1 Title

2	Extreme Y chromosome polymorphism corresponds to five male reproductive morphs of
3	a freshwater fish
4	Author List
5	Benjamin A Sandkam ^{a*} , Pedro Almeida ^b , Iulia Darolti ^a , Benjamin Furman ^a , Wouter van der Bijl ^a , Jake
6	Morris ^b , Godfrey Bourne ^c , Felix Breden ^d , Judith E. Mank ^a
7	Affiliations
8	a. Department of Zoology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
9	b. Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT,
10	United Kingdom
11	c. Department of Biology, University of Missouri-St. Louis, St. Louis, MO 63121, USA
12	d. Department of Biological Sciences, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
13	
14	* Corresponding Author: Benjamin A Sandkam
15	Email: sandkam@zoology.ubc.ca
16	
17	ORCIDs: 0000-0002-5043-9295, 0000-0002-7082-3577, 0000-0002-7366-1868, 0000-0002-0137-2610,
18	0000-0001-9762-6314, 0000-0002-2450-513X
19	
20	Keywords
21	Genome Evolution, Alternative Mating Tactics, Poecilia parae, Supergene
22	

23 Abstract

24 Loss of recombination between sex chromosomes often depletes Y chromosomes of functional content 25 and genetic variation, which might limit their potential to generate adaptive diversity. Males of the 26 freshwater fish Poecilia parae occur as one of five discrete morphs, all of which shoal together in natural 27 populations where morph frequency has been stable for over 50 years. Each morph utilizes a different 28 complex reproductive strategy, and morphs differ dramatically in color, body size, and mating behavior. 29 Morph phenotype is passed perfectly from father to son, indicating there are five Y haplotypes 30 segregating in the species, which encode the complex male morph characteristics. Here, we examine Y 31 diversity in natural populations of P. parae. Using linked-read sequencing on multiple P. parae females 32 and males of all five morphs, we find that the genetic architecture of the male morphs evolved on the Y 33 chromosome after recombination suppression had occurred with the X. Comparing Y chromosomes 34 between each of the morphs, we show that although the Ys of the three minor morphs that differ in color 35 are highly similar, there are substantial amounts of unique genetic material and divergence between the 36 Ys of the three major morphs that differ in reproductive strategy, body size and mating behavior. 37 Altogether, our results suggest that the Y chromosome is able to overcome the constraints of 38 recombination loss to generate extreme diversity, resulting in five discrete Y chromosomes that control

39 complex reproductive strategies.

40 Introduction

41 Sex chromosomes form when recombination is halted between the X and Y chromosomes. The loss of 42 recombination results in a host of evolutionary processes that quickly deplete Y chromosomes of 43 functional content and genetic variation, severely limiting the scope for adaptive evolution¹. Y chromosomes can counter this loss to some degree through a variety of mechanisms²⁻⁵, however the 44 45 adaptive potential of Y chromosomes is generally thought to be much lower than the remainder of the 46 genome. Typically, this results in relatively low levels of Y chromosome diversity within species. The 47 adaptive potential of non-recombining regions has far broader implications beyond just Y chromosomes 48 given the increasing realization that supergenes, linked regions containing alleles at multiple loci 49 underlying complex phenotypes, are key to many adaptive traits⁶⁻¹². Many supergenes are lethal when homozygous and therefore also non-recombining^{8,10}. Therefore, the processes that constrain Y 50 51 chromosome evolution also affect much broader areas of the genome.

52 Poecilia parae is a small freshwater fish found in coastal streams of South America. Remarkably, males 53 of this species occur as one of five distinct morphs, parae, immaculata, melanzona red, melanzona 54 yellow, and melanzona blue, each of which utilizes distinct reproductive tactics, with associated 55 differences in body size, color, and mating behaviours¹³⁻¹⁹ (summarized in Supplementary Table 1). The 56 parae morph has the largest body, vertical black stripes, an orange tail-stripe and is highly aggressive, 57 chasing away rival males and aggressively copulating with females by force. Immaculata resembles a 58 juvenile female. Although immaculata has the smallest body size of all morphs, it has the largest relative 59 testes and produces the most sperm, employing a sneaker copulation strategy. The three melanzona 60 morphs are similar in body size and have a colored horizontal stripe (either red, yellow or blue), which 61 they present to females during courtship displays. We refer to the three minor morphs of melanzona 62 collectively as the melanzona morph.

All five morphs co-occur in the same populations, and the relative frequency of morphs within populations
 (on average: ~35% immaculata, ~35% parae, and ~30% melanzona) is highly stable over repeated
 surveys spanning 50 years (~150 generations)^{13,14,20}. This suggests that balancing selection, likely
 resulting from a combination of sexual and natural selection, is acting to maintain these five adapted

67 morphs. Most importantly, multigeneration pedigrees show that morph phenotype is always passed 68 perfectly from father to son¹³, indicating the five *P. parae* morphs are controlled by five different Y 69 chromosomes. This system therefore offers the potential for a unique insight into the adaptive potential of 70 Y chromosomes, and the role of these regions of the genome in male phenotypes.

71 Y chromosomes are formed once recombination with the X is halted¹, and the loss of recombination on 72 the Y leads to a complex cascade of non-adaptive processes that lead to the rapid buildup of 73 heterochromatin and loss of gene activity²¹⁻²³. However, the process of Y degeneration is not linear²⁴, and 74 although poecilid species closely related to P. parae share the same homologous sex chromosome as 75 Poecilia reticulata²⁵ (guppies), the extent of Y chromosome degeneration differs markedly across the 76 clade. Although the Y chromosome in P. reticulata and Poecilia wingei contains only a small area of 77 limited degeneration²⁵⁻²⁸, the entirety of the Y chromosome of *Poecilia picta* is highly degenerate²⁵. *P*. 78 *parae* is a sister species of *P. picta* (diverging ~14.8 mya²⁹), however *P. picta* males are markedly 79 different from P. parae and do not resemble any of the five P. parae morphs^{18,20,30-32}, suggesting 80 remarkable diversity was generated on the P. parae Y chromosome after recombination was halted with 81 the X chromosome. Work on model systems has indeed shown Y chromosomes can accumulate new 82 genetic material²⁻⁵, yet these differences occur over long periods of time and are only evident when 83 comparing Ys across species. Non-model systems, such as *P. parae*, provide a unique opportunity to 84 explore the limits and role of non-recombining regions in generating diversity.

85 Because P. parae is very difficult to breed in the lab, we collected tissue from natural populations in South 86 America where all five male morphs co-occur, and used linked-read sequencing on multiple females and 87 males of all five morphs. Linked-read sequencing allowed us to overcome many of the technical 88 difficulties that traditional short-read methods run into when working on regions rich in repeats and 89 transposable elements, which are often associated with sex chromosomes. We first confirmed that P. 90 parae shares the same sex chromosome system as its close relatives^{25,26}. We went on to find patterns of 91 X-Y divergence are the same for all five Y chromosomes and matches the X-Y divergence we observed 92 in P. picta, suggesting that the morphs emerged after Y chromosome recombination was stopped in a 93 common ancestor of P. parae and P. picta. Comparing the five Y chromosomes to each other, we find 94 that while the Ys of the three minor morphs (red, vellow and blue melanzona) that differ only in color are

95 highly similar, the Ys of the three major morphs (parae, immaculata, and melanzona) that differ in 96 reproductive strategy, body size and mating behavior are significantly diverged from one another and 97 carry substantial amounts of unique genetic material. Taken together, our results reveal the surprising 98 ability of the Y chromosome to not only overcome the constraints of recombination loss, but to generate 99 extreme diversity, resulting in five discrete Y chromosomes that correspond to complex reproductive 100 strategies.

101

102 Results

We collected 40 individual *P. parae* from natural populations in Guyana in December 2016, including eight red melanzona, four blue melanzona, five yellow melanzona, five immaculata, seven parae morph males, and 11 females. 29 samples with sufficiently high molecular weight DNA were individually sequenced with 10X Genomics linked-reads (including all morphs and several females). We generated a *de novo* genome assembly for each of these samples. The remaining 11 lower molecular weight samples were individually sequenced with Illumina sequencing paired end reads (see Supplementary Tables 2 and 3 for sequencing and assembly details).

