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1 INTRODUCTION

This study was prompted by an interest in how ancient 
journeys were planned and undertaken, with an 
emphasis on long distance travel taking days, weeks or 
even months. A number of questions arise, for example 
which itineraries travellers most likely followed, how long 
the journeys took, and whether it was more expedient 
to go by land or sea. In the early nineteenth century, 
antiquarians, guided by the ancient writings of the likes 
of Strabo and Pausanias, documented their own travels 
in Greece and Asia Minor, making notes on routeways, 
journey times, topographical features and ancient 
monuments. Among the better known are William Leake, 
William Gell and Edward Dodwell who put themselves in 
the shoes of their ancient guides, experiencing, as near 
as is possible, the paths and landscape described two 
millennia earlier.

Today it is possible to apply Geographic Information 
Systems (GIS) to model an optimal routeway and travel 
time between places through least cost path (LCP) 
analysis. However, simulating multi-stage journeys 
through an optimized network of paths over large 
distances is not easily addressed using GIS and for the 
following reasons we found it necessary to develop a 
bespoke methodology and software: (a) to allow the 
implementation of innovative optimization techniques; 
(b) to automate the process of handling, selecting and 
ordering large amounts of data; and (c) to speed up the 
intensive computation necessary to calculate the tens 
of thousands of LCPs over hundreds of thousands of 
kilometres, with over five million cost values.

The specific research aim was to create a tool 
to reconstruct the itineraries followed by groups of 
state-sponsored religious envoys travelling from Asia 
Minor to multiple cities across the Hellenistic world of 
the late third century BCE. To address this it became 
clear that separate optimizations must be applied 
at various stages and at different scales, from LCP 
modelling to large-scale network formulation and 
routing through a set of destinations on that network. 
In the spirit of Verhagen’s exhortation (2018) that 
archaeologists should make the tools themselves 
the object of inquiry in order to free themselves from 
dependence on experts from different disciplines, we 
decided to develop new techniques for LCP generation 
and network construction, using ancient sources to 
calibrate network complexity to investigate optimal 
route-finding through such networks.

1.1 LEAST COST PATHS
Computational techniques to improve our understanding 
of the ancient world have gained much traction in the 
last two decades. In the field of archaeology in particular, 
LCP and network analysis have been used with the aim of 
elucidating different types of connectivity, often in the form 

of physical, civic, economic, cultural and social interaction 
(Bertoldi, Castiglia & Castrorao Barba 2019; Brughmans 
2010; Carreras & de Soto 2013; Isaksen 2008). At the core 
of this is reconstructing the movement of people across 
the landscape. Movement can be investigated at the 
scale of single paths between adjacent settlements, such 
as journeys that could be undertaken in the course of a 
day (McHugh 2019; Parcero-Oubiña et al. 2019; Seifried 
& Gardner 2019). Where longer journeys are undertaken, 
an interconnected network of paths and settlements 
can be constructed, through which movement occurs 
in multiple stages (Herzog 2013; Verhagen et al. 2014; 
Verhagen, Nuninger & Groenhuijzen 2019).

Following the ‘Principle of Least Effort’ (Zipf 1949), 
Surface-Evans & White (2012) state that least cost 
analysis is predicated on the assumption that humans 
‘tend to economize many aspects of their behaviour’. In 
other words, humans will seek to take the easiest path, 
requiring the minimum cost. Finding the most efficient 
route from one place to another involves minimizing 
some cost, normally time or energy spent, of moving 
across a background topography often in the form of 
a digital elevation model (DEM). The cost is generally 
purely slope dependent and calculated using an 
empirical function, e.g. as described in Langmuir (1984), 
Tobler (1993), Minetti et al. (2002) and Márquez-Pérez, 
Vallejo-Villalta & Álvarez-Francoso (2017), though some 
authors have included additional sources of cost, such 
as marshy ground (Herzog 2014a; Verhagen, Nuninger 
& Groenhuijzen 2019). A comprehensive treatment 
would also require the inclusion of other factors, whether 
environmental, political or cultural. However, as Bevan 
(2013) argues, there are advantages to keeping models 
simple as they are easy to understand and test under 
controlled conditions.

The availability of tools to calculate LCPs via GIS means 
that they are easily accessible to the archaeologist or 
historian. However, incomplete understanding of how 
LCP applications work may lead the user to produce 
aesthetically-pleasing graphics despite erroneous 
inputs, in part due to them being treated as a ‘black 
box’. A number of publications have addressed the 
pitfalls associated with LCP analysis (Bevan 2013; 
Herzog 2013; Herzog 2014a; Seifried & Gardner 2019; 
Verhagen, Nuninger & Groenhuijzen 2019). Bevan lists 
four such issues associated with the generation of least 
cost surfaces: failure to consider anisotropic costs (i.e. 
ones that vary according to direction of movement); the 
choice of appropriate hiking functions; the limitations 
of spreading algorithms to accumulate cost; and the 
absence of calibration and validation of results.

1.2 NETWORKS
Generation of LCPs is often limited to those between a 
small number of places due either to computational costs, 
or a confined geographical area of interest. For example, 
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McHugh (2019) creates single LCPs representing a day’s 
journey within Attica, which she defines as up to 15 hours. 
However, to model a multi-stage journey, a network of 
individual routes must be considered. A useful way of 
approaching larger-scale connectivity is to represent its 
key components as an abstract network, consisting of 
nodes connected by edges. In the case of journeys, nodes 
may represent settlements, and edges the connecting 
paths weighted by some cost, such as the time or 
distance to travel between them. Such networks can be 
quite simple; some researchers of the ancient world have 
found them useful for conceptualising different types of 
connectivity and have taken to adopting the terminology 
of network theory without applying quantitative 
methods (e.g. Knappett 2011; Woolf 2016). A volume 
of Mediterranean Review (Malkin, Constantakopoulou & 
Panagopoulou 2007) was devoted to exploring where 
network analysis might be applied. However, while 
recognising the potential of quantitative approaches to 
networks, the volume was limited to qualitative aspects, 
network theory being novel for many users and the 
numeric data from antiquity perceived as insufficient.

On the other hand, a network stored as a matrix of 
values opens the door to various types of mathematical 
manipulation, e.g. the generation of metrics to 
characterize connectivity or complexity, the clustering of 
nodes or optimal routing through nodes. Whereas there 
is a clear optimization methodology for individual LCPs, 
the cost, or efficiency, metric for network optimization is 
less well defined. The construction of different least cost 
networks is addressed in Herzog (2013). Among these 
are networks of ‘least cost to the user’ (Waugh 2000) 
where every node has a connection to every other node 
and cost to the traveller is minimized. At the opposite 
end of the spectrum are networks termed ‘least cost to 
the builder’ that connect all nodes whilst minimizing the 
cost of construction. Techniques such as triangulation 
or proximal point analysis produce results which seem 
heuristically to be a compromise between the extremes 
of least cost to the user and least cost to the builder 
(Herzog 2014b; Groenhuijzen & Verhagen 2017), but 
fail to balance building and using costs formally. The 
justification for the term ‘least cost network’ seems to 
be that the edges are LCPs rather than the network itself 
being constructed through any explicit cost minimization 
principle, something which will be addressed here.

1.3 APPROACH
Python is used to code the elements which extract and 
organize the data and to call a Fortran routine which 
performs the computationally-intensive, heavy lifting of 
LCP generation, since the latter language executes much 
faster. The use of Python also allows the Fortran to run 
in parallel on multiple processors, accelerating execution 
significantly and extending the overarching principle of 
cost minimization to our computational approach.

The methodology implemented can be divided 
into four main steps: (a) Minimize the cost of travel 
between known ancient settlements avoiding the 
direction-dependent biases in LCPs encountered in 
standard algorithms; (b) generate a minimum total cost 
network using the LCPs based on a trade-off between 
building and travel (user) costs and a derived network 
complexity parameter, λ; (c) calibrate λ, and hence 
the network travel costs, using the ancient itinerary 
Tabula Peutingeriana, or Peutinger Table; (d) calibrate 
the relative cost of land and sea travel by comparing 
ancient itineraries of the Delphic Theorodokoi List with 
their solutions to the travelling salesman problem. The 
resulting tool is used to construct an extensive network 
spanning much of the Greek-speaking world through 
which optimal journeys can be calculated over land 
and sea.

2 LEAST COST PATH METHODOLOGY

As in GIS software, Dijkstra’s algorithm (Dijkstra 1959) for 
finding the most efficient route through a network lies at 
the heart of LCP generation. Each pixel, or cell, of a digital 
elevation model (DEM) is treated as a grid point which 
effectively becomes a node of a network, the value of 
the line, or edge, linking adjacent nodes being the cost of 
progressing from one pixel to the next. For the DEM, SRTM 
(Shuttle Radar Topography Mission) elevations derived 
from a satellite-mounted radar (Yang, Meng & Zhang 
2011) are used. We have masked these with ancient 
coastline and lake files based on the Barrington Atlas 
(Talbert and Bagnall 2000) downloaded from the Ancient 
World Mapping Center (http://awmc.unc.edu/wordpress/), 
so that over ancient water surfaces (other than rivers), 
elevations are forced to a null value over which land 
travel is not allowed. Conversely, for LCPs representing 
boat trips, travel is not allowed on non-null values (i.e. 
land). Quite significant differences with the modern 
coastline are seen in places, e.g. parts of Akarnania, 
Aitolia and Caria. The modern salt lakes of Akrotiri and 
Larnaca in Cyprus were anciently connected to the sea, 
Akrotiri formerly being an offshore island seen to the 
south of the mainland in Figure 10. Each DEM datum is 
taken to be representative of a grid point, being the mean 
elevation of an area one arc second by one arc second, 
effectively 30 m in the north-south direction and, at the 
latitude of Greece, about 24 m in the east-west direction.

Efficiency of a path is defined in terms of minimization 
of the cost function with which the accumulated cost 
of walking along different routes is calculated. Most 
commonly, time elapsed is the measure of cost, the 
program giving the options of using the Tobler hiking 
function (Tobler 1993), a modified Tobler function 
proposed by Márquez-Pérez, Vallejo-Villalta & Álvarez-
Francoso (2017) or Naismith’s rule, as extended by 

http://awmc.unc.edu/wordpress/
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Langmuir (1984) to cope with downhill walking. As an 
alternative to time, the user may choose to find the 
route that minimizes energy, for which a variant of 
Minetti’s formula for energy expenditure whilst walking 
is used to calculate network edges (Minetti et al. 2002). 
For each of these functions the edge values between 
points depend only on the distance and slope and are 
anisotropic, in other words they differ according to 
the slope in the direction of travel rather than simply 
depending on absolute slope. The functions all have 
different characteristics e.g. in the critical slope at which 
it becomes more efficient to adopt a zig-zagging hairpin, 
or switchback, path (though it is a disadvantage of the 
Naismith/Langmuir rule that this transition never occurs). 
No account is taken in this implementation of the costs 
of negotiating different land types, e.g. the difficulties 
associated with marshy ground, or of crossing rivers.

The standard approach to creating an LCP is 
employed initially, briefly described as follows: Working 
outwards from the defined start point, multiple costs 
are calculated for each point on the grid, representing 
accumulated values for different routes. Any newly-
calculated value replaces a pre-existing one if it is lower. 
Dijkstra’s algorithm makes this process efficient by 
greatly reducing the number of different routes which 
must be explored. When a lower cost to reach a given 
point is discovered, the direction taken in the final step to 
reach it is recorded in a separate, backlink matrix. Using 
this, a complete LCP can be quickly reconstituted working 
backwards from any point to the start once the full cost 
field has been determined.

A key consideration is how to define the edges 
connecting neighbouring points. The most common 
technique involves the so-called queen’s move pattern, in 
which each of the immediately adjacent eight points on 
the grid is connected. This restricts changes in direction 
in any LCP to 45 degrees with the result that the cost of 
reaching a destination lying between the eight compass 
points is artificially increased. A map of isochrones of 
time elapsed walking on a flat surface shows concentric 
octagons rather than the circles which would result from 
an analytical solution (e.g. Bevan 2013: 8). One way of 
reducing this error is to allow edges to connect more 
points in the vicinity, e.g. by adding a knight’s move 
pattern, introducing eight extra connections – this is an 
option in the QGIS package. The 16-sided isochrones 
are closer to circles, but still result in unrealistic cost 
penalties for destinations lying between the 16-point 
compass directions. In addition, it effectively doubles the 
processing time and allows the leap-frogging of potential 
barriers by jumping over adjacent pixels, therefore not 
recording the full cost. An improvement to this technique 
employed by Herzog (2013) extends the neighbourhood 
region out to cover 48 points by including two extra move 
types, allocating a cost to each by assuming a straight 
line route over intervening points and preventing leap-

frogging by interpolating their cost values onto the line. 
However, Herzog shows that even with this 48 neighbour 
method, 64 points in a 13 × 13 grid (38% of points) 
cannot be reached by an optimal, straight-line path, with 
deviation from such a path of up to 8%.

2.1 ROTATE AND OVERSAMPLE TECHNIQUE
The calibration of network complexity covered later in this 
paper requires that LCPs be made as optimal and with 
as little bias as possible. Therefore a method has been 
derived of largely eliminating such artificial, direction-
dependent cost penalties at little extra computational 
cost. Termed the rotate and oversample technique, it is 
depicted schematically in Figure 1 and consists of the 
following steps, which are novel from step 2 onwards.

