the respective empirical chapter.  

 

2.1 Statistical Genetic methods  
 

 GWAS 
 
GWAS is one of the most commonly used approaches to associate genes with 

diseases. The method involves scanning the genome of thousands of 

individuals and identifying genetic markers where the allele frequencies differ 

between patients with or without a disease or between individuals with high or 

low levels of a biomarker (Marees et al., 2018). Identification of these trait-

associated SNPs provides new insights into the genetic architecture and a 

better understanding of the biological mechanism underlying phenotypes 

potentially leading to personalised treatments (Visscher et al., 2017). The basic 

premise of a GWAS is the collection of DNA and phenotypic information (e.g. 

through medical health records, questionnaires and biological samples) from a 

group of individuals, genotyping of each individual using GWAS arrays or 

sequencing strategies, quality control of genotyping data, imputation of untyped 

variants using a reference panel, performing statistical association testing, 

conducting a meta-analysis, and interpretation of the results (Bush & Moore, 

2012).  

 

 Genotyping  
 
GWAS has only been made possible since the generation of large-scale 

genotyping platforms. Genotyping for common variants is typically done using 

microarrays or next generation sequencing methods when also detecting rare 

variants. For the purpose of GWAS, microarray-based technology is typically 

used due to the cost. SNP arrays are able to detect > 1 million SNPs (Marees et 

al., 2018). Self-assembled arrays are the most common type of array used for 

genotyping. The basic premise of DNA microarray technology is that DNA is 

synthesised onto small beads and these beads are then assembled randomly 

onto a glass surface. DNA is extracted from samples and labelled through 
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incorporation of florescent dyes. The sample of labelled nucleic acids is washed 

over the microarray chip. Any sequences complementary to the sequence on 

the chip will hybridise and these are then visualised. The most commonly used 

approaches are allele discrimination, Illumina’s Golden Gate Assay, the Infinium 

assay or array primer extension assays (Bumgarner, 2013). Allele 

discrimination by hybridisation is used by Affymetrix and involves the presence 

of known DNA oligo sequences complimentary to each allele being assembled 

on the array; the variant is placed within the centre of this oligo sequence as 

this position affects hybridisation the most (D. G. Wang et al., 1998). Labelled 

DNA fragments are washed over the array and hybridise to complementary 

sequences which are then visualised. Illumina’s Golden Gate assay is based 

upon allele specific extension; two allele specific oligos are tailed with different 

universal primers and hybridised to genomic DNA (Bumgarner, 2013). Another 

oligo complementary to the same locus is tailed with a barcode sequence and a 

different universal primer (J. B. Fan et al., 2003). DNA polymerase extends the 

allele-specific primers across the genomic DNA sequence and these products 

are ligated to the third oligo (with the barcode sequence) (J. B. Fan et al., 2003). 

The barcode on the third oligo allows the PCR product to be uniquely detected 

on the array which contains oligo sequences complementary to the barcode 

sequences. The presence of multiple barcodes on the microarray enables 

multiplexing of many loci in one reaction (J. B. Fan et al., 2003). Array primer 

extension and Illumina’s Infinium are similar (Bumgarner, 2013). In array primer 

extension assays, the array contains DNA that is attached to the chip at the 5’ 

end whilst the 3’ end stops one base before the SNP. Fragmented genomic 

DNA hybridises to the array and the array oligo is extended in a single 

nucleotide terminator sequencing reaction. The terminator is fluorescently 

labelled and then detected to determine the allele at this position (Kurg et al., 

2000). In the Infinium assay, instead of the oligo being bound to the chip, it is on 

a bead and the SNP to be added is labelled with a hapten (a molecule that only 

elicits a response when bound to a larger molecule, such as a protein) which 

then binds a fluorescently labelled protein (Gunderson et al., 2006). The choice 

of genotyping platform depends on the specific needs, for example when 

genotyping samples from different ethnicities arrays with variants applicable to 

specific ethnicities are available, whilst when focusing on complex diseases the 

Axiom Biobank genotypic array may be better. Microarrays do not sequence 



 70 

every nucleotide in the genome but only those that are the array is designed to 

detect which typically include the most well-studied and well-known variants 

(Bumgarner, 2013).  

 

 Imputation 
 
Imputation allows for the prediction of unmeasured genotypes in low-density 

datasets (e.g. those from SNP arrays) using densely genotyped datasets as 

references such as HapMap (Frazer et al., 2007) or 1000 Genomes (Jostins, 

Morley, & Barrett, 2011). This results in a substantial increase in power and 

allows for the meta-analysis of studies genotypes on difference SNP arrays. 

Several tools are available for imputation. Within this thesis, genotype data was 

imputed using the Michigan Imputation Server (Das et al., 2016) 

(https://imputationserver.sph.umich.edu/index.html#!) which uses Eagle2 (Loh 

et al., 2016) to phase haplotypes, and Minimac4 

(https://genome.sph.umich.edu/wiki/Minimac4) with the most recent 1000 

Genomes reference panel (phase 3, version 5) (Auton et al., 2015).  

 

 Quality control checks  
 

Genotype data is inherently imperfect and therefore extensive quality control 

checks are required during GWAS in order to generate reliable results. Errors in 

the data can arise due to poor quality of DNA samples, poor DNA hybridization 

to the array, poorly performing genotype probes, and sample mix‐ups or 

contamination (Marees et al., 2018). The typically used QC checks are outlined 

in Table 2.1 and involve filtering out SNPs and individuals based on 

missingness, sex discrepancy, minor allele frequency (MAF), deviations from 

Hardy-Weinberg equilibrium (HWE), heterozygosity, relatedness and population 

stratification.  

 

2.1.1.3.1 Missingness  
 
Missingness refers to both SNP-levels missingness and individual-level 

missingness (Laurie et al., 2010). Individual-level missingness is the number of 

SNPs missing for a specific individual; this can indicate poor DNA quality or 

technical issues (Marees et al., 2018). SNP-level missingness refers to the 
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number of individuals within the study for whom information on a specific SNP 

are missing; SNPs with a large amount of missingness can lead to bias (Laurie 

et al., 2010).  

 

2.1.1.3.2 Sex discrepancy 
 
Sex discrepancy is the difference between the assigned sex and the sex 

determined based on genotype and can only be checked when SNPs on the 

sex chromosome have been called. A discrepancy is likely indicative of sample 

mix-up (Marees et al., 2018).  

 

2.1.1.3.3 Minor Allele Frequency 
 
MAF is the frequency at which the second most common allele occurs at a 

given site in a given population. Minor alleles drive a considerable amount of 

selection and play a role in heritability (Manolio et al., 2009). The majority of 

GWAS are underpowered to detect associations with SNPs with a low MAF and 

therefore exclude these from the analysis (Marees et al., 2018).  

 

2.1.1.3.4 Hardy-Weinberg equilibrium 
 
Hardy-Weinberg equilibrium (HWE) assumes that in a population of infinite size, 

the genotypes and allele frequencies remain constant across generations and 

thus in equilibrium by assuming no natural selection, migration, or mutation 

(Lachance, 2016). The expected frequency of a genotype can be calculated 

using Equation 2.1. Violation of HWE occurs when the observed frequency of a 

genotype in a population is significantly different from the expected genotype 

frequency (Trikalinos et al., 2006). In GWAS, HWE violation may be indicative 

of genotyping errors. The threshold used in disease-specific populations are 

often less stringent as violations of HWE may actually be indicative of a true 

association with disease risk (Marees et al., 2018).  

 

2.1.1.3.5 Heterozygosity 
 
Heterozygosity refers to the presence of two different alleles at a specific 

variant. The rate of heterozygosity in an individual is the proportion of 

heterozygous genotypes, which is calculated using a list of SNPs that are not 
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highly correlated by excluding high inversion regions (Samuels et al., 2016). 

The mean of heterozygosity is calculated across the population and any 

individuals with a heterozygosity more than 3 standard deviations from the 

mean are excluded (Marees et al., 2018). A high level of heterozygosity within 

an individual may be indicative of poor sample quality whilst low heterozygosity 

can indicate a high level of inbreeding (Anderson et al., 2010).  

 

2.1.1.3.6 Relatedness 
 
Relatedness is a measure of how strongly a pair of individuals is genetically 

related. Most GWAS’ assume that all individuals are not more closely related 

than second-degree relative (Anderson et al., 2010). The inclusion of more 

closely related individuals in a GWAS can result in biased estimations (Marees 

et al., 2018). Several tools have been developed over the past few years, such 

as BOLT-LMM and GEMMA, which can account for relatedness through the 

inclusion of a genomic relatedness matrix (GRM) in the model (Loh et al., 2015; 

Zhou & Stephens, 2012).  

 

2.1.1.3.7 Population Stratification  
 
Many cohorts involve the inclusion of individuals from diverse ancestries known 

as population stratification. The inclusion of diverse ancestries can confound 

standard QC metrics due to different allele frequencies across subpopulations 

(Anderson et al., 2010). These differences can give rise to spurious 

associations and/or the masking of true associations. For example, genotypic 

differences between case/controls may be detected due to different populations 

rather than an effect on the disease (Cardon & Palmer, 2003). It is therefore 

important to perform association analysis separately in subpopulations before 

combining results through meta-analysis. Subtle population stratification can 

also exist in a single ethnic population and therefore it is important to test and 

control for population stratification in GWAS in order to reduce the amount of 

potential systematic bias (Abdellaoui et al., 2013).One method to determine 

different ancestries and to account for population stratification is by using 

principal component analysis (PCA) (Price et al., 2006). The method calculates 

the genome-wide average proportion of alleles shared between any pair of 

individuals to generate principal components (PCs) of the genetic variation for 
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each individual. The PCs for each individual can be plotted to explore whether 

there are groups of individuals that are genetically more similar to each other 

than expected; for a study including Europeans and Asians, PCA would reveal a 

clustering of Europeans indicating that they are genetically more similar to each 

other than to the Asians (Marees et al., 2018). The PCs of the study participants 

under investigation are often plotted against those derived from a population of 

known ethnic structure, such as HapMap (Frazer et al., 2007) or 1000 Genomes 

(B. Howie et al., 2011), to determine any outliers and to determine participants 

from the same ancestry (Anderson et al., 2010). After exclusion of any outliers 

and inclusion of only those individuals from the same subpopulation, it is 

important to repeat PCA and to use these resulting PCs as covariates in 

association tests to correct for any remaining, underlying stratification which 

could lead to spurious associations (Marees et al., 2018). The inclusion of up to 

10 PCs is typically accepted in GWAS.  

 

p + q = 1 

𝑝2 + 2𝑝𝑞 + 𝑞2 = 1 

p: dominant allele frequency 

q: recessive allele frequency 

p2: dominant allele homozygous frequency 

2pq: Heterozygous frequency 

q2: recessive allele homozygous frequency 

Equation 2.1: Hardy-Weinberg equilibrium equations 
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Table 2.1: Quality control checks typically performed in GWAS.  

QC check Threshold Explanation 

SNP-level 

missingness 

Exclude SNPs with missingness > 20% Excludes SNPs that are missing in a large proportion of the subjects. SNPs with 

low genotype calls are removed. 

Individual-level 

missingness 

Exclude individuals with missingness > 20% Excludes individuals who have high rates of genotype missingness. Individual with 

low genotype calls are removed. 

Sex discrepancy Males should have an X chromosome 

homozygosity estimate >0.8 and females should 

have a value <0.2. 

Checks for discrepancies between sex of the individuals recorded in the dataset 

and their sex based on X chromosome heterozygosity/homozygosity rates. 

Indicative of sample mix-ups 

Heterozygosity Remove individuals who deviate ±3 SD from the 

samples' heterozygosity rate mean. 

Excludes individuals with high or low heterozygosity rates.  

Minor allele 

frequency 

Exclude SNPs with MAF <0.01 or <0.05 typically 

used. 

SNPs with a low MAF are rare, therefore power is lacking for detecting SNP‐

phenotype associations. These SNPs are also more prone to genotyping errors. 

The MAF threshold should depend on your sample size, larger samples can use 

lower MAF thresholds. 

Hardy-Weinberg 

equilibrium 

Exclude SNPs with HWE P < 1 x 10-06 Excludes markers which deviate from Hardy–Weinberg equilibrium. Common 

indicator of genotyping error, may also indicate evolutionary selection. Deviations 

can indicate sample contamination, inbreeding. 

Relatedness Exclude any individuals closer than second-

degree relatives or account for relatedness in 

statistical analysis e.g. using a GRM. 

Cryptic relatedness can interfere with association analysis.  
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Population 

stratification 

Include only individuals from the same 

subpopulation based on PCA. 

As allele frequencies differ between subpopulations, biases can be introduced by 

including different ancestries leading to false-positive associations or masking of true 

causal association.  
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 Association testing 
 
Linear regression is a statistical method used to estimate the relationship 

between two variables assuming linearity. Linear regression is the standard 

approach for identifying whether genetic variants are associated with traits of 

interest in GWAS (Tao Wang et al., 2018). The most commonly used technique 

in GWAS is multiple linear regression which allows for the inclusion of 

confounding variables, such as environmental confounders like smoking, 

biological confounders like sex or age, and technical confounders like 

genotyping chip (Pourhoseingholi et al., 2012). The multiple linear regression 

model is denoted in Equation 2.2. Linear regression makes several key 

assumptions (Osborne & Waters, 2002; Uyanık & Güler, 2013);  

1. There is a linear relationship between the outcome and the independent 

variables. This can be assessed by plotting a scatter plot. 

2. The residuals are normally distributed. This can be visually assessed 

using a quantile-quantile (qq) plot whereby the theoretical quantiles are 

plotted against the standardised residuals.  

3. The independent variables are not highly correlated to each other i.e. 

there are no multi-collinearity. This can be measured using a Pearson’s 

correlation matrix among all independent variables. A correlation 

coefficient less than 0.8 indicates no multi-collinearity.  

4. The data is homoscedastic meaning that the variance of error terms 

across values of the independent variable are similar. This can be 

assessed graphically using a qq plot  

 

Violation of these assumptions can lead to increased error rates and biases and 

therefore it is standard practice to perform inverse normalisation on residuals. 

For binary or disease traits, logistic regression is used instead which generates 

an estimate of the log odds of disease in the presence of an additional copy of 

the minor allele (Marees et al., 2018). An advancement on the traditionally used 

linear/logistic regression approach is the use of a linear mixed model (LMM) 

which is better at controlling for population stratification and cryptic relatedness, 

correcting inflation of false-positives that may be caused by many small genetic 

effects, and increases statistical power by jointly modelling all SNPs (H. Chen et 

al., 2016; Widmer et al., 2014). LMMs estimate the genetic similarity between a 
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pair of individuals to capture the genealogy within the population and enable the 

inclusion of both fixed effects (the overall mean, the effect of a SNP and the 

effect of covariates) and a random effect (reflecting the polygene background 

whereby a combination of genes influence the trait) (Uffelmann et al., 2021). 

The variance of the random effect is dependent on the kinship matrix which is a 

measurement of genetic similarity across individuals. (Eu-ahsunthornwattana et 

al., 2014; Lippert et al., 2011). The overall model for LMM methods is shown in 

Equation 2.3. LMMs have shown to perform favourably in population based 

and case-control cohorts and are effective at accounting the complete 

genealogy of the population, including population structure, family structure and 

cryptic relatedness, reducing the risk of false positives whilst maintaining power 

as all individuals from the same subpopulation can be included regardless of 

relatedness (Loh et al., 2015; Yu et al., 2006; Zhou & Stephens, 2012).  

 

𝒚 = 𝒙𝜷𝒔 + 𝒛𝒏𝜷 

y: a phenotype of interest 
x: SNP genotype at a given locus  

s: changes in y as a function of genotype at x 

zn: covariates with effect sizes  

 
Equation 2.2: Multiple linear regression model used in GWAS. 

 
𝑦 = 𝑋𝛽 + 𝑔 + 𝜀 

X: matrix of fixed effects including overall mean, SNP being tested and covariates with  
denoting the coefficients of these fixed effects. 

g: a random effect 

: the random residual effect  

 
Equation 2.3: Linear Mixed Model based approach used in GWAS. 

 

 Meta-analysis 
 
The basic principal of meta-analysis is to combine the evidence of association 

from individual studies using appropriate weights. METAL (Willer et al., 2010) is 

a commonly used software and was used in this thesis when combining 

association statistics in Chapter 3. METAL involves two main approaches; 1) 

the conversion of P-values and effect estimates into a z-score where a very 

negative z-score represents a small P-value and a negative effect of the allele 

on disease risk or trait levels (i.e. the allele is associated with lower trait levels 

or decreased risk of disease) and a very positive z-score represents a small P-

value and a positive effect of the allele on disease risk or trait levels (i.e. the 
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allele is associated with higher trait levels or increased risk of disease), 2) 

combining z-scores across SNPs in a weighted sum with the weight 

proportional to the square-root of the study sample size meaning that largest 

studies are given more weight compared to smaller studies (Willer et al., 2010). 

This method enables results to be combined when effect estimates are not 

available in all studies or are in different units across studies. This method is 

equivalent to a fixed-effect inverse-variance weighted method where the weight 

is proportional to the inverse of the standard error providing that the trait 

distribution is identical across samples (Willer et al., 2010). The fixed-effect 

inverse-variance weighted method was performed in this thesis using metan 

(Harris et al., 2008) in Stata (StataCorp, 2019).  

 

 UK Biobank GWAS data 
 
For all analysis using the UKB in this thesis, the imputed data released in 2017 

was analysed. Genome-wide genotyping was performed on ~450,000 

individuals using the UK Biobank Axiom Array and on ~50,000 individuals using 

the UKB BiLEVE array. The two SNP arrays were very similar with over 95% 

common marker content. The UK Biobank Axiom array was an updated version 

of the UK BiLEVE Axiom array, and included additional novel markers. 

Approximately 812,000 unique markers (SNPs and indels) were directly 

measured, with > 90 million variants being imputed using the Haplotype 

Reference Consortium (HRC) (Loh et al., 2016) and UK10K + 1000 Genomes 

(Auton et al., 2015) reference panels. This has been described in more detail 

elsewhere (Bycroft et al., 2018). Due to the reported technical error with non-

HRC imputed variants, I focused solely on the set of ~40 million imputed 

variants from the HRC reference panel. PCA was performed to determine 

population stratification. PCs were generated in the 1000 Genomes cohort 

using high-confidence SNPs to obtain their individual loadings. These loadings 

were then used to project all of the UKB samples into the same PC space, and 

individuals were then clustered using PCs 1–4. To account for population 

structure and relatedness of individuals, a linear mixed model implemented in 

BOLT-LMM (Loh et al., 2015)  was used to perform GWAS. Only autosomal 

SNPs with a MAF > 1 %, in Hardy Weinberg equilibrium (P > 1 x 10-06), passing 

QC in all 106 batches, and present on both genotyping arrays were included in 

the GRM. For all continuous traits, single inverse normalisation was performed 
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to account for skewed distributions and the resulting residuals were adjusted for 

genotyping array, sex, age at baseline and centre alongside any trait-specific 

covariates. 

 

 eQTL analysis  
 
eQTL analysis is used to identify genetic variants associated with gene 

expression on the premise that a proportion of transcripts are under genetic 

control (Nica & Dermitzakis, 2013). The basic approach for performing eQTL 

analysis is similar to that of GWAS but involves the testing of an association 

between a genotype and gene expression in a specific tissue or cell-type of 

interest (Marta et al., 2015). Individual transcript levels are determined in a 

selected tissue or cell-type from selected unrelated individuals of the same 

ancestry using microarrays. Briefly, RNA is extracted from the samples of 

interest, converted to cDNA and labelled before array hybridisation and 

scanning using a confocal scanner. Raw data files are then pre-processed 

including adjusting for differences between arrays, background estimation and 

correction, and performing normalisation before being mapped to genes. 

Measured gene expression is typically inverse rank normalised to account for 

skewed distributions. Each individual gene transcript is treated as a quantitative 

trait which differs to typical GWAS where a single or a few complex phenotypes 

are investigated. Association analysis is performed to identify SNPs significantly 

associated with expression using either a Kruskal-Wallis test for non-parametric 

data (Greenawalt et al., 2011; Schadt et al., 2008) or an additive linear model 

(Innocenti et al., 2011) adjusting for covariates such as age, sex, PCs and 

additional hidden factors identified through PEER 

(https://www.sanger.ac.uk/science/tools/PEER) (Stegle et al., 2010).  

 

Similar to GWAS, eQTL data is often made publicly available, for example in 

GTEx (https://gtexportal.org), enabling further investigation of putative 

susceptibility loci identified through GWAS are investigated through eQTL 

analysis to determine whether these statistically significant associations hold in 

the relevant tissue or cell-type providing additional evidence of the true causal 

gene and pathway or to provide additional biological evidence supporting 

susceptibility loci that fail to reach genome-wide significance. In this thesis, I 

used extracted eQTL association statistics for variants lying within 500 kb either 

https://www.sanger.ac.uk/science/tools/PEER
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side of my SNP of interest. These association statistics were produced by 

collaborators using data that was not publicly available at the time (Damman et 

al., 2015; Etheridge et al., 2020; Greenawalt et al., 2011; Innocenti et al., 2011; 

Schadt et al., 2008) 

 

 Correction for multiple testing 
 
Modern genotyping and imputation results in the analysis of millions of SNPs. 

Testing millions of SNPs for associations generates a large number of tests and 

thus a considerable multiple testing burden (Marees et al., 2018). However, due 

to the presence of LD, SNPs are highly correlated and are therefore not 

independent decreasing the number of independent tests being performed 

(Storey & Tibshirani, 2003). A Bonferroni-correction can be applied to calculate 

the adjusted P-value threshold controlling for the probability of having at least 

one false-positive association (Pe’er et al., 2008) . During GWAS, after 

accounting for LD, there are considered to be ~1 million independent SNPs. For 

this reason, a P-value of 5 x 10-08 (0.05 / 1 million) is typically accepted as the 

threshold for determining genome-wide significance and was used throughout 

this thesis (Dudbridge & Gusnanto, 2008). This was used as the threshold for 

determining genome-wide significance in Chapter 3. Alternatively, due to the 

inclusion of lower frequency variants since advancements in genotyping 

technologies increasing power, a lower P-value threshold of 6.6.x 10-09 can also 

be used (Fadista et al., 2016). This was the case for the Hgb GWAS used in 

Chapter 6. For the eQTL analysis in Chapter 3, due to scanning only 0.01% of 

the genome (a 1 mb region surrounding the SNP of interest), a lower p-value 

threshold was used to determine significance (0.05 / 180 SNPs = 2.78 x10-04). 

For all MR analysis, the standard significance threshold of P < 0.05 was used 

which is the typically accepted threshold for interpreting MR studies. When 

performing PheWAS, the P-value significance threshold was determined using 

a Bonferroni correction by dividing 0.05 by the number of phenotypes 

investigated; in Chapter 3, the threshold used was 5.75 x 10-05 (0.05 / 869 

traits) and in Chapter 6, the threshold used was 5.42 x 10-05 (0.05 / 923).  
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𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑃 𝑣𝑎𝑙𝑢𝑒 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 =  
0.05

𝑛
 

n: number of independent tests  

 

Equation 2.4: Formula for the Bonferroni-corrected P-value threshold. In the case of 
GWAS/eQTL analysis, n is equivalent to the number of independent SNPs being tested. 
For GWAS, 1 million SNPs are considered to be independent and thus often n = 1,000,000.  

 

 Scaling genetic associations  
 

Genetic associations between a variant and trait of interest are often very small 

due to common genetic variants indicating lifelong perturbations and having an 

accumulative effect alongside other variants on the trait of interest. For this 

reason, it is important to scale genetic estimates to the minimally clinically 

relevant effect, whether that be the effect of a drug on trait levels or a 1-unit 

increase in trait levels, to obtain a physiologically relevant and reliable estimate. 

This can be achieved by calculating the scaling factor. A similar approach has 

previously been used by Scott et al. (2016). The scaling factor is determined by 

calculating the magnitude of difference between the effect of the genetic variant 

on the trait of interest and the minimal clinically relevant effect (Figure 2.1). This 

scaling factor can then be used to convert the genetic associations measured 

between the variant and outcome or exposure and outcome in MR studies to 

determine the predicted effect at a physiologically relevant level. Figure 2.2 

shows a worked example of scaling genetic effect estimates obtained through 

MR to the effect of a drug which increases which increases biomarker levels by 

10-fold. For binary traits, it is important to ensure the scaling is performed on 

the logarithmic scale before converting back into odds ratios to estimate the 

physiologically relevant effect of an increase in exposure on risk of disease 

(Figure 2.2).  

 

Typically, during GWAS and/or meta-analysis, trait values are residualised and 

inverse normalised to account for skewed distributions and meet the normal 

distribution assumptions made during statistical testing. For this reason, genetic 

effect estimates obtained through GWAS also often need scaling back to the 

original trait units to determine whether the difference estimated through 

GWAS/PheWAS is clinically relevant. To achieve this, the standard deviation of 
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the trait is taken from the study/population of interest and used to convert the 

effect estimate in SDs back into the original trait units by dividing (Table 2.2).  
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-0.15 SD per A-
allele from 

genetic 

association
Variant within 
GPL1R
rs10305492

Lower fasting glucose 
levels

-0.49 SD from 
trial data

Drug Effect

GPL1R agonist Lower glucose levels Decrease T2D 

T2D riskOR = 0.83 from 
genetic 

association

OR estimated 
through MR

observed drug effect
Scaling factor 

estimated genetic effect 

Genetic Effect

??

Convert to 
physiologically 

relevant scale using 
scaling factor

Figure 2.1: Diagram depicting the principal of rescaling estimated genetic associations to a clinically relevant effects to predict the likely 
physiologically relevant effect on outcomes. Example and numbers have been taken directly from Scott et al. (2015) where scaling was also used.   
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1. Take genetic effect of 1 allele on exposure

2. Take effect of drug on exposure from trial

3. Calculate difference in effects

4. Using this difference in effects calculate the scaled 
effect of SNP on risk of disease

Scaled physiologically relevant effect

Figure 2.2: Worked example of rescaling genetic estimates to clinically relevant effects obtained 
from clinical trial data for both quantitative traits and disease outcomes.  
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Table 2.2: Conversion of genetic estimates in standard deviations into original units of the trait.  

1. Convert the effect of the SNP on trait of interest (in SDs) into raw units 
Raw units = genetic estimate / SD in the population  

Effect of SNP on trait of interest Effect of SNP on trait 
of interest 

 

Trait in SD (genetic estimate) SD of trait in 
population of trait 

raw units  
 

Hgb 0.05 1 0.05 
 

     

2. Calculate the scaling factor to estimate a 1-unit, 2-unit or 0.5-unit increase in Hgb levels 
Scaling factor = desired unit increase / effect of SNP on trait of interest in raw units 

Calculate the scaling factor for 
1-unit increase 

1/0.05 = 20 
   

Calculate the scaling factor for 
2-unit increase 

2/0.05 = 40 
   

Calculate the scaling factor for 
0.5-unit increase 

0.5/0.05 = 10 
   

     

3. Scale the genetic estimate of SNP on PheWAS trait/outcome to desired-unit increase (in SDs) and then convert to the original units of 
the PheWAS trait/outcome 
Scaled effect (in SDs) = Genetic estimate of SNP on PheWAS trait x scaling factor 
Original units = Scaled effect x SD of PheWAS trait/outcome in population  

Effect of SNP on trait 
from PheWAS 

Scaled to 1 unit 
increase in Hgb 

 
Predicted effect of a 1 unit increase Hgb on 
EPO in raw EPO units  

in SD (genetic estimate) in SD SD of trait in 
population 

in raw units 

EPO 0.02 0.4 1.5 0.6 
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2.2 General wet-lab methods 
 

 Molecular cloning 
 
All work with live bacteria was carried out under sterile conditions, using a 

category 2 biological safety cabinet, sterile consumables and sterile media. 

Molecular cloning was used to generate the plasmids used within this thesis. 

Molecular cloning involves the insertion of a segment of DNA into a backbone 

vector for propagation. Recombinant DNA (plasmid containing the DNA insert) 

can then be isolated allowing the expression and/or manipulation of gene 

expression in cell-lines. The basic molecular cloning process involves: 

1. Restriction digest of backbone vector to linearise the circular plasmid and 

generate single stranded overhangs 

2. Ligation of DNA segment into the backbone vector creating recombinant 

molecules (i.e. plasmids) 

3. Transformation of plasmids into bacteria for propagation 

4. Screening of bacteria containing the plasmid 

5. Isolation of the plasmid for downstream use. 

 

 Plasmid preparation 
 
Plasmids ordered from Addgene arrived as a live bacterial stab culture. Stab 

cultures were streaked out onto agar plates containing the appropriate antibiotic 

selection. Plates were incubated overnight at 37 0C for the formation of the 

colonies. Colonies were selected from the agar plate and individually cultivated 

in 5 mL of LB broth supplemented with the appropriate antibiotic in a 20 mL 

sterile bacterial tube, shaken at 220 rpm overnight at 37 0C. Plasmids were then 

isolated from bacteria using a QIAprep Spin Miniprep kit (Qiagen, Maryland, 

USA) which is explained below in 2.2.1.5. 

 

 

 Restriction digest and ligation 
 
Segments of DNA were inserted into the backbone vectors/plasmids in a single 

digestion and ligation reaction. Briefly, the circular plasmid is digested by a 

restriction enzyme generating a linearised plasmid with overhangs of single 

stranded DNA, known as sticky ends. The DNA to be inserted is designed to 
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also contain these sticky ends and will therefore also be digested by the same 

restriction enzyme producing complementary overhangs which can anneal 

enabling the insertion of the insert into the backbone vector. The single 

digestion and ligation reaction mix contained a 3:1 ratio of insert:plasmid, 2 μl 

10X FastDigest Buffer (New England BioLabs, Ipswich, UK), 1 μl dithiothreitol 

(DTT, 10 mM), 1 μl adenosine triphosphate (ATP, 10 mM), 1 μl FastDigest 

restriction enzyme (New England BioLabs, Ipswich, UK), 0.5 μl T4 ligase (New 

England BioLabs, Ipswich, UK) made up to a total volume of 20 μl with ddH20. 

The reaction mix was then incubated in a thermocycler under the conditions in 

Table 2.3. 

 

Table 2.3: Thermocycler conditions for single ligation and digestion reaction using 
T4 ligase.  

Temperature (0C) Time (minutes) Number of cycles 

37 5 
6 

21 5 

4 Infinite  

 

 Bacterial transformation 
 
To obtain multiple copies of the recombinant plasmid, bacteria were 

transformed with the ligation reaction before purifying and screening for the 

desired plasmid. 50 μl of sub-cloning efficiency competent Escherichia Coli 

DH5alpha were thawed on ice for one hour and subsequently mixed with 2 μl of 

ligation reaction and incubated for 15 minutes on ice. Bacteria were then heat 

shocked for 45 seconds at 42 0C and incubated immediately on ice for 2 

minutes to promote horizontal gene transfer. 950 μl of Lysogeny Broth (LB) 

supplemented with 1X SOC media (10 mM NaCl, 2.5 mM KCl, 10 mM MgSO4, 

20 mM Glucose, 10 mM MgCl2) was added to the bacteria and bacteria were 

placed in a shaker at 37 oC for 1 hour at 225 rpm to enable expression of the 

bacterial proteins. Bacteria were centrifuged at 4000 rpm for 2 minutes. The 

pellet was resuspended in 250 μl of LB broth media and plated onto an agar 

plate containing the appropriate antibiotic selection (100 μg/mL ampicillin). 

Plates were inverted and incubated overnight at 37 0C. Colonies containing the 

transformed plasmid should grow overnight. 
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 Overnight cultures 
 
Colonies on agar plates are not large enough to extract sufficient amount of 

plasmid DNA for downstream applications. Instead, single colonies are 

inoculated in LB containing antibiotic and grown overnight to enable the 

replication of larger volumes of bacteria containing the plasmid.  

 

3 mL of LB prepared with 100 μg/mL ampicillin (or appropriate antibiotic) was 

aliquoted into a culturing tube. A single colony was selected using an 

inoculating loop and the culturing tube containing LB and antibiotic was 

inoculated by stirring the inoculating loop in the broth. Cultures were stored 

overnight at 37 0C shaking at 225 rpm. A negative control of LB with antibiotic 

but no bacteria was included to confirm aseptic technique. The following day, 

bacterial growth was confirmed by the presence of cloudy cultures whilst the 

negative control remained clear.  

 

 Isolation of plasmid DNA 
 
To isolate pure plasmid DNA from the bacterial cultures, the overnight cultures 

were processed using the QIAprep Spin Miniprep Kit (Qiagen, Maryland, USA). 

The kit is designed for up to 20 μg of high-copy plasmid DNA and lyses the 

bacteria to release the plasmid DNA. RNase A was added to Buffer P1 and 100 

% ethanol added to Buffer PE as instructed by the kit. Overnight cultures were 

centrifuged at room temperature at 13,000 rpm for 3 minutes and supernatant 

removed. The pellet was resuspended in 250 μl of Buffer P1 and transferred to 

a microcentrifuge tube. 250 μl of Buffer P2 was added and mixed by gentle 

inversion 6 times. 350 μl of Buffer N3 was added and the tube inverted 6 times 

to mix before centrifugation for 10 minutes at 13,000 rpm. 800 μl of the 

supernatant was transferred to a QIAprep 2.0 Spin Column (Qiagen, Maryland, 

USA) and centrifuged for 1 minute at 13,000 rpm. The plasmid DNA should now 

be bound to the column. The flow-through was discarded and 750 μl of Buffer 

PE added followed by centrifugation at 13,000 rpm for 1 minute. The flow-

through was discarded and residual wash buffer was removed by centrifugation 

at 13,000 rpm for 1minute. The QIAprep 2.0 column (Qiagen, Maryland, USA) 

was placed into a 1.5 mL Eppendorf tube and 50 μl of ddH20 was added to the 

centre of the column. The column was left to stand for 1 minute before 
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centrifugation for 1 minute at 13,000 rpm to elute the plasmid DNA. The eluted 

plasmid DNA is quantified using the Nanodrop machine as described in 2.2.4 

and stored at -20 0C.  

 

 Confirmation of insertion of DNA into plasmid 
 
To confirm the insertion of the DNA into backbone vectors, a diagnostic double 

restriction digest was carried out. If the insert is successfully cloned into the 

vector, a restriction enzyme cut-site is disrupted resulting in a different digest 

pattern to that of the empty backbone vector. A double restriction digest was 

performed on 100ng of plasmid DNA using 0.5μl of each restriction enzyme 

(e.g. EcoRI and BbSI), and 1 μl of FastDigest Green Buffer in a total reaction 

volume of 10 μl. The digest reaction was run in a thermocycler at 37 0C for 60 

minutes followed by 65 0C for 20 minutes. The resulting digest products were 

separated and visualised on a 0.5% (w/v) agarose gel in 1X TAE buffer 

containing SYBR Safe DNA gel stain (described in more detail in 2.2.6). The 

agarose gel was imaged using the Licor Oddysey Imaging system (LI-COR 

Biosciences Ltd, Cambridge, UK). Once the correct digest pattern had been 

observed, positive plasmids were sent for Sanger sequencing. 20 μl of 100 

ng/μl plasmid DNA was prepared in a 1.5 mL Eppendorf alongside 20 μl of 10 

μM LKO.1 5’ primer within the U6 promoter (5’-GACTATCATATGCTTACCGT-

3’). Sanger sequencing was performed by Genewiz Ltd (Genewiz, Essex, UK). 

Sequence data was analysed using SnapGene software (from Insightful 

Science; available at snapgene.com) to confirm insertion of the insert in the 

correct orientation and location.   

 

 Glycerol stocks 
 
Glycerol stocks were made for long-term storage of recombinant plasmids. 

500μl of bacteria from overnight culture was mixed with 500μl of 50% glycerol in 

a cryovials and then stored at -80 0C. 

 

 Tissue culture 
 

 HEK-293 cell-line 
 
The Human Embryonic Kidney-293 (HEK-293) cell-line was used for all 

functional work performed in this thesis. The cell-line was a gift from Dr John 
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Chilton. The HEK-293 cell-line is one of the most cited in vitro cell models as it 

is easy to culture, cheap to maintain, highly reproducible, easy to transfect and 

is highly characterised (P. Thomas & Smart, 2005). The HEK-293 cell-line is an 

immortalised cell-line generated by transforming and culturing human 

embryonic kidney cells from a female foetus with sheared adenovirus type 5 

DNA (F. L. Graham et al., 1977). The adenovirus DNA prevents cell-cycle arrest 

enabling continuous propagation of the resulting cell-line (Shaw et al., 2002). 

HEK-293 cells are highly heterogenous, comprising of endothelial, epithelial and 

fibroblast cell-types, and therefore have a complex karyotype (Stepanenko & 

Dmitrenko, 2015). HEK-293 cells are hypotriploid routinely carrying 64 

chromosomes. Chromosomal abnormalities include a total of three copies of the 

X chromosomes and four copies of chromosome 17 and chromosome 22.(Y.-C. 

Lin et al., 2014) This complex karyotype makes their behaviour different from 

primary human cells (Stepanenko & Dmitrenko, 2015). HEK-293 cells were 

chosen as the cell-line model of choice as EPO is highly expressed in the liver 

and the kidneys. However, as HEK-293 cells are from an embryonic kidney cell-

line, they might not be fully representative of the adult kidney, particularly the 

diseased kidney where a lack of EPO has a significant effect. Careful 

consideration is therefore needed when interpreting results. Furthermore, due to 

the complex karyotype, it is difficult to know with certainty that the effects 

measured throughout this thesis are due to disrupting all copies of the expected 

genes and are not resultant of extra copies of some genes/residual expression 

due to extra chromosomal copy numbers.  

 

 Cell maintenance 
 

Human Embryonic Kidney-293 (HEK-293) cells were cultivated in Dulbecco’s 

Modified Eagle’s Medium (DMEM) containing GlutaMAXTM (ThermoFisher 

Scientific, Massachusetts, USA) supplemented with filtered 10% foetal bovine 

serum (FBS) (ThermoFisher Scientific, Massachusetts, USA) and incubated at 

370C, 5% CO2 to mimic in vivo conditions. Cells were routinely passaged at 80-

90% confluency and media changed every 2-3 days or as required.  

 

 Cell Passage 
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Cells were passaged once they reached 80-90% confluency to maintain the 

cell-line. All media was pre-warmed to 37 0C in a bead bath prior to passaging. 

Media was removed from the cells using an aspirator. TryPLE (ThermoFisher 

Scientific, Massachusetts, USA) (3 mL for 10 cm plate, 1 mL for 6-well plate, 

500 μl for 24-well plate) was added to enable break-down of the extra-cellular 

matrix for collection and cells returned to the incubator for 5 minutes. Cells were 

then collected into a sterile falcon tube and the remaining plate/well was 

washed with media to collect any remaining cells. The cell suspension was 

centrifuged for 5 minutes at 1,000 rpm to pellet the cells. The supernatant was 

removed and the pellet resuspended in 10 mLs of fresh pre-warmed media by 

pipetting up and down ~10 times using a sterile stripette. Cells were usually split 

at a 1:10 dilution (1 mL of cell resuspension added to 9 mL of media) unless a 

specific number of cells was required in which case cell counting (see 2.2.2.4) 

was undertaken.  

 

  Cell Counting 
 

Cells which required to be at a certain density underwent cell counting using a 

haemocytometer before being added to the plate/dish. Following resuspension 

in 10 mL of media during passaging, 10 μl of resuspension was added to a 

haemocytometer. The number of cells in the haemocytometer chamber can be 

determined directly by counting the number of cells present using a microscope. 

The number of cells within the chamber is then used to calculate the 

concentration (or density) of cells in the resuspension. The cell density can be 

calculated by dividing the number of cells in the chamber by the volume of the 

chamber, which is known beforehand, accounting for any dilutions made. 

Equation 2.5 was used when counting the number of cells present in four large 

corner quadrants. Once the stock cell density has been calculated using 

Equation 2.5, the volume of resuspension needed to obtain the required 

density of cells was calculated using Equation 2.6 
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𝑆𝑡𝑜𝑐𝑘 𝑐𝑒𝑙𝑙 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 (𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑒𝑙𝑙𝑠/𝑚𝐿)  

= (
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑒𝑙𝑙𝑠 𝑐𝑜𝑢𝑛𝑡𝑒𝑑

4
) 𝑥 104 𝑥 𝑑𝑖𝑙𝑢𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟  

Equation 2.5: Counting the number of cells per mL.  

 

 

𝐶1 𝑥 𝑉1 = 𝐶2 𝑥 𝑉2 
C1: Concentration of cells in the stock resuspension 

V1: the volume of cell resuspension needed to make the working concentration 

V2: the working volume required 

C2: the concentration desired 

Equation 2.6: The volume of resuspension needed to obtain the required density of 
cells.  

 

Here is a worked example if 150 cells were counted over the four corner 

quadrants from 10 mLs of resuspension.  

 

𝑆𝑡𝑜𝑐𝑘 𝑐𝑒𝑙𝑙 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 (𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑒𝑙𝑙𝑠/𝑚𝐿)  = (
150

4
) 𝑥 104 𝑥 1 

 

𝑆𝑡𝑜𝑐𝑘 𝑐𝑒𝑙𝑙 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 (𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑒𝑙𝑙𝑠/𝑚𝐿) = 375,000 𝑐𝑒𝑙𝑙𝑠/𝑚𝐿 

 

For a required cell density of 50,000 cells per mL in a required volume of 5 mLs: 

 

𝑉1 =  
50,000 𝑥 5

375,000
 

 

V1 (the volume of cell resuspension (mL)) = 0.67 mL 

 

Therefore, to achieve a cell density of 50,000 cells per mL in 5 mLs, you need 

670 μl of cell resuspension and the rest of media to make up to 5 mLs.  

 

 Single cell isolation 
 
Using a Leica DMi8 Widefield microscope, single cells were isolated by single-

cell picking using a 0.1-2 μl pipette and transferred to a 96-well culture plate. 

Single cells were then incubated at 37 0C and 5% CO2.  
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 Clonal expansion  
 
Following single cell isolation, single isolated were cultured in 96-well plates for 

several weeks until 80-90% confluency had been achieved. Cells were then 

passaged into 24-well plates until confluency was reached and then 

subsequently passaged into 6-well plates and then 10-cm plates.  

 

 Cryogenic preservation  
 

For long-term storage of cell-lines, cells underwent cryogenic preservation and 

were stored in liquid nitrogen. Cells were pelleted following the same protocol 

for passaging and then resuspended in 1 mL of media supplemented with 10% 

dimethyl sulfoxide (DMSO) (Sigma Aldrich, Missouri, USA) or resuspended in 1 

mL of Cell Banker (Amsbio, Abingdon, UK). The 1 mL of resuspension was split 

between two cryovials and stored in Mr FrostyTM (ThermoFisher Scientific, 

Massachusetts, USA) at -80 oC for at least 24 hours. Mr FrostyTM 

(ThermoFisher Scientific, Massachusetts, USA) cools the cells down at a rate of 

-1 oC per minute to prevent cell lysis. Cells were then transported on dry ice to 

liquid nitrogen stores where they are stored for long-term at -196 oC.  

 

 Recovery of cells from cryogenic preservation 
 

To recover cells from long-term storage, cells are defrosted quickly in a water 

bath at 37 0C. Cells are transferred to an Eppendorf and an equal volume of 

pre-warmed media is added to prevent cell death and dilute DMSO (Sigma 

Aldrich, Missouri, USA). Cells are then pelleted by centrifugation at 1,000 rpm 

for 5 minutes. The supernatant was removed and pellet resuspended in 10 mLs 

of media. The resuspended pellet was transferred to the same size plate from 

which it was originally frozen from and incubated at 37 0C and 5% CO2 until 

confluent. Cells were passaged at least twice before being used for 

experiments.  

 

 Nucleic acid extraction 
 

To extract nucleic acid (genomic DNA or total RNA), cultured cells were grown 

to confluency and then disassociated using TryPLE (ThermoFisher Scientific, 
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Massachusetts, USA). Dissociated cells were split equally into two 15 mL falcon 

tubes and then centrifuged at 1,000 rpm for 5 minutes. The supernatant was 

removed. The pellet of one falcon tube was re-plated for continual growth (see 

2.2.2.3), whilst the other pellet was either frozen at -20 oC until genomic DNA 

extraction, or resuspended in 250 μl of TRIzolTM reagent (ThermoFisher 

Scientific, Massachusetts, USA) and stored at -80 oC for RNA isolation. All 

plasticware used for nucleic acid extraction were sterile and RNase/DNase-free. 

All surfaces and pipettes were cleaned with ethanol and/or RNaseZap 

(ThermoFisher Scientific, Massachusetts, USA) prior to extraction to prevent 

any degradation by RNAses.  

 

 Genomic DNA isolation 
 
Genomic DNA was isolated from cell pellets using the PureLink Genomic DNA 

Extraction Kit (Invitrogen, Massachusetts, USA). A heat block was set to 55 oC 

prior to starting DNA extraction and 96-100% ethanol was added to Wash 

Buffer 1 and 2 according to instructions on the bottle. The whole cell pellet was 

resuspended in 200 μl of PBS and transferred to a 1.5 mL Eppendorf. 20 μl of 

Proteinase K and 20 μl of RNase A were added to the sample and mixed by 

vortexing. The sample was incubated at room temperature for 2 minutes before 

adding 200 μl of PureLink Genomic Lysis/Binding Buffer and mixing by 

vortexing. Samples were incubated for 10 minutes at 55 oC on the heat block. 

After incubation, 200 μl of 100% ethanol was added before mixing for 5 

seconds by vortex. The sample was transferred to a PureLink Spin Column and 

centrifuged at 10,000 g for 1 minute at room temperature. The collection tube 

was discarded and the spin column placed in a clean PureLink collection 

column. 500 μl of Wash Buffer 1 was added to the to the column and 

centrifuged at 10,000g for 1 minute at room temperature. The PureLink 

collection tube was discarded and the spin column placed into a clean collection 

tube before added 500 μl of Wash Buffer 2 to the spin column and centrifuging 

for 3 minutes at 13,000 rpm at room temperature. The PureLink spin column 

was placed inside a 1.5ml Eppendorf tube. To elute the DNA, 25 μl of ddH2O 

was added directly to the centre of the spin column, incubated for 1 minute at 

room temperature and then centrifuged at 13,000 rpm for 1 minute. A second 

elution step was performed adding an additional 25 μl of ddH2O to the spin 

column and centrifuging at 13,000 rpm for 1.5 minutes. The purified DNA was 
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stored at -200C for long-term storage. Quality and purity of DNA was measured 

by the Nanodrop Spectrometer as described in 2.2.4.1. 

 

 Total RNA isolation 
 
Total RNA was purified directly from samples preserved in TRIzol  reagent 

using the Direct-zolTM RNA Miniprep kit (Cambridge Biosciences, Cambridge, 

UK). All reagents were supplied with kit unless otherwise stated. Briefly, 500 μl  

96 - 100% ethanol was added to the sample lysed in TRIzolTM (ThermoFisher 

Scientific, Massachusetts, USA and mixed by reverse pipetting. The mixture 

was transferred to a Zymo-SpinTM ICR column within a collection tube and 

centrifuged at 13,000 rpm for 30 seconds. The flow-through was discarded and 

the column placed in a clean collection tube. 400 μl of RNA Wash Buffer 

prepared with the recommended amount of 96 - 100% ethanol was added. In an 

RNase/DNase free tube, 5 μl of DNase I was mixed, by gentle inversion, with 

75 μl of DNA digestion buffer per sample undergoing total RNA isolation. 80 μl 

of this digestion mix was then added directly to the spin column matrix. The 

column was then incubated at room temperature for 15 minutes to allow 

digestion of DNA. 400 μl of RNA PreWash Buffer prepared with the 

recommended amount of 96 - 100% ethanol was added to the column and 

centrifuged at 13,000 rpm for 30 seconds. The flow-through was discarded and 

the step repeated. 700 μl of RNA Wash Buffer was then added to the column 

and centrifuged at 13,000 rpm for 1 minute to ensure complete removal of the 

wash buffer. The column was transferred to an RNAse/DNase Free 1.5 mL 

Eppendorf tube. To elute higher concentrations of RNA, 30 μl of DNase/RNase 

Free-Water was added directly to the column matrix and centrifuged for 30 

seconds at 13,000 rpm. 5 μl of RNA was aliquoted into a separate 

DNase/RNase Free tube for checking the quality of RNA to prevent risk of 

contamination. Eluted RNA was stored at -80 0C for long-term storage until 

needed. RNA was quantified and checked for quality, purity, and integrity using 

the QubitTM 2.0 Fluorometer (ThermoFisher Scientific, Massachusetts, USA), 

and an Agilent 2020 TapeStation with RNA ScreenTape (Agilent Technologies, 

California, USA), respectively as described in 2.2.4. 

 

 Quantification and Quality check of nucleic acid  
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Following extraction of nucleic acid, samples were quantified using the 

Nanodrop ND-8000 spectrophotometer (ThermoFisher Scientific, 

Massachusetts, USA) for DNA, or the QubitTM 2.0 Fluorometer (ThermoFisher 

Scientific, Massachusetts, USA) for RNA. RNA quality, purity, and integrity were 

assessed using an Agilent 2020 TapeStation with RNA ScreenTape (Agilent 

Technologies, California, USA). 

 

 Nanodrop 
 

After purification of DNA, the yield and purity were calculated using the 

Nanodrop ND-8000 spectrophotometer (ThermoFisher Scientific, 

Massachusetts, USA) by measuring the absorption at 260 nm (A260) of 1 μl of 

undiluted sample. The Nanodrop software automatically calculated the 

concentration (in ng/μl) using a modified Beer-Lambert equation. DNA purity 

was calculated by measuring absorption at 280 nm (A280) and 260 nm (A260); 

nucleic acids absorb ultra-violet (UV) light at 260 nm whilst proteins absorb UV 

at ~280 nm. A ratio of A260/A280 of ~1.8 indicates ‘pure’ DNA. A secondary 

measure of absorbance at 230 nm (A230) was also taken as common 

contaminants such as ethanol and phenol absorb UV at ~230 nm. A A260/A230 

ratio between 1.8-2.2 indicates a high purity sample. The Nanodrop was 

blanked using 1 μl of ddH20 before measuring samples.  

 

 Qubit Fluorometer 
 
The QubitTM 2.0 Fluorometer (ThermoFisher Scientific, Massachusetts, USA) 

uses a fluorescent dye that emits signal only when bound to RNA even in the 

presence of free nucleotides or contaminants. 200 μl of Qubit Working solution 

was made for each sample by diluting the Qubit RNA BR Reagent 1:200 with 

Qubit RNA BR Buffer. 199 μl of working solution was then mixed with 1μl of 

RNA sample. Standards were also prepared using 190μl of Qubit Working 

Solution and 10 μl of Standard provided by the Qubit BR kit. Standards and 

samples were vortexed briefly and incubated at room temperature for 2 minutes 

before the RNA was quantified using the QubitTM 2.0 Fluorometer 

(ThermoFisher Scientific, Massachusetts, USA) by inserting the tubes directly 

into the machine.  
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 TapeStation 
 
RNA samples being sent for sequencing also underwent a further check for 

quality, purity and integrity using an Agilent 2020 TapeStation with RNA 

ScreenTape (Agilent Technologies, Calafornia, USA). The TapeStation software 

is an automated electrophoresis tool for analysis RNA quality and works by 

calculating an RNA integrity number (RIN) using an algorithm that considers 

several regions of the recorded electropherogram particularly certain peaks in 

the 18S and 28S subunits of ribosomal RNA (Scraeber, 2006). The RIN can 

take a number between 0-10 with 10 indicating high RNA integrity and 1 

indicating degradation of RNA and thus very low RNA integrity. Samples were 

prepared in an 8 tube PCR strip by mixing 5 μl of RNA sample buffer with 1 μl of 

RNA sample by reverse pipetting. Samples were then spun down and vortexed 

for 1 minute at 2000 rpm. Samples were spun down again and then heated at 

72 0C for 3 minutes followed by being placed on ice for 2 minutes. Samples 

were then analysed in the Agilent 2200 TapeStation instrument. Briefly, the 

tubes were placed in the sample block, loading tips were inserted into the 

loading tip holder on the instrument and the RNA ScreenTape device was 

inserted into the instrument, after being flicked gently to remove bubbles, with 

the label facing towards the front and the barcode to the right. The tubes 

wishing to be run were selected on the software and the run was started. The 

subsequent machine read-out provided the RIN score for each sample.  

 

 Polymerase Chain Reaction (PCR) 
 
Polymerase Chain Reaction (PCR) is used to amplify a region of DNA. The 

reaction relies upon the presence of a DNA polymerase and primers specific to 

a certain region of the DNA enabling amplification of this specific region. The 

reaction undergoes several cycles of heating and cooling in a thermocycler. The 

first step of the PCR reaction is to heat the reaction activating the heat-sensitive 

polymerase. The following three steps are then repeated for a certain number of 

cycles to enable amplification of the desired sequence:  

1. Denaturing: the reaction mix is heated to 95 0C to denature the double-

stranded DNA 

2. Annealing: the reaction mix is cooled to a primer specific temperature, 

called the melting temperature (usually between 50 0C – 65 0C), to 
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enable specific binding of the primers and prevent non-specific 

amplification.  

3. Elongation: the reaction mix is heated to 72 0C to allow the polymerase 

to synthesise the complementary strand of DNA using the dNTPs. This 

elongation step is carried out for 30 seconds per 500 bp i.e. for 750 bp 

amplicon, elongation will be 45 seconds.  

The number of cycles that these three steps are run for is typically between 35 

and 45 and is dependent upon the application. The number of amplicons 

present in the reaction mix is equivalent to 2n with n being the number of cycles. 

A final elongation step is then performed at 72 0C at the end to allow for final 

extension.  

 

 Primer design 
 
DNA sequences were imported into Benchling from the UCSC Genome 

Browser (https://genome.ucsc.edu/). Primer pairs were then designed by using 

Primer3 (www.bioinformatics.nl) ensuring pairs adhered to the following rules: 

1. Sequences between 20 – 25 bp 

2. Similar melting temperature between both sequences 

3. GC content between 45 – 55 % in both pairs 

4. Few repetitive sequences in the sequences 

5. In silico PCR analysis was performed using USCS Genome Browser 

(https://genome.ucsc.edu/cgi-bin/hgPcr) to ensure 100 % matching with 

the desired sequence and no matches elsewhere in the genome.  

Primers were then purchased from IDT (Integrated DNA Technologies, Leuven, 

Belgium; https://eu.idtdna.com/) and resuspended at 100 μM with molecular 

biology grade water.  

 

 Optimisation of PCR conditions 
 
The optimal annealing temperatures for primer pairs was determined using a 

temperature gradient PCR reaction in an Eppendorf Mastercycler thermocycler. 

PCR reactions were set-up for each primer pair altering only the annealing 

temperature by 2 0C increments across the PCR block between 52 oC and 64 

0C. PCR products were visualised using gel electrophoresis as outlined below in 

2.2.6. The annealing temperature showing the strongest resulting band of the 

correct size was chosen for subsequent reactions.   

https://genome.ucsc.edu/
http://www.bioinformatics.nl/
https://eu.idtdna.com/
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 PCR reaction 
 
The PCR reaction used throughout this thesis when performing PCR is outlined 

in Table 2.4 and the cycling conditions are shown in Table 2.5 with the melting 

temperature and elongation time changing to suit the primers and the desired 

amplicon size.  

 

Table 2.4: PCR reagents and volumes used in standard PCR throughout this thesis. 
All reagents (except the primers) were from Solis Biodyne (Teaduspargi, Estonia). 

Reagent Volume (μl) 

10X Buffer B1 2 

10 μM dNTPs 0.4 

25 mM MgCl2 1.5 

10 μM Fwd primer 0.5 

10 μM Rev primer 0.5 

HotStart Taq Polymerase 0.2 

100 ng DNA X 

ddH20 Make up to 20μl 

Total 20μl 

 

Table 2.5: Thermocycling conditions used for standard PCR throughout this 
thesis.*The annealing temperature specific to the primer pair is determined through 
optimisation using a gradient PCR. This temperature is typically between 50 0C and 65 0C. 
** the time for elongation is dependent upon the amplicon size and the enzyme being used. 
For HotStart Taq Polymerase it is chosen based upon synthesis of 500 bp every 30 
seconds.  
 

Stage Temperature (0C) Time Number of 
cycles 

Enzyme activation 95 15 minutes 1 cycle 

Denaturation 95 30 seconds  
35 cycles Primer annealing * 30 seconds 

Elongation 72 ** 

Extension 72 10 minutes 1 cycle 

 15 Infinity  
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 Agarose Gel electrophoresis 
 

Gel electrophoresis is used to separate out different sized fragments of DNA 

based on their size and charge following a PCR reaction or restriction digest. A 

gel is a 3D matrix composed of pores that the negatively-charge DNA migrates 

through once an electric field is applied. Longer DNA molecules are unable to 

migrate as far and as quickly through the gel compared to shorter DNA 

molecules. An agarose gel was made by combining agarose powder with 1 X 

TAE (Tris-acetate-EDTA) Buffer (40 mM Tris, 20 mM acetic acid, 1 mM EDTA) 

to achieve different percentages which are dependent upon the size of the 

fragments being separated; low percentage gels have larger pores for larger 

fragments to move through more easily. The recommended gel percentage for 

different sized fragments is outlined in Table 2.6. 1 X SYBR DNA Gel Stain 

(ThermoFisher Scientific, Massachusetts, USA) was then added to the mixture 

to enable visualisation of the DNA bands. The agarose gel mixture was loaded 

into electrophoresis apparatus and left to set for around 20 minutes. 10 μl of 

PCR product was mixed with 5 X OrangeG (Sigma Aldrich, Missouri, USA), a 

loading dye, and 8 μl of this mixture was added to the wells of the agarose gel 

alongside a 1 kb or 100 bp Ready-to-Load DNA ladder (Solis BioDyne, 

Teaduspargi, Estonia). Gel electrophoresis was then run at 120 V for 45 

minutes to allow DNA migration through the gel. Once the gel has finished 

running, the agarose gel was imaged and bands visualised using the Licor 

Oddysey Imaging system (LI-COR Biosciences Ltd, Cambridge, UK).  

 

Table 2.6: Recommended agarose gel percentage for visualisation of different DNA 
fragments. kb = kilobases, bp = base-pairs, w/v = weight/volume. 

 
Agarose gel percentage (w/v) Range of effective separation 

0.5 % 1 kb – 30 kb 

0.7 % 800 bp – 12 kb 

1.0 % 500 bp – 10 kb 

1.2 % 400 bp – 7 kb 

1.5 % 200 bp – 3 kb 

2.0 % 50 bp – 2 kb 
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 Enzymatic PCR purification 
 
After PCR, the amplicons can be used for sequencing or restriction digestion. 

Therefore, it is good practice to clean-up the PCR reaction by removing any 

buffers, salts, unused dNTPs, or primers which may inhibit or disrupt the 

downstream applications. PCR products were therefore purified using the 

ExoSap-IT PCR Cleanup kit (ThermoFisher Scientific, Massachusetts, USA). 5 

μl of PCR product was mixed with 2 μl of the Exo-SapIT reagent and run in a 

thermocycler for 15 minutes at 37 oC to degrade the remaining primers and 

nucleotides followed by 15 minutes at 80 oC to inactivate the reagent. 

 

 Quantitative reverse-transcription PCR (qRT-PCR) 
 
Quantitative reverse-transcription PCR (qRT-PCR) is used to relatively quantify, 

in real-time, the levels of RNA transcripts within a cDNA sample. The real-time 

detection is made possible by the inclusion of a fluorescent molecule, 

commonly a DNA-binding dye (such as EVAgreen), in the reaction that reports 

an increase in the amount of DNA with a proportional increase in fluorescent 

signal. The fluorescence is measured by a specialised thermal cycler equipped 

with fluorescence detection modules and the amount of fluorescence reflects 

the amount of amplified product in each sample. During the PCR reaction, the 

amount of PCR product doubles during each cycle (the exponential phase) until 

the reaction components become limited and the reaction reaches a plateau 

phase. Initially, despite the PCR product doubling, the fluorescence remains at 

background level and is undetectable. Eventually, enough amplified product 

accumulates and the fluorescence is detectable; the cycle number at which this 

occurs is known as the threshold cycle (CT). This is measured during the 

exponential phase when reagents are not limited and is therefore used to 

accurately and reliably calculate the initial amount of template in the reaction. If 

a large amount of template is present at the start of the reaction indicating that 

the gene is more highly expressed, fewer amplification cycles are required to 

provide a fluorescent signal above the background and therefore the reaction 

will have a lower CT value. A lower expressed gene with less starting template 

present will require more cycles to provide a fluorescent signal above the 

background and will thus have a higher CT value. The CT values can be 
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compared across samples to calculate the relative fold change in gene 

expression compared to a control group.  

 

 cDNA synthesis 
 
Complementary DNA (cDNA) was synthesised from total purified RNAs using 

the PrimeScriptTM RT reagent Kit (Takara Bio Europe SAS, Saint-Germain-en-

Laye, France). A master mix was prepared consisting of 2 μl 5X PrimeScript 

Buffer, 0.5 μl PrimeScript RT Enzyme Mix I, 0.5 μl of 50 μM OligodT Primer, 0.5 

μl of 100 μM Random 6mers and mixed with 500 ng RNA. The final reaction 

volume was made up to 10 μl with RNase/DNase Free Water. The reaction 

mixture was then incubated in a thermocycler at 37 oC for 15 minutes to enable 

reverse transcription followed by 5 seconds at 85 oC to inactivate the reverse 

transcriptase enzyme. A 100% conversion RNA to cDNA efficiency was 

assumed to calculate the concentration of cDNA at 50 ng/μl. 

 

 cDNA PCR 
 
A cDNA PCR reaction was run to check the specificity of the primers and 

ensure a product of the expected size was amplified. Where possible, primers 

were designed to cross exon-exon junctions to ensure they were specific to 

cDNA and would therefore only amplify cDNA. A PCR reaction of 2 μl 10 X 

Buffer I, 1.5 μl MgCl2, 0.4 μl dNTPs (10 mM), 0.5 μl of forward primer (10 μM), 

0.5 μl reverse primer (10 μM), 100 ng cDNA and ddH20 to make a total reaction 

volume of 20 μl was prepared. Cycling conditions are outlined in Table 2.7. 

PCR products were separated and visualised using a 1.0 % agarose gel in 1 X 

TAE buffer containing SYBR DNA Gel Stain run at 120 V for 45 minutes. 

 

 qRT-PCR  
 
qRT-PCR was performed using Hot FIREPol EvaGreenTM qPCR Master Mix 

with ROX (Solis BioDyne, Teaduspargi, Estonia) which was then run using the 

QuantStudio 6 Flex qPCR machine (ThermoFisher Scientific, Massachusetts, 

USA). qRT-PCR reactions were set up in 384 well plates by mixing 1 μl of 5 X 

Hot FIREPol EvaGreen qPCR Mix Plus ROX (Solis BioDyne, Teaduspargi, 

Estonia), 0.125 μl forward primer (10 μM), 0.125 μl reverse primer (10 μM), 1 μl 

1:15 diluted cDNA, 2.25 μl ddH20 in a 5 μl reaction volume. Cycling conditions 
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are listed in Table 2.8. Reactions were carried out on at least three biological 

replicates and three technical replicates.  

 

 Data analysis  
 
The resulting SDS output files were uploaded to the ThermoFisher Cloud 

(ThermoFisher Scientific, Massachusetts, USA) and analysed using the 

Relative Quantification qPCR App within the software. This platform was used 

to correct CT values for their efficiency and to ensure there were no apparent 

outliers before further analysis. Output was imported into Excel and the CT 

values were used for analysis using the comparative CT method (Schmittgen & 

Livak, 2008). The CT values are the cycle numbers where the fluorescence 

generated by the PCR is distinguishable from the background noise. First the 

average CT value was calculated for each technical replicate before determining 

the difference in gene expression between the gene interest and the 

housekeeping gene (Equation 2.7). This step is carried out to normalise 

expression of the gene of interest to a gene not affected by the experiment. The 

housekeeping gene used for normalisation was that with the most stable gene 

expression which was determined from the raw data using the RefFinder 

webtool (Xie et al. 2012). RefFinder returned the geometric mean value across 

all housekeeping genes measured as well as the geometric mean value across 

housekeeping genes combined and determined which gene/combination of 

gene were the most stable, and thus the most appropriate for the ΔCT 

normalisation step. The difference between the experimental samples and the 

controls samples was then calculated before determining the relative fold gene 

expression level (Equation 2.7). Fold-changes were log transformed before 

performing statistical analysis of the gene expression values to account for 

skewed distributions. Differences in gene expression levels between samples 

and controls were investigated for statistical significance by a paired t-test 

carried out in RStudio version.3.6.1. A paired t test was chosen as I was 

comparing the means across two different groups (i.e. knock-out versus control) 

(Mishra et al., 2019). Statistically significant differences were determined using 

the typically accepted P-value threshold < 0.05 (Mishra et al., 2019).  

 

 

 

https://link.springer.com/article/10.1007/s10522-019-09819-0#ref-CR51
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𝑆𝑡𝑒𝑝 1: 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑡ℎ𝑒 𝐶𝑡 𝑣𝑎𝑙𝑢𝑒𝑠 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑡𝑒𝑐ℎ𝑛𝑖𝑐𝑎𝑙 𝑟𝑒𝑝𝑙𝑖𝑐𝑎𝑡𝑒 
 

Step 2: ∆Ct =  Ct (gene of interest) –  Ct (housekeeping gene) 
 

Step 3: ∆∆Ct =  ∆Ct (experimental sample) – ∆Ct (untreated sample)  
 

𝑆𝑡𝑒𝑝 4: 𝐹𝑜𝑙𝑑 𝐶ℎ𝑎𝑛𝑔𝑒 = 2−ΔΔCt 
 

Equation 2.7 Delta Delta CT method for calculating the fold-change of the relative 
mRNA expression in tested samples compared to wild-type controls. The symbol ∆ 
refers to delta, which is a mathematical term used to describe the difference between two 
numbers. 

 
 
 
Table 2.7: Thermocycling conditions for cDNA PCR of the qPCR primers to check 
specificity and for amplicons of the expected size. 

 
Stage Temperature (0C) Time Number of 

cycles 

Denaturing 95 15 minutes 1 cycle 

Annealing 

95 20 seconds  
35 cycles Primer specific Tm  30 seconds 

72 1 minute 

Elongation 72 5 minutes 1 cycle 

 4 ∞  

 
 
Table 2.8: Thermocycling conditions used for qPCR reactions.  

 
Stage Temperature (0C) Time Number of 

cycles 

Hold Stage 95 15 minutes 1 cycle 

Denaturation 95 15 seconds  
45 cycles Annealing Primer specific Tm  20 seconds 

Extension 72 20 seconds 

Melt Curve 
analysis 

95 15 seconds 

1 cycle 60 1 minute 

95 15 seconds 
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Chapter 3 Genetically proxied therapeutic increases in 

endogenous EPO levels is not associated with increased 

cardiovascular risk. 

 
This Chapter includes sections that have been taken directly from a pre-print 

paper in which I am the first author. This paper is currently undergoing reviews 

at GSK and AJHG.  

 

Harlow, CE. Gandiwijaya, J. Bamford, RA. Wood, AR. Van der Most, P. 

Verweij, N. [25 authors] & Frayling, TM. 2022. Identification and single-base 

gene-editing functional validation of a cis-EPO variant for use to mimic novel 

EPO-increasing therapies.  

 

I performed most of the data analysis in this Chapter with the support and 

guidance of my supervisor, Professor Tim Frayling. The GWAS and meta-

analysis of circulating EPO described were carried out as part of the EPO 

consortium which consisted of four independent studies. I undertook the GWAS 

of EPO in study participants of the InCHIANTI study. Collaborators within the 

EPO consortium undertook GWAS in the other three studies (BLSA: Toshiko 

Tanaka, Health ABC: Hampton Leonard, PREVEND: Niek Verweij). I was the 

main analyst and undertook all the quality control steps and performed the 

meta-analysis. The eQTL data used was produced by collaborators who had 

access to the eQTL data (Hepatic: Amy Etheridge and Renal: Peter Van der 

Most). The GWAS analysis of UK Biobank was carried out inhouse within the 

Genetics of Complex Traits Team. Dr Andrew Wood and Dr Robin Beaumont 

prepared the imputed genotypes and defined ancestry based on Principal 

Component Analysis (PCA). Dr Jessica Tyrell and Dr Kate Ruth generated the 

phenotypes.  
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3.1 Introduction  
 

Anaemia, one of the primary complications of chronic kidney disease (CKD), 

affects one out of every seven CKD patients (Hill et al., 2016; St Peter et al., 

2018; Stauffer & Fan, 2014). Anaemia is not only associated with faster 

progression of CKD but also with increased risk of adverse events, particularly 

heart disease or stroke, two of the major causes of death in CKD patients 

(Cases et al., 2018; Q. Zheng et al., 2021). Current therapies used to treat 

anaemia in CKD include blood transfusions, intravenous iron therapies or 

parenteral injections of recombinant erythropoietin (rhEPO), the latter two which 

attempt to increase erythropoiesis and restore oxygen levels (Bonomini et al., 

2016; Kaplan et al., 2018; Parfrey, 2021). However, these treatments are 

limited. Blood transfusions increase the risk of infection and alloimmunisation. 

Oral iron therapies have poor compliance due to gastrointestinal adverse effects 

and intravenous iron or rhEPO are inconvenient because they require 

injections, the need for cold-chain transport and storage and have increased 

risk of adverse side-effects including hypertension (with rhEPO) and 

hypersensitivity (with intravenous iron) (Babitt & Lin, 2012; Bonomini et al., 

2016; Krapf & Hulter, 2009; Portolés et al., 2021; Q. Zheng et al., 2021). 

Furthermore, rhEPO or its analogues raises additional safety concerns since 

previous clinical trials and studies have indicated an increased risk of stroke, 

myocardial infarction (MI), venous thromboembolism, and heart failure possibly 

due to the sudden supra-physiological erythropoietin (EPO) levels causing an 

excessive rise in haemoglobin (Hgb) levels (Fishbane & Spinowitz, 2018; 

Jelkmann, 2013; Pfeffer et al., 2009). These safety concerns have led to the 

development of hypoxia-inducible factor (HIF) prolyl hydroxylase inhibitors 

(PHIs) as a novel class of treatment for anaemia in CKD.  

 

PHIs work at the transcriptional level of the hypoxic response genes, including 

EPO, by stabilising HIFs through inhibition of the prolyl hydroxylase enzymes 

(PHD1-3) (Haase, 2013; Sugahara et al., 2017). In turn, by activating the 

hypoxic response pathway, PHIs increase endogenous EPO levels in a 

controlled manner, resulting in increased erythrocyte production and 

development, increased Hgb levels and oxygen tissue delivery (Kaplan et al., 

2018). These novel therapies are hoped to be safer and more efficacious than 

current treatments at correcting the anaemia by maintaining EPO levels within 
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the physiological range, reducing the risk of cardiovascular disease (CVD) or 

levels of clinical markers for CVD associated risk factors, primarily blood 

pressure and resting heart rate. Blood pressure (BP) is one of the most major 

modifiable risk factors for CVD and has the strongest evidence for causation 

(Fuchs & Whelton, 2020; Vasan et al., 2001), whilst high resting heart rate is 

one of the strongest predictors of overall cardiovascular morbidity and mortality 

(Perret-Guillaume et al., 2009). 

 

Recent completion of Phase III clinical trials assessing cardiovascular safety 

and hematologic efficacy has indicated non-inferiority of PHIs compared to 

rhEPO and shown that PHIs can increase and maintain Hgb levels with small 

increases in circulating EPO levels (Akizawa et al., 2021; Akizawa, Iwasaki, et 

al., 2020; N. Chen, Hao, Liu, et al., 2019; N. Chen, Hao, Peng, et al., 2019; 

Chertow et al., 2021; K.-U. Eckardt et al., 2021; Fishbane et al., 2021; A. K. 

Singh, Carroll, McMurray, et al., 2021; A. K. Singh, Carroll, Perkovic, et al., 

2021; Q. Zheng et al., 2021). Furthermore, PHIs have already received 

approval in Japan supporting their ongoing development elsewhere (Akizawa, 

Nangaku, et al., 2020; Chertow et al., 2021; Dhillon, 2020; Kanai et al., 2021; 

Parfrey, 2021; A. K. Singh, Carroll, McMurray, et al., 2021). 

 

Several studies have shown that genetic data can provide supporting evidence 

of an association between the drug target and intended therapeutic indication 

as well as any potential unintended effects through associations with additional 

phenotypes to inform potential drug safety (Gill et al., 2019; Lotta et al., 2016; 

Nelson et al., 2015; Nguyen et al., 2019; Plenge et al., 2013; Scott et al., 2016; 

Swerdlow et al., 2015). Genetic variants that lie within or nearby the gene 

encoding the drug target are most likely to have functional impact on the protein 

product. Genetic variants can be used as unconfounded, unbiased proxies for 

pharmacological action through drug-target Mendelian Randomisation (MR) to 

explore the effect of long-term modulation of drug targets on disease outcomes 

(Davey Smith & Hemani, 2014; Swerdlow et al., 2016; Walker et al., 2017). MR 

is an analytical method analogous to a randomised control trial (RCT) which 

relies upon the principal that if a modifiable exposure (e.g. a biomarker) is 

causal for disease, then a genetic variant associated with or mirroring the 

biological effects of the exposure will also be associated with the disease 
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(Burgess et al., 2012). MR relies on the identification of genetic variants 

associated with the exposure trait, i.e. the biomarker or drug target, and makes 

several assumptions including that the genetic variant is only associated with 

the outcome through the exposure (Davies et al., 2018). The genetic variant can 

therefore be used to test for causality between the exposure and disease 

providing an estimate of long-term effect (Frayling & Stoneman, 2018). Genetic 

variation resulting in changes to circulating exposure levels is different to that of 

physiological variation. For example, focusing on endogenous EPO levels, 

genetic variation represents the long-term, consistent effects of exposure to 

elevated circulating EPO levels whilst physiological variation, such as during 

prolonged exposure to hypoxia in high altitudes, represents an individual’s 

ability to respond to such changes resulting in temporary, short-term 

fluctuations in circulating levels that are often driven by epigenetic modifications 

(Childebayeva et al., 2019; Friedmann et al., 2005; Haase, 2013; Suresh et al., 

2020). 

 

Association data is often used to select valid genetic variants as proxies for 

pharmaceutical action. The power to detect a causal association between the 

exposure and outcome increases when obtaining variant-exposure and variant-

outcome association data from independent studies (known as two-sample MR) 

due to increased sample sizes and reduced risk of bias from Winner’s Curse 

(Burgess et al., 2016; Lawlor, 2016; Sheehan & Didelez, 2019). However, there 

are limitations with using association data to select valid genetic instruments 

(Davey Smith & Ebrahim, 2003; Nelson et al., 2015; Plenge, 2016; Porcu et al., 

2019). First, neighbouring genetic variants tend to be inherited together and are 

highly correlated with each other due to linkage disequilibrium (LD) which 

makes it difficult to distinguish the causal variant driving the association (Bush & 

Moore, 2012; Flister et al., 2013; Hormozdiari et al., 2014). Second, most 

genetic variants identified through genome-wide association studies (GWAS) do 

not directly affect the coding sequence due to residing within the non-coding 

regions (Dixon et al., 2007; Nica et al., 2010). These variants, therefore, can lie 

within genomic regulatory elements, overlap promoters, enhancers or open-

chromatin regions, and may affect gene expression by altering transcription 

factor binding (Lichou & Trynka, 2020). Disease associated loci identified 

through GWAS often contain multiple genes and therefore it is difficult to 
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determine which gene is involved and is being affected by the identified variant 

(Cano-Gamez & Trynka, 2020). Additional approaches, such as fine mapping, 

quantitative trait loci (QTL) or colocalisation analysis can help refine the gene 

involved (Benner et al., 2016; Giambartolomei et al., 2014; Nica et al., 2010; 

Nicolae et al., 2010; Porcu et al., 2019; Wallace, 2020). 

 

Phenome-wide association studies (PheWAS) are another method in which 

genetics can be used to help predict the safety and efficacy of drugs where a 

genetic variant, or combination of variants, associated with the drug function, 

are tested for associations with a wide-range of phenotypes in large sample 

sizes (Diogo et al., 2018). PheWAS can help further validate genetic 

instruments used in MR by identifying associations between genetic variants 

and other relevant phenotypes likely on the same pathway. PheWAS can also 

identify pleiotropic effects improving our understanding of 1) biological 

mechanism of action, 2) additional indications with potential for disease 

expansion or repurposing, 3) associations with conditions in the opposite 

direction compared to the primary indication indicating potential unwanted 

effects or 4) associations with additional indications which may be secondary to 

the primary indication (Denny et al., 2016; Pulley et al., 2017; Robinson et al., 

2018).  

 

3.2 Chapter Aims 
 

In this Chapter, I aimed to use human genetics to examine the long-term effects 

of genetically proxied modulation of EPO levels on risk of CVD (coronary artery 

disease [CAD], stroke and MI) or any unwanted effects that may arise due to 

pharmacological manipulation of circulating EPO levels. To achieve this, I 

aimed to:  

1. Identify a genetic variant that influences circulating EPO levels by 

performing the first and largest GWAS meta-analysis of circulating EPO 

levels. 

2. Validate the genetic variant as a proxy for long-term therapeutic rises in 

circulating EPO levels. 

3. Use the variant in drug-target MR as a natural mimic for therapeutically 

altered EPO levels to investigate the long-term effects of elevated 

endogenous EPO levels on risk of cardiovascular disease (CVD) or 
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levels of clinical markers (systolic blood pressure [SBP], diastolic blood 

pressure [DBP] or resting heart rate) predisposing to CVD risk factors 

(e.g. hypertension). 

4. Perform PheWAS using this genetic variant to identify any additional 

unintended effects associated with long-term rises in endogenous EPO 

levels. 

 

3.3 Methods 
 

An overview of the steps performed and methods utilised to genetically assess 

the long-term effects associated with higher circulating EPO levels are outlined 

in Figure 3.1. 

 

 Genome-wide association study meta-analysis of circulating EPO 
levels 

 
To identify genetic variants associated with circulating EPO levels, I performed 

a genome-wide association study (GWAS) meta-analysis of 6,127 individuals of 

European and African descent from four independent cohorts; InCHIANTI 

(N=1,210), PREVEND (N=2,954), BLSA (N=458) and HealthABC (N=1,505). 

Summary statistics for the four studies can be seen in Table 3.1. The analysis 

plan for the GWAS meta-analysis of circulating EPO levels is outlined in Figure 

3.2. 