110

111 The P. parae Y chromosome is highly diverged from the X and shared with P. picta

112 Degeneration of the Y chromosome results in reduced male coverage when mapped to a female 113 reference genome. Therefore, the ratio of male to female mapped reads can be used to identify regions 114 where the Y and X chromosomes differ substantially from each other^{25,33-35}. To do this, we used our best 115 female de novo P. parae genome, based on N50 and other assembly statistics (see Supplementary Table 116 3). We then determined chromosomal position of the scaffolds using the reference-assisted chromosome 117 assembly (RACA) pipeline, which combines phylogenetic and sequencing data to place scaffolds along 118 chromosomes³⁶. Next we mapped reads from all 40 samples to this female assembly and calculated 119 male:female coverage, first for each of the five morphs independently, and then all morphs together.

As we previously found in *P. picta*²⁵, chromosome 8 (syntenic to *P. reticulata* chromosome 12) showed a clear signal of reduced read coverage in males (Figure 1a-b), indicating an XY sex determination system. Y divergence is evident across nearly the entire chromosome and is largely identical to the pattern we previously observed in *P. picta* (Figure 1c and Extended Data Fig. 1). This suggests that these species inherited a highly degenerate Y chromosome from their common ancestor, well before the origin of the *P. parae* male morphs.

126 Short sequences representing all the possible substrings of length k that are contained in a genome are 127 referred to as k-mers, and k-mer comparisons between male and female genomes has been used to 128 identify Y chromosome sequence using Y-specific k-mers (Y-mers) in a wide range of organisms³⁷⁻³⁹, 129 including guppies⁴⁰ and *P. picta*²⁵. We first compared all males, representing all five morphs, to all 130 females. We found a total of 27,950,090 Y-mers (of 31bp) that were present in at least two males but 131 absent from all females. However, only 59 of these Y-mers were present in all 23 males (Figure 2). To 132 evaluate the number of false positive Y-mers identified by our approach, we used the same pipeline on 133 females since all female k-mers should be present in males. We found only 251,472 k-mers to be present 134 in at least two females but absent from all males (0 of these were found in all 6 females). This suggests 135 that only about 0.9% of the 27,950,090 Y-mers identified are false positives.

136 We next used Y-mer analysis to further test whether recombination was halted on the Y in the common 137 ancestor of P. parae and P. picta. Of the 646,745 Y-mers that we previously identified in at least one P. 138 picta male and no females²⁵, 790 P. picta Y-mers matched Y-mers we identified in P. parae, consistent 139 with a shared history of suppressed recombination. Additionally, these shared Y-mers were present in 140 males of all morphs (Extended Data Fig. 2), discussed in more detail below. To evaluate whether the 141 number of Y-mers shared between species was due to chance we compared the female specific k-mers 142 that we previously identified in P. picta²⁵ to the female specific k-mers from P. parae we identified above. 143 We found only 80 P. picta female-specific k-mers were also female specific k-mers in P. parae. Therefore, 144 there were significantly more Y-mers shared between P. picta and P. parae than would be expected by 145 chance (X^2 = 1258, DF = 1, P < 0.0001), supporting a shared history of recombination suppression. These 146 shared Y-mers, combined with the striking similarity in male:female read mapping (Extended Data Fig. 1)

provide compelling evidence that the vast majority of Y chromosome recombination suppression occurredin a common ancestor of *P. picta* and *P. parae*.

149

150 The P. parae Y chromosomes are highly diverged from each other

We next compared Y-mers across individuals, generating a phylogeny on the presence/absence of Ymers in all the *P. parae* individuals with *P. picta* as an outgroup (Figure 2). Clear clades were recovered for each of the major morphs (immaculata, parae and melanzona) while the three minor morphs of melanzona (red, yellow, blue) were very similar to one another. The monophyly of morphs further indicates that the Y-mers we recovered are not random false positives, and that morphs have distinct Y chromosomes.

157 The phylogenic relationships of individuals (Figure 2) closely match the relative Y-mer comparisons

across morphs (Figure 3). We found 64,515 Y-mers in every immaculata male that were not in any parae

159 or melanzona males (i.e. immaculata-mers), 87,629 melanzona-mers, and 1,435 parae-mers, suggesting

160 that the melanzona and immaculata Y chromosomes may contain more unique sequence compared to

161 the parae Y. Moreover, we found 10,673 Y-mers in all melanzona and parae males that did not occur in

162 any immaculata males (Figure 2), suggesting that the parae Y shares greater sequence similarity to the

163 melanzona Y.

164 We calculated our false positive rate by randomly permuting our male samples into groups regardless of

165 morph and determining Y-mers present in all males of each group that were absent from all other males.

166 We found no unique Y-mers in groups of five or more random males, and just 31 unique Y-mers in groups

167 of four random males, demonstrating the false positive rate of our morph-specific Y-mer (morph-mer)

approach is exceedingly low (Extended Data Fig. 3).

169

170 Mapping morph-mers confirms high diversity of Y chromosomes

171 The large number of morph-mers we identified could either indicate that the discrete morphs are the

172 result of low divergence across large Y chromosomes, or smaller complexes of highly diverged Y

173 sequence. To resolve this, we mapped the morph-mers to the 21 *de novo* male genomes. We found the Y 174 chromosomes contain regions of highly diverged Y sequence, indicated by morph-mers disproportionately 175 mapping to a few scaffolds, and not being evenly dispersed. For example, a single melanzona scaffold 176 (~110kb) containing 27% of all melanzona-mers (23,773), and most morph-mers overlapped one another 177 (Extended Data Fig. 4 and 5). This confirms our morph-mer approach identified complexes of highly 178 diverged Y sequence.

To compare the relative size of these diverged complexes across morphs, we identified all scaffolds that contained >5 morph-mers in each individual. The average amount of sequence contained within these morph-mer scaffolds was 1.3 Mb for melanzona, 3.2 Mb for immaculata, and just 0.1 Mb for parae individuals (Supplementary Table 4). This complements the relative number of Y-mers we found for each morph and together suggests the amount of unique Y chromosome sequence differs across morphs, with the parae morph Y containing the smallest amount of unique genetic material.

185

186 Read mapping confirms extensive divergence of Y chromosomes

To determine how divergent the five Y chromosomes are from one another, we mapped reads from all 39 samples to the best full *de novo* genome assembly of each male morph (195 total alignments). Most scaffolds contain autosomal sequence, and coverage is not expected to differ by sex or morph. Meanwhile, scaffolds containing morph specific sequence will have higher coverage by males of the same morph (e.g. immaculata reads mapped to an immaculata assembly) than coverage by males of a different morph (e.g. melanzona reads mapped to an immaculata assembly). Low female coverage of such scaffolds confirms these regions are on the Y and are substantially diverged from the X.

As expected, when comparing coverage between males of the same morph as the reference assembly and the other morphs we found average coverage was 1:1 when considering all scaffolds, yet scaffolds enriched for morph-mers (containing >5) had much higher coverage by males of the same morph as the reference (Figure 4). Surprisingly, we found no coverage by immaculata or parae reads for nearly half (40/100) of the scaffolds enriched for melanzona-mers. Similarly, 14 of the 93 scaffolds enriched for immaculata-mers (containing ~48kb) had no coverage when we mapped melanzona and parae reads.

200 Meanwhile, in agreement with our morph-mer analysis, all 12 of the scaffolds enriched for parae-mers 201 had nearly equal coverage by melanzona and immaculata reads, once again suggesting that the parae Y 202 contains very little unique Y sequence.

We also found the ratio of male:female coverage was much higher for morph-mer scaffolds, many of which had no female coverage, again confirming these complexes of morph specific sequence are located in non-recombining regions of the Y chromosome (Figure 4).

206

207 Gene annotation of morph-mer scaffolds

We identified genes on scaffolds with >5 morph-mers. In total, we found 7 genes on the scaffolds containing the 59 Y-mers present in all morphs (totaling 30,558,901 bp), 291 genes on the immaculata scaffolds of sample P09 (totaling 9,748,162bp), 15 genes on the melanzona scaffolds of sample P01 (totaling 295,057 bp), and no genes on the parae morph scaffolds of P04 (totaling 127,542 bp) (Supplementary Tables 5, 6 and 7).