(1) Derive the LCP using the queen’s move.
(2) Break this path into sections – most experiments 

used a section length of 1 kilometre (A to B in 
Figure 1). Rotate each of these in turn so that the 
end is due east of the start.

(3) Create a separate high-resolution grid which 
encompasses each rotated section. This has a 
grid spacing n times smaller than the DEM. Most 
experiments conducted used n = 6, giving a sub grid 
spacing of about 5 × 4 metres depending on the 
angle of rotation.

(4) Populate each high-resolution grid with linearly-
interpolated elevation values mapped from the 
main DEM grid.

(5) Re-apply Dijkstra’s algorithm to derive a cost field, 
thence a high-resolution LCP from the start to end 
point on the high-resolution sub grid. The original 
LCP route section is discarded, having served its 
purpose in giving start and end points as well as 
defining the grid dimensions.

(6) Construct a new path by taking every nth point 
of the high-resolution LCP, rotated back to the 
coordinate space of the original grid. If the terrain 
slope exceeds the critical value at which time or 
energy-saving zig-zagging is expected, retain all 
points to avoid smoothing over such detail. This 
critical slope is calculated for all cost functions other 
than Naismith’s, for which it does not exist.

(7) Following this new path, recompute the cost 
from point to point, for the full journey. If the 
cost function minimized with Dijkstra is energy 
expended, there is the opportunity here of 
computing the time taken to follow this path using 
one of the time-based cost functions.

The rotation step solves the standard queen’s move 
distance bias for travel on flat surfaces, leading to 
straight paths and isochrones in concentric circles rather 
than polygons. Figure 2 compares both methodologies 
for paths to close destinations (less than a kilometre 
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distant) arranged at equal intervals around the edge of a 
square from a central point on a flat surface.

However, the deviations from straight-line paths 
still lead to errors, which are significantly lessened by 
the oversample step. The end result is a path which is 
constrained to follow the general route of the originally-
derived LCP, but in which directional changes of about 
45/n degrees (e.g. 7.5 degrees with n = 6) are allowed, 
giving shorter paths and, more importantly, largely 

eliminating distance biases depending on the direction 
of destination relative to start. Unlike Herzog’s 48 or 
higher neighbour method, all these slight directional 
changes can be accomplished over sections as short 
as one DEM grid length, e.g. in a winding valley path 
(Figure 3). With n = 6, all points within a 13 × 13 square 
are reachable from the centre by straight-line paths 
with no deviation from a straight-line path, compared to 
62% of points with the 48 neighbour method with up to 
8% deviation (Herzog 2013). The final step of selecting 
only every nth point effectively brings the resolution of 
the path back into equivalence with that of the DEM 
though allows points to be defined intermediate to the 
main grid positions. Because the sub-grids on which the 
second Dijkstra step is made are very small compared 
to the main DEM, it only results in a modest increase in 
computational time (generally less than 10% relative 
to standard queen’s move), whereas the 48 neighbour 
method would approximately quadruple the processing 
time for deriving the cost surface relative to queen’s 
move. In a comparison of over 10,000 km of LCPs in the 
Peloponnese, the technique generated paths which were 

Figure 1 Schematic illustration of rotate and oversample method. Here n = 5, the solid line resulting from step 5, dashed from 
step 6.

Figure 2 Least costs paths on a flat surface radiating 
from a central point. Standard queen’s move (left), rotate 
methodology (right).
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on average 3.5% shorter than those produced by the 
standard queen’s move. More importantly, there is no 
bias in the computed distance associated with average 
path direction.

There is a special problem associated with paths 
in domains in which there is perfectly uniform (or no) 
terrain slope. In this situation, with no variation in forcing 
from topography, there are many equally long queen’s 
move solutions to the shortest path and, as Herzog 
(2013) shows, the calculated path can deviate up to 20% 
of its length from the optimal path. However, with real 
data there is always some slight unevenness in terrain, 
noisiness in the SRTM data artificially adding to this. 
For the purposes of travel over the sea the expedient 
of adding a small (less than one percent) random 
component to speed gets round this problem.

It should be noted that an LCP between two 
settlements varies according to which is nominated as 
the start point due to the anisotropic treatment of cost 
on slopes, with the journey in one direction occasionally 
differing substantially in its route from that in the opposite 
direction. In order to generate a plausible road network, 
we follow Herzog (2014b) in using a cost function which 
represents walking in both directions at each stage, so 
that the path generated is that which minimizes the cost 
of a return journey on the same route. Whilst the path is 
isotropic inasmuch as one line on a map represents the 
path taken in both directions, the cost of walking it in 
each direction still varies, and is calculated and stored 
separately so that the network will retain its anisotropic 
character. The path is stored as a series of latitude and 
longitudes, costs are stored in an N × N matrix where 
N is the number of locations, and COST(i,j) represents 
the cost of going from place i to place j. Anisotropy is 
reflected in the fact that COST(i, j) ≠ COST(j, i) unless the 
surface is perfectly flat, which is the case with travel over 
water.

It is possible to reduce computational time 
considerably by applying what will be called an 
undersampling method to the first step. This involves 
altering the first queen’s move Dijkstra call so that rather 
than searching immediately-neighbouring points on the 
DEM, it establishes direct links to points at some number 
of grid lengths away, known as the undersampling factor. 
The initial LCP is then necessarily more approximate with 

likely underestimated temporal costs, since gradients 
will generally be artificially reduced. However, having 
divided it into rotated sections at the oversample stage, 
we go back to the usual neighbourhood point definition 
for the fine-scale LCP, so gradients are ultimately 
fully resolved. The full process can then be termed 
undersample, rotate and oversample. This expedient 
reduces processing time by around the square of the 
undersampling factor, adding further to the time savings 
achieved by parallel processing. As an example, it allows 
the network of the Peloponnese (Figure 9) containing 
over 10,000 km of LCPs, to be created in 41 seconds 
on the eight processing threads of a 2013 MacBook 
Pro. This shortcut is used as standard when generating 
boat journeys where gradient calculation does not 
apply and it is simply resolution of the position of the 
coastline which is at issue. An undersampling factor of 
four is used, a precision of 120 metres being considered 
sufficient. It was also used as standard when creating a 
master, least cost to the builder network to supply first-
guess costs prior to full-resolution network generation 
(see Appendix 1).

3 MINIMUM TOTAL COST NETWORK 
METHODOLOGY

One may question the degree to which real routes 
achieved the degree of optimization represented in 
LCPs. Even today, someone travelling by road from one 
town to another rarely takes an optimal route, instead 
being constrained to move through a network of roads 
which generally forces an approach to the destination 
which is indirect to some degree. The complexity of the 
network is a strong determinant of how direct longer 
routes or itineraries are, so to recreate the degree of 
connectedness of settlements across a wide region in 
the ancient world, a suitable network must be created. 
Networks lying between the two extremes of ‘least cost 
to the builder’ and ‘least cost to the user’ (Waugh 2000) 
can be produced by various techniques (e.g. Evans & 
Rivers 2017; Groenhuijzen & Verhagen 2017; Manière, 
Crépy & Redon 2021; Prignano et al. 2019). Some have 
LCP-derived edges, though others only allow geodesic 
(effectively straight-line) paths and none appears 

Figure 3 Rotate and oversample LCP (thick) compared with standard queen’s move LCP (thin).
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to offer any minimization of combined cost of travel 
and cost of road building. Prignano et al. (2019) have 
some representation of building cost in the form of a 
fixed, upper limit to the total length of network edges 
permitted.

Here we introduce a methodology that addresses 
these notional costs, which we call minimum total cost. 
It generalizes the concepts of competing costs into a 
system in which least cost to the builder and least cost 
to the user fall out as the extremes of one technique, and 
allows all gradations in between.

Consider three sites, A, B and C as in the schematic at 
Figure 4. The lengths of the lines are proportional to the 
cost (temporal or energetic) of travelling an LCP road, and 
their straightness is not to be interpreted as representing 
straight routes. We use the notation AB, BC and AC to 
represent the costs of travelling individual legs and ABC 
the cost of travelling from A to C via B. The first principle 
is that each site should have a road connecting it to its 
nearest (in cost terms) neighbour, so roads connect A with 
B and B with C. The next principle is that a road be built 
connecting A with C only if there is a net positive benefit, 
i.e. that cost savings to travellers between A and C are 
greater than the cost of building and maintaining a road 
from A to C. Let b represent building and maintenance 
costs per year, and t represent travelling costs per year, 
which are proportional to the length of the journey and 
number of people and/or transported goods making the 
journey. The total benefit (negative cost) of instituting a 
road can be given as

 

  

ABC–AC –AC

or

ABC–AC 1 /

benefit t b

benefit t b t

  

 

For the creation of a road to be cost-effective the total 
benefit should be positive, i.e.

 AC 1 / ABCb t 

We will use the term ‘build cost’ to include the initial 
construction cost as well as the ongoing maintenance 
and repair cost. Whilst construction might be thought 
to involve a one-off, capital cost, we assume that this is 
spread over an extended period of time, so that like travel 
costs, build costs are deemed to be continuous. The build 
cost of a road might at first be thought of as proportional 
to the geometric length of the road rather than time 
taken or energy expended to walk it. However, it seems 
logical that, like travel, road building is more challenging 
on difficult terrain, so for our purposes build cost per unit 
length of road has been treated as being proportional 
to time or energetic cost of travelling that length. The 

term distance will be loosely used when discussing road 
cost, being a catch-all for spatial, temporal or energetic 
distance.

The formula could be made more elaborate by 
factoring in the traffic volumes on the road, which could 
be made proportional to the population of the sites A 
and C. However, in the absence of population data and 
to keep things as simple as possible, we reason that not 
only cost of travel, but also of road building is likely to be 
in some degree proportional to traffic levels, so that this 
factor would tend to cancel out in b/t. For a route which 
only has two travellers per day a simple path might do, 
whereas a major highway with wheeled traffic would 
require a minimum width, foundations, paving and 
periodic repairs.

Denoting the ratio t/b by the dimensionless parameter 
λ, the criterion for establishing a direct road from A to C 
rests on whether AC times 1 + 1/λ is less than ABC, and 
the break-even cost of building the road can be given 
by t/λ. Take the example of a situation where λ = 1.0, 
corresponding to travel cost equalling build cost. New 
roads will be established where the indirect route takes 
more than twice as long as the proposed direct route. If 
road building is expensive and λ = 0.5, the indirect route 
would have to be three times as long as the direct one 
before a road is built; but if it is cheaper, or travel time 
more valuable, e.g. with λ = 5.0, the indirect route only 
has to be 1.2 times as long before a new road is created. 
Following the rule that a road only be instituted if savings 
in travel exceed the break-even build cost, the total cost 
is minimized.

Figure 4 Schematic of travel costs between three points. 
Lines AB and BC represent the costs of travelling established 
roads. Dotted line AC represents a proposed direct road from 
A to C.
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3.1 NETWORK COST MINIMIZATION 
IMPLEMENTATION
In order to make computation manageable direct 
links are limited to those which can be made within 
some defined cost termed the maximum temporal 
radius, usually set to 36 hours. This is tunable, and 
at first 12 hours was specified on the basis that this 
was the approximate limit of a day’s travel, and that 
travellers would not want to overnight between 
settlements. However, where settlements are sparsely 
distributed it left holes in some networks, and it was 
reasoned that there would likely be stations or small 
settlements of which we have no record. Two methods 
for implementing the cost minimization technique 
were coded, local outward search (LOS) and global 
pairwise optimization (GPO) – for details of algorithmic 
implementation see Appendix 2. Both require a master 
network to be created first, effectively a least cost to 
user network in which every node is connected to every 
other node within the maximum temporal radius. 
Since this simply provides a lookup table to inform 
decisions about which nodes to link in the network, its 
precision is not critical and the computational burden of 
generating the master network is significantly lessened 
by employing the undersample, rotate and oversample 
methodology.

3.1.1 Local Outward Search methodology
The LOS method requires that λ ≥ 1 and replicates a 
decision-making process which takes place at the level 
of individual settlements. Nodes are placed in order 
of temporal distance by direct LCP from the central 
settlement under consideration. A route is established 
to the closest node. Thereafter, each node is examined 
in turn to weigh the net benefit (dependent on λ) of 
building a direct road against using a stepping stone 
to which roads, direct or indirect, have already been 
established in this outward search. The route which 
yields the greatest benefit is chosen. We could imagine 
point A in Figure 4 as the central settlement, B as an 
intermediate node which has already been connected, 
directly or indirectly, and C as a settlement to which 
a direct road is built according to whether AC(1 + 1/λ) 
< ABC. There is a stricture that AB must be less than 
AC, in other words that the staging post be closer to 
the destination than the origin. If a direct route is not 
established, the temporal distance AC is updated with 
the indirect value ABC. A new central location is then 
chosen and the process repeated until all nodes have 
been treated as a central location.