 

 Invecchiare in Chianti (InCHIANTI) 
 

InCHIANTI is a prospective, population-based study of 1,453 individuals aged 

between 20 - 102 years (1,156 > 65 years) living in the Chianti region of 

Tuscany, Italy. Data was collected between 1998 and 2000 and included 

telephone interviews, medical examinations and blood samples. A detailed 

description of the study has been described previously (Ferrucci et al., 2000). 

 

 Baltimore Longitudinal Study of Aging (BLSA) 
 

BLSA is a longitudinal cohort study conducted by the Intramural Research 

Program of the National Institute of Aging (NIA) which started in 1958 (Shock, 

1984). Healthy volunteers aged above 17 are enrolled in the study and 
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participate in follow-up assessment visits of health, physical and psychological 

performance every 2 years. Currently, the study population has over 3,200 

active participants. An independent institutional review board approved the 

BLSA study protocol, and participants provided informed consent for all 

analyses included in this report.  

 

 Prevention of Renal and Vascular ENd-stage Disease (PREVEND) 
 

The PREVEND study (Pinto-Sietsma et al., 2000) is a prospective, 

observational cohort of 8,592 Groningen inhabitants aged between 28 - 75 

years. The main aim of the study is to assess the long-term impact of elevated 

urinary albumin levels on cardiac-, renal- and peripheral vascular end-stage 

diseases. Upon enrolment, participants agreed to give a urine sample and 

answered a questionnaire. Participants are followed up every 2-3 years for a 

survey on cardiac-, renal- and peripheral vascular morbidity. 

 

 The Health, Aging and Body Composition Study (HealthABC) 
 

HealthABC is a prospective, longitudinal study of 3,075 individuals aged 

between 70 - 79 years in 1997 and 1998 living in Memphis, Tennessee or 

Pittsburgh. 42% of participants were of African-American ancestry and 52% 

were of Caucasian ancestry. Participants were enrolled in the study if they had 

no disabilities, no life-threatening conditions or difficulties walking quarter of a 

mile and climbing 10 steps. The study consisted of yearly clinical examinations 

for 6 years, primarily taking measurements of body composition, strength and 

function, and biannual phone calls to update health status, followed by bi-

annual telephone interviews up until year 16 and examination in year 16 

(Simonsick et al., 2001).  
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Figure 3.1: Schematic outline of steps performed in Chapter 2to identify a genetic 
variant lying in cis with the EPO gene for use as a partial proxy for therapeutically-altered 
endogenous EPO levels as a result of activation of the hypoxic pathway through 
therapeutic PHD inhibition to explore the risk of long-term effects associated with higher 
endogenous EPO levels.  
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Table 3.1: Study characteristics of the four independent studies included in the EPO meta-analysis. Individuals containing valid genomic data, 
haemoglobin level data and EPO level data were included in the analysis. SD: standard deviations, PCs: principal components.  

Cohort 
Sample 
size  

% 
Men 

Mean Age 
years (SD) 

Mean EPO 
IU/L (SD) 

Mean haemoglobin 
g/dL (SD) 

Mean eGFR 
mL/min/1.73m2 
(SD) 

Software 
GWAS 
implemented 
in 

Covariates 
adjusted 
for 

Other sample 
exclusion criteria 
based on GWAS data 

InCHIANTI 1210 44.63 66.7(15.3) 9.7 (5.1) 14.1 (1.1) 75.8 (16.0) 
GEMMA 
0.94.1 

Age and 
Sex  

Genotype of phenotype 
missing data 

PREVEND 2954 51.76 53.69 (11.92) 
9.03 
(14.94) 

13.76 (1.23) 80.95 (13.95) SNPtest v2.5.4 
Age, Sex, 
PC 1-10 

Genotype of phenotype 
missing data, sex 
mismatch, <95% call 
rate, PC outliers.  

HealthABC 
Europeans 

969 51.7 73.68 (2.77) 
12.94 
(6.47) 

14.16 (1.08) 78.46 (15.95) Rvtests 2.1.0 
Age, Sex, 
Study site, 
and PCs 

Excess heterozygosity, 
missingness > 5%, sex 
mismatch, population 
outliers, and related 
individuals were 
excluded by a GRM cut-
off of 0.125 (no closer 
than cousin) 

Health ABC 
African 
Americans 

536 41.2 73.25 (2.86) 
13.63 
(1.01) 

13.63 (1.01) 88.33 (20.83) Rvtests 2.1.0 
Age, Sex, 
Study site, 
and PCs 

Excess heterozygosity, 
missingness > 5%, sex 
mismatch, population 
outliers, and related 
individuals were 
excluded by a GRM cut-
off of 0.125 (no closer 
than cousin) 

BLSA 458 50 69.1 (13.6) 15.2 (1.48) 14.0 (1.1) 72.1 (13.8) 
GEMMA 
0.94.1 

Age, sex 
and PCs 

Phenotype or GWAS 
missing data 
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Figure 3.2: Analysis plan for the meta-analysis of circulating EPO levels in 6,127 individuals of European 
and African ancestry. Hgb: haemoglobin, eGFR: estimated glomerular filtration rate, N: number of individuals. 
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 Generation of the EPO phenotype  
 

To generate the EPO phenotype, I included all individuals with valid genomic 

data, Hgb level data and EPO level data from four independent cohorts 

(InCHIANTI, PREVEND, BLSA, HealthABC). I excluded anaemic patients as 

per the WHO definition (Males: Hgb levels < 13 g/dL, Females: Hgb < 12 g/dL) 

and patients with renal dysfunction based on an estimated glomerular filtration 

rate (eGFR) threshold of 50 mL/min/1.73m2 resulting in a final sample size of 

6,127 individuals of European and African American descent (InCHIANTI: N = 

1,210, PREVEND: N = 2,954, BLSA: N = 458 and HealthABC: N = 1,505) 

(Table 3.1).The standard cut-off for renal dysfunction is 60 mL/min/1.73m2 but 

as the study cohorts were on average older than the general population (Table 

3.1) a lower threshold was used due to lower eGFR rates not being unusual in 

older populations (Wetzels et al., 2007). Values between 50 - 60 mL/min/1.73m2 

also remained within the normal distribution of each cohort (Figure 3.3). The 

eGFR was calculated using the Modification of Diet in Renal Disease (MDRD) 

equation (Equation 3.1) (Andrew S Levey et al., 2007). I regressed EPO 

measures on sex and age and performed rank inverse normalisation on the 

resulting residuals to account for skewed data.  

 
 
 
 
𝒆𝑮𝑭𝑹 (𝒎𝑳 𝒎𝒊𝒏⁄ /𝒎𝟐)

=  𝟏𝟕𝟓 × (𝒔𝒆𝒓𝒖𝒎 𝒄𝒓𝒆𝒂𝒕𝒊𝒏𝒊𝒏𝒆−𝟏.𝟏𝟓𝟒) × (𝑨𝒈𝒆−𝟎.𝟐𝟎𝟑) × (𝟎. 𝟕𝟒𝟐 𝒊𝒇 𝒇𝒆𝒎𝒂𝒍𝒆)

× (𝟏. 𝟐𝟏𝟐 𝒊𝒇 𝑨𝒇𝒓𝒊𝒄𝒂𝒏 𝑨𝒎𝒆𝒓𝒊𝒄𝒂𝒏) 

 Equation 3.1: Estimation of the glomerular filtration rate (eGFR) using the MDRD 
equation. 
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Figure 3.3: Distribution of estimated GFR (eGFR) in the four independent cohortsthat contributed to the 
EPO meta-analysis (HealthABC (A), PREVEND (B), BLSA (C), InCHIANTI (D) prior to exclusion of individuals 
with renal dysfunction (eGFR < 50mL/min/m2). In each cohort, the eGFR was estimated using the MDRD 
equation. Those with an eGFR 50 mL/min/1.73m2 were excluded from the analysis. 
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 Imputation and Phasing  
 

Chromosomes 1-23 were included and genotype data was reported using NCBI 

b37 (hg19) coordinates. For Europeans, imputation was carried out to the 

Haplotype Reference Consortium (HRC) version 1.1 using MiniMac3 

(http://genome.sph.umich.edu/wiki/Minimac), whilst for African Americans, 

imputation was carried out to CAAPA (Das et al., 2016). Phasing was carried 

out using Eagle version 2.3 (Das et al., 2016).  

 

 Association analysis  
 

GWAS was performed in GEMMA (Zhou & Stephens, 2012) using an additive 

linear mixed model adjusting for any study-specific covariates, such as study 

site and PCs, alongside a genomic relationship matrix (GRM) to account for all 

types of relatedness (Table 3.1). After performing GWAS, quality controls 

checks were undertaken and any single nucleotide polymorphisms (SNPs) with 

allele frequencies > 4 standard deviations (SD) or < -4 SD from the HRC allele 

frequency were excluded (McCarthy et al., 2016). Study-specific estimates were 

combined and an inverse variance weighted fixed-effects meta-analysis on 

~25.1 million imputed SNPs in 6,127 unrelated individuals of European and 

African American descent was performed using METAL (Willer et al., 2010) with 

the following filters: minor allele count (MAC) > 3, effect allele frequency (EAF) 

> 1, EAF < 0, info >= 0.3. After performing meta-analysis, SNPs with a minor 

allele frequency (MAF) < 0.01 were excluded and a multi-SNP-based step-wise 

conditional and joint association analysis was employed using GCTA-COJO (J. 

Yang et al., 2011, 2012) to select SNPs independently associated with 

endogenous EPO levels (defined as P < 5 x 10-08).  

 

 Identification and validation of cis-EPO genetic variant 
 

To identify a genetic variant most likely to have direct functional impact on the 

protein product for use as a genetic proxy for therapeutically altered 

endogenous EPO levels, I analysed the GWAS data around the EPO gene 

specifically to identify any cis-acting genetic variants. I selected variants 

previously identified to have a functional effect on EPO levels (Amanzada et al., 

2014; Kästner et al., 2012; Khabour et al., 2012; Tong et al., 2008). I converted 

http://genome.sph.umich.edu/wiki/Minimac
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the genetic effect estimate (in SD) to original units (IU/L) using the standard 

deviation reported in the InCHIANTI study (5.1 IU/L, from Table 3.1).  

 

 Expression Quantitative trait loci analysis 
 

Having identified a cis-EPO variant (rs1617640) associated with circulating EPO 

protein levels (P = 9.32 x 10-04), I tested its cis-effects (+/- 500 kb) with gene 

expression in a meta-analysis of hepatic gene expression from 861 livers from 

European individuals in three datasets (Etheridge et al., 2020) and 236 kidneys 

from 134 individuals in one renal gene expression dataset (Damman et al., 

2015). I selected the liver and kidney as EPO is highly expressed in both 

tissues (GTEx: https://gtexportal.org/).  

 

 Hepatic eQTL data-sets 
 

The eQTL analysis within the liver included three human liver datasets of 

genotype and gene expression microarray data (see Table 3.2, for 

demographics, details of platforms used, and GEO accession numbers). The 

three data sets were then meta-analysed and the association between SNPs 

lying within a 1 mega base (mb) region of the cis-EPO SNP (500 kb either side) 

and EPO gene expression or nearby TFR2 gene expression were extracted.  

 

3.3.2.2.1 Data set 1: Innocenti et al. (2011) 
 
Innocenti et al. (2011) (data set 1) profiled 205 normal (non-diseased) post-

mortem liver samples from European organ donors. Analysis began with 240 

normal (non-diseased) livers that were collected from unrelated donors of self-

reported European and African descent (Innocenti et al., 2011). Gene 

expression levels were analysed using Agilent. Probe intensity was adjusted by 

subtracting background intensity using the minimum method, and quantile 

normalized between arrays. Dixon's outlier test was used to remove 13 arrays 

(out of a total of 517) based on total number of flagged probes, intra-array 

variance, inter-array variance, biological replicate variance, and spike-in 

linearity (Innocenti et al., 2011). Genotyping was performed using the Illumina 

quad-610 array (Illumina, San Diego, CA, USA). One sample was removed 

because it had a no call rate >10%. The initial marker set comprised 620,901 
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markers. 8,300 markers were removed because they showed significant 

deviation from Hardy-Weinberg equilibrium. 29,705 SNPs were removed from 

the analysis because they had a no call rate in more than >10% of the samples. 

The final marker set was comprised of 583,073 SNPs. Identity by descent 

analysis, performed in Plink, revealed 14 pairs of duplicated samples. 

Erroneous, redundant sample collection was later confirmed by the tissue bank. 

Genotype and expression data for these samples were merged for all 

downstream analyses. The sex of each sample was imputed by K-means 

clustering of Y-linked gene expression levels and X- and Y-linked genotypes; 3 

samples had mismatched imputed and annotated sexes and were therefore 

removed. PCA was performed using the African and European populations from 

the Human Genome Diversity panel as reference populations. Four samples 

were flagged as outliers and thus removed. The first principal component 

separated African from non-African individuals. Only European samples (N = 

205) were included in this analysis. A linear mixed model was run adjusting for 

age, sex, PCs, probe intensity, subtle variations in the hybridisation protocols, 

random effects of the probes, and random effects of each individual. To further 

control for the effects of outliers and population stratification, prior to eQTL 

mapping, the distribution of estimated individual effects, for each gene 

expression trait, was normal quantile transformed (Innocenti et al., 2011). 

Genotypes with minor allele frequencies less than 1% were excluded (Innocenti 

et al., 2011). 

 

3.3.2.2.2 Data set 2: Schroder et al. (2013) 
 
Schroder et al.(2013) (data set 2) profiled 149 samples from normal 

noncancerous liver tissue resected from patients with liver cancer. All tissue 

samples were examined by a pathologist, and only histologically noncancerous 

tissues were used for analysis (Schröder et al., 2013). Genotyping was 

performed using the Illumina HumanHap300 Genotyping BeadChip (Illumina, 

San Diego, CA, USA) with 318,237 SNPs. The raw data was pre-processed 

using Illumina BeadStudio version 3.0 (Illumina, San Diego, CA, USA). SNPs 

with a low call rate (< 95%), MAF < 4% and not in in HWE (false discovery rate 

 0.2) were excluded from further analysis. Identity-by-state distances were 

calculated to identify possible related individuals resulting in the exclusion of 
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one individual and PCA was applied to detect further population substructures 

of which none were detected (Schröder et al., 2013).. Gene expression of > 48 

000 mRNA transcripts was assessed using Illumina Human-WG6v2 Expression 

BeadChip (Illumina, San Diego, CA, USA). Low-level pre-processing, including 

background estimation and correction, normalisation, and probe-set summary 

was performed using Illumina BeadStudio version 3.0 (Illumina, San Diego, CA, 

USA). 9,875 genes with high detection P-value (> 0.1) or > 10% missing values 

were filtered out and removed from the data set. The remaining missing signal 

intensities were estimated using the ‘k nearest neighbour' algorithm and the 

resulting data set was subsequently log2 transformed. The raw data of 48,701 

probe signal intensities were mapped and reduced to signal intensities 

corresponding to 15,439 unique genes. The finally processed data set was from 

149 livers (71 males and 78 females) and consisted of 299,352 SNPs and 

15,439 gene expression levels (Schröder et al., 2013). GenABEL (Aulchenko et 

al., 2007) was used to test all 4.6 billion possible combinations of SNPs and 

expression traits (299,352 SNPs x 15,439 traits) for significant associations. A 

genetic model was assumed in which both alleles contribute to gene expression 

in an additive manner.  

 

3.3.2.2.3 Data set 3: Greenawalt et al. 2011 
 
Greenawalt et al. (2011) profiled 960 liver samples (data set 3) collected at the 

time of Roux-en-Y gastric bypass surgery. Demographic information including 

age, race, gender, height, type of surgery, and year of surgery was collected for 

each patient. The cohort was predominantly (88%) self-reported “white” and 

female (75%). 59 % of surgeries were performed laparoscopically, and the rest 

were performed open. Gene expression was arrayed on a custom 44K DNA 

oligonucleotide microarray manufactured by Agilent Technologies as described 

previously (Hughes et al. 2001; Schadt et al. 2008). The custom array consists 

of 4,720 control probes and 39,820 non-control oligonucleotides. Samples with 

a 3′ bias >1 or <−1.5 from the mean of all samples were removed from the 

analysis, to prevent any bias from cRNA yield. Gene expression profiling results 

were successfully collected from 651 livers. A normalisation method based on 

control probes present on the microarrays was used to remove bias in 

expression profiles related to potential latent variables. The control probes were 

separated into two classes: specialty probes, such as spike-in probes or other 
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probes designed to monitor the quality of the microarrays, and border probes 

used to describe the geometry of the microarray. PCA was performed and 14 

liver PCs were identified which were added into a linear model to obtain 

residuals of the liver expression data for each probe. 950 DNA samples were 

genotyped on the Illumina 650Y BeadChip array. Sex was confirmed using 

PLINK (Purcell et al., 2007) and identity by state (IBS) analysis was performed 

to identify related individuals. 28 individuals were removed due to being 

identified as related leaving 922 samples for use in analysis. EIGENSTRAT was 

used to confirm reported race (Price et al., 2006).  

 

3.3.2.2.4 cis-eQTL analysis 
 
Genotypes were imputed to the 1000 Genomes Project Phase 1 reference 

panel with Minimac (http://genome.sph.umich.edu/wiki/Minimac) and expression 

probe sequences were mapped to ENSEMBL genes. To test for associations 

between genotype and gene expression, an additive (codominant) linear model 

was employed in the Matrix eQTL software package 

(http://www.bios.unc.edu/research/genomic_software/Matrix_eQTL/). A 1 mb 

window flanking the transcriptional start/stop sites was used to identify cis-

eQTLs. For each data set, minor allele dosage, filtered to exclude variants with 

MAF < 0.01, was used to examine genotype association with rank inverse 

quantile normalised gene expression. Covariates included sex and age, the first 

1 (data sets 1 & 2) or 5 (data set 3) principal components from genetic ancestry 

analysis, and 15–35 hidden factors identified using PEER 

(https://www.sanger.ac.uk/science/tools/PEER) (Stegle et al., 2010). Following 

identification of cis-eQTLs in each individual data set, cis-eQTLs identified in at 

least two data sets were included in the combined analysis. This resulted in the 

meta-analysis of 861 liver samples from individuals of European ancestry 

(Table 3.2) (additional methods and results have been reported in (Etheridge et 

al., 2020)). The T statistics from the additive linear model for each cis-eQTL 

within each data set were used to generate a meta-T-statistic using Equation 

3.2. The meta-T-test-statistic was assumed to be normally distributed under the 

null due to the large sample size and was thus used as a measure of the effect 

size of eQTLs and also to calculate the associated P-values (Etheridge et al., 

2020). Limitations include the fact that tissue samples for each data set were 

collected using different sample collection and storage protocols. Patient 

http://genome.sph.umich.edu/wiki/Minimac
https://www.sanger.ac.uk/science/tools/PEER
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populations also differed in health status and exposure to clinical interventions 

prior to tissue collection. Attempts to control for this variability have been made 

by adjusting the expression analysis for hidden biological and technical variation 

that might affect gene expression. A fixed effect model was utilised which has 

been shown to increase power of detection in the presence of heterogeneity 

among data sets. This statistical approach allows for greater discovery of 

eQTLs. However, the cis-eQTLs with the strongest signals were those that were 

common across data sets, indicating the robustness of these signals to 

heterogeneity among the data sets. Furthermore, one data set was much larger 

than the other (data set 3) and in many cases this may drive the association 

detected due to the increased power and therefore other true associations may 

exist which were not statistically significant due to the lower sample size of the 

other two data sets.  

 

 𝑡𝑚𝑒𝑡𝑎 =
∑𝑤𝑖𝑡𝑖

√∑𝑤𝑖2
, 𝑤 = √𝑛 − (#𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑡𝑒𝑠) − 1  

Equation 3.2: The modified meta test-statistic for the meta-analysis of renal gene 
expression. i = datasets 1-3 and n = sample size.  

 

 Renal eQTL data-set 
 

The TransplantLines eQTL cohort used for the kidney eQTL analysis is part of a 

donor cohort for which gene expression results have been described previously 

(Damman et al., 2015). The dataset includes kidneys from living donors (N = 

37), kidneys donated after brain death (N = 82) and kidneys donated after 

cardiac death (non-heart-beating) (N = 38). All organ donors and recipients 

were white. Time of biopsy (that is, before transplantation, before reperfusion 

and after reperfusion) was recorded as well. For some donors, multiple biopsies 

from different time points were taken and biopsies from both kidneys were 

available. Gene expression was arrayed using the Illumina HumanHT-12 v4 

Expression BeadChips. The raw data files were processed using 

GenomeStudio Software and further analysed using GeneSpring GX 12.0 

software (Agilent, Santa Clara, CA). Data normalisation was performed using 

the default GeneSpring GX 12.0 median shift normalization to the 75th 

percentile (applying a log2 transformation) and baseline transformation using 

the median of all samples. Samples were genotyped on the Illumina CytoSNP 
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12 v2 array and imputed using the 1000 Genomes Phase 1 ALL reference 

panel (Auton et al., 2015) using Impute2 (B. Howie et al., 2011; B. N. Howie et 

al., 2009). Expression and genotype data were available for 236 kidney biopsies 

from 134 donors. A mixed model eQTL analysis adjusting for sex, age, donor 

type, time of biopsy, first three PCs, and sample ID was run to account for 

multiple samples from a donor. Limitations with this data set include the small 

sample size and the fact that samples came from living and deceased donors 

which could result in differences in expression pattern.  

 

 Colocalisation analysis 
 

I performed colocalisation analysis to assess the likelihood that the hepatic EPO 

eQTL was the same signal as the circulating protein level association. I 

obtained summary data for hepatic cis-eQTLs associated with EPO expression 

(FDR < 0.1)  500 kb of rs1617640 and extracted the summary statistics for 

these SNPs from our circulating EPO meta-analysis. I performed approximate 

Bayes Factor colocalisation analyses using the R coloc package 

(Giambartolomei et al., 2014; Wallace, 2020). I performed analysis using P-

values and obtained overall estimates of the posterior probability that both our 

EPO meta-analysis and the liver eQTL share the same causal variant. 
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Table 3.2: Description of the three hepatic eQTL data sets and patient demographics. Number of samples from each study utilised in the combined 
analysis following removal of individuals with non-European genetic ancestry, sex mismatches, and related samples within and between data sets 

Dataset Sample Size Expression Genotyping 
PMID 

  
   

Data set 1 161 

Agilent-014850 Whole Human 
Genome. 4x44K gene expression 
(NCBI GEO accession: 
GSE25935) 

Illumina Human610-Quad v1.0 BeadChip 
(NCBI GEO accession: GSE26105) 
 

21637794 

Data set 2 145 
Illumina Human Whole Genome-6 
v2.0 (NCBI GEO accession: 
GSE32504) 

Illumina HumanHap300-Duo v2.0 
Genotyping (NCBI GEO accession: 
GSE39036) 

22006096 

Data set 3 555 

Agilent Technologies (NCBI GEO 
accession: GSE9588) 
 

HumanHap 650Y 

21602305 
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Table 3.3: Association between rs1617640 and EPO and TFR2 expression in human liver. Within three liver eQTL data sets, linear regression was 
carried out to model EPO and TFR2 expression levels with adjustment for relevant covariates. Results from the three liver datasets were combined by meta-
analysis. EPO and TFR2 expression levels were determined using microarray and only included patients of European ancestry. The data was coded such 
that a positive beta (tmeta) means that as the number of minor alleles (C-alleles) increases, there is an increase in EPO or TFR2 expression. SD: standard 
error. 
 

Dataset 
Sample 
Size 

Expression Genotyping 
PMID EPO TFR2 

  
   

Beta SE P-value Beta SE P-value 

Dataset1 161 

Agilent-014850 
Whole Human 
Genome. 4x44K 
gene expression 
(NCBI GEO 
accession: 
GSE25935) 

Illumina Human610-
Quad v1.0 BeadChip 
(NCBI GEO 
accession: 
GSE26105) 
 

21637794 0.059 0.101 0.558 0.083 0.08 0.304 

Dataset2 145 

Illumina Human 
Whole Genome-6 
v2.0 (NCBI GEO 
accession: 
GSE32504) 

Illumina 
HumanHap300-Duo 
v2.0 Genotyping 
(NCBI GEO 
accession: 
GSE39036) 

22006096 0.105 0.099 0.291 0.265 0.073 3.98 E-4 

Dataset3 555 

Agilent 
Technologies 
(NCBI GEO 
accession: 
GSE9588) 
 

HumanHap 650Y 

21602305 0.284 0.050 1.35 E-8 0.246 0.037 
5.43 E-
11 

Meta-
analysis 

861 
  

 
Tmets = 
5.39 

0.149 6.86 E-8 
Tmets = 
7.38 

0.149 
1.56 E-
13 
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 Drug-target two-sample Mendelian Randomisation 
 

To investigate the causal association between higher circulating EPO levels and 

risk of CVD, I performed two-sample MR using the cis-EPO variant as the 

genetic instrument (Figure 3.4). I obtained genotype-exposure association 

statistics from the EPO meta-analysis (N = 6,127). Primary outcomes were 

CAD, MI or stroke using GWAS data consisting of 60,801, 42,561 and 40,585 

cases respectively (Error! Reference source not found.) (Nikpay et al., 2015; 

Malik et al., 2018). I also performed internal GWAS using UK Biobank (UKB) on 

CAD, MI or stroke in 37,741, 105,90 and 9,092 cases respectively (Error! 

Reference source not found.; see 3.3.5.1 for additional information on UKB). 

Where I had genotype-outcome association data from both UKB and publicly 

available GWAS, I performed an inverse variance weighted, fixed-effects meta-

analysis using metan (Harris et al., 2008) to obtain an overall effect estimate for 

the genotype-outcome association. As only one genetic variant was used as an 

instrument, I calculated an overall causal estimate between the exposure and 

outcome using the Wald ratio (Figure 3.4) (Burgess, Small, et al., 2017). I also 

performed MR to investigate the effect of higher circulating EPO levels on levels 

of clinical markers (systolic blood pressure [SBP], diastolic blood pressure 

[DBP] and resting heart rate) predisposing to CVD risk factors using a meta-

analysis of publicly available GWAS data and GWAS on UKB in 678,320, 

677,567 and 514,695 individuals (Figure 3.4, Error! Reference source not 

found.) (Wain et al., 2017; Den Hoed at al., 2013).  

 

 Comparing clinical trial effects and genetic effects to estimate likely 
impact of therapeutically altered endogenous EPO levels on 
cardiovascular risk. 

 

To scale the genetic effect estimates to a more representative, therapeutically 

relevant effect, I obtained the effects of a PHI in dialysis-dependent (DD) 

patients on endogenous EPO levels from a Phase II fixed dose randomised 

control trial (RCT) (Meadowcroft et al., 2019). The RCT provided an estimate of 

the effect of a fixed dose of PHI on EPO levels during the first four weeks 

(median “maximum” change in EPO levels from baseline at week 4 [27.1] / SD 

at baseline [61] = 0.44 SD) (Meadowcroft et al., 2019). I calculated the scaling 
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factor by dividing the PHI-induced effect (0.44) by the effect of the cis-EPO SNP 

on circulating EPO levels (0.063). I used this value (7.05) to scale the 

genetically instrumented effect estimates and 95% confidence intervals of the 

cis-EPO SNP on CVD or the clinical markers of associated risk factors to the 

effect of the PHI on endogenous EPO levels. 

 

  Phenome-wide association study  
 

To further investigate the therapeutic profile of modulated EPO levels, I tested 

the association of rs1617640 near the EPO gene with 869 traits in up to 

451,099 UKB individuals of European ancestry. Genotype-phenotype 

associations were generated using BOLT-LMM (Loh et al., 2015) as previously 

described in Frayling et al. (2018). Traits were selected as described in Frayling 

et al. (2018). For continuous traits, I performed inverse normalisation prior to 

regression analysis to account for skewed distributions. I determined statistical 

significance using a genome-wide threshold of P < 5 x 10-08 as well as a 

Bonferroni corrected threshold of P < 5.75 x 10-05. 

 

 UK Biobank (UKB) Cohort 
 

Briefly, UKB is a large-scale biomedical and research resource, containing 

genetic and health information from half a million UK participants. UKB recruited 

more than 500,000 individuals aged 37 - 73 years between 2006 and 2010 from 

across the UK (R. Collins, 2012). Participants provided a range of information 

via questionnaires and interviews (e.g. health status, lifestyle) and 

measurements (e.g. anthropometric, BP); this has been described in detail by 

Sudlow et al. (2015). SNP genotypes were generated from the Affymetrix Axiom 

UK Biobank array and the UK BiLEVE array and underwent extensive central 

quality control (http://biobank.ctsu.ox.ac.uk). My analysis was based on 451,099 

individuals of European descent as defined by principal component analysis 

(PCA) (Frayling et al. 2018). 111 participants who withdrew from the study and 

348 individuals whose self-reported sex did not match their genetic sex on the 

basis of relative intensities of X and Y chromosome SNP probe intensity were 

removed. Genotype-phenotype associations were generated using BOLT-LMM 

(Loh et al., 2015) which uses an LD score regression approach to account for 

http://biobank.ctsu.ox.ac.uk/
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structure caused by relatedness adjusting for SNP chip type, age, sex and test 

centre. For continuous traits, residuals were created by adjusting for age and 

sex and phenotypes were inverse normalised to account for skewed 

distributions. The UKB has approval from the North West Multicenter Research 

Ethics Committee (https://www.ukbiobank.ac.uk/ethics/), and these ethics 

regulations cover the work in this thesis. Written informed consent was obtained 

from all participants.

https://www.ukbiobank.ac.uk/ethics/
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Figure 3.4: Schematic representation of two sample MR. The cis-EPO genetic variant was used as an instrument to assess the causal association 
between higher circulating EPO levels and risk of CVD or levels of clinical markers for associated CVD risk factors.  

 
 
 
Table 3.4: cis-EPO SNP-outcome association statistics. Summary statistics were obtained from previously published and publicly available GWAS and 
from GWAS on 451,099 UK Biobank individuals of European ancestry. For the categorical disease traits, effects are given as odds ratios. For the continuous 
traits, betas are measured in terms of the number of standard deviations. A fixed-effects inverse-variance weighted meta-analysis of the summary statistics 
from the GWAS on UK Biobank and previously published, publicly available GWAS was performed using metan to obtain an overall effect estimate of the 
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effect of the genetic variant on the outcome of interest. All effects have been aligned to the EPO-increasing allele (A). CAD – Coronary artery disease, MI – 
myocardial infarction, SBP – systolic blood pressure, DBP – diastolic blood pressure, A1 freq – Allele 1 frequency. 
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Outcome  Study A1 A2 A1 freq OR Lower 95% Upper 95% P-value N 
(Cases/Controls) 

CAD UK Biobank A C 0.6 1.001 0.986 1.016 0.82 37741 / 318892 

CAD Nikpay et al. (2015)   A C 0.59 1.005 0.985 1.025 0.643 60801 / 123504 

 
Meta-analysis 

   
1.002 0.99 1.01 0.72 98542 / 442396 

MI UK Biobank  A C 0.6 0.99 0.964 1.018 0.48 10590 / 440509 

MI Nikpay et al. (2015)  A C 0.57 1.004 0.983 1.026 0.706 42561 / 123504 

 
Meta-analysis 

   
0.999 0.98 1.02 0.889 53151/564013 

Stroke  UK Biobank A C 0.6 0.963 0.935 0.993 0.014 9092 / 346423 

Stroke Malik et al. (2018)  A C 0.6 1.01 0.993 1.031 0.344 40585 / 406111 
 

Meta-analysis 
   

0.995 0.98 1.01 0.553 49677/752534 

Continuous Outcomes 

Outcome  Study A1 A2 A1 freq Beta (95% 
CI) 

Lower 95% Upper 95% P-value N 

SBP UK Biobank A C 0.6 0.04 -0.05 0.12 0.8 450075 

SBP Wain et al. (2017)  A C 0.59 0.024 -0.11 0.16 0.725 228245 
 

Meta-analysis 
   

0.03 -0.04 0.11 0.38 678320 

DBP UK Biobank A C 0.6 -0.07 -1.20E-01 -0.02 1.00E-05 449322 

DBP Wain et al. (2017)  A C 0.59 -0.03 -0.11 0.05 0.469 228245 
 

Meta-analysis 
   

-0.06 -0.1 -0.02 0.006 677567 

Heart rate UK Biobank A C 0.6 -0.07 -0.13 -0.02 0.019 423846 
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Heart rate den Hoed et al. (2013)   A C 0.59 -0.021 -0.13 0.09 0.703 90849 

 
Meta-analysis 

   
-0.06 -0.11 -0.02 0.01 514695 
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3.4 Results  
 

 Identification of three genomic loci associated with EPO levels at 
genome-wide significance. 

 

With the aim of identifying human genetic variants associated with circulating 

EPO levels and using these variants as genetic proxies for therapeutically 

altered endogenous EPO levels, I performed a GWAS meta-analysis of 

circulating EPO. I used 6,127 individuals of European and African American 

descent. I identified three genomic loci containing three conditionally 

independent signals associated with circulating EPO (P < 5 x 10-8) (Table 3.5, 

Figure 3.5). The most strongly associated genetic variant rs4895441 (6q23, 

HBS1L-MYB locus) was previously identified as associated with EPO levels in a 

GWAS of 2,691 individuals (Grote Beverborg et al., 2015). This variant has a 

stronger primary effect on other erythrocyte phenotypes in previously published 

GWAS and a PheWAS on UKB European individuals (Table 3.6). The 

remaining two conditionally independent genomic loci (rs855791 and 

rs112631630) represent novel associations with circulating EPO levels. 

However, rs855791, located in the TMPRSS6 locus, has primary, stronger 

effects on several other erythrocyte phenotypes compared to the effect on 

circulating EPO in a PheWAS on UKB European individuals (Table 3.6) and 

has been previously identified as associated with other erythrocyte phenotypes 

and iron homeostasis biomarkers in published GWAS studies (Benyamin et al., 

2014; M.-H. Chen et al., 2020). The variant (rs112631630), located in the NRAP 

locus, is only present in African Americans and I was unable to test in additional 

datasets. Therefore, these variants were not deemed specific instruments for 

use in subsequent MR analysis to genetically proxy therapeutic modulation of 

endogenous EPO levels. 

 
 
 
 
 
 
 
 
 
 
 



 134 

Table 3.5:Summary statistics for the lead genetic variants (P < 5 x 10-08) identified in the meta-analysis of circulating EPO in 6,127 individuals of 
European and African descent. 

GWAS was performed using GEMMA in four independent cohorts (PREVEND, HealthABC, InCHIANTI, BLSA). Summary association statistics were 
combined in a meta-analysis using METAL. Conditional analysis was performed using GCTA-COJO to identify conditionally independent genetic variants 
associated with circulating EPO levels (at P < 5 x 10-08). EAF: effect allele frequency. SE: standard error. 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Lead SNP Chromosome Position 
Genomic 
Locus 

Effect 
allele 

EAF 
Effect 
size 

SE P-value 
Sample 
size 

rs4895441 6 135426573 HBS1L A 0.74 -0.24 0.021 1.45E-30 6127 

rs112631630 10 115407228 NRAP A 

  

3.598 0.65 3.09E-08 536 0.996 

  

rs855791 22 37462936 TMPRSS6 A 0.42 0.113 0.019 2.47E-09 6529 
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Figure 3.5: Meta-analysis of circulating EPO levels in 6,127 individuals of European and African American descent. A: Manhattan plot showing the –
log10(P-value) of the association between circulating EPO levels and 25.1 million single-nucleotide polymorphisms (SNPs) in 6,127 individuals following 
correction for sex, age and study-specific covariates. The black line shows the indicative suggestive genome-wide significance threshold of P < 5 x 10–8. Each 
individual dot represents a SNP. Genetic markers are ranked by chromosome and positions. B: QQ plot for the EPO meta-analysis showing the observed 
versus expected p-values. The black diagonal line represents the expected distribution. Points to the left of the diagonal represent associations that are more 
significant than expected.  
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Table 3.6: Association between rs4895441 and rs855791, two of the three lead genetic variants identified in the EPO meta-analysis, with other 
phenotypes in 451,099 UK Biobank unrelated, European individuals. Associations reaching genome-wide significance (P < 5 x 10-08) are shown in the 
table below. The EPO-increasing alleles of rs4895441 and rs855791 have a primary, stronger association with several other blood cell phenotypes 
compared to its effect on EPO levels. Betas have been aligned to the EPO-increasing alleles. 
 

Genetic 
variant 

Phenotype Gender Beta SE P-value 

rs4895441 

Erythropoietin Combined 0.218 0.021 1.45E-30 

Corpuscular haemoglobin  Combined 0.179 0.002 4.3E-1635 

Corpuscular Volume  Combined 0.157 0.002 6.2E-1353 

Mean corpuscular volume Combined 0.157 0.002 6.7E-1270 

Red blood cell count Combined -0.139 0.002 2.3E-1224 

Mean corpuscular volume (anaemics excluded) Combined 0.163 0.002 2.7E-1148 

Platelet crit Combined 0.12 0.002 5.4E-790 

Platelet Count Combined 0.107 0.002 1.8E-635 

Fibrosis-4 Score Combined -0.079 0.002 1.9E-399 

Red blood cell distribution width  Combined -0.092 0.002 1.3E-386 

Red blood cell distribution width (anaemics excluded) Combined -0.098 0.002 4.5E-378 

Non-alcoholic fatty liver disease fibrosis score Combined -0.085 0.002 2.6E-367 

Corpuscular haemoglobin concentration Combined 0.075 0.002 4.70E-261 

Sphered cell volume Combined 0.07 0.002 7.60E-257 

Haematocrit percentage Combined -0.062 0.002 5.30E-255 

Non-alcoholic fatty liver disease fibrosis score Female -0.093 0.003 4.00E-220 

fibrosis-4 Score Female -0.082 0.003 1.30E-214 

Reticulocyte Volume Combined 0.065 0.002 3.60E-209 

fibrosis-4 Score Male -0.078 0.003 1.30E-171 
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Non-alcoholic fatty liver disease fibrosis score Male -0.077 0.003 3.00E-141 

Haemoglobin Concentration Combined -0.038 0.002 1.10E-103 

Reticulocyte Percentage Combined 0.046 0.002 1.50E-101 

Eosinophil Count Combined -0.042 0.002 2.40E-83 

High Light Scatter reticulocyte percentage  Combined 0.041 0.002 8.40E-81 

Glycated haemoglobin Combined -0.036 0.002 3.60E-66 

Lymphocyte Count Combined -0.034 0.002 1.00E-52 

Monocyte Count Combined -0.031 0.002 9.70E-51 

Neutrophil Count Combined -0.03 0.002 1.40E-42 

Eosinophil Percentage Combined -0.029 0.002 2.10E-39 

Glycated haemoglobin Female -0.035 0.003 2.10E-35 

Glycated haemoglobin Male -0.037 0.003 2.50E-31 

Cholesterol corrected for statin use Combined -0.024 0.002 7.10E-30 

Low density lipoprotein corrected for statin use Combined -0.024 0.002 7.60E-30 

Cholesterol corrected for statin use Male -0.028 0.003 1.30E-19 

Platelet distribution width Combined 0.018 0.002 2.60E-19 

Aspartate Aminotransferase Combined -0.019 0.002 3.40E-19 

Low density lipoprotein corrected for statin use Male -0.027 0.003 4.30E-18 

Albumin Combined 0.02 0.002 4.00E-17 

Cholesterol Combined -0.017 0.002 9.10E-15 

High Light Scatter Reticulocyte Count Combined 0.016 0.002 2.20E-14 

Low density lipoprotein corrected for statin use Female -0.021 0.003 2.70E-14 

Cholesterol corrected for statin use Female -0.021 0.003 6.40E-14 

Low density lipoprotein  Combined -0.015 0.002 2.40E-12 

Aspartate Aminotransferase Female -0.021 0.003 7.70E-12 
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Immature reticulocyte Combined 0.014 0.002 6.40E-11 

Microalbumin Combined 0.013 0.002 1.30E-10 

Reticulocyte Count Combined 0.013 0.002 1.60E-10 

Albumin Male 0.022 0.004 4.60E-10 

Albumin Female 0.019 0.003 2.20E-09 

Apolipoprotein B Combined -0.013 0.002 2.40E-09 

Microalbumin Female 0.019 0.003 3.25E-03 

Cholesterol levels Male -0.019 0.003 3.47E-03 

Aspartate Aminotransferase Male -0.019 0.003 3.49E-03 

High Density Lipoprotein Male -0.018 0.003 3.45E-03 

rs855791 

EPO Combined 0.113 0.019 2.47E-09 

Corpuscular Haemoglobin Combined -0.151 0.002 3.6E-1399 

Corpuscular Volume Combined -0.129 0.002 3.0E-1102 

Mean corpuscular volume Combined -0.13 0.002 9.0E-1038 

Mean corpuscular volume (anaemics excluded) Combined -0.133 0.002 2.5E-932 

Red blood cell distribution width (anaemics excluded) Combined 0.113 0.002 1.4E-480 

Haemoglobin concentration Combined -0.073 0.002 3.5E-446 

Red blood cell distribution width Combined 0.113 0.002 1.0E-416 

Corpuscular Haemoglobin concentration Combined -0.067 0.002 9.20E-251 

Glycated haemoglobin levels Combined 0.064 0.002 2.00E-244 

Haematocrit Percentage Combined -0.053 0.002 2.10E-224 

Sphered cell volume Combined -0.055 0.002 1.10E-193 

Glycated haemoglobin levels Female 0.062 0.003 8.10E-129 

Glycated haemoglobin levels Male 0.065 0.003 7.10E-111 

Reticulocyte Percentage Combined -0.04 0.002 6.60E-90 
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Reticulocyte Count Combined -0.035 0.002 4.70E-72 

Total Bilirubin Combined -0.029 0.002 9.10E-67 

Platelet Count Combined 0.027 0.002 5.00E-52 

Platelet crit Combined 0.027 0.002 7.30E-52 

Fibrosis-4 score Combined -0.022 0.002 1.60E-38 

High light scatter reticulocyte percentage Combined -0.025 0.002 5.60E-37 

Total Bilirubin Female -0.031 0.003 1.40E-35 

Total Bilirubin Male -0.032 0.003 8.80E-34 

High light scatter reticulocyte count Combined -0.022 0.002 1.80E-28 

Non-alcoholic fatty liver disease fibrosis score Combined -0.021 0.002 3.40E-28 

Platelet distribution width Combined -0.019 0.002 8.90E-24 

Direct Bilirubin Combined -0.019 0.002 4.80E-23 

Red blood cell count Combined 0.016 0.002 2.20E-22 

Fibrosis-4 score Female -0.024 0.002 4.20E-22 

Non-alcoholic fatty liver disease fibrosis score Female -0.025 0.003 1.40E-19 

Direct Bilirubin Male -0.023 0.003 2.20E-16 

Fibrosis-4 score Male -0.020 0.003 2.80E-15 

Immature reticulocytes Combined 0.015 0.002 5.20E-13 

Non-alcoholic fatty liver disease fibrosis score Male -0.018 0.003 1.10E-10 

Phosphate levels Combined 0.012 0.002 1.20E-08 

Direct Bilirubin Female -0.014 0.003 4.00E-08 
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 Identification of cis-SNP lying in the promoter region of EPO for use 
to genetically proxy therapeutic alteration of endogenous EPO 
levels. 

 
As the variants identified by GWAS were not deemed sufficiently specific 

instruments to act as genetic proxy tests for the long-term effects of therapeutic 

rises in endogenous EPO levels, I looked more closely at the EPO locus where 

associations have been previously reported (Amanzada et al., 2014; Tong et al., 

2008). I identified rs1617640, a cis-SNP which has been previously shown to 

have a functional role at controlling EPO levels, lying in the promoter region of 

the EPO gene, 1,125bp upstream of the transcription start site (Tong et al., 

2008). Based on our meta-analysis, each copy of the A-allele of rs1617640 was 

associated with 0.063 SD (equivalent to 0.32 IU/L) higher endogenous EPO 

levels (P = 9.32 x 10-04) (Table 3.7), which is consistent with the direction of 

effect previously reported in patients with diabetic retinopathy or hepatitis C 

(Amanzada et al., 2014; Tong et al., 2008). The EPO-increasing A allele has 

been previously reported to create a binding-site for the AP1 or EV11/MEL1 

transcription factors highlighting the functional role rs1617640 may have at 

regulating EPO expression levels (Tong et al., 2008).  

 

  The cis-EPO SNP is a hepatic eQTL for EPO expression and nearby 
TFR2 expression 

 
To provide additional insight into the rs1617640-EPO association and further 

evaluate its utility as an instrument, I tested the association of the cis-EPO SNP 

with gene expression in the kidney and the liver as EPO is highly expressed in 

these two tissues (Franklin, 2013). In the liver, I found that the C-allele at 

rs1617640 was associated with higher EPO gene expression (ß = 0.22 [0.14, 

0.3], P = 6.86 x 10-08) and also TFR2 expression (ß = 0.23 [0.17, 0.29], P = 1.56 

x 10-13), a gene which lies upstream of the EPO gene and is involved in iron 

metabolism (Benyamin et al., 2014; Forejtnikovà et al., 2010) (Table 3.8). No 

effect of rs1617640 on renal expression of EPO (ß = 0.16 [-2.46, 2.78], P > 

0.05) or TFR2 (ß = 1.33 [-0.59, 3.26], P > 0.05) was found (Table 3.8). I 

therefore preceded with hepatic results only. 
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Table 3.7: Summary statistics for association between the cis-EPO genetic variant (rs1617640) and circulating EPO levels obtained from a meta-
analysis in 6,127 individuals of European and African descent. 

 
 
 
 
Table 3.8: Association between rs1617640 and EPO and TFR2 expression in human kidneys and liver.  

Analysis of the association between rs1617640 and EPO or nearby TFR2 expression was performed in the kidneys and the liver. No association was found 
in the kidneys (P > 0.05), but there was evidence for an association between rs1617640 and EPO or TFR2 gene expression (P < 0.05). The data was coded 
such that a positive beta (tmeta) means that as the number of minor alleles (C-alleles) increases, there is an increase in EPO or TFR2 expression. 

Analysis RSID Chromosome Position A1 A2 Freq A1 Beta SE P-value Sample 
size 

EPO meta-
analysis 

rs1617640 7 100317298 A C 0.62 0.063 0.02 9.32E-04 6127 

Dataset 
Sample 
size 

Tissue EPO TFR2 

      T-statistic Beta SE P-value T-statistic Beta SE P-value 

Liver meta-
analysis 

861 Liver 5.39 0.218 0.1488 6.86x10-08  7.38 0.226 0.1488 1.56x10-13 

Kidney 
TransplantLines  

286 Kidney 0.117 0.157 1.338 0.907 1.358 1.333 0.981 0.177 
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  Colocalisation analysis confirms the cis-EPO variant is shared 
between the EPO meta-analysis and the hepatic eQTL data  

 
Colocalisation analysis provided evidence that the variant associated with 

circulating EPO levels in the meta-analysis and hepatic EPO mRNA expression 

has a 71% posterior probability of being the same causal variant (Figure 3.6)
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Figure 3.6: Colocalisation analysis of circulating endogenous EPO levels and liver 
EPO gene expression to identify whether the same causal variants are shared. I 
tested whether the same genetic variant is associated with both circulating EPO levels and 
liver EPO gene expression levels within a 500kb flanking window of the cis-EPO genetic 
variant (rs1617640). I found evidence to support the same causal variant being shared by 
the meta-analysis of circulating endogenous EPO levels and liver EPO gene expression 
levels (Posterior probably = 71%). The top half of the Miami plot (pink dots) represents -
log10(P-values) for the circulating EPO levels obtained from the EPO meta-analysis whilst 
the bottom half of the Miami plot (blue dots) represents log10(P-values) for EPO gene 
expression in the liver obtained from eQTL analysis. The dashed lines represent genome-
wide significance levels of P = 5 x 10-08.  
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 Genetically proxied long-term higher endogenous EPO levels are 
not associated with increased cardiovascular risk  

 
I used the cis-EPO SNP as an instrument in two-sample MR as a genetic proxy 

for the effects of therapeutically altered EPO levels on risk of CVD or levels of 

clinical markers predisposing to CVD risk factors. I found no evidence of a 

causal association between 1 SD (equivalent to 5.1 IU/L) higher endogenous 

EPO levels and increased risk of CAD (OR [95% CI] =1.03 [0.85, 1.25], P = 

0.72), stroke (OR [95% CI] = 0.92 [0.70, 1.21], P = 0.55) or MI (OR [95% CI] = 

0.98 [0.75, 1.29], P = 0.89) (Figure 3.7Figure 3.7, Table 3.9). I found evidence 

of a causal association between 5.1 IU/L higher endogenous EPO levels and 

lower resting heart rate (ß [95% CI]  = -0.996 [-1.74, -0.25], P = 0.01) and lower 

DBP (ß [95% CI] = -0.98 [-1.67, -0.29], P = 0.006) but not with SBP (ß [95% CI] 

= 0.53 [-0.65, 1.71], P = 0.38) (Figure 3.7, Table 3.9).  
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Table 3.9: Causal estimates of the association between higher circulating EPO levels and risk of CVD or levels of clinical markers for CVD 
associated risk factors. Causal estimates were calculated using the Wald ratio due to the single genetic variant being used as the instrument. Two-sample 
MR implemented in the MRBase package.  
 
 
 

 
 
 
 
 
 
 
 

Disease Outcomes 

Exposure Outcome Odds ratio Lower 95% Upper 95% P-value N Cases N Controls  

EPO CAD 1.03 0.85 1.25 0.72 98,542 442,396 

EPO Stroke 0.92 0.70 1.21 0.55 49,677 387,008 

EPO  MI 0.98 0.75 1.29 0.89 53,151 564,013 

Associated risk factors 

  Risk Factors  Effect estimate Lower 95% Upper 95% P-value Total Sample size 

EPO SBP 0.53 -0.65 1.71 0.38 586,080 

EPO DBP -0.98 -1.67 -0.29 0.0057 585,325 

EPO Heart rate -0.996 -1.74 -0.25 0.0097 514,706 
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Figure 3.7: Genetically proxied higher endogenous EPO levels is not associated with an increased risk for CVD or increased levels of clinical 
markers for CVD risk factors. A: Two-sample MR analysis using the cis-EPO variant as a genetic instrument showed no evidence of an association between a 
1 SD (equivalent to a 5.1 IU/L) higher EPO level and increased risk of CAD, stroke or MI. B: Two-sample MR analysis using the cis-EPO variant as a genetic 
instrument showed evidence of a causal association between a 1 SD (equivalent to 5.1 IU/L) higher EPO level and decreased DBP and heart rate but no 
association with SBP. 
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 Rescaling genetic effects to clinically relevant effects of therapeutic 
rises in endogenous EPO levels shows no increase in risk of CVD.  

 
In a RCT, patients receiving a PHI (daprodustat) had circulating EPO levels 

0.44 SD (27.1 / 61), equivalent to 2.2 IU/L, higher than baseline EPO levels 

(Meadowcroft et al., 2019). Given that the per allele effect of rs1617640 on 

endogenous EPO was 0.063 SD, I rescaled the genetic association by 

multiplying by 7.05 (0.44 / 0.063) to obtain a clinically relevant estimate of the 

likely impact of therapeutically altered rises in genetically proxied endogenous 

EPO on cardiovascular risk. Using this scaling factor allowed quantification of 

the upper and lower bounds of the predicted genetically proxied effects of long-

term endogenous EPO-rises on CVD (Table 3.10, Figure 3.8). By rescaling the 

genetic associations to the PHI-induced effect, genetically proxied therapeutic 

rises in endogenous EPO levels were not associated (at P < 0.05) with 

increased odds of CAD (OR [95% CI] = 1.01 [0.93, 1.07]), MI (OR [95% CI] = 

0.99 [0.87, 1.15]) or stroke (OR [95% CI] = 0.97 [0.87, 1.07]) (Table 3.10, 

Figure 3.8). I could exclude a 1.07, 1.15 and 1.07 increased odds of CAD, MI or 

stroke respectively (Table 3.10, Figure 3.8). For the clinical markers 

predisposing to CVD, I did not observe an association between higher 

genetically proxied therapeutic rises in endogenous EPO levels and SBP (ß 

[95% CI] = 0.21 [-0.28, 0.78]), DBP (ß [95% CI] = -0.42 [-0.71, -0.14]) or resting 

heart rate (ß [95% CI] = -0.42 [-0.78, -0.14]) (Table 3.10, Figure 3.8). I could 

exclude 0.78 mmHg increased SBP levels and could exclude any increase in 

DBP or resting heart rate (Table 3.10, Figure 3.8). 

 

To compare the effects of PHIs to that of the current rhEPO treatments, I also 

rescaled the genetic effects to that of rhEPO by multiplying the genetic 

associations by 822 (0.063 / 51.8) due to patients receiving rhEPO having EPO 

levels 51.8 SD higher than controls (Meadowcroft et al., 2019). However, due to 

the effect of rhEPO being so large and thus the upper confidence intervals 

being so big, I was unable to meaningfully exclude a damaging effect (Table 

3.10).  
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Table 3.10: Rescaling the causal estimates to the PHI-induced effect. The causal estimate of the effect of higher endogenous EPO levels on risk of CVD 
using the cis-EPO SNP as an instrument were rescaled to the PHI-induced or rhEPO-induced effect on circulating EPO levels from a recent RCT 
(Meadowcroft et al. 2019). This provided a clinically relevant estimate on the physiological scale of the likely impact of novel or current treatments for 
anaemia in CKD on CVD.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Treatment Disease 

PHI-induced 
effect 

Exposure Outcome Odds ratio Lower 95% Upper 95% 

EPO CAD 1.014 0.932 1.073 

EPO MI 0.993 0.867 1.150 

EPO Stroke 0.965 0.867 1.073 

Risk Factors 

Exposure Outcome Effect estimate Lower 95% Upper 95% 

EPO SBP 0.212 -0.282 0.78 

EPO DBP -0.423 -0.705 -0.14 

EPO Heart rate -0.423 -0.776 -0.14 

rhEPO-
induced 

effect 

Disease 

Exposure Outcome Odds ratio Lower 95% Upper 95% 

EPO CAD 1.04 0.81 3573.79 

EPO MI 0.44 6.11x10-08 11782904 

EPO Stroke 0.02 6.11x10-08 3573.79 

Risk Factors 

Exposure Outcome Effect estimate Lower 95% Upper 95% 

EPO SBP 24.67 -32.89 90.44 

EPO DBP -49.33 -82.22 -16.44 

EPO Heart rate -49.33 -90.44 -16.44 
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Figure 3.8: Genetically proxied therapeutic rises in endogenous EPO levels are not associated with an increased risk of CVD or clinical CVD risk 
factors. The genetic estimates obtained using two-sample MR were rescaled to the PHI-induced effect observed in a RCT. A: Based on the upper 
confidence intervals, I was able to exclude an increased 1.07, 1.15 and 1.07 odds of CAD, MI or stroke respectively. B: Based on the upper limit, I could 
exclude levels higher than 0.78 mmHg for SBP and no increase for DBP or resting heart rate. 
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 The cis-EPO SNP is associated with several relevant erythrocyte 
phenotypes with similar effect sizes to that on circulating EPO and 
no unintended effects or diseases 

 
To further determine the specificity of the cis-EPO SNP as a genetic instrument 

for endogenous, physiological EPO levels and identify any additional, 

unintended effects that may be associated with long-term rises in endogenous 

EPO levels, I tested the association between the cis-EPO SNP and 869 traits in 

up to 451,099 unrelated European UKB individuals. I found that the cis-EPO 

SNP was associated with 18 relevant erythrocyte traits (P < 5 x 10-08) with 

similar effect (0.01 - 0.06 SD) to that of the A-allele on circulating EPO levels 

(0.063 SD) (Figure 3.9, Table 3.11). I also found evidence for an association 

between the EPO-increasing A-allele of rs1617640 and decreased fibrosis-4 

score ( = -0.01, P = 4.7 x 10-17) and non-alcoholic fatty acid liver disease 

(NAFLD) fibrosis score ( = -0.02, P = 2.20 x 10-25) (Figure 3.9, Table 3.11). 

However, these associations were not clinically significant (equivalent to a 0.06 

and 0.07 change in fibrosis-4 or NAFLD for 1 IU/L increase in EPO levels). 

These associations are likely driven by the strong association with higher 

platelet counts ( = 0.02, P = 4.7x10-39) (Table 3.11). I did not find evidence for 

an association between genetically proxied higher endogenous EPO levels and 

any other unintended effects or diseases. 
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Figure 3.9: PheWAS of the cis-EPO SNP with 869 traits in up to 451,099 individuals 
from UK Biobank. The cis-EPO SNP was most strongly associated with relevant 
erythrocyte phenotypes and liver biomarkers indicating that the cis-EPO SNP is a valid 
proxy for endogenous EPO levels. Plot represents the -log10(P-values) (y-axis) for all traits 
passing a P-value threshold of 0.05. Analysis was performed in both males and females 
combined (green dots), females only (blue dots) and males only (pink dots). The dotted line 
highlights associations passing a Bonferroni corrected P < 1.5 x 10-05 and the dashed line 
highlights associations passing genome-wide significance P-value threshold < 5 x 10-08. 
Traits have been clumped together into categories which are represented on the x-axis. 
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Table 3.11: Association between rs1617640 and traits passing genome-wide significance identified through PheWAS. PheWAS was performed to 
investigate the effect of rs1617640 with 869 traits in up to 451,099 European, unrelated UKB individuals. The majority of traits passing genome-wide 
significance (P < 5 x 10-08) are erythrocyte phenotypes with a similar effect size to the effect of rs1617640 on EPO levels (beta=0.06). The EPO-increasing A 
allele is associated with increased corpuscular volume, sphered cell volume, reticulocyte volume and percentage but decreased haemoglobin concentration, 
haematocrit percentage and red blood cell distribution width. All reported effect sizes are aligned to the EPO-increasing A allele of rs1617640. 

Phenotype Beta SE P-value 

Red blood cell count -0.0643 0.0017 2.3E-315 

Corpuscular haemoglobin 0.0721 0.002 3.3E-313 

Corpuscular volume 0.0615 0.0019 8.60E-245 

Mean corpuscular volume 0.0612 0.002 1.20E-224 

Mean corpuscular volume (anaemics excluded) 0.0634 0.0021 3.50E-206 

Red blood cell distribution width -0.0429 0.0021 4.50E-103 

Red blood cell distribution width (anaemics excluded) -0.0454 0.0022 3.40E-100 

Haematocrit percentage -0.0349 0.0017 4.70E-98 

Corpuscular haemoglobin concentration 0.0328 0.002 1.90E-60 

Sphered cell volume 0.0308 0.0019 4.60E-60 

Haemoglobin concentration -0.0244 0.0016 4.40E-51 

Platelet Count 0.0234 0.0019 6.40E-39 

Non-alcoholic fatty acid liver disease fibrosis score -0.0202 0.0019 2.20E-25 

Platelet volume -0.0178 0.0018 4.80E-25 

Platelet crit 0.0165 0.0019 1.50E-19 
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Fibrosis-4 score -0.0141 0.0017 4.70E-17 

Reticulocyte volume 0.0152 0.002 3.30E-15 

Reticulocyte percentage 0.013 0.002 2.70E-11 

Platelet distribution width -0.0124 0.0019 3.50E-11 

High light scatter reticulocyte percentage 0.0114 0.002 1.10E-08 
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3.5 Discussion 
 

In this chapter, I have shown how a human genetic variant can be used to 

assess the therapeutic profile and effects of long-term genetically mediated 

alterations in drug target levels. At the time of analysis, this was the largest 

GWAS meta-analysis of circulating EPO levels in individuals of European and 

African American descent. Through GWAS meta-analysis, I identified a genetic 

variant lying in cis with the EPO gene and used this variant as a partial proxy for 

therapeutic modulation of EPO levels to test the associated risk of CVD with 

long-term rises in endogenous EPO. Several lines of evidence indicate the cis-

EPO variant is an excellent proxy for predicting the long-term cardiovascular 

risk associated with genetically mediated therapeutic rises in endogenous EPO 

levels. First, I found the A-allele of rs1617640 to increase circulating EPO levels 

in a meta-analysis of circulating EPO levels consistent with the direction of 

effect reported in previous studies in patients with diabetic retinopathy or 

hepatitis C receiving antiviral therapies (Table 3.7) (Amanzada et al., 2014; 

Tong et al., 2008). Second, I found the cis-EPO SNP to be an eQTL for hepatic 

EPO gene expression with evidence of colocalisation for being the same causal 

variant in the circulating EPO meta-analysis and hepatic EPO eQTL data (Table 

3.8, Figure 3.7). Third, by performing a PheWAS, I found the cis-EPO variant to 

be associated with relevant erythrocyte phenotypes with similar effects to the 

effect on circulating EPO levels indicating that the SNP is having an effect 

through similar, expected, and relevant pathways (Figure 3.9, Table 3.11).  

 

Having provided genetic evidence that a cis-EPO SNP is a valid genetic 

instrument and likely causal in altering EPO expression levels, I used this 

variant as a genetic proxy for long-term therapeutic modulation of endogenous 

EPO levels to show that higher endogenous EPO levels (equivalent to 5.1 IU/L) 

are not associated with an increased risk of CVD or elevated levels of clinical 

markers (SBP, DBP or resting heart rate) predisposing to CVD risk factors (e.g. 

hypertension) (Figure 3.7). To obtain a more representative and physiologically 

relevant effect of therapeutically altered endogenous EPO levels, I rescaled 

these genetic effects to the PHI-induced effects on endogenous EPO levels 

from a fixed dose Phase II trial (Meadowcroft et al., 2019) and was able to 

exclude an increased odds of 1.07, 1.15 and 1.07 for CAD, MI or stroke 

respectively and 0.78 mmHg increased levels of SBP (Figure 3.7). I was able to 
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exclude adverse effects on DBP and heart rate (Figure 3.7). I found nominal 

evidence (P < 0.05) for an association between higher endogenous EPO levels 

and lower heart rate and DBP indicating that higher EPO levels may in fact 

have a protective effect on CVD risk factors (i.e. hypertension) (Figure 3.7). It is 

important to translate these findings at the clinical level to see if the reduction in 

heart rate or DBP (decrease between 0.14 - 0.78 beats per minute for resting 

heart rate and 0.14 - 0.71 mmHg for DBP) caused by 1 SD (equivalent to 5.1 

IU/L) higher endogenous EPO levels is enough to potentially restore previously 

high BP levels within the normal range reducing strain on the heart and risk of 

CVD.  

 

These results are consistent with the hypothesis that PHIs are likely safe for 

treating anaemia of CKD when only increasing circulating EPO levels within the 

physiological range. Due to the existence of outliers and/or skewed data in the 

Phase II trial (Meadowcroft et al., 2019, from where I extracted the effect of PHI 

on EPO), the actual standard deviation of change in EPO from baseline after 

PHI treatment is likely to be smaller meaning that the scaled estimates will be 

similarly affected by these outliers and have wider confidence intervals. 

Although I also scaled the genetic effects to that of rhEPO, I was unable to 

make any meaningful interpretations due to the large effect of rhEPO on 

circulating EPO levels and subsequent large confidence intervals (Table 3.10). 

This is likely due to rhEPO resulting in supra-physiological circulating EPO 

levels which is not accurately mimicked by genetic variants acting at the 

transcriptional level on physiological levels which have smaller effect-sizes. 

Scaling genetic estimates to the effect of a fixed dose after four weeks of 

treatment may not be the most clinically relevant since PHIs require titration to a 

Hgb target, but this was the best data I could obtain as changes in EPO levels 

were only measured in the one fixed dose Phase II trial (Meadowcroft et al., 

2019). Since PHIs work through the same mechanism, these results would be 

supportive of all PHI compounds (daprodustat, vadadustat and roxadustat) with 

respect to the genetically predicted effect of therapeutically altered endogenous 

EPO levels. Any slight differences in effects on EPO levels and CVD would 

likely be related to independent biochemical properties of the compound and 

variations in dosages and the conductance of clinical trials. PHIs are also likely 

to affect transcription of other hypoxic response genes and have off-target 
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effects which were not investigated in this study. This data provides genetic 

evidence supporting the Phase III clinical results that PHIs are likely noninferior 

than rhEPO for CVD. Further longitudinal clinical analysis will help decipher the 

uncertainty behind the cardiovascular risk associated with these treatments and 

will further emphasise the utility of using human genetics to provide an insight 

into drug safety and efficacy. 

 

Our findings support previous studies which have also found rs1617640 to have 

an allele-specific effect on EPO expression levels. Some of these studies have 

reported the A-allele to be associated with higher EPO concentrations 

(Amanzada et al., 2014; Tong et al., 2008), whilst others reported conflicting 

evidence with the C-allele being associated with higher EPO concentrations and 

promoter activity (Y. Fan et al., 2016; Kästner et al., 2012). These findings 

together with the fact I did not find the SNP to be a renal eQTL but a hepatic 

eQTL suggest that the rs1617640 polymorphism has different effects depending 

upon cell-type, physiological condition, state and timing (Table 3.8) (Renner et 

al., 2020). The lack of association in the renal eQTL analysis may be 

attributable to the small study size (N = 286) and therefore lack of power. The 

emergence of larger eQTL datasets in relevant tissue types would provide more 

power and could strengthen associations. The renal dataset is also based on 

bulk tissue sample as opposed to single cell-type data and it may be that the 

cis-EPO variant only influences EPO gene expression in certain renal cell-

types, such as the interstitial cells (the predominant site of EPO production). 

The direction of effect was also inconsistent to the effect obtained in the meta-

analysis with the C-allele associated with higher EPO mRNA expression as 

opposed to the A-allele. Again, this may be due to the eQTL analysis being in 

bulk tissues as opposed to specific single cell-types. Functional investigation 

into the effects of this polymorphism in relevant tissues and cell-types during 

different developmental stages would further reveal the exact functions and 

downstream effects of the cis-EPO variant and help provide additional validation 

that the variant is a valid proxy. I also found evidence supporting the cis-EPO 

variant as a renal eQTL for neighbouring TFR2 gene expression (ß = 0.23 

[0.17, 0.29], P = 9.33 x 10-14), a gene involved in iron transport (Table 3.8). This 

is likely an example of coordinate regulation; iron is required to make more Hgb 

so if EPO expression is upregulated to increase Hgb levels then iron transport, 
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and hence TFR2 gene expression, would be too (Forejtnikovà et al., 2010; 

Haase, 2013). Further investigation into these genes and pathways and the 

associated risk of adverse effects could be warranted to gain a better 

understanding of the downstream effects of PHIs acting on the hypoxic 

pathway.  

 

There are some limitations to our study. Our results, as with any study using 

human genetics as predictors, cannot rule out any adverse effect, but instead 

can provide upper bounds on their probability (Page, 2014). First, genetic 

analyses are often performed in a general, ‘healthy’ population as opposed to a 

diseased cohort in whom treatment is used. Diseased populations may respond 

differently to what is estimated by the genetic association due to variable 

baseline levels or additional underlying conditions (Mokry et al., 2015; 

Sofianopoulou et al., 2021). Despite rescaling the genetic effect to the PHI-

induced effect to try and overcome this, I still assume linearity which may not be 

the case in reality. For example, causal estimates could change dependent 

upon baseline levels and therefore inferences about the likely effect at individual 

anaemic CKD patient level need careful consideration particularly when doses 

are titrated (Sofianopoulou et al., 2021). As larger studies become available, 

particularly in disease-specific cohorts, our power to detect associations and 

ability to perform stratified analyses will increase and we will become more 

confident about the conclusions drawn from these types of investigations 

(Sofianopoulou et al., 2021; Visscher et al., 2017). Second, common genetic 

variants differ from clinical trials in that they represent subtle, lifelong 

perturbations whereas clinical trials test more acute larger changes (Burgess et 

al., 2012; Pulley et al., 2017). Additionally, the biomarker or drug may only be 

efficacious in specific physiological states and it is difficult to represent these 

different states using genetic approaches (Burgess et al., 2012; Mokry et al., 

2015; H.-C. Yang et al., 2010).  

 

MR also has its limitations; it is important to consider the strength and validity of 

the genetic instrument and that it meets the MR assumptions (outlined clearly in 

1.2.5). Previous studies have shown that the best proxies to mirror 

pharmacological effects are those variants lying within or close to the gene 

encoding the drug target which are therefore most likely to have functional 
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impact on the protein product (Lauridsen et al., 2015; Matías-García et al., 

2021; Melzer et al., 2008; J. Zheng et al., 2020). As I was interested in 

investigating the causal effect of altering EPO gene expression through PHI 

use, I decided to focus specifically on the EPO gene and identified the cis-EPO 

variant for use as a partial proxy therapeutic modulation of EPO levels rather 

than using genetic variants passing genome-wide significance in the circulating 

EPO meta-analysis. The variants passing genome-wide significance were found 

to have a stronger, primary effect on other erythrocyte phenotypes rendering 

them weak EPO instruments (Table 3.6). The association between the 

identified cis-EPO variant and EPO levels, however, did not reach formal levels 

of significance in our meta-analysis (P < 5 x 10-08), a key limitation, and the 

effect estimate was small which may indicate weak instrument bias and the 

tendency for causal estimates to shift towards the observational data (Table 

3.7) (Burgess, Small, et al., 2017; Lawlor, 2016). Furthermore, the cis-EPO 

variant did not appear to be the most strongly associated variant with circulating 

EPO levels within the 500 kb window either side (Figure 3.10). However, all 

other leading variants had p-values within the same order of magnitude (x 10-04) 

to the cis-EPO SNP and were in strong LD (Figure 3.10). As I was using a 

single genetic instrument, it is difficult to fully test for horizontal pleiotropy as I 

was unable to use established methods such as MR Egger (Bowden et al., 

2015). However, I did perform colocalisation analysis between our meta-

analysis and liver eQTL data and found evidence that the same causal variant 

is shared (posterior probability = 71%) (Figure 3.6). I was therefore able to 

eliminate some unreliable associations. The posterior probability was likely 

influenced by the weak significance of the genetic signal and therefore larger 

sample size could further improve evidence for colocalisation. Furthermore, I 

found rs1617640 to be associated with several relevant erythrocyte phenotypes 

in a PheWAS performed in a study of much greater sample size (UKB; N = 

451,099). Unfortunately, I did not have data on EPO measures in this large 

number. As larger cohorts containing relevant genetic data, biomarker 

measurements and disease outcome classifications become available, potential 

concerns regarding weak instrument bias and power are likely to be overcome 

(Spencer et al., 2009; Visscher et al., 2017).  
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The cis-EPO SNP lies at the biomarker level (i.e. at the EPO level). This may 

mean I am missing unintended drug effects that may occur through alternative 

mechanistic pathways (e.g. EPO-independent pathways). For this reason, 

investigation using other genetic variants to mirror the effects of PHIs, such as 

those lying within EGLN genes (the targets of PHIs), would be useful in further 

predicting unintended drug effects and provide additional genetic evidence into 

potential safety to support drug development. Moreover, understanding the 

functional consequence of the genetic variant can aid our understanding and 

drug target validation. For example, previous studies have shown how loss-of-

function (LOF) variants can be used to mirror and predict the consequences of 

antagonistic drug treatments (Stitziel et al., 2014). Further investigation into the 

functional role of rs1617640 in controlling endogenous EPO levels and 

understanding the mechanism of action would consolidate the use of the cis-

EPO SNP as an instrument. 

 

In summary, this Chapter indicates that genetically proxied long-term rises in 

endogenous EPO levels do not increase cardiovascular disease risk, with upper 

limits of 1.07, 1.15 and 1.07 for CAD, MI and stroke respectively given a 2.2 unit 

rise in endogenous EPO levels. Understanding the relationship between EPO 

and CVD is an important and unresolved question, and the identification of a 

relevant genetic marker that can test the long-term effect of therapeutic action 

could potentially inform further research using patient-level clinical data from 

Phase III trials. 
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Figure 3.10: Regional LD pattern for the cis-EPO SNP within a 1 mb region. Each 
circle represents an individual genetic variant. The one in blue and labelled is the cis-EPO 
SNP. The size of the circle represents the minor allele frequency (smallest being rare, 
largest being common). The shading pattern represents the correlation between the query 
variant (rs1617640) and the nearby variant. The numbers within each circle (1-7) highlight 
the regulatory potential with 1 being high and 7 being low. The -log10 p-values obtained in 
the meta-analysis of circulating EPO levels in 6,127 individuals of African-American and 
European descent are shown on the left-hand-side y-axis. The pattern of LD is shown on 
the right-hand-side y-axis. The x-axis shows the chromosomal position on chromosome 7. 
Figure produced using LDLink (https://ldlink.nci.nih.gov/?tab=ldassoc).  
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Chapter 4 Establishment of whole EPO gene knock-out cell 

model using CRISPR-Cas9 gene-editing and whole 

transcriptomic profiling to better characterise molecular 

pathways involved in EPO signalling  

 

This Chapter includes sections that have been taken directly from a pre-print 

paper in which I am the first author. I have reformatted and expanded on 

sections for the purpose of this thesis. This paper is currently undergoing 

reviews at GSK and AJHG.  

 

Harlow, CE. Gandiwijaya, J. Bamford, RA. Wood, AR. Van der Most, P. 

Verweij, N. [25 authors] & Frayling, TM. 2022. Identification and single-base 

gene-editing functional validation of a cis-EPO variant for use to mimic novel 

EPO-increasing therapies.  

 

I planned all of the experiments and performed the majority of the laboratory 

works carried out in this Chapter with the help, support and guidance of my 

supervisors, Professor Tim Frayling and Dr Asami Oguro-Ando, and my fellow 

Oguro-Ando lab members, primarily Mr Josan Gandawijaya and Dr Rosie 

Bamford. This is the first time an EPO knock-out cell-line has been established 

in HEK-293 cells and that extensive whole transcriptomic profiling has been 

performed comparing transcriptomic changes between wild-type and EPO 

knock-out cell-lines. The CRISPR-Cas9 plasmids used in these experiments 

were kindly gifted; pU6-(BbsI)_CBh-Cas9-T2A-mCherry was a gift from Ralf 

Kuehn (Addgene plasmid # 64324 ; http://n2t.net/addgene:64324 ; 

RRID:Addgene_64324) and pSpCas9(BB)-2A-GFP (PX458)) was a gift from 

Feng Zhang (Addgene plasmid #41838; http://n2t.net/addgene:48138; 

RRID:Addgene_48138). I would like to acknowledge and thank the Exeter 

Sequencing Service at the University of Exeter for performing the RNA-

sequencing for me and for Dario Parciti for his initial guidance with the RNA-seq 

analysis. This Chapter utilised equipment funded by the Wellcome Trust 

Institutional Strategic Support Fund (WT097835MF), Wellcome Trust Multi User 

Equipment Award (WT101650MA) and BBSRC LOLA award (BB/K003240/1). 

 

 

http://n2t.net/addgene:48138
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4.1 Introduction 
 
Erythropoietin (EPO) is a glycoprotein cytokine that is primarily responsible for 

the production, development and survival of erythrocytes (Yuanyuan Zhang et 

al., 2014). EPO is primarily produced by the kidney and foetal liver in response 

to oxygen levels and exerts its effects by binding to the EPO receptor (EPOR) 

(Suresh et al., 2020). During homeostasis, low levels of basal EPO are 

predominantly released by the peritubular capillary endothelial cells of the 

kidney to maintain a constant supply of oxygen to tissues (Jelkmann, 2011). In 

the presence of hypoxia or low erythrocyte numbers, the expression of EPO is 

tightly upregulated via the hypoxia-inducible factors (HIFs) which in turn 

increases erythropoiesis resulting in higher haemoglobin (Hgb) levels and 

restored oxygen-carrying capacity and delivery (Haase, 2013; Noguchi et al., 

2008). Both EPO and EPOR have recently been identified in tissues other than 

the kidneys and liver including the brain, retina, and myoblasts indicating a role 

for EPO in both the haematopoietic and non-haematopoietic systems (Lamon & 

Russell, 2013). Non-haematopoietic roles of EPO include, but are not limited to, 

exerting neuroprotective effects, antiapoptotic effects, regulating angiogenesis, 

a response to inflammation and stress, energy homeostasis, metabolism, and 

an immune response (Suresh et al., 2020; L. Wang et al., 2014; Yuanyuan 

Zhang et al., 2014). These effects highlight the pleiotropic activities of EPO 

which differ depending upon the tissue or cell-type (Broxmeyer, 2013). Further 

understanding of the exact cellular pathways that are activated by EPO in 

specific tissues and cells is needed.  

 

Therapies increasing circulating EPO levels are used to treat anaemia in CKD 

due to low EPO levels being one of the main drivers of anaemia in CKD patients 

(Fishbane & Spinowitz, 2018; Jelkmann, 2013; Pfeffer et al., 2009). However, it 

is very difficult to establish an animal or cell model with a phenotype similar to 

anaemia of CKD, particularly the low EPO levels (Yuanyuan Zhang et al., 

2014). Therefore, few studies establishing EPO knock-out or knock-down have 

been reported due to embryonic lethality, which has hampered functional 

analysis of the mechanisms and downstream pathways of EPO in different 

systems (C. S. Lin et al., 1996; Wu et al., 1995; Yuanyuan Zhang et al., 2014). 

One EPO knock-out model in zebrafish investigated the role EPO plays in the 

kidneys and conditional knock-out studies in mice investigated regulatory 
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regions of the EPO gene with the hope of highlighting how these models could 

have clinical utility rather than focusing on biological pathways and functions 

(Yamazaki et al., 2021). The ability to extrapolate the findings in animal models 

to the human specific effects of EPO is limited; animals have different systems 

than humans, a human disease phenotype and/or the disease causation cannot 

always be replicated in animals and there are fundamental differences between 

species in terms of genetics, physiology and molecular biology (Leenaars et al., 

2019; McGonigle & Ruggeri, 2014). It is therefore important to develop a better 

understanding of the human specific signalling cascades and functional impact 

of influencing EPO expression, particularly in relation to disease.  