213 Only one gene was predicted on scaffolds that were completely unique to melanzona (trim35), and only 214 two genes were predicted on scaffolds completely unique to immaculata (trim39 and nlrc3). Members of 215 the *Trim* gene family act throughout the body and are well known to rapidly evolve novel functions^{41,42}. 216 Meanwhile, *nlrc3* has been shown to selectively block cellular proliferation and protein synthesis by 217 inhibiting the mTOR signalling pathway⁴³, which could play a role in keeping immaculata the smallest 218 morph. Several copies of the transcription factor Tbx3 were present on male unique scaffolds in both 219 melanzona and immaculata morphs. Tbx genes play key roles in development and act as developmental 220 switches⁴⁴⁻⁴⁶, raising the possibility that it could play a role in orchestrating the multi-tissue traits that differ 221 across morphs.

We also found several copies of *texim* genes on male scaffolds of melanzona and immaculata that most closely match *texim2* and *texim3*. While the function of *texim2* and *texim3* are largely unknown they have been shown to be highly expressed in the brain and testis of closely related species⁴⁷. In *Xiphophorus maculatus*, a close relative to *P. parae* (~45 mya²⁹), the transposable element *helitron* has moved *texim1* to the sex determining region of the Y chromosome and duplicated it resulting in three copies of *texim*

that are expressed specifically in late stage spermatogenesis⁴⁷. The copies of *texim2* and *texim3* that we
 identified on the Y chromosome of *P. parae* are not the same as those in *X. maculatus* as the Ys arose

independently and the *X. maculatus* Y is not chromosome 8. Future analyses are needed to determine

230 the roles of these and other genes in generating the morph-specific phenotypes.

231

232 Interspersed repeats and morph-mer scaffolds

We next assessed the accumulation of interspersed elements on the Y chromosomes in our samples. Repeatmasker revealed a large number of transposable elements on scaffolds enriched for the Y-mers (present in all males) and morph-mer-enriched scaffolds (Supplementary Tables 8-12). These include 90 copies of the *helitron* transposable element on scaffolds enriched for melanzona-mers, and 38 copies on scaffolds enriched for immaculata-mers.

238 Interspersed repeats indicate the current and/or previous presence of transposable elements in a region 239 and can provide a measure of transposable element activity⁴⁸. We found transposable element activity on 240 autosomes and the X chromosome to be in line with other vertebrate genomes⁴⁹, as indicated by 241 interspersed repeats comprising an average of 27.25% of the *de novo* female genomes (Supplementary 242 Table 11). However, the male scaffolds enriched for morph-mers were composed of substantially higher 243 proportions of interspersed repeats (melanzona: P<0.0001, t=6.798, df=17; parae morph: P<0.0001, 244 t=16.20, df=10; immaculata: P=0.0322, t=2.587, df=8) (Extended Data Fig. 6). The proportion of Y 245 sequence comprised of interspersed repeats also differed by morph, with Melanzona (59.28%) being 246 higher than both parae morph (44.11%) (P=0.0053, t=3.193, df=17) and immaculata morph (40.66%) 247 (P=0.0140, t=2.780, df=15) (Supplementary Table 11, Extended Data Fig. 6).

248

249 Discussion

250 Recombination is widely regarded as one of the most important processes generating phenotypic

251 diversity as it produces novel allelic combinations upon which selection can act⁵⁰. The loss of

252 recombination is classically assumed to result in reduced genetic diversity through sweeps and

background selection^{1,23,51-58} and have only limited potential for adaptive evolution. The power of these
 processes to deplete non-recombining regions of diversity is clearly evident in the Y chromosomes of
 many species¹.

256 Our results, based on both similarity of Y degeneration (Extended Data Fig. 1) and shared Y-mers, 257 together with the recent reports of complete dosage compensation in both P. parae⁵⁹ and P. picta²⁵, are 258 consistent with recombination suppression between the X and Y chromosome in the common ancestor of 259 P. parae and P. picta (14.8-18.5 mya²⁹) and a highly degenerate Y present at the origin of P. parae. 260 Importantly, none of the characteristics that differentiate the immaculata, parae or three melanzona 261 morphs of *P. parae* are found in any close relatives. Therefore, although it is possible that the morphs 262 evolved in an ancestor and were subsequently lost in all lineages except P. parae, the more parsimonious 263 explanation is that the genetic basis of the extreme diversity in morphs evolved on a non-recombining, 264 highly degenerate P. parae Y chromosome (Extended Data Fig. 1). Given that these morphs differ in a 265 suite of complex traits, including body size, testis size, color pattern, and mating strategy, *P. parae* morph 266 diversity is likely underpinned by either polygenic genetic architectures directly on the Y, or novel genetic 267 elements on the Y that regulate larger regions of the genome, as observed in *Drosophila*⁶⁰. Consistent 268 with complex phenotypic differences between morphs, we identified substantial morph-specific genetic 269 material (Figures 2-4) that was also absent in females and therefore Y-linked.

270 Although male-specific regions of the genome may experience elevated mutation rates⁶¹, it is also likely 271 that the high P. parae Y diversity was generated through translocations and/or accumulation of 272 interspersed repeats (eg. transposable element (TE) movement). Translocations have been shown to 273 increase Y-chromosome content^{2,62}. In contrast, although TE movement has historically been considered 274 to be a deleterious process, more recent reports have revealed that TEs can alter regions by removing or 275 adding regulatory or coding sequence^{44,63-66}, and TEs may even act as substrate for novel genes⁶⁷. As 276 predicted for non-recombining regions, we found a large number of TEs in the five P. parae Y 277 chromosomes. In all morphs we found substantially more of the Y chromosomes were composed of 278 interspersed repeats compared to the autosomes and X chromosome. Meanwhile the percentage of Y 279 sequence composed of interspersed repeats differed between the morphs, further suggesting that TE

activity may have played an important role in generating the diversity and divergence of these five non-recombining Y chromosomes.

282

283 Making and Maintaining Five Morphs

We found substantial morph specific genetic diversity on the Y chromosome of *P. parae*. Intriguingly, that diversity is maintained within populations, as evidenced by the stability in morph frequencies over repeated surveys spanning 50 years, or roughly 150 generations^{13,14,20}. Even if alternative morphs have exactly equal fitness, populations are expected to eventually fix for one morph due to drift⁶⁸. Maintaining alternative morphs within the same population relies on negative frequency dependent selection, thus as one morph decreases in frequency its fitness increases, such as with the three male morphs of the side blotched lizard⁶⁹.

Previous work suggests that *P. parae* morphs are also under negative frequency dependent selection¹⁴⁻¹⁷, and this could facilitate the establishment and maintenance of five distinct Y chromosomes within the same species. Most new mutations are expected to be lost through drift if they do not confer a high enough fitness advantage over alternative alleles⁷⁰, but mutations resulting in a new morph would be at the lowest frequencies and thus have the highest fitness, allowing them to rapidly stabilize in the population. Alternatively, it is possible that the morphs arose in separate populations and only later came into sympatry.

298

299 Genetic Basis of Male Reproductive Morphs

Autosomal non-recombining regions have been shown to be associated with alternative reproductive strategies in a range of species^{7,9,71-75}, yet the formation of the nonrecombining regions underlying alternative reproductive strategies in *P. parae* differs from those previously described. For example, male morphs of the white throated sparrow, which differ in pigmentation and social behavior, are the result of a hybridization event which instantly brought together alternative sequence and halted recombination⁷². Importantly, because none of the characteristics of the *P. parae* morphs are found in any close relatives,

306 it is unlikely that hybridization is the source of the Y chromosomes we describe. The alternative male 307 morphs in the ruff are also controlled by an autosomal supergene which is composed of two alternative 308 versions of an inverted region¹⁰. It has yet to be determined whether the diversity across these ruff 309 supergenes pre-dates the inversion or arose after recombination stopped as it did in P. parae. A large 310 inverted region is also associated with social morphs in many ant species, this region formed in a 311 common ancestor and has been maintained by balancing selection through repeated speciation events¹². 312 Although it is possible that the multiple male morphs in *P. parae* arose in an ancestor, this is less likely as 313 they have not been observed in any related species to date (including four species that diverged after Y 314 recombination was stopped). The novel formation of the non-recombining regions associated with P. 315 parae alternative reproductive strategies make this a powerful system for future work to explore the 316 genetic basis of male reproductive morphs.