3.1.2 Global Pairwise Optimization methodology
The GPO method replicates a central authority in decision 
making. It involves looking across the whole network and 
finding the road, the establishment of which would confer 

most benefit per unit distance to the two nodes at either 
end, using benefit = t (ABC – AC(1 + 1/λ)). Every edge in 
the network is given an arbitrarily large starting value, 
so the smallest roads are created first. Every time a road 
is established, Dijkstra’s routine is called to update the 
indirect temporal distances till there are at least indirect 
routes connecting all nodes. The process continues until 
the maximum benefit of new road establishment falls to 
zero or less.

3.2 NETWORK EXAMPLES FOR CYPRUS
By specifying varying values of λ, LCP networks of 
different complexity can be constructed across a region. 
Figure 5 shows examples of LCP networks across Cyprus 
utilizing nodes for the late third century BCE for values 
of λ ranging from 0.1 to ∞. Here λ = 0.1 is effectively a 
least-cost to the builder network and λ = ∞ is least cost 
to the user. λ = 0.1 produces elements of Herzog’s (2013) 
‘main routeway with later subsidiary pathway’ model, 
with some settlements lying at the end of spurs leading 
off a main route. The Troödos mountains in the interior 
of the western half of Cyprus force LCPs into valleys, with 
the result that even with large λ, routeways remain well 
defined and separate. However, in the flatter, eastern 
half of the island the roads spread out across the plain 
in an unrealistic sprawl. Quite apart from considerations 
of travel and build costs, the cost in loss of agricultural 
land is likely to exert a strong constraint against such 
proliferation.

A weakness of the technique is the failure to re-use 
sections of existing roads in establishing new routes 
by defining junctions, as is done e.g. in the Steiner tree 
approach (Verhagen, Polla & Frommer 2014). However, 
these networks will certainly exhibit junction-like points, 
e.g. where routes are forced together in complex terrain, 
as can be seen in the λ = 8 network in Figure 5 around the 
Troödos mountains. An extension to the technique which 
may be worth pursuing is the assignment of junction 
nodes based on the master network and their use in the 
network optimization process. Alternatively, new nodes 
could be created e.g. every kilometre of LCP, though this 
would result in prohibitive costs for anything other than 
small networks.

4 NETWORK CALIBRATION

Ideally, known ancient roads and networks of roads 
would be put to this purpose, but their fragmentary 
nature makes this unviable. Instead we can turn to 
the ancient itineraria, which were used to aid travellers 
on their journeys, since distances between locations 
depend on network complexity, with simpler networks 
of lower λ making for longer distances between places 
on average.
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4.1 TABULA PEUTINGERIANA (TP)
Itineraria in their simplest form were lists of place names 
with the estimated distances between them. No such 
lists over land have survived from before the Roman 
period, although sea itineraries (periploi) exist from the 
Hellenistic and classical periods. The most famous and 
extensive ancient itinerary is the Tabula Peutingeriana 
(TP), or Peutinger Table, which is in the form of a semi-
pictorial map, and is thought to have been compiled 
from multiple smaller itineraries designed for practical 
use (Salway 2001: 47). A section of the TP will be used 
to calibrate simulated network complexity, and in this 
context an understanding of its chronology is necessary 
by way of introduction. The TP is a medieval copy of an 
earlier map of the Roman imperial period, which itself 
went through a number of iterations, but excepting a few 
cases (e.g. Constantinople rather than Byzantium and the 

marking of St Peter’s outside Rome), the place-names 
are generally those current before the era of Diocletian 
and the Tetrarchy (293–305 CE), and some elements 
appear to belong to a considerably earlier period (Salway 
2005: 120). Its inclusion of Pompeii, Herculaneum and 
Oplontis, all destroyed in 79 CE, suggests its descent from 
an earlier prototype (Elsner 2000: 185), while Rathmann 
(2016: 342) argues for the TP archetype pre-dating 
the Roman era and belonging to the Hellenistic period. 
Because it cannot be viewed as a snapshot of the ancient 
world, a decision has to be made as to which date to use 
in the selection of known ancient settlements to provide 
network nodes. Given previous considerations, 280 CE 
was chosen.

We took 117 route distances in Roman miles from 
the TP for a region extending from Sicily to Cyprus, 
this region chosen to correspond with the simulated 

Figure 5 LCP networks of increasing complexity generated for late third century BCE Cyprus. GPO method used for λ < 1, others 
using LOS.
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network for application to itineraries of the earlier Greek 
world. Network nodes were extracted from the Pleiades 
gazetteer of ancient places (Barker et al. 2016), filtered 
by area and date. Note that we do not use the network 
itself depicted in the TP, which is assumed to represent a 
small portion of the total road network, rather simply the 
given distances.

4.2 OPTIMIZATION OF λ BY STATISTICAL 
ANALYSIS OF NETWORK DISTANCES 
AGAINST TP
Different networks of least cost paths (LCPs) were derived 
across the region based on the total cost minimization 
principle applied using both the LOS and GPO methods. 
Varying values of λ were specified using costs based 
on Minetti’s energy function (Minetti et al. 2002) and 
the modified Tobler hiking function (Márquez-Pérez, 
Vallejo-Villalta & Álvarez-Francoso 2017). Dijkstra’s 
algorithm (Dijkstra 1959) was applied to the networks 
in order to find an optimal path from node to node 
through the network and derive the 117 route distances 
corresponding to the legs taken from the TP. Distances 
obtained in this way are denoted by LCPnet. The best fit 
between TP and LCPnet values was produced with the 
modified Tobler hiking function in a network of λ = 7 
generated by the LOS method. This both maximized the 
number of distances for which LCPnet was within 5% of 
TP (33) and generated the median normalized difference 
closest to zero, whereas the best fit obtained using the 
GPO method had 29 instances of LCPnet within 5% of TP.

Ultimately, consideration of the quality of the TP data 
should be made in light of the fact that the comparisons 
here are not made against truth, which cannot be 
known, but against the LCP network, which doubtless 
has its own bias and noise. However, given the wide 
range of ratios and evident errors in TP values, with e.g. 
around 25% of the sample being shorter than geodesic 
(effectively straight-line) distances, it is considered that 
the large majority of the variance comes from them 
rather than the LCPnet values. The large spread in ratios 
and the presence of gross errors in the TP may seem to 

militate against extracting value from them; however, it 
is a fundamental tenet of statistics that poor quality of 
data can be compensated by quantity, and we contend 
that judicious use of diagnostics can yield a useful signal 
sufficient for our purpose. At the same time something 
about the nature of the errors in the TP can be inferred.

Figure 6 shows the frequency plots of normalized 
difference between LCPnet and TP for three different 
levels of network complexity defined by λ = 4, 7 and 10 
at 0.1 bin intervals. λ = 7 scored highest independently 
both for symmetry and number of differences of route 
length of less than 5% (indicated by the bin interval –0.05 
to +0.05).

Errors in the TP values could have many different 
causes, such as transcription mistakes (Bekker-Nielsen 
2004), inaccuracies in the sources from which the 
original table was constructed, original surveying 
errors, or modern misidentification of the positions of 
the ancient sites referred to. On the other hand, errors 
in LCPnet values could arise due to inadequacies in the 
assumptions underlying the technique, such as the very 
principle of cost minimization and the applicability of 
the hiking formula employed. According to the Central 
Limit Theorem, one would expect random errors in a 
population arising for many independent reasons to 
approach a statistically normal, or Gaussian, distribution. 
In all the frequency plots in Figure 6, but especially so 
for λ = 7, a narrow peak is in evidence, superimposed on 
an approximately Gaussian distribution, suggesting the 
amalgamation of two distinct populations.

To test this, an iterative process was adopted in which 
incremental changes were made independently to N 
(number), σ (standard deviation) and μ (mean) of two 
idealized subpopulations, and those which increase R2 
are retained, causing the composite modelled population 
to converge towards the actual population until no 
significant improvements are made. The distribution 
was found to be fitted best to a composite distribution 
consisting of the sum of two unbiased (μ = 0.0) Gaussian 
populations, one larger (N = 78.2) and noisier (σ = 0.37), 
the other smaller (N = 34.1) and less noisy (σ = 0.04), the 

Figure 6 Frequency plots of normalized difference between LCPnet and TP. For λ = 4, 7 and 10 at 0.1 bin intervals.
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results shown in Figure 7. The high correlation between 
this composite and the observed distribution (R2 = 
0.981) gives confidence that the modelled distribution 
approximates the observed one well, indicating that 
98.1% of the observed frequency within bins can be 
explained by the idealized distributions. Two of the 
values not accounted for in the Gaussian populations lie 
outside of the plotted range shown, with errors up to a 
factor of 5.

4.3 COMPARISON OF INFERRED NETWORK 
COMPLEXITY WITH ARCHAEOLOGICAL AND 
HISTORICAL EVIDENCE
The network generated by λ = 7 (shown for the 
Peloponnese in Figure 8) may seem intricate compared 
with many reconstructed historical road networks. 
One measure of complexity is the β index, the ratio of 
the number of edges to nodes (Kansky 1963). In our 
simulated network for Cyprus, β = 2.60 compared with a 
value of 1.68 calculated by Bekker-Nielsen (2004: 225). 
He based his network on fieldwork throughout Cyprus 

Figure 7 Frequency plots of actual and modelled normalized 
difference. Red+purple covers actual frequency distribution (as 
in Figure 6), whilst blue+purple give that modelled by the sum 
of the two Gaussian functions shown, defined by population 
sizes (N), standard deviation (σ) and mean (μ).

Figure 8 Modelled networks in late third century BCE Peloponnese. Major (thick black) and minor (thin blue) roads from a putative 
network created with λ = 0.65 (β = 1.31) and λ = 7.0 (β = 3.0). All roads in the simpler network are also in the more complex network. 
The area around Geronthrai is magnified.
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and use of literary sources, though he acknowledges that 
in his study many local roads remain unidentified, and 
that even main roads may be missing. He also quotes 
(p. 225) β = 1.31 to 1.35 for reconstructed Roman road 
networks in Gaul, northern Italy and Greece, and ‘more 
than two’ for the area around Carthage. His value for 
the Peloponnese of β = 1.31 is close to the 1.33 given 
by Sanders and Whitbread (1990) which they calculated 
from a map of 1822. Justification for the use of early 
nineteenth century evidence to make inferences about 
travel in the ancient world is similar to that advanced by 
authors who quote accounts of travellers such as Leake, 
Dodwell and Gell (e.g. Seifried & Gardner 2019; McHugh 
2019). Both are significantly lower than the β = 3.00 for 
our λ = 7 network for the Peloponnese.

However, Pikoulas (2012) in his exhaustive study 
of the ancient cart-road network of Lakonike in the 
Peloponnese found strong archaeological evidence for a 
much more complex network than had previously been 
imagined. He documented, for instance, eight roads 
leading to Geronthrai, one of the poleis of Lakonike, 
which compares well with the seven roads to Geronthrai 
from surrounding nodes generated by setting λ = 7. 
Bekker-Nielsen’s value of β = 1.31 for the Peloponnese 
can be replicated by using λ = 0.65, the resulting network 
having only three roads into Geronthrai (Figure 8), so 
Pikoulas’s archaeological findings better support the 
order of complexity exhibited by our network. If we 
take it to include minor routes which, in the hierarchy of 
roads, lie below the main viae publicae or equivalent, it 
is possible to imagine a combined network of routes of 
such complexity. These could include the likes of the viae 
vicinales, the local, village roads of the Roman system, 
which may have been no more than unpaved tracks or 
well-trodden footpaths, leaving little or no trace today.

4.4 DISCUSSION
Whilst the TP depicted a system of roads on the grand 
scale, it is easy to imagine that some of the individual 
edges grew out of minor routes serving local networks, 
but which came to achieve a greater significance when 
repurposed and upgraded as arteries in an empire-wide 
network. The better fit provided by the LOS network 
generation method over GPO gives some support to this 
idea, GPO having 29 results within 5% of parity between 
TP and LCPnet, versus 33 for LOS, marginally suggesting 
that the network evolved principally from local rather 
than large-scale organization. This contrasts with the 
findings of Prignano et al. (2019) in relation to road 
networks of Iron Age Etruria, though the difference could 
be explained by the fact that here we are considering a 
much larger area.

One might speculate that the Roman roads on which 
the TP distances are based could have been on average 
shorter than LCPs since Romans roads are known for 
following more direct courses than their predecessors, 

their surveyors realizing impressively rectilinear 
constructions, sometimes for tens of kilometres at a time 
(Hucker 2009), achieving efficiencies in building materials 
and garnering prestige. We took all LCPs of 10 Roman 
miles or less to minimize the risk of indirect routes through 
intermediate nodes and of copyist omission errors, and 
they matched their TP equivalents to less than half a 
percent. Too much should not be read into this because 
of the small sample size (5), though it certainly gives no 
evidence of systematic divergence between direct LCP 
distances and TP values. It also lends some support to 
the idea that in tuning the LCP network to the TP values, 
we are mainly matching network complexity rather than 
correcting biases in LCPs. However, for our purposes the 
distinction between the two sources of error is not of 
great importance since our main interest is in generating 
realistic edge costs between nodes regardless of how 
that is achieved. In the same way, the actual paths taken 
between nodes are of secondary interest, in contrast to 
many archaeological studies.