 

Several cell-lines, such as HepG2, erythroid cell-lines (TF-1 and UT-7) and 

renal EPO-producing cells (REPCs), have therefore been used to investigate 

the regulation and downstream effects of EPO (Chamorro et al., 2013; Chin et 

al., 2019; Frede et al., 2011; Imeri et al., 2019; Obara et al., 2008; Udupa, 

2006). However as mentioned above, there are very few studies establishing a 

knock-out. Instead, many studies have explored the impacts of treatment with 

EPO, or hypoxia-inducible compounds like cobalt chloride, in a wide-range of 

different models to assess the effects of exogenous EPO on different pathways 

(Berlian et al., 2019; Cavadas et al., 2016; Chamorro et al., 2013; X.-H. Liu et 

al., 1999; Park et al., 2015; Rana et al., 2019; Tani et al., 2020). Despite, these 

models providing a better understanding of the pleiotropic functions of EPO and 

replicating the effects stimulated by current treatments for anaemia in CKD, the 

models are not always physiologically relevant and it is difficult to elude which 

pathways are directly affected by EPO gene expression itself and not a 

response to high exogenous levels. Moreover, several studies also focus on 

other genes involved in the hypoxic response pathway as opposed to the 

effects of EPO itself. For example, several studies have performed knock-out 

experiments on the HIFs or EPOR to investigate the effect of these on 

downstream biological mechanisms but not the direct effects of EPO (Cimmino 

et al., 2019; Q. Liu et al., 2018; Luk et al., 2013; Paliege et al., 2010; Våtsveen 

et al., 2016). For these reasons, the downstream molecular functions, biological 

pathways and signalling cascades of endogenous EPO in different cell-types 

and systems remain elusive. It is therefore essential to establish a knockout of 

the EPO gene in a relevant human cell-line.  
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Over the last decade, CRISPR-Cas9 gene-editing has come to the forefront 

making it more straightforward to edit the genome of cells and animals (Agrotis 

& Ketteler, 2015; Doudna & Charpentier, 2014; Ran, Hsu, Wright, et al., 2013). 

CRISPR-Cas9 has aided the ability to correlate genes or genetic variants to 

disease, gene expression, and biological pathways (H. Li et al., 2020).  

 

Whole transcriptomic profiling followed by subsequent gene ontology (GO) and 

enrichment analysis can be used to identify widespread gene expression 

differences and provide a better understanding of the downstream biological 

pathways, mechanisms, and networks altered by the cell model (E. Y. Chen et 

al., 2013; Kuleshov et al., 2016; Z. Xie et al., 2021). Traditionally, gene 

expression microarrays were used but this has since been replaced with highly 

parallel high-throughput next generation sequencing (NGS) technologies, such 

as RNA-sequencing (RNA-seq). RNA-seq has made it possible to identify 

widespread gene expression changes reliably and accurately with an unbiased 

insight into all transcripts (M. S. Rao et al., 2019; Z. Wang et al., 2009). RNA-

seq analysis allows transcript and isoform level quantification (given adequate 

sequencing depth), alongside identification of novel transcripts, gene fusions 

and single nucleotide variants in a single assay without needing prior 

knowledge; a clear advantage compared to pre-existing technologies (Mortazavi 

et al., 2008; Z. Wang et al., 2009; Wilhelm & Landry, 2009). Additionally, RNA-

seq can quantify gene expression changes over a larger dynamic range than 

microarray technologies, has higher specificity and sensitivity, and can detect 

rare and low-abundance transcripts (J. Li et al., 2016; Y. Liu et al., 2015; C. 

Wang et al., 2014; Z. Wang et al., 2009; S. Zhao et al., 2014).  

 

A typical RNA-seq experiment involves isolation of RNA, conversion to 

complementary DNA (cDNA), preparation of sequencing libraries through 

addition of adapters and sequencing using NGS platforms, such as Illumina’s 

HiSeq 2500 system which was used in this Chapter (Figure 4.1) (Kukurba & 

Montgomery, 2015). As ribosomal RNA (rRNA) accounts for over 95% of the 

cellular RNA, different techniques are employed prior to reverse transcription to 

deplete rRNA and isolate alternative RNA species (Conesa et al., 2016). For 

whole transcriptomic profiling, messenger RNA (mRNA) can be isolated by 
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selecting for the presence of 3’polyadenylated (poly-A) tails using poly-T oligos 

that are covalently attached to magnetic beads (Figure 4.1) (Kukurba & 

Montgomery, 2015). The majority of high throughput NGS platforms employ the 

sequencing-by-synthesis method to allow for parallel sequencing of millions of 

cDNA molecules (Figure 4.2) (Fuller et al., 2009). Briefly, cDNA fragments are 

immobilised on a flow-cell by complementary binding of the adapters to surface 

bound probes. Fragments are then clonally amplified through bridge 

amplification to create clusters of identical copies of DNA molecules (Figure 

4.2). Clonal molecules are then sequenced by Illumina platforms using the 

ensemble-based sequencing-by-synthesis method which involves the detection 

of single bases through the binding of DNA polymerase and the incorporation of 

fluorescently-labelled reversible-terminator nucleotides (each nucleotide has its 

own fluorescent marker) into the growing DNA sequence (Figure 4.2) (Bentley 

et al., 2008; C.-Y. Chen, 2014). As molecules are clonal, this approach provides 

relative RNA expression levels of genes (Kukurba & Montgomery, 2015). The 

ensemble-based sequencing-by-synthesis approach, as opposed to the single-

molecule-based approach, has low sequencing error rates (Fuller et al., 2009). 

Downstream computational analysis can then be performed on the resulting 

RNA-seq reads to check for sequencing quality, map reads to the reference 

genome and enable quantification of the number of reads aligning to particular 

genes. Biases that may be incurred during sequencing, such as polymerase 

chain reaction (PCR)-amplification bias, can be controlled for during these steps 

(Mandelboum et al., 2019; Roberts et al., 2011; W. Zheng et al., 2011). Several 

RNA-seq analysis pipelines have been developed and numerous packages are 

available depending upon the research question being proposed (Conesa et al., 

2016; Love et al., 2015). Once RNA-seq analysis has been performed and a list 

of differentially expressed genes (DEGs) across samples obtained, it is 

important to validate the findings using an independent technique, such as 

quantitative reverse-transcription polymerase chain reaction (qRT-PCR) (Lowe 

et al., 2017).  
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Figure 4.1: Schematic representation of a typical RNA-seq library preparation protocol for 
isolation of mRNA.Total RNA is extracted from the biological material of interest e.g. cells or 
tissue. 1) Particular RNA molecules are isolated using specific protocols, such as poly-A selection 
to enrich for polyadenylated transcripts. 2) RNA is converted to complementary DNA (cDNA) using 
reverse transcription. 3) Sequencing adapters, specific to the platform being used, are ligated to the 
ends of the cDNA fragments. Following PCR amplification of these fragments, the RNA-seq library 
is ready for sequencing. ncRNA = non-coding RNA; rRNA = ribosomal RNA. Created with 
BioRender.com.  
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Figure 4.2: Schematic representation ensemble-based sequencing-by-synthesis used by the Illumina platforms. See next page for legend.Figure 
4.2: Schematic representation ensemble-based sequencing-by-synthesis used by the Illumina platforms. Adapter sequences on the ends of the 
cDNA fragments bind to complementary probes on the flow-cell resulting in library hybridisation. Bridge PCR reactions amplify each bound fragment 
producing clusters of clonal fragments. During each sequencing cycle, due to the presence of DNA polymerase, one fluorescently-labelled reversible-
terminator nucleotide is incorporated into the growing DNA strand. A laser excites the attached fluorophore in each cluster being sequenced. An optic 
scanner collects the signal from each fragment cluster. As each nucleotide is labelled with a separate fluorophore, the nucleotide at that position in the 
sequence can be determined. The sequencing terminator with the fluorophore is removed from each fragment cluster and the next sequencing cycle starts. 
Created with BioRender.com. 

4.2 Chapter Aims 
 

In this Chapter, I took advantage of CRISPR-Cas9 gene-editing technology and high throughput RNA-seq to test the in vitro effects of 

changes to EPO levels. I hoped to gain further insight into the cell-line specific downstream causal genes and signalling cascades as a 

result of the largest change in EPO levels i.e. EPO or no EPO. This would provide a better understanding of the genes and downstream 

pathways implicated in response to EPO changes, and potentially enable the identification of novel genes and pathways that are altered 

in response to a lack of EPO in vitro. The findings could then be used when elucidating the role and functionally validating the effects of 

the rs1617640 variant on controlling EPO expression levels (see Chapter 5). 

 

The specific aims for this Chapter were to:  

1. Establish a whole EPO gene knock-out in a human cell-line using CRISPR-Cas9 gene-editing technology.  

2. Perform RNA-seq experiments to identify a list of differentially expressed genes (DEGs). 

3. Perform gene ontology (GO) analysis to identify downstream biological pathways and molecular functions of EPO. 

4. Functionally validate the findings from RNA-seq analysis.  

 

4.3 Methods 
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An overview of the series of experiments undertaken to establish a whole EPO 

gene knock-out and identify transcriptomic changes can be seen in Figure 4.3. 

The cell-line used throughout was the Human Embryonic Kidney (HEK)-293 

cell-line as EPO is highly expressed in the kidneys. Standard cell culture 

methods were used to grow and maintain the cell-line (see Chapter 3).   
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Figure 4.3: Overview of the experimental plan for the establishment of a whole EPO 
knock-out cell-line and whole transcriptomic analysis. CRISPR-Cas9 gene-editing 
technology with paired gRNAs was used to target the EPO gene and result in EPO gene 
disruption. After confirmation that the EPO gene had successfully been disrupted through 
Sanger sequencing, PCR, qRT-PCR and western blotting, knock-out cell-lines were sent 
for whole transcriptomic analysis using RNA-seq. An RNA-seq analysis pipeline was 
established and gene ontology analysis performed to determine the downstream effect of 
dysregulating EPO expression. Findings from RNA-seq were validated by qRT-PCR. 
Created with BioRender.com 
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 Plasmids 
 
Two commercially available genomic CRISPR-Cas9 plasmids containing 

fluorescent markers of either EGFP (enhanced green fluorescent protein) 

(pSpCas9(BB)-2A-GFP (PX458), Addgene: #48138) or mCherry (red 

fluorescent marker) (pU6-(BbsI)_CBh-Cas9-T2A-mCherry, Addgene: #64324) 

to enable positive selection after transfection were purchased from Addgene 

(http://www.addgene.org) (Figure 4.4

http://www.addgene.org/
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). 

Each plasmid contains resistance to ampicillin for use in cloning (Chu et al., 

2015; Ran, Hsu, Lin, et al., 2013). 

 

 Construction of CRISPR-Cas9 plasmid 
 

 Design of paired gRNAs targeting the EPO gene 
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To maximise efficiency of achieving full EPO gene knock-out, paired gRNAs 

were designed. gRNA sequences were identified using the online CRISPR 

design tool (available at https://www.benchling.com/crispr/) by screening the 

exonic regions conserved across EPO transcripts. Sequences with the highest 

predicted off-target (>60) and on-target (>50) scores and least matches to other 

genomic locations through a BLAST search were chosen. One gRNA targeted 

exon 2 and the other gRNA targeted exon 4 (Figure 4.5, Table 4.1). Overhangs 

for cloning into a BbsI restriction site were added to the two ends of the gRNA 

sequences (Table 4.1). Final gRNA sequences were ordered from IDT 

(Integrated DNA Technologies, Leuven, Belgium; https://eu.idtdna.com/). gRNA 

sequences were annealed and phosphorylated using T4 Polynucleotide Kinase 

(PNK) (New England BioLabs, Ipswich, UK) and then ligated into the CRISPR-

Cas9 plasmid in a single digestion and ligation reaction with an insert:plasmid 

ratio of 3:1 (calculated using the New England BioLab calculator - 

https://nebiocalculator.neb.com/#!/ligation) using BbsI restriction enzyme and 

T4 ligase (New England BioLabs, Ipswich, UK). The gRNA targeting exon 2 was 

cloned into the CRISPR-Cas9 plasmid with the EGFP fluorescent marker 

(pSpCas9(BB)-2A-GFP (PX458)) whilst the gRNA targeting exon 4 was cloned 

into the CRISPR-Cas9 plasmid with the mCherry fluorescent marker (pU6-

(BbsI)_CBh-Cas9-T2A-mCherry).  

https://www.benchling.com/crispr/
https://eu.idtdna.com/
https://nebiocalculator.neb.com/#!/ligation
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Figure 4.4: Plasmid map of the CRISPR-Cas9 vector backbones. A: Plasmid map of 
the vector backbone of the pSpCas9(BB)-2A-GFP (PX458) (Addgene: #48138) CRISPR-
Cas9 plasmid. B: Plasmid map of the vector backbone of the pU6-(BbsI) CBh-Cas9-T2A-
mCherry (Addgene: #64324) CRISPR-Cas9 plasmid. Both plasmids contain ampicillin 
resistance genes to enable cloning. The gRNAs were ligated into the gRNA scaffolds of the 
plasmids. Plasmid maps obtained from Benchling.com.  
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Figure 4.5: Schematic of the genomic location of the two gRNA sequences targeting the EPO 
gene and the expected region to be removed from the DNA upon successful cleavage by the 
Cas9 endonuclease. The location of primer sequences (P1 & P2) for genotyping are indicated by the 
arrows. Created with BioRender.com. 
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Table 4.1: The design of the paired gRNA sequences for targeting the EPO gene. 
One gRNA was designed targeting exon 2 and the other was designed targeted exon 4. Overhangs complementary to the BbsI restriction enzyme cut site 
(shown in bold) were added to the ends of the forward and reverse gRNA sequence to enable cloning of the gRNA into the CRISPR-Cas9 plasmid 
(pSpCas9(BB)-2A-GFP (PX458), Addgene: #48138 for gRNA targeting exon 2; pU6-(BbsI)_CBh-Cas9-T2A-mCherry, Addgene: #64324, for gRNA targeting 
exon 4). A ‘G’ was added after the ‘CACC’ sticky end if not already present on the 5’ sequence, and a complementary ‘C’ to the 3’ end.  

gRNA Chromosomal Location Strand  Sequence  

EPO_exon2_gRNA_Fwd 7:100721655-100721674 - Raw gRNA sequence 5’-AGAGGTACCTCTCCAGGACTCGG-3’ 

Calculate reverse 
complement of raw gRNA 
sequence without PAM 

5’-AGTCCTGGAGAGGTACCTCT-3’ 

Add BbsI overhangs 
  

5’-CACCGAGAGGTACCTCTCCAGGACT-3’ 
5’-AAACAGTCCTGGAGAGGTACCTCTC-3’ 
 

Final oligo sequences for 
ordering 

 
5’-CACCGAGAGGTACCTCTCCAGGACT-3’ 
3’-           CTCTCCATGGAGAGGTCCTGACAAA-5’                           

     

EPO_exon4_gRNA_Fwd 7:100722778-100722797 + Raw gRNA sequence CATGTGGATAAAGCCGTCAGTGG 

Calculate reverse 
complement of raw gRNA 
sequence without PAM 

CTGACGGCTTTATCCACATG 
 

Add BbsI overhangs 
  

5’-CACCGCATGTGGATAAAGCCGTCAG-3’ 
5’-aaacCTGACGGCTTTATCCACATGC-3’ 
 
 

Final oligo sequences for 
ordering 

5’-CACCGCATGTGGATAAAGCCGTCAG-3’ 
3’-           CGTACACCTATTTCGGCAGTCCAAA-5’ 



 177 

 Cloning of the recombinant plasmids into bacteria 
 

To obtain multiple copies of the recombinant plasmid, I first transformed 

bacteria with the ligation reaction before purifying and screening for the final 

CRISPR-Cas9-gRNA constructs. 50 μl of sub-cloning efficiency competent 

Escherichia Coli DH5 were thawed and mixed with 2 μl of ligation reaction (or 

a pUC19 control DNA as negative control). The reaction mix was incubated on 

ice for 15 minutes before being heat shocked for 45 seconds at 420C and 

incubated on ice for 2 minutes. Bacteria were mixed with 950 μl of Lysogeny 

Broth (LB) (ThermoFisher Scientific, Massachusetts, USA) supplemented with 

1X SOC media (10 mM NaCl, 2.5 mM KCl, 10 mM MgSO4, 20 mM Glucose, 10 

mM MgCl2) and incubated for 1 hour at 370C shaking at 225 rpm. Bacteria were 

pelleted by centrifugation at 4000 rpm for 2 minutes. Pellets were resuspended 

in 250 μl LB (ThermoFisher Scientific, Massachusetts, USA) and plated on an 

agar plate containing 100 μg/ml ampicillin (Merck Life Science, Watford, UK). 

After incubation overnight at 370C, single colonies containing transformed 

plasmids were selected and inoculated in LB containing ampicillin (Merck Life 

Science, Watford, UK). Cultures were then incubated overnight at 37 0C, 

shaking at 225 rpm. Plasmids were purified the following day from the overnight 

cultures using the QIAprep Spin Miniprep Kit (Qiagen, Maryland, USA) following 

manufacturer’s instructions. The yield and purity of purified plasmids was 

measured using the Nanodrop ND-8000 spectrophotometer (ThermoFisher 

Scientific, Massachusetts, USA).  

 

 Screening of the plasmid DNA for successful integration of the 
gRNA  

 

To confirm successful integration of the paired gRNAs into the CRISPR-Cas9 

plasmids, a double diagnostic digest was used. Upon successful integration, a 

restriction enzyme cut-site is disrupted resulting in a different digest pattern 

compared to that of the empty backbone vector (Figure 4.6A). Purified plasmid 

DNA (100 ng) was digested with BbsI and EcoRI restriction enzymes using the 

FastDigest Green Buffer (ThermoFisher Scientific, Massachusetts, USA). 

Digested products were visualised by gel electrophoresis (Figure 4.6B) and 

positive plasmids were sent for Sanger sequencing using the LKO.1 forward 

primer (5’-GACTATCATATGCTTACCGT-3’) to confirm insertion of the paired 
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gRNAs in the correct location and orientation within the CRISPR-Cas9 plasmids 

(Figure 4.6C). 
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Figure 4.6: Construction of the CRISPR-Cas9 plasmids for targeting the EPO gene. A: Virtual double 
diagnostic digest of the paired CRISPR-Cas9 plasmids (GFP = pSpCas9(BB)-2A-GFP (PX458), mCh = pU6-
(BbsI)_CBh-Cas9-T2A-mCherry). Lanes 2 & 4 represent double diagnostic digest of empty plasmid 
backbones. Lanes 3 & 5 depict the resulting band patterning after digestion of plasmids containing the gRNA. 
When a gRNA is ligated into the plasmid backbone, a restriction enzyme cut-site is lost and the resulting 
banding pattern differs. Emp = Empty backbone. L= NEB 2-Log. B: Gel electrophoresis image of the double 
restriction enzyme diagnostic digest confirming that the gRNA had successfully been inserted into the 10 
plasmids that were screened. L=Solis Biodyne 1kb ladder. Emp = Empty plasmid backbone. CRISPR-Cas9-
GFP = pSpCas9(BB)-2A-GFP (PX458), CRISPR-Cas9-mCh = pU6-(BbsI)_CBh-Cas9-T2A-mCherry. W = 
plasmid replaced with water in the digest reaction for use as a negative control. C: Sanger Sequencing of 
CRISPR-Cas9-GFP-gRNA1 and CRISPR-Cas9-mCh-gRNA4 confirmed successful insertion of each gRNA in 
the correct orientation and location in the correct plasmid.  
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 CRISPR-Cas9 gene-editing of the EPO gene 
 

 Co-transfection of HEK-293 cells with the paired gRNAs within the 
CRISPR-Cas9 plasmids 

 

Prior to gene targeting, HEK-293 cells were seeded at a density of 1 million 

cells in a 10 cm plate and incubated at 5% C02 and 37 0C for 24 hours. Cells 

were transfected with 6 μg of the CRISPR-Cas9-gRNA targeting exon 2 and 6 

μg of the CRISPR-Cas9-gRNA targeting exon 4 using lipofectamine transfection 

reagent following manufacturer’s instructions (ThermoFisher Scientific, 

Massachusetts, USA). Cells were incubated for 24 hours before being 

visualised under the Leica DMi8 Widefield microscope (Leica, Milton Keynes, 

UK) microscope to confirm successful transfection.  

 

 Isolation of single cells  
 

48 hours after successful transfection, double positive fluorescent (red and 

green) single cells were isolated by single-cell picking into 96-well plates using 

the EVOS FLoid Imaging system (ThermoFisher Scientific, Massachusetts, 

USA). Single cells were clonally expanded for around 2 weeks and passaged 

from 96-well plates into 24-well plates and then 6-well plates when at 80-90% 

confluency.  

 

 Genotyping  
 

To screen for cell-lines with successful deletion of the expected region of the 

EPO gene between the paired gRNAs (Figure 4.5), clonally expanded cells 

were pelleted and DNA was extracted from half of the pellet using the PureLink 

Genomic DNA Extraction Kit (Invitrogen, Massachusetts, USA). The remaining 

half of the pellet was re-plated for continual growth. DNA concentration and 

purity were measured using the Nanodrop ND-8000 Spectrophotometer 

(ThermoFisher Scientific, Massachusetts, USA). 100 ng of DNA was subject to 

genomic PCR using HOT FIREPol DNA polymerase according to 

manufacturer’s protocol (Solis BioDyne, Teaduspargi, Estonia). To identify 

successful targeting of the EPO gene and to distinguish between homozygous 

or heterozygous knock-outs, specific primers either side of the paired gRNAs 

were designed; epo-forward (P1): 5’-TCTAGAATGTCCTGCCTGGC-3’, epo-
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reverse (P2): 5’-GGCCCTGTGACATCCTTAGA-3’ (Figure 4.5). Resulting PCR 

products were visualised using gel electrophoresis. PCR amplicons showing the 

expected banding pattern were purified using ExoSAP-IT PCR Product Cleanup 

reagent following manufacturer’s instructions (ThermoFisher Scientific, 

Massachusetts, USA). Samples were subsequently sent for Sanger sequencing 

using Genewiz (Genewiz, Essex, UK) with the epo-forward (P1) primer to 

confirm removal of the expected region between the paired gRNAs in the 

genomic DNA. Successfully targeted clones were further propagated for 

downstream analysis.  

 

  Validation of disruption to the EPO gene 
 

Two homozygous EPO-/- knock-out cell-lines were identified through genotyping 

via PCR and Sanger sequencing. These are denoted KOA and KOB. These 

knock-out cell-lines were continually passaged before being subjected to 

downstream analyses to confirm EPO-/- knock-out had affected EPO mRNA 

expression and EPO protein levels. Frozen stocks were made for long-term 

preservation.  

 

 Over-expression of EPO  
 

For use as a positive control when confirming successful EPO-/- knock-out 

through Western blot analysis and qRT-PCR, HEK-293 cells were seeded at a 

density of 1 million cells per 10 cm plate and 24 hours later transfected with 12 

μg of an EPO overexpression (hEPO) construct (pLV-EF1alpha-EPO-218-

PDGFR) using Lipofectamine LTX reagent (ThermoFisher Scientific, 

Massachusetts, USA) following manufacturer’s protocol. pLV-EF1alpha-EPO-

218-PDGFR was a gift from Tao Liu (Addgene plasmid # 139057 ; 

http://n2t.net/addgene:139057 ; RRID:Addgene_139057) (T. Liu et al., 2017). 

 

 qRT-PCR 
 

Isogenic EPO-/- knock-outs, wild-type (WT) HEK-293 cells transfected with 

hEPO (positive control) and WT HEK-293 cells treated with empty CRISPR-

Cas9 plasmids were subjected to qRT-PCR to assess the effects of knock-out 

on EPO mRNA expression levels. Cells were pelleted and RNA was isolated 

using the Direct-zolTM RNA Miniprep kit following manufacturer’s protocol 

http://n2t.net/addgene:139057
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(Cambridge Biosciences, Cambridge, UK). 500 ng of RNA was converted to 

cDNA using PrimeScriptTM RT reagent kit (Takara Bio Europe SAS, Saint-

Germain-en-Laye, France) following manufacturer’s protocol. qRT-PCR was 

performed on at least three biological replicates using Hot FIREPol EvaGreenTM 

qPCR Master Mix with ROX (Solis BioDyne, Teaduspargi, Estonia) on the 

QuantStudio 6 Flex qPCR machine (ThermoFisher Scientific, Massachusetts, 

USA). Any samples with Ct values greater than two standard deviations (SD) 

from the mean were removed. Gene expression levels were standardised 

against the reference gene GAPDH mRNA levels using the 2−ΔΔCT method 

(Livak & Schmittgen, 2001). I also checked expression of alternative 

housekeeping genes (UBC and Pol2ra) and assessed the most stable gene or 

combination of genes for use as an endogenous control using RefFinder 

(https://www.heartcure.com.au/reffinder/) (Fuliang Xie et al., 2012). GAPDH 

showed the most stable expression and was therefore chosen as the reference 

gene for standardisation (Figure 4.7). Differences in gene expression levels 

between WT and EPO-/- cell-lines were investigated for statistical significance 

by a paired t-test carried out in RStudio version.3.6.1 (RStudio Team, 2018). 

Primer sequences are listed in Table 4.2.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

https://www.heartcure.com.au/reffinder/
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Figure 4.7: The stability of housekeeping genes for use as the reference gene in qRT-
PCR analysis. The stability of the genes was determined using the RefFinder web-based 
tool (https://www.heartcure.com.au/reffinder/) by inputting the raw Ct values obtained 
during qRT-PCR for each gene (or the average of these Ct values when combining 
reference genes). GAPDH was chosen as the housekeeping gene for all analysis due to 
being the most stable in HEK-293 cells. 
 
 
 
Table 4.2: Primer sequences used for qRT-PCR to validate the down-regulation of 
EPO mRNA expression in the EPO-/- cell-lines. Primer sequences were designed using 
the Primer3 online tool (https://primer3plus.com) and by performing a BLAST search to 
check for matches elsewhere on the genome. Primer sequences were designed to target 
exon-exon junctions if possible to increase chances of amplifying only cDNA, not genomic 
DNA.  
 
 
 
 
 
 

 
 
 
 
 
 

 Western Blotting  
 

Primer name Target Gene  Sequence (5’-3’) 

EPO-forward EPO CCTTCGCAGCCTCACCACT 

EPO-reverse EPO TGTACAGCTTCAGCTTTCCCC 

GAPDH-forward GAPDH TCCTCTGACTTCAACAGCGAC 

GAPDH-reverse GAPDH GCTGTAGCCAAATTCGTTGTCA 

UBC-forward UBC ATTTGGGTCGCGGTTCTTG 

UBC-reverse UBC TGCCTTGACATTCTCGATGGT 

Pol2ra-forward POL2RA CCATCAAGAGAGTCCAGTTCG 

Pol2ra-reverse POL2RA ACCCTCCGTCACAGACATTC 

https://primer3plus.com/
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EPO protein levels were assessed using western blot analysis. Isogenic EPO-/- 

HEK-293 cells generated by CRISPR-mediated genome-editing, WT controls 

transfected with empty CRISPR-Cas9 cells and HEK-293 cells transfected with 

hEPO overexpression vector (T. Liu et al., 2017) were subjected to western blot 

analysis. Briefly, protein lysate was extracted from HEK-293 cells by washing 

cells with ice-cold PBS and then centrifuging at 2000 rpm, 4 0C for 5 minutes. 

The supernatant was removed and pellets were resuspended in 50 μl lysis 

Buffer (0.5 μl PMSF (ThermoFisher Scientific, Massachusetts, USA), 0.5 μl 

Protease inhibitor (Sigma Aldrich, Missouri, USA), 0.5 μl Phosphatase inhibitor 

2 (Sigma Aldrich, Missouri, USA), 0.5 μl Phosphatase inhibitor 3 (Sigma Aldrich, 

Missouri, USA), 48 μl RIPA Buffer). The mixture underwent vortexing for 5 

seconds followed by incubation on ice for 5 seconds (repeated 5 times) before 

incubation on ice for 15 minutes. Samples were again subject to vortexing 5 

seconds and incubation on ice for 5 seconds (repeated 5 time) before being 

centrifuged at 13,200 rpm at 4 0C for 20 minutes. The supernatant was then 

transferred to a clean 1.5 mL Eppendorf (ThermoFisher Scientific, 

Massachusetts, USA). Protein concentration was measured using the 

PHERAstar (BMG LABTCH, Bucks, UK) by performing a BCA Assay following 

manufacturer’s protocol (ThermoFisher Scientific, Massachusetts, USA). For 

protein migration, 10% running and stacking gels were prepared. 50 g of 

protein was loaded into wells and electrophoresis was run at 90 V for 15 

minutes for entry into the stacking gel and then increased to 150 V for 90 

minutes for subsequent migration through the running gel. Gels were 

transferred onto Immobolin PVDF membranes (Merck Life Sciences, Watford, 

UK) in transfer buffer for 120 minutes at 250 mA. Following 3 x 5 minute 

washes in TBS-T, membranes were blocked overnight in blocking buffer (5% 

skimmed-milk power, TBS-T) rocking at 4 0C. The following day, membranes 

were equilibrated to room temperature by rocking for an hour before being 

washed 3 times in TBS-T for 5 minutes. Membranes were incubated in 

monoclonal mouse anti-EPO antibody (1:1000, 5% skimmed-milk power, TBS-

T; MAB2871; R&D systems, Abingdon, UK) for 1.5 hours rocking at room 

temperature before being washed in TBS-T (3 x 5 minutes) and incubated in 

goat anti-mouse IgG (H+L) Cross-Absorbed Alexa Fluorâ 680 (1:5000, TBS-T, 

ThermoFisher Scientific, Massachusetts, USA) rocking at room temperature for 

1 hour. Membranes were visualised on the LI-COR Odyssey CLx system (LI-
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COR Biotechnologies, Nebraska, USA). Next, I probed for the expression of the 

housekeeping gene, GAPDH, by incubating membranes in mouse anti-GAPDH 

antibody (1:1000, TBS-T; sc-47724; Santa Cruz Biotechnology, Texas, USA) for 

1 hour rocking at room temperature, washing in TBS-T (3 x 5 minutes) and then 

goat anti-mouse IgG (H+L) Cross-Absorbed Alexa Fluorâ 680 (1:5000, TBS-T, 

ThermoFisher Scientific, Massachusetts, USA) secondary antibody for 1 hour 

rocking at room temperature. Membranes were visualised on the LI-COR 

Odyssey CLx system (LI-COR Biotechnologies, Nebraska, USA). Experiments 

were performed at least three times.  

 

  Whole transcriptome NGS  
 

Isogenic EPO-/- knock-out and WT EPO+/+ control cells were pelleted and RNA 

was isolated using the Direct-zolTM RNA Miniprep kit following the 

manufacturer’s protocol (Cambridge Biosciences, Cambridge, UK). All WT cells 

were treated with empty CRISPR-Cas9 backbone vectors and underwent the 

same experimental conditions and treatments as the knock-in cell-lines. The 

concentration of RNA was measured accurately using the QubitTM 2.0 

Fluorometer (ThermoFisher Scientific, Massachusetts, USA) following 

manufacturer’s protocol by mixing 1 μl RNA with 200 μl QubitTM working solution 

(ThermoFisher Scientific, Massachusetts, USA). RNA samples were checked 

for quality, purity and integrity using an Agilent 2020 TapsStation with RNA 

ScreenTape (Agilent Technologies, California, USA) following manufacturer’s 

protocol. Four RNA samples per cell-line (WT, KOA & KOB) with high 

concentration and an RNA integrity number (RIN) > 8 were chosen for RNA-seq 

analysis (Schroeder et al., 2006) (Table 4.3). 1000 ng of RNA was prepared 

and sent for RNA-seq using the Exeter Sequencing Service. The following steps 

were performed by the Exeter Sequencing service: library preparation using the 

TruSeq DNA HT Library Preparation Kit using the 3’ poly-A tail primer Oligo(dT) 

from Illumina (Illumina, California, USA), RNA-seq using the Illumina HiSeq 

2500 high-throughput sequencing system (Illumina, California, USA) resulting in 

75 bp paired-end sequences. Sequencing data were provided as raw FastQ 

files. 

 

Table 4.3: The RNA quality and quantity of the 12 samples that were sent off for RNA-
seq analysis. Four WT RNA samples were sequenced alongside four KOA and four KOB 
samples. The WT cells were treated exactly the same as the EPO-/- cells but had been 
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transfected with empty CRISPR-Cas9 plasmids. Each sample from the corresponding cell-
line is a biological replicate. RIN = RNA Integrity Number.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  Bioinformatic analysis of RNA-seq data  
 

Sample RNA concentration 
(ng/μl) 

RIN Area (28S/18S) 
 

WT1 960 9.1 1.4 

WT2 614 9.6 1.3 

WT3 856 9.5 1.8 

WT4 624 9.8 1.3 

KOA-1 478 9.5 2.1 

KOA-2 254 9.8 1.8 

KOA-3 846 8.6 2.1 

KOA-4 480 9.3 2.0 

KOB-1 756 10 2.9 

KOB-2 322 9.4 1.8 

KOB-3 418 9.9 2.2 

KOB-4 308 9.6 2.4 
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The raw reads (read 1 and read 2) were downloaded from the Exeter 

Sequencing Service. Bioinformatic analysis was performed on a Unix-based 

operating system server or using RStudio version.3.6.1 (RStudio Team, 2018). 

The workflow developed and followed for RNA-seq analysis is outlined in 

Figure 4.8. All scripts generated for the analysis of the RNA-seq data are 

avaliable in a repository on Github and can be seen in Appendix 1: Scripts for 

RNA-seq analysis  

 

 Quality control of sequence reads 
 

Quality control (QC) checks were undertaken on the raw reads using MultiQC 

(Ewels et al., 2016). The main QC metrics considered were the quality per 

base, GC content per sequence, per sequencing quality score, sequence length 

distribution, sequence duplication levels and the adapter sequence content 

(Figure 4.9). Adapter sequences (as defined by Illumina), nucleotides with poor 

quality from the 3’ end and reads shorter than 25 bp were removed using 

CutAdapt version 1.13 (Figure 4.10, Table 4.4) (Martin, 2011). MultiQC (Ewels 

et al., 2016) was again used to check the trimmed reads (Figure 4.11).  
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Figure 4.8: Schematic representing an overview of the pipeline followed to perform RNA-seq analysis. The different software packages used in each 
step are shown in italics. Created with BioRender.com. 
:
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Figure 4.9: Quality Control checks of the raw RNA-seq raw reads. A: Plot of the Phred Scores for the 12 trimmed sequencing reads. All Phred scores are 
above 20 with the lower quality for the first five bases. B: Per sequence quality plot. All sequencing reads had an average quality > 30. C: Plot showing the GC 
content per sequence. D: The number of bases read as ‘N’ along each sequencing read. E: The distribution of the sequence lengths across reads. F: Quality 
control check to see if adapter sequences were present and if any sequences were over-represented. Images were produced using MultiQC (Ewels et 
al.,2016).  
 



 190 

 

Figure 4.10: Lengths of trimmed sequences and the number of counts in each 
sample. The highest number of counts are within the first 10 bp and at the end of the reads 
due to the inclusion of adapter sequences and poorer quality nucleotides at the 3’ end.  
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Table 4.4: General statistics table showing the percentage of reads trimmed for the RNA-seq experiment after carrying out QC checks using 
MultiQC. Dups = Duplicate reads. M Seqs = Total sequences (millions) 

Sample Name % Trimmed % Dups % GC Length % Failed M Seqs 

WT1_r1 
 

46.2% 45% 75 bp 33% 13.6 

WT1_r2 0.9% 45.6% 45% 75 bp 8% 13.6 

WT1_trimmed_r1 
 

45.3% 45% 75 bp 33% 13.5 

WT1_trimmed_r2 
 

44.5% 45% 75 bp 8% 13.5 

WT2_r1 
 

49.1% 45% 75 bp 25% 16.5 

WT2_r2 0.7% 46.6% 45% 75 bp 17% 16.5 

WT2_trimmed_r1 
 

48.3% 45% 75 bp 25% 16.4 

WT2_trimmed_r2 
 

45.8% 45% 75 bp 17% 16.4 

WT3_r1 
 

48.9% 45% 75 bp 25% 14.8 

WT3_r2 1.0% 45.6% 45% 75 bp 17% 14.8 

WT3_trimmed_r1 
 

47.9% 45% 75 bp 25% 14.7 

WT3_trimmed_r2 
 

44.6% 45% 75 bp 17% 14.7 

WT4_r1 
 

47.9% 44% 75 bp 25% 16.3 

WT4_r2 0.9% 46.0% 45% 75 bp 17% 16.3 

WT4_trimmed_r1 
 

46.9% 44% 75 bp 25% 16.2 

WT4_trimmed_r2 
 

45.0% 45% 75 bp 17% 16.2 

KOA-1_r1 
 

52.9% 44% 75 bp 33% 19.5 

KOA-1_r2 1.2% 48.1% 44% 75 bp 8% 19.5 

KOA-1_trimmed_r1 
 

51.8% 44% 75 bp 33% 19.4 

KOA-1_trimmed_r2 
 

47.3% 44% 75 bp 17% 19.4 

KOA-2_r1 
 

54.3% 44% 75 bp 33% 19.9 

KOA-2_r2 1.3% 48.9% 45% 75 bp 8% 19.9 

KOA-2_trimmed_r1 
 

53.1% 44% 75 bp 33% 19.7 

KOA-2_trimmed_r2 
 

48.1% 45% 75 bp 8% 19.7 

KOA-3_r1 
 

47.8% 45% 75 bp 25% 14.0 
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KOA-3_r2 0.8% 46.9% 45% 75 bp 8% 14.0 

KOA-3_trimmed_r1 
 

47.1% 45% 75 bp 25% 13.9 

KOA-3_trimmed_r2 
 

46.3% 45% 75 bp 8% 13.9 

KOA-4_r1 
 

47.1% 45% 75 bp 25% 14.5 

KOA-4_r2 1.0% 46.8% 45% 75 bp 8% 14.5 

KOA-4_trimmed_r1 
 

46.2% 45% 75 bp 25% 14.3 

KOA-4_trimmed_r2 
 

46.0% 45% 75 bp 8% 14.3 

KOB-1_r1 
 

55.2% 45% 75 bp 33% 20.8 

KOB-1_r2 1.0% 48.4% 45% 75 bp 17% 20.8 

KOB-1_trimmed_r1 
 

54.2% 45% 75 bp 33% 20.6 

KOB-1_trimmed_r2 
 

47.4% 45% 75 bp 17% 20.6 

KOB-2_r1 
 

44.1% 45% 75 bp 33% 13.4 

KOB-2_r2 1.4% 43.4% 45% 75 bp 8% 13.4 

KOB-2_trimmed_r1 
 

43.0% 45% 75 bp 33% 13.2 

KOB-2_trimmed_r2 
 

42.4% 45% 75 bp 8% 13.2 

KOB-3_r1 
 

49.2% 44% 75 bp 25% 16.3 

KOB-3_r2 1.1% 47.1% 45% 75 bp 17% 16.3 

KOB-3_trimmed_r1 
 

48.2% 45% 75 bp 25% 16.1 

KOB-3_trimmed_r2 
 

46.2% 45% 75 bp 17% 16.1 

KOB-4_r1 
 

48.2% 45% 75 bp 25% 14.8 

KOB-4_r2 0.9% 47.3% 45% 75 bp 17% 14.8 

KOB-4_trimmed_r1 
 

47.3% 45% 75 bp 25% 14.6 

KOB-4_trimmed_r2 
 

46.5% 45% 75 bp 17% 14.6 
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Figure 4.11: Quality Control checks of the RNA-sequencing raw reads after trimming had been performed using CutAdapt to remove poor quality 
sequences, adapter sequences and reads < 25 bp. A: Plot of the Phred Scores for the 12 trimmed sequencing reads. All Phred scores are above 20 with the 
lower quality for the first five bases. B: Per sequence quality plot. All sequencing reads had an average quality > 30. C: Plot showing the GC content per sequence. 
D: The number of bases read as ‘N’ along each sequencing read. E: The distribution of the sequence lengths across reads. F: Quality control check to see if all 
adapter sequences had been removed and if any sequences were over-represented. Images were produced using MultiQC (Ewels et al.,2016).  
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 Alignment of reads to the reference genome 
 

Reads were aligned to the Homo sapiens GRCh38/hg38 reference genome 

using STAR version 2.7.1 (Figure 4.12) (Dobin et al., 2013). The reference 

genome included the nucleotide sequence, haplotypes, chromosomes, 

scaffolds and patches. First, a genome index file was generated using the 

‘genomeGenerate’ function. To generate the index files, the reference genome 

sequence was provided alongside the corresponding annotation file with 

information on gene names and transcripts from Ensembl (Howe et al., 2021) 

(http://ftp.ensembl.org/pub/release-105/fasta/homo_sapiens/dna/). The --

sjdbOverhang option was set at 74 as this length should be equal to the read 

length minus 1. This option specifies the length of the genomic sequence 

around the annotated junction used in constructing the splice junction database. 

Second, mapping of the reads to the reference genome was run using the 

‘alignReads’ function. Default options were used and the output produced were 

binary alignment files in BAM format which were sorted by coordinate.  

 

 Gene Quantification 
 

To calculate the changes in gene expression as a result of EPO-/- knock-out, the 

number of reads mapping to a gene were counted. Gene quantification was 

performed using the featureCounts subread package (Liao et al., 2013, 2014) 

based on Ensembl GRCh38/hg38 annotation release version 2.0.0 (Figure 

4.13) (Howe et al., 2021).   

 

 

 

 

 

 

 

 

 

 

http://ftp.ensembl.org/pub/release-105/fasta/homo_sapiens/dna/
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Figure 4.12: The percentage of reads mapping to the reference genome. The percentage of reads 

(y-axis) per sample (x-axis) aligning to either unique positions (blue), multiple loci (red) or no loci due to 
being too short (green) on the GRCh38/hg38 reference genome. Alignment of sequencing reads to the 
reference genome (Homo sapiens GRCh38/hg38) was performed using STAR version 2.7.1 (Dobin et 
al., 2013). Plot produced in RStudio version.3.6.1. 
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 Raw count normalisation and data distribution analysis 
 

Figure 4.13: The number of reads assigned to genomic features. The number of reads (y-axis) per 
sample (x-axis) being assigned to genomic features (exons). Gene quantification was performed using 
the featureCounts subread package (Liao et al., 2013, 2014) based on the Ensembl GRCh38/hg38 
annotation release version 2.0.0. Red: reads that were successfully assigned to a genomic feature. 
Green: reads unassigned to a genomic feature due to ambiguity. Turquoise: reads unassigned to a 
genomic feature due to multi-mapping. Purple: reads unassigned to a genomic feature due to not 
overlapping any genomic feature. Plot produced in RStudio version.3.6.1. 
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All further RNA-seq analysis was performed in RStudio version.3.6.1 unless 

otherwise stated (RStudio Team, 2018). Transcripts whose mean count across 

all samples were less than 10 were removed. Counts were normalised using the 

median of ratios method implemented in the DeSeq2 package (Love et al., 

2014). The variance in the data was assessed by generating a dispersion plot 

and a mean-SD plot to check for heteroskedasticity using the ‘plotDispEsts’ and 

‘meanSdPlot’ functions in DeSeq2 respectively (Figure 4.14A) (Love et al., 

2014). Some variability in RNA-seq data is expected, but due to the clear hump 

to the left-hand-side of the mean-sd plot (Figure 4.14A) violating the 

assumption of homoscedasticity, data was subsequently transformed to 

stabilise the variance. Counts were transformed using the two methods offered 

by DeSeq2 (Love et al., 2014); variance stabilising transformation (VST, ‘vst’ 

function) (Anders & Huber, 2010) or the regularised-logarithm transformation 

(rlog, ‘rlogTransformation’ function) (Love et al., 2014). The transformed data 

showed homoscedasticity highlighted by the flatter trend in the mean-sd plots 

(Figure 4.14B-C). I used the rlog transformation for all downstream analysis 

including clustering and data visualisation. The distribution of the transformed 

normalised counts was visualised via a box-and-whisker plot alongside violin 

plots using the ‘boxplot’ and ‘ggplot2’ functions respectively. Dissimilarities 

between samples was checked using a dendrogram which was created using 

Euclidean distance implemented by the ‘dist’ function and Ward’s linkage 

implemented by the ‘hclust’ function 

 

 Principal Component Analysis 
 
Principal component analysis (PCA) was performed using the R ‘prcomp’ 

function to check for similarity between samples. Bi-plots were generated to 

compare the top five eigenvectors (principal components [PCs]) on a pairwise 

basis. PCA was used to identify genes that best segregate the knockout 

samples from the wild-type controls. Gene-to-eigenvector eigenvalues were 

derived to identify the genes responsible for the variation along the different 

PCs. 
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Figure 4.14: Mean-SD plots after performing normalisation and transformation on the raw counts to check for heteroskedasticity. A: Mean-SD 
plot for the normalised raw count data transformed on the log2 scale. B: Mean-SD plot for the normalised count data having undergone rlog 
transformation. C: Mean-SD plot of the normalised counts after variance stabilising transformation.   
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 Differential Gene Expression analysis  
 

To identify genotype-specific gene expression changes, I performed differential 

gene expression analysis using DeSeq2 (Love et al., 2014). DeSeq2 (Love et 

al., 2014) uses a negative binomial model to fit the observed read counts and 

estimate the difference in expression between the knock-outs and controls. The 

log2 fold-change was calculated using Equation 4.1.  

 

𝐿𝑜𝑔2 𝑓𝑜𝑙𝑑 − 𝑐ℎ𝑎𝑛𝑔𝑒 =
𝑀𝑒𝑎𝑛 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑒𝑑 𝑐𝑜𝑢𝑛𝑡𝑠 𝑓𝑜𝑟 𝑘𝑛𝑜𝑐𝑘 − 𝑜𝑢𝑡 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

𝑀𝑒𝑎𝑛 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑒𝑑 𝑐𝑜𝑢𝑛𝑡𝑠 𝑓𝑜𝑟 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 
 

 

Equation 4.1: Calculation of the log2fold-change.  

 

P-values were calculated using the Wald test and a Benjamini-Hochberg 

correction was applied to account for multiple testing. Statistically significant 

differentially expressed genes (DEGs) were determined by an adjusted p-value 

(P-adj)  0.05. I determined strong differential expression when genes were 

regulated by at least 2-fold. As RNA-seq was performed on two EPO-/- knock-

out cell-lines (KOA & KOB), to obtain the most accurate list of DEGs most likely 

to be differentially expressed due to the effect of EPO-/-, differential expression 

analysis was performed comparing EPO+/+ to each EPO-/- knock-out 

respectively (i.e. WT vs KOA and WT vs KOB). MA plots and volcano plots 

were generated to check for different gene expression. The MA plot was 

generated by plotting the log2 fold-change against the natural log of the mean of 

the normalised counts + 1 and the volcano plot was generated using ‘ggplot’ 

comparing the -log10(P-adj values) against the log2 fold-change. DEGs (P-adj  

0.05) overlapping in both comparisons were identified using the ‘venn.diagram’ 

function. The mean PC values were calculated from the original PCA for the 

overlapping DEGs. 

 

 Supervised Clustering 
 

Supervised clustering was performed by filtering transcripts from the differential 

expression analysis at P-adj  0.05 and absolute log2 fold-change  2. 

Regularised log counts for the transcripts were converted to the z-scale and 
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then clustered using the 1-Pearson correlation distance and Ward’s linkage 

using the ‘heatmap’ function of the ComplexHeatMap package (Gu et al., 2016). 

Transcripts were clustered whilst samples were fixed to maintain the order.  

 

 Gene set enrichment 
 

Gene set enrichment analysis was performed on the list of overlapping DEGs 

using Enrichr (E. Y. Chen et al., 2013; Kuleshov et al., 2016; Z. Xie et al., 2021). 

Enrichment was performed with default parameters. Bar charts displaying 

results were obtained from Enrichr. The GoSeq2 package (Young et al., 2010) 

implemented in RStudio version.3.6.1  (RStudio Team, 2018) was also used to 

compare the results obtained by Enrichr. A weight for each gene was calculated 

using the ‘probability weighted’ function to account for length bias. Over- and 

under-expressed GO categories among the DEGs were calculated using the 

Wallenius equation. A Benjamini and Hochberg adjustment was used to correct 

for multiple testing. Bar plots representing the results obtained from GoSeq2 

were generated using ‘ggbarplot’ function.  

 

 Validation of differential gene expression 
 

Top DEGs were subsequently subjected to qRT-PCR, as described above in 

4.3.4.2 to validate differential expression. As several candidate genes appeared 

to be involved in the Notch signalling pathway, additional genes involved in the 

canonical Notch signalling pathway were also selected for analysis by qRT-

PCR. Primer sequences for all genes are listed in Table 4.5. Reactions were 

carried out on at least three biological replicates. Any samples with Ct values 

greater than two SD from the mean were removed. Gene expression levels 

were standardised against the reference gene GAPDH mRNA levels using the 

2−ΔΔCT method (Livak & Schmittgen, 2001). Differences in gene expression 

levels between WT EPO+/+ and EPO-/- knock-out cell-lines were investigated for 

statistical significance by a paired t-test carried out in RStudio version.3.6.1 

(RStudio Team, 2018).  
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Table 4.5: Primer sequences for use in qRT-PCR to validate expression of candidate 
genes in the EPO-/- knock-out compared to EPO+/+. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Primer name Target Gene  Sequence (5’-3’) 

EPO-forward EPO CCTTCGCAGCCTCACCACT 

EPO-reverse EPO TGTACAGCTTCAGCTTTCCCC 

GAPDH-forward GAPDH TCCTCTGACTTCAACAGCGAC 

GAPDH-reverse GAPDH GCTGTAGCCAAATTCGTTGTCA 

MLH1-forward MLH1 GAAGTTATCCAGCGGCCAG 

MLH1-reverse MLH1 TGAATCAACTTCAGGCCTCC 

HEY1-forward HEY1 TGCGGACGAGAATGGAAACT 

HEY1-reverse HEY1 TCGTCGGCGCTTCTCAATTA 

PARP9-forward PARP9 GCCTCATACATCTCTTCCACGT 

PARP9-reverse PARP9 GCCTCATACATCTCTTCCACGT 

DTX3L-forward DTX3L GCCTCATACATCTCTTCCACGT 

DTX3L-reverse DTX3L ACTCTCTCCTTAGCTGCCCT 

Notch1-forward NOTCH1 CGCACAAGGTGTCTTCCAG 

Notch1-reverse NOTCH1 AGGATCAGTGGCGTCGTG 

Hes1-forward HES1 AAGAAAGATAGCTCGCGGCA 

Hes1-reverse HES1 TACTTCCCCAGCACACTTGG 

Hey2-forward HEY2 CTTCCACGGAGCTCAGGTAC 

Hey2-reverse HEY2 CTTCCACGGAGCTCAGGTAC 

LRATD2-forward LRATD2 GCCGAGCCTACACCTTCAAA 

LRATD2-reverse LRATD2 CGAAACCAACTCCAGGGTCA 

LCP1-forward LCP1 GGTGTTAACCCTCGAGTCAA 

LCP1-reverse LCP1 AGTTTGGGGTATGGCGGTTT 

ZNF331-forward ZNF331 GGTCTCACTGGATTTGGAGT 

ZNF331-reverse ZNF331 AGCGTACCTTCACATATCCAG 

IFITM2-forward IFITM2 TTCATGAACACCTGCTGCCT 

IFITM2-reverse IFITM2 AGATGTTCAGGCACTTGGCG 
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4.4 Results 
 

 Establishment of the EPO-/- knock-out human cell-line model 
 

To determine the downstream causal genes and signalling cascades of EPO, I 

generated an EPO-/- knock-out cell-line in HEK-293 cells using the CRISPR-

Cas9 gene-editing technique with paired gRNAs. The paired gRNAs were 

designed to target conserved sequences on protein-coding exons of the EPO 

gene to achieve effective gene disruption (Figure 4.5). The gRNAs target the 

Cas9 endonuclease to the desired locations on the genomic DNA to introduce 

two DSBs (Figure 4.5). These DSBs are repaired via NHEJ resulting in the 

hypothetical removal of 645 bp from the EPO gene sequence (Figure 4.5). 

Fluorescent imaging confirmed successful co-transfection of the two CRISPR-

Cas9-gRNA plasmids into HEK-293 cells (Figure 4.15A). Single cells 

expressing both red and green fluorescence were isolated and clonally 

expanded before being screened for disruption of the EPO gene using genomic 

PCR. Two homozygous EPO-/- cell-lines were identified as potential knock-outs 

(KOA & KOB) (Figure 4.15B). Sanger sequencing of the two confirmed deletion 

of the region between the paired gRNAs; KOA had an excision of 1,188 bp 

whilst KOB had an excision of 1,137 bp (Figure 4.15C).  

 

 EPO-/- knock-out resulted in reduced EPO mRNA expression levels 
 

The two knock-out cell-lines were subjected to qRT-PCR to confirm that gene 

disruption had resulted in a reduction in EPO mRNA expression levels. Both 

cell-lines had significantly reduced mRNA expression levels (P < 0.01) 

compared to WT control and HEK-293 cells treated with an EPO over-

expression vector confirming that gene disruption had altered EPO mRNA 

expression levels (Figure 4.16A). 

 

 EPO-/- knock-out resulted in reduced EPO protein levels 
 
EPO protein levels were analysed by western blotting and revealed that gene 

disruption had also reduced EPO protein expression in both knock-out cell-lines 

(Figure 4.16B). For both KOA and KOB, no EPO protein was detected whilst 

GAPDH protein was detected in all samples (Figure 4.16B). These findings 

confirmed that the gene disruption caused by CRISPR-Cas9 gene-editing had 
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altered the genomic sequence and led to a down-regulation of EPO expression 

at the mRNA and protein level validating successful disruption to the EPO gene.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 204 

 
 
 
 

 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.15: Establishment of two EPO-/- knock-out cell-lines.  

A: Fluorescent Imaging of HEK-293 cells after transfection with CRISPR-Cas9-gRNA plasmids confirmed successful transfection of both plasmids. 
Double positive single cells were isolated and clonally expanded. B: After clonal expansion, single cells were genotyped by PCR using primers either 
side of the gRNA. Cell-lines A & B appeared to be knock-outs due to the presence of the band at the lower amplicon size of 645 bp. WT = wild-type HEK-
293 cells used as a positive control. Emp = wild-type HEK-293 cell treated with empty CRISPR-Cas9 plasmids used as a positive control.  C: Sanger 
sequencing of cell-lines A and B confirmed that the expected region of the EPO gene between the paired gRNAs had successfully been removed from 
the genomic DNA. The blue highlighted region is the 3’ end of gRNA where the PAM site is located. 
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Figure 4.16: EPO mRNA expression and protein expression are disrupted in both EPO-/- knock-out cell-lines compared to WT controls. A: EPO mRNA 
expression is significantly reduced in the knock-out cell-lines (KOA & KOB) compared to wild-type (WT) controls. HEK-293 cells treated with an over-expression 

EPO construct were used as a positive control (hEPO). Data is shown as mean  SEM. Paired t-test was performed to test for levels of significance. *P≤0.05, 
**P≤0.01, ***P≤0.001, ****P≤0.0001. B: EPO expression was reduced at the protein level in the knock-outs (KOA & KOB) compared to wild-type (WT) controls and 
the HEK-293 cells treated with an EPO over-expression construct (hEPO). GAPDH was used as a positive control and shows consistent pattern of expression 
across all samples. EPO ~ 34 kDa. GAPDH ~ 37 kDa. 
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 Distribution and variability checks revealed clear transcriptional 
differences between controls and knock-outs 

 
A normalised dataset with no sample outliers was shown and consistent gene 

expression across samples was seen with a peak frequency of gene expression 

at 17 transcripts (Figure 4.17A). Investigation into the variability of the data 

through the generation of a dispersion plot showed the expected distribution 

indicating the data was a good fit for the DeSeq2 model (Figure 4.17B). The 

data generally scattered around the curve which represents the expected 

dispersion value for genes of a given expression strength. Genes with a high 

level of expression represented by a higher mean value showed decreased 

levels of dispersion compared to those genes with a lower level of expression 

(Figure 4.17B). From unsupervised hierarchal clustering, it was evident that the 

knock-outs exhibited large transcriptional differences from the control samples 

due to the segregation pattern (Figure 4.18). Further branching segregated the 

two knock-out cell-lines from each other indicating cell-line specific 

transcriptional differences. Biological replicates showed the highest degree of 

correlation within cell-lines as expected. The top 50 most highly expressed 

genes were plotted on a heat map across samples (Figure 4.19). The top 

genes with highest expression were well-known ubiquitously expressed genes 

including EEF1A1, GAPDH, TUBB, mitochondrial genes and ribosomal protein 

genes as expected (Figure 4.19). 
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Figure 4.17: Assessing the distribution and variability of the read counts.  
A: Violin plot showing the distribution and variability of gene expression between wild-types 
and knock-outs. Each violin represents a histogram and box-and-whisker plot. The y-axis 
represents the regularised log counts of transcripts. The x-axis represents each sample. 
There were no outliers present in the data after performing normalisation on the raw read 
counts. B: Dispersion plot. Black dots represent the maximum-likelihood estimate of 
transcript dispersion from normalised counts; blue dots represent the shrunk dispersion 
estimates and the red line represents the fitted model generated using logistic regression. 
There was little evidence of heteroskedasticity in the data as assessed by plotting a 
dispersion plot on the mean of normalised counts.  
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Figure 4.18: Distance between samples measured by unsupervised hierarchical clustering. 
Clustering was performed with Euclidean distance and Ward’s linkage for all WT and EPO-/- knock-out 
samples. The darker the shade of blue or the shorter the vertical line on the dendrogram, the more similar 
the gene expression between samples.  
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Figure 4.19: Heat map for the top 50 most highly expressed genes across all samples sent for 
RNA-seq analysis. The heat map was generated comparing normalised counts of each gene across 
each sample.  

 
 



 210 

 PCA analysis revealed clear segregation between knock-outs and 
controls 

 
PCA analysis revealed large transcriptional differences between EPO-/- knock-

out samples and WT samples with 43% of the variation in the dataset being 

explained by the differences in the knock-outs compared to controls. PC1 

entirely segregated EPO+/+ WT from EPO-/- knock-out and indicated that a 

reasonable proportion of the transcriptome is different between genotypes 

(Figure 4.20). The top 500 genes responsible for the variation along this axis 

were checked by ordering the absolute eigenvalues for PCA. The top 20 genes 

identified included MAGE-A genes, GABRA3 and MLH1 (Table 4.6). The 

differential expression of these genes was evaluated across samples. A strong 

and significant differential expression was seen between knock-outs and control 

samples for each of these genes (log2fold-change  |2| & P-adj  0.05) (Table 

4.6).  
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Figure 4.20: Pairwise PCA bi-plots to evaluate the clustering of samples.  

Analysis of the expression variation patterns using PCA revealed that a substantial portion of the 
transcriptome differs between EPO+/+ WT cell-lines (blue dots) and EPO-/- (orange or pink dots) knock-
out cell-lines. When observing PC1, a high variation can be observed (43%) with a clear segregation 
between wild-type and knock-out cell-lines.  
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Table 4.6: The top 20 genes responsible for the segregation between wild-type and knock-outs based on PC1 values. Top 20 genes and respective 
eigenvalues derived from PCA analysis and the differential expression of these top 20 genes. Logarithmic fold-changes indicate differential expression in 
knock-outs.  
 

Geneid GeneSymbol Chromosome Class PC1 Log2 fold-change P-adjusted 

ENSG00000198681 MAGEA1 X:153179284-153183880 protein_coding 0.115 -12.16 1.13E-59 

ENSG00000221867 MAGEA3 X:152698767-152702347 protein_coding 0.109 -11.81 8.54E-56 

ENSG00000197172 MAGEA6 X:152766136-152769747 protein_coding 0.107 -11.33 1.34E-51 

ENSG00000136167 LCP1 13:46125920-46211871 protein_coding 0.105 -6.40 1.02E-17 

ENSG00000170627 GTSF1 12:54455950-54473602 protein_coding 0.105 -11.53 1.52E-53 

ENSG00000130844 ZNF331 19:53519527-53580269 protein_coding 0.078 -5.73 3.41E-167 

ENSG00000011677 GABRA3 X:152166234-152451315 protein_coding 0.061 -9.34 4.63E-34 

ENSG00000143320 CRABP2 1:156699606-156705816 protein_coding 0.061 3.99 3.80E-14 

ENSG00000133169 BEX1 X:103062651-103064171 protein_coding 0.059 4.92 3.69E-72 

ENSG00000101160 CTSZ 20:58995185-59007254 protein_coding 0.058 -7.04 3.12E-40 

ENSG00000251381 LINC00958 11:12961541-12989597 lncRNA 0.056 -6.02 5.34E-58 

ENSG00000249568 AC104793.1 4:161378953-161388417 lncRNA 0.055 5.51 1.83E-42 

ENSG00000076242 MLH1 3:36993332-37050918 protein_coding 0.055 7.65 7.02E-23 

ENSG00000198185 ZNF334 20:46499630-46513559 protein_coding 0.054 -9.30 1.62E-33 

ENSG00000188511 C22orf34 22:49414524-49657542 lncRNA 0.051 -9.12 1.50E-31 

ENSG00000168672 LRATD2 8:126552443-126558478 protein_coding 0.051 3.20 0.00E+00 

ENSG00000224817 AC010789.1 10:101701994-101730037 lncRNA 0.050 -9.09 1.97E-31 

ENSG00000204389 HSPA1A 6:31815543-31817946 protein_coding 0.050 8.93 3.53E-06 

ENSG00000181007 ZFP82 19:36383120-36418644 protein_coding 0.050 -8.36 1.31E-26 

ENSG00000099399 MAGEB2 X:30215563-30220089 protein_coding 0.050 -3.28 5.11E-02 
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  Differential gene expression analysis identified 3,501 DEGs as a 
result of EPO-/- knock-out. 

 
To obtain the best list of DEGs specific to knocking out the EPO gene, 

differential gene expression analysis was performed comparing controls to KOA 

and KOB separately. 6,470 DEGs were identified in KOA whilst 6,674 DEGs 

were identified in KOB (P-adj  0.05). 693 and 657 of these DEGs had the 

strongest amount of differential expression (log2 fold-change  |2|) in KOA and 

KOB respectively. MA and volcano plots (Figure 4.21A-B) revealed an 

abundance of genes up- or down-regulated in the knock-outs compared to the 

controls with similar numbers of DEGs (P-value  0.05) with similar levels of 

differential expression identified. Several of the genes which showed the 

highest amount of differential expression were shared between the two knock-

outs. These results indicated that differential expression was likely due to the 

effect of disrupting the EPO gene. When combining the list of DEGs identified in 

the two separate analyses (P-adj  0.05), 3,722 were found to be shared with 

314 showing evidence of strong differential expression (log2 fold-change  |2|) 

(Figure 4.22A). The direction of effect of these 3,501 DEGs was consistent 

between knock-out cell-lines (Figure 4.22B, Pearson’s correlation coefficient, 

r=0.9, P-value < 2.2x10-16). 1,750 of the consistent overlapping DEGs were 

down-regulated whilst 1,741 were up-regulated. A strong agreement of 

expression pattern across knock-out samples was seen causing clear 

segregation between knock-out and controls (Figure 4.23). The 221 genes 

showing inconsistent directions of effect were removed from further analysis. A 

list of the top 20 up- and down-regulated genes are listed in Table 4.7. The 

mRNA expression levels of two of the top up- and two of the top down-regulated 

DEGs which had highest predicted expression in HEK-293 cells were validated 

by qRT-PCR to confirm the same expression patterns were seen within the cells 

as estimated by RNA-seq. The results confirmed the differential expression 

identified by RNA-seq with those up-regulated showing higher mRNA 

expression levels and those down-regulated showing lower mRNA expression 

levels compared to controls (Figure 4.23).  
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Figure 4.21: Differential gene expression analysis of EPO knock-outs compared to wild-type controls. A: Volcano (top plot) 
and MA (bottom plot) plot for the differential expression of KOA compared to wild-type. B: Volcano (top plot) and MA (bottom plot) 
plot for the differential expression of KOB compared to wild-type. In the volcano plots, the green dots represent absolute log2 fold-

change  2; blue dots represent P-adj  0.05; red dots represent P-adj  0.05 and absolute log2 fold-change  2. In the MA plots, 
the red dots represent genes passing P-adj threshold of 0.05. 
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Figure 4.22: Identification of 3,722 overlapping differentially expressed genes in both knock-outs compared to wild-type controls. A: 
Venn diagram of the differentially expressed genes identified in differential expression analysis comparing KOA to wild-type and KOB to wild-
type. 3,722 of the DEGs identified in each analysis were shared and likely to be differentially expressed due to disruption of the EPO gene. B: 
Comparison of the log2 fold-change of the 3,722 DEGs in KOA (x-axis) and KOB (y-axis). There is a high degree of consistency in the log2 
fold-changes in both knock-outs. Pearson’s correlation coefficient, r=0.9, P-value < 2.2x10-16. 
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Figure 4.23: Heat map of the 3,722 overlapping differentially expressed genes. Clustering was performed on the 3,722 overlapping 

DEGs which were found to be statistically significantly differentially expressed by passing a P-adj  0.05 and absolute log2 fold-change  
2. The regularised log counts for the differentially expressed genes were converted to a z-score by scaling across rows. Rows were 
clustered via Euclidean distance and Ward’s linkage. Samples were fixed to match the cellular genotype. Altered expression profiles are 
seen between knock-outs and wild-types.  
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Figure 4.24: Relative change in mRNA expression levels of four of the most DEGs identified through RNA sequencing. 
qRT-PCR was performed to validate differential expression of a four of the most strongly DEGs that have high expression in 
HEK-293 cells. Cells transfected with an EPO over-expression construct were used as positive controls (hEPO). EPO was 

repeated as a control experiment. Data is shown as mean  SEM. Paired t-test was performed to test for levels of significance. 
*P≤0.05, **P≤0.01, ***P≤0.001, ****P≤0.0001. 



 218 

Table 4.7: Differential expression of the top 20 up- and down-regulated genes.  

Log2 fold-changes and P-adj values are summarised for each of the analyses; WT vs KOA and WT vs KOB. The average of the PC1 eigenvalues was 
calculated from the PC eigenvalues for WT vs KOA and PC eigenvalues for WT vs KOB.    

WT vs KOA WT vs KOB  

Direction Geneid GeneSymbol Log2 Fold-change SE padj Log2 Fold-change SE padj Average PC1 

Down-regulated ENSG00000136167 LCP1 -8.56 0.25 1.95E-245 -5.58 0.12 0 0.11 

ENSG00000198681 MAGEA1 -12.15 1.02 2.64E-30 -12.18 1.02 2.34E-30 0.10 

ENSG00000221867 MAGEA3 -11.08 0.99 9.72E-27 -12.54 1.03 4.55E-32 0.09 

ENSG00000197172 MAGEA6 -10.97 0.99 3.20E-26 -11.71 1.03 5.13E-28 0.09 

ENSG00000170627 GTSF1 -10.80 0.99 1.60E-25 -12.26 1.02 9.50E-31 0.09 

ENSG00000130844 ZNF331 -6.55 0.32 8.62E-88 -5.23 0.22 1.20E-120 0.07 

ENSG00000099399 MAGEB2 -8.67 0.84 8.10E-23 -2.30 0.16 1.70E-46 0.06 

ENSG00000100979 PLTP -5.47 0.60 6.33E-18 -0.83 0.18 5.07E-05 0.06 

ENSG00000137573 SULF1 -3.55 0.39 4.53E-18 -2.53 0.18 2.43E-41 0.06 

ENSG00000163584 RPL22L1 -3.11 0.08 0 -2.63 0.14 2.07E-74 0.06 

ENSG00000170421 KRT8 -4.84 0.70 1.15E-10 -1.07 0.17 4.29E-09 0.05 

ENSG00000104267 CA2 -2.92 0.08 3.08E-280 -2.56 0.11 6.42E-114 0.05 

ENSG00000113140 SPARC -2.97 0.20 2.33E-49 -0.45 0.11 0.00026248 0.05 

ENSG00000179455 MKRN3 -7.33 0.74 2.34E-21 -1.53 0.22 9.83E-11 0.05 

ENSG00000011677 GABRA3 -8.97 1.03 1.91E-16 -9.72 1.03 3.85E-19 0.05 

ENSG00000198131 ZNF544 -5.04 0.35 8.34E-45 -3.27 0.23 3.86E-45 0.05 

ENSG00000101160 CTSZ -7.61 0.85 2.22E-17 -6.64 0.62 6.09E-25 0.05 

ENSG00000100292 HMOX1 -2.77 0.12 2.89E-111 -1.91 0.16 4.63E-32 0.05 

ENSG00000222041 CYTOR -6.11 0.54 1.70E-27 -2.72 0.26 1.48E-23 0.04 

ENSG00000102265 TIMP1 -2.75 0.26 2.59E-24 -0.73 0.17 0.00012571 0.04 

ENSG00000198185 ZNF334 -9.29 1.03 1.55E-17 -9.31 1.04 1.51E-17 0.04 

Up-regulated ENSG00000133169 BEX1 5.15 0.23 4.59E-107 4.66 0.25 1.94E-74 0.07 

ENSG00000082482 KCNK2 7.69 0.66 2.02E-29 5.84 0.69 1.64E-15 0.06 

ENSG00000168672 LRATD2 3.23 0.08 0 3.16 0.10 6.99E-226 0.06 

ENSG00000076242 MLH1 7.67 0.74 2.98E-23 7.61 0.75 2.38E-22 0.06 

ENSG00000179915 NRXN1 8.68 1.03 2.06E-15 6.75 1.09 8.75E-09 0.06 

ENSG00000183580 FBXL7 5.73 0.40 1.20E-44 4.94 0.42 4.48E-30 0.05 

ENSG00000101986 ABCD1 3.64 0.28 4.28E-36 3.69 0.23 3.20E-53 0.05 

ENSG00000166415 WDR72 3.76 0.22 1.29E-60 3.78 0.21 2.44E-71 0.05 
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ENSG00000143320 CRABP2 3.04 0.42 1.46E-11 4.55 0.15 1.31E-204 0.05 

ENSG00000165973 NELL1 3.44 0.19 1.17E-68 2.50 0.20 5.05E-33 0.05 

ENSG00000149970 CNKSR2 5.86 0.48 1.35E-31 5.16 0.50 4.25E-23 0.05 

ENSG00000095261 PSMD5 3.52 0.20 4.77E-68 3.41 0.20 5.57E-62 0.05 

ENSG00000138744 NAAA 3.70 0.23 6.79E-56 3.80 0.23 5.62E-60 0.04 

ENSG00000272602 ZNF595 4.07 0.28 1.62E-46 3.25 0.29 7.56E-27 0.04 

ENSG00000166501 PRKCB 2.61 0.13 7.10E-82 2.87 0.12 2.63E-113 0.04 

ENSG00000177108 ZDHHC22 2.55 0.13 1.73E-89 1.68 0.19 4.29E-17 0.04 

ENSG00000154162 CDH12 3.33 0.21 2.30E-56 3.80 0.22 8.50E-65 0.04 

ENSG00000136160 EDNRB 4.52 0.36 9.07E-34 5.13 0.33 2.20E-50 0.04 

ENSG00000145423 SFRP2 9.13 1.05 2.46E-16 9.23 1.04 2.93E-17 0.04 
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 Gene enrichment analysis emphasises the pleiotropic effects of 
EPO by revealing an enrichment of DEGs in several metabolic, 
stress-related and DNA repair pathways. 

 

The 3,501 DEGs with consistent differential expression were found enriched in 

multiple biological processes involved in DNA repair, mRNA processing, protein 

binding and degradation, cellular respiration and mitochondrial function using 

Enrichr indicating the important role EPO signalling has within the cell (Figure 

4.25, Appendix 2: Gene ontology analysis) (E. Y. Chen et al., 2013; Kuleshov 

et al., 2016; Z. Xie et al., 2021). Several other biological processes enriched 

with the DEGs involved energy metabolism including fatty acid oxidation, 

mitochondrial functions and cellular respiration pathways (Appendix 2: Gene 

ontology analysis). The main signalling pathway identified through gene 

enrichment analysis was the Notch signalling pathway including its receptor and 

ligand (Appendix 2: Gene ontology analysis). Focusing on molecular functions, 

the DEGs were enriched in ATPase activity and mannosyl-oligosaccharide 

mannosidase activity (Appendix 2: Gene ontology analysis). Notch signalling 

was also identified when looking for an enrichment of genes in KEGG pathways 

alongside other pathways involved in metabolism, such as thermogenesis and 

AMPK signalling (Figure 4.27, Appendix 2: Gene ontology analysis). Both 

Enrichr and GoSeq2 gave very similar results.  
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Figure 4.25: The top 10 biological processes enriched with genes differentially expressed as a 
result of EPO-/- knock-out. Gene enrichment analysis was performed on the 3,501 DEGs with 
consistent patterns of differential expression using Enrichr. The bars are sorted by p-value with the 
length of the bar representing the p-value (lowest P-value = longest bar).  

Figure 4.26: The top 10 molecular functions enriched with genes differentially expressed as a 
result of EPO-/- knock-out. 

Gene enrichment analysis was performed on the 3,501 DEGs with consistent patterns of differential 
expression using Enrichr. The bars are sorted by p-value with the length of the bar representing the p-
value (lowest P-value = longest bar).  
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Figure 4.27: The top 10 KEGG pathways enriched with DEGs identified through RNA-seq 
analysis of the WT controls compared to the EPO-/-knock-out.Gene enrichment analysis was 
performed on the 3,501 DEGs with consistent patterns of differential expression using Enrichr. The 
bars are sorted by p-value with the length of the bar representing the p-value (lowest P-value = 
longest bar).  
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 Differential gene expression analysis and gene enrichment analysis 
reveals a role for EPO in the Notch signalling within HEK-293 cells 

 

Gene enrichment analysis revealed an enrichment of DEGs, such as DTX3L 

Parp9, and Hey1, involved in the Notch signalling pathway alongside 

downstream molecular functions and biological processes of Notch signalling, 

such as cell-to-cell communications and cell-fate decisions (Figure 4.25, Figure 

4.26, Figure 4.27, Appendix 2: Gene ontology analysis) (Mercher et al., 2008). 

Previous studies have also indicated a role for increased Notch signalling 

activity in response to hypoxia (Borggrefe et al., 2016; Diez et al., 2007; Fischer 

et al., 2004). I therefore used qRT-PCR to further validate dysregulated 

expression of genes involved in the Notch signalling pathway in the knock-outs. 

The Human Cell Atlas (Regev et al., 2017) was used to identify candidate DEGs 

within the Notch signalling pathway which have high expression in HEK-293 

cells. I also identified other genes (VEGFR3, Notch1, Hey2, Hes1)  involved in 

the Notch signalling pathway which had high expression in HEK-293, but did not 

show strong significant differential expression to confirm that several parts of 

the Notch signalling cascade showed altered mRNA expression as a result of 

EPO disruption (Figure 4.29). qRT-PCR confirmed dysregulated expression 

levels of seven genes (P < 0.05) implicated in the Notch signalling confirming 

Notch signalling is likely down-regulated as a result of a loss of EPO function 

(Figure 4.29). For Notch1 and Parp9, cells transfected with the over-expression 

EPO construct also showed similar pattern of altered mRNA expression levels 

as the knock-outs (Figure 4.29). This highlights the complex cross-talk 

occurring within cells and suggests a negative feedback loop mechanism to 

prevent excessive hypoxic gene induction (Diez et al., 2007). Overall, my 

results indicate a role for EPO in controlling the Notch signalling pathway.  

 

 Differential gene expression analysis and qRT-PCR reveals a role 
for EPO in the BMP/SMAD signalling pathway within HEK-293 cells 

 

Differential gene expression analysis revealed several DEGs (with evidence of 

strong differential expression [log2fold-change > |2|]) involved in the BMP/Smad 

pathway, such as BMP5 and RPL22L1 (Figure 4.30). The BMP/Smad pathway 

has been shown to play a role haematopoiesis, regulation of circulatory iron and 

protection against renal disease (Goh et al., 2015; Prestigiacomo & Suter-Dick, 

2018; Shuyun Rao et al., 2012; W. Wang et al., 2005; Yong Zhang et al., 2013). 
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I, therefore, hypothesised that EPO signalling plays a role in regulating this 

pathway and used qRT-PCR to further investigate mRNA expression levels of 

the identified BMP/Smad pathway DEGs and other genes within this signalling 

cascade (Figure 4.30). qRT-PCR revealed statistically significant 

downregulation (P < 0.001) of mRNA expression levels for BMP5 and 

RPL22L1, consistent with findings from RNA-seq analysis (Figure 4.31). qRT-

PCR of other genes implicated in the BMP pathway (Smad5, RPL22, NRF2) 

showed a trend towards down-regulated mRNA expression levels in EPO-/- 

knock-outs but this did not reach statistical significance (P > 0.05) (Figure 

4.31). 
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Figure 4.28: Schematic outline of the hypothesised link between EPO and the Notch signalling pathway. Through differential gene expression 
analysis of RNA-seq data in EPO-/- knock-out cell-lines, several genes were identified that are implicated in the Notch signalling pathway (genes 
highlighted in green). Gene ontology analysis also revealed an enrichment of DEGs in pathways related to Notch signalling. qRT-PCR was used to 
investigate mRNA expression levels of these genes as well as other genes implicated in the Notch signalling pathway (highlighted in orange) to further 
elucidate a role for EPO in regulating the Notch signalling cascade. Created with BioRender.com.  
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Figure 4.29: Relative change in mRNA expression levels of several genes involved in the Notch signalling pathway. 
qRT-PCR was performed to validate the differential expression of genes involved in the Notch signalling pathway which had 
high expression in HEK-293 cells. Cells transfected with an EPO over-expression construct were used as positive controls 

(hEPO). EPO was repeated as a control experiment. Data is shown as mean  SEM. Paired t-test was performed to test for 
levels of significance. *P≤0.05, **P≤0.01, ***P≤0.001, ****P≤0.0001. 
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Figure 4.30: Schematic outline of the hypothesised link between EPO and the BMP/Smad signalling pathway. Through differential gene 
expression analysis of RNA-seq data in EPO-/- knock-out cell-lines, several genes were identified that are implicated in the BMP/Smad 
signalling pathway (genes highlighted in green). The BMP/Smad pathway has previously been shown to be involved in regulating iron 
homeostasis, haematopoiesis and provide protection against renal disease and therefore it was thought EPO might play a role in controlling 
this pathway. qRT-PCR was used to investigate mRNA expression levels of the genes identified as differentially expressed through RNA-seq 
(highlighted in green) as well as other genes implicated in the BMP/Smad signalling pathway (highlighted in orange) to further elucidate a role 
for EPO in regulating the BMP/Smad signalling cascade. Created with BioRender.com  
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Figure 4.31: Relative change in mRNA expression levels of several genes involved in the BMP/Smad signalling 
pathway. qRT-PCR was performed to validate the differential expression of genes involved in the BMP/Smad signalling 
pathway which had high expression in HEK-293 cells to confirm whether EPO has a role in this pathway. EPO was repeated 

as a control experiment. Data is shown as mean  SEM. Paired t-test was performed to test for levels of significance. 
*P≤0.05, **P≤0.01, ***P≤0.001, ****P≤0.0001. 
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4.5 Discussion 
 

In this Chapter, a whole EPO-/- gene knock-out was established using CRISPR-

Cas9 gene-editing with a paired gRNA approach. Paired gRNAs were used to 

increase efficiency and reduce risk of off-target effects (X.-H. Zhang et al., 

2015). The paired gRNAs target two conserved sites on the protein-coding 

exons resulting in the deletion of a large portion (~1,100 bp) of the genomic 

sequence efficiently disrupting target gene function (Figure 4.15). The loss of 

this region from the genomic DNA sequence results in a frameshift and a 

subsequent reduction in mRNA and protein expression of the target gene which 

was confirmed by qRT-PCR and western blotting (Figure 4.16). Transcriptomic-

wide analysis was performed and 3,501 DEGs likely attributable to a lack of 

EPO were identified with 314 showing strong differential expression (log2fold-

change  |2|) (Figure 4.22). These DEGs were found enriched in several 

important cellular processes including Notch signalling emphasising the 

mitogenic effects of EPO, DNA repair, mitochondrial function and energy 

metabolism which support previous studies suggesting a pleiotropic role for 

EPO (Suresh et al., 2020). This comprehensive transcriptomic profiling of gene 

expression based on RNA-seq has generated a robust set of genes of biological 

significance in relation to the downstream effects of EPO in HEK-293 cells. I 

have established a knowledge base of up- and down-regulated genes capturing 

a wide-range of changes attributable to EPO expression that can be used as a 

baseline in future studies to investigate the effects of genetic variants on EPO 

expression levels. To my knowledge, this study is the first to establish an EPO-/- 

knock-out model in human cell-lines and to quantify cell-line gene expression 

changes resultant of EPO gene disruption. The established cell-line model can 

be used in future research to further understand the downstream causal 

pathways that have been suggested here and provide a better understanding of 

the aetiology of diseases characterised by low EPO levels, such as anaemia. 