317

318 Conclusion

319 The role of recombination in shaping co-adapted allele complexes has long been an enigma, given that 320 recombination is a key mechanism in generating diverse allelic combinations, yet recombination also acts 321 to break up such combinations. Our results suggest that substantial diversity can be generated without 322 the power of recombination, and the Y chromosome retains remarkable adaptive potential with regard to 323 male phenotypic evolution. Our work indicates that the five Y-linked male morphs of P. parae emerged 324 and diverged after recombination was halted, resulting in five unique Y chromosomes within one species. 325 Future work identifying the mechanisms by which morphs are determined by these five Y chromosomes 326 will provide much needed insight to determining which evolutionary forces have led to and shaped these 327 amazing complexes and their co-evolution with the rest of the genome, which is shared across all 328 morphs.

329

330 Methods

331

332 Field Collections and DNA Isolation

333 To ensure we accounted for natural diversity in the five Y chromosomes of *P. parae*, and because this 334 species is extremely difficult to breed in captivity, we collected all samples (N=40) from three large native 335 populations around Georgetown, Guyana in 2016 (see Supplementary Table 2 and Sandkam, et al. ¹⁸ for 336 description of populations) (Environmental Protection Agency of Guyana Permit 120616 SP: 015). 337 Individuals were rapidly sacrificed in MS-222, whole-tail tissue was dissected into EtOH and immediately 338 placed in liquid nitrogen to maintain integrity of high molecular weight DNA. Tissue samples were brought 339 back to the lab and kept at -80° C until high molecular weight DNA extraction. All samples were collected 340 in accordance with national and institutional ethical guidelines (Canadian Council on Animal Care, 341 University of British Columbia).

342 High molecular weight DNA was extracted from 25mg tail tissue of each sample following a modified 343 protocol from 10X Genomics described in Almeida et al^{28} . Briefly, nuclei were isolated by gently 344 homogenizing tissue with a pestle in cold Nuclei Isolation Buffer from a Nuclei PURE Prep Kit (Sigma). 345 Nuclei were pelleted and supernatant removed before being digested by incubating in 70 µl PBS, 10 µl 346 Proteinase K (Qiagen), and 70 µl Digestion buffer (20mM EDTA, 2mM Tris-HCL, 10mM N-347 Laurylsarcosine) for two hours at room temperature on a tube rotator. Tween 20 was added (0.1% final 348 concentration) and DNA was bound to SPRIselect magnetic beads (Beckman Coulter) for 20 min. Beads 349 were bound to a magnetic rack and washed twice with 70% Ethanol before eluting DNA. Samples were 350 visually screened for integrity of high molecular weight DNA on an agarose gel. Of the 40 samples 351 extracted, 29 passed initial screening and were used for individual 10X Chromium linked-read sequencing 352 (six female, seven red, five yellow, one blue, four immaculata, and six parae morph). The remaining 11 353 samples (five female, one red, three blue, one immaculata, and one parae morph) were individually 354 sequenced on an Illumina HiSeqX as 2 x 150 bp reads using the v2.5 sequencing chemistry with 300bp 355 inserts and trimmed with trimmomatic $(v0.36)^{76}$. To ensure high coverage of the Y, all 40 samples were 356 individually sequenced to a predicted coverage of 40X (see Supplementary Table 2 for number of reads 357 after filtering), which would result in predicted 20X coverage of the haploid Y.

358

359 **10X Chromium Linked-read Sequencing and Assembly**

10X Chromium linked-read sequencing was performed at the SciLifeLab, Uppsala Sweden. The 10X Chromium pipeline adds unique tags to each piece of high molecular weight DNA before sequencing on an Illumina platform. These tagged reads were either used directly in the 10X assembly pipeline, or tags were removed using the *basic* function of Longranger v.2.2.2 (10X Genomics), trimmed with trimmomatic (v0.36)⁷⁶ and treated as normal Illumina reads⁷⁷ for coverage analyses (Supplementary Table 2). Scaffold level *de novo* genomes were assembled for each of the 29 linked-read samples using the Supernova v2.1.1 software package (10X Genomics) (see Supplementary Table 3 for assembly

367 statistics).

368 A female chromosome level assembly was created by assigning scaffolds to chromosomal positions. The 369 female with the best *de novo* assembly (largest assembly size and scaffold N50) was used for the 370 Reference Assisted Chromosome Assembly (RACA) pipeline³⁶. Briefly, scaffolds were aligned with 371 LASTZ v1.0478 against high-guality chromosome level genome assemblies of a close relative 372 (Xiphophorus helleri v4.0; GenBank accession GCA_003331165) and an outgroup (Oryzias latipes v1; 373 GenBank accession GCA_002234675). Alignments were then run through the UCSC chains and nets 374 pipeline from the kentUtils software suite⁷⁹ before passing to the RACA pipeline. RACA uses alignments 375 of short-insert and long-insert paired reads that bridge scaffolds to further order and confirm scaffold 376 arrangement. For short-insert data, 150bp reads from the five females sequenced with paired-end 377 Illumina (300bp inserts) were aligned to the target assembly with Bowtie2 v2.2.9⁸⁰ reporting concordant 378 mappings only (--no-discordant option). For long-insert data, synthetic 150bp 'pseudo-mate-pair' reads 379 were generated from the *de novo* scaffolds of the 6 female *P. parae* samples sequenced with Chromium 380 linked-reads. To increase the likelihood that bridge reads spanned scaffolds, we generated two long-381 insert pseudo-mate-pair libraries for each of the six *de novo* female genomes, a 2.3kb insert library and a 382 15kb insert library, and aligned these to the target assembly. RACA then used the information from both 383 the phylogenetically weighted genome pairwise alignments, and the read mapping data to order the target 384 scaffolds into longer predicted chromosome fragments.

To identify which chromosome is the sex chromosome and determine the extent of X-Y divergence, we mapped reads from all 40 individuals to the female scaffolds that had RACA generated chromosome annotations using the *aln* function of *bwa* (v0.6.1)⁸¹. Alignments were filtered for uniquely mapped reads and average scaffold coverage was calculated using soap.coverage v2.7.7 (http://soap.genomics.org.cn/). To account for differences across individuals in sequencing library size,

we divided the coverage of each scaffold by the average coverage across all scaffolds for each individual. Male to female (M:F) fold change in coverage of each scaffold was calculated for all males, and each of the five morphs as log₂(average male coverage) – log₂(average female coverage)⁸². Upon observing chromosome 8 was the sex chromosome, we calculated the 95% CI for M:F coverage by bootstrapping across all scaffolds which RACA placed on the autosomes (1000 replicates; mean of 20 scaffolds without replacement).

396

397 Identifying Morph specific sequence by k-mers

398 To locate morph specific sequence, we identified morph specific k-mers (morph-mers) and then mapped 399 these to the respective *de novo* genome assemblies. First Jellyfish v2.2.3⁸¹ was used to identify all 31bp 400 k-mers from the 'megabubble' output of each of the 22 male *de novo* genome assemblies from 401 supernova. We next identified the putative Y-linked k-mers in each sample by removing all k-mers present 402 in any of the females. For female k-mer identification we conservatively took k-mers from both the 403 megabubble outputs and the raw Illumina reads of all 11 female individuals, which we used to identify 404 every 31bp k-mer present >3 times (this maximized the chance of including k-mers from unassembled 405 regions of female genomes but minimized *k*-mers from sequencing errors⁴⁰). The *k*-mers present in 406 females all occur either on autosomes or the X chromosome, therefore by removing the female k-mers 407 from all *k*-mers identified in males we are left with putative Y-linked *k*-mers that we call Y-mers^{25,40}. To 408 exclude k-mers representing autosomal SNPs unique to a single male we required Y-mers be present in 409 at least two individuals. Since all female sequence is theoretically present in males, we validated our 410 method by identifying all k-mers from the six female megabubbles that were not present in the male 411 Illumina reads and found how many were present in at least two female individuals.

We then combined all the Y-mers we found with those we previously identified in *P. picta*²⁵ and used the presence of Y-mers as character states to build a phylogeny of all individuals and *P. picta*. Two runs of MrBayes v3.2.2⁸³ were run for 100,000 generations with Y-mers treated akin to restriction sites (model F81 with rates set to equal and default priors). The SD of the split frequencies between runs reached 0 indicating both runs converged on identical and robust trees.

