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Quasi‑exact solutions for guided 
modes in two‑dimensional 
materials with tilted Dirac cones
R. A. Ng1, A. Wild2, M. E. Portnoi2,3 & R. R. Hartmann1*

We show that if the solutions to the (2+1)-dimensional massless Dirac equation for a given one-
dimensional (1D) potential are known, then they can be used to obtain the eigenvalues and 
eigenfunctions for the same potential, orientated at an arbitrary angle, in a 2D Dirac material 
possessing tilted, anisotropic Dirac cones. This simple set of transformations enables all the exact and 
quasi-exact solutions associated with 1D quantum wells in graphene to be applied to the confinement 
problem in tilted Dirac materials such as 8-Pmmn borophene. We also show that smooth electron 
waveguides in tilted Dirac materials can be used to manipulate the degree of valley polarization of 
quasiparticles travelling along a particular direction of the channel. We examine the particular case of 
the hyperbolic secant potential to model realistic top-gated structures for valleytronic applications.

It can be shown using supersymmetric methods that whenever the Schrödinger equation can be solved exactly 
for a one-dimensional (1D) potential, there exists a corresponding potential for which the two-dimensional 
(2D) Dirac equation admits exact eigenvalues and eigenfunctions1. A broad class of quasi-1D potentials can also 
be solved quasi-exactly by transforming the 2D Dirac equation into the Heun equation2 or one of its confluent 
forms3–5, or via the application of Darboux transformations6–11. These exact and quasi-exact bound-state solu-
tions have direct applications to electronic waveguides in 2D Dirac materials2–5,12,13, such as graphene, where the 
low-energy spectrum of the charge carriers can be described by a Dirac Hamiltonian14, and the guiding potential 
can be generated via a top gate15–20. Recent advances in device fabrication, utilizing carbon nanotubes as top 
gates, has enabled the detection of individual guided modes21, opening the door to several new classes of devices 
such as THz emitters5,13, transistors12, and ultrafast electronic switching devices22. These advances in electron 
waveguide fabrication technology make the need for analytic solutions all the more important, since they are 
highly useful in: determining device geometry, finding the threshold voltage required to observe a zero-energy 
mode12, calculating the size of the THz pseudogap in bipolar waveguides13, as well as ascertaining the optical 
selection rules5,13 in graphene heterostructures.

In extension to the well-known case of graphene, Dirac cones can in general possess valley-dependent tilt23. 
There are only a handful of 2D electronic systems that have been predicted to host these tilted cones24–33, one of 
which is 8-Pmmn borophene23,34, which has attracted considerable attention. In general, boron-based nanoma-
terials are a growing field of interest35–37; indeed, exploring the tilt of 2D Dirac cones in the context of 8-Pmmn 
borophene has recently led to a plethora of theoretical works spanning many fields of research38–84 from optics 
to transport, and many more; for a comprehensive review, see Ref.85. The spectacular rise of borophene, and the 
growing interest in tilted Dirac materials, has led to the revisiting of several well-known problems in graphene, 
e.g., Klein tunneling47 and transport across quasi-1D heterostructures43,52,73,86, within the context of tilted Dirac 
materials. As mentioned previously, methods such as supersymmetry and reducing the Dirac equation to the 
Heun equation, utilize solutions of known problems, to generate solutions to new ones. This begs the question: 
does a simple mapping exist which would allow us to harness the large body of exact and quasi-exact solutions 
for 1D waveguides in graphene and then apply them to materials with tilted Dirac cones?

In what follows, we show that the differential equations governing guided modes in an anisotropic tilted Dirac 
waveguide (orientated at an arbitrary angle) can, via a simple transformation, be mapped onto the graphene 
problem, i.e., transformed into the massless 2D Dirac equation14, for the same potential, but of modified strength, 
effective momentum, and modified energy scale. After outlining the transformation, we study the particular case 
of the hyperbolic secant potential, which in graphene is known to admit quasi-exact solutions to the eigenvalue 
problem; but nevertheless, the whole spectrum can be obtained via a semi-analytic approach2,12. We use this 
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known graphene waveguide spectrum to generate the corresponding tilted waveguide spectrum, which is verified 
using a transfer matrix method. Finally, we discuss valleytronic applications.