 

Through functional work, I have provided a better understanding of the 

molecular functions and biological pathways in which EPO is involved in a 

relevant human cell-line. The results demonstrate the effects of the largest 

change in EPO levels in vitro and can be used for comparisons when trying to 

functionally validate the effect of variants or gene modifications, identified 

through genetic analyses, on EPO expression levels. This work shows the 
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feasibility of introducing gene-edits to the EPO gene via CRISPR-Cas9 in a 

relevant cell-line. Similar approaches can be used to establish SNP knock-in 

cell models and similar expression profiles can be investigated to determine if 

these SNPs are causal in controlling EPO gene expression and to what degree 

genetic variants have the same effect compared to the largest change in EPO 

levels i.e. whole gene knock-out. These findings can then be used to support 

genetic studies providing functional evidence for correlation between variants 

and disease.  

 

Transcriptomic analysis revealed several genes implicated in the Notch 

signalling pathway (HEY1, DTX3L, PARP9). Differential expression of these 

genes, alongside additional genes implicated up- and downstream of Notch 

(NOTCH1, HEY2, HES1, VEGFR3), were validated using qRT-PCR indicating 

an important role for EPO in this signalling cascade and downstream effects, 

such as angiogenesis, cardiovascular development and cell survival (Figure 

4.28, Figure 4.29). Notch signalling has previously been reported to be 

activated in response to hypoxia in several other cell-types and to play a role in 

erythroid homeostasis by regulating apoptosis and these findings suggest that 

Notch activity could be mediated by EPO expression (Borggrefe et al., 2016; 

Diez et al., 2007; Fischer et al., 2004; Gustafsson et al., 2005; Robert-Moreno 

et al., 2007). The Notch signalling pathway plays a primary role in several key 

cellular process that regulate cell fate specification including the maintenance 

and differentiation of haematopoietic stem cells in the early embryo 

emphasising how the link between EPO and Notch signalling could be important 

in controlling erythrocyte development (Duarte et al., 2018; C. Huang et al., 

2021). A role for EPO in initiating Notch signalling has previously been 

implicated in breast cancer where pharmacological rhEPO increased the 

number of breast-cancer initiating cells through increased activation of Notch 

signalling impacting overall survival and local tumour control highlighting the 

complex downstream adverse effects of increased Notch signalling through 

increased EPO levels (Phillips et al., 2007). I provide further evidence of the 

interplay between EPO and Notch signalling.  

 

I also indicate a role for EPO in the BMP/Smad pathway as several keys genes 

of the BMP/Smad pathway, such as BMP5 and RPL22L1, were found 



 231 

differentially expressed in the knock-outs (P-adj  0.05 & log2 Fold-change  |2|) 

and this differential expression was validated through qRT-PCR (Figure 4.30, 

Figure 4.31). The BMP/Smad pathway is known to influence circulating iron 

levels and haematopoiesis through HAMP expression and this could be driven 

by alterations in EPO expression levels (Goh et al., 2015; Prestigiacomo & 

Suter-Dick, 2018; Yong Zhang et al., 2013). However, I did not find altered 

mRNA expression levels of other genes implicated in this pathway that had high 

expression in HEK-293 cells, e.g. RPL22, Nfr2 and Smad5 (Figure 4.31). This 

does not mean that this pathway is not affected by EPO expression but could 

highlight the complicated feedback mechanisms within the cell and effects on 

expression of the other tested genes may only be detected by intracellular 

signalling between different cell-types which is not possible to investigate using 

single-cell culture methods. It would be worth following up these findings by 

investigating effects in co-culture or upon exposure of cells to hypoxia to further 

elucidate the link between EPO and the BMP/Smad pathway. 

 

Through GO analysis, I found an enrichment of DEGs in several biological 

processes including DNA repair, metabolic processes, mRNA processing, cell-

cycle activity, fatty acid oxidation, and control of signalling pathways through 

protein binding, protein degradation, coactivator recruitment and receptor 

activity. These results highlight the pivotal role EPO plays in a wide-range of 

molecular functions and biological activities, and signifies that EPO sits in a 

network of genes that are involved in integral cellular functions. These findings 

support previous studies which show that EPO influences cell signalling 

pathways, cellular proliferation, cell-fate, and protection against cellular stresses 

further emphasising the pleiotropic effects of EPO in systems other than just the 

haematopoietic system (Suresh et al., 2020; L. Wang et al., 2014). The top 

biological processes enriched in the DEGs were DNA repair pathways 

indicating that EPO-/- knock-out results in aberrant DNA repair which is 

consistent with previous studies finding a role for EPO in regulating p53-

dependent pathways (Figure 4.25) (Pham et al., 2019). These biological 

processes related to DNA repair, such as DSB repair, mRNA 3’end processing 

and base-excision repair, could have also been identified due to the CRISPR-

Cas9 gene-editing mechanism introducing DSBs and initiating the DNA repair 

pathway and therefore enrichment of DEGs involved in these pathways in 
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knock-outs is not surprising (Appendix 2: Gene ontology analysis). Additionally, 

the enrichment of DEGs involved in mannosidase activity is reassuring; the 

mannosidase enzymes are involved in the synthesis of glycoproteins of which 

EPO is one and in the knock-out model reduced functioning of these enzymes 

is found indicating the RNA-seq results are specific EPO disruption (Appendix 

2: Gene ontology analysis).  

 

Several of the GO terms, including cellular response to amino acid stimulus, 

mitotic sister chromatid segregation, cAMP-dependent protein kinase inhibitor 

activity, ATPase activity, and RNA binding, are related to processes and 

functions which occur in the kidney and are similar to those identified previously 

by transcriptomic analysis of biopsy samples in CKD patients (Appendix 2: 

Gene ontology analysis) (Guo et al., 2019). The kidneys are one of the most 

energy-demanding organs in the human body with an abundance of 

mitochondria, ATP utility and oxygen consumption (Console et al., 2020). The 

top terms include ATPase regulator and activator activity, mitochondrial 

organisation, fatty acid oxidation, aerobic respiration, and regulation of oxidative 

phosphorylation which are crucial for ATP production. ATP production requires 

high oxygen levels and therefore EPO could influence ATP production by 

regulating oxygen levels and altering these biological processes (Solaini et al., 

2010). ATPases release energy for all cellular activities and the enrichment in 

ATPase functions indicate that the amount of energy released for other cellular 

processes and pathways in kidneys cells is altered in the EPO knock-outs 

(Bonora et al., 2012; Neupane et al., 2019). These results provide a better 

understanding of the role EPO plays within the kidney but also indicates the role 

EPO may have in other organs and tissues, such as the heart or skeletal 

muscle, which also require high levels of ATP (Console et al., 2020). The 

transcriptomic findings presented could be instrumental in the wider field 

investigating the impacts of EPO on disease aetiology.  

 

Transcriptomic data can be used to improve the understanding of EPO 

mechanism of action, aid evaluation of drug target candidates, aid prioritisation 

of likely successful drug targets and aid in early prediction of likely adverse drug 

target effects (Paananen & Fortino, 2020). Currently, EPO is used to treat 

anaemia in CKD due to the role EPO plays in the haematopoietic system 
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(Jelkmann, 2011, 2013). The RNA-seq findings, however, identify additional 

non-haematopoietic pathways and networks for EPO involvement and therefore 

highlight the potential for EPO to be used as a treatment for other diseases 

which may be caused by aberrations in these pathways. Further research into 

the specific effects of EPO on these identified pathways and the impact in 

different diseases is warranted. 

 

As with any functional work there are a number of limitations that need 

considering. Firstly, our model was established in HEK-293 cells. Despite, HEK-

293 cells being biologically relevant for the investigation of EPO due to it being 

highly expressed in the kidneys and HEK-293 being easy to grow, easy to 

transfect, and able to be utilised for both stable and transient expression, there 

are some caveats to using this cell-line (P. Thomas & Smart, 2005). HEK-293 

cells have a complex karyotype carrying two or more copies of each 

chromosome and therefore it is difficult to know with certainty that EPO has 

been deleted in all chromosomal copies (Stepanenko & Dmitrenko, 2015). EPO 

is also not that highly expressed in HEK-293 cells and therefore another cell-

line displaying higher basal EPO levels would be worth considering for future 

investigations, such as HepG2 cells (Regev et al., 2017). Furthermore, although 

kidney cells produce and secrete high levels of EPO, it does not mean that the 

cells themselves express high levels of the protein and therefore a cell-line may 

not be the best for investigating the functional roles of EPO. Instead, co-culture 

could be used to investigate the amount of EPO produced and the impact in 

other cells of relevance to investigate the cross-talk between cells and the 

secretory effects of EPO (Vis et al., 2020). Furthermore, HEK-293 cells 

originate from an embryonic kidney cell, and therefore might not be fully 

representative of an adult, diseased kidney. Secondly, I established two EPO-/- 

cell-lines. Despite confirming that both cell-lines have reduced EPO expression 

at the mRNA level and protein level, there are slight differences between the 

two regarding the region of the genome that was excised by CRISPR-Cas9. 

This difference resulted in different premature stop codons being introduced 

and could explain some of the differences seen between knock-outs in and why 

KOA segregates clearly from KOB in PCA analysis. The knock-outs are not 

exactly homologous to each-other despite having undergone the exact same 

experimental conditions and both showing successful EPO disruption. 
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Consideration of these differences is needed when interpreting results. 

Although every effort was made to ensure that each cell-line was treated under 

the exact same experimental conditions and grown to similar confluency (80%), 

there may be some experimental variation which could have impacted the 

resultant gene expression profiles. Thirdly, CRISPR-Cas9 gene-editing comes 

with its own limitations primarily the ability to control and test for off-target 

effects (Doench et al., 2016; Naeem et al., 2020; Ran, Hsu, Wright, et al., 

2013). Despite using the paired gRNA approach to reduce risk of off-target 

effects, it is hard to know whether this is the only place the genome has been 

disrupted without sequencing the whole genome. Generating two EPO-/- cell-

lines provides more confidence that the results are likely due to the EPO 

disruption and no off-target effects as similar results are seen in both knock-out 

cell-lines. Fourthly, care is required when performing RNA-seq analysis due to 

the risk of potential biases. The expression of hundreds of genes tends to be 

over- or under-estimated and many of these genes are relevant to human 

disease and this may be the case for EPO (Robert & Watson, 2015). From 

RNA-seq analysis, few reads were aligned to the EPO gene itself – this may be 

attributable to low basal EPO expression in HEK-293 cells or may be due to an 

under-estimation of EPO gene expression. Alternative alignment methods could 

be investigated. RNA-seq involves several processing steps including library 

generation, PCR amplification and these steps are error-prone and can lead to 

the inclusion of biases (Shi et al., 2021). Although, steps have been taken to 

eradicate risk of these errors and potential biases, such as trimming and 

transformation, they can remain. In this Chapter, I only looked at total gene 

expression changes and although significant gene expression changes were 

identified, there could be transcripts that are differentially expressed within the 

non-DEGs which have been missed.  

 

In conclusion, this study is the first to achieve whole EPO-/- knock-out in HEK-

293 cells and to perform downstream transcriptomic analysis. I have identified 

an enrichment of genes involved in several biological pathways and molecular 

functions further highlighting the pleiotropic activities of EPO. The current work 

highlights the feasibility of carrying out CRISPR-Cas9 gene-editing of the EPO 

gene in HEK-293 cells and provides a better understanding of the downstream 

pathways of EPO signalling. 
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Chapter 5 Single-base gene-editing to functionally validate the 

cis-EPO variant as causal in controlling EPO levels 

 
This Chapter includes sections that have been taken directly from a pre-print 

paper in which I am the first author. I have reformatted and expanded on 

sections for the purpose of this thesis. This paper is currently undergoing review 

at GSK and AJHG.  

 

Harlow, CE. Gandiwijaya, J. Bamford, RA. Wood, AR. Van der Most, P. 

Verweij, N. [25 authors] & Frayling, TM. 2022. Identification and single-base 

gene-editing functional validation of a cis-EPO variant for use to mimic novel 

EPO-increasing therapies.   

 

I planned and set out all experiments described in this Chapter. I performed the 

majority of the laboratory works and analysis with the help, support and 

guidance of my supervisors, Professor Tim Frayling and Dr Asami Oguro-Ando. 

I also had the help and support of fellow Oguro-Ando lab members, Dr 

Rosemary Bamford and Mr Josan Gandawijaya for troubleshooting throughout. 

This is the first time that this type of experiment using CRISPR-Cas9 and the 

piggyBacTM system to introduce a single SNP gene-edit has been carried out at 

Exeter and therefore it took time to develop, adapt and optimize the protocol 

outlined by Yusa et al. (2013). I would like to thank Dr. Akshay Bhinge for 

providing me with the piggyBacTM multivector plasmid and the piggyBacTM 

transposase plasmid. The CRISPR plasmid used (pSpCas9(BB)-2A-GFP 

[PX458]) was a gift from Feng Zhang (Addgene plasmid #41838; 

http://n2t.net/addgene:48138; RRID:Addgene_48138). 

 
 
 
 
 
 
 
 
 
 
 
 
 

http://n2t.net/addgene:48138
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5.1 Introduction 
 

Since the unprecedented increase in the amount of publicly available human 

genotypic and phenotypic data, the power to detect causal associations has 

improved and the number of genetic variants identified as associated with 

complex traits has increased (Cano-Gamez & Trynka, 2020; Visscher et al., 

2017). This has led to rapid advancements in the understanding of the 

molecular basis of disease and facilitated the discovery of novel therapeutics 

(Shu et al., 2018). Despite these successes, the interpretation of GWAS 

associations remains limited particularly when trying to provide clinical insight 

into complex traits (Cano-Gamez & Trynka, 2020). It is often very difficult to 

distinguish the causal variant that is driving the association due to the complex 

underlying genetic architecture and the presence of LD meaning that 

neighboring genetic variants are inherited together and highly correlated with 

each other (Bush & Moore, 2012; Flister et al., 2013; Hormozdiari et al., 2014). 

It is also often difficult to determine which gene is involved and directly affected 

by the identified genetic variant (Shuquan Rao et al., 2021). This is because 

disease-associated loci, identified through GWAS, often contain multiple genes 

(Cano-Gamez & Trynka, 2020). Moreover, the majority (greater than 90%) of 

genetic variants identified through GWAS do not directly affect the coding 

sequence due to lying within the non-coding regions of the genome (Dixon et 

al., 2007; Nica et al., 2010). These variants could therefore affect expression of 

several genes within the locus due to lying within regulatory elements or 

overlapping promoters, enhancers and open-chromatin regions making 

determination of the affected gene and downstream pathway increasingly 

difficult (Lichou & Trynka, 2020). Despite additional approaches, such as fine 

mapping, colocalisation analysis and eQTL analysis helping refine the most 

likely involved genes, problems with LD remain making it unclear whether that 

variant is the true causal variant driving the association (Benner et al., 2016; 

Giambartolomei et al., 2014; Nica et al., 2010; Nicolae et al., 2010; Porcu et al., 

2019; Wallace, 2020). Experimental data of how well these tools work is also 

lacking (Brandt et al., 2020).  

 
Functional studies are becoming a powerful complementary approach to further 

dissect the direct effects of genetic variants and aid in the validation of genetic 
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variants for use as proxies in predicting the long-term effects of therapeutic 

modulation in the drug development process (Lichou & Trynka, 2020; H. Wang 

et al., 2016; L. Yang et al., 2013). Despite high through-put methods, such as 

massively parallel reporter assays (MPRAs), proving useful in finding active 

regulatory variants or variants affecting splicing, these approaches are limited 

by only being able to validate non-coding variants in the enhancer or promoter 

regions and they cannot test the effect of variants that may alter gene 

expression through post-transcriptional modifications or by influencing 

nonsense-mediated decay (Brandt et al., 2020; J. Lin & Musunuru, 2018).  

Alternative methods are therefore needed to validate effects of single variants 

on expression levels in the native genomic context (Shuquan Rao et al., 2021).  

 

The introduction of a desired gene-edit is achievable by providing a homologous 

sequence within an exogenous pre-designed donor plasmid which upon 

transfection triggers homologous recombination (HR) (Hsu et al., 2014; 

Maruyama et al., 2015; J.-P. Zhang et al., 2017). The development of the 

CRISPR-Cas9 system has revolutionized the field of genome-editing in 

mammalian cells and has provided a means of introducing single variants in a 

more straightforward and relatively easy manner (Ng et al., 2020). CRISPR-

Cas9 has simplified and increased the speed at which genetic variants and 

candidate genes can be functionally validated by bypassing the need for protein 

engineering to develop a site-specific nuclease or the need to generate a new 

germline or conditional alleles (Brandt et al., 2020; J. Lin & Musunuru, 2018; 

Lino et al., 2018). The introduction of a site-specific double-stranded break 

(DSB) by the highly specific and efficient RNA-guided Cas9 nuclease means a 

precise gene-edit can be introduced in the presence of a donor DNA template 

triggering DNA repair via homology directed repair (HDR) as opposed to non-

homology end joining (NHEJ) (Courtney et al., 2016).  

 

CRISPR-Cas9 has been shown to be effective at introducing single-base 

mutations particularly in the present of a donor vector containing a selection 

cassette. The presence of a selection cassette dramatically improves the 

screening process of identifying clones with the desired gene-edit and reduces 

the hands-on experimental time (Courtney et al., 2016; H. Li et al., 2020; J. Lin 

& Musunuru, 2018; Okamoto et al., 2019; G. Zhao et al., 2018). Traditionally, 
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the Cre/loxP or Flp/FRT systems have been used alongside CRISPR-Cas9 to 

achieve precise gene modifications (van der Weyden et al., 2002). However, 

these systems are limited regarding the site in the genome they can be inserted 

into and the fact that single loxP or FRT sites are left in the genome after 

excision of the selection cassette (A. M. Singh et al., 2016; Yusa, 2013). The 

retention of these small redundant sequences may disturb functional elements 

and affect the investigated phenotype making it difficult to determine whether 

the observed effects are due to the redundant sequences or the gene-edit itself 

(Meier et al., 2010).  

 

An alternative method for removing selection cassettes from the genome is 

through the use of a transposon containing the cassette. Two main 

transposable elements exist; retrotransposons and DNA transposons. 

Retrotransposons employ a ‘copy-and-paste’ mechanism by which a RNA-

mediated intermediate is reverse transcribed into single stranded cDNA 

molecule before being converted into a double-stranded molecule and 

integrated into the genome (Tipanee et al., 2017). Retrotransposons actively 

spread through the human genome and have been used to enable transgene 

insertion (Muñoz-López & García-Pérez, 2010). DNA transposons employ a 

‘cut-and-paste’ mechanism where two inverted terminal repeat (ITRs) either 

side of the transposon are recognized and cleaved by a transposase enzyme 

leaving free sticky DNA ends (Ivics et al., 2009). The transposon is then 

integrated into the new genomic region at a particular site recognised by the 

same transposase (Tipanee et al., 2017). DNA transposons are simply 

organized and several systems, including the piggyBacTM, Sleeping Beauty 

(SB), Tol2 and Frog Prince, have been developed for insertional, precise, 

germline mutagenesis (Ivics et al., 2009; Wen et al., 2017; Woodard & Wilson, 

2015). The piggyBacTM transposon, originally isolated from the cabbage looper 

moth Trichoplusia ni, has several advantages over the latter including higher 

transposition efficiency, a tolerance for cargo of any size, no evidence for local 

hopping, a preference to land nearby the donor sequence and transposon 

removal without leaving redundant sequences (Ivics et al., 2009; M. A. Li et al., 

2013; Liang et al., 2009). The piggyBacTM system relies upon the identification 

of an endogenous ‘TTAA’ site within the genome for insertion of the transposon 

(Ding et al., 2005). These sites occur regularly (around every 246 bp) enabling 
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the potential for precise genetic modification anywhere in the genome (Yusa, 

2013). The piggyBacTM system also enables positive and negative drug-

selection based screening of genetic modifications to determine whether the 

transposon has been successfully integrated and excised from the genome 

which makes it easier and simpler to obtain targeted clones, particularly 

heterozygotes (X. Li et al., 2013; A. M. Singh et al., 2015). The utilisation of the 

piggyBacTM transposon system enables the precise and scarless modification of 

the human genome and has been shown to be a flexible and efficient approach 

at achieving heterozygous or homozygous gene-editing (S. Liu et al., 2018; 

Woodard & Wilson, 2015; Fei Xie et al., 2014; Yusa et al., 2011; G. Zhao et al., 

2018). It therefore has great potential for introducing desired genetic changes 

within the genomic DNA to aid functional validation of causal variants and 

candidate genes.  

 

In Chapter 3, I identified a genetic variant lying in the promoter region of the 

EPO gene and used the variant as a partial proxy for therapeutic rises in 

endogenous EPO levels. I found the A-allele to be associated with higher 

circulating EPO levels supporting previous studies that have investigated the 

allele-specific effects (Amanzada et al., 2014; Tong et al., 2008). However, I 

was limited in my analysis as the cis-EPO variant was a relatively weak genetic 

instrument due to not reaching formal levels of genome-wide significance (P < 5 

x 10-08), was only an eQTL for hepatic gene expression and did not show the 

strongest evidence for colocalisation (Posterior probability = 71%). Therefore, I 

aimed to use a molecular approach of CRISPR-Cas9 targeted gene-editing with 

the piggyBacTM transposon system to establish human cells with the cis-EPO 

variant to further elucidate the direct effects of the cis-EPO variant on EPO 

expression levels and confirm that this variant can serve as a valid genetic 

proxy for assessing the therapeutic effects of higher endogenous EPO levels.  

 

5.2 Chapter Aims 
 

The primary aim of this Chapter was to functionally validate the cis-EPO variant 

(identified in Chapter 3) as causal in controlling EPO expression levels. To 

accomplish this, the specific aims were to:  
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1. Generate a CRISPR-Cas9 vector and homology directed repair 

piggyBacTM vector targeting the cis-EPO variant to introduce the desired 

gene-edit into HEK-293 cells.  

2. Isolate single-cells with the polymorphism at rs1617640.  

3. Validate whether the cis-EPO genetic variant alters EPO mRNA 

expression levels and is associated with abnormal expression of similar 

genes identified by RNA-seq analysis of EPO knock-outs. 

 

5.3  Methods 
 

An overview of the protocol established to obtain a single-base gene-edit at 

rs1617640 is outlined in Figure 5.1. This protocol was adapted from the one 

described by Yusa et al. (2013). Human Embryonic Kidney (HEK)-293 cells 

were used throughout following standard cell culture methods for growth and 

maintenance. 
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 Plasmids 
 

Figure 5.1: Overview of the methodology to establish a heterozygous knock-in model of the 
cis-EPO genetic variant. CRISPR-Cas9 gene-editing was employed with the piggyBacTM transposon 
providing the donor sequence containing the desired gene edit at rs1617640 (A > C). The following 
protocol was adapted and optimized for use in HEK-293 cells from Yusa et al. (2013). gRNA, guide 
RNA; FIAU, Fialuridine; qRT-PCR, quantatiative reverse transcription polymerase chain reaction.  
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The same commercially available genomic CRISPR-Cas9 plasmid containing 

green fluorescent marker (pSpCas9(BB)-2A-GFP (PX458), Addgene: #48138) 

used in the generation of the whole EPO gene knock-out in Chapter 4 (4.3.1) 

was used (Figure 4.4

A). 

This plasmid contained resistance to ampicillin for use in cloning and was first 

described in Ran et al., (2013). The piggyBacTM multivector plasmid (SGK:005, 
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MV-PGK-Puro-TK) (Hera BioLabs, Kentucky, USA) was used to provide the 

homology directed repair template sequences (Figure 5.2). The piggyBacTM 

multivector contains a drug-selection marker (purotk) to enhance HR efficiency 

(X. Li et al., 2013; S. Liu et al., 2018; Woodard & Wilson, 2015). To enable 

bacterial propagation, the piggyBacTM transposase was cloned from the SBP-

002 PBx vector (Hera BioLabs, Kentucky, USA) into the pUC19 vector 

(Addgene: #50005) using the BamHI and HindIII restriction sites. 

 

 Determining the genotype of wild-type HEK-293 cells 
 

HEK-293 cells were maintained in Gibco’s Dulbecco’s Modified Eagle Medium 

(DMEM) (ThermoFisher Scientific, Massachusetts, USA) supplemented with 

10% fetal bovine serum (FBS) (ThermoFisher Scientific, Massachusetts, USA) 

at 37 0C and 5% CO2. When at 90% confluency, cells were pelleted and DNA 

was extracted using the PureLink Genomic DNA Extraction Kit following 

manufacturer’s instructions (Invitrogen, Massachusetts, USA). To determine the 

wild-type genotype of rs1617640 in HEK-293 cells, primers (epo_snp-forward 

[5’-3’]; CTGAATGGGATAGGCTGGTAGT, epo_snp-reverse [5’-3’]; 

ATGGGGGCAAATAGGGCAAG) were designed either side of rs1617640 

(Figure 5.3). PCR was performed using HOT FIREPol DNA polymerase 

following manufacturer’s protocol (Solis BioDyne, Teaduspargi, Estonia). 10 l 

of subsequent PCR product was analysed by gel electrophoresis on a 1.5% 

agarose gel. The remaining PCR product was purified using the ExoSAP-IT 

PCR Product Cleanup reagent following manufacturer’s instructions 

(ThermoFisher Scientific, Massachusetts, USA) before being sent for Sanger 

sequencing using Genewiz (Genewiz, Essex, UK) with the forward primer (5’- 

CTGAATGGGATAGGCTGGTAGT-3’) to determine the genotype of rs1617640 

in HEK-293 cells.  
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Figure 5.2: Plasmid map of the backbone of the piggyBacTM multivector. The plasmid 
backbone contains the piggyBac transposon sequences (5’ITR and 3’ITR) flanking the selection 
cassette which contains the tk gene conferring sensitivity to FIAU and the puromycin resistance 
gene conferring resistance to puromycin. Image was produced using SnapGene Viewer available 

at snapgene.com.  
 

https://www.snapgene.com/
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Figure 5.3: Schematic of the genomic location of the cis-EPO SNP. The cis-EPO variant (rs16167640; chr7:10031729) lies 1,127 bp upstream of 
the transcription start site of the EPO gene. The position of the primers for the genotyping of wild-type HEK-293 cells have been highlighted in bold 
and depicted by the red arrows. PCR was performed using the two primers resulting in an amplicon of 731 bp. The resulting PCR amplicon was 
purified and sent for Sanger sequencing using the forward primer. 
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 Construction of the CRISPR-Cas9 plasmid targeting rs1617640 
 

 Design of gRNA 
 
The online CRISPR design tool (https://www.benchling.com/crispr/) was used to 

design a gRNA sequence targeting the cis-EPO variant (Benchling [Biology 

Software], 2021). For SNP knock-in experiments, previous studies have 

recommended designing a gRNA around 10 bp away from the desired gene-

edit location to maximise efficiency (Yusa, 2013; Yusa et al., 2011). A 20 bp 

gRNA sequence within the vicinity of rs1617640 (cut-site 6 bp from rs1617640) 

with the highest off-target (> 50) and on-target score (> 50) and least matches 

with other genomic loci through a BLAST (Boratyn et al., 2013) search was 

chosen. Overhangs complementary to the BbsI restriction enzyme cut-site were 

added (Table 5.1) to enable cloning into the CRISPR-Cas9 plasmid backbone. 

The final gRNA sequence (Table 5.1) was ordered through IDT (Integrated 

DNA Technologies, Leuven, Belgium; https://eu.idtdna.com/). The gRNA 

sequences were annealed and phosphorylated using T4 Polynucleotide Kinase 

(PNK) (New England BioLabs, Ipswich, UK) and ligated into the CRISPR-Cas9 

plasmid in a single digestion and ligation reaction with an insert:plasmid ratio of 

3:1 (calculated using the New England BioLab calculator - 

https://nebiocalculator.neb.com/#!/ligation) using the BbsI restriction enzyme 

and T4 ligase (New England BioLabs, Ipswich, UK). 

 

 Cloning of recombinant plasmids in bacteria 
 

Ligated plasmids were transformed into DH5α E. coli and overnight cultures of 

single colonies were grown as described in the General Methods (Chapter 2) 

and Section:4.3.2. Plasmid DNA was purified and isolated from overnight 

cultures following the QIAprep Spin Miniprep Kit protocol (Qiagen, Maryland, 

USA).  

 

 Screening of the plasmid DNA for successful integration of the 
gRNA 

 

To confirm successful integration of the gRNA into the plasmid, a double 

diagnostic digest was used (Figure 5.4A). Purified plasmid DNA was digested 

with BbsI and EcoRI restriction enzymes using the FastDigest Green Buffer 

(ThermoFisher Scientific, Massachusetts, USA). Digested products were 

https://www.benchling.com/crispr/
https://eu.idtdna.com/
https://nebiocalculator.neb.com/#!/ligation
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visualised by gel electrophoresis (Figure 5.4B) and positive plasmids were sent 

for Sanger sequencing using the LKO.1 forward primer (5’-

GACTATCATATGCTTACCGT-3’) to confirm insertion of the gRNA in the 

correct location and orientation (Figure 5.4C).  
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Table 5.1: The design the of gRNA sequence for targeting the cis-EPO variant. Once the closest raw gRNA sequence to the cis-EPO variant with the 
highest off-target and on-target scores and least matches to other genomic loci has been identified, overhangs complementary to the BbsI restriction 
enzyme cut site (shown in bold) were added to the ends of the forward and reverse gRNA sequence to enable cloning of the gRNA into the CRISPR-Cas9 
plasmid (pSpCas9(BB)-2A-GFP (PX458), Addgene: #48138). 
 

 

 

 

 

 

 

 

 

 

 

Steps  Sequence  

Raw gRNA sequence (6bp away from cis-EPO variant) 5’ – GGAATCTCACTCCTCTGGCTCAGGG – 3’ 

Calculate reverse complement of raw gRNA sequence without PAM 5’ – TGAGCCAGAGGAGTGAGATTCC - 3’ 

Add BbsI overhangs 
  

5’ - CACCGGAATCTCACTCCTCTGGCTCA - 3’ 
5’ - AAACTGAGCCAGAGGAGTGAGATTCC - 3’ 

Final oligo sequences for ordering 5’ - CACCGGAATCTCACTCCTCTGGCTCA - 3’ 
3’-             CCTTAGAGTGAGGAGACCGAGTCAAA - 5’ 
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Figure 5.4: Construction of the CRISPR-Cas9 plasmid with the gRNA targeting the cis-EPO SNP. A: Schematic showing the expected band size 
after a double diagnostic digest with BbsI and EcoRI restriction enzymes to confirm the ligation of the gRNA into the CRISPR-Cas9 plasmid. Lane 1 = 
NEB 2-log DNA ladder; Lane 2 = Empty, pSpCas9(BB)-2A-GFP CRISPR-Cas9 backbone vector with no gRNA inserted; Lane 3 = pSpCas9(BB)-2A-GFP 
CRISPR-Cas9 plasmid with gRNA inserted. B: Gel electrophoresis image of a double diagnostic restriction enzyme digest with BbsI and EcoRI. Lane L = 
Solis Biodyne 1 kb ladder; Lanes 1-6 = pSpCas9(BB)-2A-GFP CRISPR-Cas9 plasmid with gRNA targeting cis-EPO; Lane 7 = Empty, pSpCas9(BB)-2A-
GFP CRISPR-Cas9 backbone vector with no gRNA inserted as digestion control; Lane 8 = negative control where water replaces the plasmid in the 
digestion reaction. C: Sanger sequencing confirmed the insertion of the correct gRNA sequence (highlighted in blue) in the correct location and 
orientation within the pSpCas9(BB)-2A-GFP CRISPR-Cas9 plasmid. Sequencing was performed using the LKO.1 primer.  
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 Design and Construction of the piggyBacTM targeting vector 
 

An outline of the steps taken to construct the piggyBacTM expression vector 

targeting the cis-EPO SNP can be seen in Figure 5.5.  

 

 Design of homology arms 
 

To generate the rs1617640 piggyBacTM targeting vector, 500 bp of sequence 

either side of the TTAA closest to rs1617640 were identified. The homology 

sequence upstream of the TTAA contained the cis-EPO genetic variant and 

therefore included the desired polymorphism. To achieve footprint free excision, 

the BsiWI (within the 3’ITR of the piggyBacTM transposon) and the Nsi1 (within 

the 5’ITR of the piggyBacTM transposon) restriction enzymes were used when 

cloning the homology arms into the piggyBacTM targeting vector. Using these 

restriction enzymes for cloning meant the homology arms had to include the 

remainder of the ITRs; the remainder of the 3’ITR sequence after the cut-site 

was added to the 3’ end of the 5’ homology arm and the remainder of the 5’ITR 

sequence after the cut-site was added to the 5’ end of the 3’ homology arm. 

Gibson cloning, outlined in Figure 5.6, was used to insert the homology arms 

into the piggyBacTM holding vector and therefore sequences complementary to 

the plasmid also had to be added to the homology arms. For the 5’ homology 

arm (which contained the desired SNP change at rs1617640, c.-1306 A>C), 20 

bp of sequence complementary to the plasmid directly before the BsiWI cut-site 

was added to 5’ end followed by the cut-site overhang. 20 bp of sequence 

complementary to the plasmid directly after the cut-site was added to the 3’ end 

of the arm (Figure 5.7A). An additional 5’ homology arm containing the wild-

type sequence (A-allele at rs1617640) was also created for use as a control that 

had undergone the same experimental procedures as the potential knock-ins 

(Figure 5.7B). For the 3’ homology arm, 20 bp of sequence complementary to 

the plasmid directly before the NsiI cut-site was added to the 5’ end followed by 

the cut-site overhang to enable annealing into the plasmid. 20 bp of sequence 

complementary to the plasmid directly after the cut-site was added to the 3’ end 

of the arm (Figure 5.7C). These sequences were ordered as MiniGene 

sequences directly from IDT (Integrated DNA Technology, Leuven, Belgium; 

https://eu.idtdna.com/). On arrival, the MiniGene homology arm sequences are 

held within pUC-IDT holding vectors and needed amplifying out of the holding 

vector via PCR before they can subsequently be cloned into the piggyBacTM 

https://eu.idtdna.com/
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plasmid. To do this, PCR primers were designed (Table 5.2) and PCR was 

performed using HOT FIREPol DNA polymerase (Solis BioDyne, Teaduspargi, 

Estonia). PCR products were purified using ExoSAP-IT PCR Product Cleanup 

reagent following manufacturer’s instructions (ThermoFisher Scientific, 

Massachusetts, USA). The purified PCR products were sent for Sanger 

sequencing (Genewiz, Essex, UK) to confirm the resulting homology arms were 

the expected sequence and that the 5’ homology arm contained the desired 

SNP edit (c.-1306A>C).  

 
 
  



 253 
 

Figure 5.5: Experimental steps to construct the final piggyBacTM targeting vector. 

Homology arms either side of the nearest TTAA site to the desired gene-edit location were 
designed. The 5’ homology arm contained the desired gene-edit. These arms were cloned into 
the piggyBacTM holding vector either side of the piggyBacTM transposon sequentially using 
Gibson Cloning. Restriction enzyme digests and PCR were used to determine that the arms 
had been successfully integrated into the plasmid in the correct location and orientation.  
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5’ homology arm sequence for SNP change at rs1617640 (C/C) 
ATAATCATATTGTGACGTACTATTTATTTATTTATTTTAGAGACAAGGTCTTGCCATGTTGTCCGGGCTGGTCTCGAACTCCTGGGCTCAAA

GGATCTTCCTGCCTTGGTCTCCCAAAGTGCTGGGATTATAGGTGTCAGCTGCGGCGCCTGGACCTTTCCTGTCTTTTATGAAACCTGAAT

GGGATAGGCTGGTAGTTTCACCACACCCATTTGACAGATGAGGACATTGAGGGCTCAAGGACGAGGCCACTTTCTAAGGTGTGAGAGAC

CAGCTAGTCTTGGTCTCCTGCTCTGGGAATCTCACTCCTCTGGCTCAGGGTTTCCAGAAGCCATAAAACCTTAGCTGTAAATCCCAGCCC

CCATCACTCTTGGTGTTAGCTGTATTTCAGTGTTCTTAACCCTAGAAAGATAATCATATTGTGACGTACGTTAAAGATAATCATG 

 
 
5’ homology arm sequence for wild-type (WT) sequence at rs1617640 (A/A) 

A 

B 

Figure 5.6: Gibson Cloning Assembly Mechanism. A vector is linearised through a restriction enzyme digest. At least 20 bp of complementary sequence is 
added to either end of the sequence fragment for insertion. Gibson cloning is performed by incubating the insert, the linearised vector and Gibson Cloning 
Master Mix for 15 minutes at 50 0C. The resulting vector containing the desired insert is transformed into bacteria. Overnight colonies are selected and plasmids 
purified before being screened for correct ligation of the insert into the backbone vector. Created with BioRender.com. 
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Figure 5.7: Homology sequences designed for the targeting of rs1617640 for insertion into the piggyBacTM plasmid. A: The 5’ homology arm sequence 
containing the desired SNP change at rs1617640 (C – highlighted in red) for insertion upstream of the 3’ITR in the piggyBacTM plasmid. B: The 5’ homology arm 
sequence containing the HEK-293 WT sequence at rs1617640 (A – in red) for insertion upstream of the 3’ITR in the piggyBacTM plasmid. C: The 3’ homology arm 
sequence for insertion downstream of the 5’ITR in the piggyBacTM plasmid. Underlined sequences represent the 20 bp  sequence complementary to the piggyBacTM 

multivector sequence to enable integration into the plasmid via Gibson Cloning. The bases highlighted in bold are the remainder of the 3’ITR or 5’ITR after the 
restriction cut-sites to enable seamless removal of the piggyBacTM transposon from the DNA. The TTAA site is emphasised in blue and rs1617640 is highlighted in red.  
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 Cloning of the homology arms into the piggyBacTM expression 
vector 

 

The Gibson Cloning Assembly Kit (New England BioLabs, Ipswich, UK) was 

used to clone the two homology arms into the piggyBacTM expression vector 

(Figure 5.6). I first performed Gibson Cloning to clone the 5’ homology arm into 

the piggyBacTM vector. I digested 1000 ng of the piggyBacTM plasmid backbone 

with BsiWI and then incubated the digested plasmid with 2-fold molar excess of 

5’ homology arm (calculated using the New England BioLab calculator, 

https://nebiocalculator.neb.com/#!/ligation) and 10 l Gibson Master Mix in a 

total volume of 20 l for 15 minutes at 50 0C. I then transformed 2 l of the 

ligation reaction into NEB 5-alpha competent E.coli cells provided with the 

Gibson Assembly Cloning Kit following the NEB transformation protocol (New 

England BioLabs, Ipswich, UK). Overnight cultures of single colonies were set-

up and plasmids were purified following the QIAprep Spin Miniprep Kit protocol 

(Qiagen, Maryland, USA). Plasmids containing the 5’ homology arm were 

screened for using a diagnostic digest with BsiWI (Figure 5.8). 1000 ng of 

plasmid containing the 5’ homology arm was subsequently digested with NsiI 

and Gibson cloning was repeated with the 3’ homology arm as described above 

to insert the 3’ homology arm into the piggyBacTM plasmid. Transformation, 

overnight colonies and plasmid purification was repeated as above. Plasmids 

containing both homology arms were screened for using a diagnostic digest 

with the NsiI restriction enzyme (Figure 5.8). PCR was performed on positive 

plasmids containing both homology arms and plasmids were sent for Sanger 

sequencing to confirm 1) the insertion of the correct sequences either side of 

the piggyBacTM selection cassette and 2) the presence of the desired SNP 

change at rs1617640 (c.-1306, A>C) in the 5’ homology arm (Figure 5.9). For 

primer sequences see Table 5.3. 

 
 
 
 
 
 
 
 
 
 

https://nebiocalculator.neb.com/#!/ligation
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Table 5.2: Primer sequences used for PCR amplification of the 5’ and 3’ homology arms from the holding vector. 

 
 
 

Table 5.3: Primer sequences used to confirm the insertion of the homology arm sequences into the correct location in the piggyBacTM plasmid. 

 

 

. Primer Sequence (5’-3’) 

5’ arm forward ATAATCATATTGTGACGTAC 

5’ arm reverse CATGATTATCTTTAACGTAC 

3’ arm forward AGCAATATTTCAAGAATGCA 

3’ arm reverse CGTAAAATTGACGCATGCAT 

Primer Purpose Sequence (5’-3’) 

M13_fwd Screening for insertion of 5’arm in 
correct location by PCR & sequencing 

TGTAAAACGACGGCCAGT 
 

5arm_3ITR_rev Screening for insertion of 5’arm in 
correct location by PCR  

CGTCAATTTTACGCATGATTATCTTTAAC 
 

3arm_5ITR_fwd Screening for insertion of 3’ arm in 
correct location by PCR 

GCGACGGATTCGCGCTATTTAGAAAG 
 

M13_rev Screening for insertion of 3’ arm in 
correct location by PCR & Sequencing 

CAGGAAACAGCTATGACCATG 
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Figure 5.8: Diagnostic digest to confirm the insertion of the homology arms into the 
piggyBacTM plasmid. A: Virtual diagnostic digest highlighting the expected fragment size following 
digestion with BsiWI. L= NEB 2-log, WT = empty piggyBacTM vector, PB-5 = piggyBacTM plasmid 
with the 5’homology arm inserted. PB-5-3 = piggyBacTM plasmid with the 5’ homology arm and 3’ 
homology arm inserted. B: Diagnostic digest with BsiWI to identify plasmids with the 5’-homology 
arm inserted. Plasmid 1 had the 5’-homology arm successfully inserted and was taken forward to 
insert the 3’ homology arm. L=Solis Biodyne 1 kb ladder, WT = empty piggyBacTM plasmid. C: 
Diagnostic digest with BsiWI to identify plasmids with the 5’ and the 3’ homology arms inserted. 
Plasmids 4 & 5 appeared to have both arms inserted and were sent for sequencing. L= Solis 
Biodyne 1 kb ladder, WT=empty piggyBacTM plasmid, PB-5= piggyBacTM plasmid with 5’arm 
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Figure 5.9: Sanger sequencing to confirm the presence of the correct homology arm sequences in the correct location and orientation in the 
piggyBacTM transposon plasmid. A-B: The 5’ homology arm was correctly inserted into the correct location upstream of the 3’ITR in the piggyBacTM plasmid 
C-D: The 3’ homology arm was correctly inserted into the correct location downstream of the 5’ ITR in the piggyBacTM plasmid. E: Sanger sequencing 
confirmed the desired SNP-edit at rs1617640 (A>C) was present in the 5’ homology arm that was inserted into the piggyBacTM plasmid.  
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 Genetic modification of the cis-EPO SNP in HEK-293 cells with 
CRISPR-Cas9 gene-editing 

 

 Co-transfection of HEK-293 cells  
 
Prior to gene-targeting, HEK-293 cells were seeded in a 10-cm dish at a density 

of 100,000 cells per mL. 24 hours later, cells were co-transfected with 6 g of 

piggyBacTM HDR template plasmid (containing the desired SNP edit or the wild-

type sequence at rs1617640) and 6 g of CRISPR-Cas9-gRNA plasmid using 

lipofectamine LTX following manufacturer’s protocol (ThermoFisher Scientific, 

Massachusetts, USA). Cells were incubated for 48 hours before being 

visualised under the Leica DMi8 Widefield microscope (Leica, Milton Keynes, 

UK) to confirm successful transfection.  

 

 Selection of cells containing piggyBacTM transposon 
 

48 hours after transfection, cells were placed under 1 g/mL puromycin 

selection (Sigma-Aldrich, Missouri, USA) for 14 days to select cells containing 

the piggyBacTM selection cassette (Iwaki & Umemura, 2011; Yusa, 2013). 

Media was replaced every 2-3 days with fresh DMEM (ThermoFisher Scientific, 

Massachusetts, USA) supplemented with 10% FBS and 1 g/mL puromycin. 

Following selection, single puromycin-resistant cells were isolated into 96-well 

plates via single cell picking using a 2 l pipette under the EVOS FLoid Imaging 

system (ThermoFisher Scientific, Massachusetts, USA). Single cells were 

clonally expanded for around 2 weeks and gradually moved from 96-well plates 

to 24-well plates and then 6-well plates.  

 

 Genotyping 
 

To confirm successful insertion of the piggyBacTM transposon in the correct 

genomic location and correction of the SNP at rs1617640, clonally expanded 

cells were pelleted and DNA was extracted from half the pellet using the 

PureLink Genomic DNA Extraction Kit (Invitrogen, Massachusetts, USA). The 

other half of the pellet was plated for continual growth. DNA concentration was 

measured using the Nanodrop ND-8000 Spectrophotometer (ThermoFisher 

Scientific, Massachusetts, USA) and 100 ng DNA was subjected to genomic 

PCR using HOT FIREPol DNA polymerase according to manufacturer’s 

instructions (Solis BioDyne, Teaduspargi, Estonia). To screen for successful 
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homozygous targeting and integration of the piggyBacTM transposon, two pairs 

of primers were designed (Figure 5.10, Table 5.4). PCR products were 

visualised using gel electrophoresis (Figure 5.10). PCR amplicons for the 

samples showing the expected banding pattern were purified using ExoSAP-IT 

PCR Product Cleanup reagent following manufacturer’s instructions 

(ThermoFisher Scientific, Massachusetts, USA). Purified products were sent for 

Sanger sequencing using Genewiz (Genewiz, Essex, UK) with the forward 

primer (epo_snp-forward; Table 5.4) to determine the genotype at rs1617640 

and check for insertion of the piggyBacTM transposon in the correct location. 
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Table 5.4: Primer sequences used for screening correctly mutated clones at rs1617640. 

 
Primer Sequence (5’-3’) 

F1 CTGGTAGTTTCACCACACCCA 

R1 TTGGGCGGAGACTCAGAGAT 

epo_snp_forward CTGAATGGGATAGGCTGGTAGT 

PB1 CGTCAATTTTACGCATGATTATCTTTAAC 

F2 TGAGCCACCACACCTGACTA 

R2 TTCTTCCTCCCCACCTCACT 

PB-F GGCATAGTATATCGGCATAG 

PB-R GTTAGAAGACTTCCTCTGC 
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Figure 5.10: PCR-based screening of targeted clones.  

A: Schematic of gene targeting upon successful integration of transposon into genomic 
DNA. Arrowheads represent primers used in genotyping to screen for successful 
homozygous targeting. B: Primer combinations and expected amplicon sizes. Primer pair 
F1-R1 would result in a PCR amplicon of 878 bp if transposon has not been integrated. 
Primer pair F2-PB1 would result in a PCR amplicon of 283 bp upon successful transposon 
integration into the DNA at the correct location. C: PCR-based genotyping. Homozygote 
colonies with successful transposon integration at both alleles will have a single band at 
283 bp whilst heterozygotes can be identified by the presence of two bands.  
 
 
 



 264 

 Removal of piggyBacTM transposon cassette  
 

 Transposase treatment 
 

A biallelic Cas9-targeted clone containing the desired SNP edit at rs1617640 

(c.-1306, A>C) was selected for treatment with transposase to remove the 

piggyBacTM selection cassette from the genomic DNA. Cells were seeded at a 

density of 100,000 cells per ml in a 6-well plate and the following day were 

transfected with 2500 ng of the piggyBacTM excision-only transposase using 

Lipofectamine LTX reagent following manufacturer’s protocol (ThermoFisher 

Scientific, Massachusetts, USA).  

 

 Selection of cells for successful excision of piggyBacTM 
 
To select for cells no longer carrying the piggyBacTM transposon cassette, 48 

hours after transposase treatment, cells were subject to a second selection step 

under Fialuridine (FIAU) treatment (200 nM, Sigma-Aldrich, Missouri, USA) for 

10 days. Media was replaced every 2-3 days with fresh DMEM supplemented 

with 10% FBS and 200 nM FIAU. Single cells were isolated by single cell 

picking using a 2 l pipette under the EVOS FLoid Imaging system 

(ThermoFisher Scientific, Massachusetts, USA). Single cells were clonally 

expanded for around 2 weeks and gradually moved from 96-well plates to 24-

well plates and then 6-well plates.  

 

 Genotyping 
 

Single clones were propagated for genotyping by PCR analysis to determine 

successful transposon excision using the same two sets of primers as before for 

detecting transposon integration (Table 5.4; F1-R1; epo_snp-foward-PB1). An 

additional pair of primers were also used (Table 5.4; PBF-PBR; F2-R2) to check 

for reintegration of the piggyBacTM cassette elsewhere in the genome (Figure 

5.11). PCR amplicons showing the expected banding pattern were purified 

using ExoSAP-IT PCR Product Cleanup reagent following manufacturer’s 

instructions (ThermoFisher Scientific, Massachusetts, USA) and were 

subsequently sent for Sanger sequencing using Genewiz (Genewiz, Essex, UK) 

to confirm seamless removal of the piggyBacTM cassette from the genomic DNA 

and correct modification of the cis-EPO variant (Table 5.4; F1 primer). 

Successful clones were further propagated for downstream analysis. 
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Figure 5.11: PCR-based screening of transposon-excised clones. A: Schematic of 
transposon excision. Arrowheads represent primers used in genotyping to determine 
whether transposon had successfully been removed. B: Primer combinations and expected 
amplicon sizes during genotyping. Primer pair F1-R1 would result in a PCR amplicon of 
878 bp if transposon has been successfully excised. Primer pair F2-PB1 would result in a 
PCR amplicon of 283 bp upon unsuccessful transposon excision. PBF-PBR was used to 
check for reintegration and would result in amplicon size of 687 bp if transposon is still 
present anywhere in the genomic DNA C: Examples of PCR results for different genotypes. 
Homozygote colonies with successful transposon excision at both alleles and no 
reintegration will have a single band at 878 bp and no band present for PBF-PBR (Lane D). 
If the transposon has been reintegrated elsewhere in the genome in homozygote targeting, 
a band will be present at 687 bp (Lane C). Heterozygotes targeted only at one allele will 
have two bands present when genotyping and a band present when screening for 
transposon (Lane B).  
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 Validation that the cis-EPO variant alters EPO gene expression 
levels and downstream causal pathways 

 

Isogenic HEK-293 cells, containing either the wild-type (A/A) or mutant (A/C) 

genotype at rs1617640, were subjected to quantitative reverse transcription 

PCR (qRT-PCR) to validate the cis-EPO variant as causal in controlling EPO 

messenger RNA (mRNA) expression levels. Cells were pelleted and RNA was 

isolated using the Direct-zolTM RNA Miniprep kit following the manufacturer’s 

protocol (Cambridge Biosciences, Cambridge, UK). 500 ng of RNA was 

converted to cDNA using PrimeScriptTM RT reagent kit (Takara Bio Europe 

SAS, Saint-Germain-en-Laye, France) following manufacturer’s protocol. qRT-

PCR was performed using Hot FIREPol EvaGreenTM qPCR Master Mix with 

ROX (Solis BioDyne, Teaduspargi, Estonia) using the QuantStudio 6 Flex 

qPCR machine (ThermoFisher Scientific, Massachusetts, USA) on at least 

three biological replicates. Any samples with Ct values greater than 2 standard 

deviations (SD) from the mean were removed. Gene expression levels were 

standardised against the reference gene (GAPDH) mRNA levels using the 

2−ΔΔCT method (Livak & Schmittgen, 2001). Genes involved in the Notch 

signalling pathway and identified as dysregulated through whole transcriptomic 

profiling of the EPO gene knock-outs in Chapter 4 were also subjected to qRT-

PCR to investigate whether the cis-EPO SNP has a similar effect to whole gene 

knock-out. All primer sequences used were the same as those in Table 4.2 and 

Table 4.5.  

 

 Statistical analysis 
 

All data are presented as the mean ± standard error (SE). Statistical analysis 

was performed using RStudio version 3.6.1 (RStudio Team, 2018). 

Comparisons between the two genotypes, wild-type and mutant, were analysed 

by paired Student’s t-tests. Differences with P < 0.05 were considered 

statistically significant.  
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5.4  Results 
 

 HEK-293 cells are homozygous for the A-allele at rs1617640. 
 
To determine the genotype of wild-type HEK-293 cells, I amplified the region 

surrounding the cis-EPO variant and sent the subsequent amplicon for Sanger 

sequencing. Sanger sequencing revealed that HEK-293 cells were homozygous 

for the A-allele at rs1617640 (Figure 5.12). 

 

 Construction of the CRISPR-Cas9 and piggyBacTM vectors targeting 
the cis-EPO variant  

 
To introduce the naturally occurring polymorphism of rs1617640, I adapted a 

molecular strategy, combining CRISPR-Cas9 and the piggyBacTM system, to 

precisely generate a cis-EPO mutant cell-line model without leaving any marks 

in the targeted genomic DNA. Upon examination of the genomic sequence 

surrounding the cis-EPO variant, I designed a single gRNA targeting Cas9 to 

the DNA inducing a DSB 6 bp away from the cis-EPO variant (Figure 5.13A). I 

identified a ‘TTAA’ site 87 bp away which could be used for the successful 

integration and footprint free excision of the piggyBacTM transposon (Figure 

5.13A). The closest ‘TTAA’ site to rs1617640 was chosen as the efficiency of 

inserting the modification decreases as the distance between the desired 

modification site and ‘TTAA’ site increases; 80% of clones will carry the 

modification when the site is 200 bp away from the ‘TTAA’ site, whilst only 70% 

of clones will carry the modification when the edit-site is 300 bp away from the 

‘TTAA’ site (Yusa, 2013). I designed two homology arms complementary to 500 

bp either side of the identified ‘TTAA‘ site. The homology sequence upstream of 

the ‘TTAA’ site (5’ homology arm) contained the desired SNP change at 

rs1617640 (either wild-type A/A genotype [as a control] or mutant C/C 

genotype) (Figure 5.13A). The original donor vector contains two inverted 

terminal repeat (ITR) piggyBacTM transposon sequences and a bi-functional 

hybrid puroΔtk gene for positive selection through puromycin treatment and 

negative selection through FIAU treatment. I designed a targeting vector 

carrying the homologous sequences inserted either side of the two ITRs 

flanking the PGK-puroΔtk cassette (Figure 5.13B). When the CRISPR-Cas9 

plasmid introduces a DSB in the vicinity of rs1617640, the presence of the 

homology arms in the piggyBacTM plasmid initiates homologous recombination 
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and the piggyBacTM cassette can be inserted precisely at the ‘TTAA’ site 

(Figure 5.13C). Due to the presence of the puromycin resistance gene, 

genome-edited cells can be selected with puromycin. After treatment with 

excision-only transposase, the piggyBacTM transposon can be seamlessly 

excised from the genome (Figure 5.13D). As the genome no longer contains 

the tk gene (held in the piggyBacTM transposon), cells can be selected for 

successful excision using FIAU.  
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Figure 5.12: Genotyping of wild-type HEK-293 cells at the cis-EPO SNP. A: A fragment of 
731 bp was amplified surrounding the cis-EPO SNP. B: Sanger sequencing was performed on 
purified PCR product confirming that HEK-293 cells are homozygous for the A-allele at 
rs1617640.  
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Figure 5.13: Schematic diagram of site-specific gene-editing of rs1617640 using CRISPR-Cas9 
and the piggyBacTM transposon system. A: Targeting of the cis-EPO SNP upstream of the EPO gene. 
A gRNA was designed to introduce CRISPR-Cas9 mediated cleavage 6 bp downstream from the cis-
EPO SNP. The nearest ‘TTAA’ site for integration of the piggybacTM plasmid was 87 bp away. B: The 
piggyBacTM targeting construct carrying the two homology arms (the 5’ homology arm with the desired 
SNP-edit) flanking the selectable markers, puroΔtk, within the transposon. C: Insertion of the piggyBacTM 

transposon following HR at the desired TTAA site nearby the cis-EPO SNP. Following puromycin 
selection, clones containing the piggyBacTM transposon confirming successful HR were identified by PCR 
and sequencing using epo_snp_forward-PB1 and F1-R1. D: Transfection with excision-only transposase 
resulted in the seamless removal of the piggyBacTM cassette. Clones were identified by PCR 
amplification and sequencing using epo_snp-forward-PB1, F1-R1 and F2 -R2.  
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 Site-specific homologous recombination CRISPR-Cas9-mediated 
gene-targeting of the cis-EPO SNP in HEK-293 cells 

 

HEK-293 cells were co-transfected with the CRISPR-Cas9-gRNA plasmid and a 

targeting vector containing the piggyBacTM selection cassette. Fluorescent 

microscopy imaging confirmed successful transfection (Figure 5.14). To confirm 

site-specific HR and successful integration of the piggyBacTM selection cassette, 

I selected the transfected cells for two weeks with puromycin and screened 

resulting single cells by genomic PCR and Sanger sequencing. Puromycin-

resistant cells contained the piggyBacTM cassette as detected by PCR (Figure 

5.15A). Sanger sequencing revealed site-specific HR at the targeted site, the 

insertion of the piggyBacTM cassette in the correct genomic location 

downstream of the cis-EPO variant and the introduction of the desired mutation 

at the cis-EPO variant (c.-1306, A>C). One screened cell-line appeared to be 

biallelic for the C-allele at rs1617640 and was therefore clonally expanded and 

used for all subsequent experiments (Figure 5.15B-C).  
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Figure 5.14: Microscopy imaging confirmed successful co-transfection of the CRISPR-Cas9-GFP (pSpCas9(BB)-2A-GFP) and piggyBacTM 

plasmid into HEK-293 cells. Images were taken on the Leica DMi8 Widefield microscope. Scale bar represents 100 M. PB = final piggyBacTM 

plasmid (containing the 5’ and 3’ homology arms). GFP = final CRISPR-Cas9-GFP plasmid (containing the gRNA). 
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Figure 5.15: Identification of clone that had successfully undergone HR and contained the desired 

point mutation at rs1617640. A: Genotyping via PCR to detect the integration of the piggyBacTM 
transposon within the genomic DNA at the correct location. Clones 61 & 67 appeared to be homozygous 
for the piggyBacTM transposon. -ve = DNA replaced by water in the PCR reaction. WT = HEK-293 wild-type 
DNA used as a positive control to check F1-R1 primers amplified a band of correct size. PB = final 
piggyBacTM targeting vector (with homology arms) used as a positive control to check epo_snp-forward-
PB1 primers amplified a band of correct size. L = Solis Biodyne 100 bp ladder. B: Sanger sequencing of 
wild-type HEK-293 cells to double check genotype at rs1617640 (left plot; star and red letter emphasises 
cis-EPO allele, yellow highlighted sequence represents the gRNA sequence) and to show the sequence at 
the ‘TTAA’ site before integration of the piggyBacTM transposon (right plot). C: Sanger sequencing of the 
targeted cells confirmed the successful gene-editing of the cis-EPO SNP (left plot; A>C, star and red letter 
emphasise the mutation of the cis-EPO allele, yellow highlighted sequence represents the gRNA). Both 
alleles of the cis-EPO SNP had been targeted as highlighted by the clean band and integration of the 
piggyBacTM transposon (shown in the right plot). 
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 Generation of heterozygous cis-EPO SNP knock-ins in HEK-293 
cells 

 

Isogenic cell-lines containing the piggyBacTM transposon with the selection 

cassette and homozygous for the wild-type A-allele or for the mutant C-allele 

were treated with a plasmid encoding the excision-only piggyBacTM 

transposase. PCR amplification of the genomic DNA upstream of the 5’ 

homology arm and downstream of the 3’ homology arm resulted in three distinct 

genotypes in cell-lines containing the cis-EPO knock-in; clones showing 

transposon removal from only one allele, clones showing transposon removal 

from both alleles and clones showing retention of the transposon in both allele 

(Figure 5.16A). Clones showing transposon removal from both alleles 

underwent subsequent genomic PCR analysis using primers within the 

piggyBacTM transposon to confirm that the piggyBacTM transposon had not been 

reintegrated into the genomic DNA (Figure 5.16B). Clones lacking a band 

representing no reintegration of the piggyBacTM transposon were sent for 

Sanger sequencing. The results showed that heterozygous targeting of the cis-

EPO SNP had been successfully achieved modifying the A-allele to a C-allele 

(Figure 5.16C). Homozygotes for the mutant allele of rs1617640 were unable to 

be identified. However, for the purpose of this study, heterozygote editing was 

adequate to determine if the genetic variant altered EPO expression levels.  
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Figure 5.16: Successful removal of the piggyBacTM and single-site base-editing at rs1617640. A: 
Genotyping via PCR to detect clones no longer carrying the piggyBacTM transposon downstream of rs1617640. 
Clone 7-3 appeared to have the piggyBacTM transposon successfully removed at both alleles. WT = wild-type 
HEK-293 cells used as a positive control to check F1-R1 primer pair was working. PB = final piggyBacTM with 
homology arms used as a positive control to check that the epo_snp-forward-PB1 primer pair was working. -ve = 
DNA is replaced by water in the PCR reaction. L = Solis Biodyne 100 bp ladder. B: Genotyping via PCR to 
check no reintegration of the piggyBacTM transposon in Clone 7-3. WT = wild-type HEK-293 cells used as a 
positive control to check F1-R1 and F2-R2 primer pairs were amplifying a band of correct size. PB-5-3 = final 
piggyBacTM plasmid with homology arms used as a positive control to check PBF-PBR primers worked correctly. 
PB = PBF-PBR primer pair, F2 = F2-R2 primer pair, F1=F1-R1 primer pair. -ve = DNA is replaced by water in the 
PCR reaction. L = Solis Biodyne 100 bp ladder. C: Sanger sequencing of Clone 7-3 confirmed that the 
piggyBacTM transposon had seamlessly been removed from the genomic DNA on both alleles (right plot) and that 
the desired point mutation had been made at the cis-EPO SNP (A > C). The double peak seen at the cis-EPO 
SNP indicated that heterozygous gene-editing had been achieved.  
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 Heterozygotes for the A-allele at the cis-EPO SNP have reduced 
EPO expression levels compared to homozygotes for the A-allele 

 

For functional validation of the cis-EPO SNP as the most likely causal variant in 

controlling EPO expression levels and therefore a valid instrument for use to 

genetically proxy therapeutic rises in endogenous EPO levels (analysis 

performed in Chapter 3), I performed qRT-PCR to assess the allele-specific 

effects of rs1617640 on EPO expression levels in HEK-293 cells. The results 

showed that EPO mRNA expression levels were higher in the cells homozygous 

for the A-allele of rs1617640 compared to heterozygotes for the A-allele 

confirming that the cis-EPO polymorphism has an allele-specific effect on EPO 

gene expression levels (Figure 5.17). These results are consistent with my 

genetic findings that the A-allele is associated with higher circulating EPO levels 

(Chapter 3).  

 

 Heterozygotes for the A-allele at the cis-EPO SNP have altered 
expression levels of Notch signalling genes. 

 

qRT-PCR was also performed on three Notch signalling genes (HEY2, DTX3L, 

PARP9) which showed differential expression in the whole EPO gene knock-

outs (identified by whole transcriptomic analysis in Chapter 4) to see if specific 

alteration of the cis-EPO variant also resulted in dysregulated Notch signalling. 

Homozygotes (A/A) of the cis-EPO SNP had down-regulated expression of the 

three Notch signalling genes compared to heterozygotes (A/C) of the cis-EPO 

SNP (Figure 5.18). Negative control experiments with two additional 

housekeeping genes (Pol2RA and PPIA) expected to not show differential 

expression confirmed that the cis-EPO SNP-editing (c.-1306, A>C) was most 

likely specific to the EPO pathways (Figure 5.18). 
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Figure 5.17: The cis-EPO variant has an allele-specific effect on EPO mRNA expression levels. Homozygotes for the 
A-allele at rs1617640 showed significantly higher EPO mRNA expression levels than heterozygotes for the A-allele at 
rs1617640 indicating that the cis-EPO variant is important in controlling EPO mRNA expression levels. EPO mRNA 
expression levels were measured by performing qRT-PCR in heterozygotes (A/C) and homozygotes (A/A) of rs1617640. The 

graph shows the relative change in mRNA expression levels (SEM) between genotypes. HET = HEK-293 cells 
heterozygous for the A-allele at rs1617640. WT = wild-type HEK-293 cells with A/A genotype at rs1617640.  Columns and 
error bars represent mean and standard error (SEM) values. Paired t-test was performed in RStudio. ****P≤0.0001. 
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Figure 5.18: The A-allele at rs1617640 is associated with down-regulation of genes involved in the Notch signalling 
pathway. 

mRNA expression levels were measured by performing qRT-PCR in heterozygotes (A/C) and homozygotes (A/A) of rs1617640. 
Three Notch signalling genes (HEY2, DTX3L & PARP9), identified as dysregulated in EPO-/- knock-outs, were checked for 
expression. Expression levels of two controls genes (PPIA and POLR2A) were also checked as negative controls and EPO was 

repeated again as a positive control for altered expression. The graph shows the relative change in mRNA expression levels ( 
SEM) between genotypes. Columns and error bars represent mean and standard error (SEM) values. Paired t-test was performed. 
ns = non-significant, *P≤0.05, **P≤0.01, ***P≤0.001, ****P≤0.0001. 
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5.5 Discussion 
 
In this study, I generated a heterozygous knock-in model of the functional 

polymorphism at rs1617640 (c.-1306, A>C) in HEK-293 cells to functionally 

validate the genetic variant as causal in controlling EPO expression levels. I 

further developed and optimised an approach using CRISPR-Cas9 with the 

piggyBacTM transposon system to alter a non-coding region within the 

transcription start site of the EPO locus. First, by selecting an appropriate gRNA 

to target the cis-EPO variant and introduce a DSB within the vicinity of the 

variant, the desired single-base mutation, carried by the piggyBacTM template, 

was inserted into the genome through DSB-mediated HR (Figure 5.13, Figure 

5.15). Second, following puromycin selection to isolate cells containing the 

piggyBacTM transposon and FIAU selection after transposase-guided excision of 

the selection marker, I achieved heterozygous modification of the A-allele at 

rs1617640 (Figure 5.15, Figure 5.16). Third, I observed that no residual 

exogenous sequence remained at the targeted site and the remaining genome 

appeared undisturbed (Figure 5.16). Heterozygous modification of the A-allele 

at rs1617640 showed reduced EPO expression levels compared to wild-type 

homozygotes of the A-allele indicating that rs1617640 is the most likely causal 

variant at controlling EPO expression levels (Figure 5.17). The impact of the 

alteration at rs1617640 on Notch signalling genes found dysregulated in 

transcriptomic profiling of EPO knock-outs (see Chapter 4) was also 

investigated to see if the allele has similar effects to that of the gene. 

Heterozygotes of the A-allele of rs1617640 were found to have altered 

expression levels of Notch signalling genes further indicating that rs1617640 

has an allele-specific effect on controlling EPO levels and downstream 

signalling pathways of EPO (Figure 5.18). This study provides functional 

evidence that the cis-EPO variant is causal in controlling EPO expression and 

therefore supports the use of the cis-EPO variant as a partial proxy for 

therapeutically altered endogenous EPO levels.  

 

I chose the cis-EPO genetic variant as a functional target to provide 

experimental data to validate the genetic findings in Chapter 3 and to provide 

an example of how gene-editing can be employed to provide functional 

evidence to improve our understanding of likely candidate genes and 
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downstream pathways of variants identified through genetic analyses. The 

results obtained in this study support the genetic association identified in 

Chapter 3 and previous research investigating the functional effects of the 

rs1617640 polymorphism (Amanzada et al., 2014; Renner et al., 2020; Tong et 

al., 2008). Previous studies have investigated the functional effects of the 

rs1617640 SNP in patients with different pathologies and have reported 

conflicting results. Studies investigating the effect of the cis-EPO variant in 

patients with diabetic retinopathy and hepatitis C patients on antiviral therapies 

provide evidence consistent with our findings indicating that the A-allele is 

associated with higher EPO levels (Amanzada et al., 2014; Tong et al., 2008). 

Other studies investigating the effect of the A-allele in Neuro2a cells, in Chinese 

patients with diabetic retinopathy or in male Jordanian blood donors, have found 

the A-allele to be associated with lower EPO concentrations (Y. Fan et al., 

2016; Kästner et al., 2012; Khabour et al., 2012). These conflicting results 

indicate that the allele-specific effect of the cis-EPO variant on EPO levels is 

likely dependent upon the physiological state, the cell-type, the cellular 

localisation, the pathological state and perhaps the physiological timing (Renner 

et al., 2020). It is difficult to replicate these different conditions in vitro. These 

findings highlight the importance of studying allele-specific effects in tissue-

relevant cell-lines and the careful consideration needed when translating 

findings. Future studies utilising the described methods in model animals, such 

as mice or zebrafish, and human organoid models would be worthwhile to 

assess the allele-specific effects in living organisms. Despite the conflicting 

results, all studies, including this one, indicate that the cis-EPO variant plays an 

important role in controlling EPO levels and this study is the first investigating 

the impact of the variant in a human cell model.  

 

The introduction of single-base gene-edits to cell-lines is often limited by the low 

efficiency of HR (Fei Xie et al., 2014). However, this study shows how a 

customised gRNA with the CRISPR-Cas9 gene-editing system efficiently 

generated a site-specific DSB directly targeting the promoter region of the EPO 

gene. The simultaneous introduction of the piggyBacTM targeting vector to cells 

promoted efficient DNA repair of this site-specific DSB via HR as shown by the 

presence of the piggyBacTM transposon in all screened clones after puromycin 

selection (Figure 5.15). The drug-selection based enrichment of genetically 
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modified clones makes screening easier and faster than alternatively used 

approaches, such as ssODNs, but the efficiency of HDR altering both alleles 

remains a limitation (Y. Huang et al., 2012; Ishida et al., 2018).  

 

I was only able to identify a successfully edited heterozygote clone. 

Heterozygote targeting was enough to validate the genetic variant as likely 

causal in controlling EPO expression levels and therefore did not affect the 

study outcome. It would be useful, however, to generate a model representing 

the complete allelic-series (i.e. for the cis-EPO SNP: C/C, A/C, A/A) to enable 

investigation of whether the allele has an additive effect as suggested by the 

genetic study (Chapter 3) or a recessive effect. Complete allelic-series models 

would comprise the gold standard for validating genetics variants as causal (J. 

Lin & Musunuru, 2018). The models generated in this study of mutant 

homozygotes (C/C), wild-type homozygotes (A/A) and heterozygotes (A/C) 

containing the piggyBacTM cassette could be used to investigate the allelic-

series effects providing control experiments investigating whether the 

integration of the piggyBacTM transposon altered EPO expression was carried 

out (by testing for no difference in EPO expression levels between A/A 

homozygotes with and without the piggyBacTM transposon). Further screening 

and optimisation of the protocol for use in HEK-293 cells is needed to improve 

the efficiency of obtaining a homozygote after transposase treatment.  

 

It is important when using the piggyBacTM
 and CRISPR-Cas9 systems to 

consider the distance of the ‘TTAA’ site and the cleavage site from the desired 

gene-edit site (Bialk et al., 2015; O’Brien et al., 2019; Paquet et al., 2016). The 

closer the cut-site and the ‘TTAA’ site to the modification site, the higher the 

efficiency of HDR and chance of achieving a homozygous mutation (Doench et 

al., 2016; Kondrashov et al., 2018; Paquet et al., 2016; Yusa, 2013). It has 

previously been shown that 80% of clones carry single modifications when the 

‘TTAA’ site is 200 bp from the modification site and this reduces to 70% when 

the distance increases to 300 bp (Yusa, 2013). The frequency of obtaining 

homozygous modifications therefore reduces further and thus the distance 

between the ‘TTAA’ site and modification site in this study may be the reason so 

few homozygous clones were identified after puromycin selection and none 

after transposase treatment. Furthermore, previous studies have shown that the 
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homology arm junction should be no longer than 100 bp from the cut-site (Ran, 

Hsu, Wright, et al., 2013; J.-P. Zhang et al., 2017) and the gRNA should be as 

close to the modification site as possible to increase chances of point mutations 

(Bollen et al., 2018). It is a balancing act between obtaining a gRNA as close to 

the intended modification site as possible with a high off- and on-target score 

(Bollen et al., 2018; Doench et al., 2016). Several gRNAs could be chosen and 

tested for efficiencies (Cong et al., 2013). I was able to identify many 

puromycin-resistant clones targeted on one allele or both alleles retaining the 

wild-type sequence (A/A), but only found one successfully targeted clone 

mutated at both alleles highlighting the low frequency of true correctly modified 

homozygotes. Upon removal of the transposon and negative screening, the 

genotype of the isogenic homozygous mutant (C/C) cell-line (containing the 

piggyBacTM selection cassette) returned to that of a heterozygote (A/C). It may 

be that the mutant homozygous cell-line with the transposon was not a true 

homozygote before transposase treatment or that upon transposon removal, the 

cell-line underwent spontaneous genomic modification returning the genotype to 

that of a heterozygote. This warrants further investigation and could indicate 

that the C/C genotype of rs1617640 is not viable within HEK-293 cells.  

 

The risk of off-target effects are always an area for concern when using 

CRISPR-Cas9 gene-editing techniques (Tycko et al., 2019). The benefit of 

combining the piggyBacTM system with CRISPR-Cas9 is that effective screening 

for the incorporation of the transposon into the expected genomic location can 

be undertaken reducing the chances of off-target effects. Cells can also easily 

be screened for reintegration of the transposon after transposase treatment by 

PCR. The use of the excision-only transposase increases the chance of 

footprint free removal as the transposase lacks integration activity and is 

therefore unlikely to be reintegrated elsewhere (X. Li et al., 2013). However, the 

concern regarding off-target cleavage that may have unpredictable phenotypic 

consequences still remains (Fu et al., 2013; H. Li et al., 2020). The most 

practical approaches to overcome these risks currently are careful design of 

gRNA using the most up-to-date algorithms and online tools alongside 

additional computational analysis to identify potential off-target sites and 

screening for these, or the generation of multiple independent cell-lines and 

checking for the same phenotype in each (Guanqing Liu et al., 2020; Yusa, 
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2013). As the field advances, further development of tools and methods for a 

more comprehensive analysis of off-target effects as well as the generation of 

readily available modified Cas9 proteins optimised for reducing off-target effects 

will help overcome these concerns (C.-L. Chen et al., 2020; Kang et al., 2020; 

Naeem et al., 2020; D. Wang et al., 2019). Although alternative approaches to 

introduce a single-base gene-edit could have been used, the combination of 

CRISPR-Cas9 with the piggyBacTM system was chosen over other transposons, 

like Sleeping Beauty, due to the piggyBacTM having a preference for integration 

around transcription units which is where the cis-EPO SNP is located (i.e. within 

the EPO gene transcription start site) (Ivics et al., 2009). This made the method 

an appropriate and efficient approach to introduce a point mutation at 

rs1617640. 

 

This chapter has further developed and optimised the protocol first described by 

Yusa et al. (2013) for the introduction of single-base gene-edits into HEK-293 

cells. I have shown how CRISPR-Cas9 targeted gene-editing and HR induced 

by the piggyBacTM transposon system can be used to achieve precise and 

footprint-free modification of genetic variants within the regulatory region of 

genes. This relatively novel approach can be used to provide experimental 

evidence of the most likely causal variant and candidate gene further improving 

the interpretation and understanding of the underlying biological mechanisms 

identified through genetic analyses. These findings provide validation of the 

choice of instrument for use as a genetic proxy for therapeutic modulation of 

endogenous EPO levels and provide additional insight into the regulatory region 

of the EPO gene.  
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Chapter 6 Genetically proxied therapeutic inhibition of PHD 

enzymes and cardiovascular risk. 

 
The work presented in this chapter is currently available as a pre-print which is 

under internal review at GSK and will be submitted to BioRxiv and PloS 

Medicine. I have reformatted and expanded on sections taken directly from the 

pre-print for the purpose of this thesis.  

 

Harlow, CE. Patel, VV. Waterworth, DM. Wood, AR. Beaumont, R. Ruth, KS. 

Tyrell, J. Oguro-Ando, A. Chu, AY & Frayling, TM. 2022. Genetically proxied 

therapeutic inhibition of PHD enzymes and cardiovascular risk. 

 

For this Chapter, I helped develop the analysis plan and performed all analysis 

with the support and guidance of my supervisors, Professor Tim Frayling and Dr 

Audrey Chu. I worked on the work presented in this Chapter alongside GSK 

whilst doing my placement to provide additional support to the 

pharmacogenomics work being undertaken into the effects of PHI treatments.  
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6.1 Abstract 
 
Novel treatments for anaemia of chronic kidney disease (CKD), prolyl-hydrolase 

inhibitors (PHIs), have recently completed large-scale Phase III clinical trials to 

assess the safety and efficacy compared to the current standard of care. 

Current treatments for anaemia of CKD, such as recombinant human EPO 

(rhEPO) and its analogues, are associated with increased risk of adverse 

effects on the heart and vasculature, specifically major adverse cardiovascular 

events that can include coronary artery disease (CAD), myocardial infarction 

(MI) and stroke. One hypothesis is that these adverse effects are caused by 

excessively high haemoglobin (Hgb) levels. PHIs act through inhibition of the 

prolyl hydroxylase enzymes (PHDs) increasing physiological Hgb levels through 

activation of the hypoxic pathway. Naturally occurring genetic variation in or 

near genes encoding the PHDs can be used to help understand the potential 

effect of long-term therapeutic PHD inhibition. I performed two-sample 

Mendelian Randomisation (MR) to test the genetically proxied effects of PHD 

inhibition on stroke (40,585 cases; 406,111 controls), coronary artery disease 

(CAD; 60,801 cases; 123,504 controls) and myocardial infarction (MI; 42,561 

cases; 123,504 controls) using data from GWAS meta-analyses. I used eight 

genetic variants in or near the three PHI target genes (EGLN1/2/3) to partially 

mimic the effects of PHD inhibition. To identify potential other effects of long-

term rises in Hgb levels, I performed a phenome-wide association study 

(PheWAS) using GWAS data on up to 451,099 UK Biobank individuals. 