417 Monophyletic clades were recovered for each of the major morphs (immaculata, parae and melanzona).
418 We then identified unique Y-mers in each clade (Y-mers present in every individual of that clade but not
419 present outside that clade). This approach provided us with all morph-mers (Y-mers present in every
420 individual of a given morph but not present in any individual of the other morphs).

421 These morph-mers reveal two insights: (1) at a gross level they provide a sense of how much Y sequence 422 is shared within versus across morphs and (2) mapping these morph-mers to the respective de novo 423 genomes allows us to identify regions of morph specific sequence^{39,40,84,85}. To find these regions of morph 424 specific sequence we first mapped the corresponding set of 31bp morph-mers to each of the 22 de novo 425 male genomes (pseudohap style of Supernova output) using bowtie2⁸⁰ allowing for no mismatches, gaps, 426 or trimming. We found morph-mers disproportionately map to scaffolds, indicating they came from regions 427 of highly diverged morph-specific sequence rather than evenly dispersed lowly diverged sequence 428 (Extended Data Fig. 3 and 4).

To verify our pipeline was identifying true Y-specific alignments we attempted to align the Y-mers and all of the morph-mers to each of the six female *de novo* genome assemblies using bowtie2⁸⁰ (see above) and found no alignments could be made. We next verified that our morph-mers were targeting morph specific sequence by attempting to align each of the morph-mer datasets to individuals of the opposite morphs and again found no alignments could be made.

434

435 **Coverage analysis**

To independently verify that the scaffolds identified by our *k*-mer approach contained highly diverged
sequence, we aligned each of the 39 individuals to the individual with the best *de novo* genome of each
morph (based on assembly size, scaffold N50, and contig N50, Supplementary Table 3). Alignments were

439 generated with the mem function of bwa (v0.7.17)⁸¹. samtools (v1.10)⁸⁶ was used to remove unmapped 440 reads and secondary alignments with the *fixmate* function, and duplicates were removed with *markdup*. 441 bamgc was then used to assess distribution of map quality. For each individual, the average coverage of 442 each scaffold by reads with mapg ≥ 60 was determined using the *depth* function of *samtools* (v1.10)⁸⁶. Y 443 chromosomes are notorious for high incidence of transposable elements and repeats¹, this highly 444 conservative filtering decreased false alignments to these regions. To account for differences across 445 individuals in sequencing library size, we took the coverage of each scaffold divided by that individual's 446 coverage across all scaffolds. The average raw scaffold coverage across all individuals was 29.97X, 447 therefore any scaffold with a corrected coverage < 0.025 (raw coverage <1X) was considered to have a 448 coverage of 0.

449

450 Gene Annotation

451 To identify genes on morph specific scaffolds we followed the pipeline described in Almeida et al^{28} . 452 Briefly, we took a very conservative approach by annotating only the scaffolds with >5 morph-mers from 453 each of the *de novo* references used for the coverage analysis (one of each morph). The chance of a 454 scaffold containing any particular 31bp k-mer depends on the length of the scaffold and can be calculated 455 roughly as 0.25³¹ x scaffold length. The longest male scaffold we recovered was 19,887,348 and 456 therefore had the greatest chance of containing any given Y-mer; 4.31*10⁻¹². The most abundant morph-457 mers were melanzona-mers (87,629), therefore the likelihood of the largest scaffold containing one 458 melanzona-mer by chance was $4.31^{+10^{-12}} \times 87,629 = 3.78^{+10^{-7}}$ and the likelihood it contains 5 459 melanzona-mers purely by chance was roughly 7.71*10⁻³³. If we conservatively assume that all scaffolds 460 have the same probability of containing a Y-mer by chance and the male with the most scaffolds had 25,416 scaffolds – there was a likelihood of 1.96*10⁻²⁸ that a scaffold was incorrectly identified. 461 462 We then annotated these scaffolds with MAKER v2.31.10⁸⁷. We ran the MAKER pipeline twice: first 463 based on a guppy-specific repeat library, protein sequence, EST and RNA sequence data (later used to 464 train ab-initio software) and a second time combining evidence data from the first run and ab-initio 465 predictions. We created a repeat library for these scaffolds using *de novo* repeats identified by

466 RepeatModeler v1.0.10⁸⁸ which we then combined with Actinopterygii-specific repeats to use with 467 RepeatMasker v4.0.789. Annotated protein sequences were downloaded from Ensembl (release 95)90 for 468 8 fish species: Danio rerio (GRCz11), Gasterosteus aculeatus (BROADS1), Oryzias latipes 469 (ASM223467v1), Poecilia latipinna (1.0), Poecilia mexicana (1.0), Poecilia reticulata (1.0), Takifugu 470 rubripes (FUGU5) and Xiphophorus maculatus (5.0). For ESTs, we used 10,664 tags isolated from guppy 471 embryos and male testis⁹¹. Furthermore, to support gene predictions we also used two publicly available 472 libraries of RNA-seg data collected from guppy male testis and male embryos⁹² and assembled with 473 StringTie 1.3.3b⁹³. As basis for the construction of gene models, we combined *ab-initio* predictions from 474 Augustus v3.2.3⁹⁴, trained via BUSCO v3.0.2⁹⁵, and SNAP v2006-07-28⁹⁶. To train Augustus and SNAP, 475 we ran the MAKER pipeline a first time to create a profile using the protein and EST evidence along with 476 RNA-seq data. Both Augustus and SNAP were then trained from this initial evidence-based annotation. 477 Functional inference for genes and transcripts was performed using the translated CDS features of each 478 coding transcript. Gene names and protein functions were retrieved using BLASTp to search the 479 Uniprot/Swissprot, InterProscan v5 and GenBank databases.

480

481 Identifying Transposable Element Activity

482 To compare activity of transposable elements in morph-linked Y scaffolds to the rest of the genome 483 (autosomes and the X chromosome) we identified the proportion of sequence comprised of interspersed 484 repeats. Sequences identified as interspersed repeats are both current transposable elements and the 485 flanking sequence that is left behind when transposable elements leave a region, and thus act as a 486 measure of transposable element activity within a region⁴⁸. To build a repeat library for all *P. parae* 487 repeats we first used RepeatModeler v1.0.10 to create repeat libraries from the best female de novo 488 genome, and from the morph-linked scaffolds (scaffolds with >5 morph-mers) from each male. We then 489 combined individual de novo repeat libraries with the Actinopterygii-specific repeats to create the full P. 490 parae repeat library. This combined repeat library was used to identify interspersed repeats in the de 491 novo genome from each female and the morph-linked scaffolds of each male using RepeatMasker v4.0.7. 492 The percentage of total interspersed repeats was compared with a one-way ANOVA in Prism v.9.0.0

which revealed significant differences (P<0.0001, F(3,25)=17.98). Unpaired t-test were then used to
follow up the significant main effect.

495

496 **Confirming diversity is unique to Y chromosome**

497 To further confirm the extreme divergence across morphs is unique to the Y chromosome (and not cryptic 498 subpopulations) we built phylogenies of each of the autosomes. To do this we aligned reads from each 499 individual to the female scaffolds that had RACA generated chromosome annotations using the mem 500 function of *bwa* (v0.6.1)⁸¹. Duplicates were marked with *samtools* (v1.10)⁸⁶. Variants were called using the 501 call function of bcftools (v1.11) before generating consensus sequences of the longest scaffold from each 502 autosome using the consensus function of *bcftools* with the -I flag (providing IUPAC ambiguity codes for 503 polymorphic sites). For each autosome, the sequence from all 40 individuals were aligned using the 504 MAFFT⁹⁷ plugin for Geneious Prime with default parameters. Approximate-maximum-likelihood trees were generated using FastTree (v2.1.12)⁹⁸ plugin for Geneious with default parameters (Extended Data 505 506 Fig. 7).

507

508 Data Availability

- 509 All of the data generated for this study are archived in the Sequence Read Archive (under BioProject ID
- 510 _) at the National Centre for Biotechnology Information (<u>www.ncbi.nlm.nih.gov/sra</u>).