Transformation
The Hamiltonian describing the guided modes contained within a smooth electron waveguide in a tilted Dirac 
material can be written as

where k̂x = −i∂x , k̂y = −i∂y , σx,y are the Pauli spin matrices, σ0 is the identity matrix, vx and vy are the anisotropic 
velocities, vt is the tilt velocity and s = ±1 is the valley index number; here s = 1 and s = −1 are analogous to 
the K and K ′ valley, respectively. This Hamiltonian is of the same form as the low-energy two-band effective 
Hamiltonian used to describe 8-Pmmn borophene23, 2B:Pmmn borophane87, and α-(BEDT-TTF)2I324,25. In what 
follows, we set s = 1 , but it should be noted that the other valley’s eigenvalues can be obtained by replacing vy 
and vt with −vy and −vt . In general, the crystallographic orientation is not known, nor is it currently possible 
to deposit the top gate at a selected angle relative to the crystallographic axis. Therefore, we shall solve for the 
case of a waveguide at an arbitrary angle relative to the crystallographic axis ( x − y ). The electrostatic potential, 
U
(

x, y
)

 , is 1D, directed along the y′-axis, and varies along the x′−axis (see Fig. 1 for geometry), i.e., U = U
(

x′
)

 . 
We rotate the x − y axes counterclockwise through an angle θ . The new axes x′ − y′ are defined by the original 
coordinates via the transformation:

Hence, the wave vector operators in the non-rotated coordinate system k̂ =
(

k̂x , k̂y

)

 are expressed in the 
rotated coordinate frame, k̂′ =

(

k̂x′ , k̂y′
)

 , via the relations:

The Hamiltonian, Eq. (1), acts on the two-component Dirac wavefunction � =
(

ψA

(

x′
)

, ψB

(

x′
))

⊺
eiky′ y

′
 to 

yield the coupled first-order differential equations Ĥ� = ε� , where ψA and ψB are the wavefunctions associated 
with the A and B sublattices of the tilted Dirac material. These coupled first-order differential equations can be 
recast into the same equations used to describe guided modes propagating along a smooth electron waveguide 
in graphene:

where the effective potential ˜V  , energy ˜E , and momentum ˜� are obtained from the original tilted case via the 
relations:

(1)Ĥ = �

(

vxσxk̂x + svyσyk̂y + svtσ0k̂y

)

+ σ0U
(

x, y
)

,

(2)
x′ = x cos θ + y sin θ ,

y′ = −x sin θ + y cos θ .

(3)
k̂x = cos θ k̂x′ − sin θ k̂y′ ,

k̂y = sin θ k̂x′ + cos θ k̂y′ .

(4)
(

σxk̂x′ + σy ˜�+ σ0 ˜V
(

x′
)

)

�
(

x′
)

= ˜E�
(

x′
)

,

Figure 1.   A schematic diagram of an electrostatic potential, U(x′) , created by an applied top-gate voltage in a 
tilted 2D Dirac material. The waveguide is orientated at an angle of θ , relative to the x-axis of the crystal. The 
potential is invariant along the y′-axis, and varies in strength along the x′-axis. The x′ − y′ axes are denoted by 
the solid black arrows, whereas the crystallographic axes x − y are shown by the light gray arrows.
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where V
(

x′
)

= U
(

x′
)

L/�vx , E = εL/�vx and � = k′yL , and L is a constant, associated with the effective width 
of the potential. We define the tilt and anisotropy parameters as t = vt/vx and T = vy/vx , respectively, and 

l =
√

1−
(

1− T2
)

sin2 θ  . The eigenfunctions of the guided modes in the effective graphene sheet, � , can be 
mapped onto the tilted Dirac spinor components, ψA and ψB , via the expression:

where ϕ = arctan (T tan θ) and µ = (l − t sin θ)
1
2 (l + t sin θ)−

1
2 . It then follows that if the eigenfunctions and 

eigenvalues are known for the potential ˜V  in graphene, one can immediately write down the eigenfunctions 
and eigenvalues of a 1D confining potential of the same form, orientated at an arbitrary angle, in a tilted Dirac 
material. Conversely, if a quasi-1D potential readily admits exact or quasi-exact solutions for the tilted case, 
and no solutions are known for the graphene problem, then our mapping method can be used to obtain the 
eigenfunctions and eigenvalues for the case of graphene. This mapping also reveals the angular dependence of 
the number of guided modes contained within the waveguide. Namely, it can be seen from Eq. (5) that rotating 
the orientation of the waveguide is equivalent to varying the effective depth of the potential (see Fig. 2b). Indeed, 
the effective potential’s depth, ˜V0 , is equal to the actual potential’s depth, V0 at θ = 0 and rises to a maximum 
value of ˜V0/V0 = T/(T2 − t2) at θ = π/2.