Genetically proxied therapeutic PHD inhibition, equivalent to a 1.00 g/dL 

increase in circulating Hgb levels, was not associated (at P < 0.05) with 

increased odds of CAD (OR [95% CI] = 1.04 [0.91, 1.20]), MI (OR [95% CI] = 

1.03 [0.88, 1.20]) or stroke OR [95% CI] = 0.98 [0.85, 1.12]). Similar results 

were found when using a larger but less specific set of 515 variants associated 

with circulating Hgb levels. By performing PheWAS, I found no associations 

between genetically proxied PHD inhibition and other diseases or risk factors 

with clinically meaningful differences. These results suggest that general long-

term raising of circulating Hgb levels through PHD inhibition shows no increase 

in cardiovascular risk; I could exclude (at P < 0.05) odds ratios of 1.35 for a 

minimally clinically significant increase in Hgb, of 1.00 g/dL. The main limitation 

is that common genetic variants proxy effects within the normal range and in the 

healthy population so may be less relevant to severely ill patients. 
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6.2 Introduction 
 
Hypoxia-inducible factor (HIF)-prolyl hydroxylase (PHD) inhibitors (PHIs) have 

recently completed Phase III clinical trials for treating anaemia in CKD (N. 

Chen, Hao, Liu, et al., 2019; N. Chen, Hao, Peng, et al., 2019; Chertow et al., 

2021; K.-U. Eckardt et al., 2021; A. K. Singh, Carroll, McMurray, et al., 2021; A. 

K. Singh, Carroll, Perkovic, et al., 2021; Q. Zheng et al., 2021). PHIs act at the 

transcriptional level of the hypoxic-response genes by inhibiting the PHD 

enzymes (PHD1-3) leading to an accumulation of HIF- activating the hypoxic 

response pathway (Gupta & Wish, 2017; Yeh et al., 2017). Increased 

transcription of the hypoxic-response genes, including EPO, results in increased 

erythropoiesis and subsequent elevated circulating haemoglobin (Hgb) levels 

restoring tissue oxygen delivery and correcting the anaemia (Haase, 2013; F. S. 

Lee & Percy, 2011; Watts et al., 2020). By acting at the transcriptional level, 

PHIs maintain endogenous EPO levels within the physiological range 

preventing sudden and/or excessive Hgb level elevations potentially reducing 

the risk of cardiovascular events, thromboembolism, and heart failure compared 

to current treatments (Gupta & Wish, 2017). Phase II trials indicate that PHIs 

can produce dose-dependent changes in Hgb levels and maintain target Hgb 

levels with small increases in EPO levels in patients either receiving or not 

receiving dialysis treatment (Brigandi et al., 2016; Holdstock et al., 2019; 

Meadowcroft et al., 2019). Phase III trials show PHIs to be non-inferior 

compared to rhEPO in terms of cardiovascular safety supporting ongoing 

development (Akizawa et al., 2021; N. Chen, Hao, Peng, et al., 2019; Chertow 

et al., 2021; K.-U. Eckardt et al., 2021; A. K. Singh, Carroll, McMurray, et al., 

2021; A. K. Singh, Carroll, Perkovic, et al., 2021).  

 

Genetic studies can be used to support clinical trial data by providing additional 

evidence that drug targets are associated with the intended therapeutic 

indication and not associated with unintended opposite direction effects further 

characterising the therapeutic profile (Nelson et al., 2015; Nguyen et al., 2019; 

Plenge et al., 2013). Several examples already corroborate the power of genetic 

studies in providing supporting evidence of drug safety (Lauridsen et al., 2015; 

Lotta et al., 2016; Swerdlow et al., 2015). Mendelian Randomisation (MR) is 

one approach in which genetics can be used to help identify causal 

relationships between intended (e.g. higher biomarker levels or disease) and 
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unintended drug effects (e.g. disease or unintended effects) (Davey Smith & 

Ebrahim, 2003; Walker et al., 2017). Genetic variants lying within or nearby the 

gene encoding the drug target, or associated with the drug’s intended effects, 

are used as unconfounded, unbiased proxies for pharmacological action, 

providing evidence of lifelong exposure on risk of disease (Swerdlow et al., 

2016). Phenome-wide association studies (PheWAS) are another method by 

which genetics can help characterise on-target therapeutic profile. In these 

studies, a genetic variant, or combination of variants, associated with the 

intended drug effects are tested for associations with a wide-range of 

phenotypes in large sample sizes, to identify potential unexpected effects that 

may have not been considered in clinical trials (Diogo et al., 2018).  

 

PHIs target the hypoxic pathway through inhibition of the PHD enzymes 

encoded by the EGLN genes (EGLN1/2/3). Studies of rare genetic variants and 

in vivo models provide some insight into the potential effects of targeting the 

EGLN pathways (Gardie et al., 2014). Some studies have shown that rare loss-

of-function variants lying in EGLN1 give rise to polycythaemia (pathogenic 

erythrocyte numbers) and inappropriate EPO production which is potentially 

linked to cardiovascular risk (e.g. hypertension or thrombotic events) in patients 

carrying these variants (Gardie et al., 2014). Additionally, mice lacking EGLN1 

show embryonic lethality due to heart and placental defects (Minamishima et 

al., 2008; Takeda et al., 2006). However, these studies are limited by the small 

number of patients studied and the differences between humans and mice. 

Common EGLN gene variants with modest effects can therefore provide insight 

into the potential long-term effect of therapeutically altering Hgb in the 

physiological range through PHD inhibition. In this study, I aimed to use 

common genetic variants, lying within or near the EGLN genes to partially mimic 

PHD inhibition and assess the associated risk of cardiovascular disease (CVD; 

defined here as coronary artery disease [CAD], myocardial infarction [MI] and 

stroke) with lifelong exposure to circulating Hgb level elevations through 

genetically proxied therapeutic PHD inhibition or other potential effects of long-

term Hgb levels through targeting the EGLN genes.  
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6.3  Chapter Aims 
 
The primary aim of this Chapter is to investigate the effects of long-term higher 

circulating Hgb levels through genetically proxied therapeutic PHD inhibition. To 

achieve this, I aim to:  

1. Identify genetic variants associated with circulating Hgb levels lying 

within the genes encoding the drug-target genes (EGLN1/2/3).  

2. Use these genetic variants to partially proxy therapeutic PHD inhibition 

and predict the cardiovascular risk associated with long-term higher 

circulating Hgb levels. 

3. Perform PheWAS to examine whether PHD inhibition leading to higher 

long-term Hgb levels is likely to increase risk of additional other effects. 

4. Perform secondary analysis with all genetic variants associated with 

long-term rises in Hgb levels to test the effect of general Hgb raising on 

cardiovascular risk.  

 

6.4 Methods 
 

 Selection of Hgb-associated genetic variants 
 
Using the most recent published GWAS of Hgb, I selected 515 conditionally 

independent single nucleotide polymorphisms (SNPs) (minor allele frequency 

[MAF] > 1%) associated with Hgb levels at P < 5 x 10-09 (Vuckovic et al., 2020) 

(Appendix 3: Selection of 515 Hgb-associated SNPs). I extracted the publicly 

available summary association statistics for these genome-wide Hgb-associated 

variants from Vuckovic et al. (2020) and aligned effect sizes to the Hgb-

increasing allele. These statistics were based on 408,112 Europeans studied in 

UK Biobank (UKB). 

 

 Selection of drug-target specific Hgb-associated SNPs 

 
From the list of 515 conditionally independent Hgb-associated genetic variants 

identified by Vuckovic et al. (2020), eight SNPs annotated to three EGLN genes 

(EGLN1, EGLN2, EGLN3) encoding PHI drug targets (PHD1-3) were selected 

(Table 6.1). A gene symbol was provided for the Hgb-associated SNPs by 

Vuckovic et al. (2020) based on the variant effect predictor (VEP) annotation 

tool (McLaren et al., 2016), assigning the gene symbol(s) for the most serious 

predicted consequence (Table 6.1). One of the variants lies within an exon and 
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disrupts the coding sequence (rs61750953; serine [TCG] > Leucine [TTG]), and 

one lies within the 5’ UTR of EGLN2 (rs184088518 G>T) (Table 6.1). Summary 

statistics for the association between these eight EGLN-specific SNPs and 

circulating Hgb levels were extracted from Vuckovic et al. (2020).  
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Table 6.1: Association between the eight genetic variants annotated to the EGLN genes, the target of PHIs, and Hgb levels. Effect sizes were 

obtained from Vuckovic et al., 2020. Annotations were provided using VEP.  
 

Gene RSID Chr Pos Type of variant Evidence Ref 
allele 

Effect 
allele 

Effect 
allele Freq 

Effect estimate for 
effect allele 

SE P-
value 

N 

EGLN1 rs999010 1 231495316 Downstream gene 
variant 

eQTL A G 
0.63 0.03 0.002 

1.17E-
36 

408122 

EGLN1 rs61835223 1 231562228 Upstream gene 
variant 

Nearest 
gene 

A G 
0.02 0.12 0.008 

2.55E-
55 

408122 

EGLN2 rs73047068 19 41297106 Intron variant Nearest 
gene 

C G 
0.84 0.02 0.003 

2.25E-
10 

408122 

EGLN2 rs192191487 19 41305065 Intron variant Nearest 
gene 

G A 
0.02 0.08 0.009 

2.84E-
18 

408122 

EGLN2 rs184088518 19 41305138 5 prime UTR 
variant 

Nearest 
gene 

T G 
0.98 0.12 0.007 

3.65E-
60 

408122 

EGLN2 rs61750953 19 41306650 Missense variant Coding T C 
0.99 0.10 0.009 

2.74E-
28 

408122 

EGLN3 rs797343 14 34646269 Intron variant eQTL C T 
0.68 0.02 0.002 

4.43E-
19 

408122 

EGLN3 rs12897414 14 34724550 Intron variant Nearest 
gene 

T C 
0.38 0.01 0.002 

4.12E-
11 

408122 
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 Definition of CVD 
 

I selected three cardiovascular diseases (CVD) - stroke, MI, or CAD - given 

their relevance to PHIs and the availability of GWAS data from very large 

samples. I obtained summary association statistics for the 515 Hgb-associated 

SNPs on CAD, MI or stroke from recently published, publicly available GWAS in 

European individuals which did not include UKB individuals to ensure estimates 

came from independent cohorts increasing statistical power and reducing risk of 

‘winner’s curse’ (whereby the true causal estimate can be underestimated) 

(Lawlor, 2016). For MI and CAD, the GWAS performed by Nikpay et al. (2015) 

in 42,561 and 60,801 cases respectively and 123,504 controls was used. CAD 

was defined by a record of MI, acute coronary syndrome, chronic stable angina 

or coronary stenosis > 50% (based on coronary angiographic evidence) 

obtained from patient and death registers (see Nikpay et al. (2015) for additional 

details). For stroke, the GWAS performed by Malik et al. (2018) in 40,585 cases 

and 406,111 controls was used. Stroke was defined as ischemic stroke or 

intracerebral haemorrhage based on clinical and imaging criteria (Malik et al., 

2018). Subarachnoid haemorrhages were excluded (Malik et al., 2018). I did not 

look for proxies for the SNP (rs192191487) which was missing in the stroke 

GWAS (Malik et al. 2018) (Table 6.2). 
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Table 6.2: The association between the eight EGLN-specific Hgb-associated genetic variants and risk of stroke, MI or CAD. Association statistics 
have been obtained from previously published, publicly available GWAS. Summary statistics for stroke were extracted from Malik et al. (2018) and summary 
statistics for CAD and MI were extracted from Nikpay et al (2015). Betas are aligned to the effect allele. EAF = effect allele frequency. Ref = reference. Chr = 
chromosome. 
 

       
Stroke MI CAD 

Gene RSID Chr Pos Ref_allele Effect_allele EAF beta se p-value beta se p-value beta se p-value 

EGLN1 rs999010 1 231495316 A G 0.63 -0.0076 0.0097 0.4309 0.0090 0.0105 0.3921 0.0115 0.0095 0.2259 

rs61835223 1 231562228 A G 0.02 0.0668 0.0399 0.0941 0.0872 0.0511 0.0876 -0.0977 0.0471 0.0379 

EGLN2 rs73047068 19 41297106 C G 0.84 -0.0066 0.0123 0.5899 0.0072 0.0155 0.6429 0.0015 0.0141 0.9146 

rs192191487 19 41305065 G A 0.02 
   

-0.0076 0.0487 0.8764 -0.0242 0.0442 0.5836 

rs184088518 19 41305138 T G 0.98 -0.0645 0.0401 0.1083 0.0350 0.0364 0.3361 0.0311 0.0331 0.3480 

rs61750953 19 41306650 T C 0.99 -0.0725 0.0476 0.1275 -0.0355 0.0437 0.4161 -0.0182 0.0405 0.6534 

EGLN3 rs797343 14 34646269 C T 0.68 0.0003 0.0104 0.9759 -0.0036 0.0125 0.7708 -0.0007 0.0111 0.9491 

rs12897414 14 34724550 T C 0.38 0.0083 0.0095 0.3863 -0.0010 0.0108 0.9230 -0.0005 0.0097 0.9612 
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 Two-sample Mendelian Randomisation  
 
I performed two-sample MR using the MRBase package (Hemani et al., 2018) 

implemented in R (RStudio Team, 2018). Palindromic SNPs with intermediate 

allele frequencies were removed by the package. I first performed drug-target 

two-sample MR using the eight drug-target-specific Hgb-associated EGLN 

SNPs as instruments and then performed secondary analysis using the 515 

Hgb-associated SNPs. Five two sample MR methods were performed; inverse-

variance weighted (IVW); MR-Egger (Bowden et al., 2015); Weighted median 

(Bowden et al., 2016); weighted mode (Bowden et al., 2016); simple mode 

(Hartwig et al., 2017). I have presented the IVW approach as our main analysis 

method, with the latter four representing sensitivity analyses to account for 

unidentified pleiotropy which may bias our results. IVW assumers there is no 

horizontal pleiotropy (where genetic variants influence the outcome 

independently of the exposure) and that the SNP-exposure association is not 

correlated with the path from SNP-outcome that is independent of the exposure 

(InSIDE assumption) (Bowden et al., 2019; Burgess & Thompson, 2017). I 

tested for pleiotropic effects using the MR-Egger intercept obtained through the 

‘mr_pleiotropy_test’ function and for heterogeneity using the ‘mr_heterogeneity’ 

function (Bowden et al., 2015). When there was evidence of pleiotropy (as 

indicated by P < 0.05), I placed more weighting on the MR-Egger estimate, 

which partially accounts for pleiotropic effects and provides unbiased estimates.  

 

 Steiger-filtering 
 
To obtain the most specific Hgb genetic instrument, Steiger filtering (Hemani, 

Bowden, et al., 2017; Hemani, Tilling, et al., 2017) was implemented using the 

MRBase package (Hemani et al., 2018) in R (RStudio Team, 2018) on the 515 

Hgb-associated SNPs. Steiger filtering uses a statistical method to select those 

genetic variants which explain more variance in the exposure than the outcome 

(R2 [exposure] > R2 [outcome]) (Hemani, Bowden, et al., 2017). I filtered the 515 

Hgb-associated genetic variants to obtain a more specific instrument with 

primary effects on the exposure using Steiger_direction = true and Steiger P-

value < 0.05. I repeated two-sample MR using this filtered Hgb-specific set of 

288, 237 and 284 genetic variants to obtain a more reliable estimate of the 

relationship between long-term genetically proxied Hgb levels and 
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cardiovascular risk. I did not perform Steiger filtering when performing MR using 

the EGLN-specific genetic instruments.  

 

 Testing the association of the eight conditionally independent 
EGLN-specific SNPs with circulating EPO levels 

 
I investigated the association between each of the eight EGLN-specific Hgb-

associated genetic variants and circulating EPO levels to determine if the 

genetic variants were likely acting through the hypoxic pathway and influencing 

circulating Hgb levels through increased EPO activity. Summary statistics for 

the association between the eight EGLN-specific Hgb-associated genetic 

variants and endogenous EPO levels were obtained from the EPO meta-

analysis in 6,127 individuals of European and African American descent 

performed in Chapter 3.  

 

 Comparison of effect estimates to typical Hgb levels in the general 
population 

 
To obtain a more representative, physiologically relevant effect, I scaled the 

genetic estimates on disease outcomes by a factor of 0.81 (1 / 1.23) where 1 is 

the desired unit change of Hgb in raw units (g/dL) and 1.23 is the standard 

deviation of Hgb in UK Biobank (UKB) (N = 437,573). This value provided an 

estimate of the genetically proxied odds of disease for a 1-unit increase in long-

term circulating Hgb levels. A 1-unit increase in Hgb levels is the minimally 

clinically significant difference.  

 

 PheWAS of an EGLN-specific genetic risk score  
 

To investigate the potential pleiotropic effects of the eight EGLN-specific SNPs 

or identify potential other effects downstream of Hgb through targeting the 

EGLN genes, I performed a PheWAS on 923 traits in up to 451,099 unrelated, 

European UKB individuals using a weighted genetic risk score (GRS) consisting 

of the eight EGLN-specific Hgb-associated SNPs. Traits were selected following 

the same approach as Frayling et al. (2018). I generated the weighted Hgb 

GRS by extracting the dosages of the EGLN-specific SNPs from 437,573 

unrelated European UKB individuals, as defined by principal component (PC) 

analysis (method details in (Frayling et al., 2018)), with phenotypic and 
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genotypic information. Alleles were aligned to the Hgb-increasing alleles. The 

weighted GRS was created using Equation 6.1 . 

 

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝐻𝑔𝑏 𝐺𝑅𝑆 =  ∑ 𝑑𝑜𝑠𝑎𝑔𝑒 × |𝛽(𝐻𝑔𝑏 − 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔 𝑎𝑙𝑙𝑒𝑙𝑒)| 

 

Equation 6.1: Calculation of the weighted Hgb GRS 

 

To obtain all genotype-phenotype associations, regression analysis of the 

weighted GRS on 923 traits adjusting for age, sex, chip, centre and PCs 1-5 

was performed. Continuous traits were inverse normalised prior to regression to 

account for skewed distributions. Traits were stratified by sex as well to 

investigate sex-specific effects. I highlight associations reaching a Bonferroni-

adjusted P-value < 5.42 x 10-05 (0.05 / 923). Effect estimates were converted 

back to original units to determine whether statistically significant associations 

were clinically significant using the standard deviation of phenotypes in UKB 

individuals. 
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6.5 Results  
 

 Genetically proxied therapeutic PHD inhibition resulting in long-
term higher circulating Hgb levels is not associated with 
cardiovascular risk  

 
To genetically proxy the effects of therapeutic PHD inhibition, I used eight Hgb-

associated SNPs in three genes, ELGN1, EGLN2 and EGLN3, encoding PHDs 

(Table 6.1). Using these variants as instruments in drug-target two-sample MR, 

I found no evidence of a causal association with any of the three cardiovascular 

diseases tested (Figure 6.1, Table 6.3). There was no evidence of pleiotropy or 

heterogeneity in the genetic instruments (Table 6.4). As common genetic 

variants tend to have subtle effects on phenotypes, it can be helpful to scale 

their effects to provide estimates in a more physiologically relevant range 

(Bovijn et al., 2020; Scott et al., 2016; Yarmolinsky et al., 2022). I therefore 

present results of the estimated effect of a 1 g/dL increase in Hgb on CVD 

outcomes, based on genetic instrumentation of PHD inhibition (Table 6.5). I 

found no evidence (at P < 0.05) for increased odds of CAD (OR [95% CI] = 1.06 

[0.84, 1.35]), MI (OR [95% CI] = 1.02 [0.79, 1.33] or stroke (OR [95% CI] = 0.91 

[0.66, 1.24]) for a 1 unit increase in Hgb levels in the physiological range (e.g. 

from 14.2 g/dL to 15.2 g/dL) through genetically proxied PHD inhibition (Figure 

6.2, Table 6.5). Based on the upper confidence intervals, I could statistically 

exclude an odds of 1.35, 1.33 and 1.124 for CAD, MI or stroke respectively 

(Figure 6.2, Table 6.5). 
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Table 6.3: Using two sample MR with the eight EGLN-specific SNPs as instruments, there was no evidence for an association between genetically 
proxied higher Hgb levels and increased risk of CVD. Values in the table represent the MR causal estimates obtained using each of the following 
approaches; MR Egger, weighted median, inverse variance weighted, simple mode and weighted mode. Only seven variants went into the genetic 
instruments when testing the association between Hgb and stroke as one SNP was missing from the GWAS. The inverse variance weighted method was 
used for the main analysis. The other methods were performed as sensitivity analyses. 
 

Exposure Outcome Method N_SNPs OR OR_L95 OR_U95 P-value 

Hgb CAD MR Egger 8 1.017 0.622 1.663 0.948 

Weighted median 8 0.922 0.607 1.399 0.702 

Inverse variance weighted 8 1.080 0.803 1.452 0.612 

Simple mode 8 0.879 0.440 1.756 0.726 

Weighted mode 8 0.805 0.423 1.530 0.529 

MI MR Egger 8 0.956 0.577 1.585 0.868 

Weighted median 8 0.872 0.562 1.353 0.541 

Inverse variance weighted 8 1.029 0.743 1.424 0.865 

Simple mode 8 0.834 0.394 1.765 0.649 

Weighted mode 8 0.773 0.423 1.411 0.429 

Stroke MR Egger 7 0.820 0.421 1.597 0.585 

Weighted median 7 0.764 0.485 1.202 0.244 

Inverse variance weighted 7 0.888 0.605 1.303 0.543 

Simple mode 7 0.679 0.324 1.422 0.344 

Weighted mode 7 0.660 0.331 1.318 0.284 
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Figure 6.1: Genetically proxied therapeutic PHD inhibition shows no evidence of adverse 
cardiovascular risk with long-term higher circulating Hgb levels. Two sample MR was carried out 
using the eight EGLN-specific Hgb-associated variants to genetically mimic therapeutic PHD inhibition. MR 
causal estimates were consistent across all methods, including sensitivity methods. There was no evidence 
of heterogeneity or pleiotropy. Plots were produced using the TwoSampleMR package in R.  
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Table 6.4 There was no evidence of pleiotropy and heterogeneity when using the eight EGLN-specific SNPs as genetic instruments in two-sample 
MR.  

Test for pleiotropy and heterogeneity was carried out in MRBase when using the eight EGLN-specific SNPs as genetic instruments to assess the causal 
association between higher Hgb levels and risk of CVD. df= degrees of freedom. Q=Measure of heterogeneity. IVW=Inverse weighted variance method.  
 

Outcome Exposure Egger_intercept SE P-value Q_MR_Egger Q_df_MR_Egger Q_pval_MR_Egger Q_IVW Q_df_IVW Q_pval_IVW 

MI Hgb 0.0033 0.009 0.72 5.40 6 0.49 5.54 7 0.59 

CAD Hgb 0.003 0.009 0.77 6.81 6 0.34 6.92 7 0.44 

Stroke Hgb 0.003 0.011 0.78 8.68 5 0.12 8.83 6 0.18 

 
Table 6.5: Rescaling the genetic estimates to the effect of a 1 unit increase in Hgb levels in the general population. The standard deviation of typical 
Hgb was obtained from UKB individuals and used to rescale the genetic estimates to the effect of a 1 unit change in Hgb levels (14.2 g/dL to 15.2 g/dL) for a 
more physiologically relevant estimate of the effect. I could exclude an increased odds of 1.35, 1.33 and 1.24 for CAD, MI and stroke, respectively, based on 
the upper bounds. 
 

Trait Effect OR L95 U95 

CAD 

Genetic effect 
1.080 0.803 1.452 

Scaled to 1 g/dL unit increase 
1.064 0.837 1.354 

MI 

Genetic effect 
1.029 0.743 1.424 

Scaled to 1 g/dL unit increase 
1.023 0.785 1.333 

Stroke 

Genetic effect 
0.888 0.605 1.303 

Scaled to 1 g/dL unit increase 
0.908 0.665 1.240 
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Figure 6.2: The effect of a 1 unit-change in Hgb levels on risk of CVD in the general 
population as genetically proxied by therapeutic PHD inhibition. The genetic effects 
per 1 SD increase in circulating Hgb levels were rescaled to the typical Hgb level in the 
general population by multiplying the effects by the scaling factor (0.81) to represent a 1 
unit increase in Hgb levels (e.g. going from 14.2 g/dL to 15.2 g/dL). Based on the upper 
bound of the estimate, I could exclude increased odds of 1.35 for CAD, increased odds of 
1.33 for MI and increased odds of 1.24 for stroke with genetically proxied therapeutic PHD 
inhibition. Plot was produced using forestplot package in R. 
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 EGLN-specific SNPs are not associated with circulating EPO levels 
 
To determine whether the eight EGLN-specific genetic variants were also likely 

to be influencing EPO levels (Gupta & Wish, 2017), I investigated the 

association between the eight EGLN-specific Hgb-associated SNPs and 

circulating EPO using the EPO GWAS meta-analysis in 6,127 individuals of 

European and African descent performed in Chapter 3. I found no association 

between the EGLN-specific SNPs and EPO (Table 6.6).  
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Table 6.6: The eight EGLN-specific Hgb-associated SNPs were not associated with circulating EPO levels. The association statistics between the 
eight EGLN-specific Hgb associated SNPs and EPO were obtained from GWAS meta-analysis of circulating EPO levels in 6,127 individuals of European 
and African-American descent (Chapter 2). Statistical significance was determined using the standard genome-wide threshold of P < 5 x 10-08.  
 

Gene RSID Chr Pos Effect_allele Non_effect_
allele 

EAF Beta SE P-value N 

EGLN1 rs999010 1 231495316 A G 0.355 -0.023 0.0204 0.2576 5591 

rs61835223 1 231562228 G A 0.992 0.0005 0.0653 0.9934 6127 

EGLN2 rs73047068 19 41297106 G C 0.831 0.0523 0.0264 0.0474 6127 

rs192191487 19 41305065 A G 0.016 0.1128 0.1053 0.2841 4917 

rs184088518 19 41305138 G T 0.976 0.0481 0.0727 0.5079 5591 

rs61750953 19 41306650 C T 0.982 -0.0523 0.0831 0.5291 5133 

EGLN3 rs797343 14 34646269 T C 0.704 -0.0045 0.0214 0.8323 5591 

rs12897414 14 34724550 T C 0.629 -0.0038 0.0203 0.8497 5591 
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 Genetic risk for higher Hgb levels is associated with relevant 
erythrocyte traits and biomarkers related to kidney function 

 

To determine the specificity of the EGLN-specific SNPs as instruments for Hgb 

levels, I generated a weighted Hgb GRS consisting of the eight SNPs. I then 

used this GRS to perform a PheWAS on 923 traits in up to 451,099 unrelated 

European UKB individuals regardless of CKD status. The weighted Hgb GRS 

was associated with 0.05 SD (SE = 0.002, P = 8 x 10-168) higher circulating Hgb 

levels, equivalent to a per allele 0.062 unit increase in Hgb in the general 

population (Table 6.7). I found the EGLN-specific Hgb GRS was most strongly 

associated with erythrocyte phenotypes including red blood cell count ( [SE] = 

0.05 [0.002], P = 5.00 x 10-120), haematocrit percentage ( [SE] = 0.05 (0.002), 

P = 2.00 x 10-168), reticulocyte count ( [SE] =  0.01 [0.002], P = 1.98 x 10-09), 

platelet crit ( [SE] = -0.01 [0.002], P = 1.68 x 10-06) and platelet count ( [SE]  = 

-0.01 [0.002], P = 5.64- x 10-06) (Figure 6.3, Table 6.7). I also found 

associations between the EGLN-specific Hgb GRS and traits related to kidney 

function, including estimated creatinine-based glomerular filtration rate (eGFR: 

 [SE] =-0.01 [0.002], P = 3.63 x 10-08) and microalbumin ( [SE] = -0.01 

[0.002], P = 4.88 x 10-09 ) and liver function related traits, such as bilirubin (total 

bilirubin:  [SE] = 0.02 [0.002], P = 7.40 x 10-12), a biomarker indicative of 

erythrocyte disorders (Gazzin et al., 2016) (Figure 6.3, Table 6.7). Despite 

being statistically significant, these associations were not clinically significant 

(equivalent to a 2.22, 0.02, and 1.08 unit change in eGFR, microalbumin and 

total bilirubin per 1 g/dl higher Hgb respectively). Stronger associations, passing 

the Bonferroni P-value threshold (P < 5.42 x 10-05), were found in women 

compared to men for bilirubin, microalbumin, creatinine, and eGFR, although 

the direction and magnitude of effects remained consistent (Figure 6.3, Table 

6.7).  

 

 Long-term rises in circulating Hgb levels through genetically 
proxied therapeutic PHD inhibition is unlikely to severely increase 
risk of other comorbidities.  

 

To identify potential additional unwanted effects associated with long-term 

increases in Hgb levels through genetically proxied therapeutic PHD inhibition, I 
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tested the EGLN-specific Hgb GRS for association with 923 traits in up to 

451,099 unrelated European UKB individuals regardless of CKD status. I found 

evidence for an association with reduced sitting-to-standing height ratio ( [SE] 

= -0.01 (0.002), P = 5.54x10-10), and increased risk of non-alcoholic fatty liver 

disease (NAFLD) fibrosis score ( [SE] = 0.01 [0.002], P = 1.12 x 10-06) with 

higher genetically mediated Hgb levels (Figure 6.3, Table 6.7). I also observed 

an association with family history of diabetes in siblings (OR [95% CI]: 1.04 

[1.02, 1.06], P = 3.71 x 10-06) but this was not consistent with the result of type 2 

diabetes risk in participants (OR [95% CI]: 0.99 [0.97, 1.03], P = 0.998). Overall, 

these results indicate that long-term higher circulating Hgb levels through 

therapeutic PHD inhibition are unlikely to confer an increased risk of any 

secondary conditions (Figure 6.3, Table 6.7).  
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Table 6.7: Phenome-wide association study of the weighted Hgb EGLN-specific GRS with 923 traits in up to 451,099 unrelated European UK 
Biobank individuals. Genetically higher Hgb levels are most strongly associated with relevant erythrocyte traits and biomarkers. Only the associations 
passing Bonferroni P-value threshold (0.05 / 923) are shown in this table. The PheWAS was also carried out stratified by sex and only those sex-stratified 
traits passing Bonferroni significance are shown in this table. 

Phenotype Beta SE P-value Gender 

Haematocrit percentage 0.051 0.002  2.00E-168 Combined 

Haemoglobin concentration 0.050  0. 002 8.00E-168 Combined 

Red blood cell count 0.045 0. 002 5.00E-120 Combined 

Total Bilirubin 0.015 0.002 7.40E-12 Combined 

Direct bilirubin  0.020 0.003  3.62E-10 Female 

Standing to sitting height ratio -0.014  0.002 5.54E-10 Combined 

High light intensity reticulocyte count 0.014  0.002  1.35E-09 Combined 

Reticulocyte count 0.014  0.002  1.98E-09 Combined 

Microalbumin -0.012  0.002  4.88E-09 Combined 

Direct bilirubin 0.014  0.002  1.62E-08 Combined 

CKD derived eGFR -0.011  0.002  3.63E-08 Combined 

Total Bilirubin  0.017  0.003  4.05E-08 Female 

Microalbumin  -0.018  0.003  6.39E-08 Female 

MDRD derived eGFR -0.012  0.002  6.75E-08 Combined 

Creatinine 0.010 0.002  1.29E-07 Combined 

Creatinine  0.016  0.003 4.97E-07 Female 

CKD derived eGFR  -0.013  0.003  5.54E-07 Female 

MDRD derived eGFR  -0.015 0.003  6.03E-07 Female 

Non-alcoholic fatty liver disease fibrosis score 0.011 0.002  1.12E-06 Combined 

Platelet crit -0.010  0.002 1.68E-06 Combined 
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Sibling Diabetes 0.042  0.009 3.71E-06 Combined 

Direct bilirubin  0.016  0.004 5.15E-06 Male 

Platelet count -0.010 0.002 5.64E-06 Combined 

Non-alcoholic fatty liver disease fibrosis score  0.013 0.003  1.60E-05 Female 

Total Bilirubin 0.014 0.003  3.25E-05 Male 
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Figure 6.3: PheWAS of the EGLN-specific Hgb GRS reveals long-term higher Hgb levels through 
genetically proxied PHD inhibition are unlikely to increase risk of other comorbidities. 

 
PheWAS was performed using the EGLN-specific variants on 923 traits in up to 451,099 unrelated, European 
UKB individuals. The Hgb GRS was most strongly associated with erythrocyte phenotypes indicating that the 
EGLN-specific variants are involved in relevant pathways and are valid and specific instruments for mimicking 
therapeutic PHD inhibition. PheWAS traits have been clustered into relevant categories. 
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 Secondary analysis focusing on overall genetically proxied long-
term rises in Hgb levels showed no increase in cardiovascular risk  

 

To understand the causal association between general genetically proxied 

higher Hgb levels and cardiovascular risk, I performed two-sample MR using 

515 Hgb-associated SNPs as instruments. I selected 515 conditionally 

independent genetic variants associated (at P < 5 x 10-09) with circulating Hgb 

levels from the most recent, publicly available GWAS on blood cell traits 

(Vuckovic et al., 2020) (Appendix 3: Selection of 515 Hgb-associated SNPs). 

Summary statistics for 409, 407 and 410 of the Hgb-associated variants were 

available in the publicly available GWAS of the three CVD of interest, CAD, MI, 

or stroke, respectively (Malik et al., 2018; Nikpay et al., 2015). Using these 

SNPs as instruments in two-sample MR, I found no evidence (at P < 0.05) that 

a 1-unit increase in genetically mediated Hgb levels in a physiological range 

leads to an increased risk of stroke (OR  95% CI]: 1.04 [1.00, 1.08], P = 0.08), 

or CAD (OR 95% CI]: 1.05 [1.00, 1.11], P = 0.07) in the general population 

(Figure 6.4, Table 6.8). I found nominal evidence for an association between a 

1 unit increase in genetically mediated Hgb levels and increased risk of MI (OR 

95% CI]: 1.08 [1.02, 1.14], P = 0.01) (Figure 6.4, Table 6.8), but there was 

strong evidence of pleiotropy and heterogeneity for both the CAD and MI 

estimates (Egger intercept P-value: CAD = 1.68 x 10-05, MI = 3.80 x 10-05, 

Heterogeneity P-value IVW: CAD = 2.11 x 10-45, MI = 2.81 x 10-34, from Table 

6.9). I therefore decided to place more weight on the MR-Egger estimate which 

partially accounts for pleiotropic effects and found suggestive evidence (at P < 

0.05) for a 0.84 (95% CI: 0.74, 0.95) and 0.86 (95% CI: 0.75, 0.98) decreased 

odds of CAD or MI with higher genetically mediated circulating Hgb levels 

(Figure 6.4, Table 6.8) (Bowden et al., 2015). 

 

 Steiger filtering strengthens the results  
  

To reduce the level of pleiotropy and heterogeneity when using the 515 Hgb-

associated variants, I performed Steiger filtering (Hemani, Tilling, et al., 2017). 

By applying a Steiger filtering FDR threshold of 0.05 to limit the selected 

variants to those with a greater effect on the exposure than the outcome, the 

number of variants used to assess the relationship between higher Hgb levels 

and risk of CAD, MI, or stroke reduced by 107, 156, and 114, respectively 
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(Table 6.10). After applying Steiger filtering, the direction of effect of the causal 

estimates between MR methods were more consistent, and the amount of 

heterogeneity and pleiotropy decreased, but the confidence intervals were wider 

(Figure 6.4, Table 6.11, Table 6.12). Using these filtered Hgb-associated 

variants, I again found no evidence of a causal association between higher 

genetically mediated circulating Hgb levels and increased risk of CAD, MI, or 

stroke (Figure 6.4, Table 6.11). I could exclude odds of 1.06, 1.08, and 1.08 for 

CAD, MI, and stroke with a 1-unit increase in Hgb levels.  
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Table 6.8: MR causal estimates for the association between higher Hgb levels and risk of CVD as instrumented by 515 conditionally independent 
Hgb-associated SNPs identified from Vuckovic et al., (2020).The direction of effect of causal estimates were inconsistent between methods. Two-sample 
MR was carried out using the MRBase package in R. Summary association statistics obtained from recently published large-scale GWAS meta-analysis 
were used to provide the SNP-Hgb and SNP-CVD associations for the 515 conditionally independent Hgb association SNPs. Five MR methods were carried 
out; inverse variance weighted was the primary analysis method and the rest were used as sensitivity.  
 

Exposure Outcome Method OR L95 U95 P-value 

Hgb 

MI 

MR Egger 0.858 0.750 0.982 0.027 

Weighted median 1.064 0.971 1.166 0.186 

Inverse variance weighted 1.097 1.022 1.177 0.010 

Simple mode 1.384 1.012 1.893 0.042 

Weighted mode 0.885 0.784 0.998 0.047 

Stroke 

MR Egger 1.095 0.990 1.211 0.079 

Weighted median 1.054 0.972 1.142 0.205 

Inverse variance weighted 1.048 0.994 1.104 0.084 

Simple mode 1.045 0.842 1.297 0.688 

Weighted mode 1.057 0.953 1.173 0.293 

CAD 

MR Egger 0.835 0.735 0.948 0.006 

Weighted median 0.969 0.892 1.053 0.462 

Inverse variance weighted 1.064 0.995 1.138 0.068 

Simple mode 1.145 0.881 1.489 0.312 

Weighted mode 0.856 0.767 0.955 0.006 
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Table 6.9: There was strong evidence of pleiotropy and heterogeneity in the 515 Hgb-associated variants. Test for pleiotropy and heterogeneity was 
carried out in MRBase when using the 515 Hgb-associated SNPs as genetic instruments to assess the causal association between higher Hgb levels and 
risk of CVD. df = degrees of freedom. Q=Measure of heterogeneity. IVW=Inverse weighted variance method.  

 
Exposure Outcome Egger Intercept SE P-value Q_MR_Egger Q_df_MR_Egger Q_pval_MR_Egger Q_IVW Q_df_IVW Q_pval_IVW 

Hgb MI 0.007 0.0018 3.80E-05 800.47 391 2.23E-30 836.02 392 2.81E-34 

Hgb CAD 0.007 0.0017 1.68E-05 887.75 393 2.87E-40 930.64 394 2.11E-45 

Hgb Stroke -0.001 0.0014 0.316 628.04 396 8.83E-13 629.63 397 8.27E-13 

 

 

Table 6.10: Steiger filtering reduced the number of genetic instruments by 107, 156, and 114 for CAD, MI, and stroke, respectively. Genetic variants 
were selected as valid instruments after Steiger filtering if the variance explained in the exposure was greater than the variance explained in the outcome 
determined by dir =TRUE and if they passed an FDR P-value threshold < 0.05. 
 

Exposure Outcome N SNPs before steiger filtering N SNPs after steiger filtering  

Hgb MI 393 237 

Hgb CAD 395 288 

Hgb Stroke 398 284 
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Table 6.11: MR causal estimates for the association between higher Hgb levels and risk of CVD after Steiger filtering had been applied to select 
the most specific set of Hgb-associated SNP as instruments. 

After Steiger filtering, the direction of effect of causal estimates between MR methods were more consistent but the confidence intervals were wide.  
 

Exposure Outcome Method OR L95 U95 P-value 

Hgb 

MI 

MR Egger 0.894 0.791 1.010 0.073 

Weighted median 0.973 0.880 1.075 0.585 

Inverse variance weighted 1.032 0.967 1.100 0.342 

Simple mode 1.307 0.917 1.864 0.140 

Weighted mode 0.852 0.739 0.981 0.027 

Stroke 

MR Egger 1.090 0.997 1.192 0.060 

Weighted median 1.052 0.968 1.143 0.230 

Inverse variance weighted 1.047 0.999 1.098 0.053 

Simple mode 1.034 0.833 1.283 0.765 

Weighted mode 1.063 0.955 1.183 0.265 

CAD 

MR Egger 0.884 0.801 0.975 0.015 

Weighted median 0.916 0.841 0.998 0.045 

Inverse variance weighted 1.014 0.962 1.068 0.615 

Simple mode 1.169 0.892 1.533 0.258 

Weighted mode 0.829 0.741 0.928 0.001 

 

Table 6.12: After Steiger filtering, the level of pleiotropy and heterogeneity in the Hgb instruments reduced. Test for pleiotropy and heterogeneity 
was carried out in MRBase when using the 515 Hgb-associated SNPs as genetic instruments to assess the causal association between higher Hgb levels 
and risk of CVD. df = degrees of freedom. Q=Measure of heterogeneity. IVW=Inverse weighted variance method.  

Exposure Outcome Egger 
Intercept 

SE Pval Q_MR_Egger Q_df_MR_Egger Q_pval_MR_Egger Q_IVW Q_df_IVW Q_pval_IVW 

Hgb CAD 0.007 0.002 0.002 352.7825 286 0.00429613 365.4307 287 0.00117225 

Hgb MI 0.008 0.0038 0.032 333.2471 235 2.56E-05 343.5695 236 5.89E-06 

Hgb Stroke -0.0012 0.0022 0.566 312.8545 282 0.09983959 314.0194 283 0.09907926 
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Figure 6.4: MR estimates for the association between Hgb levels and cardiovascular risk using 
515 Hgb-associated SNPs as genetic instruments before (A-C) and after (D-F) applying Steiger 
filtering. Before Steiger filtering, there was evidence of pleiotropy and heterogeneity in the 515 Hgb-
associated genetic variants. More weighting was therefore placed on the MR-Egger causal estimate. 
Before and after applying Steiger filtering, I found no evidence of a causal association between higher 
genetically proxied circulating Hgb levels and increased odds of CAD, MI or stroke. During Steiger 
filtering, I filtered for SNPs which explained a higher variance in Hgb levels compared to the disease 
outcomes and passed a Steiger P-value threshold < 0.05. Estimates across the five methods became 
more consistent after Steiger filtering increasing reliability of the true causal estimate. Plots were 
produced using the TwoSampleMR package in R. The different colour lines represent the five different 
MR tests (light blue: inverse variance weighted, dark blue: MR Egger, light green: simple mode, dark 
green: weighted median, red: weighted mode). 
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6.6 Discussion  
 
Previous research has shown how human genetics can be used to further 

characterise therapeutic profiles and help anticipate the risk of unintended 

effects. PHIs have recently completed phase III clinical trials to treat anaemia in 

CKD (Akizawa, Iwasaki, et al., 2020; N. Chen, Hao, Liu, et al., 2019; N. Chen, 

Hao, Peng, et al., 2019; Chertow et al., 2021; K.-U. Eckardt et al., 2021; 

Fishbane et al., 2021; A. K. Singh, Carroll, McMurray, et al., 2021; A. K. Singh, 

Carroll, Perkovic, et al., 2021). These Phase III trials have shown non-inferiority 

for hematologic efficacy, and some non-inferiority for cardiovascular safety, with 

PHI treatment compared to rhEPO (K.-U. Eckardt et al., 2021; A. K. Singh, 

Carroll, McMurray, et al., 2021; A. K. Singh, Carroll, Perkovic, et al., 2021). In 

this Chapter, I used human genetic variants associated with circulating Hgb 

levels as genetic proxies for the pharmaceutical effect of PHIs and investigated 

the effect of lifelong exposure to higher circulating Hgb levels on cardiovascular 

risk and potential other effects. I provide genetic evidence to support 

cardiovascular safety of PHIs and further inform on potential risk of other effects 

with therapeutic PHD inhibition which may not be tested in clinical trials. I used 

a drug-target specific (EGLN1/2/3) Hgb genetic instrument to partially mimic the 

direct effects of therapeutic PHD inhibition through PHI treatment and found no 

evidence of a causal association between higher Hgb levels and increased 

cardiovascular risk (Figure 6.1). I rescaled the genetic estimates obtained using 

the EGLN-specific instrument to the Hgb levels typically found in the general 

population to obtain a more relevant effect estimate on the physiological scale. I 

did not observe (at P < 0.05) increased odds of CAD (OR [95% CI] = 1.06 [0.84, 

1.35]), MI (OR [95% CI] = 1.02 [0.79, 1.33], or stroke (OR [95% CI] = 0.91 [0.66, 

1.24]) with a 1 g/dL long-term higher Hgb level genetically proxied by 

therapeutic PHD inhibition. Based on the upper bound, I could exclude a 1.35, 

1.33, and 1.24 increased odds of CAD, MI, or stroke, respectively with long-

term therapeutic rises in Hgb levels (Figure 6.2). As all PHIs work through the 

same mechanisms (i.e. PHD inhibition), these results are supportive of all PHIs. 

Any differences seen between PHI compounds would be likely related to the 

biochemical and physical properties of the compounds and way the treatment is 

used particularly regarding dosing.  
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As with all uses of common variants as genetic proxies of drug interventions, 

there are limitations. First, genetic variants tend to represent subtle lifelong 

changes rather than the more acute and stronger changes from therapies 

(Pulley et al., 2017; Stitziel et al., 2014). Second, and most importantly, the 

genetic effects are based on estimates of Hgb alterations in the general 

population, regardless of CKD status, whereas PHI therapies are given only to 

anaemic CKD patients with Hgb levels towards the lower end of the range. CKD 

patients are likely to have variable biomarker levels at baseline which could 

alter the causal estimates and the presence of other underlying conditions 

which could alter the way they respond to therapeutic PHD inhibition than that 

estimated by the genetic association (Mokry et al., 2015; Sofianopoulou et al., 

2021). Furthermore, the genetic association does not mimic what is happening 

at the metabolic level particularly in relation to drug metabolism. Drug 

metabolism is affected by dose, frequency, administration route, tissue 

distribution and protein binding, all of which can alter individual response to 

certain levels of a drug. Genetic variants are only able to proxy the long-term 

effects of rises in subsequent biomarker levels but not the acute effect at an 

individual level in terms of how quickly the drug is absorbed by the body, how 

quickly the drug may be metabolised or excreted, where the drug is likely to 

have the greatest impact and how the drug may interact with other treatments 

which are being used to treat comorbidities likely present in anaemic CKD 

patients. Many comorbidities present in anaemic CKD patients, such as type 2 

diabetes, urinary tract infections, or coronary heart disease, will be treated with 

drugs (pioglitazones, statins, trimethoprim respectively) which impact the 

cytochrome p450 enzymes. The p450 enzymes, alongside flavin 

monooxygenases and hydroxyacid oxidase, are the drivers of Phase I of the 

drug metabolism process during which PHIs get metabolised determining the 

duration and intensity of PHI pharmacological action (Omiecinski et al., 2011). 

Genetic polymorphisms play an important role in controlling interindividual 

variability in drug metabolism and determining variability in drug-related toxicity, 

adverse drug reactions, alongside drug efficacy (Wormhoudt et al., 1999). Using 

human genetic variants in the way presented here is unable to replicate and 

predict these effects amongst treated patients whose genome will differ. Some 

patients may have variants results in faster metabolism and excretion of the 

PHIs, whilst other may have variants resulting in slower metabolism leading to 
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acute levels of the drug which could increase risk of adverse side effects 

(Wormhoudt et al., 1999). Caution is therefore required when interpreting these 

genetic results at an individual patient level. Additionally, the gut microbiome 

has been found to play an important role in drug metabolism and differences in 

bacterial genes can influence pharmacokinetics which may alter an individual’s 

response to a treatment (S. L. Collins & Patterson, 2020). The genetic findings 

presented here can only be used in conjunction with ongoing clinical trials which 

ultimately provide the best line of evidence of the long-term and short-term 

effects of treatments in diseased patients whom will be receiving PHIs and are 

also on other medications or have other underlying conditions which may 

impact PHI response or action.  

 

The majority of genetic analyses assume linearity which is not always the case, 

particularly in relation to PHI treatment which is titrated at an individual patient 

level to achieve a target Hgb level meaning patients will have different baseline 

Hgb levels and subsequent increases in Hgb levels from baseline 

(Sofianopoulou et al., 2021). It is difficult to estimate this kind of effect using 

genetics. Third, it is often difficult to represent the efficacious, physiologically 

relevant state or representative cellular concentration of a drug target using 

genetics (Burgess et al., 2012). The ability to transfer these findings to the 

target patient population are therefore limited. As more extensive genetic 

studies become available, particularly in disease-relevant populations, the 

power to detect associations and ability to perform stratified analyses at 

different baseline levels will improve (Sofianopoulou et al., 2021; Visscher et al., 

2017). This will increase the ability to accurately predict the risk of any potential 

unintended effects and further enhance the ability of genetics to inform 

therapeutic profiles and support drug development.  

 

Despite rescaling the genetic effect to the minimally clinically significant 

difference in Hgb levels (i.e. a 1-unit increase) to try to overcome these 

limitations, this effect is not necessarily clinically relevant as it is only scaled to 

the standard deviation of Hgb levels in the general population, not to the effect 

of PHIs on Hgb levels. Therefore, inferences about the likely effects at individual 

anaemic CKD patient level need careful consideration. Ongoing clinical trials, 

which ultimately provide the strongest data, will help decipher these 
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uncertainties and further emphasise the utility of human genetics in providing 

insights into drug safety and efficacy, with the potential to accelerate the drug 

development process.  

 

Previous studies have shown that genetic variants lying close to the gene 

encoding the protein of interest are most likely to have functional impact and 

influence circulating levels of the protein product or drug target and are 

therefore the best proxies for mirroring therapeutic effects (Melzer et al., 2008; 

Swerdlow et al., 2016). For this reason, the primary analysis was performed 

using Hgb-associated SNPs annotated to the three target genes of PHIs 

(EGLN1/2/3) (Vuckovic et al., 2020). Using these drug-target specific variants 

increased my ability to directly and more specifically mimic the therapeutic 

effects of PHIs and the chance of identifying any potential cardiovascular risk 

attributable to long-term rises in circulating Hgb levels through therapeutic PHD 

inhibition. I performed a PheWAS to provide additional evidence that the 

variants were specific and valid proxies for therapeutic PHD inhibition and 

further insight into the potential effects of PHD inhibition. PheWAS has potential 

for improving or validating our understanding of biological mechanism, 

identifying additional indications with potential for repurposing, or indicating 

potential unwanted effects through associations with other conditions other than 

the primary indication (Denny et al., 2016; Pulley et al., 2017; Robinson et al., 

2018). Through PheWAS, I found the weighted Hgb GRS to be most strongly 

associated with relevant erythrocyte phenotypes, such as platelet count and red 

blood count, indicating that these variants are strong, valid genetic instruments 

as they appear to influence circulating Hgb levels through altered 

erythropoiesis, the downstream effect of PHD inhibition (Figure 6.3, Table 6.7). 

I also found additional associations with relevant kidney- and liver-function 

related biomarkers, such as eGFR, microalbuminuria and bilirubin. Although 

these did not reach clinical significance, they further indicate that these 

instruments are likely acting through the hypoxic pathway in relevant tissue 

types (where EPO is predominantly produced) and are thus valid proxies for 

pharmaceutical inhibition of PHDs (Figure 6.3, Table 6.7) (Watts et al., 2020; 

Weidemann & Johnson, 2009). However, the direction of effect of higher 

genetically determined Hgb via the EGLN genes on these biomarkers appear 

counterintuitive; higher Hgb levels are associated with lower eGFR indicative of 
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worse kidney function but with lower microalbuminuria which is a marker of 

healthier kidneys. Higher Hgb levels are also associated with increased 

bilirubin, which may be indicative of haemolysis leading to lower Hgb, not higher 

Hgb. As these investigations were carried out on the general population, it is 

unclear whether there is some sort of feedback mechanism or confounding 

impacting these findings and whether inference can be made to a CKD 

population. It would, therefore, be worth investigation in a CKD-specific 

population. Sex-specific PheWAS revealed stronger associations (based on P-

values) between higher Hgb levels and several of the biomarkers, such as 

bilirubin, creatinine and eGFR, in women compared to men which suggests that 

higher Hgb levels have a greater effect in women (Figure 6.3, Table 6.7). 

Women, in general, have lower Hgb levels than men so increasing Hgb in 

women is expected to have a larger effect than in men who already have higher 

Hgb baseline levels (Murphy, 2014). Women are often underrepresented in 

clinical trials, so this study, using genetics as proxies for drug effects is a useful 

additional way of increasing relevance to a wider range of patients (Carey et al., 

2017; L. Y. Liu et al., 2012; Randall et al., 2013).  

 

When looking for associations with potential secondary diseases or unintended 

effects, I found evidence for an association between the EGLN-specific Hgb 

GRS and shorter legs and risk of NAFLD and family history of sibling diabetes 

(Figure 6.3, Table 6.7). The EGLN genes are known to play a role in glucose 

metabolism through activation of HIF-2a and this likely explains the association 

found between the EGLN SNPs and NAFLD (from metabolic syndrome) or 

family history of sibling diabetes (Holzner & Murray, 2021; S. K. Ramakrishnan 

& Shah, 2017; M. Yang et al., 2014). NAFLD is also prevalent in CKD patients 

and is a clinical marker of poor response to EPO treatments and could therefore 

be used to determine response to therapeutic PHD inhibition (Orlić et al., 2014). 

I did not find any association with type 2 diabetes which might be expected but 

this may be a result of sample size or indicates that the association with sibling 

diabetes is because of chance (Figure 6.3, Table 6.7). The association found 

with shorter legs may be spurious due to UKB being slightly older (37 - 73 years 

at age of recruitment) and height declining with age in the general population 

(Cline et al., 1989; Sorkin et al., 1999; Sudlow et al., 2015). 
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I also investigated the association between the EGLN SNPs and EPO to further 

validate the variants as strong proxies for PHI treatment. However, there was 

no evidence for an association between the SNPs and circulating EPO levels 

(Table 6.8). This lack of association is likely due to the lack of power from the 

small sample size in the EPO meta-analysis (N = 6,127) (Chapter 3). Although 

there was no evidence for an association, the direction of effect of the majority 

of the Hgb-increasing allele (75%) also increase circulating EPO levels which 

coincides with what is expected biologically. However, the EPO-Hgb 

relationship is complicated and often shows a J-shaped relationship due to the 

compensatory feedback mechanisms and this alters further through stages of 

CKD (Lundby et al., 2007; Panjeta et al., 2017). It would be beneficial to repeat 

the EPO meta-analysis as larger cohorts become available and the power to 

detect associations increase to further improve our understanding of this 

complicated feedback loop (Spencer et al., 2009).  

 

My results provide genetic support of the findings from clinical trials in that PHIs 

are non-inferior for CVD than rhEPO for treating anaemia in CKD. These 

findings could also be used to support development of treatments for other 

diseases which act by increasing Hgb levels through the hypoxic pathway, 

highlighting the translational ability of these types of genetic studies to help 

predict the risk of potential unintended effects or benefits of any treatment for 

any disease undergoing clinical development (Plenge et al., 2013). However, it 

is important to consider the validity of the genetic instrument used in terms of 

how well the SNP mimics the pharmacological action of the drug and the 

strength of the variant as an instrument (Walker et al., 2017). MR analysis 

makes several assumptions and violation of these assumptions can lead to bias 

in the causal estimates (Davies et al., 2018). Here, when using all the Hgb-

associated SNPs to assess the causal relationship between higher Hgb and risk 

of CVD, I found evidence of pleiotropy (Egger-intercept P-value < 0.05, Table 

6.9) (Bowden et al., 2015), but showed that limiting the variants to those with 

larger effects on the exposure compared to the outcome (through Steiger 

filtering) reduced the pleiotropy and heterogeneity increasing power to detect 

the true causal direction (Table 6.11, Table 6.12, Figure 6.4) (Hemani, 

Bowden, et al., 2017). 
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In conclusion, my results suggest that general long-term elevated circulating 

Hgb levels through genetically proxied therapeutic PHD inhibition does not 

increase risk of CVD or additional complications. I have identified relevant 

genetic markers for testing the pharmaceutical effects of therapeutic PHD 

inhibition which could potentially inform further research using patient level 

clinical data from Phase III trials. I show additional evidence of how human 

genetics can be used to partially mimic pharmacological action and provide 

additional insight, alongside clinical trial data, into the long-term therapeutic 

effects of Hgb level elevations.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 321 

Chapter 7 General Discussion  

 

In this PhD, I have utilised several genetic approaches alongside functional 

validation methods to assess the potential effects of therapeutically altered 

circulating EPO and Hgb levels. I have provided genetic evidence further 

characterising the therapeutic profile of PHI treatment particularly in relation to 

cardiovascular safety. In this final discussion, I present an overview of my 

primary findings and relate them to existing literature investigating impacts of 

higher EPO or Hgb levels on risk of disease. I also summarise the strengths 

and limitations, alongside implications and the future directions of my research. 

 

7.1 Key Findings 
 

 Genetically proxied therapeutic rises in circulating EPO levels are 
not associated with increased risk of CVD or unwanted effects.  

 

In Chapter 3, I used genetics to investigate the risk of CVD with therapeutic 

rises in endogenous EPO levels. Using a GWAS meta-analysis of circulating 

EPO levels, which at the time was the largest GWAS of circulating EPO, 

alongside gene expression and colocalisation analysis, I identified a cis-EPO 

variant associated with circulating EPO levels. This cis-EPO variant had been 

previously reported by two studies to be associated with circulating EPO levels 

in patients with diabetic retinopathy or hepatitis C. I used this cis-EPO variant as 

a proxy to test the effects of therapeutically altering endogenous EPO levels to 

mimic the downstream effects of PHIs. Using drug-target two-sample Mendelian 

Randomisation, I found no evidence for an association between therapeutically 

higher EPO levels, equivalent to 5.1 IU/L, and increased cardiovascular risk 

(CVD) or clinical markers for CVD associated risk factors (SBP, DBP or heart 

rate). Instead, I found nominal evidence (at P < 0.05) for a protective effect of 

genetically proxied therapeutic rises in EPO on DBP and resting heart rate. To 

obtain a clinically relevant effect estimate, I rescaled the genetic associations to 

the PHI-induced effect on circulating EPO levels and could exclude odds of 

1.07, 1.15, and 1.07 for CAD, MI, or stroke respectively with a 2.2-unit increase 

in circulating EPO. I could also exclude levels higher than 0.78 mmHg for SBP 

and any increase in DBP or resting heart rate with a 2.2-unit increase in 

circulating EPO. To further characterise the therapeutic profile of higher EPO 

levels and check for any unintended effects, I performed a PheWAS of the cis-
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EPO SNP and found associations with other relevant erythrocyte phenotypes 

with similar effect sizes and decreased liver function biomarker levels. I 

therefore provided genetic evidence that therapeutically increased EPO levels 

by novel treatments for anaemia in CKD are unlikely to infer a substantially 

increased risk of CVD or increased risk of any unintended effects.  

 

 Establishment of EPO gene knock-out and subsequent 
transcriptomic analysis aids characterisation of downstream causal 
genes and pathways. 

 
In Chapter 4, I used CRISPR-Cas9 technology to generate an EPO knock-out 

in HEK-293 cells and then performed RNA-seq analysis to assess the 

transcriptional changes as a result of EPO knock-down. No previous studies 

have generated a whole EPO knock-out cell-line, only EPO-deficient animal 

models, and have not investigated whole transcriptomic changes in EPO knock-

outs.  

 

I designed paired gRNAs to knock-out the region between the conserved exons 

2 and 4 of EPO rendering the EPO transcript non-functional. I generated two 

homozygous EPO knock-outs confirmed by PCR, Sanger sequencing, qRT-

PCR and western blotting. I then performed whole transcriptional profiling 

following EPO knock-out to obtain a better understanding of the downstream 

causal genes and signaling pathways in HEK-293 cells. Several studies have 

assessed transcriptional changes in response to rhEPO but none in EPO 

knock-outs highlighting the novelty of this research. Using RNA-seq, I identified 

differentially expressed genes (DEGs) in the two knock-out cell-lines compared 

to wild-type controls. Over 3000 of these DEGs overlapped in both knock-outs 

and showed a strong correlation in their direction of effects. These overlapping 

DEGs were enriched in pathways and functions related to cell fate, DNA repair, 

metabolic processes including fatty acid oxidation, ATPase activity and aerobic 

respiration, as well as control of signaling pathways through protein binding, 

protein degradation, and receptor activity. These findings support previous 

literature highlighting the important role EPO has in the body and emphasise 

the pleiotropic effects of EPO in systems other than just the hematopoietic 

system. As Notch signalling and its related pathways featured prominently in the 

gene ontology (GO) analyses, I selected several genes involved in different 
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parts of the canonical Notch signalling pathway. I validated differential 

expression of these genes using qRT-PCR highlighting the important role EPO 

plays in controlling Notch signalling activity and its downstream effects and 

functions. These findings add to literature which suggests a link between 

hypoxia and Notch signalling and warrants further investigation particularly in 

relation to disease aetiology.  

 
The RNA-seq dataset produced in this chapter will be made publicly available 

for others to use (currently being added to a GitHub repository – 

https://github.com/CharliHarlow/EPO_metaanalysis_rnaseq_MR_phewas). I am 

the first to perform RNA-seq analysis within the Oguro-Ando lab and have 

generated a detailed bioinformatic pipeline which I will share with others aiding 

their analysis of transcriptional changes (added to a GitHub repository 

https://github.com/CharliHarlow/EPO_metaanalysis_rnaseq_MR_phewas).  

 

 Heterozygous SNP knock-in of the C-allele at rs1617640 using 
CRISPR-Cas9 functionally validates rs1617640 as causal in 
controlling EPO gene expression levels.  

 
In Chapter 5, I established a heterozygous cell model of the cis-EPO variant in 

HEK-293 cells and functionally validated the variant as important in controlling 

EPO expression levels. I optimised a published protocol by Yusa et al. (2013) to 

perform CRISPR-Cas9 gene-editing alongside the piggyBacTM transposon 

system to introduce a single-base change at rs1617640 in HEK-293 cells. 

Combining CRISPR-Cas9 and the piggyBacTM system improved efficiency of 

activating homology directed repair and aided in selection of successfully 

single-base gene-edited clones. Through this protocol, I successfully 

incorporated the piggyBacTM transposon into the genomic DNA at the expected 

location with the desired SNP edit at rs1617640 (A>C) confirmed by PCR and 

Sanger sequencing. I then excised the piggyBacTM transposon from the 

genomic DNA without leaving any marks in the genomic DNA. I successfully 

generated a heterozygous knock-in cell-line of rs1617640 (A/C) confirmed via 

PCR and Sanger sequencing. I used this knock-in model to assess the effect of 

an allele change at rs1617640 on EPO expression levels. I found rs1617640 

does have an allele-specific effect on EPO expression levels with heterozygotes 

of the A-allele showing down-regulated EPO mRNA levels compared to 

homozygotes of the A-allele. I also investigated mRNA expression levels of 
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dysregulated Notch signaling genes identified through whole EPO gene knock-

out (Chapter 4); I found heterozygotes of the A-allele to have lower expression 

of the three Notch signaling genes tested - Hey2, DTX3L and PARP9. These 

findings were consistent with the direction of effect seen in genetic studies and 

the EPO knock-outs providing functional evidence that rs1617640 does affect 

EPO expression and downstream causal genes.  

 

This is the first time the combination of CRISPR-Cas9 gene-editing and the 

piggyBacTM transposon system has been employed at Exeter to introduce a 

single-SNP base change. The same protocol can be adapted by others to 

introduce desired gene-edits, whether that be single-base changes, deletions or 

small indels at any site within the genome and can be easily adapted to other 

cell-lines, genes or diseases.  

 

 Genetically proxied therapeutic PHD inhibition leading to long-term 
higher Hgb levels is not associated with cardiovascular risk or 
potential unwanted effects. 

 
In Chapter 6, I used human genetic variants to genetically proxy therapeutic 

PHD inhibition and investigated the effects of long-term higher Hgb levels on 

risk of CVD or additional unintended effects. First, I identified eight variants 

associated with Hgb levels annotated to the three genes encoding the PHD 

enzymes with little evidence of pleiotropy. I used these drug-target specific 

variants as proxies for therapeutic PHD inhibition and found no evidence for an 

increased risk of CVD with long-term higher Hgb levels. By rescaling the effects 

to the minimal clinically significant difference of a 1-unit increase in Hgb levels, I 

could exclude odds of 1.35, 1.33, and 1.24 for CAD, MI, or stroke respectively. 

Second, I performed PheWAS to further characterise the therapeutic effects of 

long-term rises in Hgb levels and found evidence for an effect on NAFLD and 

several relevant liver- and kidney-function biomarkers. The EGLN genes are 

known to play a role in glucose metabolism and NAFLD is a common 

manifestation found in diabetic patients and is a prevalent cardiovascular risk 

factor in CKD patients. Third, I performed secondary two-sample MR analysis 

using 515 variants associated with circulating Hgb levels to investigate 

cardiovascular risk with general long-term rises in Hgb. There was strong 

evidence for pleiotropy and heterogeneity in the genetic variants, so I performed 
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Steiger filtering to obtain a more specific and powerful genetic instrument 

consisting of variants with a greater effect on Hgb levels than the disease 

outcome. Steiger filtering provided a better understanding of the true 

directionality. I found no increased risk of CVD with genetically proxied long-

term rises in circulating Hgb levels and was able to exclude odds of 1.06, 1.08, 

and 1.08 for CAD, MI, and stroke respectively with a 1-unit increase in Hgb 

levels. Steiger filtering reduced the amount of pleiotropy and heterogeneity in 

the instruments and strengthened the results providing a better understanding 

of the true causal estimate. 

 

These results indicate that elevated Hgb levels as induced by therapeutic PHD 

inhibition does not infer an increased risk of CVD or additional complications. 

The associated biomarkers identified could be used to predict CKD patients 

most at risk of developing CVD with therapeutic rises in Hgb levels.  

 

7.2 Implications and Integration of findings  
 
Over the last decade, researchers have demonstrated the utility of human 

genetics in aiding the drug development process. Genetic evidence can support 

the use of treatments for disease, contradict findings found in RCTs highlighting 

safety concerns, highlight repurposing opportunities, and implicate potential 

unintended effects that are not the primary concern in clinical trials (Bovijn et al., 

2020; Lotta et al., 2016; Okada et al., 2014; Scott et al., 2016; Yarmolinsky et 

al., 2022). All of these findings emphasise how genetics can be used to 

increase the likelihood of a drug succeeding (King et al., 2019; Nelson et al., 

2015; Plenge et al., 2013). There are several conflicting clinical studies 

regarding the cardiovascular safety of current treatments for anaemia in CKD 

that cause supra-physiological rises in circulating EPO levels (Di Lullo et al., 

2015; Gupta & Wish, 2017; Heuberger et al., 2013; Krapf & Hulter, 2009; 

Lundby et al., 2007). These safety concerns have led to the development of 

several PHI compounds which act at the transcriptional level of EPO (Akizawa, 

Iwasaki, et al., 2020; Chertow et al., 2021; Dhillon, 2020). Successful 

noninferiority clinical trials have already shown that PHIs are able to maintain 

EPO levels within the physiological range and are noninferior to ESAs in terms 

of cardiovascular safety and hematologic efficacy (Chertow et al., 2021; K.-U. 
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Eckardt et al., 2021; Provenzano et al., 2021; A. K. Singh, Carroll, McMurray, et 

al., 2021; A. K. Singh, Carroll, Perkovic, et al., 2021). To my knowledge, there is 

no genetic evidence investigating the effects of therapeutic modulation of 

circulating EPO or Hgb levels to support the ongoing clinical development of 

PHIs. When performing genetic analyses, it is becoming increasingly difficult to 

know which variant is the most likely causal variant and whether this variant is 

having an effect on the expected gene. For genetics to support the drug 

development pipeline, additional evidence validating the genetic proxies is 

required to increase confidence of the conclusions drawn. One way of providing 

strong evidence to support a genetic variant as causal is to use functional 

studies. My study is novel because very few studies have performed functional 

validation of variants used in MR.  

 
The findings presented in this thesis have the potential to be used in 

corroboration with results obtained from completed clinical trials into PHI 

treatment to impact patient care and improve treatment of anaemia in CKD. 

Understanding the relationship between EPO and/or Hgb levels and 

cardiovascular risk is an important and unresolved question and this research 

using genetic markers provides a valuable contribution to the field. The 

identification of relevant genetic markers could potentially inform further 

research using patient level clinical data from the phase III trials. The addition of 

these findings to the field could expedite the time for the drug to reach the 

market. 

 
Although EPO is known to have a series of pleiotropic effects playing a key role 

in a wide-range of different organs, tissues and systems, the actual genes and 

downstream pathways remain elusive. The majority of current models for 

investigating EPO focus on the effects of rhEPO which results in supra-

physiological levels. These supra-physiological levels are not biologically 

relevant and due to the complex negative feedback loops, do not provide the 

best understanding of physiological EPO. Through whole transcriptomic 

profiling of the EPO knock-out cell-lines, a clear list of DEGs strongly implicated 

in Notch signaling were identified. These findings add to the current literature 

which suggests a role for the Notch signaling pathway in response to hypoxia 

(Duarte et al., 2018; Gustafsson et al., 2005; Phillips et al., 2007). Notch 

signaling is an important pathway involved in a range of molecular and cellular 
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functions including determination of cell fate, cell cycle activity and DNA repair 

(Kopan, 2012; Marignol et al., 2013). It could be through this pathway that EPO 

exerts its pleiotropic and mitogenic effects. Understanding the link between 

these pathways could provide additional insight into the potential effects of 

higher EPO levels and aid future treatment of anaemia in CKD or any additional 

diseases which involve EPO or Notch signaling. Additional biological pathways 

and molecular functions involving ATP production, cellular oxidation, aerobic 

respiration and mitochondrial function were also revealed by RNA-seq analysis 

and provide a better understanding of the potential internal cellular signaling 

effects of EPO particular in high energy-dependent organs such as the kidneys, 

heart, brain, liver, and skeletal muscle (Console et al., 2020). Previous studies 

have suggested EPO to be protective against cellular stresses and injury by 

influencing several of these functions (Hernández et al., 2017). These findings 

could be important in highlighting potential opportunities of PHI drug 

repositioning for additional diseases caused by dysregulation of these pathways 

and functions, such as ischemia, neurodegenerative diseases in the brain, 

reperfusion injury, and fibrosis (Console et al., 2020; Hernández et al., 2017; 

Junk et al., 2002; Suresh et al., 2020; X. Wang et al., 2020).  

 
The methods and approaches outlined throughout this thesis can be translated 

to the identification and functional validation of genetic variants for use as partial 

proxies to mimic the effects of any drug treatment or target. Integrating this kind 

of methodological and functional approach into the epidemiology field could 

have an important and impactful use in better refining genetic findings and 

aiding the drug development process. The molecular approaches used, 

particularly those to establish the heterozygous polymorphism at rs1617640, 

could become the gold standard for testing whether a variant is causal for a 

given phenotype, especially if models of the complete allelic series 

(major/major, major/minor and minor/minor) were generated (J. Lin & 

Musunuru, 2018).  

 

7.3 Future Directions  
 
As the number and size of genetic studies increases further, the number of 

common genetic variants associated with complex traits will increase, but many 

of these are likely to have even smaller effect sizes than those already identified 
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(Visscher et al., 2017). Future studies will need to focus on combining genetics 

with additional sequence-based data and experimental perturbations. 

Technologies used during this PhD will therefore require upscaling, including 

genome-wide CRISPR screens, to overcome the challenges associated with 

small effect sizes and the identification of the most likely causal gene (Bodapati 

et al., 2020; McGuire et al., 2020).  

 

Making use of the increasing amount of genetic data to aid our decisions in 

clinical practice and developing tools which can help the integration of genetics 

into the drug development process is the ultimate goal. Tools are already being 

developed to use genetics during the drug discovery phase. For example, the 

GREP software aids quantification of whether GWAS signals are enriched for 

drug targets capturing potential repositionable drugs (Sakaue & Okada, 2019). 

The development of these tools highlights how genetics is becoming the 

forefront of aiding the drug development process emphasising the importance 

and timely nature of my work.  

 
Previous studies have shown how gain-of-function variants can be used to 

mimic agonistic (Lotta et al., 2019) drug effects whilst loss-of-function variants 

can be used to mimic antagonistic effects (Jørgensen et al., 2014; Minikel et al., 

2020). When focusing on identifying valid genetic proxies for therapeutic action, 

it is therefore important to also consider the functional consequence of the 

variant. I, and many others, have until now primarily focused on common 

genetic variation for use to mimic pharmaceutical action (Gill et al., 2019; Lotta 

et al., 2016; Okada et al., 2014; Scott et al., 2016; Swerdlow et al., 2015). 

However, common variation is not the only type of variation to give rise to 

disease. Rare variants, structural variants (e.g. copy number variations, 

insertions or deletions) and alterations in epigenetic marks could also drive 

associations (Eichler, 2019). Investigation of these other forms of variants is 

important to refine causal regions and improve understanding of disease. The 

larger effect size, rare variants, especially those leading to loss-of-function, 

provide a natural setting to mimic antagonistic therapeutic effects and have 

already proven useful in assessing clinical consequences (Cohen et al., 2006; 

Jørgensen et al., 2014; Stitziel et al., 2014). Large-scale whole-exome and 

whole-genome sequencing data (WES and WGS) has recently been released 
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by UKB to enable identification of novel rare variant-trait associations with large 

effect sizes bridging the gap between common and rare variation (Backman et 

al., 2021; Halldorsson et al., 2021). Exome data identifies rare variants lying 

within the protein-coding regions and aids in understanding gene function, 

disease mechanisms and phenotypic consequences of protein-altering 

variation. WES data can inform the medical actionability of rare variants and 

corroborate the link between disease associations and biomarker levels 

enabling translation to the effects of clinical-stage drug targets (Backman et al., 

2021; Sun et al., 2021). A preliminary look at the WES data in the first UKB 

release (in 200,000 individuals) revealed associations between rare loss-of-

function variants or deleterious missense variants (CADD > 30) in the EPO and 

EGLN genes with Hgb levels and erythrocyte number in the expected direction. 

These rare variants were not associated with CVD providing further evidence 

that drugs acting through these genes are unlikely to infer added cardiovascular 

risk than current treatments. These preliminary findings emphasise the utility of 

rare variants in acting as proxies for testing therapeutic effects. Future analysis 

in larger sample sizes (e.g. in the most recent 450,000 WES release) will 

increase the power to detect rare variant-trait associations and will provide 

valuable additional insight into the long-term therapeutic effects of modulating 

circulating Hgb or EPO levels. WGS will also provide insight into the role of non-

coding rare variants, particularly microsatellites and structural variants which 

are more likely to have functional impact through affecting non-coding genes, 

RNA and protein expression (Sudmant et al., 2015; Weischenfeldt et al., 2013; 

J. Zheng et al., 2020). Interrogating this data has great potential in identifying 

genetic variants that can better mimic therapeutic PHD inhibition improving our 

understanding of gene function and mechanisms and providing additional 

genetic evidence to support clinical trial data.  

 
In this work, I performed in vitro molecular techniques to validate the cis-EPO 

variant as having an allele-specific effect on EPO levels. However, as the 

variant lies within the EPO regulatory region, it is likely that the variant alters 

transcription factor binding to change gene expression. Previously Tong et al. 

(2008) used in silico tools to predict the effect of allele changes at rs1617640 on 

potential transcription factor binding. As these computational methods to predict 

potential transcription factor binding sites have since improved (C. Chen et al., 
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2021; Jayaram et al., 2016; Zeng et al., 2020), it would be worth repeating to 

see if a transcription factor motif lies around the cis-EPO SNP and whether 

polymorphisms at this position affect the binding of any tissue-relevant 

transcription factors. These kinds of investigations would help guide future 

functional work on the knock-in model and would provide insight into the 

regulatory factors important for controlling EPO gene expression in different 

tissues which could lead to identification of novel drug targets for treating 

anaemia in CKD.  

 
As I primarily focused on using genetic variants which lie at the biomarker level 

(i.e. the EPO level) or at the drug target gene level (EGLN1/2/3), I could have 

missed unintended drug effects. Alternative mechanistic pathways which are 

EPO-dependent but associated with additional biomarker levels, such as iron, 

could also be impacted by PHD inhibition and drive the cardiovascular risk 

found with supra-physiological levels. Identification of genetic variants 

associated with iron or other relevant biomarkers which lie within the PHI drug 

target genes would be worth investigation to see if there are any potential 

unintended effects through these alternative pathways. The same limitation 

goes with focusing only on certain genes; variants lying within other hypoxia-

response genes, such as the hepcidin gene which increases iron levels in an 

attempt to restore oxygen availability, could also be worth investigation as these 

are also impacted during anaemia and by PHI treatment. This would further 

improve our current understanding of the pathophysiology of anaemia. I have 

also only focused on the therapeutic effects of PHIs and therefore my results do 

not necessarily apply to other treatments that may target the hypoxic pathway 

through other mechanisms e.g. HIF asparaginyl hydroxylase inhibitors. Future 

genetic analyses of genes involved in these mechanisms would provide an 

increased understanding of the underlying disease mechanism and may 

elucidate to other potential safe and efficient therapeutic targets. 

 
When focusing on the EPO gene, I only identified one genetic variant lying 

nearby to the EPO gene associated with circulating EPO levels. However, I was 

limited by power due to sample size. As larger studies become available with 

deeper phenotyping and additional biomarkers measured and more summary 

statistics are made publicly available, the potential to perform additional GWAS 

and/or meta-analysis on EPO will be possible. Increased sample sizes will 
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increase the power to identify additional variants that could be used as proxies 

to mimic therapeutic elevations of endogenous EPO levels and overcome the 

potential weak instrument bias with a single variant (Burgess & Thompson, 

2010). A GWAS on cytokine levels, including EPO levels, in 10,000 Danish 

individuals has recently been published (Y. Wang et al., 2020) and therefore a 

meta-analysis of this GWAS with the GWAS meta-analysis performed in this 

thesis would be one way of increasing power for detecting additional EPO 

associations imminently.  

 

As gene-editing continues development, there will be more opportunities for 

functional studies to validate genetic findings. Here, I have shown how one 

approach combining CRISPR-Cas9 gene-editing and the piggyBacTM 

transposon system can be used to knock-in alternate alleles. It is also possible 

to validate genetic variants as causal by performing SNP knock-out studies 

which may be easier and would take advantage of the increased efficiency of 

NHEJ-mediated disruption compared to HDR (J.-P. Zhang et al., 2017). This 

could be done with or without precision by either introducing an insertion or 

deletion of a random size into the SNP-site disrupting gene function or the 

regulatory element, or by using two gRNAs that generate two DSBs flanking the 

SNP, respectively (J. Lin & Musunuru, 2018). These approaches could be 

relatively easily integrated into standard practice to validate genetic variants as 

causal particularly as larger gRNA libraries become available and companies 

begin to offer generation of particular cell-line models (Sanson et al., 2018). 