Salway (2001: 58) maintains that the variegated 
nature of the TP reflects the fact that it was a compilation 
of data from publicly-displayed lists of stages and 
their distances from different locations and times. We 
speculate that the smaller, more accurate subset of TP 
figures which correlate well with LCPnet (Figure 7) may 
have come disproportionately from roads which were 
built and measured directly by the Romans, whose 
practice it was to survey carefully and mark out prior to 
building (Hucker 2009). The larger, less accurate subset 
may have contained essentially unaltered roads whose 
pre-existing, recorded measurements were used by the 
Romans, which seems to be the case with the distances 
given on the monumental stadiasmus provinciae Lyciae 
at Patara (Salway 2001: 58). Here 64 route distances 
between some 50 locations were recorded by the 
Romans shortly after they had conquered Lycia in Asia 
Minor (Rousset 2013: 65). A case-by-case examination 
would be necessary to cast further light on this, but at 
the very least, Salway’s contention would support the 
idea of distinct subpopulations contained in the TP as 
strongly suggested by the statistical analysis.

Verhagen, Polla & Frommer (2014) point out that the 
cost functions commonly used to derive LCPs are not 
necessarily applicable to a road designed for wheeled 
transport, particularly in respect of the differences in 
coping with slopes, and estimate that a mule-drawn cart 
with a load of 500 kg would be unable to get in motion 
on a slope of greater than 9%, based on an equation by 
Raepsaet (2002). They therefore tried a cost function 
which avoided all slopes of > 9% (though Hucker (2009) 
reports gradients of 1 in 6, i.e. about 17%, as the critical 
slope for onset of zig-zagging of Roman roads). The 
modified Tobler function has a critical slope for cost-saving 
zig-zagging of 27%, as defined by Llobera & Sluckin’s 
(2007) equation 20. As an experiment, we modified it to 
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force the critical slope to 9% by heavily penalizing the 
cost of travelling on slopes steeper than this. For the 117 
TP legs it resulted in slightly longer average road sections 
(by about 2%), partly by lengthening the routes through 
switchbacks and partly by going around areas of high 
ground. However, we decided not to implement this as 
standard in part because of some uncertainty about how 
the resulting increase in frequency of a switchback road 
configuration would have been measured. Bekker-Nielsen 
(2004: 200) states that the Romans did not generally 
include the extra distance resulting from switchbacks in 
their surveyed distances, at the same time noting that 
one TP distance in Cyprus evidently does include the 
contribution from switchbacks, perhaps, he speculates, 
because its recorded mileage predated Roman surveyors.

The applicability to earlier periods of a value of λ which 
has been derived for a date of 280 CE is open to question. 
However, there is some evidence that the Roman road 
network in territories of the earlier Hellenistic world did 
not differ significantly from its antecedents. Verbrugge 
(1976), in his study of the road network of Sicily, found 
that all bar two of the major routes of the island were 
in place before the advent of the Romans, and that 
the routes used by travellers and the imperial post 
show no signs of Roman engineering or realignment. 
He concludes that where they found an adequate road 
network they made few attempts to improve or extend 
it. Pikoulas (2007: 85) makes a similar point in relation 
to the road network of the Peloponnese and the rest of 
southern Greece, where there are no known exclusively 
Roman road constructions. Taken with Rathmann’s 
contention (2016) that the TP has Hellenistic origins 
these observations support the use of the derived value 
of λ = 7 for this earlier period, so long as the network is 
reconstructed with contemporary nodes.

5 NETWORKS OVER WATER

A network of water routes (over sea and lakes) was 
constructed using λ = ∞, on the assumption that boats 
are unconstrained in the directions they take, other 
than not being allowed to go over land points. An upper 
limit was placed on the amount of time allowed for a 
single journey over water of 36 hours which means that 
whilst routes are allowed across the Aegean Sea (aided 
by island hopping), journeys across the Ionian Sea were 
restricted to the narrower part between Epirus and Italy, 
consistent with a practice of cabotage, or not straying 
too far from the coast (Constantakopoulou 2007: 176; 
Rougé 1966: 173).

No account of prevailing winds or currents was taken, 
as is done e.g. in the ORBIS tool (https://history.stanford.

edu/publications/orbis-stanford-geospatial-network-model-

roman-world), mainly for the sake of simplicity, but also on 
the basis that the majority of edges represent journeys 

close to land. Since these journeys are more commonly 
undertaken in summer, sea breeze effects are frequently 
likely to generate winds at odds with the climatological, 
open-sea values, giving a fairly reliable onshore wind 
component for much of the day regardless of the large-
scale prevailing wind. According to Heikell (2018), such 
winds in the Mediterranean set in during the morning and 
last till evening, blowing onshore and extending as much 
as 50 miles out to sea. Not only is this cycle favoured by 
a hotter land, but is also reinforced by the inertial effects 
of the earth’s rotation in much of the Mediterranean 
due to its proximity to 30 degrees latitude (Hsu 1988). 
At night and into the first part of the morning a weaker 
land breeze, blowing offshore, predominates, easing an 
early-morning exit from a harbour, the transition to the 
onshore sea breeze often being highly predictable. Ships 
of the time could make headway perpendicular to the 
wind, even somewhat against the wind (Gal, Saaroni 
& Cvikel 2021; Whitewright 2011), suggesting that the 
sea-land breeze cycle would have been much utilized 
by ancient mariners whose courses parallel to the coast 
would lie approximately perpendicular to the wind. 
Capturing the cycle in a quantitative way, however, is 
very challenging because the effect tends to cancel out 
over any averaging period of 24 hours or more and the 
numerical models used in generating such climatologies 
are generally too coarse to represent such small-scale 
effects. Gal, Saaroni & Cvikel (2021) have significantly 
improved the sophistication of estimates of travel under 
sail with both high resolution (27 km) meteorological data 
and sailing software which models ship performance in 
different conditions. However, they concede that this 
works principally for direct runs over open sea and that 
a separate method is required for modelling sea-breeze 
assisted coastal sailing.

In view of these difficulties, a constant, adjustable 
speed was specified for the network, which could be tuned 
up or down when combined with the land network values 
to form a super network. A small random perturbation of 
between plus and minus 1% is added to the distances 
between grid points resulting in trajectories which are 
not quite straight. Largely cancelling in aggregate, 
these perturbations change journey times by much less 
than 1%. Clearly, tacking courses adopted when sailing 
into the wind are not represented, the velocity being 
interpreted as an effective velocity, or ‘velocity made 
good’ as defined by Whitewright (2011). Any settlement 
within two kilometres of the sea or a lake is deemed to 
be able to access travel by boat, so no account is taken 
of e.g. the presence or absence of suitable deep water 
harbours, it being assumed that boats could load or 
unload passengers and cargo alike whilst lying at anchor 
(Votruba 2017). There is no representation of rivers either 
as conduits for travel by boat or as barriers to land travel, 
mainly because of the extra layers of complexity in 
implementation that this would have entailed.

https://history.stanford.edu/publications/orbis-stanford-geospatial-network-model-roman-world
https://history.stanford.edu/publications/orbis-stanford-geospatial-network-model-roman-world
https://history.stanford.edu/publications/orbis-stanford-geospatial-network-model-roman-world
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Figure 9 shows part of the network of land and sea 
routes.

6 THE TRAVELLING SALESMAN PROBLEM

In attempting to reconstruct the routes taken by 
ancient travellers, the relative cost of land and sea travel 
becomes an important consideration affecting decisions 
ranging from whether an individual leg of a journey is 
more likely to have been made by land or by sea, to the 
whole order of an itinerary.

In order to calibrate the relative costs of land and 
sea travel, we turn to the Delphic theorodokoi list (DTL) 
dated to around 220–210 BCE (Perlman 1995; Plassart 
1921). Theorodokoi acted as hosts for religious delegates 
(theoroi) visiting from afar, and cities which sent out 
these delegates kept lists inscribed in stone for public 
display containing the names of the theorodokoi they 
would call upon, alongside the names of their cities. 
The DTL originally contained some 300 cities across the 
Greek world to which the theoroi were sent to announce 
Delphic festivals. Such lists were usually organized 
geographically and within them some itineraries can 
be inferred (Perlman 2000; Rutherford 2013). Two 
itineraries from the DTL are used here to calibrate the 
sea speed, one for Cyprus and the other Crete, island 
itineraries being specifically chosen as they are more 
likely to allow both land and sea route options. To do 
this we extend the least cost path problem to finding 
the optimal route through a list of destinations which 
are nodes in a network.

6.1 TSP SOLUTION METHODOLOGY
This can be tackled as a variant of the classic travelling 
salesman problem (TSP), in which the most efficient 
(least cost) order in which to visit a set of locations is 
established, starting and finishing at the same point. 
Specifically, this is an asymmetric travelling salesman 
problem because costs between nodes vary with 
direction. The TSP can be solved for a small number 
of destinations (less than about 14) by using a brute 
force method whereby the cost of every ordering 
permutation is compared and the lowest selected. 
Since computation time is proportional to the factorial 
of the number of destinations, this method soon 
becomes impractical as the number increases. For 
example, going through permutations on a computer 
we were able to solve the TSP by comparing all possible 
routes for the nine locations in Cyprus (Figure 10) in  
about 0.006 seconds. Increasing this to 18 locations 
would have taken over three years using the same 
program, whilst the Crete example (Figure 11) with its 
29 locations would have required a period many times 
in excess of the age of the universe. This being so, we 
use a technique which directs the search by allowing 
whole groups of permutations to be ruled out a priori 
via a branch and bound process. Specifically, direct use 
is made of a Fortran routine documented by Carpaneto, 
Dell’Amico & Toth (1995), which returns the optimal 
itinerary order on input of an anisotropic matrix of times 
taken between each pair of destinations.

For our purposes we depart from the pure TSP in two 
respects: in allowing the route to go through the same 
place twice if this produces a shorter overall journey, and 

Figure 9 Section of combined land and sea network. Based on Pleiades locations extant in the late third century BCE.
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in allowing itineraries in which start and end locations 
are not the same. The solution algorithm is presented 
with an anisotropic matrix of costs between the nodes 
representing the destinations. The algorithm orders 
these in the most efficient way, then the network 
backlink matrix is used to find the intermediate 
nodes from the full network and the journey can be 
reconstructed. These intermediate nodes themselves 
may coincide with destinations, in which case the route 
is allowed to pass through that destination more than 
once. If it is required to specify which is the last place 
visited, the cost matrix is altered so that the cost from 
the nominated last destination to the start point is very 
small (e.g. 0.1 seconds), whilst those to all the other 
destinations from the nominated last place are very 
large (e.g. 1000 years).

Just as one may question the extent to which real 
paths between two nodes of a network really were 
optimal enough to be considered LCPs, it is a matter of 

conjecture whether ancient travellers would even have 
the data to compare the efficiency of different itineraries, 
let alone be able to solve what can be a computationally 
challenging task. However, the DTL itineraries are 
considered more useful than an account of a one-off 
journey since they result from the experience of regular 
journeys over multiple years during which there will have 
been ample opportunity for fine tuning.

6.2 DELPHIC THEOROI ITINERARY IN CYPRUS
Figure 10 (top panel) shows the order (1 – 9) in which 
theoroi visited destinations in Cyprus, as inferred from the 
Delphic theorodokoi list. Routes between destinations are 
derived by taking the quickest paths from a land and sea 
network with λ = 7 over land. The middle map shows a 
travelling salesman solution for the fastest route starting 
at Salamis and finishing at Arsinoe using a standard 
ship speed of 3.9 knots, close to Whitewright’s (2011) 
‘favourable conditions’ velocity made good for a ship 

Figure 10 Delphic theoroi itinerary for Cyprus. Top: Actual itinerary from theorodokoi list with routes between numbered 
destinations inferred from network defined by λ = 7. Unnumbered are intermediate nodes in network derived from backlink matrix. 
Middle: TSP solution, sea speed 3.9 knots. Bottom: TSP solution, sea speed 2.5 knots.
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of the first century BCE. This produces a different route, 
taking in all the poleis on the north coast sequentially, 
rather than breaking off to visit Chythroi between 
Karpasia and Keryneia as the actual itinerary indicates. 
Chythroi lies on the other side of the ridge of the Kyrenian 
mountains, so taking it in the given theorodokoi list order 
requires crossing the high ground twice, and the first 
TSP solution (middle panel) in which Chythroi is visited 
after Tamassos seems to make sense on the basis that it 
avoids this. Gradually reducing sea speed leads to a TSP 
solution (bottom panel) which matches the given order of 
the actual itinerary; this first happens at 2.5 knots, close 
to midway between Whitewright’s sailing ship speeds 
for favourable and unfavourable conditions. When the 
sea speed is reduced to 1.6 knots, around Whitewright’s 

unfavourable conditions speed, an itinerary with no sea 
legs is produced (not shown) though the order in which 
the destinations are taken does not alter.