511 **Code Availability**

512 All scripts and pipelines are available at <u>https://github.com/manklab/Poecilia_parae_Y_Diversity</u>

514 References

516	1	Bachtrog, D. Y-chromosome evolution: emerging insights into processes of Y-
517		chromosome degeneration. Nat. Rev. Genet. 14, 113-124, doi:10.1038/nrg3366 (2013).
518	2	Tobler, R., Nolte, V. & Schlotterer, C. High rate of translocation-based gene birth on the
519		Drosophila Y chromosome. P Natl Acad Sci USA 114, 11721-11726,
520		doi:10.1073/pnas.1706502114 (2017).
521	3	Mahajan, S. & Bachtrog, D. Convergent evolution of Y chromosome gene content in
522		flies. <i>Nat Commun</i> 8 , 785, doi:10.1038/s41467-017-00653-x (2017).
523	4	Bachtrog, D., Mahajan, S. & Bracewell, R. Massive gene amplification on a recently
524		formed Drosophila Y chromosome. Nat Ecol Evol 3, 1587-1597, doi:10.1038/s41559-
525		019-1009-9 (2019).
526	5	Hall, A. B. et al. Radical remodeling of the Y chromosome in a recent radiation of malaria
527		mosquitoes. <i>P Natl Acad Sci USA</i> 113 , E2114-2123, doi:10.1073/pnas.1525164113
528		(2016).
529	6	Todesco, M. et al. Massive haplotypes underlie ecotypic differentiation in sunflowers.
530		Nature, doi:10.1038/s41586-020-2467-6 (2020).
531	7	Schwander, T., Libbrecht, R. & Keller, L. Supergenes and Complex Phenotypes. Curr. Biol.
532		24 , R288-R294, doi:10.1016/j.cub.2014.01.056 (2014).
533	8	Wang, J. et al. A Y-like social chromosome causes alternative colony organization in fire
534		ants. <i>Nature 493,</i> 664-668, doi:10.1038/nature11832 (2013).
535	9	Lamichhaney, S. et al. Structural genomic changes underlie alternative reproductive
536		strategies in the ruff (Philomachus pugnax). Nat. Genet. 48, 84-88, doi:10.1038/ng.3430
537		(2016).
538	10	Kupper, C. et al. A supergene determines highly divergent male reproductive morphs in
539		the ruff. <i>Nat. Genet.</i> 48 , 79-83, doi:10.1038/ng.3443 (2016).
540	11	Branco, S. et al. Multiple convergent supergene evolution events in mating-type
541		chromosomes. <i>Nature Communications</i> 9 , 2000, doi:10.1038/s41467-018-04380-9
542		(2018).
543	12	Yan, Z. et al. Evolution of a supergene that regulates a trans-species social
544		polymorphism. <i>Nat Ecol Evol</i> 4 , 240-249, doi:10.1038/s41559-019-1081-1 (2020).
545	13	Lindholm, A. K., Brooks, R. & Breden, F. Extreme polymorphism in a Y-linked sexually
546		selected trait. <i>Heredity (Edinb)</i> 92 , 156-162, doi:10.1038/sj.hdy.6800386 (2004).
547	14	Hurtado-Gonzales, J. L. & Uy, J. A. Alternative mating strategies may favour the
548		persistence of a genetically based colour polymorphism in a pentamorphic fish. Anim.
549		<i>Behav.</i> 77 , 1187-1194, doi:10.1016/j.anbehav.20 (2009).
550	15	Hurtado-Gonzales, J. L. & Uy, J. A. Intrasexual competition facilitates the evolution of
551		alternative mating strategies in a colour polymorphic fish. BMC Evol. Biol. 10, 391,
552		doi:10.1186/1471-2148-10-391 (2010).
553	16	Hurtado-Gonzales, J. L., Baldassarre, D. T. & Uy, J. A. Interaction between female mating
554		preferences and predation may explain the maintenance of rare males in the

555 pentamorphic fish Poecilia parae. J. Evol. Biol. 23, 1293-1301, doi:10.1111/j.1420-556 9101.2010.01995.x (2010). 557 17 Hurtado-Gonzales, J. L., Loew, E. R. & Uy, J. A. Variation in the visual habitat may 558 mediate the maintenance of color polymorphism in a poeciliid fish. PLoS One 9, 559 e101497, doi:10.1371/journal.pone.0101497 (2014). 560 18 Sandkam, B. A., Young, C. M., Breden, F. M., Bourne, G. R. & Breden, F. Color vision 561 varies more among populations than among species of live-bearing fish from South 562 America. BMC Evol. Biol. 15, 225, doi:10.1186/s12862-015-0501-3 (2015). 563 19 Bourne, G. R., Breden, F. & Allen, T. C. Females prefer carotenoid colored males as 564 mates in the pentamorphic livebearing fish, Poecilia parae. Naturwissenschaften 90, 565 402-405, doi:10.1007/s00114-003-0444-1 (2003). 566 20 Liley, N. R. Reproductive Isolation in some sympatric species of fishes Doctor of 567 Philosophy thesis, Oxford, (1963). 568 21 Bachtrog, D. et al. Are all sex chromosomes created equal? Trends Genet. 27, 350-357, 569 doi:10.1016/j.tig.2011.05.005 (2011). 570 Rice, W. R. Evolution of the Y Sex Chromosome in Animals. *Bioscience* 46, 331-343, 22 571 doi:10.2307/1312947 (1996). 572 23 Wright, A. E., Dean, R., Zimmer, F. & Mank, J. E. How to make a sex chromosome. Nat 573 *Commun* **7**, 12087, doi:10.1038/ncomms12087 (2016). 574 24 Furman, B. L. S. et al. Sex Chromosome Evolution: So Many Exceptions to the Rules. 575 Genome Biol Evol 12, 750-763, doi:10.1093/gbe/evaa081 (2020). 576 25 Darolti, I. et al. Extreme heterogeneity in sex chromosome differentiation and dosage 577 compensation in livebearers. Proceedings of the National Academy of Sciences 116, 578 19031-19036, doi:10.1073/pnas.1905298116 (2019). 579 26 Wright, A. et al. Convergent recombination suppression suggests a role of sexual 580 selection in guppy sex chromosome formation. Nature Communications 8, 14251 (2017). 581 Darolti, I., Wright, A. E. & Mank, J. E. Guppy Y Chromosome Integrity Maintained by 27 582 Incomplete Recombination Suppression. Genome Biol Evol 12, 965-977, 583 doi:10.1093/gbe/evaa099 (2020). 584 Almeida, P. et al. Divergence and Remarkable Diversity of the Y Chromosome in 28 585 Guppies. bioRxiv, doi:10.1101/2020.07.13.200196 (2020). 586 29 Rabosky, D. L. et al. An inverse latitudinal gradient in speciation rate for marine fishes. 587 Nature 559, 392-395, doi:10.1038/s41586-018-0273-1 (2018). 588 Reznick, D. N., Miles, D. B. & Winslow, S. Life History of *Poecilia picta* (Poeciliidae) from 30 589 the Island of Trinidad. Copeia 1992, 782-790, doi:10.2307/1446155 (1992). 590 31 Haskins, C. P. & Haskins, E. F. The role of sexual selection as an isolating mechanism in 591 three species of Poeciliid fishes. Evolution 3, 160-169 (1949). 592 32 Liley, N. R. Ethological Isolating Mechanisms in Four Sympatric Species of Poeciliid 593 Fishes. Behaviour Supplement 13, 1-197 (1966). 594 Vicoso, B. & Bachtrog, D. Reversal of an ancient sex chromosome to an autosome in 33 595 Drosophila. Nature 499, 332-335, doi:10.1038/nature12235 (2013). 596 Vicoso, B. & Bachtrog, D. Numerous transitions of sex chromosomes in Diptera. PLoS 34 597 Biol. 13, e1002078, doi:10.1371/journal.pbio.1002078 (2015).