Furthermore, alternative methods for introducing single-base gene-edits such 

as base editors composed of a catalytically impaired Cas9 and base 

modification enzymes will further improve enabling any modification, not just 

C/G into T/A and vice versa (Shuquan Rao et al., 2021).  

 

7.4 Limitations  
 
As discussed in each of the individual chapters, there are several limitations 

that need to be taken into consideration of which I will address in more detail 

below.  

 

 Genetics to aid drug development 
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When using genetic variants as proxies for drug treatments to anticipate 

potential effects of pharmacological manipulation, it is important to identify 

specific variants that accurately mimic therapeutic actions. First, it is important 

to consider the choice of variant in terms of how well the SNP mimics the 

therapeutic effects. I used GWAS data and limited variants to those most likely 

to have a functional impact due to lying nearby or within the drug target gene. 

However, this variant may not be the best proxy for the drug. GWAS only 

highlight correlations between genetic variants and phenotypes and do not 

inform on which associated genetic variants are the true causal variants 

(Visscher et al., 2017). Due to linkage disequilibrium, highly correlated 

neighboring genetic variants tend to be inherited together making it difficult to 

distinguish the true causal variant (Pers et al., 2015; Schaid et al., 2018). 

Additionally, GWAS identified loci frequently contain multiple genes and 

therefore it can be difficult to determine which gene is being impacted by the 

identified variant (Shu et al., 2018). The fact that over 90% of common variants 

lie within non-coding regions does not help linking associated variants to a 

candidate gene because of the complex genomic structure (Cano-Gamez & 

Trynka, 2020). Hence, future research integrating all forms of sequence-based 

omic data is needed.  

 

Although I selected Hgb-associated variants annotated to the EGLN genes in 

Chapter 6 and PheWAS revealed strong associations with relevant phenotypes 

indicating that they likely impact Hgb levels through the hypoxic pathway, these 

variants may not be the causal variants actually affecting EGLN expression and 

therefore could be invalid instruments to proxy PHD inhibition. Further 

validation, such as colocalisation or functional analysis, could be useful. A major 

challenge of GWAS is the inability to detect all causal variants or all SNPs 

correlated with the causal variant (Rohde et al., 2018). This is commonly due to 

a lack of power as a result of sample size alongside the inclusion of a stringent 

significance threshold to control for false-positives (Rohde et al., 2018). The 

majority of SNPs have small effect sizes and these will therefore remain 

undetected unless sample sizes increase substantially (>100,000) (Visscher et 

al., 2017). The EPO meta-analysis performed in Chapter 3 only included 6,127 

individuals and therefore sample size was likely a limiting factor in detecting 

causal variants. Furthermore, the use of the typically accepted stringent P-value 
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threshold of 5 x 10-08 (which is based upon a Bonferroni correction of 1 million 

independent tests) limits the power to detect associations (Dudbridge & 

Gusnanto, 2008). The number of tests carried out in some GWAS may be 

considerably lower than this due to being limited to European individuals and to 

common SNPs with a frequency greater than 1% of which many will be in high 

LD. This does therefore not necessarily translate to an increased number of 

independent tests (Auton et al., 2015). The choice of this benchmark for 

determining statistical inference remains under debate and requires careful 

consideration especially when focusing on low-frequency variants (Fadista et 

al., 2016). 

 

Second, the strength and validity of the variant need considering when 

implementing drug-target specific MR. MR is based upon three assumptions; 

the genetic variant is associated with exposure, the genetic variant is only 

associated with the outcome through the exposure, and the genetic variant is 

not associated with any confounders of the exposure-outcome association 

(Davies et al., 2018). Ensuring that these assumptions are met can be difficult 

and despite several methods being developed to test these assumptions 

(Bowden et al., 2015; Hemani, Tilling, et al., 2017; Verbanck et al., 2018; Q. 

Zhao et al., 2018), violations can still happen. Biases can occur in causal 

estimates if variant-exposure estimates and variant-outcome estimates have 

been obtained from overlapping study sample participants resulting in an 

underestimation of the true causal effect, known as Winner’s curse (Lawlor, 

2016). I have attempted to reduce the risk of Winner’s curse by obtaining 

association statistics from independent studies. I have, however, used the same 

individuals for discovery of the genetic instrument and extraction of the variant-

association statistic resulting in potential bias towards the null (Burgess et al., 

2016). For the EPO analysis (Chapter 3). I used one genetic instrument and 

despite performing two-sample MR to overcome the risk of inflated Type 1 

errors, the estimate may be biased towards the null leading to lower power to 

detect a causal effect (Davey Smith & Hemani, 2014). This bias is less serious 

than a bias in the direction of the observational effect but could increase the 

chance of Type 2 error (Lawlor, 2016).  
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The most important limitation when using genetics to proxy therapeutic effects 

is that genetic variants indicate lifelong perturbations of smaller and subtler 

effects compared to short-term, larger effects of a drug at a particular time in an 

individual’s life (Pulley et al., 2017). Therefore, the effect size of the genetic 

estimate may not be physiologically relevant. Despite rescaling the estimated 

genetic effects to the drug-induced effects to try and overcome this, from a 

clinical perspective, the absence of a statistically significant difference can be of 

limited value (Page, 2014). Although I found no statistical evidence for 

increased cardiovascular risk with genetically proxied higher Hgb or EPO levels, 

it does not automatically imply that the treatment will be clinically safe and 

effective. This is due to small sample sizes and measurement variability 

potentially influencing statistical results. For this reason, the upper bounds of 

the confidence intervals, which provide more information regarding directions 

and magnitude, were used to draw conclusions about the likely impact of 

biomarker levels on risk of disease. However, limitations remain in the ability to 

draw a strong and clear indication of the long-term effects of treatments by 

these upper confidence intervals so I cannot completely rule out an adverse 

effect.  

 
Genetic variants are also studied at population level in relatively healthy 

individuals compared to the target patient population (Mokry et al., 2015). There 

is uncertainty about the effects higher levels may have in the target population 

due to varying baseline biomarker levels, the titration to a particular level 

resulting in different individual-level biomarker increases, the presence of other 

underlying comorbidities and the use of other medications which may alter risk 

(Burgess et al., 2012). Stratifying genetic analyses by biomarker levels can alter 

causal estimates and may provide more precise, clinically relevant effect 

estimates (Sofianopoulou et al., 2021). 

 

 Functional validation studies using cell-line models 
 
To establish the cell-lines of interest, I have adapted CRISPR-Cas9 gene-

editing techniques. Irrespective of ongoing advancements in CRISPR-Cas9 

gene-editing, concerns remain regarding the validity of findings. The primary 

concern is risk of off-target effects associated with the gRNA sequences binding 

to other non-specific regions of the genomic DNA and introducing unwanted 
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edits (Fu et al., 2013; Hsu et al., 2013). For the EPO-/- knock-outs, I used paired 

gRNAs targeting the exonic regions of EPO. Using paired gRNAs has shown to 

improve the efficiency of obtaining homozygous knock-outs and reduce the risk 

of off-target effects due to needing both gRNAs to bind to introduce the most 

significant impact on gene expression (Ran, Hsu, Lin, et al., 2013). Ensuring 

gRNAs have few matches to other exonic regions and the highest possible off-

target score (highest score represents less off-target cutting) also improves the 

specificity and reduces disruption elsewhere (D. B. Graham & Root, 2015). A 

more comprehensive genome-wide screening would be needed to definitively 

assess off-target effects (D. Kim et al., 2015). 

 

For the single SNP knock-in, I was limited in my choice of potential gRNAs by 

the location of the genetic variant in the non-coding upstream region of EPO. 

Targeting non-coding regions of the genome increases the risk of off-target 

effects due to the presence of highly repetitive sequences and few potential 

gRNA sequences (Tycko et al., 2019). However, the use of the piggyBacTM 

system with CRISPR-Cas9 reduced potential off-target effects as I could screen 

for integration of the transposon in the correct genomic location (L. Yang et al., 

2013). Off-target effects could be introduced through this combination of 

approaches after the excision of the piggyBacTM transposon as the transposon 

may become reintegrated elsewhere in the genome (M. A. Li et al., 2013). 

Moreover, despite making every effort to ensure footprint-free removal of the 

transposon and screening for these using PCR and Sanger sequencing, some 

marks could be introduced during homologous recombination further up- or 

downstream of the sequenced region. As the field advances, tools for designing 

gRNAs and predicting or screening for potential off-target effects will improve 

(Kang et al., 2020; D. Wang et al., 2019; H. Wang et al., 2016). Modified Cas9 

proteins and other enzymes that have been optimised for reducing off-targets 

will also become readily available. As CRISPR screens become more 

commonly used introducing specific single-base gene-edits for functional 

validation studies will become easier (C.-L. Chen et al., 2020; Naeem et al., 

2020).  

 

The piggyBacTM  transposon system is a relatively novel technique and 

although it increases the chance of obtaining precise gene-edits, the technique 



 336 

relies upon several selection processes and the introduction of a transposase 

(Yusa, 2013). Screening through surviving clones makes it a relatively inefficient 

method of isolating precisely edited cell-lines (Steyer et al., 2018). The 

resistance gene could be randomly integrated anywhere in the genome and 

thus those clones surviving selection may not necessarily be edited in the 

desired place. The use of puromycin and FIAU is widely used for selection of 

genetically-engineered cells, however, these drugs can cause changes to the 

transcriptome and it is difficult to screen for these resulting changes (Aviner, 

2020).  

 

I have used HEK-293 cell-lines as the model of choice due to the cells being 

from a biologically relevant tissue type. HEK-293 cells are widely used, easy to 

transfect and enable transient and stable expression (P. Thomas & Smart, 

2005). However, they have a complex karyotype making it difficult to fully 

establish whether all chromosomal copies have been affected and contain the 

desired gene-edit (Stepanenko & Dmitrenko, 2015). HEK-293 cells may not 

have been the best and more representative cell-line model to use as HEK-293 

cells are from an embryonic kidney cell-line, and therefore may not be fully 

representative of the adult kidney where EPO exerts its primary effects and in 

particular a diseased kidney. Alternative cell-lines could be used to repeat this 

work to validate the findings, such as renal EPO producing cells (REPCs) or 

peripheral blood stem cells. Cells were also grown in a 2D culture with only one 

cell-type present. The human body is more complex than a single monolayer of 

cells and there are a multitude of different pathways and cells working together 

to elicit an effect and a particular phenotype. EPO is a cytokine hormone 

primarily released in response to hypoxia and exerts its pleiotropic effects in a 

wide-range of different cell-types, tissues and systems (Hernández et al., 2017). 

EPO is involved in number of signaling networks between different systems; it is 

difficult to represent these complex networks in a cell model. As EPO 

expression relies upon several cellular responses, basal levels are relatively low 

in many cell-lines, including HEK-293 cells, and this is worth considering when 

attempting to investigate alterations in EPO and may be the reason most 

current studies investigate the effects of exposure to exogenous EPO. It would 

be beneficial to study changes related to EPO knock-out or SNP knock-in in 

additional relevant cell-lines for comparison, such as HepG2 or peripheral blood 
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stem cells. Whole organisms could also be used, such as mouse, but the 

translational ability of these models is limited due to not being human. 

Furthermore, my results, alongside previous studies, indicate an allele-specific 

effect of the cis-EPO variant which differs in different tissues, cell-types and 

diseases. Expression may only be affected at a particular developmental timing, 

such as in the embryo or foetus, at difference stages of the cell-cycle or in 

response to external/environmental factors. This could explain why I found 

altered EPO expression in HEK-293 cells with an allele change at rs1617640 

(Chapter 5) but no association of the variant with renal EPO expression in the 

eQTL analysis (although this may be due to lack of statistical power) (Chapter 

3). These limitations highlight the need for further investigation in a multitude of 

different models, such as those at different developmental stages and exposed 

to different external stresses.  

 

7.5 Summary 
 
The work presented in this thesis shows how a combination of genetic and 

functional approaches can be used to better understand the therapeutic profile 

of pharmaceutical treatments. Focusing on novel treatments for anaemia in 

CKD and risk of cardiovascular disease, I have provided genetic evidence 

indicating that therapeutic modulation of Hgb or EPO levels do not increase 

cardiovascular disease risk, with upper limits of 1.35 and 1.07 for Hgb and EPO 

respectively. I have shown how genetic analyses combined with functional 

validation studies is a powerful approach to identify relevant genetic markers 

that can investigate the long-term effect of therapeutic action. The combination 

of these approaches can be used across the field to help refine genetic findings 

improving our ability to genetically proxy long-term therapeutic modulation and 

our understanding of the mechanisms underlying complex traits and disease 

aetiology.  
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Chapter 8 Appendix 

 

Appendix 1: Scripts for RNA-seq analysis 
 

 Trimming of reads using Trimmomatic 
 
#!/bin/bash 

 

## Trimming using Trimmomatic 

## CHARLI HARLOW 

 

# Download Trimmomatic 

 

wget 

http://www.usadellab.org/cms/uploads/supplementary/Trimmomatic/Trim

momatic-0.39.zip 

 

# Unzip Trimmomatic 

unzip Trimmomatic-0.39.zip 

 

# Load in java module needed for Trimmomatic 

module load java/1.8.0_92 

 

# may need to edit depending on settings required 

# For more details about the trimmomatic package please see 

http://www.usadellab.org/cms/uploads/supplementary/Trimmomatic/Trim

momaticManual_V0.32.pdf 

 

# Paired-End 

for ID in Empty1 Empty2 Empty3 Empty4 KOA1 KOA2 KOA3 KOA5 KOB1 

KOB211 KOB3 KOB5 

do 

java -jar ../Trimmomatic-0.39/trimmomatic-0.39.jar  

PE \ #specify paired-end or single-end 

-phred33 #specifies the base quality encoding. Could be changed to 

phred64 if using older sequencing machines 

-trimlog trim_empty1_101219.log \ # creates a log file of all the 

trimming 

-basein /gpfs/mrc0/projects/Research_Project-

MRC158833/cs660/EPO_project/EPO_RNA_Seq/ftp1.sequencing.exeter.ac.u

k/H0253/11_trimmed/3064_Empty1_trimmed_r1.fq.gz \ # specifies the 

input file name. Use this option if all input names have the same 

common naming pattern so the reverse read file can automatically be 

detected. If not then remove this option and just specify the two 

files e.g input_filename_r1.fq.gz input_filename_r2.fq.gz 

-baseout 3064_Empty1_trimmed_r1_filtered.fq.gz \ # specifies the 

output file names. Four files will be produced 1-Paired forward 

reads, 2-Unpaired forward reads 3-Paired reverse reads 4-Unpaired 

reverse reads 

ILLUMINACLIP:/gpfs/mrc0/projects/Research_Project-

MRC158833/cs660/EPO_project/EPO_RNA_Seq/ftp1.sequencing.exeter.ac.u

k/H0253/11_trimmed/Trimmomatic-0.39/adapters/TruSeq3-

PE.fa:2:30:10:2:keepBothReads \ 

HEADCROP:10 \ #Cut the specified number of bases from the start of 

the read. Particular important to add this step in if looking at 

the QC report and realising that the first 10 bases for example 

have a phred score lower than 
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LEADING:3 \ #Cut bases off the start of a read, if below a 

threshold quality 

TRAILING:3 \ # Cut bases off the end of a read, if below a 

threshold quality   

SLIDINGWINDOW:4:15 \ #Performs a sliding window trimming approach. 

It starts scanning at the 5’ end and clips the read once the 

average quality within the window falls below a threshold.  

MINLEN:36 \ # Drop the read if it is below a specified length 

 
# Single-End 

# Remove the hashtags if wanting to run for single ended 

# for ID in Empty1 Empty2 Empty3 Empty4 KOA1 KOA2 KOA3 KOA5 KOB1 

KOB211 KOB3 KOB5 

# do 

# java -jar /gpfs/mrc0/projects/Research_Project-

MRC158833/cs660/EPO_project/EPO_RNA_Seq/Trimmomatic-

0.39/trimmomatic-0.39.jar SE -phred33 -trimlog 

trim_{$ID}_101219.log /gpfs/mrc0/projects/Research_Project-

MRC158833/cs660/EPO_project/EPO_RNA_Seq/ftp1.sequencing.exeter.ac.u

k/H0253/11_trimmed/3064_{$ID}_trimmed_r1.fq.gz 

3064_{$ID}_trimmed_r1_extratrimming.fq.gz 

ILLUMINACLIP:/gpfs/mrc0/projects/Research_Project-

MRC158833/cs660/EPO_project/EPO_RNA_Seq/Trimmomatic-

0.39/adapters/TruSeq3-SE.fa:2:30:10 HEADCROP:10 SLIDINGWINDOW:4:15 

MINLEN:36 

# done 

 

 Quality controls checks using FastQC and/or MultiQC 
 
#!/bin/bash 

 

## Quality Control using FASTQC & MULTIQC 

## CHARLI HARLOW 

 

# create directory to store the fastqc output in - one for each 

sample and each read 

 

for ID in Empty1 Empty2 Empty3 Empty4 KOA1 KOA2 KOA3 KOA5 KOB1 

KOB211 KOB3 KOB5 

do 

mkdir -p /gpfs/mrc0/projects/Research_Project-

MRC158833/cs660/EPO_project/RNA_sequencing_analysis/ftp1.sequencing

.exeter.ac.uk/H0253/11_trimmed/additional_trimming/additional_trimm

ing_fastqc/${ID}_r1/ 

mkdir -p /gpfs/mrc0/projects/Research_Project-

MRC158833/cs660/EPO_project/RNA_sequencing_analysis/ftp1.sequencing

.exeter.ac.uk/H0253/11_trimmed/additional_trimming/additional_trimm

ing_fastqc/${ID}_r2/ 

 

# Load in module to run FastQC 

module load FastQC/0.11.7-Java-1.8.0_162 

 

# Run FastQC 

# Read1  

fastqc /gpfs/mrc0/projects/Research_Project-

MRC158833/cs660/EPO_project/RNA_sequencing_analysis/ftp1.sequencing

.exeter.ac.uk/H0253/11_trimmed/additional_trimming/${ID}_additional

_trimming_r1.fq.gz --extract -o 

./additional_trimming_fastqc/${ID}_r1/ 

# Read2 
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fastqc /gpfs/mrc0/projects/Research_Project-

MRC158833/cs660/EPO_project/RNA_sequencing_analysis/ftp1.sequencing

.exeter.ac.uk/H0253/11_trimmed/additional_trimming/${ID}_additional

_trimming_r2.fq.gz --extract -o 

./additional_trimming_fastqc/${ID}_r2/ 

 

done 

 

# Run MultiQC 

# Change directory to faatQC directory 

cd ./additional_trimming_fastqc/ 

 

 

# Load in module 

module load MultiQC/1.2-intel-2017b-Python-2.7.14 

 

# Run multiQC 

multiqc . --dirs --interactive -o ./multiQC/ 

 

 

# Combine all picture files together to make one pdf 

 

# For all the ones which have warnings or have failed 

for ID in Empty1 Empty2 Empty3 Empty4 KOA1 KOA2 KOA3 KOA5 KOB1 

KOB211 KOB3 KOB5 

do 

grep -v PASS ${ID}/3064_${ID}_trimmed_r1_fastqc/summary.txt 

|montage txt:-${ID}/3064_${ID}_trimmed_r1_fastqc/Images/*png -tile 

x3 -geometry +0.1+0.1 -title ${ID} ${ID}.png done < file_names.txt 

 

convert *png fastqc_summary_warnings.pdf 

 

# For all those which have PASSED 

for ID in Empty1 Empty2 Empty3 Empty4 KOA1 KOA2 KOA3 KOA5 KOB1 

KOB211 KOB3 KOB5 

do 

grep PASS ${ID}/3064_${ID}_trimmed_r1_fastqc/summary.txt |montage 

txt:-${ID}/3064_${ID}_trimmed_r1_fastqc/Images/*png -tile x3 -

geometry +0.1+0.1 -title ${ID} ${ID}.png done < file_names.txt 

 

convert *png fastqc_summary_passed.pdf 

 

 

 Alignment to the reference genome using STAR 
 

#!/bin/bash 

 

## STAR ALIGNMENTS 

## CHARLI HARLOW 

 

# 1) Download Reference Genome 

# a) Make directory to store reference genome in 

mkdir Ref_genome 

 

# b) Download fast files for reference genome 

wget ftp://ftp.ensembl.org/pub/release-

98/fasta/homo_sapiens/dna/Homo_sapiens.GRCh38.dna.primary_assembly.

fa.gz 

 

# c) Download the gtf file for the reference genome being used: 



 341 

wget ftp://ftp.ensembl.org/pub/release-

98/gtf/homo_sapiens/Homo_sapiens.GRCh38.98.gtf.gz 

 

# d) Unzip both these files for use in STAR 

 

gunzip Homo_sapiens.GRCh38.98.gtf.gz 

gunzip  Homo_sapiens.GRCh38.98.gtf.gz 

 

# 2) Generate Index file 

# only one index file needs to be created per genome. The index 

file will contain all the information from the reference genome in 

a compressed format that is optimized for efficient access and 

comparison with the query read sequences. The main input files for 

this step therefore encompass the reference genome sequence and an 

annotation file. 

 

# a) Create directory to store the index file in 

mkdir /gpfs/mrc0/projects/Research_Project-

MRC158833/cs660/EPO_project/RNA_sequencing_analysis/StarIndex 

 

# b) create alias for the directory with reference genome 

Ref_dir="/gpfs/mrc0/projects/Research_Project-

MRC158833/cs660/EPO_project/EPO_RNA_Seq/Ref_genome" 

 

# c) load in STAR module 

module load STAR/2.7.1a-foss-2018b 

 

# d) Generate STAR index files 

 

STAR --runMode genomeGenerate \ #specify run mode as generate index 

--genomeDir /gpfs/mrc0/projects/Research_Project-

MRC158833/cs660/EPO_project/RNA_sequencing_analysis/StarIndex/ \ 

#where to store index output 

--genomeFastaFiles ${Ref_dir}/GRCh38.p13.genome.fa \ # specify 

where fasta reference file is, make sure this file is unzipped 

--sjdbGTFfile 

${Ref_dir}/gencode.v32.chr_patch_hapl_scaff.annotation.gtf \ 

#specify where gtf reference file is. Make sure this file is 

unzipped 

--sjdbOverhang 74 # specifies the length of the genomic sequence 

around the annotated junction to be used in constructing the splice 

junctions database. Ideally, this length should be equal to the 

ReadLength-1, where ReadLength is the length of the reads. 

 

# 3) Run alignment for each sample. If Single End then need to 

change options and input names 

 

# a) Make directory to store results 

mkdir /gpfs/mrc0/projects/Research_Project-

MRC158833/cs660/EPO_project/RNA_sequencing_analysis/Star_Alignment/ 

 

# b) Create alias for index directory 

index_dir="/gpfs/mrc0/projects/Research_Project-

MRC158833/cs660/EPO_project/EPO_RNA_Seq/StarIndex” 

 

# run loop to carry out alignment for each sample 

# Make sure when reading files in if you are mapping paired end 

data then read1 and read2 and space separated NOT separated by 

comma. Comma separated list means both files are mapped in one job. 
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for SAMPLE in Empty1 Empty2 Empty3 Empty4 KOA1 KOA2 KOA3 KOA5 KOB1 

KOB211 KOB3 KOB5 

do 

STAR --runMode alignReads \ #specify run mode as aligning reads 

--genomeDir ${index_dir}/ \ #tell star where to reference file is 

--readFilesIn /gpfs/mrc0/projects/Research_Project-

MRC158833/cs660/EPO_project/RNA_sequencing/analysis/ftp1.sequencing

.exeter.ac.uk/H0253/11_trimmed/additional_trimming/${SAMPLE}_additi

onal_trimming_1P.fq.gz /gpfs/mrc0/projects/Research_Project-

MRC158833/cs660/EPO_project/RNA_sequencing/analysis/ftp1.sequencing

.exeter.ac.uk/H0253/11_trimmed/additional_trimming/${SAMPLE}_additi

onal_trimming_2P.fq.gz \ #read in the fast q files for aligning 

--readFilesCommand zcat \ #tells STAR that the fastq files are 

gzipped 

--outFileNamePrefix /gpfs/mrc0/projects/Research_Project-

MRC158833/cs660/EPO_project/RNA_sequencing_analysis/Star_Alignment/

${SAMPLE}_ \ #specifies name of output file 

--outSAMtype BAM SortedByCoordinate \ # output in BAM format, 

sorted by coordinate. This option will allocate extra memory for 

sorting which can be specified by –limitBAMsortRAM 

--outReadsUnmapped Fastx \# default is none, fastx will output 

unmapped and partially mapped reads in separate files 

--runThreadN 4 \ #tells star how many threads to run on 

--twopassMode Basic \# STAR will perform mapping, then extract 

novel junctions which will be inserted into the genome index which 

will then be used to re-map all reads 

--outFilterMultimapNmax 1 # only reads with 1 match in the 

reference will be returned as aligned 

done 

 

 

 Visualising STAR alignments 
 
 

Visualising STAR Alignments 

Charli E. Harlow 

01/06/2020 

Setting up the functions needed 
PlottingCorrelation <- function(DF, Var1, Var2, Var1.Label, Var2.Label
){ 
  # Convenience function for the simple plot() function that allows fo
r separate 
  # definition of labels and columns that should be compared against e
ach other 
  # usage: PlottingCorrelation(DF=aligned.reads.df, 
  #               Var1="Number of input reads", Var2="Uniquely mapped 
reads %", 
  #               Var1.Label = "InputReads", Var2.Label="UniquelyMappe
dFraction") 
  m <- matrix(data = c(DF$V2[which(DF$V1 == Var1)], 
                       DF$V2[which(DF$V1 == Var2)]), 
              ncol = 2) 
  colnames(m) <- c(Var1.Label,Var2.Label) 
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  plot(m) 
} 

Setting up colour for plot 
library(RColorBrewer) 
nb.cols <- 4 # change this to number of coloumns 
mycolors <- colorRampPalette(brewer.pal(4, "YlOrRd"))(nb.cols) 

Setting up the function to produce the plot of 4 side by side 
PlottingAlignmentResults <- function(Filter, DF, Legend=TRUE, PlotMedi
an = TRUE){ 
  # this function extracts those lines that correspond to the value st
ored in Filter and generates a bar plot where each sample is shown wit
h a different color 
   
  library(ggplot2) 
  library(grid) # for unit() function 
  filtered.df <- DF[which(DF$V1 == Filter),] 
  medians <- as.data.frame(aggregate(V2~sample, data=filtered.df, FUN=
median)) 
  filtered.df <- merge(filtered.df, medians, by.x = "sample", by.y = "
sample", all.x=TRUE) 
   
  p <- ggplot(data=filtered.df, aes(fill=replicate, y=V2.x, x=sample)) 
+ 
    geom_bar(stat="identity",position=position_dodge()) + 
    theme_bw(base_size = 10) + 
    scale_fill_manual(values=mycolors) + 
    theme(legend.position="bottom", 
          legend.text = element_text(size = 8), 
          legend.key.size = unit(0.1, "cm"), 
          legend.title=element_blank(), 
          axis.title.x = element_text(size=10), 
          axis.text.x = element_text(size=8)) + 
    coord_flip() + ylab("") + ggtitle(Filter) 
   
  if(PlotMedian){ 
    p <- p + geom_errorbar(aes(y=V2.y, ymax=V2.y, ymin=V2.y), linetype
="dashed") 
  } 
   
  if(!Legend){ 
    p <- p +  theme(legend.position="none") 
  } 
   
  return(p) 
} 

Set up the Legend function 
ExtractLegend <- function(Plot){ 
  library(ggplot2) 
  G <- ggplotGrob(Plot)$grobs 
  Legend <- G[[which(sapply(G, function(x) x$name) == "guide-box")]] 
  Lheight <- sum(Legend$height) 
  return(list(legend = Legend, lheight=Lheight)) 
} 
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Extract.Histo.Info <- function(InList, # output from hist(...,plot=FAL
SE) 
                               Percentage = TRUE 
){ 
  # this function uses the information from hist() that are stored in 
lists 
  # to make a data frame that's suitable for bar plots 
  ll <- length(InList$breaks) 
  out.df <- data.frame(breaks1 = InList$breaks[c(1:ll-1)], 
                       breaks2 = InList$breaks[c(2:ll)], 
                       counts = InList$counts) 
  if(Percentage){ 
    out.df <- transform(out.df, 
                        breaks = paste(out.df$breaks1*100, "-", out.df
$breaks2*100, sep = ""), 
                        breaks1 = NULL, breaks2 = NULL) 
  }else{ 
    out.df <- transform(out.df, 
                        breaks = paste(out.df$breaks1, "-", out.df$bre
aks2, sep = ""), 
                        breaks1 = NULL, breaks2 = NULL) 
  } 
  out.df$breaks <- factor(out.df$breaks, levels = unique(as.character(
out.df$breaks)), ordered = TRUE) 
  return(out.df) 
} 

Load in libraries 
library(Cairo) 
library(ggplot2) 

## Warning: package 'ggplot2' was built under R version 3.6.2 

library(gridExtra) # for composite plotting of ggplots 

Read in the final.log.out files that were produced from Star Alignment 
infiles <- list.files(path="~/Downloads/",pattern="Log.final.out", ful
l.names = TRUE) # listing the files to be read in 

Check the list looks as expected 

head(infiles) 

## [1] "/Users/cs660/Downloads//Empty1_10bp_Log.final.out" 
## [2] "/Users/cs660/Downloads//Empty2_10bp_Log.final.out" 
## [3] "/Users/cs660/Downloads//Empty3_10bp_Log.final.out" 
## [4] "/Users/cs660/Downloads//Empty4_10bp_Log.final.out" 
## [5] "/Users/cs660/Downloads//KOA1_10bp_Log.final.out"   
## [6] "/Users/cs660/Downloads//KOA2_10bp_Log.final.out" 

Generate a list of data frames from the list of file we read in 

align.results <- lapply(infiles, function(x) read.table(x, sep="|", st
rip.white=TRUE, stringsAsFactor=FALSE, skip=3, fill = TRUE, header = F
ALSE)) #iterating over the file list to generate a list of data frames 
typeof(align.results) #check its a list 
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## [1] "list" 

head(align.results[[1]]) 

##                                         V1       V2 
## 1 Mapping speed, Million of reads per hour   264.01 
## 2                    Number of input reads 13493936 
## 3                Average input read length       89 
## 4                            UNIQUE READS:          
## 5             Uniquely mapped reads number 11782768 
## 6                  Uniquely mapped reads %   87.32% 

Remove the % from the numbers so just a number 

align.results <- lapply(align.results, function(x)transform(x, V2 = as
.numeric(gsub("%", "", x$V2) ))) #remove the % from some of numbers so 
just a number 

Alter cosmetics of each data frame 
names(align.results) <- gsub("(Empty|KOA|KOB)*(\\_[0-12]*)*", "\\1\\2"
, infiles) # some cosmetics of each data frames name, specific for the 
sample names of the files used here. Instead of 0-12, it will name the
m by the names in the infiles) 

Check name of each file 

names(align.results) 

##  [1] "/Users/cs660/Downloads//Empty1_10bp_Log.final.out" 
##  [2] "/Users/cs660/Downloads//Empty2_10bp_Log.final.out" 
##  [3] "/Users/cs660/Downloads//Empty3_10bp_Log.final.out" 
##  [4] "/Users/cs660/Downloads//Empty4_10bp_Log.final.out" 
##  [5] "/Users/cs660/Downloads//KOA1_10bp_Log.final.out"   
##  [6] "/Users/cs660/Downloads//KOA2_10bp_Log.final.out"   
##  [7] "/Users/cs660/Downloads//KOA3_10bp_Log.final.out"   
##  [8] "/Users/cs660/Downloads//KOA5_10bp_Log.final.out"   
##  [9] "/Users/cs660/Downloads//KOB1_10bp_Log.final.out"   
## [10] "/Users/cs660/Downloads//KOB211_10bp_Log.final.out" 
## [11] "/Users/cs660/Downloads//KOB3_10bp_Log.final.out"   
## [12] "/Users/cs660/Downloads//KOB5_10bp_Log.final.out" 

Catenate all of the dataframes together to make one dataframe 

align.results.df <- as.data.frame(do.call(rbind, align.results)) # cat
enating all data frames of align.results together 
align.results.df <- align.results.df[complete.cases(align.results.df),
] # remove lines without any values 
head(align.results.df)  

##                                                                                           
V1 
## /Users/cs660/Downloads//Empty1_10bp_Log.final.out.1 Mapping speed, 
Million of reads per hour 
## /Users/cs660/Downloads//Empty1_10bp_Log.final.out.2                    
Number of input reads 
## /Users/cs660/Downloads//Empty1_10bp_Log.final.out.3                
Average input read length 
## /Users/cs660/Downloads//Empty1_10bp_Log.final.out.5             Uni
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quely mapped reads number 
## /Users/cs660/Downloads//Empty1_10bp_Log.final.out.6                  
Uniquely mapped reads % 
## /Users/cs660/Downloads//Empty1_10bp_Log.final.out.7                    
Average mapped length 
##                                                              V2 
## /Users/cs660/Downloads//Empty1_10bp_Log.final.out.1      264.01 
## /Users/cs660/Downloads//Empty1_10bp_Log.final.out.2 13493936.00 
## /Users/cs660/Downloads//Empty1_10bp_Log.final.out.3       89.00 
## /Users/cs660/Downloads//Empty1_10bp_Log.final.out.5 11782768.00 
## /Users/cs660/Downloads//Empty1_10bp_Log.final.out.6       87.32 
## /Users/cs660/Downloads//Empty1_10bp_Log.final.out.7       89.56 

Adding an additional column of sample names Sample name looks like this before: 
/Users/cs660/Downloads//Empty1_10bp_Log.final.out.1 We want it to look like: 
Empty, KOA, KOB 

align.results.df$sample <- gsub("(//*)\\_.*.", "\\1", row.names(align.
results.df)) #create a new column with sample name 
align.results.df$sample <- sub("/.*/", "", align.results.df$sample) #r
emove the ./ from each sample name 
align.results.df$sample <- sub("_.*.", "", align.results.df$sample) #r
emove the _ from each sample name 
align.results.df$sample <- gsub('[[:digit:]]+', '', align.results.df$s
ample) # remove the digits from the end of the sample names 
 
head(align.results.df) 

##                                                                                           
V1 
## /Users/cs660/Downloads//Empty1_10bp_Log.final.out.1 Mapping speed, 
Million of reads per hour 
## /Users/cs660/Downloads//Empty1_10bp_Log.final.out.2                    
Number of input reads 
## /Users/cs660/Downloads//Empty1_10bp_Log.final.out.3                
Average input read length 
## /Users/cs660/Downloads//Empty1_10bp_Log.final.out.5             Uni
quely mapped reads number 
## /Users/cs660/Downloads//Empty1_10bp_Log.final.out.6                  
Uniquely mapped reads % 
## /Users/cs660/Downloads//Empty1_10bp_Log.final.out.7                    
Average mapped length 
##                                                              V2 sam
ple 
## /Users/cs660/Downloads//Empty1_10bp_Log.final.out.1      264.01  Em
pty 
## /Users/cs660/Downloads//Empty1_10bp_Log.final.out.2 13493936.00  Em
pty 
## /Users/cs660/Downloads//Empty1_10bp_Log.final.out.3       89.00  Em
pty 
## /Users/cs660/Downloads//Empty1_10bp_Log.final.out.5 11782768.00  Em
pty 
## /Users/cs660/Downloads//Empty1_10bp_Log.final.out.6       87.32  Em
pty 
## /Users/cs660/Downloads//Empty1_10bp_Log.final.out.7       89.56  Em
pty 
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Adding an additional column of replicate id We want each replicate to be number 1-4 
So Empty1 = replicate 1, Empty2 = replicate 2, Empty 3 = replicate 3…. KOA1 = replicate 
1, KOA2 = replicate 2, KOA3 = replicate 3, KOA5 = replicate 4 KOB1 = replicate 1, 
KOB211 = replicate 2, KOB3 = replicate 3, KOB5 = replicate 4 

align.results.df$replicate <- gsub("(//*)\\_.*.", "\\1", row.names(ali
gn.results.df)) #create a new column with sample name 
align.results.df$replicate <- sub("/.*/", "", align.results.df$replica
te) #remove the ./ from each sample name 
align.results.df$replicate <- sub("_.*.", "", align.results.df$replica
te) #remove the bits after the _ from each sample name 
align.results.df$replicate <- gsub("[^0-9.-]+", "", align.results.df$r
eplicate) #remove chracters apart from the number after the sample nam
e e.g. Empty1 = 1 
align.results.df$replicate <- ifelse(align.results.df$replicate == 5, 
4, ifelse(align.results.df$replicate == 211, 2, align.results.df$repli
cate)) #replace some of the funny sample names to be replicates 1,2,3&
4 
align.results.df$replicate <- as.factor(as.numeric(align.results.df$re
plicate)) #change column to a factor variable 

Plotting 

Now that the data frame is set up how we want, we need to pull out the desired 
categories for plotting Find the unique fields so we know what the categories are 
called 

unique(align.results.df$V1) 

##  [1] "Mapping speed, Million of reads per hour"      
##  [2] "Number of input reads"                         
##  [3] "Average input read length"                     
##  [4] "Uniquely mapped reads number"                  
##  [5] "Uniquely mapped reads %"                       
##  [6] "Average mapped length"                         
##  [7] "Number of splices: Total"                      
##  [8] "Number of splices: Annotated (sjdb)"           
##  [9] "Number of splices: GT/AG"                      
## [10] "Number of splices: GC/AG"                      
## [11] "Number of splices: AT/AC"                      
## [12] "Number of splices: Non-canonical"              
## [13] "Mismatch rate per base, %"                     
## [14] "Deletion rate per base"                        
## [15] "Deletion average length"                       
## [16] "Insertion rate per base"                       
## [17] "Insertion average length"                      
## [18] "Number of reads mapped to multiple loci"       
## [19] "% of reads mapped to multiple loci"            
## [20] "Number of reads mapped to too many loci"       
## [21] "% of reads mapped to too many loci"            
## [22] "Number of reads unmapped: too many mismatches" 
## [23] "% of reads unmapped: too many mismatches"      
## [24] "Number of reads unmapped: too short"           
## [25] "% of reads unmapped: too short"                
## [26] "Number of reads unmapped: other"               
## [27] "% of reads unmapped: other"                    
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## [28] "Number of chimeric reads"                      
## [29] "% of chimeric reads" 

Define those entries that we are interested in and want to plot: 

filters = c("Number of input reads", "Uniquely mapped reads %", 
            "% of reads mapped to multiple loci", "% of reads unmapped
: too short") 

Create plots 

plots <- lapply(filters, function(x)  
  PlottingAlignmentResults(x, align.results.df, Legend = FALSE)) 

Add legend 

my.legend <- ExtractLegend(PlottingAlignmentResults(align.results.df,  
                                                    Filter = filters[1
],  
                                                    Legend=TRUE)) 

Combine plots and legend into one final figure 

grid.arrange(arrangeGrob(plots[[1]], plots[[2]], plots[[3]], plots[[4]
], nrow=2), 
             my.legend$legend, nrow=2, 
             heights= unit.c(unit(1, "npc") - my.legend$lheight, my.le
gend$lheight) 
) 

 

Plotting a stacked bar chart of mapped, multiple mapped and unmapped 

Define the colours 

nb.cols <- 4 # change this to number of coloumns (filters in this case
) 
mycolors <- colorRampPalette(brewer.pal(4, "RdYlBu"))(nb.cols) 

Subset to the categories we want to plot 

filtered.df <- subset(align.results.df, align.results.df$V1 == "Unique
ly mapped reads number" | align.results.df$V1 == "Number of reads unma
pped: too short" | align.results.df$V1 == "Number of reads mapped to m
ultiple loci") 

Create Stacked Bar Chart 

ggplot(data=filtered.df, aes(y=V2, x=sample)) + 
  geom_bar(aes(fill=V1), stat="identity",position="stack") + 
  theme_bw(base_size = 16) + 
  ylab("Number of reads") +  
  xlab("Sample") + 
  theme(axis.text.x = element_text(size=8), axis.title.x = element_tex
t(size=10)) + 
  #scale_fill_manual(values=mycolors) + 
  theme(legend.position="bottom", 
        legend.text = element_text(size = 6), 
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        legend.key.size = unit(0.4, "cm"), 
        legend.title=element_blank()) 

 

Percentage plots 

Filter down to the categories we want to plot 

filtered.df <- subset(align.results.df, align.results.df$V1 == "Unique
ly mapped reads %" | align.results.df$V1 == "% of reads unmapped: too 
short" | align.results.df$V1 ==  "% of reads mapped to multiple loci") 

Create the Plot 

ggplot(data=filtered.df, aes(y=V2, x=sample)) + 
  geom_bar(aes(fill=V1), stat="identity",position="stack") + 
  theme_bw(base_size = 16) + 
  theme(axis.text.x = element_text(size=8), axis.title.x = element_tex
t(size=10)) + 
  ylab("Percentage of reads (%)") +  
  xlab("Sample") + 
  #scale_fill_manual(values=mycolors) + 
  theme(legend.position="bottom", 
        legend.text = element_text(size = 8), 
        legend.key.size = unit(0.4, "cm"), 
        legend.title=element_blank()) 

 

 Creating a bam index 
 
 
#!/bin/bash 

 

## Create index for bam files 

## CHARLI HARLOW 

 

# Load in SAM tools 

module load SAMtools 

 

# Create index for each bam file 

 

for ID in Empty1 Empty2 Empty3 Empty4 KOA1 KOA2 KOA3 KOA5 KOB1 

KOB211 KOB3 KOB5 

do 

samtools index /gpfs/mrc0/projects/Research_Project-

MRC158833/cs660/EPO_project/RNA_sequencing_analysis/Star_Alignment_

11_trimmed/${ID}Aligned.sortedByCoord.out.bam 

done 

 

 

 Gene quantification using FeatureCounts 
 
#!/bin/bash 

 

## Gene Quantification using featureCounts 

## CHARLI HARLOW 
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# 1.Download the feature counts package which is present in the 

subread form: <https://sourceforge.net> 

 

wget -r https://sourceforge.net/projects/subread/files/subread-

2.0.0/subread-2.0.0-Linux-x86_64.tar.gz/download 

 

# 2.Uncompress and unpackage the .tar.gz file 

 

tar -zxvf download 

 

# 3.Create directory to put feature count results in 

 

mkdir featureCounts 

 

# 4. If carrying out featureCounts on paired-end data, ensure that 

the .bam files are sorted by read name NOT BY coordinate like STAR 

output files 

# *If not sorted by read name, feature counts will assume that 

almost all reads are not properly paired* 

 

# a) Load in samtools 

module load SAMtools 

# b) sort by read name 

samtools sort -n -o 

/path/to/directory/output_name_sortByReadName.bam 

/path/to/directory/input_name.out.bam 

 

 

# 5.Run feature counts to count reads per gene 

 

# a) Set up alias for feature counts directory 

featureCounts=~/path/to/package/directory/subread-2.0.0-Linux-

x86_64/bin/featureCounts 

 

# b) Run feature counts (if you have not set up alias as above 

command states,make sure to supply full path-to-

directory/featureCounts at start of below command to run 

featureCounts 

 

$featureCounts -a /path/to/directory/to/reference-

genome/Homo_sapiens.GRCh38.98.gtf \ 

-T 8 \ # indicates number of threads to use 

-p \ #indicates paired-end 

-g gene_id \ # indicates how to name the genes. Default is gene_id. 

Can change this to gene_name if you want output to contain the gene 

names not the accession numbers. Often it is better to use 

accession numbers as genes can have more than one gene-name 

-F GTF \ # indicates type of reference file 

# -f \ #indicates what level to perform the assignment at – default 

is to perform assignment at gene-level (meta-feature). If you 

specify -f then it will perform quantification at exon-level 

(feature level) 

-o 

/path/to/directory/output/featureCounts/feature_count_results.txt \ 

#indicates where to put output 

/path/to/directory/input_file_name.bam \  # tells feature counts 

where input is 

2> /path/to/directory/for/log/file/featurecounts_screen_output.log 

#indicates to make a log file showing the screen output as 

featurecounts is running 
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# If you want to run for all bam files then use * for wildcard e.g 

/path/to/directory/input_files/*.bam 

 

 Visualising FeatureCounts 
 
 

Visualising_FeatureCounts 

Charli E. Harlow 

01/06/2020 

Visualising featureCounts results 

It is quite good practice to then plot the statistics produced from featureCounts so you 
can assess if the quantification worked and can compare the number of alignments 
that have been assigned vs those that have not. 

Alter the results table to contain three columns - one with the sample names, 
one with the counts and one with the types of counts 
e.g. Unassigned_Ambiguity 

Once this has been set up, you can then run the below commands to produce a 
bar chart summarising the featureCount results 

## Load in required packages 
library(ggplot2) 

## Warning: package 'ggplot2' was built under R version 3.6.2 

### Read in table 
featurecounts <- read.csv("~/Desktop/featureCounts_summary1.csv")  
 
# Make sure table looks like the following 
head(featurecounts) 

##     Counts     Type  Sample  Name Name1 
## 1 11029026 Assigned Empty1   WT-1   WT1 
## 2 13534890 Assigned  Empty2  WT-2   WT2 
## 3 12080721 Assigned  Empty3  WT-3   WT3 
## 4 13127994 Assigned  Empty4  WT-4   WT4 
## 5 15917368 Assigned   KOA1  KO1-1  KOA1 
## 6 16297446 Assigned    KOA2 KO1-2  KOA2 

## Subset the file to the Classes that you are interested in and want 
to plot. I focused on assigned, unassigned no features, unassigned amb
iguity and unassigned no features. 
featurecounts <- subset(featurecounts, featurecounts$Type=="Assigned" 
| featurecounts$Type=="Unassigned_MultiMapping"|featurecounts$Type=="U
nassigned_NoFeatures"|featurecounts$Type=="Unassigned_Ambiguity") 
 
## Plot the data 
## Stacked Bar plot – with number ofcounts on the y axis, sample name 
on the x axis and fill the bar plot depending on the Filter Class  
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ggplot(data=featurecounts, aes(y=Counts, x=Sample)) + 
  geom_bar(aes(fill=Type), stat="identity",position="stack") + 
  theme_bw(base_size = 12) + 
  ylab("Count") +  
  xlab("Sample") + 
  theme(legend.position="bottom", 
        legend.text = element_text(size = 8), 
        legend.key.size = unit(0.4, "cm"), 
        legend.title=element_blank()) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 353 

 Differential Gene expression analysis  
 

Differential Gene Expression Analysis 

Charli E. Harlow 

01/06/2020 

Differential Gene Expression Analysis using DeSeq2 

Lots of information about this software and different vignettes can be found online. 
For example – a recent vignette from the developers of the software; 
http://bioconductor.org/packages/devel/bioc/vignettes/DESeq2/inst/doc/DESeq2.htm
l#independent-filtering-of-results 

Set current working directory where everything will be saved and stored 

setwd("~/Desktop") 

Load in packages which will be needed 

library(magrittr) 

## Warning: package 'magrittr' was built under R version 3.6.2 

1) Load in the count data 
 
read.counts <- read.table("~/Desktop/feature_count_results_geneid.txt"
, sep="\t", header = TRUE) 

The results can now handled as a dataframe in the R environment 

head(read.counts, n=3) 

Replace all row names with the names of genes 

row.names(read.counts) <- read.counts$Geneid 

Remove the irrelevant columns which contain no count data 

read.counts <- read.counts[,-c(1:6)] 

Give meaningful sample names to the columns if your data-frame does not already 
have clear names - this can be achieved via numerous approaches 

names(read.counts) <- c("WT1", "WT2","WT3","WT4","KOA1", "KOA2", "KOA3
", "KOA4", "KOB1", "KOB2", "KOB3", "KOB4") 
 
# Check data is what we expect 
str(read.counts) 
head (read.counts, n = 3) 

Extract just read count data for Control & KOA or Control & KOB for individual analysis 

• Remove KOB samples 

http://bioconductor.org/packages/devel/bioc/vignettes/DESeq2/inst/doc/DESeq2.html#independent-filtering-of-results
http://bioconductor.org/packages/devel/bioc/vignettes/DESeq2/inst/doc/DESeq2.html#independent-filtering-of-results
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read.counts.KOA <- read.counts[,-c(9:12)] 
str(read.counts.KOA) 
head(read.counts.KOA, n = 3) 

• remove KOA samples 

read.counts.KOB <- read.counts[,-c(5:8)] 
str(read.counts.KOB) 
head (read.counts.KOB, n = 3) 

Read in gtf file with Gene IDs and Gene names 
 
gtf <- read.table("~/Downloads/Homo_sapiens.GRCh38.98_gene_annotation_
table.txt", sep="\t", header=T) 
 
gtf$Geneid <- gtf$gene_id 

2) Create a meta-data dataframe for use in DeSeq2 

Create the ColData for DeSeq2 which contains information on the conditions, 
confounders etc The conditions and sample names should correspond to the column 
names of read.counts 

Create a data-frame with a column called condition which is WT or KO Use the 
column names of read.counts dataframe i.e. WT1,WT2 etc but remove the 
digits so just called WT or KOA or KOB 

sample_info <- data.frame(condition = gsub("[[:digit:]]+", "", names(r
ead.counts)), 
                          row.names = names(read.counts)) 

Replace WT with Control 

sample_info$condition <- ifelse(sample_info$condition=="WT", "WT", ife
lse(sample_info$condition=="KOA", "KOA", "KOB")) 

Change to a factor column not character 

sample_info$condition <- as.factor(sample_info$condition) 

Alter the levels so that WT is recognised as ‘level 1’ 

sample_info$condition %<>% relevel("WT") 

Check we have what we want 

sample_info$condition 

Create a column of sample name using the column names of the read.counts 
dataframe 

sample_info$sample <- names(read.counts) 
sample_info$sample <- factor(sample_info$sample, levels=c("WT1", "WT2"
,"WT3","WT4","KOA1","KOA2","KOA3","KOA4","KOB1","KOB2","KOB3","KOB4")) 
sample_info$sample %<>% relevel("WT1") 

Create a column for biological replicate where WT sample 1 = 1, WT 2=2 etc 

library(stringr) 
regexp <- "[[:digit:]]+" 
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sample_info$rep <- data.frame(rep = gsub("(.*)-", "", names(read.count
s)), 
                          row.names = names(read.counts)) 
 
sample_info$rep <- str_extract(names(read.counts), regexp) 
sample_info$rep <- as.factor(sample_info$rep) 

Create a column for Genotype where WT or KO i.e. combines KOA & KOB to just KO 
Use this column to combine all KO samples 

sample_info$genotype <- ifelse(sample_info$condition=="WT", "WT", ifel
se(sample_info$condition=="KOA", "KO", "KO")) 
sample_info$genotype <- as.factor(sample_info$genotype) # change colum
n to factor not character 
sample_info$genotype %<>% relevel("WT") # relevel to ensure WT is leve
l 1 
sample_info$genotype # check it is what we expect 

Create a column for cell line where WT is one cell line, KOA is another cell line 
regardless of replicate and KOB is a cellline regardless of replicate 

sample_info$cellline <- ifelse(sample_info$condition=="WT", "0", ifels
e(sample_info$condition=="KOA", "1", "2")) 
sample_info$cellline <- as.factor(sample_info$cellline) # change to fa
ctor  

Set up meta-data just for KOA vs Control 

sample_info_KOA <- data.frame(condition = gsub("[0-9]+", "", names(rea
d.counts.KOA)), 
                          row.names = names(read.counts.KOA)) 
 
sample_info_KOA$condition <- ifelse(sample_info_KOA$condition=="WT", "
WT", "KOA") 
sample_info_KOA$condition <- as.factor(sample_info_KOA$condition) 
 
# alter the levels so that WT is recogised as 'level 1' 
sample_info_KOA$condition %<>% relevel("WT") 
sample_info_KOA$condition 
 
# create a column of sample name 
sample_info_KOA$sample <- names(read.counts.KOA) 
sample_info_KOA$sample <- factor(sample_info_KOA$sample, levels=c("WT1
", "WT2","WT3","WT4","KOA1","KOA2","KOA3","KOA4")) 
sample_info_KOA$sample %<>% relevel("WT1") 
 
# create a column for biological replicate where WT sample 1 = 1, WT 2
=2 etc 
library(stringr) 
regexp <- "[[:digit:]]+" 
sample_info_KOA$rep <- str_extract(names(read.counts.KOA), regexp) 
sample_info_KOA$rep <- as.factor(sample_info_KOA$rep) 
 
# create a column for Genotype where name WT or KO 
# use this column to combine all KO samples 
sample_info_KOA$genotype <- ifelse(sample_info_KOA$condition=="WT", "W
T", ifelse(sample_info_KOA$condition=="KOA", "KO", "KO")) 



 356 

sample_info_KOA$genotype <- as.factor(sample_info_KOA$genotype) 
sample_info_KOA$genotype %<>% relevel("WT") 
sample_info_KOA$genotype 
 
# create a column for cell line where WT is one cell line, KOA is anot
her cell line regardless of replicate and KOB is a cellline regardless 
of replicate 
sample_info_KOA$cellline <- ifelse(sample_info_KOA$condition=="WT", "0
", ifelse(sample_info_KOA$condition=="KOA", "1", "2")) 
sample_info_KOA$cellline <- as.factor(sample_info_KOA$cellline) 

Set up meta-data just for KOB vs Control 

## KOB meta-data 
sample_info_KOB <- data.frame(condition = gsub("[0-9]+", "", names(rea
d.counts.KOB)), 
                              row.names = names(read.counts.KOB)) 
 
sample_info_KOB$condition <- ifelse(sample_info_KOB$condition=="WT", "
WT", "KOB") 
sample_info_KOB$condition <- as.factor(sample_info_KOB$condition) 
 
# alter the levels so that WT is recogised as 'level 1' 
sample_info_KOB$condition %<>% relevel("WT") 
sample_info_KOB$condition 
 
# create a column of sample name 
sample_info_KOB$sample <- names(read.counts.KOB) 
sample_info_KOB$sample <- factor(sample_info_KOB$sample, levels=c("WT1
", "WT2","WT3","WT4","KOB1","KOB2","KOB3","KOB4")) 
sample_info_KOB$sample %<>% relevel("WT1") 
 
# create a column for biological replicate where WT sample 1 = 1, WT 2
=2 etc 
library(stringr) 
regexp <- "[[:digit:]]+" 
sample_info_KOB$rep <- str_extract(names(read.counts.KOB), regexp) 
sample_info_KOB$rep <- as.factor(sample_info_KOB$rep) 
 
# create a column for Genotype where name WT or KO 
# use this column to combine all KO samples 
sample_info_KOB$genotype <- ifelse(sample_info_KOB$condition=="WT", "W
T", ifelse(sample_info_KOB$condition=="KOB", "KO", "KO")) 
sample_info_KOB$genotype <- as.factor(sample_info_KOB$genotype) 
sample_info_KOB$genotype %<>% relevel("WT") 
sample_info_KOB$genotype 
 
# create a column for cell line where WT is one cell line, KOA is anot
her cell line regardless of replicate and KOB is a cellline regardless 
of replicate 
sample_info_KOB$cellline <- ifelse(sample_info_KOB$condition=="WT", "0
", ifelse(sample_info_KOB$condition=="KOB", "1", "2")) 
sample_info_KOB$cellline <- as.factor(sample_info_KOB$cellline) 

Assign colours to the different groups in the meta-data data-frame # we can use these 
colours later to colour groups 
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library("RColorBrewer") 
col.genotype <- colorRampPalette(c("royalblue", "red3"))(length(unique
(sample_info$genotype)))[factor(sample_info$genotype)] 
col.condition <- colorRampPalette(c("lightblue2", "orange", "deeppink"
))(length(unique(sample_info$condition)))[factor(sample_info$condition
)] 
col.rep <- colorRampPalette(c("snow2", "azure2","lightblue2","steelblu
e2"))(length(unique(sample_info$rep)))[factor(sample_info$rep)] 
col.sample <- colorRampPalette(c("cadetblue1", "cadetblue2","cadetblue
3","cadetblue4", "brown1", "brown2","brown3","brown4","deeppink", "dee
ppink1", "deeppink2", "deeppink3"))(length(unique(rownames(sample_info
)))) 

3) Filter the data now if wanted 

Can filter here or filter once data has been correctly read into DeSeq2 (commands for 
this below after reading data into DeSeq2) 

Remove transcripts whose mean raw count across all samples falls below 10 

#ZeroCountFilterIndices <- which(apply(read.counts, 1, mean)<10) 
#print(paste("Total transcripts with mean<10 counts (all samples):", l
ength(ZeroCountFilterIndices), sep=" ")) 
#if (length(ZeroCountFilterIndices)>0) 
#{ 
# filtered_readcounts <- read.counts[-ZeroCountFilterIndices,] 
#} 

Check if all genes have at least 1 zero (generates error with DESeq2 1. This first 
converts the entire data frame to TRUE or FALSE (0 or non-zero) 2. It then applies the 
table function per row, which gives TRUE and FALSE tallies per gene 3. It then checks if 
any tally equals the total number of samples - as we’ve already eliminated genes with 
all 0 values, the only condition that can meet ncol(txi.working$counts) is the FALSE 
(non-zero) condition This produces a further TRUE or FALSE for each gene and 
condition 4. Finally, if any TRUE values are present, then we know that at least 1 row 
has a non-zeros, and therefore we can proceed 

#if (!any(data.frame(unlist(apply((filtered_readcounts==0), 1, functio
n(x) table(x))))==ncol(filtered_readcounts))) 
#{ 
#  print("All genes contain at least 1 zero.") 
#  next() 
#} 

4) Generate the DeSeq2DataSet 

Install DeSeq2 

#BiocManager::install() 
#BiocManager::install("DESeq2") 

Load in DE-Seq2 

library(DESeq2) 

## Loading required package: S4Vectors 

## Loading required package: stats4 
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## Loading required package: BiocGenerics 

## Loading required package: parallel 

##  
## Attaching package: 'BiocGenerics' 

## The following objects are masked from 'package:parallel': 
##  
##     clusterApply, clusterApplyLB, clusterCall, clusterEvalQ, 
##     clusterExport, clusterMap, parApply, parCapply, parLapply, 
##     parLapplyLB, parRapply, parSapply, parSapplyLB 

## The following objects are masked from 'package:stats': 
##  
##     IQR, mad, sd, var, xtabs 

## The following objects are masked from 'package:base': 
##  
##     anyDuplicated, append, as.data.frame, basename, cbind, colnames
, 
##     dirname, do.call, duplicated, eval, evalq, Filter, Find, get, g
rep, 
##     grepl, intersect, is.unsorted, lapply, Map, mapply, match, mget
, 
##     order, paste, pmax, pmax.int, pmin, pmin.int, Position, rank, 
##     rbind, Reduce, rownames, sapply, setdiff, sort, table, tapply, 
##     union, unique, unsplit, which, which.max, which.min 

##  
## Attaching package: 'S4Vectors' 

## The following object is masked from 'package:base': 
##  
##     expand.grid 

## Loading required package: IRanges 

## Loading required package: GenomicRanges 

## Loading required package: GenomeInfoDb 

## Loading required package: SummarizedExperiment 

## Loading required package: Biobase 

## Welcome to Bioconductor 
##  
##     Vignettes contain introductory material; view with 
##     'browseVignettes()'. To cite Bioconductor, see 
##     'citation("Biobase")', and for packages 'citation("pkgname")'. 

## Loading required package: DelayedArray 

## Loading required package: matrixStats 

## Warning: package 'matrixStats' was built under R version 3.6.2 

##  
## Attaching package: 'matrixStats' 
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## The following objects are masked from 'package:Biobase': 
##  
##     anyMissing, rowMedians 

## Loading required package: BiocParallel 

## Warning: multiple methods tables found for 'type' 

##  
## Attaching package: 'DelayedArray' 

## The following objects are masked from 'package:matrixStats': 
##  
##     colMaxs, colMins, colRanges, rowMaxs, rowMins, rowRanges 

## The following object is masked from 'package:BiocGenerics': 
##  
##     type 

## The following objects are masked from 'package:base': 
##  
##     aperm, apply, rowsum 

## Warning: replacing previous import 'BiocGenerics::type' by 'Delayed
Array::type' 
## when loading 'SummarizedExperiment' 

library(DESeq2) 

Convert the data to DESeq format and specify the model We want to test for the effect 
of genotype (combining all KOs as KO) Make sure that control/WT is the first level of a 
factor i.e. the control level 

library("magrittr") 
sample_info$genotype 
# for all KOs combined 
dds <- DESeqDataSetFromMatrix(countData=read.counts, #this is the coun
t results data-frame,  
                              colData=sample_info, #this is the data-f
rame containing information on samples,  
                              design= ~genotype) #specify the design m
odel - here we want to test WT against KO 
 
# for Control vs KOA combined 
sample_info_KOA$genotype 
dds_KOA <- DESeqDataSetFromMatrix(countData=read.counts.KOA, #this is 
the count results data-frame,  
                              colData=sample_info_KOA, #this is the da
ta-frame containing information on samples,  
                              design= ~genotype) #specify the design m
odel - here we want to test WT against KOA 
 
# for Control vs KOB combined 
sample_info_KOB$genotype 
dds_KOB <- DESeqDataSetFromMatrix(countData=read.counts.KOB, #this is 
the count results data-frame,  
                              colData=sample_info_KOB, #this is the da
ta-frame containing information on samples,  
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                              design= ~genotype) #specify the design m
odel - here we want to test WT against KOB 

Check the DeSeq2 dataset has been read in correctly 

colData(dds) %>% head 
assay(dds, "counts") %>% head 
rowData(dds) %>% head 
# test what counts () returns 
counts(dds) %>% str 

Filter (this is very similar to what would have been done above but you can do it the 
deseq2 dataframe instead) 

Remove any genes where the expresison is < 1 

nrow(dds) 
keep <- rowSums(counts(dds)) > 1 
dds <- dds[keep,] 
nrow(dds) 
 
# For Control vs KOA 
nrow(dds_KOA) 
keep <- rowSums(counts(dds_KOA)) > 1 
dds_KOA <- dds_KOA[keep,] 
nrow(dds_KOA) 
 
# For Control vs KOB 
nrow(dds_KOB) 
keep <- rowSums(counts(dds_KOB)) > 1 
dds_KOB <- dds_KOB[keep,] 
nrow(dds_KOB) 

Investigate different library sizes 

colSums(counts(dds)) 
colSums(read.counts) 

5) Normalise the data 

DESeq2’s default method to normalize read counts to account for differences in 
sequencing depths is implemented in estimateSizeFactors() 

dds <- estimateSizeFactors(dds) 
sizeFactors(dds) 

If you check colData () again , you see that this now contains the sizeFactors 

colData(dds) 

Counts() allows you to immediately retrieve the _normalized_read counts 

norm <- counts(dds, normalized=TRUE) 

Control vs KOA DESeq2’s default method to normalize read counts to account for 
differences in sequencing depths is implemented in estimateSizeFactors() 

dds_KOA <- estimateSizeFactors(dds_KOA) 
sizeFactors(dds_KOA) 
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# if you check colData () again , you see that this now contains the s
izeFactors 
colData(dds_KOA) 
 
# counts () allows you to immediately retrieve the _normalized_read co
unts 
norm_KOA <- counts(dds_KOA, normalized=TRUE) 

Control vs KOB DESeq2’s default method to normalize read counts to account for 
differences in sequencing depths is implemented in estimateSizeFactors() 

dds_KOB <- estimateSizeFactors(dds_KOB) 
sizeFactors(dds_KOB) 
 
# if you check colData () again , you see that this now contains the s
izeFactors 
colData(dds_KOB) 
 
# counts () allows you to immediately retrieve the _normalized_read co
unts 
norm_KOB <- counts(dds_KOB, normalized=TRUE) 

6) Transformation 

Downstream analyses (including clustering) work much better if the read counts are 
transformed to the log scale following normalization. 

Transform size-factor normalized read counts to log2 scale using a 
pseudocount of 1 

log.norm.counts <- log2(norm + 1) 

can also use this command 

ntd <- normTransform(dds) 

Control vs KOA 

# Transform size - factor normalized read counts to log2 scale using a 
pseudocount of 1 
log.norm.counts.KOA <- log2(norm_KOA + 1) 

Control vs KOB 

# Transform size - factor normalized read counts to log2 scale using a 
pseudocount of 1 
log.norm.counts.KOB <- log2(norm_KOB + 1) 

Plotting the transformation 

par(mfrow =c(3 , 1)) # to plot the following two images underneath eac
h other 
 
# first, plot the normalised data: non-transformed 
boxplot(norm, notch = TRUE , 
        main = "Untransformed read counts ", ylab = "read counts") 
# second, plot the transformed normalised data 
boxplot(log.norm.counts, notch = TRUE , 
        main = "Log2 - transformed read counts ", 
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        ylab = " log2 (read counts)") 
# this should give exactly the same as log.norm.counts plot 
boxplot(assay(ntd), notch = TRUE , 
        main = "Log2 - transformed read counts ", 
        ylab = " log2 (read counts)") 

 

7) Visualise the normalised data 

Plot the counts in a pairwise manner 

plot(log.norm.counts[ ,1:2] , cex =.1 , main = " Normalized log2 ( rea
d counts )") 

 

Check for heteroscedascity Many statistical tests and analyses assume that 
data is homoskedastic, i.e. that all variables have similar variance. However, 
data with large differences among the sizes of the individual observations often 
shows heteroskedastic behavior. One way to visually check for 
heteroskedasticity is to plot the mean vs. the standard deviation 

# BiocManager::install("vsn") 
library("vsn") 
library(ggplot2 ) 

## Warning: package 'ggplot2' was built under R version 3.6.2 

msd_plot <- meanSdPlot(log.norm.counts, 
                       ranks =FALSE , # show the data on the original 
scale 
                       plot = FALSE ) 
msd_plot$gg + 
  ggtitle ("Sequencing depth normalized log2 (read counts )") + 
  ylab ("Standard Deviation ") 

 

msd_plot <- meanSdPlot(assay(ntd), 
                       ranks =FALSE , # show the data on the original 
scale 
                       plot = FALSE ) 
 
msd_plot$gg + 
  ggtitle ("Sequencing depth normalized log2 (read counts )") + 
  ylab ("Standard Deviation ") 

 

meanSdPlot(assay(ntd)) 

The y-axis shows the variance of the read counts across all samples. Some 
variability is, in fact, expected, but a clear hump on the left-hand side indicates 
that for read counts < 32 (2^5 = 32), the variance is higher than for those with 
greater read counts. That means that there is a dependence of the variance on 
the mean, which violates the assumption of homoskedasticity. 

8) Reduce the heteroskedasticity 
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Shrink the variance of low read counts For RNA-seq counts, however, the expected 
variance grows with the mean. A simple and often used strategy to avoid this is to take 
the logarithm of the normalized count values plus a pseudocount of 1; however, 
depending on the choice of pseudocount, now the genes with the very lowest counts 
will contribute a great deal of noise to the resulting plot, because taking the logarithm 
of small counts actually inflates their variance. As a solution, DESeq2 offers two 
transformations for count data that stabilize the variance across the mean: the 
variance stabilizing transformation (VST) for negative binomial data with a dispersion-
mean trend (Anders and Huber 2010), implemented in the vst function, and the 
regularized-logarithm transformation or rlog (Love, Huber, and Anders 2014). For 
genes with high counts, both the VST and the rlog will give similar result to the 
ordinary log2 transformation of normalized counts. For genes with lower counts, 
however, the values are shrunken towards a middle value. The VST or rlog-
transformed data then become approximately homoskedastic (more flat trend in the 
meanSdPlot), and can be used directly for computing distances between samples, 
making PCA plots, or as input to downstream methods which perform best with 
homoskedastic data. 

R log transformation DESeq2’s rlog() function returns values that are both 
normalized for sequencing depth and transformed to the log2 scale where the 
values are adjusted to it the experiment-wide trend of the variance-mean 
relationship blind = FALSE means that differences between cell lines and 
treatment (the variables in the design) will not contribute to the expected 
variance-mean trend of the experiment. The experimental design is not used 
directly in the transformation, only in estimating the global amount of variability 
in the counts. The rlog() function’s blind parameter should be set to FALSE if 
the different conditions lead to strong differences in a large proportion of the 
genes. If rlog() is applied without incorporating the knowledge of the 
experimental design (blind = TRUE, the default setting), the dispersion will be 
greatly overestimated in such cases. 

rld <- rlogTransformation(dds, blind = TRUE) 
rldMatrix <- data.matrix(assay(rld)) 
head(assay(rld), 3) 
 
## Control vs KOA 
rld_KOA <- rlogTransformation(dds_KOA, blind = TRUE) 
rldMatrixKOA <- data.matrix(assay(rld_KOA)) 
 
head(assay(rld_KOA), 3) 
 
## Control vs KOB 
rld_KOB <- rlogTransformation(dds_KOB, blind = TRUE) 
rldMatrixKOB <- data.matrix(assay(rld_KOB)) 
 
head(assay(rld_KOB), 3) 

Plotting the rlog transformation 

msd_rlog_plot <- meanSdPlot(assay(rld), 
                            ranks =FALSE, # show the data on the origi
nal scale 
                            plot = FALSE ) 
msd_rlog_plot$gg + 
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  ggtitle ("rlog - transformed read counts") + 
  ylab (" standard deviation ") 

 

Export the rlog counts 

#write.table(rldMatrixKOB, "../Control vs KOB/RLogCounts_wtvskob.txt", 
row.names=TRUE, col.names=TRUE, sep="\t", quote=FALSE) 

The variance stabilizing transformation 

# Control vs KO 
vsd <- vst(dds, blind = TRUE) 
head(assay(vsd), 3) 
colData(vsd) 
vsd.norm.counts <- assay(vsd) 
 
vsdMatrix <- data.matrix(assay(vsd)) 
 
# Control vs KOA 
vsd_KOA <- vst(dds_KOA, blind = TRUE) 
head(assay(vsd_KOA), 3) 
colData(vsd_KOA) 
vsd.norm.counts.KOA <- assay(vsd_KOA) 
 
vsdMatrixKOA <- data.matrix(assay(vsd_KOA)) 
 
# Control vs KOB 
vsd_KOB <- vst(dds_KOB, blind = TRUE) 
head(assay(vsd_KOB), 3) 
colData(vsd_KOB) 
vsd.norm.counts.KOB <- assay(vsd_KOB) 
 
vsdMatrixKOB <- data.matrix(assay(vsd_KOB)) 
 
 
# Plotting the vsd normalisation 
msd_vsd_plot <- meanSdPlot(assay(vsd), 
                           ranks =FALSE, # show the data on the origin
al scale 
                           plot = FALSE ) 
msd_vsd_plot$gg + 
  ggtitle ("vsd - transformed read counts ") + 
  ylab (" standard deviation ") 

 

meanSdPlot(assay(vsd)) 

 

#write.table(vsdMatrix_KOB, "../Control vs KOB/vsdCounts_wtvskob.txt", 
row.names=TRUE, col.names=TRUE, sep="\t", quote=FALSE) 

9) QC plots to check for normalisation and transformation 

Output dispersion plot Need to have estimated the dispersion distance to plot this 
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options(scipen=999) 
dds <- estimateDispersions(dds) 

## gene-wise dispersion estimates 

## mean-dispersion relationship 

## final dispersion estimates 

dds_KOA <- estimateDispersions(dds_KOA) 

## gene-wise dispersion estimates 

## mean-dispersion relationship 

## final dispersion estimates 

dds_KOB <- estimateDispersions(dds_KOB) 

## gene-wise dispersion estimates 

## mean-dispersion relationship 

## final dispersion estimates 

par(mfrow =c(1 , 1)) # to plot the following two images underneath eac
h other 
options(scipen=999) 
plotDispEsts(dds, genecol="black", fitcol="red", finalcol="dodgerblue"
, legend=TRUE, log="xy", cex.axis=0.8, cex=0.3, cex.main=0.8, xlab="Me
an of normalised counts", ylab="Dispersion") 

 

options(scipen=0) 

Histograms to check normalisation methods 

hist(norm, breaks=100, xlab="Counts", col="grey", main="Normalised cou
nts") 

 

hist(norm, breaks=10000, xlab="Counts", xlim=c(0,2500), col="grey", ma
in="Normalised counts\n(zoomed range 0:2500)") 

 

hist(log2(norm + 1), breaks=10, xlab="Counts", col="grey", main=bquote
(~Log[2]~normalised~counts)) 

 

hist(rldMatrix, xlab="Counts", breaks=50, col="grey", main="Regularise
d log counts") 

 

hist(vsdMatrix, xlab="Counts", col="grey", main="Variance Stablised co
unts") 
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Boxplots to check normalisation 

#par(mar=c(3,3,3,3), mfrow=c(5,1), cex=1, cex.axis=0.8) 
boxplot(norm, main="Normalised counts", xlab="", ylab="Normalised coun
ts", names=paste(sample_info$sample), col=col.sample, las=2) 

 

boxplot(log2(norm+1), main="Log2 + 1 Normalised counts", xlab="", ylab
="Log2 +1 Normalised counts", names=paste(sample_info$sample), col=col
.sample, las=2) 

 

boxplot(rldMatrix, main="Regularised log counts", xlab="", ylab="Regul
arised log counts", names=paste(sample_info$sample), col=col.sample, l
as=2) 

 

boxplot(rldMatrix, main="Regularised log counts\n(outlier genes remove
d)", xlab="", ylab="Regularised log counts", names=paste(sample_info$s
ample), col=col.sample, las=2, outline=FALSE) 

 

boxplot(vsdMatrix, main="Variance Stablised counts", xlab="", ylab="Va
riance Stablised counts", names=paste(sample_info$sample), col=col.sam
ple, las=2) 

 

boxplot(vsdMatrix, main="Variance Stablised counts\n(outlier genes rem
oved)", xlab="", ylab="Variance Stablised counts", names=paste(sample_
info$sample), col=col.sample, las=2, outline=FALSE) 

 

Plotting the normalisation methods on scatter 

library("dplyr") 

## Warning: package 'dplyr' was built under R version 3.6.2 

##  
## Attaching package: 'dplyr' 

## The following object is masked from 'package:matrixStats': 
##  
##     count 

## The following object is masked from 'package:Biobase': 
##  
##     combine 

## The following objects are masked from 'package:GenomicRanges': 
##  
##     intersect, setdiff, union 
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## The following object is masked from 'package:GenomeInfoDb': 
##  
##     intersect 

## The following objects are masked from 'package:IRanges': 
##  
##     collapse, desc, intersect, setdiff, slice, union 

## The following objects are masked from 'package:S4Vectors': 
##  
##     first, intersect, rename, setdiff, setequal, union 

## The following objects are masked from 'package:BiocGenerics': 
##  
##     combine, intersect, setdiff, union 

## The following objects are masked from 'package:stats': 
##  
##     filter, lag 

## The following objects are masked from 'package:base': 
##  
##     intersect, setdiff, setequal, union 

library("ggplot2") 
 
norm_methods  <- bind_rows( 
  as_tibble(log.norm.counts) %>% 
    mutate(transformation = "log2(x + 1)"), 
  as_data_frame(assay(vsd)[, 1:2]) %>% mutate(transformation = "vst"), 
  as_data_frame(assay(rld)[, 1:2]) %>% mutate(transformation = "rlog")
) 

## Warning: `as_data_frame()` was deprecated in tibble 2.0.0. 
## Please use `as_tibble()` instead. 
## The signature and semantics have changed, see `?as_tibble`. 

colnames(norm_methods)[1:2] <- c("x", "y")   
ggplot(norm_methods, aes(x = x, y = y)) + geom_hex(bins = 80) + 
  coord_fixed() + facet_grid( . ~ transformation)   

 

10) Hierarchal Clustering 

Calculating distance between samples Using the R log normalisation 

Default method for calculating these distances is Euclidean 

sampleDists_rld <- dist(t(assay(rld))) 
sampleDists_rld 
 
## Control vs KOA 
sampleDists_rld_KOA <- dist(t(assay(rld_KOA))) 
sampleDists_rld_KOA 
 
## Control vs KOB  
sampleDists_rld_KOB <- dist(t(assay(rld_KOB))) 
sampleDists_rld_KOB 
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#Save the distances between samples to table 
sampleDistMatrix_rld <- as.matrix(sampleDists_rld) 
sampleDistMatrix_rld_KOA <- as.matrix(sampleDists_rld_KOA) 
sampleDistMatrix_rld_KOB <- as.matrix(sampleDists_rld_KOB) 
 
#write.table(as.matrix(sampleDists_rld_KOB), "../Control vs KOB/Sample
Distance_rlog_wtvskob.txt", row.names=T, col.names=T, sep="\t", quote=
F) 
 
## Using the vsd normalisation 
sampleDists_vsd <- dist(t(assay(vsd))) 
sampleDists_vsd 

Heat map to visualise distance between samples uses the normalised count matrix 

library("pheatmap") 
library("RColorBrewer") 
 
# call the row names and the column name 
rownames(sampleDistMatrix_rld) <- paste(rld$sample) 
colnames(sampleDistMatrix_rld) <- paste(rld$sample) 
 
# change the cluster method to ward.D2 
hc <- hclust(sampleDists_rld, method="ward.D2") 
 
# create colours 
colors <- colorRampPalette(rev(brewer.pal(9, "Blues")))(255) 
mycols <- brewer.pal(3, "Blues")[1:length(unique(sample_info$condition
))] 
 
# change the order to make WT be the first sample 
callback = function(hc, mat){ 
  sv = svd(t(mat))$v[,1] 
  dend = reorder(as.dendrogram(hc), wts = sv) 
  as.hclust(dend) 
} 
 
# plot heat map 
pheatmap(sampleDistMatrix_rld, 
         clustering_distance_rows = sampleDists_rld, 
         clustering_distance_cols = sampleDists_rld, 
         col = colors, 
        clustering_callback = callback) 

 

Heat map using gplots 

library(gplots) 

##  
## Attaching package: 'gplots' 

## The following object is masked from 'package:IRanges': 
##  
##     space 
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## The following object is masked from 'package:S4Vectors': 
##  
##     space 

## The following object is masked from 'package:stats': 
##  
##     lowess 

heatmap.2(as.matrix(sampleDists_rld), key=T, trace="none", 
          col=colors, 
          #Rowv=F, Colv=F, 
          Rowv=as.dendrogram(hc), 
          cexRow = 1.5, cexCol=1.5, 
          symm=TRUE, 
         ColSideColors=mycols[sample_info$condition], RowSideColors=my
cols[sample_info$condition], 
          margin=c(5, 5), main="Sample Distance Matrix",  key.title="S
ample similarity", key.xlab="Euclidean distance", key.ylab="") 

 

Plot distibution and density with violin plots 

violinMatrix <- reshape2::melt(rldMatrix, id.vars=NULL) 
 
colnames(violinMatrix) <- c("Gene","Sample","Expression") 
 
library(ggplot2) 
ggplot(violinMatrix, aes(x=Sample, y=Expression)) + geom_violin() + th
eme(axis.text.x = element_text(angle=45, hjust=1), axis.line= element_
line(colour = "black"),panel.grid.major = element_blank(), panel.grid.
minor = element_blank(), 
                                                                          
panel.background = element_blank()) 

 

Dendogram cor () calculates the correlation between columns of a matrix 

Calculate Pearson’s correlation distance 

distance.rld <- as.dist(1 - cor(assay(rld), method = "pearson" )) 
distance.rld.KOA <- as.dist(1 - cor(assay(rld_KOA), method = "pearson" 
)) 
distance.rld.KOB <- as.dist(1 - cor(assay(rld_KOB), method = "pearson" 
)) 

plot () can directly interpret the output of hclust() 

par(cex=1.0, cex.axis=0.8, cex.main=0.8) 
plot(hclust(distance.rld), 
     labels = colnames(rld), 
     main = "rlog transformed Read Counts Distance: Pearson Correlatio
n") 

 

Circular dendrogram and regular dendrogram 
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distmatrix <- dist(t(rldMatrix), method="euclidean") 
hclustObject <- hclust(distmatrix, method="ward.D2") 
dend <- as.dendrogram(hclustObject) 
plot(dend, ylab="Height", main="rlog transformed Read Counts Distance: 
Euclidean Distance") 

 

Circular dendrogram 

library(circlize) 

## ======================================== 
## circlize version 0.4.8 
## CRAN page: https://cran.r-project.org/package=circlize 
## Github page: https://github.com/jokergoo/circlize 
## Documentation: http://jokergoo.github.io/circlize_book/book/ 
##  
## If you use it in published research, please cite: 
## Gu, Z. circlize implements and enhances circular visualization  
##   in R. Bioinformatics 2014. 
## ======================================== 

library(dendextend) 

##  
## --------------------- 
## Welcome to dendextend version 1.13.4 
## Type citation('dendextend') for how to cite the package. 
##  
## Type browseVignettes(package = 'dendextend') for the package vignet
te. 
## The github page is: https://github.com/talgalili/dendextend/ 
##  
## Suggestions and bug-reports can be submitted at: https://github.com
/talgalili/dendextend/issues 
## Or contact: <tal.galili@gmail.com> 
##  
##  To suppress this message use:  suppressPackageStartupMessages(libr
ary(dendextend)) 
## --------------------- 

##  
## Attaching package: 'dendextend' 

## The following object is masked from 'package:stats': 
##  
##     cutree 

#Get the heights for each branch 
heights <- round(get_branches_heights(dend, sort=FALSE), 1) 
 
#Get max height 
maxHeight= max(heights) 
 
#Set label and dendrogram height for cicular dendrogram 
labelHeight=0.1 
dendHeight=0.8 
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labels(dend) <- gsub("\\.[0-9]$", "", labels(dend)) 
 
#Draw the circular dendrogram 
circlize_dendrogram(dend, facing="outside", labels=TRUE, labels_track_
height=labelHeight, dend_track_height=dendHeight, cex=0.6) 
 
#Create tick co-ordinates and values for the new axis 
#We have to enure that we don't overlap the label plot region (height 
specified by labelHeight), nor the central region of the plot (1-(dend
Height+labelHeight)) 
ticks <- seq(from=(1-(dendHeight+labelHeight)), to=(1-labelHeight), le
ngth.out=5) 
values <- round(rev(seq(from=0, to=maxHeight, length.out=5)), 1) 
 
#Add the new axis 
library(plotrix) 

##  
## Attaching package: 'plotrix' 

## The following object is masked from 'package:gplots': 
##  
##     plotCI 

ablineclip(h=0, v=ticks, col="black", x1=1-(dendHeight+labelHeight), x
2=1-labelHeight, y1=0, y2=0.04, lwd=1.5) 
text(ticks, 0+0.08, values, cex=0.8) 
text((1-labelHeight)-(((1-labelHeight)-(1-(dendHeight+labelHeight)))/2
), 0+0.14, "Height") 

 

Scatterplots Perform pairwise scatter plots on the samples 

#library(car) 
#scatterplotMatrix(rldMatrix[,c("WT1","WT2","WT3","WT4")], diagonal="b
oxplot", pch=".") 
#scatterplotMatrix(rldMatrix[,c("KOA1","KOA2","KOA3","KOA4")], diagona
l="boxplot", pch=".") 
#scatterplotMatrix(rldMatrix[,c("WT1","WT2","WT3","WT4","WT4","KOA1","
KOA2","KOA3","KOA4","KOB1","KOB2", "KOB3","KOB4")], diagonal="boxplot"
, pch=".") 