6.3 DELPHIC THEOROI ITINERARY IN CRETE
Figure 11 gives the itinerary of Delphic theoroi visiting 
Crete. They start with Kythera, an island off the southeast 
of the Peloponnese (not shown on map), and after visiting 
27 settlements on Crete itself, it is inferred from the list 
that they went on to visit a number of poleis in Libya 
(Rutherford 2013: 75), starting with Cyrene. In view of 
this, the island of Kaudos is used to finish off the itinerary 
since it lies in the direction of Cyrene. A TSP problem was 
set with Kythera and Kaudos forced as start and end 
points respectively, and with a 3.9 knot sea speed (middle 

Figure 11 Delphic theoroi itinerary for Crete. Top: Actual itinerary from theorodokoi list with routes between numbered destinations 
inferred from network defined by λ = 7. Unnumbered are intermediate nodes in network derived from backlink matrix. Middle: TSP 
solution, sea speed 3.9 knots. Bottom: TSP solution, sea speed 2.2 knots. Kaudos is inserted as an end point since it seems that the 
itinerary then continued with Cyrene in Libya.
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panel Figure 11). This produces an itinerary in which the 
destinations are taken clockwise around the island with 
liberal use of boat trips between coastal settlements 
and the group of six in the southwest visited last rather 
than amongst the first, as in the actual itinerary. Again, 
gradually reducing the sea speed eventually leads to 
a sudden switch to a TSP solution which is much more 
similar to the actual itinerary – the threshold speed 
being 2.2 knots. It differs from the actual itinerary in the 
order in which locations in the last section, Phaistos to 
Matalon, are taken, which, in the given order involves 
some doubling back – perhaps because it was easier to 
take a boat to Libya from the port of Matalon.

Mount Pachnes (2453 m) lies between the 
Araden/Anopolis area (numbers 8 and 9 in top map) 
and Kydonia (10), forcing an indirect route which goes 
through Aptera (11), resulting in a double visit here. 
The TSP solution based on a more complex network of 
λ = 10 (not shown) allows a more direct route between 
nodes 9 and 10 bypassing 11, though the overall order 
in which named destinations are visited is not changed. 
Reducing the sea speed to 1.2 knots flips the TSP solution 
to a different configuration which in part reverts to the 
clockwise solution seen at speeds above 2.2 knots. All 
three itineraries depicted go through northeast Crete 
despite the absence there of supplied destinations. It 
is stated by Perlman (1995: 130) that about a dozen 
names lost from the theorodokoi inscription’s fourth 
column, between Oaxos and Hierapytna, are probably 
from northeast Crete.

6.4 OTHER EXPERIMENTS
It is documented that there was an overland theoroi 
route from Athens to Delphi. Going through a similar 
exercise (not shown) for a TSP return journey from Athens 
to Delphi gives a threshold sea speed of 2.1 knots to force 
a land journey. Since this route was taken as a symbolic 
procession (Rutherford 2013: 183), the overland itinerary 
may well have been followed for considerations which 
go beyond those of travel cost, though at the same time 
could have evolved originally for such reasons.

In order to test the sensitivity to networks of differing 
complexity, the experiment was repeated with networks 
of λ = 4 and 10, with the results given in Table 1. The 
simpler Cyprus itinerary showed no sensitivity over 
this range, whilst that for Crete showed an increase in 
threshold sea speed as the land network became more 

complex. It is notable that the ability of the TSP algorithm 
to reproduce similar routes does not seem too sensitive 
to defined network complexity.

6.5 DISCUSSION
Overall the TSP experiments provide some data points 
which suggest that a sea speed in the range of around 
2.0 to 2.5 knots should be specified in a combined 
land/sea network based on time costs. In addition to 
fitting centrally in Whitewright’s (2011) range of speeds 
for ships of the first century BCE, it is consistent with de 
Soto (2019: 281) who estimates an average speed of 
2.3 knots for coasting journeys. The results also suggest 
that plausible reconstructions of journeys can be made 
by applying a sea speed in this range to groups of 
destinations for which we have no itineraries.

Note that it is the ratio of land to sea speed which 
is important in this context, rather than absolute sea 
speed. Tobler’s hiking function (Tobler 1993) is about 23% 
faster than the Modified Tobler function when walking on 
the flat, and using it would suggest sea speeds faster 
in proportion (about 2.5 to 3.0 knots). However, given 
the evidence that the Modified Tobler function is more 
accurate (Márquez-Pérez, Vallejo-Villalta & Álvarez-
Francoso 2017; Seifried & Gardner 2019) the lower range 
is preferred. It might be more realistic to define the time 
costs of sea travel not merely by a speed, but also by a 
fixed cost which could represent the time taken to wait 
for a boat to set sail. It should be borne in mind that the 
time costs represented by these speeds can also be taken 
as proxies for a number of other considerations such as 
monetary cost, physical effort, organizational difficulties 
and risks associated with the different modes of travel, 
and that the speeds of land and sea travel would better 
be considered as virtual rather than actual speeds, a 
term which is expanded upon in Appendix 2. Another 
consideration is that time measured in elapsed days 
needs to be calculated separately since this depends on 
the spacing of nodes in the network, with routes which 
go through nodes conveniently separated by a day’s walk 
over land making more efficient use of travel time.

7 CONCLUSION

This study has brought to bear three different quantitative 
optimization procedures on the study of ancient travel. 
The well-known least cost path technique has been 
extended by a rotate and oversample method which 
improves its error characteristics and directional biases 
at little extra computational expense. The problem of 
network construction has been tackled by framing it as 
one of minimization of travel and building/maintenance 
costs for which a minimum total cost principle has been 
formulated. The λ parameter (ratio of travel to build 
cost) required to achieve this has been tuned by use 

λ = 4 λ = 7 λ = 10

Cyprus 2.5 2.5 2.5

Crete 1.9 2.2 2.3

Table 1 Threshold sea speeds (knots) at which TSP routes 
become similar to Delphic theoroi routes for networks of 
different complexity (λ).
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of a subset of the Peutinger Table, whose inferred error 
characteristics have been explored. An appropriate sea 
speed has been estimated for use in a combined sea and 
land network by treating known itineraries of Delphic 
theoroi in Crete and Cyprus as solutions to travelling 
salesman problems. The good agreement between 
optimized and actual itineraries suggests that, given 
a list of destinations whose order is unknown, other 
journeys could be reconstructed using the combined sea 
and land network.

The same principles outlined in this paper could be 
applied to other geographic areas, such as the wider 
Roman empire, as well as to later or earlier periods. A 
source of data on node locations, such as Pleiades, is 
necessary along with a suitable DEM and some means of 
estimating an appropriate network complexity metric, λ. 
This could be done, as here, by using a dataset of inter-
node road distances, though it could also be derived 
through other means such as tuning to an estimated 
β value. Use of ancient lakes and coastlines to modify 
the DEM is not necessarily a prerequisite of successful 
application of the technique, whilst, conversely, it may be 
appropriate to include in the hiking model the effects of 
other terrain costs where terrain height is not considered 
to be the main determinant in the choice of routes. The 
resulting network could also be turned to other uses 
such as clustering studies or the evaluation of network 
diagnostics, e.g. betweenness centrality, in order to 
evaluate the importance of individual nodes.

The authors are willing to make available the software 
used to generate networks of least cost paths upon 
reasonable request.

APPENDIX 1. ALGORITHMIC DETAILS 
OF NETWORK CREATION USING THE 
MINIMUM TOTAL COST METHOD

The technique relies firstly on establishing the N × N first-
guess cost matrix, FGCOST, where N is the number of 
locations in the network, and FGCOST (i, j) represents the 
cost of going directly along an LCP from place i to place 
j. Multiple LCPs are derived linking all places to all others 
within a specified temporal radius, MAXRAD (36 hours for 
experiments here), in what is effectively a ‘least cost to the 
user’ network. For maximum convenience at the expense 
of significant loss of accuracy, geodesic (straight-line) 
distances could have been used. For full accuracy, LCPs 
may be derived at full resolution using the rotate and 
oversample method (Figure 1). The compromise adopted 
for this study to reduce computation time was to use 
the undersample, rotate and oversample method. It is 
important to note that these LCP costs are simply used 
to inform the decision-making about which connections 
to make in the network, and that LCPs are regenerated to 

the required precision afterwards.
Two alternative algorithms have been coded for 

network construction. The first is termed global pairwise 
optimization (GPO) and at each stage chooses the road, 
the building of which confers the greatest benefit per unit 
distance between any pair of locations within MAXRAD 
hours of each other. It consists of the following steps:

(1) Create a new N × N cost matrix COST, each element 
initially populated by an arbitrarily large number. 
1010 was used in the experiments.

(2) Calculate the matrix BENEFIT = COST/FGCOST – (1 + 
1/λ). This gives the net benefit (negative total cost) 
of creating a road between each pair of places per 
unit temporal distance of that road. Take the indices 
of the largest element of BENEFIT, imax and jmax. If 
BENEFIT(imax,jmax) is greater than 0, establish the 
LCP between locations imax and jmax, populating 
COST(imax,jmax) and COST(jmax, imax) with the 
resulting values. If BENEFIT(imax, jmax) is less 
than 0 the network has been completed and the 
algorithm terminates.

(3) Run the local elements of the COST matrix (within 
MAXRAD hours of the nodes at either end of the 
route just established) through Dijkstra’s algorithm 
to update network distances in the light of the 
latest route added. Go back to step (2).

The GPO method has some similarities to the EE 
(equitable efficiency) model of Prignano et al. (2019), 
though they choose the next path on the basis of that 
which has the lowest FGCOST/COST and do not weigh 
the benefit and building cost of each path. The GPO 
method is efficient from the point of view of coding and 
replicates a network evolution whereby decisions about 
where to build the next road are made collectively at 
a network-wide level on the basis of which pair of 
settlements across the network will benefit most. The 
most computationally expensive part of the process, 
that of running Dijkstra’s algorithm, is reduced by 
running it only on a subset of the cost matrix. The 
technique could be made more comprehensively global 
if the establishment of each link were tested on the 
basis of the benefit it conferred not just on the pair 
of settlements it links but on all settlement linkages 
simultaneously. However, this would involve running 
Dijkstra’s algorithm on the full network many times, so 
would be prohibitively expensive.

A second approach named local outward search (LOS) 
has also been developed. Taking each node in turn, and 
working outwards to other settlements, decisions on 
which direct roads to establish are made on the basis of 
the existence or otherwise of potential staging-posts, or 
stepping stones.
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(1) Set i = 1.
(2) Examine values of FGCOST(i, j = 1..N). Establish a list 

of potential destinations by rejecting those which 
are greater than MAXRAD hours. Of the remaining 
destination list, put them in ascending order of 
FGCOST.

(3) Establish an LCP to the closest j and populate values 
of COST(i,j) and COST(j, i).

(4) For each subsequent destination j find amongst 
the closer places a potential staging-post k which 
is closer to j, i.e. FGCOST(k, j) < FGCOST(i, j) and 
which also satisfies the condition that FGCOST(i, k) 
+ FGCOST(k, j) < (1 + 1/λ)FGCOST(i, j). If there is more 
than one, take that with the lowest FGCOST(i, k) 
+ FGCOST(k, j). If a suitable k is found, reject j as a 
direct destination, increase its distance to reflect 
the new indirect route to it, and move onto next 
until all have been explored. Otherwise, unless such 
a link already exists, establish LCP between i and j 
and populate values of COST(i, j) and COST(j, i).

(5) Increment i. If i = N + 1 terminate algorithm. 
Otherwise go to (2).

The LOS method differs from the GPO method in placing 
the decision-making for road building at the level of the 
individual settlement, with regard only to optimization 
of routes from each settlement separately. The order 
in which the start-point settlements is taken makes no 
difference to the final network. It has the important 
limitation of only allowing networks for which λ > 1 due to 
the specification that the distances from start to staging-
post and staging-post to destination each be less than 
the distance from start to destination. It is possible to lift 
this constraint in a variant of the scheme.

APPENDIX 2. VIRTUAL SPEED

When calculating the cost surfaces for the purposes of 
establishing LCPs, the most easily quantified costs are 
time or energetic output. In reality, a whole host of costs 
can simultaneously be attributed to travel including 
monetary expenditure, organizational effort, and, along 
with a direct energetic cost, the mental and physical 
stress of a journey. A second class of cost is the risk of 
mishap, such as falling prey to pirates or brigands, or of 
shipwreck. Whilst these eventualities will not materialize 
on most journeys, even a low probability that they might 
can be treated as a continuous cost.

It is not easy to represent these costs without 
introducing complexity, much less to quantify them 
accurately. However, we can do so approximately and 
with minimal complexity by introducing the concept of 
virtual speed.

Taking the example of time (t) as a measurement of 

cost, the distance (D) covered per unit cost is speed (S), 
as in

/S D t

Generalizing to include other costs, we define a virtual 
speed as the distance per unit total cost incurred, given 
by:

 / ...vS D t M Ph   

where Sv is virtual speed, M is money spent, P is the 
probability of encountering a hazard, h is the cost of 
that hazard, e.g. loss of life or limb, then a series of other 
potential cost factors. Clearly, the different costs on the 
denominator have different units, though could all be 
converted to the same units given a suitable conversion 
factor in the same way that in modern-day economics a 
life is assigned a monetary cost when making decisions 
on spending on transport safety measures (Hauer 1994). 
Since the non-time costs can be taken as more or less 
proportional to time spent travelling, we could rewrite 
the expression as

   / 1 ph ... / 1 ...vS D t m S m ph       

where m is the money expended per unit time, p is the 
probability per unit time.