 chromosome genomics in snakes: differentiation, evolutionary strata, and lack of glot dosage compensation. <i>PLoS Biol.</i> 11, e1001643, doi:10.1371/journal.pbio.1001643 (2013). Kim, J. <i>et al.</i> Reference-assisted chromosome assembly. <i>Proceedings of the National Academy of Sciences</i> 110, 1785-1790, doi:10.1073/pnas.1220349110 (2013). Pucholt, P., Wright, A. E., Conze, L. L., Mank, J. E. & Berlin, S. Recent Sex Chromosome Divergence despite Ancient Dioecy in the Willow Salix viminalis. <i>Mol. Biol. Evol.</i> 34, 1991-2001, doi:10.1093/molbev/msx144 (2017). Akagi, T., Henry, I. M., Tao, R. & Comai, L. A Y-chromosome-encoded small RNA acts a sex determinant in persimmons. <i>Science</i> 346 (2014). Torres, M. F. <i>et al.</i> Genus-wide sequencing supports a two-locus model for sex-determination in Phoenix. <i>Nat Commun</i> 9, 3969, doi:10.1038/s41467-018-06375-y (2018). Morris, J., Darolti, I., Bloch, N. I., Wright, A. E. & Mank, J. E. Shared and Species-Specif Patterns of Nascent Y Chromosome Evolution in Two Guppy Species. <i>Genes (Basel)</i> 9, doi:10.3390/genes9050238 (2018). Napolitano, L. M. & Meroni, G. TRIM family: Pleiotropy and diversification through homomultimer and heteromultimer formation. <i>IUBMB Life</i> 64, 64-71, doi:10.1002/iub.580 (2012). Sardiello, M., Cairo, S., Fontanella, B., Ballabio, A. & Meroni, G. Genomic analysis of th TRIM family reveals two groups of genes with distinct evolutionary properties. <i>BMC Evol. Biol.</i> 8, 225, doi:10.1186/1471-2148-8-225 (2008). Karki, R. <i>et al.</i> NLRC3 is an inhibitory sensor of PI3K-mTOR pathways in cancer. <i>Nature</i> 622
 dosage compensation. <i>PLoS Biol.</i> 11, e1001643, doi:10.1371/journal.pbio.1001643 (2013). Kim, J. <i>et al.</i> Reference-assisted chromosome assembly. <i>Proceedings of the National</i> <i>Academy of Sciences</i> 110, 1785-1790, doi:10.1073/pnas.1220349110 (2013). Pucholt, P., Wright, A. E., Conze, L. L., Mank, J. E. & Berlin, S. Recent Sex Chromosome Divergence despite Ancient Dioecy in the Willow Salix viminalis. <i>Mol. Biol. Evol.</i> 34, 1991-2001, doi:10.1093/molbev/msx144 (2017). Akagi, T., Henry, I. M., Tao, R. & Comai, L. A Y-chromosome-encoded small RNA acts a sex determinant in persimmons. <i>Science</i> 346 (2014). Torres, M. F. <i>et al.</i> Genus-wide sequencing supports a two-locus model for sex- determination in Phoenix. <i>Nat Commun</i> 9, 3969, doi:10.1038/s41467-018-06375-y (2018). Morris, J., Darolti, I., Bloch, N. I., Wright, A. E. & Mank, J. E. Shared and Species-Specif Patterns of Nascent Y Chromosome Evolution in Two Guppy Species. <i>Genes (Basel)</i> 9, doi:10.3390/genes9050238 (2018). Napolitano, L. M. & Meroni, G. TRIM family: Pleiotropy and diversification through homomultimer and heteromultimer formation. <i>IUBMB Life</i> 64, 64-71, doi:10.1002/iub.580 (2012). Sardiello, M., Cairo, S., Fontanella, B., Ballabio, A. & Meroni, G. Genomic analysis of th TRIM family reveals two groups of genes with distinct evolutionary properties. <i>BMC</i> <i>Evol. Biol.</i> 8, 225, doi:10.1186/1471-2148-8-225 (2008). Karki, R. <i>et al.</i> NLRC3 is an inhibitory sensor of PI3K-mTOR pathways in cancer. <i>Nature</i> 540, 583-587, doi:10.1038/nature20597 (2016).
 (2013). (2014). (2017). (2017). (2018). <
 Kim, J. <i>et al.</i> Reference-assisted chromosome assembly. <i>Proceedings of the National</i> <i>Academy of Sciences</i> 110, 1785-1790, doi:10.1073/pnas.1220349110 (2013). Pucholt, P., Wright, A. E., Conze, L. L., Mank, J. E. & Berlin, S. Recent Sex Chromosome Divergence despite Ancient Dioecy in the Willow Salix viminalis. <i>Mol. Biol. Evol.</i> 34, 1991-2001, doi:10.1093/molbev/msx144 (2017). Akagi, T., Henry, I. M., Tao, R. & Comai, L. A Y-chromosome-encoded small RNA acts a sex determinant in persimmons. <i>Science</i> 346 (2014). Torres, M. F. <i>et al.</i> Genus-wide sequencing supports a two-locus model for sex- determination in Phoenix. <i>Nat Commun</i> 9, 3969, doi:10.1038/s41467-018-06375-y (2018). Morris, J., Darolti, I., Bloch, N. I., Wright, A. E. & Mank, J. E. Shared and Species-Specif Patterns of Nascent Y Chromosome Evolution in Two Guppy Species. <i>Genes (Basel)</i> 9, doi:10.3390/genes9050238 (2018). Napolitano, L. M. & Meroni, G. TRIM family: Pleiotropy and diversification through homomultimer and heteromultimer formation. <i>IUBMB Life</i> 64, 64-71, doi:10.1002/iub.580 (2012). Sardiello, M., Cairo, S., Fontanella, B., Ballabio, A. & Meroni, G. Genomic analysis of th TRIM family reveals two groups of genes with distinct evolutionary properties. <i>BMC</i> <i>Evol. Biol.</i> 8, 225, doi:10.1186/1471-2148-8-225 (2008). Karki, R. <i>et al.</i> NLRC3 is an inhibitory sensor of PI3K-mTOR pathways in cancer. <i>Nature</i> 540, 583-587, doi:10.1038/nature20597 (2016).
 Academy of Sciences 110, 1785-1790, doi:10.1073/pnas.1220349110 (2013). Pucholt, P., Wright, A. E., Conze, L. L., Mank, J. E. & Berlin, S. Recent Sex Chromosome Divergence despite Ancient Dioecy in the Willow Salix viminalis. <i>Mol. Biol. Evol.</i> 34, 1991-2001, doi:10.1093/molbev/msx144 (2017). Akagi, T., Henry, I. M., Tao, R. & Comai, L. A Y-chromosome-encoded small RNA acts a sex determinant in persimmons. <i>Science</i> 346 (2014). Torres, M. F. <i>et al.</i> Genus-wide sequencing supports a two-locus model for sex- determination in Phoenix. <i>Nat Commun</i> 9, 3969, doi:10.1038/s41467-018-06375-y (2018). Morris, J., Darolti, I., Bloch, N. I., Wright, A. E. & Mank, J. E. Shared and Species-Specif Patterns of Nascent Y Chromosome Evolution in Two Guppy Species. <i>Genes (Basel)</i> 9, doi:10.3390/genes9050238 (2018). Napolitano, L. M. & Meroni, G. TRIM family: Pleiotropy and diversification through homomultimer and heteromultimer formation. <i>IUBMB Life</i> 64, 64-71, doi:10.1002/iub.580 (2012). Sardiello, M., Cairo, S., Fontanella, B., Ballabio, A. & Meroni, G. Genomic analysis of th TRIM family reveals two groups of genes with distinct evolutionary properties. <i>BMC</i> <i>Evol. Biol.</i> 8, 225, doi:10.1186/1471-2148-8-225 (2008). Karki, R. <i>et al.</i> NLRC3 is an inhibitory sensor of PI3K-mTOR pathways in cancer. <i>Nature</i> 540, 583-587, doi:10.1038/nature20597 (2016).