11) PCA plots 

PCA analysis using R function 

project.pca <- prcomp(t(assay(rld))) 
 
plot(project.pca$x[,1], project.pca$x[,2], 
     col = col.sample, 
     xlab="PC1", 
     ylab="PC2", 
     main = "PCA of seq.depth normalized \n and rlog - transformed rea
d counts") 
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rownames(rldMatrix) <- rownames(dds) 
 
# Control vs KOA 
project.pca.KOA <- prcomp(t(assay(rld_KOA))) 
# Control vs KOB 
project.pca.KOB <- prcomp(t(assay(rld_KOB))) 

Accessing the PCA results 

library(factoextra) 

## Warning: package 'factoextra' was built under R version 3.6.2 

## Welcome! Want to learn more? See two factoextra-related books at ht
tps://goo.gl/ve3WBa 

# Eigenvalues 
eig.val <- get_eigenvalue(project.pca) 
eig.val 
 
#results for variable 
res.var <- get_pca_var(project.pca) 
head(res.var$contrib, n=3)      # Contributions to the PCs 
head(res.var$coord, n=3) 
 
# results for samples 
res.ind <- get_pca_ind(project.pca) 
head(res.ind$coord, n=3)          # Coordinates 
head(res.ind$contrib, n=3)       # Contributions to the PCs 
head(res.ind$cos2, n=3)         # Quality of representation  
 
# results of PCs for samples 
project.pca$x 
sample_info$projectpca2 <- project.pca$x[,"PC1"] 
sample_info$projectpca3 <- project.pca$x[,"PC2"] 

Determine the proportion of variance of each component Proportion of variance 
equals (PC stdev^2) / (sum all PCs stdev^2) 

project.pca.proportionvariances <- ((project.pca$sdev^2) / (sum(projec
t.pca$sdev^2)))*100 
# Control vs KOA 
project.pca.proportionvariances.KOA <- ((project.pca.KOA$sdev^2) / (su
m(project.pca.KOA$sdev^2)))*100 
 
#Control vs KOB 
project.pca.proportionvariances.KOB <- ((project.pca.KOB$sdev^2) / (su
m(project.pca.KOB$sdev^2)))*100 

Scree plot of PCA 

barplot(project.pca.proportionvariances, cex.names=1, xlab=paste("Prin
cipal component (PC), 1-", length(project.pca$sdev)), ylab="Proportion 
of variation (%)", main="Scree plot", ylim=c(0,100)) 

 

Scatter Plot of PCA 1-4 
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par(xpd=TRUE) 
pairs(project.pca$x[,1:4], col=col.sample, main="Principal components 
analysis bi-plot\nPCs 1-4", pch=16, oma=c(2,2,2,13)) 
legend("bottomright", cex=0.75, fill = unique(col.sample), legend = c( 
levels(sample_info$sample))) 

 

Scatter Plot of PCA 5-8 

par(xpd=TRUE) 
pairs(project.pca$x[,5:8], col=col.sample, main="Principal components 
analysis bi-plot\nPCs 6-10", pch=16, oma=c(2,2,2,13)) 
legend("bottomright", cex=0.75, fill = unique(col.sample), legend = c( 
levels(sample_info$sample))) 

 

Scatter Plots 

par(mar=c(4,4,4,4), mfrow=c(2,3), cex=1.0, cex.main=0.5, cex.axis=0.8) 
 
#Plots scatter plot for PC 1 and 2 
plot(project.pca$x, type="n", #main="Principal components analysis bi-
plot",  
     xlab=paste("PC1, ", round(project.pca.proportionvariances[1], 2), 
"%"), ylab=paste("PC2, ", round(project.pca.proportionvariances[2], 2)
, "%")) 
points(project.pca$x, col=col.sample, pch= c(15, 16, 17, 18), cex=1.5) 
 
 
#Plots scatter plot for PC 1 and 3 
plot(project.pca$x[,1], project.pca$x[,3], type="n", main="Principal c
omponents analysis bi-plot", xlab=paste("PC1, ", round(project.pca.pro
portionvariances[1], 2), "%"), ylab=paste("PC3, ", round(project.pca.p
roportionvariances[3], 2), "%")) 
points(project.pca$x[,1], project.pca$x[,3], col=col.sample, pch= c(15
, 16, 17, 18), cex=1) 
 
#Plots scatter plot for PC 2 and 3 
plot(project.pca$x[,2], project.pca$x[,3], type="n",main="Principal co
mponents analysis bi-plot",  xlab=paste("PC2, ", round(project.pca.pro
portionvariances[2], 2), "%"), ylab=paste("PC3, ", round(project.pca.p
roportionvariances[3], 2), "%")) 
points(project.pca$x[,2], project.pca$x[,3], col=col.sample, pch= c(15
, 16, 17, 18), cex=1) 
 
#Plots scatter plot for PC 2 and 4 
plot(project.pca$x[,2], project.pca$x[,4], type="n", main="Principal c
omponents analysis bi-plot", xlab=paste("PC2, ", round(project.pca.pro
portionvariances[2], 2), "%"), ylab=paste("PC4, ", round(project.pca.p
roportionvariances[4], 2), "%")) 
points(project.pca$x[,2], project.pca$x[,4], col=col.sample, pch= c(15
, 16, 17, 18), cex=1) 
 
#Plots scatter plot for PC 3 and 4 
plot(project.pca$x[,3], project.pca$x[,4], type="n",main="Principal co
mponents analysis bi-plot", xlab=paste("PC3, ", round(project.pca.prop
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ortionvariances[3], 2), "%"), ylab=paste("PC4, ", round(project.pca.pr
oportionvariances[4], 2), "%")) 
points(project.pca$x[,3], project.pca$x[,4], col=col.sample, pch= c(15
, 16, 17, 18), cex=1) 
 
par(xpd=TRUE) 
plot.new() 
legend("bottomright", bty="n", cex=0.8, title="Condition", legend=c("C
ontrol 1","Control 2","Control 3","Control 4","KOA1","KOA2","KOA3","KO
A4","KOB1","KOB2","KOB3", "KOB4"), col=c(col.sample), pch=c(15, 16, 17
, 18)) 

 

3D scatter plot of PCAs 

library(scatterplot3d) 
par(mar=c(4,4,4,4), mfrow=c(2,2), cex=1.0, cex.main=0.8, cex.axis=0.8) 
 
scatterplot3d(project.pca$x[,1:3], angle=-40, main="", color=col.genot
ype, pch=17, xlab=paste("PC1, ", round(project.pca.proportionvariances
[1], 2), "%"), ylab=paste("PC2, ", round(project.pca.proportionvarianc
es[2], 2), "%"), zlab=paste("PC3, ", round(project.pca.proportionvaria
nces[3], 2), "%"), grid=FALSE, box=FALSE) 
source('http://www.sthda.com/sthda/RDoc/functions/addgrids3d.r') 
addgrids3d(project.pca$x[,2:4], grid = c("xy", "xz", "yz")) 
 
par(xpd=TRUE) 
plot.new() 
legend("left", bty="n", cex=0.8, title="Condition", c("Control 1","Con
trol 2","Control 3","Control 4","KOA1","KOA2","KOA3","KOA4","KOB1","KO
B2","KOB3", "KOB4"), fill=c(col.genotype)) 
 
scatterplot3d(project.pca$x[,1:3], angle=40, main="", color=col.condit
ion, pch=17, xlab=paste("PC1, ", round(project.pca.proportionvariances
[1], 2), "%"), ylab=paste("PC2, ", round(project.pca.proportionvarianc
es[2], 2), "%"), zlab=paste("PC3, ", round(project.pca.proportionvaria
nces[3], 2), "%"), grid=FALSE, box=FALSE) 
source('http://www.sthda.com/sthda/RDoc/functions/addgrids3d.r') 
addgrids3d(project.pca$x[,2:4], grid = c("xy", "xz", "yz")) 
 
par(xpd=TRUE) 
plot.new() 
legend("left", bty="n", cex=0.8, title="Condition", c("Control 1","Con
trol 2","Control 3","Control 4","KOA1","KOA2","KOA3","KOA4","KOB1","KO
B2","KOB3", "KOB4"), fill=c(col.condition)) 

 

Write out eigenvector 1 eigenvalues as PC1 seperates the control from KO the 
best 

library(plyr); library(dplyr) 

## -------------------------------------------------------------------
----------- 
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## You have loaded plyr after dplyr - this is likely to cause problems
. 
## If you need functions from both plyr and dplyr, please load plyr fi
rst, then dplyr: 
## library(plyr); library(dplyr) 

## -------------------------------------------------------------------
----------- 

##  
## Attaching package: 'plyr' 

## The following objects are masked from 'package:dplyr': 
##  
##     arrange, count, desc, failwith, id, mutate, rename, summarise, 
##     summarize 

## The following object is masked from 'package:matrixStats': 
##  
##     count 

## The following object is masked from 'package:IRanges': 
##  
##     desc 

## The following object is masked from 'package:S4Vectors': 
##  
##     rename 

project.pca <- prcomp(t(rldMatrix)) 
summary(project.pca) 
project.pca.proportionvariances <- ((project.pca$sdev^2) / (sum(projec
t.pca$sdev^2)))*100 
 
# get the eigenvalues for PC1 for each gene (Control vs KO) 
 
PC1_values <- data.frame(abs(project.pca$rotation[,c("PC1")])) 
 
PC1_values<- data.frame(rownames(PC1_values), PC1_values) 
head(PC1_values, n=3) 
 
# Change the column names 
names(PC1_values) <- c("Geneid","PC1") 
 
PC1_values <- join(PC1_values, gtf, by="Geneid") 
row.names(PC1_values) <- PC1_values$Geneid 
head(PC1_values, n=3) 
 
# Control vs KOA 
PC1_values_KOA <- data.frame(abs(project.pca.KOA$rotation[,c("PC1")])) 
 
PC1_values_KOA <- data.frame(rownames(PC1_values_KOA), PC1_values_KOA) 
head(PC1_values, n=3) 
 
# Change the column names 
names(PC1_values_KOA) <- c("Geneid","PC1") 
 
PC1_values_KOA <- join(PC1_values_KOA, gtf, by="Geneid") 
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row.names(PC1_values_KOA) <- PC1_values_KOA$Geneid 
head(PC1_values, n=3) 
 
#Control vs KOB 
PC1_values_KOB <- data.frame(abs(project.pca.KOB$rotation[,c("PC1")])) 
 
PC1_values_KOB <- data.frame(rownames(PC1_values_KOB), PC1_values_KOB) 
head(PC1_values, n=3) 
 
# Change the column names 
names(PC1_values_KOB) <- c("Geneid","PC1") 
 
PC1_values_KOB <- join(PC1_values_KOB, gtf, by="Geneid") 
row.names(PC1_values_KOB) <- PC1_values_KOB$Geneid 
head(PC1_values, n=3) 
 
#write.table(PC1_values_KOA, "~/Documents/EPO Project/CRISPR/Whole gen
e knock-out/Confirming EPO KO/RNA Sequencing/DeSeq2/Control vs KOA/PC1
.Eigenvalues.wtvskoa.csv", col.names=TRUE, row.names=FALSE, quote=FALS
E, sep=",") 
 
# If pulling our two eigenvalues 
# wObject <- data.frame(abs(project.pca.KOB$rotation[,c("PC1","PC2")])
) 
 
# to calculate the mean if pulling out two eigenvalues 
#PC1_PC2_values <- data.frame(abs(project.pca$rotation[,c("PC1","PC2")
])) 
#PC1_PC2_values <- data.frame(rownames(PC1_PC2_values), PC1_PC2_values
, apply(PC1_PC2_values, 1, mean)) 
#PC1_PC2_values$mean <- (PC1_PC2_values$PC1+PC1_PC2_values$PC2)/2 
#names(PC1_PC2_values) <- c("GeneID","PC1", "PC2", "Mean", "mean") 
 
#PC1_PC2_values 
#write.table(PC1_PC2_values, "PC1.PC2.Eigenvalues.csv", col.names=TRUE
, row.names=FALSE, quote=FALSE, sep=",") 

Order the results 

# Default of order is ascending  
# We want to order according to the highest eigenvalue so we want desc
ending 
sorted_PC1_values <- PC1_values[order(-PC1_values$PC1), ] 
head(sorted_PC1_values) 
 
sorted_PC1_values_KOA <- PC1_values_KOA[order(-PC1_values_KOA$PC1), ] 
sorted_PC1_values_KOB <- PC1_values_KOB[order(-PC1_values_KOB$PC1), ] 

Take top 500 genes # wObject <- 
data.frame(sort(abs(project.pca$rotation[,c(“PC1”,“PC2”)]), decreasing=TRUE)[1:500]) 

top500_PCA <- data.frame(sort(abs(project.pca$rotation[,c("PC1")]), de
creasing=TRUE)[1:500]) 
top500_PCA_KOA <- PC1_values_KOA[order(-PC1_values_KOA$PC1),][1:500,] 
top500_PCA_KOB <- PC1_values_KOB[order(-PC1_values_KOB$PC1),][1:500,] 

Take Top 20 genes sorted by PC value 
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top20_PCA <- PC1_values[order(-PC1_values$PC1),][1:20,] 

12) Differential Gene Expression 

DeSeq2 uses a negative binomial model to fit the observed read counts to arrive at the 
estimate for the difference. We need to estimate two parameters from the read 
counts: the mean as well as the dispersion. The null hypothesis is that there is no 
systematic difference between the average read count values of the different 
conditions for a given gene. The p-values are calculated and both tests are some 
variation of the well-known t-test (How dissimilar are the means of two populations?) 
or ANOVAs (How well does a reduced model capture the data when compared to the 
full model with all coefficients?). Once you’ve obtained a list of p-values for all the 
genes of your data set, it is important to realize that you just performed the same type 
of test for thousands and thousands of genes. That means, that even if you decide to 
focus on genes with a p-value smaller than 0.05, if you’ve looked at 10,000 genes your 
nal list may contain 0:05/10; 000 = 500 false positive hits. To guard yourself against 
this, all the tools will over some sort of correction for the multiple hypotheses you 
tested, e.g. in the form of the Benjamini-Hochberg formula. You should defnitely rely 
on the adjusted p-values rather than the original ones to zoom into possible 
candidates for downstream analyses and follow-up studies. 

Running DEG analysis Here we want to look at the effect of the KO’s versus the 
wildtype samples, with the wildtype values used as the denominator for the fold 
change calculation. 

DESeq2 uses the levels of the condition to determine the order of the 
comparison so it important to set WT as the first-level factor 

str(colData(dds)$genotype) 
colData(dds)$condition <- relevel(colData(dds)$genotype, "WT") 
str(colData(dds)$condition) 
 
str(colData(dds_KOA)$genotype) 
str(colData(dds_KOA)$condition) 
colData(dds_KOA)$condition <- relevel(colData(dds_KOA)$genotype, "WT") 
str(colData(dds_KOA)$condition) 
 
str(colData(dds_KOB)$genotype) 
str(colData(dds_KOB)$condition) 
colData(dds_KOB)$condition <- relevel(colData(dds_KOB)$genotype, "WT") 
str(colData(dds_KOB)$condition) 

Run DeSeq2 The log2 fold change and Wald test p value will be for the last variable in 
the design formula (in our case just genotype), and if this is a factor, the comparison 
will be the last level of this variable (KO) over the reference level (control) The order of 
the variables of the design do not matter so long as the user specifies the comparison 
to build a results table for, using the name or contrast arguments of results. 

The Wald method is the default 

dds <- DESeq(dds, test="Wald") 

## using pre-existing size factors 

## estimating dispersions 
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## found already estimated dispersions, replacing these 

## gene-wise dispersion estimates 

## mean-dispersion relationship 

## final dispersion estimates 

## fitting model and testing 

## -- replacing outliers and refitting for 18 genes 
## -- DESeq argument 'minReplicatesForReplace' = 7  
## -- original counts are preserved in counts(dds) 

## estimating dispersions 

## fitting model and testing 

dds_KOA <- DESeq(dds_KOA, test="Wald") 

## using pre-existing size factors 

## estimating dispersions 

## found already estimated dispersions, replacing these 

## gene-wise dispersion estimates 

## mean-dispersion relationship 

## final dispersion estimates 

## fitting model and testing 

dds_KOB <- DESeq(dds_KOB, test="Wald") 

## using pre-existing size factors 

## estimating dispersions 

## found already estimated dispersions, replacing these 

## gene-wise dispersion estimates 

## mean-dispersion relationship 

## final dispersion estimates 

## fitting model and testing 

Log fold change shrinkage for visualisation and ranking Shrinkage of effect size (LFC 
estimates) is useful for visualization and ranking of genes. 

resultsNames(dds) 
resLFC <- lfcShrink(dds, coef="genotype_KO_vs_WT", type="apeglm") 

## using 'apeglm' for LFC shrinkage. If used in published research, pl
ease cite: 
##     Zhu, A., Ibrahim, J.G., Love, M.I. (2018) Heavy-tailed prior di
stributions for 
##     sequence count data: removing the noise and preserving large di
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fferences. 
##     Bioinformatics. https://doi.org/10.1093/bioinformatics/bty895 

head(resLFC, n=3) 

13) Extract the results 

By default the argument alpha is set to 0.1. If the adjusted p value cutoff will be a 
value other than 0.1, alpha should be set to that value: results function automatically 
performs independent filtering based on the mean of normalized counts for each 
gene, optimizing the number of genes which will have an adjusted p value below a 
given FDR cutoff, alpha. 

Run the differential tests on the counts matrix and use FDR correction NB - use 
‘independentFiltering=FALSE’ and ‘cooksCutoff=FALSE’ to switch off 
conversion of values to ‘NA’ if failing FDR conversion or Cook’s Distance, 
respectively 

unique(sample_info$genotype) 
library(DESeq2) 
options(scipen=999) 
 
## Simple Extraction of the results  
res <- results(dds) 
summary(res) 
 
## Modifying extraction for alpha = 0.05 
ControlvsKO <- results(dds, pAdjustMethod="BH", independentFiltering = 
TRUE, parallel = FALSE, alpha=0.05) 
Results_convsko <- as.data.frame(ControlvsKO) 
Results_convsko <- data.frame(rownames(Results_convsko), Results_convs
ko, row.names=rownames(Results_convsko)) 
names(Results_convsko)[1] <- "Geneid" 
options(scipen=999) 
head(Results_convsko) 
 
# Merge with the file which contains geneid and gene names 
Results_convsko <- join(Results_convsko, gtf,by="Geneid") 
row.names(Results_convsko) <- Results_convsko$Geneid 
head(Results_convsko) 
 
# Control vs KOA 
ControlvsKOA <- results(dds_KOA, pAdjustMethod="BH", independentFilter
ing = TRUE, parallel = FALSE, alpha=0.05) 
Results_KOA <- as.data.frame(ControlvsKOA) 
Results_KOA <- data.frame(rownames(Results_KOA), Results_KOA, row.name
s=rownames(Results_KOA)) 
names(Results_KOA)[1] <- "Geneid" 
options(scipen=999) 
head(Results_KOA) 
 
Results_KOA <- join(Results_KOA, gtf,by="Geneid") 
row.names(Results_KOA) <- Results_KOA$Geneid 
head(Results_KOA) 
 
# Control vs KOB 
ControlvsKOB <- results(dds_KOB, pAdjustMethod="BH", independentFilter
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ing = TRUE, parallel = FALSE, alpha=0.05) 
Results_KOB <- as.data.frame(ControlvsKOB) 
Results_KOB <- data.frame(rownames(Results_KOB), Results_KOB, row.name
s=rownames(Results_KOB)) 
names(Results_KOB)[1] <- "Geneid" 
options(scipen=999) 
head(Results_KOB) 
 
Results_KOB <- join(Results_KOB, gtf,by="Geneid") 
row.names(Results_KOB) <- Results_KOB$Geneid 
head(Results_KOB) 

The DESeqResult object can basically be handled like a data.frame 

table(ControlvsKO$padj < 0.05) 
table(ControlvsKO$padj < 0.05 & abs(ControlvsKO$log2FoldChange)>2) 

Combine the deseq2 results with pc values 

merged_pcresults <- merge(Results_convsko, sorted_PC1_values, by="Gene
id") 
merged_pcresults_KOA <- merge(Results_KOA, sorted_PC1_values_KOA, by="
Geneid") 
merged_pcresults_KOB <- merge(Results_KOB, sorted_PC1_values_KOB, by="
Geneid") 

Sort results based on PC values 

merged_pcresults_sorted <- merged_pcresults[order(-merged_pcresults$PC
1),] 
row.names(merged_pcresults_sorted) <- merged_pcresults_sorted$Geneid 
merged_pcresults_sorted <- merged_pcresults_sorted[,-c(14:18)] 
names(merged_pcresults_sorted)[9:12] <- c("GeneSymbol", "Chromosome", 
"Class","Strand") 
 
merged_pcresults_sorted_KOA <- merged_pcresults_KOA[order(-merged_pcre
sults_KOA$PC1),] 
row.names(merged_pcresults_sorted_KOA) <- merged_pcresults_sorted_KOA$
Geneid 
merged_pcresults_sorted_KOA <- merged_pcresults_sorted_KOA[,-c(14:18)] 
names(merged_pcresults_sorted_KOA)[9:12] <- c("GeneSymbol", "Chromosom
e", "Class","Strand") 
 
merged_pcresults_sorted_KOB <- merged_pcresults_KOB[order(-merged_pcre
sults_KOB$PC1),] 
row.names(merged_pcresults_sorted_KOB) <- merged_pcresults_sorted_KOB$
Geneid 
merged_pcresults_sorted_KOB <- merged_pcresults_sorted_KOB[,-c(14:18)] 
names(merged_pcresults_sorted_KOB)[9:12] <- c("GeneSymbol", "Chromosom
e", "Class","Strand") 

Take the top 20 genes according to PCA analysis to obtain their LFC and padj values 

merged_pcresults_sorted_top20 <- merged_pcresults_sorted[order(-merged
_pcresults_sorted$PC1),][1:20,] 
merged_pcresults_sorted_top20_KOA <- merged_pcresults_sorted_KOA[order
(-merged_pcresults_sorted_KOA$PC1),][1:20,] 
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merged_pcresults_sorted_top20_KOB <- merged_pcresults_sorted_KOB[order
(-merged_pcresults_sorted_KOB$PC1),][1:20,] 

Take the top 500 genes according to PCA analysis to obtain their LFC and padj values 

merged_pcresults_sorted_top500 <- merged_pcresults_sorted[order(-merge
d_pcresults_sorted$PC1),][1:500,] 
merged_pcresults_sorted_top500_KOA <- merged_pcresults_sorted_KOA[orde
r(-merged_pcresults_sorted_KOA$PC1),][1:500,] 
merged_pcresults_sorted_top500_KOB <- merged_pcresults_sorted_KOB[orde
r(-merged_pcresults_sorted_KOB$PC1),][1:500,] 

How many genes have a padj < 0.05 Control vs KO 

sum(merged_pcresults_sorted$padj < 0.05, na.rm=TRUE) 

Control vs KOA 

sum(merged_pcresults_sorted_KOA$padj < 0.05, na.rm=TRUE) 

Control vs KOB 

sum(merged_pcresults_sorted_KOB$padj < 0.05, na.rm=TRUE) 

Filter results to those with P<0.05 

merged_pcresults_sorted_sig <- subset(merged_pcresults_sorted, padj<0.
05) 

Filter results to those with a log2FC>2 

merged_pcresults_sorted_sigFC2 <- subset(merged_pcresults_sorted_sig, 
abs(log2FoldChange)>=2) 

Can do this in one command - P<0.05 & logFC>|2| 

merged_pcresults_sorted_sigFC2 <- subset(merged_pcresults_sorted, padj
<=0.05 & abs(log2FoldChange)>=2) 
 
# Control vs KOA 
merged_pcresults_sorted_KOA_sigFC2 <- subset(merged_pcresults_sorted_K
OA, padj<=0.05 & abs(log2FoldChange)>=2) 
 
# Control vs KOB 
merged_pcresults_sorted_KOB_sigFC2 <- subset(merged_pcresults_sorted_K
OB, padj<=0.05 & abs(log2FoldChange)>=2) 

Order the results by the smallest pvalue 

merged_pcresults_sorted_pvalue <- merged_pcresults_sorted[order(merged
_pcresults_sorted$padj), ] 

Filter the genes which pass a fold change of > 1.5 and padj < 0.05 

merged_pcresults_sorted_sigFC15 <- subset(merged_pcresults_sorted_sig, 
padj<=0.05 & abs(log2FoldChange)>=1.5) 

Filter for upregulated genes 
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upregulated_sig_DEGS <- subset(merged_pcresults_sorted_sigFC2, log2Fol
dChange>0) 
upregulated_sig_DEGS_15 <- subset(merged_pcresults_sorted_sigFC15, log
2FoldChange>0) 
 
# Control vs KOA 
upregulated_sig_DEGs_KOA <- subset(merged_pcresults_sorted_KOA_sigFC2, 
log2FoldChange>0) 
# Control vs KOB 
upregulated_sig_DEGs_KOB <- subset(merged_pcresults_sorted_KOB_sigFC2, 
log2FoldChange>0) 

Filter for downregulated genes 

downregulated_sig_DEGS <- subset(merged_pcresults_sorted_sigFC2, log2F
oldChange < 0) 
downregulated_sig_DEGS_15 <- subset(merged_pcresults_sorted_sigFC15, l
og2FoldChange < 0) 
 
# Control vs KOA 
downregulated_sig_DEGs_KOA <- subset(merged_pcresults_sorted_KOA_sigFC
2, log2FoldChange<0) 
# Control vs KOB 
downregulated_sig_DEGs_KOB <- subset(merged_pcresults_sorted_KOB_sigFC
2, log2FoldChange<0) 

Obtain gene list 

DEG_geneids_FC2 <- row.names(merged_pcresults_sorted_sigFC2) 
DEG_genenames_FC2 <- data.frame(merged_pcresults_sorted_sigFC2$GeneSym
bol) 
names(DEG_genenames_FC2) <- c("GeneSymbol") 
head(DEG_genenames_FC2, n=3) 

14) Plots after Differential Gene Analysis 

MA Plots The MA plot provides a global view of the relationship between the 
expression change between conditions (log ratios, M), the average expression strength 
of the genes (average mean, A) and the ability of the algorithm to detect differential 
gene expression: genes that pass the significance threshold (adjusted p-value<0.05) 
are colored in red 

Points will be colored red if the adjusted p value is less than 0.05 

# Add two lines where logFC > 2 and logFC < -2 
drawLines <- function() abline(h=c(-2,2),col="dodgerblue",lwd=2) 
 
par(mar=c(4,4,4,4), mfrow=c(1,1), cex=1.0, cex.main=0.5, cex.axis=0.8) 
plot.new() 
 
# MA plot of significant DEGs 
plotMA(ControlvsKO, alpha=0.05, main="WT vs. KO") 

 

# It is more useful visualize the MA-plot for the shrunken log2 fold c
hanges, which remove the noise associated with log2 fold changes from 
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low count genes without requiring arbitrary filtering thresholds. 
plotMA(resLFC, alpha=0.05, main="WT vs. KO Log Fold Shrinkage") 

 

## Changing the thresholds to what you want to see 
## plotting all those which pass p<0.05 with a folchange >2 or <2 or b
etween -2->2 
## lfcThreshold of 1, means log2 fold change is 2 
par(mfrow=c(2,2),mar=c(2,2,1,1)) 
 
ylim <- c(-10,10) 
# Two tailed test where log2 FC is > or < lfc threshold 
resGA <- results(dds, lfcThreshold=log2(2), alpha=0.05, altHypothesis=
"greaterAbs") 
resGA <- results(dds, lfcThreshold=1, alpha=0.05, altHypothesis="great
erAbs") 
 
# p values are the maximum of the upper and lower tests 
resLA <- results(dds, lfcThreshold=log2(2), alpha=0.05, altHypothesis=
"lessAbs") 
# log2 FC greater than threshold and P<0.05 
resG <- results(dds, lfcThreshold=log2(2), alpha=0.05, altHypothesis="
greater") 
# log 2 FC smaller than threshold and P<0.05 
resL <- results(dds, lfcThreshold=log2(2), alpha=0.05, altHypothesis="
less") 
 
drawLines <- function() abline(h=c(-1,1),col="dodgerblue",lwd=2) 
plotMA(resGA, ylim=ylim, alpha=0.05); drawLines() 
plotMA(resLA, ylim=ylim, alpha=0.05); drawLines() 
plotMA(resG, ylim=ylim, alpha=0.05); drawLines() 
plotMA(resL, ylim=ylim, alpha=0.05); drawLines() 

 

# Test genes which have fold change more than doubling or less than ha
lving 
# lfcThreshold of 1, means log2 fold change is 2 - doubling 
#res.thr <- results(dds, lfcThreshold=1, alpha=0.05) 
#plotMA(res.thr, ylim=c(-10,10)) 

Histogram of p-values 

par(mfrow=c(1,1), cex=1.5) 
hist(ControlvsKO$padj, 
     col= "grey", border = "white", xlab = "P-adjusted value", ylab = 
"Frequency", 
     main = "Frequencies of p-values for Control vs KO") 

 

Bar Plots of Gene expression Plot the gene with the minimum adjusted p-value 

plotCounts(dds, gene=which.min(ControlvsKO$padj), intgroup="condition"
, normalized=TRUE) 

 More sophisticated plot 
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library(ggplot2) 
data <- plotCounts(dds, gene=which.min(ControlvsKO$padj), intgroup=c("
genotype","condition","rep", "sample"), returnData=TRUE) 
ggplot(data, aes(x=genotype, y=count, shape=rep, colour=condition)) + 
  scale_shape_manual(name="Replicate", 
                     labels=c("1","2","3","4"), 
                     values = rep(c(15,16,17,18))) + 
  scale_colour_manual(name="Condition", 
                      labels=c("Control", "KO"), 
                      values = rep(c("#B2DFEE","#FFA500"))) + 
  geom_point(position=position_jitter(width=.1,height=0)) + 
  ggtitle("Expression of RPL22L1") + 
  scale_y_log10() 

 

Read counts of single genes DESeq2 offers a wrapper function to plot read 
counts for single genes 

library (grDevices ) # for italicizing the gene name 
# EPO: ENSG00000130427 
data <- plotCounts(dds, gene="ENSG00000130427", intgroup=c("genotype",
"condition","rep", "sample"), returnData=TRUE) 
ggplot(data, aes(x=genotype, y=count, col=sample_info$condition, shape
=rep)) + 
  geom_point(position=position_jitter(width=.1,height=0)) + 
  ggtitle("Expression of EPO") + 
  scale_y_log10() 

 

Plot the expression of the top 50 genes on a bar plot 

# load in packages 
library(tibble) 

## Warning: package 'tibble' was built under R version 3.6.2 

library(tidyr) 

## Warning: package 'tidyr' was built under R version 3.6.2 

##  
## Attaching package: 'tidyr' 

## The following object is masked from 'package:S4Vectors': 
##  
##     expand 

## The following object is masked from 'package:magrittr': 
##  
##     extract 

library(ggplot2) 
library(tidyverse) 

## ── Attaching packages ─────────────────────────────────────── tidyv
erse 1.3.0 ── 
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## ✓ readr   1.4.0     ✓ forcats 0.5.1 

## ✓ purrr   0.3.4 

## Warning: package 'readr' was built under R version 3.6.2 

## Warning: package 'purrr' was built under R version 3.6.2 

## Warning: package 'forcats' was built under R version 3.6.2 

## ── Conflicts ────────────────────────────────────────── tidyverse_c
onflicts() ── 
## x plyr::arrange()     masks dplyr::arrange() 
## x dplyr::collapse()   masks IRanges::collapse() 
## x dplyr::combine()    masks Biobase::combine(), BiocGenerics::combi
ne() 
## x purrr::compact()    masks plyr::compact() 
## x plyr::count()       masks dplyr::count(), matrixStats::count() 
## x plyr::desc()        masks dplyr::desc(), IRanges::desc() 
## x tidyr::expand()     masks S4Vectors::expand() 
## x tidyr::extract()    masks magrittr::extract() 
## x plyr::failwith()    masks dplyr::failwith() 
## x dplyr::filter()     masks stats::filter() 
## x dplyr::first()      masks S4Vectors::first() 
## x plyr::id()          masks dplyr::id() 
## x dplyr::lag()        masks stats::lag() 
## x plyr::mutate()      masks dplyr::mutate() 
## x ggplot2::Position() masks BiocGenerics::Position(), base::Positio
n() 
## x purrr::reduce()     masks GenomicRanges::reduce(), IRanges::reduc
e() 
## x plyr::rename()      masks dplyr::rename(), S4Vectors::rename() 
## x purrr::set_names()  masks magrittr::set_names() 
## x purrr::simplify()   masks DelayedArray::simplify() 
## x dplyr::slice()      masks IRanges::slice() 
## x plyr::summarise()   masks dplyr::summarise() 
## x plyr::summarize()   masks dplyr::summarize() 

# create tibble 
merged_pcresults_sorted_tb <- merged_pcresults_sorted  %>%  
  data.frame() %>% 
  rownames_to_column(var="gene") %>%  
  as_tibble() 
 
# subset to significant DEGs 
DEGs_ControlvsKO_tb <- subset(merged_pcresults_sorted_tb, abs(log2Fold
Change) >= 2 & padj<0.05) 
 
# pull out the top 50 DEGS based on pvalue 
top50_DEGs_genes <- DEGs_ControlvsKO_tb %>%  
  arrange(-PC1) %>%     #Arrange rows by padj values (can change this 
if you want to any column) 
  pull(gene) %>%        #Extract character vector of ordered genes 
  head(n=50) # change this to number you want to pull out 
 
top50_DEG_genes <- merged_pcresults_sorted[top50_DEGs_genes,] # pull o
ut from merged pcresults 
top50_DEG_genes <- data.frame(top50_DEG_genes) #make into a data frame 
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top50_DEG_genes$Geneid <- row.names(top50_DEG_genes) # change row name
s to Gene ID 
top50_DEG_genes <- merge(top50_DEG_genes, gtf, by="Geneid") # merge wi
th gtf file so can obtain gene names 
 
#change the normalised counts into a tibble 
normalized_counts_tb <- norm %>%  
  data.frame() %>% 
  rownames_to_column(var="gene") %>%  
  as_tibble() 
 
# pull out the top 50 genes from the normalised counts tibble 
top50_DEG_norm <- normalized_counts_tb %>% 
  filter(gene %in% top50_DEGs_genes) 
 
gathered_top50_DEGs <- top50_DEG_norm %>% 
  tidyr::gather(colnames(top50_DEG_norm)[2:13], key = "sample", value 
= "normalized_counts") 
 
gathered_top50_DEGs <- inner_join(gathered_top50_DEGs,sample_info, by=
"sample") 
names(gathered_top50_DEGs)[1] <- "Geneid" 
gathered_top50_DEGs <- inner_join(gtf, gathered_top50_DEGs, by="Geneid
") 
gathered_top50_DEGs <- inner_join(merged_pcresults_sorted, gathered_to
p50_DEGs, by="Geneid") 
 
ggplot(gathered_top50_DEGs) + 
  geom_point(aes(x = GeneSymbol.x, y = normalized_counts, color = cond
ition)) + 
  xlab("Genes") + 
  ylab("Regularised Log Counts") + 
  ggtitle("Top 50 Significantly Differentially Expressed Genes (P<0.05 
& abs(Log2FC) > 2)") + 
  theme_bw() + 
  theme(axis.text.x = element_text(angle = 45, hjust = 1, size=6)) + 
  theme(plot.title = element_text(hjust = 0.5, size=10)) 

 

Plotting Heat maps of the count matrix 

library(pheatmap) 
select <- order(rowMeans(counts(dds,normalized=TRUE)), 
                decreasing=TRUE)[1:50] 
 
df <- as.data.frame(colData(dds)[,c("genotype", "condition", "rep")]) 
 
#Heat map of the Count matrix 
pheatmap(data.matrix(norm[select,]), cluster_rows=F, show_rownames=TRU
E, 
         cluster_cols=FALSE, annotation_col=df, main="Normalised Count
s", cex=0.8) 
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# on the vsd data 
pheatmap(assay(vsd)[select,], cluster_rows=T, show_rownames=F, 
         cluster_cols=FALSE, annotation_col=df, main="VSD Transformati
on") 

 

# onthe rlog data 
pheatmap(assay(rld)[select,], cluster_rows=T, show_rownames=FALSE, 
         cluster_cols=F, annotation_col=df, main="rLog Transformation"
) 

 

Heat map of the top most expressed genes based on comparing individual 
transcripts across all samples Select the most highly expressed genes from the 
study and perform clustering 

library("RColorBrewer") 
library("gplots") 
 
par(cex=1.0) 
select <- order(rowMeans(norm), decreasing=TRUE)[1:50] 
hmcol <- colorRampPalette(brewer.pal(9, "BuGn"))(50) 
y <- data.matrix(norm[select,]) 
 
# now add gene names rather than symbols 
ya <- data.frame(y) 
ya$Geneid <- row.names(ya) 
ya <- join(ya,gtf, by="Geneid") 
row.names(ya) <- ya$GeneSymbol 
ya <- ya[,-c(13:18)] 
ya <- data.matrix(ya) 
 
heatmap.2(ya, main="All samples", cexRow=0.8, cexCol=1.2, offsetCol=1,
labCol=c("Control", NA, NA,NA,"   KOA", NA,NA,NA, "   KOB",NA,NA,NA), 
col=hmcol, Rowv=TRUE, Colv=F, scale="none", ColSideColors=c("#B2DFEE",
"#B2DFEE", "#B2DFEE",  "#B2DFEE", "#FFA500","#FFA500","#FFA500","#FFA5
00","#FF1493","#FF1493","#FF1493","#FF1493"), srtCol=0, adjCol=c(-2.2,
-68),dendrogram="none", trace="none", key.title="Counts density", key.
xlab="Counts", key.ylab="") 
par(xpd=T) 
text(0.05,0.65, "Increasing\nexpression\n(top 50)")  
arrows(0.05, 0.6, 0.05, 0.4, lwd=3, xpd=T) 

 

Plot the top 20 DEGs sorted by PC1 

topgenes <- head(rownames(merged_pcresults_sorted_sigFC2),20) 
topgenes 
mat <- rldMatrix[topgenes,] 
mat <- mat - rowMeans(mat) 
mat2 <- data.frame(mat) 
mat2$Geneid <- row.names(mat2) 
mat2 <- join(mat2, gtf,by="Geneid") 
row.names(mat2) <- mat2$GeneSymbol 
mat2 <- mat2[,-c(13:18)] 



 388 

mat2 <- data.matrix(mat2) 
 
hmcol <- colorRampPalette(brewer.pal(11, "RdBu"))(50) 
df <- as.data.frame(colData(dds)[,c("genotype", "condition")]) 
heatmap.2(mat2, main="Top 20 DEGs", cexRow=0.8, cexCol=0.8, col=hmcol, 
Rowv=T, Colv=F, labCol=c("Control", NA,NA,NA,"   KOB",NA,NA,NA), adjCo
l=c(-1.6,-62),srtCol=0, scale="none", dendrogram="none", trace="none", 
margin=c(1, 5), key.title="Counts density", key.xlab="Counts", key.yla
b="") 

 

Plot the top 50 DEGs sorted by PC1 

topgenes <- head(rownames(merged_pcresults_sorted_sigFC2),50) 
mat <- rldMatrix[topgenes,] 
mat <- mat - rowMeans(mat) 
mat2 <- data.frame(mat) 
mat2$Geneid <- row.names(mat2) 
mat2 <- join(mat2, gtf,by="Geneid") 
row.names(mat2) <- mat2$GeneSymbol 
mat2 <- mat2[,-c(13:18)] 
mat2 <- data.matrix(mat2) 
 
hmcol <- colorRampPalette(brewer.pal(11, "RdBu"))(50) 
df <- as.data.frame(colData(dds)[,c("genotype", "condition")]) 
 
library(gplots) 
heatmap.2(mat2, main="Top 50 DEGs", cexRow=0.6, cexCol=0.8, col=hmcol, 
Rowv=T, Colv=F, labCol=c("Control", NA,NA,NA,"   KOB",NA,NA,NA), adjCo
l=c(-1.6,-62),srtCol=0, scale="none", dendrogram="none", trace="none", 
margin=c(1, 5), key.title="Counts density", key.xlab="Counts", key.yla
b="") 

 

#pheatmap(mat2, annotation_col=df, fontsize_row = 5, fontsize_col = 7, 
cluster_cols = F,cluster_rows = T, main="Top 50 DEGs \n P<0.05 & abs|L
og2 Fold Change|>2") 

Scaled to z-scores 

# scale = "row" converts to z-score scaling within rows 
plot.new() 
heatmap.2(mat2, main="Top 50 DEGs", cexRow=0.6, cexCol=0.8, col=hmcol, 
Rowv=T, Colv=F, labCol=c("Control", NA,NA,NA,"   KOA",NA,NA,NA,"   KOB
",NA,NA,NA), adjCol=c(-1.6,-62),srtCol=0, scale="row", dendrogram="non
e", trace="none", margin=c(1, 5), key.title="Counts density", key.xlab
="Counts", key.ylab="") 

 

Alternative heatmap 

pheatmap(mat2, annotation_col=df, fontsize_row = 5, fontsize_col = 7, 
cluster_cols = F,cluster_rows = T, main="Top 50 DEGs \n P<0.05 & abs|L
og2 Fold Change|>2") 
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Plotting the top 500 genes by PC1 

topgenes <- head(rownames(merged_pcresults_sorted),500) 
mat <- rldMatrix[topgenes,] 
mat <- mat - rowMeans(mat) 
mat2 <- data.frame(mat) 
mat2$Geneid <- row.names(mat2) 
mat2 <- join(mat2, gtf,by="Geneid") 
row.names(mat2) <- mat2$GeneSymbol 
mat2 <- mat2[,-c(13:18)] 
mat2 <- data.matrix(mat2) 
 
hmcol <- colorRampPalette(brewer.pal(11, "RdBu"))(50) 
df <- as.data.frame(colData(dds)[,c("genotype", "condition")]) 
 
# scale = "row" converts to z-score scaling within rows 
heatmap.2(mat2, main="Top 50 DEGs", cexRow=0.6, cexCol=0.8, col=hmcol, 
Rowv=T, Colv=F, labCol=c("Control", NA,NA,NA,"   KOB",NA,NA,NA), adjCo
l=c(-1.6,-62),srtCol=0, scale="row", dendrogram="none", trace="none", 
margin=c(1, 5), key.title="Counts density", key.xlab="Counts", key.yla
b="") 

 

Plotting all the significant DEGs (p<0.05 & abs|log2FC|>2) 

# load the library with the aheatmap () function 
library(NMF) 

## Loading required package: pkgmaker 

## Loading required package: registry 

##  
## Attaching package: 'pkgmaker' 

## The following object is masked from 'package:S4Vectors': 
##  
##     new2 

## Loading required package: rngtools 

## Loading required package: cluster 

## NMF - BioConductor layer [OK] | Shared memory capabilities [NO: big
memory] | Cores 3/4 

##   To enable shared memory capabilities, try: install.extras(' 
## NMF 
## ') 

##  
## Attaching package: 'NMF' 

## The following object is masked from 'package:plotrix': 
##  
##     dispersion 
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## The following object is masked from 'package:DelayedArray': 
##  
##     seed 

## The following object is masked from 'package:BiocParallel': 
##  
##     register 

## The following object is masked from 'package:S4Vectors': 
##  
##     nrun 

# aheatmap needs a matrix of values , e.g., a matrix of DE genes with 
the transformed read counts for each replicate 
# identify gene names with desired cut off and fold change cut off 
DEG_genenames_FC2 <- rownames(merged_pcresults_sorted_sigFC2) 
head(DEG_genenames_FC2, n=3) 
DEGs_up <- rownames(merged_pcresults_sorted_sigFC2[merged_pcresults_so
rted_sigFC2$log2FoldChange>0,]) 
DEGs_down <- rownames(merged_pcresults_sorted_sigFC2[merged_pcresults_
sorted_sigFC2$log2FoldChange<0,]) 
 
# extract the normalized read counts for DE genes into a matrix 
hm.mat_DGEgenes <- rldMatrix[DEG_genenames_FC2, ] 
hm.mat_DGEgenes_up <- log.norm.counts[DEGs_up, ] 
hm.mat_DGEgenes_down <- log.norm.counts[DEGs_down, ] 
 
# plot the normalized read counts of DE genes sorted by the adjusted p
- value 
aheatmap(hm.mat_DGEgenes, Rowv = NA , Colv = NA) 

 

# combine the heatmap with hierarchical clustering 
# aheatmap(hm.mat_DGEgenes, 
         # Rowv = TRUE, Colv=TRUE, # add dendrograms to rows and colum
ns 
         #distfun = "euclidean", hclustfun = "average", annRow=NA, lab
Row=NA) 
 
# scale the read counts per gene to emphasize the sample-type - specif
ic differences 
# the read count values are scaled per row so that the colors actually 
represent z-scores rather than the underlying read counts. 
 
annotation = data.frame(condition=sample_info$condition) 
# aheatmap(hm.mat_DGEgenes, 
  #       Rowv = TRUE , Colv = TRUE , 
   #      distfun = "pearson", hclust = "ward", 
    #     scale = "row",annCol = annotation, labRow=NA, annRow=NA, mai
n="Heat Map \n DEG Genes with P<0.05 & LogFC > |2|") # values are tran
sformed into distances from the center of the row - specific average : 
( actual value - mean of the group ) / standard deviation 

Complex heat map 
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sigGeneList <- row.names(data.frame(subset(ControlvsKO, abs(log2FoldCh
ange)>=2 & padj<=0.05))) 
myCol <- colorRampPalette(c("green", "black", "red"))(10) 
myBreaks <- seq(-3, 3, length.out=10) 
 
heat <- t(rldMatrix)[,sigGeneList] 
heat <- t(scale(t(heat))) 
 
sampleOrder <- c( 
  c("WT1","WT2","WT3","WT4"), 
  c("KOA1","KOA2","KOA3","KOA4"), c("KOB1", "KOB2", "KOB3", "KOB4")) 
 
library(ComplexHeatmap) 

## Loading required package: grid 

## ======================================== 
## ComplexHeatmap version 2.0.0 
## Bioconductor page: http://bioconductor.org/packages/ComplexHeatmap/ 
## Github page: https://github.com/jokergoo/ComplexHeatmap 
## Documentation: http://jokergoo.github.io/ComplexHeatmap-reference 
##  
## If you use it in published research, please cite: 
## Gu, Z. Complex heatmaps reveal patterns and correlations in multidi
mensional  
##   genomic data. Bioinformatics 2016. 
## ======================================== 

library(circlize) 
library(cluster) 
ann <- data.frame(condition=sample_info$condition) 
colnames(ann) <- c("Condition") 
colours <- list("Control"="lightblue", "KOA"="purple", "KOB"="pink") 
rowAnn <- rowAnnotation(df=ann, boxplot=row_anno_boxplot(heat, border=
FALSE, show_annotation_name=FALSE, gp=gpar(fill="#CCCCCC", fontsize=2)
, lim=c(-4,4), pch=".", size=unit(2, "mm"), col=sample_info$condition, 
annotation_width=unit(c(1, 7.5), "cm"))) 
hmap <- Heatmap(heat, 
                #split=sampleOrderSplit, 
                row_order=sampleOrder, 
                name="Gene expression\nZ-score", 
                col=colorRamp2(myBreaks, myCol), 
                heatmap_legend_param=list(color_bar="continuous", lege
nd_direction="vertical", legend_width=unit(4,"cm"), title_position="to
pcenter", title_gp=gpar(fontsize=6, fontface="bold")), 
                 
                cluster_rows=FALSE, 
                show_row_dend=FALSE, 
                row_title="", 
                row_title_side="left", 
                row_title_gp=gpar(fontsize=8,  fontface="bold"), 
                row_title_rot=0, 
                show_row_names=TRUE, 
                row_names_gp=gpar(fontsize=8, fontface="bold"), 
                row_names_side="left", 
                row_dend_width=unit(30,"mm"), 
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                cluster_columns=TRUE, 
                show_column_dend=TRUE, 
                column_title="Transcripts", 
                column_title_side="bottom", 
                column_title_gp=gpar(fontsize=12, fontface="bold"), 
                column_title_rot=0, 
                show_column_names=FALSE, 
                #column_names_gp=gpar(fontsize=termLab, fontface="bold
"), 
                #column_names_max_height=unit(15, "cm"), 
                column_dend_height=unit(50,"mm"), 
                 
                clustering_distance_columns=function(x) as.dist(1-cor(
t(x))), 
                clustering_method_columns="ward.D2", 
                clustering_distance_rows=function(x) as.dist(1-cor(t(x
))), 
                clustering_method_rows="ward.D2")  
 
#top_annotation_height=unit(1.75,"cm"), 
#bottom_annotation=sampleBoxplot) 
#bottom_annotation_height=unit(4, "cm")) 
draw(hmap + rowAnn, heatmap_legend_side="left", annotation_legend_side
="left") 

 

Heat map of all significant genes 

# set the thresholds 
padj.cutoff <- 0.05 
lfc.cutoff <- 2 
sigOE <- merged_pcresults_sorted_tb %>% 
  filter(padj < padj.cutoff & abs(log2FoldChange) > lfc.cutoff) 
 
norm_OEsig <- normalized_counts_tb[,c(1,2:13)] %>%  
  filter(gene %in% sigOE$gene) %>%  
  data.frame() %>% 
  column_to_rownames(var = "gene")  
 
annotation <- sample_info %>%  
  select(sample, condition) %>%  
  data.frame(row.names = "sample") 
 
heat_colors <- brewer.pal(6, "YlOrRd") 
 
pheatmap(norm_OEsig,  
         color = heat_colors,  
         cluster_rows = T,  
         show_rownames = F, 
         annotation = annotation,  
         border_color = NA,  
         fontsize = 10,  
         scale = "row",  
         fontsize_row = 10,  
         height = 20) 
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Volcano Plot 

# main <- "KO vs WT Volcano Plot" 
# merged_pcresults_sorted$genenames <- merged_pcresults_sorted$GeneSym
bol 
# toptable <- data.frame(merged_pcresults_sorted) 
#  
# # check how many NA there are under padj 
# sum(is.na(merged_pcresults_sorted$padj)) 
 
# source("~/Documents/EPO Project/CRISPR/Whole gene knock-out/Confirmi
ng EPO KO/RNA Sequencing/DeSeq2/VolcanoPlot.R") 
# volcano <- VolcanoPlot(toptable, 0.05, 0.05, 0.05, 2, "Volcano Plot 
Control vs KO") 
# volcano 
 
# Control vs KOA 
# main <- "KOA vs WT Volcano Plot" 
# merged_pcresults_sorted_KOA$genenames <- merged_pcresults_sorted_KOA
$GeneSymbol 
# toptable <- data.frame(merged_pcresults_sorted_KOA) 
 
# check how many NA there are under padj 
# sum(is.na(merged_pcresults_sorted_KOA$padj)) 
 
# source("~/Documents/EPO Project/CRISPR/Whole gene knock-out/Confirmi
ng EPO KO/RNA Sequencing/DeSeq2/VolcanoPlot.R") 
# volcano <- VolcanoPlot(toptable, 0.05, 0.05, 0.05, 2, "Volcano Plot 
Control vs KOA") 
# volcano 
 
# Control vs KOB 
# main <- "KOB vs WT Volcano Plot" 
# merged_pcresults_sorted_KOB$genenames <- merged_pcresults_sorted_KOB
$GeneSymbol 
# toptable <- data.frame(merged_pcresults_sorted_KOB) 
 
# check how many NA there are under padj 
#sum(is.na(merged_pcresults_sorted_KOB$padj)) 
 
# source("~/Documents/EPO Project/CRISPR/Whole gene knock-out/Confirmi
ng EPO KO/RNA Sequencing/DeSeq2/VolcanoPlot.R") 
# volcano <- VolcanoPlot(toptable, 0.05, 0.05, 0.05, 2, "Volcano Plot 
Control vs KOB") 
# volcano 

Focusing on the overlapping significant DEGs 

As we have two KO cell lines, we want to refine our list of overlapping DEGs and 
identify those which as significantly differentially expressed between Control and both 
KOA and KOB. 

First we need to merge the results of Control vs KOA and Control vs KOB 
together 
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merge_KOA_KOB <- merge(merged_pcresults_sorted_KOA,merged_pcresults_so
rted_KOB,by="Geneid", suffix=c(".WTvsKOA", ".WTvsKOB"), all=T) 

Calculate the mean PC by average PC1 for WTvsKOA and PC1 for WTvsKOB 

merge_KOA_KOB$meanPC <- (merge_KOA_KOB$PC1.WTvsKOA + merge_KOA_KOB$PC1
.WTvsKOB)/2 
#sort by mean PC value 
merge_KOA_KOB_pcsorted <- merge_KOA_KOB[order(-merge_KOA_KOB$meanPC), 
] 

Merge with the overall results when combining all KOs 

merge_KOA_KOB_pcsorted_all <- merge(merge_KOA_KOB_pcsorted, merged_pcr
esults_sorted, by="Geneid") 
# Sort by mean PC 
merge_KOA_KOB_pcsorted_all <- merge_KOA_KOB_pcsorted_all[order(-merge_
KOA_KOB_pcsorted_all$meanPC),] 
 
# write.table(merge_KOA_KOB_pcsorted_all, "~/Documents/EPO Project/CRI
SPR/Whole gene knock-out/Confirming EPO KO/RNA Sequencing/DeSeq2/Overl
apping DEG analysis/merged_KOA_KOB_analysis_PC_sorted.txt", sep="/t", 
row.names=F, quote=F) 

Take top 500 genes based on average PC value 

top500_merge_KOA_KOB_pcsorted_all <- merge_KOA_KOB_pcsorted_all[order(
-merge_KOA_KOB_pcsorted_all$meanPC),][1:500,] 
 
# write.table(top500_merge_KOA_KOB_pcsorted_all, "~/Documents/EPO Proj
ect/CRISPR/Whole gene knock-out/Confirming EPO KO/RNA Sequencing/DeSeq
2/Overlapping DEG analysis/Top_500_DEGs_basedon_meanPC1_KOA_KOB_analys
is.txt", sep="\t", row.names=F, quote=F) 

Heatmap of the top 500 genes 

row.names(top500_merge_KOA_KOB_pcsorted_all) <- top500_merge_KOA_KOB_p
csorted_all$Geneid 
topgenes <- head(rownames(top500_merge_KOA_KOB_pcsorted_all),500) 
mat <- rldMatrix[topgenes,] 
mat <- mat - rowMeans(mat) 
mat2 <- data.frame(mat) 
mat2$Geneid <- row.names(mat2) 
mat2 <- join(mat2, gtf,by="Geneid") 
row.names(mat2) <- mat2$GeneSymbol 
mat2 <- mat2[,-c(13:18)] 
mat2 <- data.matrix(mat2) 
 
hmcol <- colorRampPalette(brewer.pal(11, "RdBu"))(50) 
df <- as.data.frame(colData(dds)[,c("genotype", "condition")]) 
 
# scale = "row" converts to z-score scaling within rows 
heatmap.2(mat2, main="Top 50 DEGs", cexRow=0.6, cexCol=0.8, col=hmcol, 
Rowv=T, Colv=T, labCol=c("Control", NA,NA,NA,"   KOA",NA,NA,NA,"   KOB
",NA,NA,NA), adjCol=c(-0.8,-62),srtCol=0, scale="row", dendrogram="col
", trace="none", margin=c(1, 5), key.title="Counts density", key.xlab=
"Counts", key.ylab="") 
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pheatmap(mat2, annotation_col=df,fontsize_col = 7, clustering_distance
_rows = "euclidean", clustering_method="ward.D2", annotation_row=NA, s
how_rownames=F, cluster_cols = F,cluster_rows = T, main="Top 500 for s
egregating Control from KO along PC1 in PCA") 

 

Venn Diagram of WT vs KOA & WT vs KOB 

1. Venn diagram of the overall files of for KOA and KOB (how many genes overlap in 
the beginning) 

library(VennDiagram) 

## Loading required package: futile.logger 

##  
## Attaching package: 'VennDiagram' 

## The following object is masked from 'package:dendextend': 
##  
##     rotate 

y <- list() 
y$KOA <- as.character(row.names(merged_pcresults_sorted_KOA)) 
y$KOB <- as.character(row.names(merged_pcresults_sorted_KOB)) 
# Generate plot 
myCol <- brewer.pal(3, "RdBu") 
# Pink: #FF9CEE, purple/blue: #AFCBFF, pastel yellow: #FFF5BA, Light b
lue: #ACE7FF 
w <- venn.diagram(y, 
                  #circles 
                  lwd = 2, 
                  lty = 'blank', 
                  col="transparent", 
                  fill = c(alpha("#FFF5BA",0.5), alpha('#ACE7FF',0.5))
, cex=2, 
                  # font inside circles 
                  fontface = "plain", 
                  fontfamily = "sans",  
                  # category names 
                  cat.cex=2, cat.fontface="bold", cat.default.pos="out
er", 
                  cat.pos=c(-10,10), cat.dist=c(0.055,0.055), cat.font
family="sans", 
                  filename=NULL,alpha=0.7, scaled=TRUE) 
grid.newpage() 
grid.draw(w) 

 

2. Create a Venn diagram of the overlapping significant DEGs Those which are 
significant (p<0.05 & abs(log2FC)>2) in both Control vs KOA and Control vs KOB 

x <- list() 
x$WTvsKOA <- as.character(row.names(merged_pcresults_sorted_KOA_sigFC2
)) 
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x$WTvsKOB <- as.character(row.names(merged_pcresults_sorted_KOB_sigFC2
)) 
# Generate plot 
# Pink: #FF9CEE, purple/blue: #AFCBFF, pastel yellow: #FFF5BA, Light b
lue: #ACE7FF 
v <- venn.diagram(x, 
                  #circles 
                  lwd = 2, 
                  lty = 'blank', 
                  col="transparent", 
                  fill = c(alpha("#FFF5BA",0.5), alpha('#ACE7FF',0.5))
, cex=2, 
                  # font inside circles 
                  fontface = "plain", 
                  fontfamily = "sans",  
                  # category names 
                  cat.cex=2, cat.fontface="bold", cat.default.pos="out
er", 
                  cat.pos=c(-10,10), cat.dist=c(0.055,0.055), cat.font
family="sans", 
                  filename=NULL,alpha=0.7, scaled=TRUE) 
 
# have a look at the default plot 
grid.newpage() 
grid.draw(v) 

 

We now know that 314 genes are overlapping and significant in both KOs. 

3. Extract the list of genes in each group 

# have a look at the names in the plot object v 
# We are interested in the labels 
lapply(v, function(i) i$label) 
 
# Over-write labels (5 to 7 chosen by manual check of labels) 
# in KOA only 
v[[5]]$label  <- paste(setdiff(x$WTvsKOA, x$WTvsKOB), collapse="\n")   
only_in_KOA  <- data.frame(paste(setdiff(x$WTvsKOA, x$WTvsKOB))) 
 
# in KOB only 
v[[6]]$label <- paste(setdiff(x$WTvsKOB, x$WTvsKOA)  , collapse="\n")  
only_in_KOB  <- data.frame(paste(setdiff(x$WTvsKOB, x$WTvsKOA))) 
 
# intersection i.e. the genes that are signifcant in both analyses 
v[[7]]$label <- paste(intersect(x$WTvsKOA, x$WTvsKOB), collapse="\n")   
KOA_KOB  <- data.frame(paste(intersect(x$WTvsKOA, x$WTvsKOB))) 
 
## Obtain gene names and their values for each list 
# overlapping list  
KOA_KOB$Geneid <- KOA_KOB$paste.intersect.x.WTvsKOA..x.WTvsKOB.. 
KOA_KOB_values <- merge(KOA_KOB, merge_KOA_KOB_pcsorted_all, by="Genei
d") 
sum(abs(KOA_KOB_values$padj.WTvsKOB)>0.05) 
 
# Only significant DEG in KOA 
only_in_KOA$Geneid <- only_in_KOA$paste.setdiff.x.WTvsKOA..x.WTvsKOB.. 
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only_in_KOA_values <- merge(only_in_KOA, merge_KOA_KOB, by="Geneid") 
 
# Only significant DEG in KOB 
only_in_KOB$Geneid <- only_in_KOB$paste.setdiff.x.WTvsKOB..x.WTvsKOA.. 
only_in_KOB_values <- merge(only_in_KOB, merge_KOA_KOB, by="Geneid") 

4. Create a column with the mean PC values 

# Create a column of mean PC values 
KOA_KOB_values$meanPC <- (KOA_KOB_values$PC1.WTvsKOA + KOA_KOB_values$
PC1.WTvsKOB)/2 

5. Merge with wt vs all KO file to see if they come up in main analysis 

KOA_KOB_values_combined <- merge(KOA_KOB_values, merged_pcresults, by=
"Geneid") 
sum(KOA_KOB_values_combined$padj>0.05, na.rm=T) 

6. Sort by mean PC value 

KOA_KOB_values_sortedPC <- KOA_KOB_values[order(-KOA_KOB_values$meanPC
), ] 
# write.table(KOA_KOB_values, file="~/Documents/EPO Project/CRISPR/Who
le gene knock-out/Confirming EPO KO/RNA Sequencing/DeSeq2/Overlapping 
DEG analysis/Overlapping_genes_KOA_KOB_analysis_PC1sorted.txt", sep="\
t", row.names=F, quote=F) 

7. Obtain a list of Upregulated and Downregulated genes 

#### Upregulated genes 
upreg_KOA_KOB_overlap <- KOA_KOB_values_sortedPC[KOA_KOB_values_sorted
PC$log2FoldChange>0,] 
# write.table(upreg_KOA_KOB_overlap, file="~/Documents/EPO Project/CRI
SPR/Whole gene knock-out/Confirming EPO KO/RNA Sequencing/DeSeq2/Overl
apping DEG analysis/Overlapping_genes_KOA_KOB_analysis_Upregulated.txt
", sep="\t", row.names=F, quote=F) 
 
#### Downregulated genes 
downreg_KOA_KOB_overlap <- KOA_KOB_values_sortedPC[KOA_KOB_values_sort
edPC$log2FoldChange<0,] 
# write.table(downreg_KOA_KOB_overlap, file="~/Documents/EPO Project/C
RISPR/Whole gene knock-out/Confirming EPO KO/RNA Sequencing/DeSeq2/Ove
rlapping DEG analysis/Overlapping_genes_KOA_KOB_analysis_Downregulated
.txt", sep="\t", row.names=F, quote=F) 

8. Plot all of the overlapping genes on a heat map 

row.names(KOA_KOB_values_sortedPC) <- KOA_KOB_values_sortedPC$Geneid 
overlapping_genes <- rownames(KOA_KOB_values_sortedPC) 
library(plyr) 
library(RColorBrewer) 
mat <- rldMatrix[overlapping_genes,] 
mat <- mat - rowMeans(mat) 
mat2 <- data.frame(mat) 
mat2$Geneid <- row.names(mat2) 
mat2 <- join(mat2, gtf,by="Geneid") 
row.names(mat2) <- mat2$GeneSymbol 
mat2 <- mat2[,-c(13:18)] 
mat2 <- data.matrix(mat2) 
hmcol <- colorRampPalette(brewer.pal(11, "RdBu"))(50) 
df <- as.data.frame(colData(dds)[,c("genotype", "condition")]) 
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# scale = "row" converts to z-score scaling within rows 
library(gplots) 
 
heatmap.2(mat2, main="Heat map of overlapping genes", cexRow=0.6, labR
ow=NA,cexCol=0.8, col=hmcol, Rowv=T, Colv=T, labCol=c("Control", NA,NA
,NA,"   KOA",NA,NA,NA, "   KOB",NA,NA,NA), adjCol=c(-2.5,50),srtCol=0, 
scale="row", dendrogram="column", trace="none", margin=c(1, 5), key.ti
tle="Counts density", key.xlab="Counts", key.ylab="") 

9. Plot the top 50 ordered by the mean of PC1 & using the rldMatrix from WTvsKO 
study 

row.names(KOA_KOB_values_sortedPC) <- KOA_KOB_values_sortedPC$Geneid 
topgenes <- head(rownames(KOA_KOB_values_sortedPC),50) 
mat <- rldMatrix[topgenes,] 
mat <- mat - rowMeans(mat) 
mat2 <- data.frame(mat) 
mat2$Geneid <- row.names(mat2) 
mat2 <- join(mat2, gtf,by="Geneid") 
row.names(mat2) <- mat2$GeneSymbol 
mat2 <- mat2[,-c(13:18)] 
mat2 <- data.matrix(mat2) 
 
hmcol <- colorRampPalette(brewer.pal(11, "RdBu"))(50) 
df <- as.data.frame(colData(dds)[,c("genotype", "condition")]) 
 
library(gplots) 
heatmap.2(mat2, main="Top 50 DEGs", cexRow=0.6, cexCol=0.8, col=hmcol, 
Rowv=T, Colv=F, labCol=c("Control", NA,NA,NA,"   KOA",NA,NA,NA,"   KOB
",NA,NA,NA), adjCol=c(-2,-85),srtCol=0, scale="row", dendrogram="none"
, trace="none", margin=c(1, 5), key.title="Counts density", key.xlab="
Counts", key.ylab="") 

 

# Alternative plotting method 
# pheatmap(mat2, annotation_col=df, fontsize_row = 5, fontsize_col = 7
, cluster_cols = F,cluster_rows = F, main="Top 50 DEGs \n P<0.05 & abs
|Log2 Fold Change|>2") 

10. Plot the expression of the top 50 genes on a bar plot - sorted by mean PC1 values 

library(tibble) 
library(tidyr) 
library(ggplot2) 
library(tidyverse) 
 
KOA_KOB_values_combined_sortedPC_tb <- KOA_KOB_values_sortedPC  %>%  
  data.frame() %>% 
  rownames_to_column(var="gene") %>%  
  as_tibble() 
 
top50_DEGs_genes <- KOA_KOB_values_combined_sortedPC_tb %>%  
  arrange(-meanPC) %>%  #Arrange rows by padj values 
  pull(gene) %>%        #Extract character vector of ordered genes 
  head(n=50)  
top50_DEG_genes <- merged_pcresults_sorted[top50_DEGs_genes,] 
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top50_DEG_genes <- data.frame(top50_DEG_genes) 
top50_DEG_genes$Geneid <- row.names(top50_DEG_genes) 
top50_DEG_genes <- merge(top50_DEG_genes, gtf, by="Geneid") 
 
#change the normalised counts into a tibble 
normalized_counts_tb <- norm %>%  
  data.frame() %>% 
  rownames_to_column(var="gene") %>%  
  as_tibble() 
 
top50_DEG_norm <- normalized_counts_tb %>% 
  filter(gene %in% top50_DEGs_genes) 
 
gathered_top50_DEGs <- top50_DEG_norm %>% 
  tidyr::gather(colnames(top50_DEG_norm)[2:13], key = "sample", value 
= "normalized_counts") 
 
gathered_top50_DEGs <- inner_join(gathered_top50_DEGs, sample_info, by
="sample") 
names(gathered_top50_DEGs)[1] <- "Geneid" 
gathered_top50_DEGs<- inner_join(gtf, gathered_top50_DEGs, by="Geneid"
) 
gathered_top50_DEGs<- inner_join(merged_pcresults_sorted, gathered_top
50_DEGs, by="Geneid") 
#write.table(gathered_top20_DEGs, "Differential Gene Expression/Top_50
_DEGs.csv", row.names=F, quote=F, sep=",", col.names=T) 
 
#png("BarPlot_Top50_Overlapping_significant_genes.png", width=1200, he
ight=800) 
ggplot(gathered_top50_DEGs) + 
  geom_point(aes(x = GeneSymbol.x, y = normalized_counts, color = cond
ition)) + 
  xlab("Genes") + 
  ylab("Regularised Log Counts") + 
  ggtitle("Top 50 Overlapping Significant Genes (P<0.05 & abs(Log2FC) 
> 2)") + 
  theme_bw() + 
  theme(axis.text.x = element_text(angle = 45, hjust = 1, size=6)) + 
  theme(plot.title = element_text(hjust = 0.5)) 

# dev.off() 

 

  Volcano Plot 
 

Generating_a_volcano_Plot 

Charli E. Harlow 

11/02/2022 

Create a function for a volcano plot 
VolcanoPlot <- function(toptable, NominalCutoff, AdjustedCutoff, Label
lingCutoff, FCCutoff, main) 
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{ 
    toptable$Significance <- "NS" 
    toptable$Significance[(abs(toptable$log2FoldChange) > FCCutoff)] <
- "FC" 
    toptable$Significance[(toptable$padj<AdjustedCutoff)] <- "FDR" 
    toptable$Significance[(toptable$padj<AdjustedCutoff) & (abs(toptab
le$log2FoldChange)>FCCutoff)] <- "FC_FDR" 
    table(toptable$Significance) 
    toptable$Significance <- factor(toptable$Significance, levels=c("N
S", "FC", "FDR", "FC_FDR")) 
 
    plot <- ggplot(toptable, aes(x=log2FoldChange, y=-log10(padj))) + 
 
        #Add points: 
        #   Colour based on factors set a few lines up 
        #   'alpha' provides gradual shading of colour 
        #   Set size of points 
        geom_point(aes(color=factor(Significance)), alpha=1/2, size=0.
8) + 
 
        #Choose which colours to use; otherwise, ggplot2 choose automa
tically (order depends on how factors are ordered in toptable$Signific
ance) 
        scale_color_manual(values=c(NS="grey30", FC="forestgreen", FDR
="royalblue", FC_FDR="red2"), labels=c(NS="NS", FC=paste("LogFC>|", FC
Cutoff, "|", sep=""), FDR=paste("FDR Q<", AdjustedCutoff, sep=""), FC_
FDR=paste("FDR Q<", AdjustedCutoff, " & LogFC>|", FCCutoff, "|", sep="
"))) + 
 
        #Set the size of the plotting window 
        theme_bw(base_size=24) + 
 
        #Modify various aspects of the plot text and legend 
        theme(legend.background=element_rect(), 
          panel.border = element_blank(), 
          axis.line = element_line(colour = "black", size=0.2), 
          axis.ticks = element_line(size=0.2),  
            plot.title=element_text(angle=0, size=12, face="bold", vju
st=1), 
 
            #panel.grid.major=element_blank(),  #Remove gridlines 
            #panel.grid.minor=element_blank(),  #Remove gridlines 
 
            axis.text.x=element_text(angle=0, size=12, vjust=1), 
            axis.text.y=element_text(angle=0, size=12, vjust=1), 
            axis.title=element_text(size=12), 
 
            #Legend 
            legend.position="top",          #Moves the legend to the t
op of the plot 
            legend.key=element_blank(),     #removes the border 
            legend.key.size=unit(0.5, "cm"),    #Sets overall area/siz
e of the legend 
            legend.text=element_text(size=8),   #Text size 
            title=element_text(size=8),     #Title text size 
            legend.title=element_blank()) +     #Remove the title 
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        #Change the size of the icons/symbols in the legend 
        guides(colour = guide_legend(override.aes=list(size=2.5))) + 
 
        #Set x- and y-axes labels 
        xlab(bquote(~Log[2]~ "fold change")) + 
        ylab(bquote(~-Log[10]~adjusted~italic(P))) + 
 
        #Set the axis limits 
        #xlim(-6.5, 6.5) + 
        #ylim(0, 100) + 
       
      # Scale the axis and set the limits  
      #scale_x_continuous(breaks = seq(-15, 15, by = 5), lim=c(-15,15)
) + 
      #scale_y_continuous(breaks=seq(0,250,by=50), lim=c(0,250)) + 
 
        #Set title 
        ggtitle(main) + 
 
        #Tidy the text labels for a subset of genes 
        geom_text(data=subset(toptable, padj<LabellingCutoff & abs(log
2FoldChange)>FCCutoff), 
            aes(label=subset(toptable, padj<LabellingCutoff & abs(log2
FoldChange)>FCCutoff)$genenames), 
            size=2.25, 
            #segment.color="black", #This and the next parameter sprea
d out the labels and join them to their points by a line 
            #segment.size=0.01, 
            check_overlap=TRUE, 
            vjust=1.0) + 
 
        #Add a vertical line for fold change cut-offs 
        geom_vline(xintercept=c(-FCCutoff, FCCutoff), linetype="longda
sh", colour="black", size=0.4) + 
 
        #Add a horizontal line for P-value cut-off 
        geom_hline(yintercept=-log10(NominalCutoff), linetype="longdas
h", colour="black", size=0.4) 
} 

} 
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Appendix 2: Gene ontology analysis  
 
Table 8.1: Gene ontology (GO) analysis of the 3,501 DEGs identified through differential expression analysis of WT cells vs EPO knock-
out.Results passing P-value threshold of 0.05 are shown. Analysis was performed using the online tool Enrichr avaliable at 
https://maayanlab.cloud/Enrichr/enrich#. BP = Biological Process. MF = Molecular Function. KEGG = KEGG Pathways 2021. 
 