When ancient travellers made journeys, it seems likely 
that their choice of route and mode of travel would be 
made not just on the basis of time or effort, but on an 
amalgam of costs as outlined above. It might be the case 
that a leg of a journey could be made more quickly by 
sea than by land, but that the traveller would opt to go 
by land because it was safer. Alternatively, it might be 
quicker to go by land than by sea but the traveller might 
chose the sea route because it involved less energy 
expenditure.

When using the Delphic theorodokoi lists to weight the 
relative speeds of land and sea travel, it is really a virtual 
speed which we are ascertaining since these routes are 
likely to have been established over many years with a 
view to minimizing all costs, not simply that of time. The 
ratio of the virtual speed over land to that over sea is the 
quantity which determines the route taken. The actual 
travelling time may have been different from that derived 
by using the virtual speed as an actual speed. Of course, 
such treatments are necessarily approximate since there 
will be geographically and temporally varying costs, e.g. 
of piracy and shipwreck, which would require a higher 
order of complexity to represent. Applying a uniform 
value is equivalent to the approximation entailed in using 
a set sea speed without regard for the geographical and 
seasonal variation in winds and currents.
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	This study was prompted by an interest in how ancient journeys were planned and undertaken, with an emphasis on long distance travel taking days, weeks or even months. A number of questions arise, for example which itineraries travellers most likely followed, how long the journeys took, and whether it was more expedient to go by land or sea. In the early nineteenth century, antiquarians, guided by the ancient writings of the likes of Strabo and Pausanias, documented their own travels in Greece and Asia Mino
	Today it is possible to apply Geographic Information Systems (GIS) to model an optimal routeway and travel time between places through least cost path (LCP) analysis. However, simulating multi-stage journeys through an optimized network of paths over large distances is not easily addressed using GIS and for the following reasons we found it necessary to develop a bespoke methodology and software: (a) to allow the implementation of innovative optimization techniques; (b) to automate the process of handling, 
	The specific research aim was to create a tool to reconstruct the itineraries followed by groups of state-sponsored religious envoys travelling from Asia Minor to multiple cities across the Hellenistic world of the late third century BCE. To address this it became clear that separate optimizations must be applied at various stages and at different scales, from LCP modelling to large-scale network formulation and routing through a set of destinations on that network. In the spirit of Verhagen’s exhortation (
	1.1 LEAST COST PATHS
	Computational techniques to improve our understanding of the ancient world have gained much traction in the last two decades. In the field of archaeology in particular, LCP and network analysis have been used with the aim of elucidating different types of connectivity, often in the form of physical, civic, economic, cultural and social interaction (; ; ; ). At the core of this is reconstructing the movement of people across the landscape. Movement can be investigated at the scale of single paths between adj
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	Following the ‘Principle of Least Effort’ (),  state that least cost analysis is predicated on the assumption that humans ‘tend to economize many aspects of their behaviour’. In other words, humans will seek to take the easiest path, requiring the minimum cost. Finding the most efficient route from one place to another involves minimizing some cost, normally time or energy spent, of moving across a background topography often in the form of a digital elevation model (DEM). The cost is generally purely slope
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	The availability of tools to calculate LCPs via GIS means that they are easily accessible to the archaeologist or historian. However, incomplete understanding of how LCP applications work may lead the user to produce aesthetically-pleasing graphics despite erroneous inputs, in part due to them being treated as a ‘black box’. A number of publications have addressed the pitfalls associated with LCP analysis (; ; ; ; ). Bevan lists four such issues associated with the generation of least cost surfaces: failure
	Bevan 2013
	Herzog 2013
	Herzog 2014a
	Seifried & Gardner 2019
	Verhagen, Nuninger & Groenhuijzen 2019

	1.2 NETWORKS
	Generation of LCPs is often limited to those between a small number of places due either to computational costs, or a confined geographical area of interest. For example,  creates single LCPs representing a day’s journey within Attica, which she defines as up to 15 hours. However, to model a multi-stage journey, a network of individual routes must be considered. A useful way of approaching larger-scale connectivity is to represent its key components as an abstract network, consisting of nodes connected by e
	McHugh (2019)
	Knappett 2011
	Woolf 2016
	Constantakopoulou & 
	Panagopoulou 2007

	On the other hand, a network stored as a matrix of values opens the door to various types of mathematical manipulation, e.g. the generation of metrics to characterize connectivity or complexity, the clustering of nodes or optimal routing through nodes. Whereas there is a clear optimization methodology for individual LCPs, the cost, or efficiency, metric for network optimization is less well defined. The construction of different least cost networks is addressed in . Among these are networks of ‘least cost t
	Herzog (2013)
	Waugh 2000
	Herzog 2014b
	Groenhuijzen & Verhagen 2017

	1.3 APPROACH
	Python is used to code the elements which extract and organize the data and to call a Fortran routine which performs the computationally-intensive, heavy lifting of LCP generation, since the latter language executes much faster. The use of Python also allows the Fortran to run in parallel on multiple processors, accelerating execution significantly and extending the overarching principle of cost minimization to our computational approach.
	The methodology implemented can be divided into four main steps: (a) Minimize the cost of travel between known ancient settlements avoiding the direction-dependent biases in LCPs encountered in standard algorithms; (b) generate a minimum total cost network using the LCPs based on a trade-off between building and travel (user) costs and a derived network complexity parameter, λ; (c) calibrate λ, and hence the network travel costs, using the ancient itinerary Tabula Peutingeriana, or Peutinger Table; (d) cali
	2 LEAST COST PATH METHODOLOGY
	As in GIS software, Dijkstra’s algorithm () for finding the most efficient route through a network lies at the heart of LCP generation. Each pixel, or cell, of a digital elevation model (DEM) is treated as a grid point which effectively becomes a node of a network, the value of the line, or edge, linking adjacent nodes being the cost of progressing from one pixel to the next. For the DEM, SRTM (Shuttle Radar Topography Mission) elevations derived from a satellite-mounted radar () are used. We have masked th
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	2011
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	Efficiency of a path is defined in terms of minimization of the cost function with which the accumulated cost of walking along different routes is calculated. Most commonly, time elapsed is the measure of cost, the program giving the options of using the Tobler hiking function (), a modified Tobler function proposed by  or Naismith’s rule, as extended by  to cope with downhill walking. As an alternative to time, the user may choose to find the route that minimizes energy, for which a variant of Minetti’s fo
	Tobler 1993
	Márquez-Pérez, Vallejo-Villalta & Álvarez-
	Francoso (2017)
	Langmuir (1984)
	Minetti et al. 2002

	The standard approach to creating an LCP is employed initially, briefly described as follows: Working outwards from the defined start point, multiple costs are calculated for each point on the grid, representing accumulated values for different routes. Any newly-calculated value replaces a pre-existing one if it is lower. Dijkstra’s algorithm makes this process efficient by greatly reducing the number of different routes which must be explored. When a lower cost to reach a given point is discovered, the dir
	A key consideration is how to define the edges connecting neighbouring points. The most common technique involves the so-called queen’s move pattern, in which each of the immediately adjacent eight points on the grid is connected. This restricts changes in direction in any LCP to 45 degrees with the result that the cost of reaching a destination lying between the eight compass points is artificially increased. A map of isochrones of time elapsed walking on a flat surface shows concentric octagons rather tha
	Bevan 2013: 8
	Herzog (2013)

	2.1 ROTATE AND OVERSAMPLE TECHNIQUE
	The calibration of network complexity covered later in this paper requires that LCPs be made as optimal and with as little bias as possible. Therefore a method has been derived of largely eliminating such artificial, direction-dependent cost penalties at little extra computational cost. Termed the rotate and oversample technique, it is depicted schematically in  and consists of the following steps, which are novel from step 2 onwards.
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	(1) Derive the LCP using the queen’s move.
	(2) Break this path into sections – most experiments used a section length of 1 kilometre (A to B in ). Rotate each of these in turn so that the end is due east of the start.
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	(3) Create a separate high-resolution grid which encompasses each rotated section. This has a grid spacing n times smaller than the DEM. Most experiments conducted used n = 6, giving a sub grid spacing of about 5 × 4 metres depending on the angle of rotation.
	(4) Populate each high-resolution grid with linearly-interpolated elevation values mapped from the main DEM grid.
	(5) Re-apply Dijkstra’s algorithm to derive a cost field, thence a high-resolution LCP from the start to end point on the high-resolution sub grid. The original LCP route section is discarded, having served its purpose in giving start and end points as well as defining the grid dimensions.
	(6) Construct a new path by taking every nth point of the high-resolution LCP, rotated back to the coordinate space of the original grid. If the terrain slope exceeds the critical value at which time or energy-saving zig-zagging is expected, retain all points to avoid smoothing over such detail. This critical slope is calculated for all cost functions other than Naismith’s, for which it does not exist.
	(7) Following this new path, recompute the cost from point to point, for the full journey. If the cost function minimized with Dijkstra is energy expended, there is the opportunity here of computing the time taken to follow this path using one of the time-based cost functions.
	The rotation step solves the standard queen’s move distance bias for travel on flat surfaces, leading to straight paths and isochrones in concentric circles rather than polygons.  compares both methodologies for paths to close destinations (less than a kilometre distant) arranged at equal intervals around the edge of a square from a central point on a flat surface.
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	However, the deviations from straight-line paths still lead to errors, which are significantly lessened by the oversample step. The end result is a path which is constrained to follow the general route of the originally-derived LCP, but in which directional changes of about 45/n degrees (e.g. 7.5 degrees with n = 6) are allowed, giving shorter paths and, more importantly, largely eliminating distance biases depending on the direction of destination relative to start. Unlike Herzog’s 48 or higher neighbour m
	Figure 3
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	Herzog 2013

	There is a special problem associated with paths in domains in which there is perfectly uniform (or no) terrain slope. In this situation, with no variation in forcing from topography, there are many equally long queen’s move solutions to the shortest path and, as  shows, the calculated path can deviate up to 20% of its length from the optimal path. However, with real data there is always some slight unevenness in terrain, noisiness in the SRTM data artificially adding to this. For the purposes of travel ove
	Herzog 
	(2013)

	It should be noted that an LCP between two settlements varies according to which is nominated as the start point due to the anisotropic treatment of cost on slopes, with the journey in one direction occasionally differing substantially in its route from that in the opposite direction. In order to generate a plausible road network, we follow  in using a cost function which represents walking in both directions at each stage, so that the path generated is that which minimizes the cost of a return journey on t
	Herzog (2014b)

	It is possible to reduce computational time considerably by applying what will be called an undersampling method to the first step. This involves altering the first queen’s move Dijkstra call so that rather than searching immediately-neighbouring points on the DEM, it establishes direct links to points at some number of grid lengths away, known as the undersampling factor. The initial LCP is then necessarily more approximate with likely underestimated temporal costs, since gradients will generally be artifi
	Figure 9
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	3 MINIMUM TOTAL COST NETWORK METHODOLOGY
	One may question the degree to which real routes achieved the degree of optimization represented in LCPs. Even today, someone travelling by road from one town to another rarely takes an optimal route, instead being constrained to move through a network of roads which generally forces an approach to the destination which is indirect to some degree. The complexity of the network is a strong determinant of how direct longer routes or itineraries are, so to recreate the degree of connectedness of settlements ac
	Waugh 2000
	Evans & 
	Rivers 2017
	Groenhuijzen & Verhagen 2017
	Manière, 
	Crépy & Redon 2021
	Prignano et al. 2019
	Prignano et al. 
	2019

	Here we introduce a methodology that addresses these notional costs, which we call minimum total cost. It generalizes the concepts of competing costs into a system in which least cost to the builder and least cost to the user fall out as the extremes of one technique, and allows all gradations in between.
	Consider three sites, A, B and C as in the schematic at . The lengths of the lines are proportional to the cost (temporal or energetic) of travelling an LCP road, and their straightness is not to be interpreted as representing straight routes. We use the notation AB, BC and AC to represent the costs of travelling individual legs and ABC the cost of travelling from A to C via B. The first principle is that each site should have a road connecting it to its nearest (in cost terms) neighbour, so roads connect A
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	ABC–AC–ACorABC–AC1/benefittbbenefittbt
	ABC–AC–ACorABC–AC1/benefittbbenefittbt

	For the creation of a road to be cost-effective the total benefit should be positive, i.e.
	AC1/ABCbt
	AC1/ABCbt