It should be noted that to perform the same transformations for the other chirality (i.e., the s = −1 , or gra-
phene K ′ valley analog), one must exchange t with −t , and T with −T . Therefore, the eigenvalue spectrum of one 
valley can be obtained by a reflection of the other valley’s eigenvalue spectrum about the ky′-axis. It can be seen 
from Eq. (5) that in the absence of a tilt term, i.e., t = 0 , the eigenvalue spectrum of a given valley is symmetric 
with respect to ky′ . Thus, both chiralities have the same band structure. Similarly for t  = 0 , if the waveguide is 
orientated such that cos θ = 0 , the eigenvalue spectrum is chirality-independent. In all other cases, the energy 
spectrum for a given valley lacks E(ky′) = E(−ky′) symmetry. This gives rise to the possibility of utilizing smooth 
electron waveguides in tilted Dirac materials as the basis of valleytronic devices. This will be discussed in the 
penultimate section.

Quasi‑exact solution to the tilted Dirac equation for the hyperbolic secant potential
In this section, we shall apply our simple transformations, given in Eq. (5), to generate the energy spectrum 
of a smooth electron waveguide in a tilted Dirac material for a potential which has been studied in depth in 
graphene2,12:

This potential, shown in Fig. 2a, belongs to the class of quantum models which are quasi-exactly solvable2,88–94, 
where only some of the eigenfunctions and eigenvalues are found explicitly. The depth of the well is given by V0 , 

(5)

˜V
(

x′
)

=
lV

(

x′
)

l2 − t2 sin2 θ
,

˜E = l

l2 − t2 sin2 θ

(

E − t cos θ

l2
�

)

,

˜� = T�

l
√

l2 − t2 sin2 θ
,

(6)�
(

x′
)

=
(

(1+ µ)ψA + (1− µ)ψBe
−iϕ

(1− µ)ψA + (1+ µ)ψBe
−iϕ

)

e
−i sin θ

∫

t(V−E)+ky′(1+t2−T2) cos θ
l2−t2 sin2 θ

dx′

,

(7)V
(

x′
)

= − V0

cosh (x′/L)
.

Figure 2.   (a) The black curve shows the hyperbolic secant potential V(x′) = −V0/ cosh(x
′/L) , for the case 

of V0 = 3.2 . The dashed and solid horizontal lines are the bound-state energy levels for the s = 1 and s = −1 
chirality, respectively (which corresponds to the K and K ′ valley in the effective graphene sheet), for the case 
of � = ky′L = 1 , when the waveguide is orientated at angle θ = 0 . The tilted Dirac material is defined by 
parameters vx = 0.86 vF , vy = 0.69 vF and vt = 0.32 vF . (b) The relative strength of the effective potential’s depth, 
˜V0 , compared to the actual potential depth V0.
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and the potential width is characterized by the parameter L. Here V0 and L are taken to be positive parameters. For 
realistic top-gated structures, the width of the potential is defined by the geometry of the top gate structure, and 
the strength of the potential is defined by the voltage applied to the top gate. In graphene, the wavefunctions can 
be solved in terms of Heun polynomials, which reduce to hypergeometric functions for the case of zero energy2,12. 
For zero-energy modes ( ˜E = 0 ), the permissible values of ˜� are given by the simple relation ˜� = ˜V0 − n− 1