Ontology GO Term P-value 

BP DNA repair (GO:0006281) 1.45E-05 

BP double-strand break repair (GO:0006302) 2.57E-05 

BP mRNA 3'-end processing (GO:0031124) 8.87E-05 

BP DNA metabolic process (GO:0006259) 1.09E-04 

BP negative regulation of ubiquitin-protein transferase activity (GO:0051444) 2.61E-04 

BP negative regulation of intrinsic apoptotic signaling pathway (GO:2001243) 2.91E-04 

BP mRNA processing (GO:0006397) 5.06E-04 

BP mitochondrion organization (GO:0007005) 5.94E-04 

BP regulation of macroautophagy (GO:0016241) 1.10E-03 

BP positive regulation of protein binding (GO:0032092) 1.28E-03 

BP base-excision repair, gap-filling (GO:0006287) 1.33E-03 

BP fatty acid oxidation (GO:0019395) 1.63E-03 

BP regulation of aerobic respiration (GO:1903715) 1.66E-03 

BP positive regulation of fatty acid oxidation (GO:0046321) 1.67E-03 

BP pyrimidine nucleobase metabolic process (GO:0006206) 1.67E-03 

BP mitotic sister chromatid segregation (GO:0000070) 1.86E-03 

BP Notch signaling pathway (GO:0007219) 2.05E-03 

BP positive regulation of binding (GO:0051099) 2.24E-03 

BP ephrin receptor signaling pathway (GO:0048013) 2.51E-03 
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BP negative regulation of macroautophagy (GO:0016242) 2.56E-03 

BP regulation of oxidative phosphorylation (GO:0002082) 2.82E-03 

BP regulation of protein binding (GO:0043393) 2.82E-03 

BP fatty acid catabolic process (GO:0009062) 2.92E-03 

BP nucleotide-excision repair (GO:0006289) 3.02E-03 

BP cellular response to leucine (GO:0071233) 3.04E-03 

BP response to leucine (GO:0043201) 3.04E-03 

BP regulation of retrograde protein transport, ER to cytosol (GO:1904152) 3.07E-03 

BP reticulophagy (GO:0061709) 3.07E-03 

BP cellular response to amino acid stimulus (GO:0071230) 3.16E-03 

BP organelle disassembly (GO:1903008) 3.16E-03 

BP recombinational repair (GO:0000725) 3.19E-03 

BP RNA splicing, via transesterification reactions with bulged adenosine as nucleophile (GO:0000377) 3.22E-03 

BP mRNA 3'-end processing by stem-loop binding and cleavage (GO:0006398) 3.92E-03 

BP protein K69-linked ufmylation (GO:1990592) 3.92E-03 

BP protein polyufmylation (GO:1990564) 3.92E-03 

BP negative regulation of proteasomal ubiquitin-dependent protein catabolic process (GO:0032435) 4.01E-03 

BP negative regulation of organelle assembly (GO:1902116) 4.24E-03 

BP regulation of mitotic spindle organization (GO:0060236) 4.24E-03 

BP telomere organization (GO:0032200) 4.38E-03 

BP mRNA splicing, via spliceosome (GO:0000398) 4.43E-03 

BP telomere maintenance (GO:0000723) 5.19E-03 

BP regulation of fatty acid beta-oxidation (GO:0031998) 5.22E-03 

BP fatty acid beta-oxidation (GO:0006635) 5.38E-03 

BP RNA 3'-end processing (GO:0031123) 5.46E-03 
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BP protein localization to microtubule cytoskeleton (GO:0072698) 5.56E-03 

BP pyrimidine nucleobase catabolic process (GO:0006208) 5.56E-03 

BP translocation of molecules into host (GO:0044417) 5.56E-03 

BP viral mRNA export from host cell nucleus (GO:0046784) 5.56E-03 

BP anterior/posterior axis specification (GO:0009948) 5.64E-03 

BP endosome transport via multivesicular body sorting pathway (GO:0032509) 6.42E-03 

BP positive regulation of macroautophagy (GO:0016239) 6.66E-03 

BP hydrogen peroxide metabolic process (GO:0042743) 6.91E-03 

BP negative regulation of epithelial to mesenchymal transition (GO:0010719) 6.91E-03 

BP regulation of early endosome to late endosome transport (GO:2000641) 6.92E-03 

BP regulation of membrane depolarization (GO:0003254) 6.92E-03 

BP regulation of spindle organization (GO:0090224) 6.92E-03 

BP cellular response to nutrient levels (GO:0031669) 6.95E-03 

BP macroautophagy (GO:0016236) 7.04E-03 

BP G2/M transition of mitotic cell cycle (GO:0000086) 7.69E-03 

BP negative regulation of endoplasmic reticulum stress-induced intrinsic apoptotic signaling pathway (GO:1902236) 8.34E-03 

BP RNA transport (GO:0050658) 8.62E-03 

BP cell cycle G2/M phase transition (GO:0044839) 8.69E-03 

BP regulation of DNA metabolic process (GO:0051052) 8.88E-03 

BP cellular respiration (GO:0045333) 9.15E-03 

BP microtubule polymerization (GO:0046785) 9.23E-03 

BP sister chromatid segregation (GO:0000819) 9.37E-03 

BP organelle organization (GO:0006996) 9.38E-03 

BP mitotic cell cycle phase transition (GO:0044772) 9.70E-03 

BP regulation of cellular response to stress (GO:0080135) 9.89E-03 
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BP regulation of signal transduction by p53 class mediator (GO:1901796) 1.00E-02 

BP cellular response to iron ion (GO:0071281) 1.01E-02 

BP cerebral cortex cell migration (GO:0021795) 1.01E-02 

BP galactose catabolic process (GO:0019388) 1.01E-02 

BP negative regulation of glial cell proliferation (GO:0060253) 1.01E-02 

BP protein ufmylation (GO:0071569) 1.01E-02 

BP regulation of ventricular cardiac muscle cell membrane depolarization (GO:0060373) 1.01E-02 

BP signal complex assembly (GO:0007172) 1.01E-02 

BP telencephalon cell migration (GO:0022029) 1.01E-02 

BP diol metabolic process (GO:0034311) 1.02E-02 

BP telomere capping (GO:0016233) 1.02E-02 

BP amyloid-beta formation (GO:0034205) 1.07E-02 

BP basement membrane assembly (GO:0070831) 1.07E-02 

BP galactose metabolic process (GO:0006012) 1.07E-02 

BP negative regulation of retrograde protein transport, ER to cytosol (GO:1904153) 1.07E-02 

BP negative regulation of ubiquitin protein ligase activity (GO:1904667) 1.07E-02 

BP Notch receptor processing (GO:0007220) 1.07E-02 

BP positive regulation of fatty acid beta-oxidation (GO:0032000) 1.07E-02 

BP membrane protein ectodomain proteolysis (GO:0006509) 1.13E-02 

BP regulation of autophagy (GO:0010506) 1.19E-02 

BP mitotic chromosome condensation (GO:0007076) 1.19E-02 

BP regulation of ATP metabolic process (GO:1903578) 1.20E-02 

BP negative regulation of DNA binding (GO:0043392) 1.21E-02 

BP regulation of cellular senescence (GO:2000772) 1.21E-02 

BP nucleotide catabolic process (GO:0009166) 1.26E-02 
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BP regulation of activin receptor signaling pathway (GO:0032925) 1.26E-02 

BP regulation of cell cycle process (GO:0010564) 1.27E-02 

BP mitotic nuclear division (GO:0140014) 1.28E-02 

BP double-strand break repair via homologous recombination (GO:0000724) 1.32E-02 

BP regulation of primary metabolic process (GO:0080090) 1.35E-02 

BP central nervous system development (GO:0007417) 1.40E-02 

BP cardiac ventricle morphogenesis (GO:0003208) 1.42E-02 

BP microtubule nucleation (GO:0007020) 1.44E-02 

BP mRNA export from nucleus (GO:0006406) 1.45E-02 

BP nucleotide-excision repair, DNA gap filling (GO:0006297) 1.53E-02 

BP ribonucleoprotein complex assembly (GO:0022618) 1.54E-02 

BP positive regulation of protein localization to cell surface (GO:2000010) 1.55E-02 

BP pteridine-containing compound metabolic process (GO:0042558) 1.55E-02 

BP response to amino acid (GO:0043200) 1.56E-02 

BP cellular response to acid chemical (GO:0071229) 1.57E-02 

BP negative regulation of oxidative stress-induced cell death (GO:1903202) 1.57E-02 

BP double-strand break repair via nonhomologous end joining (GO:0006303) 1.60E-02 

BP mRNA-containing ribonucleoprotein complex export from nucleus (GO:0071427) 1.72E-02 

BP regulation of epithelial to mesenchymal transition (GO:0010717) 1.73E-02 

BP organelle assembly (GO:0070925) 1.75E-02 

BP mRNA transport (GO:0051028) 1.78E-02 

BP positive regulation of autophagy (GO:0010508) 1.79E-02 

BP regulation of mRNA splicing, via spliceosome (GO:0048024) 1.79E-02 

BP nucleobase-containing compound catabolic process (GO:0034655) 1.83E-02 

BP DNA biosynthetic process (GO:0071897) 1.83E-02 
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BP gliogenesis (GO:0042063) 1.83E-02 

BP cellular response to leucine starvation (GO:1990253) 1.84E-02 

BP histone H3-K36 demethylation (GO:0070544) 1.84E-02 

BP myelin maintenance (GO:0043217) 1.84E-02 

BP negative regulation of protein exit from endoplasmic reticulum (GO:0070862) 1.84E-02 

BP neuron projection maintenance (GO:1990535) 1.84E-02 

BP cell morphogenesis involved in differentiation (GO:0000904) 1.88E-02 

BP nucleotide-excision repair, DNA incision, 5'-to lesion (GO:0006296) 1.91E-02 

BP nucleotide-excision repair, DNA incision, 3'-to lesion (GO:0006295) 1.98E-02 

BP nucleotide-excision repair, preincision complex stabilization (GO:0006293) 1.98E-02 

BP actin filament bundle organization (GO:0061572) 1.98E-02 

BP mismatch repair (GO:0006298) 2.03E-02 

BP negative regulation of transferase activity (GO:0051348) 2.03E-02 

BP negative regulation of response to endoplasmic reticulum stress (GO:1903573) 2.03E-02 

BP regulation of spindle assembly (GO:0090169) 2.03E-02 

BP cellular response to prostaglandin E stimulus (GO:0071380) 2.04E-02 

BP detection of muscle stretch (GO:0035995) 2.04E-02 

BP hexose catabolic process (GO:0019320) 2.04E-02 

BP negative regulation of centriole replication (GO:0046600) 2.04E-02 

BP Notch receptor processing, ligand-dependent (GO:0035333) 2.04E-02 

BP nucleobase catabolic process (GO:0046113) 2.04E-02 

BP positive regulation of mitophagy in response to mitochondrial depolarization (GO:0098779) 2.04E-02 

BP protein localization to endoplasmic reticulum exit site (GO:0070973) 2.04E-02 

BP ribonucleoprotein complex disassembly (GO:0032988) 2.04E-02 

BP cellular protein-containing complex assembly (GO:0034622) 2.05E-02 
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BP transcription by RNA polymerase II (GO:0006366) 2.17E-02 

BP regulation of G2/M transition of mitotic cell cycle (GO:0010389) 2.18E-02 

BP ubiquitin-dependent ERAD pathway (GO:0030433) 2.18E-02 

BP interstrand cross-link repair (GO:0036297) 2.19E-02 

BP negative regulation of cell cycle process (GO:0010948) 2.21E-02 

BP RNA export from nucleus (GO:0006405) 2.27E-02 

BP negative regulation of multicellular organismal process (GO:0051241) 2.29E-02 

BP protein modification process (GO:0036211) 2.31E-02 

BP regulation of lipid metabolic process (GO:0019216) 2.32E-02 

BP 2-oxoglutarate metabolic process (GO:0006103) 2.32E-02 

BP cardiac left ventricle morphogenesis (GO:0003214) 2.32E-02 

BP dicarboxylic acid catabolic process (GO:0043649) 2.32E-02 

BP polarized epithelial cell differentiation (GO:0030859) 2.32E-02 

BP positive regulation of glucose metabolic process (GO:0010907) 2.32E-02 

BP respiratory electron transport chain (GO:0022904) 2.32E-02 

BP sodium-independent organic anion transport (GO:0043252) 2.32E-02 

BP negative regulation of G0 to G1 transition (GO:0070317) 2.36E-02 

BP negative regulation of proteasomal protein catabolic process (GO:1901799) 2.36E-02 

BP regulation of glucose metabolic process (GO:0010906) 2.48E-02 

BP termination of RNA polymerase II transcription (GO:0006369) 2.48E-02 

BP glycosphingolipid metabolic process (GO:0006687) 2.53E-02 

BP embryonic axis specification (GO:0000578) 2.55E-02 

BP regulation of chromosome segregation (GO:0051983) 2.55E-02 

BP negative regulation of metabolic process (GO:0009892) 2.59E-02 

BP DNA geometric change (GO:0032392) 2.64E-02 



 409 

BP positive regulation of microtubule polymerization or depolymerization (GO:0031112) 2.64E-02 

BP regulation of cellular response to heat (GO:1900034) 2.64E-02 

BP positive regulation of peptidase activity (GO:0010952) 2.64E-02 

BP negative regulation of cell differentiation (GO:0045596) 2.71E-02 

BP negative regulation of protein-containing complex assembly (GO:0031333) 2.80E-02 

BP membrane protein proteolysis (GO:0033619) 2.89E-02 

BP nucleotide-excision repair, DNA incision (GO:0033683) 2.89E-02 

BP protein acylation (GO:0043543) 2.89E-02 

BP protein monoubiquitination (GO:0006513) 2.89E-02 

BP chromatin-mediated maintenance of transcription (GO:0048096) 2.90E-02 

BP glutathione biosynthetic process (GO:0006750) 2.90E-02 

BP hematopoietic stem cell proliferation (GO:0071425) 2.90E-02 

BP insulin-like growth factor receptor signaling pathway (GO:0048009) 2.90E-02 

BP negative regulation of centrosome duplication (GO:0010826) 2.90E-02 

BP negative regulation of defense response to virus (GO:0050687) 2.90E-02 

BP negative regulation of protein maturation (GO:1903318) 2.90E-02 

BP positive regulation of actin nucleation (GO:0051127) 2.90E-02 

BP positive regulation of cellular respiration (GO:1901857) 2.90E-02 

BP proteasome assembly (GO:0043248) 2.90E-02 

BP tetrahydrobiopterin metabolic process (GO:0046146) 2.90E-02 

BP V(D)J recombination (GO:0033151) 2.90E-02 

BP regulation of fat cell differentiation (GO:0045598) 3.01E-02 

BP base-excision repair (GO:0006284) 3.02E-02 

BP cellular response to interleukin-12 (GO:0071349) 3.02E-02 

BP substrate adhesion-dependent cell spreading (GO:0034446) 3.02E-02 
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BP dicarboxylic acid metabolic process (GO:0043648) 3.04E-02 

BP positive regulation of cell cycle G1/S phase transition (GO:1902808) 3.07E-02 

BP myeloid leukocyte differentiation (GO:0002573) 3.15E-02 

BP positive regulation of cellular protein localization (GO:1903829) 3.15E-02 

BP mitochondrial respiratory chain complex assembly (GO:0033108) 3.23E-02 

BP fatty acid beta-oxidation using acyl-CoA oxidase (GO:0033540) 3.31E-02 

BP ganglioside biosynthetic process (GO:0001574) 3.31E-02 

BP glucan catabolic process (GO:0009251) 3.31E-02 

BP glycogen catabolic process (GO:0005980) 3.31E-02 

BP histone H4-K5 acetylation (GO:0043981) 3.31E-02 

BP histone H4-K8 acetylation (GO:0043982) 3.31E-02 

BP negative regulation of androgen receptor signaling pathway (GO:0060766) 3.31E-02 

BP negative regulation of protein processing (GO:0010955) 3.31E-02 

BP nitric oxide biosynthetic process (GO:0006809) 3.31E-02 

BP placenta development (GO:0001890) 3.31E-02 

BP calcium-ion regulated exocytosis (GO:0017156) 3.37E-02 

BP peroxisomal membrane transport (GO:0015919) 3.37E-02 

BP vascular endothelial growth factor receptor signaling pathway (GO:0048010) 3.44E-02 

BP negative regulation of extrinsic apoptotic signaling pathway in absence of ligand (GO:2001240) 3.45E-02 

BP negative regulation of signal transduction in absence of ligand (GO:1901099) 3.45E-02 

BP negative regulation of smoothened signaling pathway (GO:0045879) 3.45E-02 

BP ATP synthesis coupled proton transport (GO:0015986) 3.45E-02 

BP carbohydrate derivative catabolic process (GO:1901136) 3.45E-02 

BP N-glycan processing (GO:0006491) 3.45E-02 

BP negative regulation of oxidative stress-induced intrinsic apoptotic signaling pathway (GO:1902176) 3.45E-02 
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BP RNA processing (GO:0006396) 3.47E-02 

BP bone development (GO:0060348) 3.50E-02 

BP glycoside catabolic process (GO:0016139) 3.53E-02 

BP internal protein amino acid acetylation (GO:0006475) 3.53E-02 

BP negative regulation of cAMP-dependent protein kinase activity (GO:2000480) 3.53E-02 

BP negative regulation of neural precursor cell proliferation (GO:2000178) 3.53E-02 

BP negative regulation of response to reactive oxygen species (GO:1901032) 3.53E-02 

BP positive regulation of Arp2/3 complex-mediated actin nucleation (GO:2000601) 3.53E-02 

BP positive regulation of early endosome to late endosome transport (GO:2000643) 3.53E-02 

BP protein localization to microtubule (GO:0035372) 3.53E-02 

BP protein retention in ER lumen (GO:0006621) 3.53E-02 

BP regulation of acetyl-CoA biosynthetic process from pyruvate (GO:0010510) 3.53E-02 

BP regulation of acyl-CoA biosynthetic process (GO:0050812) 3.53E-02 

BP telomeric D-loop disassembly (GO:0061820) 3.53E-02 

BP eye development (GO:0001654) 3.54E-02 

BP positive regulation of mitotic cell cycle phase transition (GO:1901992) 3.54E-02 

BP adherens junction organization (GO:0034332) 3.57E-02 

BP inner mitochondrial membrane organization (GO:0007007) 3.57E-02 

BP response to hydrogen peroxide (GO:0042542) 3.57E-02 

BP negative regulation of fat cell differentiation (GO:0045599) 3.74E-02 

BP regulation of protein import into nucleus (GO:0042306) 3.74E-02 

BP telomere maintenance via telomere lengthening (GO:0010833) 3.74E-02 

BP regulation of DNA repair (GO:0006282) 3.87E-02 

BP cell-cell adhesion mediated by integrin (GO:0033631) 3.97E-02 

BP centriole assembly (GO:0098534) 3.97E-02 
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BP DNA protection (GO:0042262) 3.97E-02 

BP dorsal/ventral axis specification (GO:0009950) 3.97E-02 

BP establishment of protein localization to telomere (GO:0070200) 3.97E-02 

BP gamma-aminobutyric acid metabolic process (GO:0009448) 3.97E-02 

BP hematopoietic stem cell migration (GO:0035701) 3.97E-02 

BP immature B cell differentiation (GO:0002327) 3.97E-02 

BP mannose trimming involved in glycoprotein ERAD pathway (GO:1904382) 3.97E-02 

BP positive regulation of protein localization to cell cortex (GO:1904778) 3.97E-02 

BP prostaglandin transport (GO:0015732) 3.97E-02 

BP protein deglycosylation involved in glycoprotein catabolic process (GO:0035977) 3.97E-02 

BP regulation of metaphase plate congression (GO:0090235) 3.97E-02 

BP regulation of receptor catabolic process (GO:2000644) 3.97E-02 

BP spliceosomal conformational changes to generate catalytic conformation (GO:0000393) 3.97E-02 

BP stress granule disassembly (GO:0035617) 3.97E-02 

BP succinyl-CoA metabolic process (GO:0006104) 3.97E-02 

BP trophoblast giant cell differentiation (GO:0060707) 3.97E-02 

BP ubiquitin-dependent glycoprotein ERAD pathway (GO:0097466) 3.97E-02 

BP ERAD pathway (GO:0036503) 3.98E-02 

BP cellular response to topologically incorrect protein (GO:0035967) 3.99E-02 

BP negative regulation of autophagy (GO:0010507) 4.10E-02 

BP carboxylic acid transmembrane transport (GO:1905039) 4.19E-02 

BP regulation of G0 to G1 transition (GO:0070316) 4.19E-02 

BP regulation of mitochondrial membrane potential (GO:0051881) 4.19E-02 

BP cristae formation (GO:0042407) 4.22E-02 

BP positive regulation of microtubule polymerization (GO:0031116) 4.22E-02 
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BP positive regulation of protein import into nucleus (GO:0042307) 4.22E-02 

BP ventricular septum morphogenesis (GO:0060412) 4.22E-02 

BP positive regulation of cellular protein metabolic process (GO:0032270) 4.23E-02 

BP regulation of proteasomal ubiquitin-dependent protein catabolic process (GO:0032434) 4.23E-02 

BP actin crosslink formation (GO:0051764) 4.27E-02 

BP energy coupled proton transport, down electrochemical gradient (GO:0015985) 4.27E-02 

BP morphogenesis of a polarized epithelium (GO:0001738) 4.27E-02 

BP nonribosomal peptide biosynthetic process (GO:0019184) 4.27E-02 

BP protein import into peroxisome matrix (GO:0016558) 4.27E-02 

BP regulation of glycogen metabolic process (GO:0070873) 4.27E-02 

BP cilium organization (GO:0044782) 4.43E-02 

BP actin filament organization (GO:0007015) 4.48E-02 

BP basement membrane organization (GO:0071711) 4.53E-02 

BP cellular polysaccharide catabolic process (GO:0044247) 4.53E-02 

BP glycosphingolipid biosynthetic process (GO:0006688) 4.53E-02 

BP histone H2A acetylation (GO:0043968) 4.53E-02 

BP late endosome to vacuole transport via multivesicular body sorting pathway (GO:0032511) 4.53E-02 

BP negative regulation of transcription regulatory region DNA binding (GO:2000678) 4.53E-02 

BP nitric oxide metabolic process (GO:0046209) 4.53E-02 

BP positive regulation by host of viral transcription (GO:0043923) 4.53E-02 

BP positive regulation of small molecule metabolic process (GO:0062013) 4.53E-02 

BP protein localization to endoplasmic reticulum (GO:0070972) 4.53E-02 

BP regulation of ATP biosynthetic process (GO:2001169) 4.53E-02 

BP regulation of interleukin-1 production (GO:0032652) 4.53E-02 

BP regulation of intrinsic apoptotic signaling pathway in response to DNA damage (GO:1902229) 4.53E-02 
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BP establishment of epithelial cell polarity (GO:0090162) 4.54E-02 

BP ganglioside metabolic process (GO:0001573) 4.54E-02 

BP miRNA metabolic process (GO:0010586) 4.54E-02 

BP nucleobase-containing compound biosynthetic process (GO:0034654) 4.54E-02 

BP interleukin-12-mediated signaling pathway (GO:0035722) 4.57E-02 

BP positive regulation of nucleocytoplasmic transport (GO:0046824) 4.57E-02 

BP positive regulation of organelle assembly (GO:1902117) 4.57E-02 

BP ribonucleoprotein complex biogenesis (GO:0022613) 4.72E-02 

BP actin filament bundle assembly (GO:0051017) 4.86E-02 

BP regulation of protein localization to cell surface (GO:2000008) 4.86E-02 

BP DNA duplex unwinding (GO:0032508) 4.89E-02 

BP regulation of cellular catabolic process (GO:0031329) 4.92E-02 

BP translesion synthesis (GO:0019985) 4.97E-02 

BP DNA-templated transcription, termination (GO:0006353) 5.10E-02 

BP protein stabilization (GO:0050821) 5.15E-02 

MF ATPase regulator activity (GO:0060590) 3.09E-04 

MF nuclear receptor coactivator activity (GO:0030374) 3.39E-04 

MF ATPase activator activity (GO:0001671) 8.38E-04 

MF RNA binding (GO:0003723) 9.92E-04 

MF antiporter activity (GO:0015297) 3.80E-03 

MF damaged DNA binding (GO:0003684) 5.62E-03 

MF ubiquitin-like protein ligase binding (GO:0044389) 5.77E-03 

MF telomeric DNA binding (GO:0042162) 7.18E-03 

MF ubiquitin protein ligase binding (GO:0031625) 7.33E-03 

MF protein serine/threonine kinase inhibitor activity (GO:0030291) 9.23E-03 
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MF exodeoxyribonuclease activity, producing 5'-phosphomonoesters (GO:0016895) 9.75E-03 

MF ATPase binding (GO:0051117) 1.09E-02 

MF protein phosphatase regulator activity (GO:0019888) 1.44E-02 

MF cadherin binding (GO:0045296) 1.76E-02 

MF cAMP-dependent protein kinase regulator activity (GO:0008603) 1.84E-02 

MF endopeptidase activator activity (GO:0061133) 1.84E-02 

MF histone demethylase activity (H3-K36 specific) (GO:0051864) 1.84E-02 

MF mannosyl-oligosaccharide 1,2-alpha-mannosidase activity (GO:0004571) 2.04E-02 

MF mannosyl-oligosaccharide mannosidase activity (GO:0015924) 2.04E-02 

MF DNA-binding transcription factor binding (GO:0140297) 2.11E-02 

MF vitamin D receptor binding (GO:0042809) 2.32E-02 

MF secondary active transmembrane transporter activity (GO:0015291) 2.59E-02 

MF peptidase activator activity (GO:0016504) 2.64E-02 

MF protein kinase inhibitor activity (GO:0004860) 2.71E-02 

MF lysophosphatidic acid acyltransferase activity (GO:0042171) 3.31E-02 

MF Wnt-activated receptor activity (GO:0042813) 3.31E-02 

MF cAMP-dependent protein kinase inhibitor activity (GO:0004862) 3.53E-02 

MF disulfide oxidoreductase activity (GO:0015036) 3.53E-02 

MF ubiquitin ligase inhibitor activity (GO:1990948) 3.53E-02 

MF oxidoreduction-driven active transmembrane transporter activity (GO:0015453) 3.54E-02 

MF nuclear receptor binding (GO:0016922) 3.63E-02 

MF NADP binding (GO:0050661) 3.74E-02 

MF C-acetyltransferase activity (GO:0016453) 3.97E-02 

MF D-loop DNA binding (GO:0062037) 3.97E-02 

MF glutathione transmembrane transporter activity (GO:0034634) 3.97E-02 
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MF L-leucine transmembrane transporter activity (GO:0015190) 3.97E-02 

MF phosphatidylserine flippase activity (GO:0140346) 3.97E-02 

MF syndecan binding (GO:0045545) 3.97E-02 

MF thyroid hormone receptor binding (GO:0046966) 4.22E-02 

MF hydro-lyase activity (GO:0016836) 4.48E-02 

MF core promoter sequence-specific DNA binding (GO:0001046) 4.52E-02 

MF CoA hydrolase activity (GO:0016289) 4.53E-02 

MF 2-oxoglutarate-dependent dioxygenase activity (GO:0016706) 4.86E-02 

MF active ion transmembrane transporter activity (GO:0022853) 4.97E-02 

MF signal sequence binding (GO:0005048) 4.97E-02 

KEGG Propanoate metabolism 2.77E-04 

KEGG Longevity regulating pathway 4.44E-04 

KEGG AMPK signaling pathway 1.09E-03 

KEGG Peroxisome 2.76E-03 

KEGG Notch signaling pathway 4.38E-03 

KEGG Protein processing in endoplasmic reticulum 7.26E-03 

KEGG Thyroid hormone signaling pathway 8.86E-03 

KEGG Thermogenesis 9.65E-03 

KEGG Pentose phosphate pathway 9.72E-03 

KEGG Lysine degradation 2.01E-02 

KEGG Base excision repair 2.08E-02 

KEGG Small cell lung cancer 2.50E-02 

KEGG Non-alcoholic fatty liver disease 2.66E-02 

KEGG beta-Alanine metabolism 2.69E-02 

KEGG Fatty acid degradation 2.85E-02 
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KEGG Glutathione metabolism 3.22E-02 

KEGG Oxidative phosphorylation 3.36E-02 

KEGG Mismatch repair 3.58E-02 

KEGG Purine metabolism 3.65E-02 

KEGG DNA replication 3.91E-02 

KEGG Cysteine and methionine metabolism 4.41E-02 

KEGG N-Glycan biosynthesis 4.41E-02 

KEGG Amoebiasis 4.54E-02 

KEGG mRNA surveillance pathway 4.96E-02 
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Appendix 3: Selection of 515 Hgb-associated SNPs 
 
Table 8.2: Association statistics for the 515 conditionally independent Hgb-associated variants obtained from Vuckovic et al. (2020) for the 
analysis performed in Chapter 6. 

RSID Chr Pos Effect_allele Ref_allele EAF Beta SE Pvalue 

rs147804508 19 50035161 T C 0.010576 0.0655968 0.0109318 1.96652E-09 

rs72681869 14 50655357 C G 0.010983 0.0650354 0.0102392 2.13074E-10 

rs181000569 15 67166007 A C 0.011052 0.0715299 0.0102425 2.87635E-12 

rs17850433 21 45746102 T C 0.987992 0.0619513 0.00977557 2.33736E-10 

rs12925612 16 88777073 G C 0.987987 0.0801445 0.0101211 2.40284E-15 

rs114948639 2 46293826 C T 0.987824 0.122843 0.00992527 3.49017E-35 

rs532782761 3 172276502 A C 0.985836 0.0713986 0.0104224 7.35948E-12 

rs115902543 6 25712496 A C 0.014599 0.0551956 0.00897074 7.61037E-10 

rs61750953 19 41306650 C T 0.984602 0.0955095 0.00865909 2.73957E-28 

rs61744929 11 2325427 C T 0.019006 0.0497109 0.00779756 1.8274E-10 

rs192191487 19 41305065 A G 0.019053 0.0769008 0.00882109 2.83574E-18 

rs576750965 19 51003387 C CAGAG 0.019968 0.0589923 0.00801072 1.78253E-13 

rs61835223 1 231562228 G A 0.02042 0.119324 0.00761638 2.55263E-55 

rs77542162 17 67081278 G A 0.022711 0.0905271 0.00716194 1.27014E-36 

rs182552845 7 100306920 G A 0.976915 0.0480735 0.00737827 7.24229E-11 

rs72638978 8 41540828 C T 0.023161 0.0533022 0.00716916 1.04624E-13 

rs184088518 19 41305138 G T 0.976304 0.118949 0.00727042 3.65041E-60 

rs150844304 15 43726625 A C 0.974707 0.0951662 0.00679515 1.45242E-44 

rs74960997 6 163941243 T G 0.973675 0.0429285 0.00667419 1.25922E-10 

rs41278174 16 16259596 A G 0.02713 0.0524204 0.00655803 1.31358E-15 



 419 

rs113405739 1 154976518 A G 0.971172 0.0717367 0.0063737 2.18551E-29 

rs142456437 X 129970818 G C 0.970671 0.0313754 0.00541419 6.83085E-09 

rs41295942 7 100218631 T C 0.030798 0.0462592 0.00615717 5.77602E-14 

rs1800961 20 43042364 T C 0.031089 0.0725911 0.0061426 3.1641E-32 

rs9403391 6 142814991 C T 0.968508 0.0382107 0.00611088 4.02909E-10 

rs78415359 18 46207268 G A 0.968132 0.0488166 0.00606821 8.64952E-16 

rs186222325 4 79344554 T C 0.032868 0.039012 0.00624401 4.15987E-10 

rs139273519 12 11803303 G C 0.961292 0.0359866 0.00555751 9.46175E-11 

rs775701197 11 30749171 GTTCCCGCTCTGTAACTTATCAAC G 0.959211 0.0712129 0.00551689 4.04859E-38 

rs11844732 14 24808961 G T 0.045221 0.0301607 0.00514171 4.46733E-09 

rs116971887 16 51170026 G T 0.954588 0.0375855 0.00518815 4.3407E-13 

rs200299716 6 34168059 TA T 0.046416 0.0365519 0.00507608 5.98548E-13 

rs28930677 2 120848049 T C 0.046661 0.0426472 0.00503343 2.39582E-17 

rs16874060 4 23737865 G A 0.047264 0.0481084 0.00501853 9.143E-22 

rs17287978 6 43941137 T C 0.951909 0.0686304 0.00497296 2.5234E-43 

rs34952318 20 11177055 A G 0.049108 0.0347781 0.00500048 3.52681E-12 

rs10410950 19 13128861 G A 0.950001 0.0300262 0.00490498 9.26552E-10 

rs4008347 9 6370088 G A 0.9478262 0.0400915 0.00478593 5.43166E-17 

rs113292219 1 29486128 T C 0.053762 0.0339747 0.00470016 4.88669E-13 

rs34939651 13 110424933 AG A 0.055329 0.0301039 0.00475521 2.44021E-10 

rs60925406 5 52221748 T C 0.941883 0.0302675 0.00455486 3.03011E-11 

rs117900708 15 41190639 T G 0.939529 0.028021 0.00452146 5.74274E-10 

rs12593543 15 95696202 T C 0.060812 0.0262343 0.00446898 4.3498E-09 

rs117793618 11 10279241 A G 0.938708 0.0605039 0.00446641 8.31808E-42 

rs35765401 5 111357751 A AC 0.937806 0.0323905 0.00453668 9.354E-13 
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rs8176749 9 136131188 T C 0.062637 0.0804246 0.00439641 9.36714E-75 

rs12881869 14 50923249 C T 0.929127 0.0298012 0.00416013 7.86279E-13 

rs2849017 6 32174048 A G 0.928676 0.0392043 0.00413104 2.30643E-21 

rs4925184 20 61037490 A G 0.9279162 0.0334781 0.00415373 7.64394E-16 

rs3765000 2 44014301 G A 0.073705 0.0276225 0.00406313 1.05839E-11 

rs13107325 4 103188709 T C 0.074589 0.050046 0.00406064 6.67258E-35 

rs58542926 19 19379549 T C 0.074789 0.0317177 0.00405435 5.15266E-15 

rs1265075 6 31113113 A C 0.07622 0.0353065 0.00401163 1.35559E-18 

rs35994626 2 208632817 G A 0.923751 0.0269083 0.00399096 1.55885E-11 

rs17185657 6 29821606 T A 0.076717 0.0282621 0.00399833 1.56644E-12 

rs1800562 6 26093141 A G 0.076922 0.189783 0.00400401 0 

rs78744187 19 33754548 T C 0.081199 0.0391557 0.00389713 9.44028E-24 

rs34651 5 72144005 T C 0.9185931 0.033691 0.0039204 8.41644E-18 

rs73920681 2 25578588 G C 0.082393 0.0317612 0.00386234 1.9797E-16 

rs12481910 21 38168446 T C 0.915062 0.024986 0.00382577 6.53438E-11 

rs34933611 18 12546603 G C 0.912582 0.0245398 0.00380187 1.08458E-10 

rs74414571 7 25420102 G C 0.912166 0.0273793 0.00378889 4.96674E-13 

rs113670117 14 36099366 C T 0.911796 0.03085 0.00375552 2.12917E-16 

rs731749 16 86356582 G A 0.911476 0.0392431 0.00382712 1.13603E-24 

rs1029238 6 30138645 A G 0.089377 0.0264675 0.00373091 1.30183E-12 

rs4240624 8 9184231 G A 0.0913002 0.0314424 0.00370464 2.11489E-17 

rs75224897 12 48496565 C G 0.092432 0.027608 0.00372617 1.27048E-13 

rs56011044 1 48022107 C T 0.903708 0.0326889 0.00363767 2.55881E-19 

rs2612585 18 43085920 G A 0.9019225 0.0254973 0.00359142 1.25206E-12 

rs2228445 1 203667409 T C 0.0985711 0.0414811 0.00356899 3.16197E-31 
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rs9816588 3 37987856 A C 0.098761 0.0357016 0.00357051 1.53913E-23 

rs56262900 2 23897725 A G 0.101602 0.03021 0.00352309 9.92083E-18 

rs2229742 21 16339172 G C 0.896758 0.0260766 0.00350857 1.06759E-13 

rs112391082 8 48864284 GGAAA G 0.103347 0.0226491 0.00350313 1.01038E-10 

rs7194649 16 215106 C A 0.894445 0.033148 0.00356511 1.43261E-20 

rs137893155 3 132198815 G GTTATT 0.894068 0.0255875 0.00350871 3.04106E-13 

rs6967414 7 6749758 A G 0.107017 0.0243489 0.00345115 1.72228E-12 

rs17476364 10 71094504 C T 0.108778 0.149026 0.00341991 0 

rs138780918 4 124765262 AAC A 0.890645 0.022192 0.00341822 8.45537E-11 

rs146541367 7 150502468 AT A 0.889231 0.0277274 0.00340079 3.54351E-16 

rs371199618 1 31594199 CAAA C 0.111684 0.0232723 0.00349061 2.6088E-11 

rs61591132 7 150952770 G A 0.887939 0.0214482 0.00338584 2.3784E-10 

rs3847858 12 52318378 T A 0.113253 0.0222474 0.00336646 3.88117E-11 

rs2854528 17 42338248 G A 0.114247 0.0338113 0.0033507 6.06626E-24 

rs12631955 3 66881402 C G 0.11435 0.0231182 0.00334853 5.05637E-12 

rs833805 6 44030011 G A 0.884699 0.0680859 0.00349099 1.02879E-84 

rs55781197 16 67940350 G A 0.115344 0.0364845 0.00333429 7.24132E-28 

rs34130368 10 48411796 G T 0.884606 0.0258451 0.0033333 8.93181E-15 

rs55761633 1 20757820 T C 0.883547 0.0208652 0.00330339 2.67901E-10 

rs55971447 1 161515326 T C 0.117695 0.0336366 0.00328445 1.29663E-24 

rs1354674 5 40623128 C T 0.117765 0.0237929 0.00332321 8.09047E-13 

rs190379045 3 41882697 A G 0.118236 0.0239721 0.00348204 5.79914E-12 

rs12607403 18 46343221 C T 0.120048 0.0245215 0.00329892 1.06009E-13 

rs881144 22 37471290 G A 0.877321 0.0736692 0.00324719 6.0122E-114 

rs12129889 1 79452106 T C 0.122839 0.0189943 0.00325564 5.40249E-09 
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rs11543269 18 55313997 C T 0.876133 0.0234176 0.00324582 5.40552E-13 

rs12987661 2 69813458 C T 0.12528 0.0207983 0.00320821 9.00142E-11 

rs6724315 2 46363699 C T 0.127071 0.0495429 0.00320213 5.37337E-54 

rs2928166 5 76479833 C T 0.128202 0.0276397 0.0031992 5.64269E-18 

rs140294987 2 112247747 T A 0.871148 0.0227731 0.00327299 3.4541E-12 

rs11098259 4 115519825 A G 0.870571 0.0252854 0.00319409 2.44667E-15 

rs357282 5 38869035 G T 0.869474 0.0252743 0.00317019 1.55512E-15 

rs13299342 9 136141504 A G 0.130949 0.0256306 0.00315471 4.49024E-16 

rs34914463 17 7366619 T C 0.868867 0.0285732 0.00315511 1.35116E-19 

rs12412959 10 82141337 G A 0.865923 0.0189318 0.00312769 1.42203E-09 

rs11784090 8 23377161 T C 0.135373 0.0201851 0.00311393 9.0398E-11 

rs12119893 1 10483167 A G 0.135855 0.0214433 0.00325438 4.42625E-11 

rs145606348 6 43230103 GGT G 0.863806 0.0249099 0.00310479 1.03147E-15 

rs5955867 X 19959144 C G 0.137744 0.0181221 0.00267563 1.2612E-11 

rs13169 19 808586 G C 0.138608 0.0358235 0.00307835 2.66498E-31 

rs11694902 2 121988884 A G 0.139399 0.0305995 0.0030635 1.71304E-23 

rs556412194 5 154027482 G GT 0.140487 0.0280995 0.00309732 1.1664E-19 

rs76772442 14 65506975 G A 0.141515 0.0265993 0.00307671 5.36307E-18 

rs8133974 21 36450841 T C 0.143791 0.0233546 0.00303658 1.45891E-14 

rs3212018 7 80303700 A AGCACAAATAAAGCACT 0.14466 0.0208563 0.00317418 5.01094E-11 

rs541907913 20 25294041 A G 0.85531 0.0199732 0.00310329 1.22552E-10 

rs2226683 21 39868927 C T 0.852588 0.0210697 0.00301876 2.96048E-12 

rs10981834 9 116349209 G C 0.851781 0.0280996 0.00299538 6.53623E-21 

rs198851 6 26104632 T G 0.150386 0.108478 0.00297238 1.315E-291 

rs12902050 15 51085374 C T 0.150513 0.0187267 0.00298795 3.67109E-10 
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rs67037045 12 13050341 ATGAGAAGACC A 0.848592 0.0318423 0.00297806 1.10598E-26 

rs4933432 10 88925529 A T 0.848427 0.0216818 0.00297154 2.95381E-13 

rs1831977 10 5254821 G C 0.153679 0.0205618 0.00295346 3.35628E-12 

rs2834317 21 35356706 G A 0.846038 0.0372133 0.00297838 8.00209E-36 

rs17654742 1 217472265 A G 0.154143 0.0295032 0.0029617 2.24475E-23 

rs111959637 19 33231028 C G 0.844121 0.0287451 0.00307842 9.85287E-21 

rs1086605 1 147287992 T A 0.156038 0.0263508 0.00292482 2.07234E-19 

rs181361 22 21929566 A T 0.843701 0.0210612 0.00312157 1.50944E-11 

rs499974 11 75455021 A C 0.156567 0.0218025 0.00292873 9.74207E-14 

rs62401198 6 43801654 C T 0.842739 0.0358666 0.00292066 1.1556E-34 

rs73047068 19 41297106 G C 0.83751 0.0183349 0.00289062 2.25487E-10 

rs1547651 6 43730644 T A 0.16472 0.0335167 0.00288668 3.63149E-31 

rs12952262 17 46683800 C T 0.835232 0.0235451 0.00287749 2.77984E-16 

rs12889267 14 21542766 A G 0.832307 0.0242016 0.00285177 2.12919E-17 

rs34295474 11 1689409 G A 0.831521 0.0176224 0.00288172 9.64137E-10 

rs9895661 17 59456589 C T 0.170917 0.0372736 0.00283328 1.57949E-39 

rs4837197 9 130622946 T C 0.171428 0.0384714 0.00282615 3.36791E-42 

rs2278243 19 41132022 G C 0.17315 0.0242426 0.00282245 8.75736E-18 

rs34920465 1 22700351 G A 0.176488 0.0240535 0.00278197 5.32376E-18 

rs202049562 2 27779565 A T 0.178938 0.0242351 0.00284287 1.5298E-17 

rs17816693 15 33324280 T C 0.179382 0.0211103 0.00278035 3.13363E-14 

rs515135 2 21286057 T C 0.180074 0.0170724 0.00276101 6.27397E-10 

rs144579321 6 36555803 A AT 0.819339 0.0182494 0.00278732 5.85894E-11 

rs112982980 6 125622737 G T 0.181257 0.0232425 0.00276746 4.52236E-17 

rs9302635 16 72144174 T C 0.817908 0.0238295 0.00276241 6.33441E-18 
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rs9327454 5 127249136 A G 0.817194 0.0200071 0.00277196 5.28848E-13 

rs17799476 2 46352326 C G 0.816452 0.0243846 0.00275006 7.51876E-19 

rs8080123 17 59242914 G T 0.816333 0.0281078 0.002757 2.086E-24 

rs2519093 9 136141870 C T 0.815601 0.0849069 0.00275241 5.9214E-209 

rs3859158 16 4676660 A G 0.815044 0.0184872 0.00274844 1.73872E-11 

rs5762813 22 29203314 C T 0.814784 0.0281293 0.0027426 1.10718E-24 

rs4760682 12 48512285 C A 0.186889 0.0476284 0.00272872 3.18239E-68 

rs12352863 9 33116941 G C 0.812599 0.0177532 0.00274097 9.35784E-11 

rs17413015 1 161644811 C T 0.811738 0.0221227 0.00275961 1.08709E-15 

rs8030097 15 66943404 G C 0.809849 0.0232918 0.00272778 1.35695E-17 

rs1399562 8 76493714 A T 0.807618 0.0185028 0.0027067 8.14772E-12 

rs77303550 16 72079657 C T 0.807502 0.0197289 0.00271001 3.33795E-13 

rs2905582 5 137000719 C T 0.192613 0.0183555 0.0027169 1.41809E-11 

rs8090126 18 42811727 C T 0.193674 0.0203454 0.00269995 4.86568E-14 

rs6690625 1 66077590 G T 0.195771 0.0190782 0.00267574 1.00322E-12 

rs34798274 15 63359093 CT C 0.197262 0.0178608 0.00268889 3.08525E-11 

rs10770829 12 21710749 C T 0.801084 0.0184368 0.00266642 4.69717E-12 

rs11030099 11 27677583 A C 0.198944 0.0167495 0.00267826 4.00395E-10 

rs28718978 15 76123209 T G 0.800378 0.0295666 0.00271921 1.54625E-27 

rs7532370 1 217034049 T C 0.200004 0.020582 0.00265166 8.36464E-15 

rs2424 2 42285575 A T 0.201329 0.0167294 0.00265362 2.8937E-10 

rs531302321 16 204126 G A 0.202266 0.0180474 0.00286642 3.05136E-10 

rs7482510 11 2190591 G C 0.203723 0.0185932 0.00269483 5.21559E-12 

rs4953256 2 46005646 G C 0.204974 0.0174673 0.00264122 3.75731E-11 

rs139113145 9 107761370 T TA 0.205533 0.0173228 0.00268533 1.11187E-10 
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rs2255293 2 12104445 T C 0.209067 0.0165568 0.00262204 2.71084E-10 

rs752590 2 113972945 G A 0.210488 0.0314183 0.00260331 1.5475E-33 

rs17685306 9 20551460 C G 0.789458 0.0163305 0.0026145 4.20754E-10 

rs117469893 16 52581047 C G 0.789394 0.0160182 0.00261814 9.46619E-10 

rs2306050 16 88800295 T C 0.211481 0.0246514 0.00263452 8.1975E-21 

rs10592192 12 4330068 TTC T 0.787603 0.0218724 0.00261232 5.62711E-17 

rs35240997 3 12379351 A G 0.786172 0.0313326 0.00259641 1.56517E-33 

rs144903947 14 65892694 CA C 0.78581 0.0189379 0.00263616 6.77523E-13 

rs71152258 16 57344314 A AT 0.78518 0.0167719 0.00278567 1.73581E-09 

rs4456287 11 118298252 T C 0.784682 0.0175607 0.0025918 1.2399E-11 

rs10849962 12 112037526 G A 0.784372 0.0601431 0.00260224 3.503E-118 

rs13415550 2 144352423 T C 0.215801 0.0153445 0.00260333 3.76543E-09 

rs738409 22 44324727 G C 0.216253 0.033724 0.00258242 5.64137E-39 

rs116948941 21 38071988 G A 0.217007 0.0260777 0.00261784 2.24572E-23 

rs35062406 X 112157347 CT C 0.218536 0.01651 0.00216585 2.4809E-14 

rs1058 19 44268325 G C 0.218831 0.0269142 0.00258587 2.2753E-25 

rs1155347 6 39146230 T C 0.780811 0.0175426 0.00260039 1.51828E-11 

rs2070895 15 58723939 G A 0.78052 0.0231314 0.00257697 2.80278E-19 

rs6627226 X 149652120 G T 0.219703 0.0134917 0.00215172 3.60601E-10 

rs7849537 9 114897899 T C 0.780276 0.0209619 0.00257243 3.67929E-16 

rs10640460 17 57866165 T TAA 0.779807 0.0304416 0.00259552 9.10399E-32 

rs552708909 19 50090422 CT C 0.221555 0.0251717 0.00258793 2.32278E-22 

rs2835435 21 38055216 C T 0.777662 0.0316199 0.00260408 6.29169E-34 

rs558567978 17 76124810 AG A 0.222377 0.0213075 0.00258527 1.69517E-16 

rs1924930 13 78447373 T A 0.224612 0.016032 0.00255992 3.78379E-10 
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rs11072332 15 72108307 G T 0.773145 0.0212445 0.00254862 7.70491E-17 

rs2950015 17 44332351 G A 0.227758 0.0482432 0.00254317 3.03571E-80 

rs34390795 12 133112394 C CGT 0.229913 0.018972 0.00254564 9.14194E-14 

rs34857974 1 45984852 A ATGT 0.230194 0.0195891 0.00252342 8.29979E-15 

rs12423752 12 110294902 T C 0.769449 0.0196953 0.00253784 8.44921E-15 

rs1171615 10 61469090 T C 0.769072 0.0147984 0.00252751 4.77204E-09 

rs8069437 17 44906949 T C 0.231167 0.0317172 0.00256709 4.55979E-35 

rs13133952 4 187977377 C T 0.768739 0.0148478 0.00254651 5.5213E-09 

rs1175550 1 3691528 G A 0.231502 0.0326381 0.00255302 2.01141E-37 

rs11242782 6 2522808 A G 0.231617 0.0159512 0.00253039 2.90341E-10 

rs229932 6 134241797 C T 0.232317 0.0182203 0.00258719 1.88813E-12 

rs143288026 2 145664860 CA C 0.234183 0.0285235 0.00253132 1.88314E-29 

rs12800440 11 95795807 C T 0.765123 0.0158564 0.00255755 5.65207E-10 

rs368417629 11 10195282 G T 0.764894 0.0467189 0.00253456 7.17475E-76 

rs128494 21 37834258 C T 0.764759 0.0334136 0.00254957 3.05904E-39 

rs55639123 15 86160268 G A 0.235294 0.0156722 0.00251689 4.76023E-10 

rs165944 5 88110363 C T 0.235346 0.0167524 0.0025167 2.80435E-11 

rs2184540 9 93801208 A G 0.235706 0.0174917 0.00250599 2.95272E-12 

rs4470295 2 160957824 C G 0.763718 0.0165058 0.0025031 4.27719E-11 

rs543893408 10 77932816 TA T 0.236877 0.0195677 0.0025348 1.16674E-14 

rs3791020 1 173813197 G A 0.762382 0.0164635 0.00249244 3.96513E-11 

rs35790189 3 196176998 G GGT 0.761941 0.0146975 0.00250986 4.74421E-09 

rs5813399 15 66999615 CT C 0.2402 0.0188309 0.0025147 6.97562E-14 

rs12688558 X 57448902 G T 0.24078 0.0208693 0.00207154 7.17754E-24 

rs11708187 3 72396329 A G 0.241476 0.015815 0.00249456 2.3007E-10 
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rs76506961 11 8866146 AAAT A 0.2433 0.0303222 0.00249902 7.00675E-34 

rs540730 12 57807114 T C 0.244861 0.0225578 0.00247353 7.53471E-20 

rs79034755 17 80189895 C T 0.754165 0.0148751 0.00249019 2.32245E-09 

rs7168958 15 57719138 G C 0.753561 0.0165661 0.00247826 2.31605E-11 

rs72654647 1 25022314 A G 0.246726 0.0188636 0.00246901 2.16973E-14 

rs7497961 15 66020908 A G 0.753059 0.0200364 0.00247264 5.35137E-16 

rs9270475 6 32559007 A T 0.752906 0.0491568 0.00252986 4.25026E-84 

rs12045893 1 158530416 C T 0.752769 0.0180726 0.0024578 1.93573E-13 

rs2859337 6 12288422 A G 0.247982 0.0196527 0.00247758 2.15269E-15 

rs9614123 22 30371350 A G 0.750818 0.0199906 0.00245787 4.17751E-16 

rs1900920 15 42768198 T C 0.750641 0.0211169 0.00246537 1.07694E-17 

rs218264 4 55408875 A T 0.750624 0.0443712 0.00248009 1.38689E-71 

rs145886884 3 23395310 A ATT 0.250629 0.0172022 0.00247273 3.48177E-12 

rs10864013 1 213039546 T C 0.747402 0.0175674 0.0024481 7.18161E-13 

rs464605 5 55807370 T C 0.745907 0.0206462 0.00244281 2.86787E-17 

rs2069443 7 150755173 G T 0.25481 0.0189821 0.00243889 7.07743E-15 

rs7244849 18 11997350 A G 0.743018 0.0142129 0.00244543 6.17217E-09 

rs7255933 19 45766729 A G 0.2576 0.0212728 0.0024381 2.65817E-18 

rs1016144 17 14822052 A G 0.741961 0.0169764 0.00246805 6.05001E-12 

rs140696582 1 40421617 TG T 0.739454 0.0198956 0.00242736 2.47705E-16 

rs3754140 1 214176380 C T 0.261392 0.0398752 0.00241319 2.4709E-61 

rs7775698 6 135418635 C T 0.738351 0.0525959 0.00241965 9.1727E-105 

rs4075958 5 176784512 A G 0.2627 0.0279767 0.00241737 5.63431E-31 

rs4686671 3 193799549 C T 0.735495 0.0156546 0.00241506 9.04697E-11 

rs5819600 17 17007351 A AG 0.264722 0.0161183 0.00241773 2.61605E-11 
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rs2816916 1 200034969 G A 0.26608 0.0142167 0.00240001 3.14968E-09 

rs2836883 21 40466744 A G 0.266682 0.017799 0.00241796 1.82313E-13 

rs5934505 X 8913826 C T 0.268045 0.03675 0.00199179 5.14357E-76 

rs34792580 X 152890468 C G 0.269759 0.0222047 0.00200014 1.23255E-28 

rs10483981 14 86119802 T C 0.2703 0.0138762 0.00240192 7.59863E-09 

rs10494964 1 213966887 C T 0.271948 0.0260012 0.00243226 1.132E-26 

rs9690544 7 129048940 C A 0.272432 0.018411 0.00239626 1.55135E-14 

rs5750644 22 39009135 A T 0.726258 0.0173242 0.00239962 5.21561E-13 

rs1434282 1 199010721 C T 0.275383 0.0238328 0.00238402 1.57249E-23 

rs2983533 6 166074760 C G 0.275577 0.0157928 0.00239643 4.39423E-11 

rs10900027 10 44858681 A C 0.277205 0.0214638 0.00242021 7.40917E-19 

rs9303620 17 27152869 C T 0.278736 0.020338 0.00237546 1.11205E-17 

rs1533495 17 36172155 T C 0.719963 0.0142406 0.00239677 2.82288E-09 

rs2737263 8 116667539 T G 0.281571 0.0168981 0.00237308 1.07344E-12 

rs10819461 9 131841887 T C 0.718034 0.0156052 0.00236994 4.55991E-11 

rs3213545 12 121471337 A G 0.282906 0.0252117 0.00238877 4.85449E-26 

rs10859044 12 91144040 G T 0.282984 0.0158608 0.00236619 2.04049E-11 

rs1495099 17 37784464 C G 0.283583 0.0206629 0.00236977 2.79755E-18 

rs3012053 10 77293109 G A 0.714844 0.0161399 0.00235659 7.44529E-12 

rs549220260 19 4426164 C CT 0.714625 0.0247229 0.00238343 3.29636E-25 

rs10265221 7 151414329 T C 0.713152 0.0684015 0.00235288 8.2577E-186 

rs3814570 10 114708510 T C 0.287108 0.0141766 0.00235495 1.74508E-09 

rs588206 2 45886261 C G 0.287976 0.0135234 0.00234423 7.98368E-09 

rs12863103 13 33723244 T C 0.288312 0.0177073 0.00235667 5.74813E-14 

rs11772705 7 100298904 C T 0.288452 0.030031 0.00234992 2.13207E-37 
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rs55777228 16 87869313 C T 0.28876 0.0161761 0.00239961 1.57152E-11 

rs11635174 15 78230929 A G 0.288788 0.0158236 0.00237385 2.63235E-11 

rs2005682 19 35947661 A T 0.711146 0.0156448 0.00236275 3.55724E-11 

rs2379120 20 61030580 A T 0.28957 0.0178572 0.00238092 6.37565E-14 

rs4986080 17 81049741 A G 0.709804 0.0170248 0.00235859 5.2676E-13 

rs10857147 4 81181072 T A 0.290839 0.0227462 0.00235304 4.17509E-22 

rs34160920 14 69264564 CT C 0.708229 0.0157348 0.00236498 2.86693E-11 

rs5906256 X 46557821 T C 0.293973 0.0152901 0.00194286 3.54945E-15 

rs148874756 8 81376290 C CTGT 0.703858 0.0181814 0.00234001 7.86127E-15 

rs12192672 6 7229619 A G 0.29621 0.0270941 0.00232925 2.83003E-31 

rs568754328 19 47623080 C CT 0.29656 0.0256406 0.00238324 5.39167E-27 

rs2823270 21 16794755 A G 0.700593 0.0280315 0.00233217 2.8069E-33 

rs4979080 9 114824708 T C 0.700433 0.0162957 0.00234005 3.31155E-12 

rs13306780 17 42329004 A C 0.299818 0.0262526 0.00234569 4.47031E-29 

rs17278406 9 13976285 G A 0.698419 0.0350711 0.00233558 5.76739E-51 

rs1923032 20 62483993 A G 0.303062 0.0150565 0.00237999 2.5113E-10 

rs35190411 2 25950158 C CT 0.305191 0.0184688 0.00230687 1.185E-15 

rs4803936 19 46878629 G A 0.69461 0.0153696 0.00231869 3.38953E-11 

rs2029466 3 56780003 C T 0.692401 0.0283006 0.00231697 2.60137E-34 

rs9382170 6 13508443 A T 0.309364 0.0144194 0.00230023 3.64127E-10 

rs62435145 7 1286567 G T 0.309417 0.0373358 0.00237676 1.31864E-55 

rs2209098 1 172167226 T C 0.688915 0.0205705 0.00229334 2.97408E-19 

rs1373866 3 143845892 C T 0.311776 0.0135724 0.00230334 3.80427E-09 

rs71450364 2 12930330 T G 0.311988 0.018579 0.00229107 5.09074E-16 

rs34762923 2 204357497 CT C 0.312384 0.0139664 0.00233512 2.21744E-09 
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rs11119633 1 211104853 C T 0.68679 0.0140748 0.00229493 8.62385E-10 

rs2396083 6 43804808 C G 0.686714 0.0379149 0.00230589 9.47151E-61 

rs174560 11 61581764 C T 0.313738 0.0310038 0.00229481 1.35783E-41 

rs75792643 22 46372968 T C 0.315552 0.0326574 0.00229709 7.20154E-46 

rs12661188 6 130378833 C T 0.684157 0.023395 0.0022904 1.70981E-24 

rs5995288 22 36762634 T C 0.317 0.0180151 0.00230611 5.63324E-15 

rs768090 2 208003579 A T 0.317564 0.0190204 0.00229585 1.1842E-16 

rs797343 14 34646269 T C 0.682101 0.0204784 0.00229432 4.4291E-19 

rs2576159 10 90296467 T A 0.319337 0.0142121 0.00228453 4.93943E-10 

rs56374617 16 69693035 A T 0.319345 0.0134 0.00231197 6.79465E-09 

rs483180 1 120267505 C G 0.68042 0.0162737 0.00227859 9.19796E-13 

rs6679233 1 151750433 C T 0.320593 0.0137763 0.00227539 1.40873E-09 

rs7910217 10 96999873 A G 0.321503 0.0138651 0.00227897 1.1727E-09 

rs4683294 3 46979013 G C 0.322768 0.0138302 0.0023868 6.85443E-09 

rs6602909 13 114551993 C T 0.32652 0.0221724 0.00228065 2.43045E-22 

rs4886669 15 75448181 C T 0.32661 0.0190237 0.00227277 5.74861E-17 

rs1635474 5 142622669 A G 0.672814 0.0156694 0.00227917 6.19696E-12 

rs12136952 1 12661421 C G 0.329011 0.0160674 0.00226392 1.27348E-12 

rs55995100 7 101231632 G A 0.670003 0.0154582 0.0022728 1.03614E-11 

rs2692533 2 54007171 C A 0.331385 0.0171644 0.00225719 2.86401E-14 

rs2399972 10 13557945 C G 0.331482 0.0160941 0.00226531 1.2068E-12 

rs1544861 11 10679441 C T 0.666002 0.0196587 0.00226066 3.43788E-18 

rs3811444 1 248039451 T C 0.334557 0.0241785 0.00224738 5.40264E-27 

rs10168349 2 46360907 G C 0.664043 0.0745808 0.00225027 7.1332E-241 

rs28606370 10 104670832 C A 0.664012 0.0154928 0.0022537 6.22581E-12 
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rs112393215 12 15307775 T TA 0.663475 0.0153021 0.00227837 1.86462E-11 

rs2516470 6 31407331 G C 0.336773 0.0401324 0.00224548 1.93051E-71 

rs565728 2 135283654 C T 0.662681 0.0149082 0.00228739 7.14606E-11 

rs7174574 15 68581390 T C 0.662653 0.0136674 0.0022757 1.9039E-09 

rs2823139 21 16576783 G A 0.661978 0.0308336 0.00226839 4.42305E-42 

rs3803906 19 45715976 G A 0.341452 0.0229809 0.00225696 2.38027E-24 

rs2834318 21 35356814 T G 0.658359 0.0202799 0.00225028 2.02024E-19 

rs9697691 22 46309893 G C 0.342784 0.0247777 0.00224368 2.36116E-28 

rs2720659 8 129060804 A G 0.343424 0.016659 0.00224099 1.05547E-13 

rs9649959 8 128972721 A G 0.655124 0.0204683 0.0022418 6.83116E-20 

rs5846851 3 14929509 C CA 0.344917 0.0185642 0.00224962 1.55571E-16 

rs13028787 2 28941262 C T 0.348046 0.0142753 0.00224951 2.21043E-10 

rs4280597 3 25053482 G A 0.348493 0.0134875 0.00223506 1.59442E-09 

rs1868274 2 46309262 C G 0.650636 0.0275725 0.00224532 1.16017E-34 

rs9791312 6 143142313 C A 0.349802 0.013291 0.00225546 3.7968E-09 

rs34678368 16 51187951 GA G 0.35265 0.0189993 0.00229889 1.40218E-16 

rs7259119 19 32593682 T C 0.353451 0.0157387 0.00224314 2.27707E-12 

rs12644772 4 55335501 C T 0.354235 0.0231339 0.00222827 2.99434E-25 

rs1340817 13 29230581 A G 0.645242 0.0234 0.0022345 1.15989E-25 

rs140581697 2 227111435 T TTA 0.645129 0.01677 0.00221838 4.04402E-14 

rs12894354 14 102987884 C T 0.644532 0.014257 0.0022351 1.78614E-10 

rs10909942 1 3318769 C G 0.356359 0.0170791 0.00221991 1.43052E-14 

rs261291 15 58680178 T C 0.643317 0.0180782 0.00222905 5.05069E-16 

rs865483 17 35851177 A C 0.357526 0.0146876 0.0022226 3.88767E-11 

rs863678 2 176974104 T G 0.642472 0.025021 0.00227349 3.5933E-28 
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6 50791584 C CACAA 0.358079 0.0183149 0.00232345 3.20558E-15 

rs2718146 7 134659326 A G 0.359459 0.0155163 0.00222242 2.91601E-12 

rs3780474 9 32425676 G T 0.359913 0.0206119 0.00221743 1.46653E-20 

rs2871974 15 99284074 T C 0.639079 0.0133583 0.00222252 1.85032E-09 

rs2309753 2 100775920 C A 0.638762 0.0143686 0.00220935 7.84506E-11 

rs6679817 1 89363264 T C 0.363739 0.0136485 0.00221317 6.96215E-10 

rs9380559 6 36207598 A G 0.634234 0.01388 0.00221121 3.44932E-10 

rs4776806 15 66921963 C G 0.366072 0.0154798 0.0022167 2.88401E-12 

rs2934849 6 166162335 T C 0.368684 0.0146562 0.00220349 2.90402E-11 

rs553725343 15 60945980 A AT 0.631309 0.0174817 0.0022275 4.22301E-15 

rs999010 1 231495316 G A 0.629001 0.0277804 0.00219669 1.16998E-36 

rs35124400 12 2522077 T C 0.371132 0.0284353 0.00220722 5.62153E-38 

rs12718730 7 50436828 T A 0.627098 0.0131337 0.00220554 2.60282E-09 

rs66520518 3 58405636 TTAAG T 0.627052 0.0217412 0.00220537 6.31085E-23 

rs34881325 9 2622134 T C 0.375621 0.0237125 0.00225365 6.85366E-26 

rs218476 20 57237670 A G 0.377838 0.0138841 0.00220433 3.00428E-10 

rs28432336 4 87984331 G A 0.37842 0.0325823 0.00220826 2.86799E-49 

rs60992881 16 157592 CAA C 0.381745 0.0220035 0.00227119 3.38795E-22 

rs78374304 12 48403839 A T 0.617865 0.0338903 0.00219047 5.38635E-54 

rs575138 1 53328394 G C 0.617618 0.0174932 0.00218322 1.12337E-15 

rs4660253 1 43761651 C T 0.382407 0.0203162 0.00222984 8.1583E-20 

rs11022762 11 13335926 T C 0.383346 0.0173931 0.00218987 1.98104E-15 

rs937851 11 6667353 A G 0.383568 0.0139143 0.00220442 2.75451E-10 

rs71535075 6 16289908 G GTC 0.616262 0.020488 0.00219272 9.30724E-21 

rs12897414 14 34724550 C T 0.384387 0.0146433 0.00221875 4.11721E-11 
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rs6665323 1 47953054 T C 0.386022 0.0138137 0.00218318 2.4944E-10 

rs11122450 1 230301811 T G 0.388306 0.0151786 0.00217973 3.31867E-12 

rs11556924 7 129663496 C T 0.610994 0.0171029 0.00218432 4.88449E-15 

rs1558801 12 109036359 C A 0.390936 0.0129219 0.00219598 3.99638E-09 

rs13389219 2 165528876 C T 0.607385 0.0193156 0.00217216 5.98316E-19 

rs5798300 12 54749111 AGT A 0.39295 0.0136749 0.0022842 2.14095E-09 

rs4233937 2 66752251 G A 0.606598 0.0150982 0.00217496 3.87056E-12 

rs3053061 15 78537238 C CGGGGTGCGG 0.605686 0.0232103 0.00218463 2.29577E-26 

rs123698 19 807442 C G 0.604603 0.029195 0.00217808 5.72847E-41 

rs142351272 X 109887299 T C 0.603933 0.0148976 0.00180844 1.75379E-16 

rs36068213 1 48116939 T TAA 0.396194 0.0160025 0.00221277 4.76333E-13 

rs6415788 9 4118111 G T 0.396543 0.02412 0.00220626 8.05717E-28 

rs9969563 8 12897602 T C 0.603286 0.0131874 0.00219498 1.87847E-09 

rs760077 1 155178782 T A 0.602237 0.033005 0.00216713 2.24208E-52 

rs11122174 1 231114595 C T 0.601757 0.0145879 0.00216511 1.60894E-11 

rs7224610 17 53364788 C A 0.398504 0.0140132 0.00219566 1.74531E-10 

rs13103534 4 148976981 A G 0.398846 0.0175928 0.00218333 7.76904E-16 

rs140307022 1 16370178 AGCTCT A 0.399727 0.0237954 0.00221501 6.40741E-27 

rs12985346 19 2164351 A T 0.400983 0.0319754 0.00218059 1.10193E-48 

rs3809627 16 30103160 A C 0.402081 0.0218503 0.00217603 1.00282E-23 

rs56388355 3 30181399 AG A 0.40279 0.015903 0.00227244 2.59263E-12 

rs139384 22 39527935 C T 0.403155 0.01609 0.00218118 1.62211E-13 

rs78839561 20 4142839 A G 0.403289 0.0135037 0.00220605 9.28662E-10 

rs8000803 13 71714717 T G 0.595352 0.01367 0.00217458 3.25181E-10 

rs11405520 21 44139647 A AG 0.405197 0.0153039 0.00218953 2.75706E-12 
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rs7309382 12 115366182 C T 0.405319 0.0160515 0.00217464 1.56844E-13 

rs72717436 5 448291 A C 0.405452 0.0181457 0.00217194 6.56522E-17 

rs1472226 1 212402580 G A 0.594062 0.0146935 0.00216562 1.16173E-11 

rs3809770 17 47047596 A G 0.593638 0.0136028 0.00217402 3.92503E-10 

rs1535099 14 104194278 C T 0.407766 0.0136751 0.00217414 3.17692E-10 

rs35538465 4 157836033 G GGGAAAGTCT 0.408116 0.0133262 0.002187 1.10558E-09 

rs7703616 5 1115115 C T 0.408174 0.0151988 0.00217716 2.93042E-12 

rs668459 6 139835689 C T 0.41002 0.0170228 0.00215699 2.97564E-15 

rs56267269 8 42399667 T C 0.58915 0.0267479 0.00216652 5.11812E-35 

rs35750745 7 671593 CA C 0.588338 0.0242886 0.00221422 5.36444E-28 

rs4683603 3 141092050 T G 0.411702 0.0155617 0.00218034 9.51949E-13 

rs3740689 11 47380593 A G 0.586218 0.0165885 0.00216153 1.66162E-14 

rs714195 4 146445680 C T 0.583483 0.0136561 0.002164 2.77988E-10 

rs1110542 16 79199414 A T 0.582578 0.0155597 0.00216446 6.54009E-13 

rs4969145 17 76406170 T C 0.417873 0.0134549 0.00219758 9.20615E-10 

rs60325980 17 61880270 C CA 0.417876 0.019725 0.0022245 7.50343E-19 

rs2647187 1 17409382 C T 0.581413 0.0170685 0.00216293 2.98866E-15 

rs2281841 10 45406608 T C 0.419001 0.0151051 0.00223804 1.48607E-11 

rs17006441 3 69841880 A C 0.419336 0.0236806 0.00216394 7.15636E-28 

rs57828851 17 7732351 T A 0.419452 0.0230896 0.00217466 2.46911E-26 

rs5785906 10 71007973 C CT 0.57989 0.0274961 0.00218791 3.19488E-36 

rs4554203 5 147886011 G A 0.579675 0.0131515 0.0021614 1.167E-09 

rs551118 16 88856084 C G 0.420693 0.0466922 0.00219417 1.735E-100 

rs9823829 3 194506427 A G 0.578133 0.0189208 0.0021908 5.79716E-18 

rs6428637 1 88641063 G A 0.422003 0.0138517 0.00215267 1.2375E-10 
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rs743417 21 35347960 C T 0.423447 0.0237126 0.00216544 6.60989E-28 

rs4927705 3 195751397 A T 0.575788 0.0150169 0.00215371 3.11196E-12 

rs11345369 8 61175880 T TA 0.42456 0.0140097 0.00217528 1.19149E-10 

rs2894802 6 52656169 G T 0.572889 0.0239644 0.00215748 1.15229E-28 

rs228917 22 37506410 T C 0.572476 0.041752 0.00215078 6.05193E-84 

rs78968605 12 117588433 TG T 0.567132 0.0155344 0.00215305 5.39074E-13 

rs1841677 13 51386889 T C 0.5671 0.0141471 0.00216088 5.87374E-11 

rs6998007 8 40045119 C T 0.435111 0.0171805 0.00215796 1.70029E-15 

rs9429088 1 46497500 T A 0.564551 0.0281245 0.00214046 1.95604E-39 

rs2250598 16 89698070 T C 0.435744 0.0253551 0.00216493 1.10977E-31 

rs34099733 1 182997286 C CCT 0.436663 0.0133804 0.00215223 5.06771E-10 

rs7916396 10 3245548 C T 0.436898 0.0133303 0.00214624 5.26479E-10 

rs919798 19 4498154 A G 0.562361 0.0289401 0.00215526 4.16357E-41 

rs988397 3 169098791 C T 0.561784 0.0192779 0.00214661 2.69232E-19 

rs855791 22 37462936 G A 0.561407 0.10122 0.00215389 0 

rs9398804 6 126703390 T A 0.560897 0.0204196 0.00216175 3.52479E-21 

rs7956653 12 64901246 G A 0.559444 0.0135227 0.00216051 3.87376E-10 

rs6927173 6 7222093 T G 0.443209 0.0207656 0.00215737 6.24491E-22 

rs13007705 2 239069196 T C 0.444478 0.0153928 0.00214679 7.49172E-13 

rs560176773 6 1740921 AT A 0.444556 0.0155624 0.00216599 6.72613E-13 

rs6595714 5 125843369 T C 0.444611 0.0127823 0.00214189 2.40523E-09 

rs2122113 2 46225778 T C 0.553377 0.0149907 0.00214259 2.62375E-12 

rs34723331 11 8742865 TC T 0.553102 0.0285938 0.00220113 1.38502E-38 

rs1427445 2 219555573 C A 0.553075 0.0207235 0.00213489 2.81342E-22 

rs3842397 18 43845880 CTT C 0.446981 0.017215 0.00214967 1.16394E-15 
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rs12056626 8 116557955 G C 0.552966 0.0196153 0.00214754 6.61079E-20 

rs4823309 22 46004023 C T 0.552354 0.0287116 0.00219213 3.3992E-39 

rs10930763 2 177779131 A T 0.449825 0.0123388 0.00213591 7.61188E-09 

rs6016505 20 39678289 T C 0.548564 0.0145559 0.00214338 1.11285E-11 

rs1539508 6 43868986 A G 0.547901 0.0205501 0.00216093 1.90955E-21 

rs559406 18 12857002 G T 0.452299 0.0166508 0.002145 8.31987E-15 

rs11356211 19 46219958 CA C 0.547466 0.0150505 0.00216772 3.83834E-12 

rs963837 11 30749090 C T 0.452886 0.0240441 0.00213799 2.41995E-29 

rs6126019 20 49101590 C T 0.546847 0.0214311 0.00214967 2.07304E-23 

rs2466076 8 32432796 T G 0.545661 0.0144568 0.00214593 1.61862E-11 

rs8027685 15 76277092 T C 0.454913 0.0262767 0.00214014 1.18859E-34 

rs6911827 6 22130601 T C 0.455242 0.019636 0.0021358 3.79398E-20 

rs115986297 6 2050791 A G 0.456599 0.025845 0.00213961 1.35865E-33 

rs112597538 10 60272708 C T 0.457513 0.0170114 0.0021384 1.78842E-15 

rs35736498 2 242644728 T C 0.45804 0.0138188 0.00213504 9.64682E-11 

rs464499 5 34660677 A G 0.541748 0.0166549 0.00213987 7.07483E-15 

rs11258533 10 13737768 T C 0.458288 0.0163895 0.0021671 3.94265E-14 

rs142720800 11 3944329 C CA 0.540174 0.0131067 0.00219362 2.30206E-09 

rs4953348 2 46558432 G A 0.460644 0.0162481 0.00213115 2.45743E-14 

rs1949481 11 16259405 T C 0.538446 0.0126251 0.00214228 3.78557E-09 

rs28418580 4 89742244 T C 0.461651 0.0153326 0.00214981 9.8869E-13 

rs550369338 1 26183738 A AT 0.53762 0.0150981 0.00214311 1.8553E-12 

rs139551207 22 38603571 C CCAGTAGCTGGGACTA 0.537579 0.0133619 0.00214445 4.63699E-10 

rs66782572 3 52567617 A G 0.463361 0.0223702 0.00233631 1.01844E-21 

rs9849756 3 187641417 C T 0.535332 0.0136114 0.00227146 2.06821E-09 
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rs1239682 13 51165494 C T 0.465395 0.0162294 0.00214073 3.42253E-14 

rs972762 5 34507508 T G 0.533841 0.0154586 0.00215829 7.92596E-13 

rs7040995 9 92226172 C G 0.53272 0.0128548 0.00215219 2.33083E-09 

rs10900568 1 204220232 C T 0.532405 0.0135896 0.00212858 1.72127E-10 

rs1076230 19 1244900 G A 0.468938 0.0128987 0.00213375 1.49331E-09 

rs867606797 3 12737066 GGTT G 0.53051 0.0156746 0.00222085 1.69003E-12 

rs8020977 14 76624547 G T 0.529856 0.0160255 0.00213795 6.59294E-14 

rs8138197 22 43114551 A G 0.472068 0.0278201 0.00213508 8.26038E-39 

rs6667862 1 15814186 T C 0.527518 0.0159325 0.00212532 6.55353E-14 

rs10171620 2 43429058 G T 0.527464 0.0199781 0.00213623 8.59764E-21 

rs1860302 17 19914399 A T 0.527018 0.0127991 0.00213572 2.06165E-09 

rs1256061 14 64703593 G T 0.524517 0.0250164 0.00214058 1.48998E-31 

rs36012880 14 24881986 C T 0.476547 0.0135486 0.00213857 2.36796E-10 

rs35943712 3 121628658 AT A 0.523255 0.0168966 0.00213848 2.76188E-15 

rs4897160 6 126223944 A G 0.477008 0.0146574 0.00212615 5.4295E-12 

rs6465351 7 91773213 T C 0.522987 0.0187511 0.00213129 1.3927E-18 

rs6108789 20 10974785 G C 0.518873 0.0127125 0.00214323 3.00238E-09 

rs3184504 12 111884608 T C 0.481371 0.0679936 0.00213004 1.3531E-223 

rs10142359 14 73884540 G A 0.481701 0.0155303 0.00213632 3.60418E-13 

rs998584 6 43757896 A C 0.482625 0.0200236 0.00213124 5.7065E-21 

rs17773190 2 47030363 G A 0.482717 0.0213011 0.00214481 3.03767E-23 

rs2337106 18 46460903 C G 0.483325 0.0205874 0.00214904 9.72214E-22 

rs9296668 6 51838263 G A 0.483801 0.0145156 0.00215398 1.59517E-11 

rs10956934 8 95992473 C A 0.515658 0.0248437 0.00213529 2.7419E-31 

rs8073217 17 28164263 G C 0.51339 0.0124998 0.00214586 5.70862E-09 
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rs1893989 11 111202478 G A 0.513307 0.0169737 0.00213062 1.6316E-15 

rs4886755 15 76298132 A G 0.48761 0.0357024 0.0021328 6.73437E-63 

rs2970876 4 23888619 A G 0.509836 0.012925 0.00213705 1.46603E-09 

rs9366927 6 37027232 C T 0.490845 0.022003 0.00213584 6.91538E-25 

rs10898979 11 74039147 T C 0.508753 0.01256 0.00213371 3.94554E-09 

rs1863127 12 46199589 C T 0.508463 0.015054 0.00213246 1.6716E-12 

rs9482771 6 127446610 C G 0.493905 0.0265257 0.00212896 1.24203E-35 

rs1062601 20 56137834 G A 0.505726 0.0231614 0.00213988 2.6585E-27 

rs734663 2 39743876 C T 0.505569 0.013874 0.00212708 6.91189E-11 

rs1257415 14 99698931 A C 0.505518 0.0152783 0.00214257 9.97663E-13 

rs13127730 4 48590606 C T 0.495795 0.0144425 0.00212912 1.17446E-11 

rs833061 6 43737486 C T 0.504045 0.0335787 0.00212603 3.41712E-56 

rs1331308 6 135405122 A C 0.503785 0.0138464 0.00213483 8.81746E-11 

rs10904089 10 3791224 T G 0.496234 0.0159163 0.00216652 2.03492E-13 

rs3760994 19 1435771 A G 0.496267 0.015308 0.00212957 6.56003E-13 

rs66533066 1 172415351 GA G 0.503075 0.0134659 0.00213048 2.60559E-10 

rs871841 17 8216468 C T 0.498004 0.0210849 0.00213298 4.82694E-23 

rs1075871 3 194681297 G A 0.498266 0.0199046 0.00213387 1.07954E-20 

rs2870238 4 77373079 T C 0.501562 0.026815 0.00213036 2.48722E-36 

rs66468814 10 36461955 C CT 0.501517 0.0145919 0.0021396 9.10915E-12 
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