	We will use the term ‘build cost’ to include the initial construction cost as well as the ongoing maintenance and repair cost. Whilst construction might be thought to involve a one-off, capital cost, we assume that this is spread over an extended period of time, so that like travel costs, build costs are deemed to be continuous. The build cost of a road might at first be thought of as proportional to the geometric length of the road rather than time taken or energy expended to walk it. However, it seems log
	The formula could be made more elaborate by factoring in the traffic volumes on the road, which could be made proportional to the population of the sites A and C. However, in the absence of population data and to keep things as simple as possible, we reason that not only cost of travel, but also of road building is likely to be in some degree proportional to traffic levels, so that this factor would tend to cancel out in b/t. For a route which only has two travellers per day a simple path might do, whereas 
	Denoting the ratio t/b by the dimensionless parameter λ, the criterion for establishing a direct road from A to C rests on whether AC times 1 + 1/λ is less than ABC, and the break-even cost of building the road can be given by t/λ. Take the example of a situation where λ = 1.0, corresponding to travel cost equalling build cost. New roads will be established where the indirect route takes more than twice as long as the proposed direct route. If road building is expensive and λ = 0.5, the indirect route would
	3.1 NETWORK COST MINIMIZATION IMPLEMENTATION
	In order to make computation manageable direct links are limited to those which can be made within some defined cost termed the maximum temporal radius, usually set to 36 hours. This is tunable, and at first 12 hours was specified on the basis that this was the approximate limit of a day’s travel, and that travellers would not want to overnight between settlements. However, where settlements are sparsely distributed it left holes in some networks, and it was reasoned that there would likely be stations or s
	3.1.1 Local Outward Search methodology
	The LOS method requires that λ ≥ 1 and replicates a decision-making process which takes place at the level of individual settlements. Nodes are placed in order of temporal distance by direct LCP from the central settlement under consideration. A route is established to the closest node. Thereafter, each node is examined in turn to weigh the net benefit (dependent on λ) of building a direct road against using a stepping stone to which roads, direct or indirect, have already been established in this outward s
	Figure 4
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	3.1.2 Global Pairwise Optimization methodology
	The GPO method replicates a central authority in decision making. It involves looking across the whole network and finding the road, the establishment of which would confer most benefit per unit distance to the two nodes at either end, using benefit = t (ABC – AC(1 + 1/λ)). Every edge in the network is given an arbitrarily large starting value, so the smallest roads are created first. Every time a road is established, Dijkstra’s routine is called to update the indirect temporal distances till there are at l
	3.2 NETWORK EXAMPLES FOR CYPRUS
	By specifying varying values of λ, LCP networks of different complexity can be constructed across a region.  shows examples of LCP networks across Cyprus utilizing nodes for the late third century BCE for values of λ ranging from 0.1 to ∞. Here λ = 0.1 is effectively a least-cost to the builder network and λ = ∞ is least cost to the user. λ = 0.1 produces elements of  ‘main routeway with later subsidiary pathway’ model, with some settlements lying at the end of spurs leading off a main route. The Troödos mo
	Figure 5
	Figure 5

	Herzog’s (2013)

	A weakness of the technique is the failure to re-use sections of existing roads in establishing new routes by defining junctions, as is done e.g. in the Steiner tree approach (). However, these networks will certainly exhibit junction-like points, e.g. where routes are forced together in complex terrain, as can be seen in the λ = 8 network in  around the Troödos mountains. An extension to the technique which may be worth pursuing is the assignment of junction nodes based on the master network and their use 
	Verhagen, Polla & Frommer 2014
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	4 NETWORK CALIBRATION
	Ideally, known ancient roads and networks of roads would be put to this purpose, but their fragmentary nature makes this unviable. Instead we can turn to the ancient itineraria, which were used to aid travellers on their journeys, since distances between locations depend on network complexity, with simpler networks of lower λ making for longer distances between places on average.
	4.1 TABULA PEUTINGERIANA (TP)
	Itineraria in their simplest form were lists of place names with the estimated distances between them. No such lists over land have survived from before the Roman period, although sea itineraries (periploi) exist from the Hellenistic and classical periods. The most famous and extensive ancient itinerary is the Tabula Peutingeriana (TP), or Peutinger Table, which is in the form of a semi-pictorial map, and is thought to have been compiled from multiple smaller itineraries designed for practical use (). A sec
	Salway 2001: 47
	Salway 
	2005: 120
	Elsner 2000: 185
	Rathmann 
	(2016: 342)

	We took 117 route distances in Roman miles from the TP for a region extending from Sicily to Cyprus, this region chosen to correspond with the simulated network for application to itineraries of the earlier Greek world. Network nodes were extracted from the Pleiades gazetteer of ancient places (), filtered by area and date. Note that we do not use the network itself depicted in the TP, which is assumed to represent a small portion of the total road network, rather simply the given distances.
	Barker et al. 2016

	4.2 OPTIMIZATION OF λ BY STATISTICAL ANALYSIS OF NETWORK DISTANCES AGAINST TP
	Different networks of least cost paths (LCPs) were derived across the region based on the total cost minimization principle applied using both the LOS and GPO methods. Varying values of λ were specified using costs based on Minetti’s energy function () and the modified Tobler hiking function (). Dijkstra’s algorithm () was applied to the networks in order to find an optimal path from node to node through the network and derive the 117 route distances corresponding to the legs taken from the TP. Distances ob
	Minetti et al. 2002
	Márquez-Pérez, 
	Vallejo-Villalta & Álvarez-Francoso 2017
	Dijkstra 1959

	Ultimately, consideration of the quality of the TP data should be made in light of the fact that the comparisons here are not made against truth, which cannot be known, but against the LCP network, which doubtless has its own bias and noise. However, given the wide range of ratios and evident errors in TP values, with e.g. around 25% of the sample being shorter than geodesic (effectively straight-line) distances, it is considered that the large majority of the variance comes from them rather than the LCPnet
	 shows the frequency plots of normalized difference between LCPnet and TP for three different levels of network complexity defined by λ = 4, 7 and 10 at 0.1 bin intervals. λ = 7 scored highest independently both for symmetry and number of differences of route length of less than 5% (indicated by the bin interval –0.05 to +0.05).
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	Errors in the TP values could have many different causes, such as transcription mistakes (), inaccuracies in the sources from which the original table was constructed, original surveying errors, or modern misidentification of the positions of the ancient sites referred to. On the other hand, errors in LCPnet values could arise due to inadequacies in the assumptions underlying the technique, such as the very principle of cost minimization and the applicability of the hiking formula employed. According to the
	Bekker-Nielsen 
	2004
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	To test this, an iterative process was adopted in which incremental changes were made independently to N (number), σ (standard deviation) and μ (mean) of two idealized subpopulations, and those which increase R are retained, causing the composite modelled population to converge towards the actual population until no significant improvements are made. The distribution was found to be fitted best to a composite distribution consisting of the sum of two unbiased (μ = 0.0) Gaussian populations, one larger (N = 
	2
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	4.3 COMPARISON OF INFERRED NETWORK COMPLEXITY WITH ARCHAEOLOGICAL AND HISTORICAL EVIDENCE
	The network generated by λ = 7 (shown for the Peloponnese in ) may seem intricate compared with many reconstructed historical road networks. One measure of complexity is the β index, the ratio of the number of edges to nodes (). In our simulated network for Cyprus, β = 2.60 compared with a value of 1.68 calculated by . He based his network on fieldwork throughout Cyprus and use of literary sources, though he acknowledges that in his study many local roads remain unidentified, and that even main roads may be
	Figure 8
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	Kansky 1963
	Bekker-Nielsen (2004: 225)
	Sanders and Whitbread (1990)
	Seifried & Gardner 2019
	McHugh 
	2019

	However,  in his exhaustive study of the ancient cart-road network of Lakonike in the Peloponnese found strong archaeological evidence for a much more complex network than had previously been imagined. He documented, for instance, eight roads leading to Geronthrai, one of the poleis of Lakonike, which compares well with the seven roads to Geronthrai from surrounding nodes generated by setting λ = 7. Bekker-Nielsen’s value of β = 1.31 for the Peloponnese can be replicated by using λ = 0.65, the resulting net
	Pikoulas (2012)
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	4.4 DISCUSSION
	Whilst the TP depicted a system of roads on the grand scale, it is easy to imagine that some of the individual edges grew out of minor routes serving local networks, but which came to achieve a greater significance when repurposed and upgraded as arteries in an empire-wide network. The better fit provided by the LOS network generation method over GPO gives some support to this idea, GPO having 29 results within 5% of parity between TP and LCPnet, versus 33 for LOS, marginally suggesting that the network evo
	Prignano et al. 
	2019

	One might speculate that the Roman roads on which the TP distances are based could have been on average shorter than LCPs since Romans roads are known for following more direct courses than their predecessors, their surveyors realizing impressively rectilinear constructions, sometimes for tens of kilometres at a time (), achieving efficiencies in building materials and garnering prestige. We took all LCPs of 10 Roman miles or less to minimize the risk of indirect routes through intermediate nodes and of cop
	Hucker 2009

	 maintains that the variegated nature of the TP reflects the fact that it was a compilation of data from publicly-displayed lists of stages and their distances from different locations and times. We speculate that the smaller, more accurate subset of TP figures which correlate well with LCPnet () may have come disproportionately from roads which were built and measured directly by the Romans, whose practice it was to survey carefully and mark out prior to building (). The larger, less accurate subset may ha
	Salway (2001: 58)
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	Hucker 2009
	Salway 2001: 58
	Rousset 2013: 65

	 point out that the cost functions commonly used to derive LCPs are not necessarily applicable to a road designed for wheeled transport, particularly in respect of the differences in coping with slopes, and estimate that a mule-drawn cart with a load of 500 kg would be unable to get in motion on a slope of greater than 9%, based on an equation by . They therefore tried a cost function which avoided all slopes of > 9% (though  reports gradients of 1 in 6, i.e. about 17%, as the critical slope for onset of zi
	Verhagen, Polla & Frommer (2014)
	Raepsaet (2002)
	Hucker (2009)
	Llobera & Sluckin’s 
	(2007)
	Bekker-Nielsen 
	(2004: 200)

	The applicability to earlier periods of a value of λ which has been derived for a date of 280 CE is open to question. However, there is some evidence that the Roman road network in territories of the earlier Hellenistic world did not differ significantly from its antecedents. , in his study of the road network of Sicily, found that all bar two of the major routes of the island were in place before the advent of the Romans, and that the routes used by travellers and the imperial post show no signs of Roman e
	Verbrugge 
	(1976)
	Pikoulas (2007: 85)

	5 NETWORKS OVER WATER
	A network of water routes (over sea and lakes) was constructed using λ = ∞, on the assumption that boats are unconstrained in the directions they take, other than not being allowed to go over land points. An upper limit was placed on the amount of time allowed for a single journey over water of 36 hours which means that whilst routes are allowed across the Aegean Sea (aided by island hopping), journeys across the Ionian Sea were restricted to the narrower part between Epirus and Italy, consistent with a pra
	Constantakopoulou 2007: 176
	Rougé 1966: 173

	No account of prevailing winds or currents was taken, as is done e.g. in the ORBIS tool (), mainly for the sake of simplicity, but also on the basis that the majority of edges represent journeys close to land. Since these journeys are more commonly undertaken in summer, sea breeze effects are frequently likely to generate winds at odds with the climatological, open-sea values, giving a fairly reliable onshore wind component for much of the day regardless of the large-scale prevailing wind. According to , su
	https://history.stanford.
	https://history.stanford.

	edu/publications/orbis-stanford-geospatial-network-model-
	edu/publications/orbis-stanford-geospatial-network-model-

	roman-world
	roman-world

	Heikell (2018)
	Hsu 1988
	Gal, Saaroni 
	& Cvikel 2021
	Whitewright 2011
	Gal, Saaroni & Cvikel (2021)

	In view of these difficulties, a constant, adjustable speed was specified for the network, which could be tuned up or down when combined with the land network values to form a super network. A small random perturbation of between plus and minus 1% is added to the distances between grid points resulting in trajectories which are not quite straight. Largely cancelling in aggregate, these perturbations change journey times by much less than 1%. Clearly, tacking courses adopted when sailing into the wind are no
	Whitewright (2011)
	Votruba 2017

	 shows part of the network of land and sea routes.
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	6 THE TRAVELLING SALESMAN PROBLEM
	In attempting to reconstruct the routes taken by ancient travellers, the relative cost of land and sea travel becomes an important consideration affecting decisions ranging from whether an individual leg of a journey is more likely to have been made by land or by sea, to the whole order of an itinerary.
	In order to calibrate the relative costs of land and sea travel, we turn to the Delphic theorodokoi list (DTL) dated to around 220–210 BCE (; ). Theorodokoi acted as hosts for religious delegates (theoroi) visiting from afar, and cities which sent out these delegates kept lists inscribed in stone for public display containing the names of the theorodokoi they would call upon, alongside the names of their cities. The DTL originally contained some 300 cities across the Greek world to which the theoroi were se
	Perlman 1995
	Plassart 
	1921
	Perlman 2000
	Rutherford 2013

	6.1 TSP SOLUTION METHODOLOGY
	This can be tackled as a variant of the classic travelling salesman problem (TSP), in which the most efficient (least cost) order in which to visit a set of locations is established, starting and finishing at the same point. Specifically, this is an asymmetric travelling salesman problem because costs between nodes vary with direction. The TSP can be solved for a small number of destinations (less than about 14) by using a brute force method whereby the cost of every ordering permutation is compared and the
	Figure 10
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	Carpaneto
	1995

	For our purposes we depart from the pure TSP in two respects: in allowing the route to go through the same place twice if this produces a shorter overall journey, and in allowing itineraries in which start and end locations are not the same. The solution algorithm is presented with an anisotropic matrix of costs between the nodes representing the destinations. The algorithm orders these in the most efficient way, then the network backlink matrix is used to find the intermediate nodes from the full network a
	Just as one may question the extent to which real paths between two nodes of a network really were optimal enough to be considered LCPs, it is a matter of conjecture whether ancient travellers would even have the data to compare the efficiency of different itineraries, let alone be able to solve what can be a computationally challenging task. However, the DTL itineraries are considered more useful than an account of a one-off journey since they result from the experience of regular journeys over multiple ye
	6.2 DELPHIC THEOROI ITINERARY IN CYPRUS
	 (top panel) shows the order (1 – 9) in which theoroi visited destinations in Cyprus, as inferred from the Delphic theorodokoi list. Routes between destinations are derived by taking the quickest paths from a land and sea network with λ = 7 over land. The middle map shows a travelling salesman solution for the fastest route starting at Salamis and finishing at Arsinoe using a standard ship speed of 3.9 knots, close to  ‘favourable conditions’ velocity made good for a ship of the first century BCE. This prod
	Figure 10
	Figure 10