2
 , 

where ˜V0 is the depth of the effective potential and n is a non-negative integer. For non-zero energies, exact energy 
eigenvalues can be obtained when the Heun polynomials are terminated2. To illustrate the power of our mapping 
method, we apply the transformations given in Eq. (5) to the well-known zero-energy solutions to the 2D Dirac 
equation for the 1D hyperbolic secant potential. The corresponding tilted Dirac equation solutions become:

and their corresponding n = 0 eigenfunctions for two different waveguide orientations are shown in Fig. 3, for the 
case of 8-Pmmn borophene, which is described by the parameters vx = 0.86 vF , vy = 0.69 vF and vt = 0.32 vF

23.
In Fig. 4 we plot the 8-Pmmn borophene eigenvalue spectrum for the potential defined by V0 = 3.2 for two 

orientations, θ = 0 and θ = π/2 , as well as the graphene waveguide spectra (quasi-analytically determined2) 
used in the mapping. In the same figure, we also plot the numerical solutions to the tilted Dirac problem obtained 
via a transfer matrix method (see Supplementary Material). We show in blue crosses the exact solutions given in 
Eq. (8) together with the complete set of mapped quasi-exact solutions given in Ref.2. It can be seen from Fig. 4 
that the waveguide orientated at θ = π/2 contains more bound states than the waveguide orientated at θ = 0 . 
This is a result of the effective graphene potential being deeper, and thus supporting more guided modes. It should 
be noted that for potentials which vanish at infinity, i.e., V(±∞) = E = 0 , only the zero-energy modes are truly 
confined, since the density of states vanishes outside of the well. Guided modes occurring at non-zero energies 
can always couple to continuum states outside of the well, thus having a finite lifetime.

Valleytronic applications
It has been suggested that the valley quantum number can be used as a basis for carrying information in gra-
phene-based devices95 in an analogous manner to spin in semiconductor spintronics96,97. Unlike in the case of 
graphene (in the conical regime), smooth electrostatic potentials in tilted Dirac materials can be utilized as a 
means to achieve valley polarization. The majority of studies have focused on tunneling across electrostatically-
induced potential barriers, and valley filtering and beam splitting have been demonstrated43,47,52,73,86. It has also 
been shown that the allowed transmission angles through a potential can be controlled using magnetic barriers86. 
We propose a change in geometry: rather than studying chirality-dependent transmission across barriers, we 
shift the focus to studying guided modes along quasi-1D confining potentials. The conductance along such a 
channel can be measured by placing one terminal at each end. According to the Landauer formula, when the 
Fermi level is set to energy E (by modulating the back-gate voltage21), the conductance along the waveguide is 

(8)E = t cos θ

T
√

l2 − t2 sin2 θ

[

V0 −
(

n+ 1

2

)

l2 − t2 sin2 θ

l

]

,

Figure 3.   The normalized zero-energy state (lowest positive momentum) wavefunctions of the hyperbolic 
secant potential, V(x′) = −V0/ cosh(x

′/L) , of strength V0 = −3.2 and orientation: (a) θ = 0 and (c) θ = π/2 
in a tilted Dirac material defined by parameters vx = 0.86 vF , vy = 0.69 vF and vt = 0.32 vF , for the s = 1 
chirality, i.e., the K valley in the effective graphene sheet. The corresponding wavefunctions of the effective 
graphene waveguide are given in panels (b) and (d). The solid red and blue lines correspond to the real part 
of ψA and ψB respectively, while the dashed lines correspond to their imaginary parts. The grey line shows the 
potential as a guide to the eye.
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simply 2(nK + nK ′)e2/h , where nK and nK ′ are the number of modes belonging to the s = 1 and s = −1 chirality, 
respectively (or the K and K ′ valley in the effective graphene sheet), at that particular energy.

In a 2D Dirac material subject to a quasi-1D potential, the introduction of the tilt parameter breaks the 
E(�) = E(−�) symmetry for a given valley. Indeed, for a given valley, the additional tilt term increases the 
particle velocity along one direction of the barrier and decreases it along the opposite direction; and vice versa 
for the other valley. For the case of type-I Dirac materials, i.e., t < T , it can be seen from Fig. 5 that for a given 
sign of � , the eigenvalues of the critical solutions (sometimes referred to as the zero-momentum solutions: i.e., 
bound states with energy |E| = |�| ) belonging to the two valleys are different. Thus, providing that t  = 0 and 
cos θ  = 0 , there exists a range of energies for which there will be more bound states propagating along a particular 
direction belonging to one valley than the other, i.e., valley polarization. The degree of valley polarization can 
be controlled by varying the strength of the electrostatic potential and by changing the position of the Fermi 
level, which in practical devices is achieved by modulating the back-gate voltage21. Full valley polarization can 
be achieved for energies less than the lowest-lying supercritical state (defined as a bound state with energy 
E = −� ) belonging to the valley where the tilt term enhances the particle’s velocity, indicated by the shaded 
region in Fig. 5. However, although full valley polarization along a particular direction can be realized, to gener-
ate a valley-polarized current one must lift the y′ = −y′ symmetry. This can be achieved by applying an in-plane 
electric field along the waveguide.

For type-III tilted Dirac materials, i.e., t = T , full valley polarization occurs for all energies and all orientations 
of the waveguide. For such materials the infinite number of positive-energy critical solutions of graphene map 
onto the zero-energy modes of a type-III Dirac material. Consequently, the infinitely many zero-energy modes 
will give rise to a sharp peak in the conductance along the channel when the Fermi energy is in the proximity of 
E = 0 . This is in stark contrast to the case of graphene, where the creation of an infinite number of zero-energy 

Figure 4.   The energy spectrum of confined states (for the s = 1 chirality, i.e., the K valley in the effective 
graphene sheet) in the hyperbolic secant potential V(x′) = −V0/ cosh(x

′/L) , of strength V0 = 3.2 , as a function 
of dimensionless momentum along the waveguide, � = k′yL , for the orientations (a) θ = 0 and (c) θ = π/2 in 
a tilted Dirac material, defined by parameters vx = 0.86 vF , vy = 0.69 vF and vt = 0.32 vF . The energy spectra of 
the effective graphene waveguide from whence they came, are given in panels (b) and (d), respectively. The black 
dots denote the semi-analytic eigenvalues, the blue crosses represent the quasi-exact eigenvalues, and the solid 
red lines show the eigenvalues numerically obtained via a transfer matrix method. The boundary at which the 
bound states merge with the continuum is denoted by the grey dashed lines.
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states requires an infinitely deep and wide potential4,98–101. Since the potential possesses infinitely many bound 
states, which infinitely accumulate at E = 0 , a type-III Dirac material could be used as a THz emitter; namely, 
the Fermi level could be set below E = 0 , and optical photons can be absorbed from low-lying energy levels to 
E = 0 . Then the photo-excited carriers can relax back down to the Fermi level via the emission of THz photons 
through the closely spaced energy levels in the proximity of zero energy.

Lastly, for type-II tilted Dirac materials, i.e., t > T , full valley polarization occurs for all energies; however, 
bound states occur only for orientations within the range −1/

√
t2 − T2 < tan (θ + nπ) < 1/

√
t2 − T2 . In the 

limit at which θ becomes imaginary, i.e., the boundary at which the equi-energy surfaces become unbounded, 
the effective potential required for mapping diverges.

Conclusion
We have shown that if the eigenvalues and eigenfunctions of a quasi-1D potential in graphene are known, then 
they can be used to obtain the corresponding results for the same potential (with modified strength, orientated 
at arbitrary angle), for a 2D Dirac material hosting anisotropic, tilted Dirac cones. Therefore, all the rich physics 
associated with guiding potentials in graphene, e.g., THz pseudogaps in bipolar waveguides, can be revisited in 
the context of tilted Dirac materials, but with the distinct advantage of knowing the eigenvalues and eigenfunc-
tions. We have also shown that in stark contrast to smooth electron waveguides in graphene, valley degeneracy 
can be broken in tilted 2D Dirac materials for a broad range of waveguide orientations, anisotropy and tilt 
parameters. The degree of valley polarization along the waveguide can be controlled by varying the potential 
strength of the top gate, and also by changing the back-gate voltage. Tilted 2D Dirac materials, such as 8-Pmmn 
borophene, are therefore promising building blocks for tunable valleytronic devices.

Methods
The Supplementary Information contains a full description of the transfer matrix method used to calculate the 
band structure of guiding potentials in 2D Dirac materials with tilted Dirac cones.

Data availibility
This study did not generate any new data. The datasets used and analysed in this study are available from the 
corresponding author upon request.
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