	Whitewright’s (2011)

	6.3 DELPHIC THEOROI ITINERARY IN CRETE
	 gives the itinerary of Delphic theoroi visiting Crete. They start with Kythera, an island off the southeast of the Peloponnese (not shown on map), and after visiting 27 settlements on Crete itself, it is inferred from the list that they went on to visit a number of poleis in Libya (), starting with Cyrene. In view of this, the island of Kaudos is used to finish off the itinerary since it lies in the direction of Cyrene. A TSP problem was set with Kythera and Kaudos forced as start and end points respective
	Figure 11
	Figure 11

	Rutherford 2013: 75
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	Mount Pachnes (2453 m) lies between the Araden/Anopolis area (numbers 8 and 9 in top map) and Kydonia (10), forcing an indirect route which goes through Aptera (11), resulting in a double visit here. The TSP solution based on a more complex network of λ = 10 (not shown) allows a more direct route between nodes 9 and 10 bypassing 11, though the overall order in which named destinations are visited is not changed. Reducing the sea speed to 1.2 knots flips the TSP solution to a different configuration which in
	Perlman (1995: 130)

	6.4 OTHER EXPERIMENTS
	It is documented that there was an overland theoroi route from Athens to Delphi. Going through a similar exercise (not shown) for a TSP return journey from Athens to Delphi gives a threshold sea speed of 2.1 knots to force a land journey. Since this route was taken as a symbolic procession (), the overland itinerary may well have been followed for considerations which go beyond those of travel cost, though at the same time could have evolved originally for such reasons.
	Rutherford 2013: 183

	In order to test the sensitivity to networks of differing complexity, the experiment was repeated with networks of λ = 4 and 10, with the results given in . The simpler Cyprus itinerary showed no sensitivity over this range, whilst that for Crete showed an increase in threshold sea speed as the land network became more complex. It is notable that the ability of the TSP algorithm to reproduce similar routes does not seem too sensitive to defined network complexity.
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	6.5 DISCUSSION
	Overall the TSP experiments provide some data points which suggest that a sea speed in the range of around 2.0 to 2.5 knots should be specified in a combined land/sea network based on time costs. In addition to fitting centrally in  range of speeds for ships of the first century BCE, it is consistent with  who estimates an average speed of 2.3 knots for coasting journeys. The results also suggest that plausible reconstructions of journeys can be made by applying a sea speed in this range to groups of destin
	Whitewright’s (2011)
	de 
	Soto (2019: 281)

	Note that it is the ratio of land to sea speed which is important in this context, rather than absolute sea speed. Tobler’s hiking function () is about 23% faster than the Modified Tobler function when walking on the flat, and using it would suggest sea speeds faster in proportion (about 2.5 to 3.0 knots). However, given the evidence that the Modified Tobler function is more accurate (; ) the lower range is preferred. It might be more realistic to define the time costs of sea travel not merely by a speed, b
	Tobler 1993
	Márquez-Pérez, Vallejo-Villalta & Álvarez-
	Francoso 2017
	Seifried & Gardner 2019

	7 CONCLUSION
	This study has brought to bear three different quantitative optimization procedures on the study of ancient travel. The well-known least cost path technique has been extended by a rotate and oversample method which improves its error characteristics and directional biases at little extra computational expense. The problem of network construction has been tackled by framing it as one of minimization of travel and building/maintenance costs for which a minimum total cost principle has been formulated. The λ p
	The same principles outlined in this paper could be applied to other geographic areas, such as the wider Roman empire, as well as to later or earlier periods. A source of data on node locations, such as Pleiades, is necessary along with a suitable DEM and some means of estimating an appropriate network complexity metric, λ. This could be done, as here, by using a dataset of inter-node road distances, though it could also be derived through other means such as tuning to an estimated β value. Use of ancient l
	The authors are willing to make available the software used to generate networks of least cost paths upon reasonable request.
	APPENDIX 1. ALGORITHMIC DETAILS OF NETWORK CREATION USING THE MINIMUM TOTAL COST METHOD
	The technique relies firstly on establishing the N × N first-guess cost matrix, FGCOST, where N is the number of locations in the network, and FGCOST (i, j) represents the cost of going directly along an LCP from place i to place j. Multiple LCPs are derived linking all places to all others within a specified temporal radius, MAXRAD (36 hours for experiments here), in what is effectively a ‘least cost to the user’ network. For maximum convenience at the expense of significant loss of accuracy, geodesic (str
	Figure 1
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	Two alternative algorithms have been coded for network construction. The first is termed global pairwise optimization (GPO) and at each stage chooses the road, the building of which confers the greatest benefit per unit distance between any pair of locations within MAXRAD hours of each other. It consists of the following steps:
	(1) Create a new N × N cost matrix COST, each element initially populated by an arbitrarily large number. 10 was used in the experiments.
	10

	(2) Calculate the matrix BENEFIT = COST/FGCOST – (1 + 1/λ). This gives the net benefit (negative total cost) of creating a road between each pair of places per unit temporal distance of that road. Take the indices of the largest element of BENEFIT, imax and jmax. If BENEFIT(imax,jmax) is greater than 0, establish the LCP between locations imax and jmax, populating COST(imax,jmax) and COST(jmax, imax) with the resulting values. If BENEFIT(imax, jmax) is less than 0 the network has been completed and the algo
	(3) Run the local elements of the COST matrix (within MAXRAD hours of the nodes at either end of the route just established) through Dijkstra’s algorithm to update network distances in the light of the latest route added. Go back to step (2).
	The GPO method has some similarities to the EE (equitable efficiency) model of (), though they choose the next path on the basis of that which has the lowest FGCOST/COST and do not weigh the benefit and building cost of each path. The GPO method is efficient from the point of view of coding and replicates a network evolution whereby decisions about where to build the next road are made collectively at a network-wide level on the basis of which pair of settlements across the network will benefit most. The mo
	Prignano et al. 
	2019

	A second approach named local outward search (LOS) has also been developed. Taking each node in turn, and working outwards to other settlements, decisions on which direct roads to establish are made on the basis of the existence or otherwise of potential staging-posts, or stepping stones.
	(1) Set i = 1.
	(2) Examine values of FGCOST(i, j = 1..N). Establish a list of potential destinations by rejecting those which are greater than MAXRAD hours. Of the remaining destination list, put them in ascending order of FGCOST.
	(3) Establish an LCP to the closest j and populate values of COST(i,j) and COST(j, i).
	(4) For each subsequent destination j find amongst the closer places a potential staging-post k which is closer to j, i.e. FGCOST(k, j) < FGCOST(i, j) and which also satisfies the condition that FGCOST(i, k) + FGCOST(k, j) < (1 + 1/λ)FGCOST(i, j). If there is more than one, take that with the lowest FGCOST(i, k) + FGCOST(k, j). If a suitable k is found, reject j as a direct destination, increase its distance to reflect the new indirect route to it, and move onto next until all have been explored. Otherwise,
	(5) Increment i. If i = N + 1 terminate algorithm. Otherwise go to (2).
	The LOS method differs from the GPO method in placing the decision-making for road building at the level of the individual settlement, with regard only to optimization of routes from each settlement separately. The order in which the start-point settlements is taken makes no difference to the final network. It has the important limitation of only allowing networks for which λ > 1 due to the specification that the distances from start to staging-post and staging-post to destination each be less than the dist
	APPENDIX 2. VIRTUAL SPEED
	When calculating the cost surfaces for the purposes of establishing LCPs, the most easily quantified costs are time or energetic output. In reality, a whole host of costs can simultaneously be attributed to travel including monetary expenditure, organizational effort, and, along with a direct energetic cost, the mental and physical stress of a journey. A second class of cost is the risk of mishap, such as falling prey to pirates or brigands, or of shipwreck. Whilst these eventualities will not materialize o
	It is not easy to represent these costs without introducing complexity, much less to quantify them accurately. However, we can do so approximately and with minimal complexity by introducing the concept of virtual speed.
	Taking the example of time (t) as a measurement of cost, the distance (D) covered per unit cost is speed (S), as in
	/SDt
	/SDt

	Generalizing to include other costs, we define a virtual speed as the distance per unit total cost incurred, given by:
	/...vSDtMPh
	/...vSDtMPh

	where S is virtual speed, M is money spent, P is the probability of encountering a hazard, h is the cost of that hazard, e.g. loss of life or limb, then a series of other potential cost factors. Clearly, the different costs on the denominator have different units, though could all be converted to the same units given a suitable conversion factor in the same way that in modern-day economics a life is assigned a monetary cost when making decisions on spending on transport safety measures (). Since the non-tim
	v
	Hauer 1994
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	where m is the money expended per unit time, p is the probability per unit time.
	When ancient travellers made journeys, it seems likely that their choice of route and mode of travel would be made not just on the basis of time or effort, but on an amalgam of costs as outlined above. It might be the case that a leg of a journey could be made more quickly by sea than by land, but that the traveller would opt to go by land because it was safer. Alternatively, it might be quicker to go by land than by sea but the traveller might chose the sea route because it involved less energy expenditure
	When using the Delphic theorodokoi lists to weight the relative speeds of land and sea travel, it is really a virtual speed which we are ascertaining since these routes are likely to have been established over many years with a view to minimizing all costs, not simply that of time. The ratio of the virtual speed over land to that over sea is the quantity which determines the route taken. The actual travelling time may have been different from that derived by using the virtual speed as an actual speed. Of co
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	Figure 1 Schematic illustration of rotate and oversample method. Here n = 5, the solid line resulting from step 5, dashed from step 6.
	Figure 1 Schematic illustration of rotate and oversample method. Here n = 5, the solid line resulting from step 5, dashed from step 6.

	Figure 2 Least costs paths on a flat surface radiating from a central point. Standard queen’s move (left), rotate methodology (right).
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	Figure 3 Rotate and oversample LCP (thick) compared with standard queen’s move LCP (thin).
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	Figure 4 Schematic of travel costs between three points. Lines AB and BC represent the costs of travelling established roads. Dotted line AC represents a proposed direct road from A to C.
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	Figure 5 LCP networks of increasing complexity generated for late third century BCE Cyprus. GPO method used for λ < 1, others using LOS.
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	Figure 6 Frequency plots of normalized difference between LCPnet and TP. For λ = 4, 7 and 10 at 0.1 bin intervals.
	Figure 6 Frequency plots of normalized difference between LCPnet and TP. For λ = 4, 7 and 10 at 0.1 bin intervals.

	Figure 7 Frequency plots of actual and modelled normalized difference. Red+purple covers actual frequency distribution (as in ), whilst blue+purple give that modelled by the sum of the two Gaussian functions shown, defined by population sizes (N), standard deviation (σ) and mean (μ).
	Figure 7 Frequency plots of actual and modelled normalized difference. Red+purple covers actual frequency distribution (as in ), whilst blue+purple give that modelled by the sum of the two Gaussian functions shown, defined by population sizes (N), standard deviation (σ) and mean (μ).
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	Figure 8 Modelled networks in late third century BCE Peloponnese. Major (thick black) and minor (thin blue) roads from a putative network created with λ = 0.65 (β = 1.31) and λ = 7.0 (β = 3.0). All roads in the simpler network are also in the more complex network. The area around Geronthrai is magnified.
	Figure 8 Modelled networks in late third century BCE Peloponnese. Major (thick black) and minor (thin blue) roads from a putative network created with λ = 0.65 (β = 1.31) and λ = 7.0 (β = 3.0). All roads in the simpler network are also in the more complex network. The area around Geronthrai is magnified.

	Figure 9 Section of combined land and sea network. Based on Pleiades locations extant in the late third century BCE.
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	Figure 10 Delphic theoroi itinerary for Cyprus. Top: Actual itinerary from theorodokoi list with routes between numbered destinations inferred from network defined by λ = 7. Unnumbered are intermediate nodes in network derived from backlink matrix. Middle: TSP solution, sea speed 3.9 knots. Bottom: TSP solution, sea speed 2.5 knots.
	Figure 10 Delphic theoroi itinerary for Cyprus. Top: Actual itinerary from theorodokoi list with routes between numbered destinations inferred from network defined by λ = 7. Unnumbered are intermediate nodes in network derived from backlink matrix. Middle: TSP solution, sea speed 3.9 knots. Bottom: TSP solution, sea speed 2.5 knots.

	Figure 11 Delphic theoroi itinerary for Crete. Top: Actual itinerary from theorodokoi list with routes between numbered destinations inferred from network defined by λ = 7. Unnumbered are intermediate nodes in network derived from backlink matrix. Middle: TSP solution, sea speed 3.9 knots. Bottom: TSP solution, sea speed 2.2 knots. Kaudos is inserted as an end point since it seems that the itinerary then continued with Cyrene in Libya.
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