 Pucholt, P., Wright, A. E., Conze, L. L., Mank, J. E. & Berlin, S. Recent Sex Chromosome Divergence despite Ancient Dioecy in the Willow Salix viminalis. <i>Mol. Biol. Evol.</i> 34, 1991-2001, doi:10.1093/molbev/msx144 (2017). Akagi, T., Henry, I. M., Tao, R. & Comai, L. A Y-chromosome-encoded small RNA acts a sex determinant in persimmons. <i>Science</i> 346 (2014). Torres, M. F. <i>et al.</i> Genus-wide sequencing supports a two-locus model for sex- determination in Phoenix. <i>Nat Commun</i> 9, 3969, doi:10.1038/s41467-018-06375-y (2018). Morris, J., Darolti, I., Bloch, N. I., Wright, A. E. & Mank, J. E. Shared and Species-Specif Patterns of Nascent Y Chromosome Evolution in Two Guppy Species. <i>Genes (Basel)</i> 9, doi:10.3390/genes9050238 (2018). Napolitano, L. M. & Meroni, G. TRIM family: Pleiotropy and diversification through homomultimer and heteromultimer formation. <i>IUBMB Life</i> 64, 64-71, doi:10.1002/iub.580 (2012). Sardiello, M., Cairo, S., Fontanella, B., Ballabio, A. & Meroni, G. Genomic analysis of th TRIM family reveals two groups of genes with distinct evolutionary properties. <i>BMC Evol. Biol.</i> 8, 225, doi:10.1186/1471-2148-8-225 (2008). Karki, R. <i>et al.</i> NLRC3 is an inhibitory sensor of PI3K-mTOR pathways in cancer. <i>Nature</i> 540, 583-587, doi:10.1038/nature20597 (2016).
 Divergence despite Ancient Dioecy in the Willow Salix viminalis. <i>Mol. Biol. Evol.</i> 34, 1991-2001, doi:10.1093/molbev/msx144 (2017). Akagi, T., Henry, I. M., Tao, R. & Comai, L. A Y-chromosome-encoded small RNA acts a sex determinant in persimmons. <i>Science</i> 346 (2014). Torres, M. F. <i>et al.</i> Genus-wide sequencing supports a two-locus model for sex-determination in Phoenix. <i>Nat Commun</i> 9, 3969, doi:10.1038/s41467-018-06375-y (2018). Morris, J., Darolti, I., Bloch, N. I., Wright, A. E. & Mank, J. E. Shared and Species-Specif Patterns of Nascent Y Chromosome Evolution in Two Guppy Species. <i>Genes (Basel)</i> 9, doi:10.3390/genes9050238 (2018). Napolitano, L. M. & Meroni, G. TRIM family: Pleiotropy and diversification through homomultimer and heteromultimer formation. <i>IUBMB Life</i> 64, 64-71, doi:10.1002/iub.580 (2012). Sardiello, M., Cairo, S., Fontanella, B., Ballabio, A. & Meroni, G. Genomic analysis of th TRIM family reveals two groups of genes with distinct evolutionary properties. <i>BMC Evol. Biol.</i> 8, 225, doi:10.1186/1471-2148-8-225 (2008). Karki, R. <i>et al.</i> NLRC3 is an inhibitory sensor of PI3K-mTOR pathways in cancer. <i>Nature</i> 540, 583-587, doi:10.1038/nature20597 (2016).
 1991-2001, doi:10.1093/molbev/msx144 (2017). Akagi, T., Henry, I. M., Tao, R. & Comai, L. A Y-chromosome-encoded small RNA acts a sex determinant in persimmons. <i>Science</i> 346 (2014). Torres, M. F. <i>et al.</i> Genus-wide sequencing supports a two-locus model for sex-determination in Phoenix. <i>Nat Commun</i> 9, 3969, doi:10.1038/s41467-018-06375-y (2018). Morris, J., Darolti, I., Bloch, N. I., Wright, A. E. & Mank, J. E. Shared and Species-Specif Patterns of Nascent Y Chromosome Evolution in Two Guppy Species. <i>Genes (Basel)</i> 9, doi:10.3390/genes9050238 (2018). Napolitano, L. M. & Meroni, G. TRIM family: Pleiotropy and diversification through homomultimer and heteromultimer formation. <i>IUBMB Life</i> 64, 64-71, doi:10.1002/iub.580 (2012). Sardiello, M., Cairo, S., Fontanella, B., Ballabio, A. & Meroni, G. Genomic analysis of th TRIM family reveals two groups of genes with distinct evolutionary properties. <i>BMC Evol. Biol.</i> 8, 225, doi:10.1186/1471-2148-8-225 (2008). Karki, R. <i>et al.</i> NLRC3 is an inhibitory sensor of PI3K-mTOR pathways in cancer. <i>Nature</i> 540, 583-587, doi:10.1038/nature20597 (2016).
 Akagi, T., Henry, I. M., Tao, R. & Comai, L. A Y-chromosome-encoded small RNA acts a sex determinant in persimmons. <i>Science</i> 346 (2014). Torres, M. F. <i>et al.</i> Genus-wide sequencing supports a two-locus model for sex-determination in Phoenix. <i>Nat Commun</i> 9, 3969, doi:10.1038/s41467-018-06375-y (2018). Morris, J., Darolti, I., Bloch, N. I., Wright, A. E. & Mank, J. E. Shared and Species-Specif Patterns of Nascent Y Chromosome Evolution in Two Guppy Species. <i>Genes (Basel)</i> 9, doi:10.3390/genes9050238 (2018). Napolitano, L. M. & Meroni, G. TRIM family: Pleiotropy and diversification through homomultimer and heteromultimer formation. <i>IUBMB Life</i> 64, 64-71, doi:10.1002/iub.580 (2012). Sardiello, M., Cairo, S., Fontanella, B., Ballabio, A. & Meroni, G. Genomic analysis of th TRIM family reveals two groups of genes with distinct evolutionary properties. <i>BMC Evol. Biol.</i> 8, 225, doi:10.1186/1471-2148-8-225 (2008). Karki, R. <i>et al.</i> NLRC3 is an inhibitory sensor of PI3K-mTOR pathways in cancer. <i>Nature</i> 540, 583-587, doi:10.1038/nature20597 (2016).
 sex determinant in persimmons. <i>Science</i> 346 (2014). Torres, M. F. <i>et al.</i> Genus-wide sequencing supports a two-locus model for sex- determination in Phoenix. <i>Nat Commun</i> 9, 3969, doi:10.1038/s41467-018-06375-y (2018). Morris, J., Darolti, I., Bloch, N. I., Wright, A. E. & Mank, J. E. Shared and Species-Specif Patterns of Nascent Y Chromosome Evolution in Two Guppy Species. <i>Genes (Basel)</i> 9, doi:10.3390/genes9050238 (2018). Napolitano, L. M. & Meroni, G. TRIM family: Pleiotropy and diversification through homomultimer and heteromultimer formation. <i>IUBMB Life</i> 64, 64-71, doi:10.1002/iub.580 (2012). Sardiello, M., Cairo, S., Fontanella, B., Ballabio, A. & Meroni, G. Genomic analysis of th TRIM family reveals two groups of genes with distinct evolutionary properties. <i>BMC Evol. Biol.</i> 8, 225, doi:10.1186/1471-2148-8-225 (2008). Karki, R. <i>et al.</i> NLRC3 is an inhibitory sensor of PI3K-mTOR pathways in cancer. <i>Nature</i> 540, 583-587, doi:10.1038/nature20597 (2016).
 Torres, M. F. <i>et al.</i> Genus-wide sequencing supports a two-locus model for sex- determination in Phoenix. <i>Nat Commun</i> 9, 3969, doi:10.1038/s41467-018-06375-y (2018). 40 Morris, J., Darolti, I., Bloch, N. I., Wright, A. E. & Mank, J. E. Shared and Species-Specif Patterns of Nascent Y Chromosome Evolution in Two Guppy Species. <i>Genes (Basel)</i> 9, doi:10.3390/genes9050238 (2018). 41 Napolitano, L. M. & Meroni, G. TRIM family: Pleiotropy and diversification through homomultimer and heteromultimer formation. <i>IUBMB Life</i> 64, 64-71, doi:10.1002/iub.580 (2012). 42 Sardiello, M., Cairo, S., Fontanella, B., Ballabio, A. & Meroni, G. Genomic analysis of th TRIM family reveals two groups of genes with distinct evolutionary properties. <i>BMC Evol. Biol.</i> 8, 225, doi:10.1186/1471-2148-8-225 (2008). 43 Karki, R. <i>et al.</i> NLRC3 is an inhibitory sensor of PI3K-mTOR pathways in cancer. <i>Nature</i> 540, 583-587, doi:10.1038/nature20597 (2016).
 determination in Phoenix. <i>Nat Commun</i> 9, 3969, doi:10.1038/s41467-018-06375-y (2018). Morris, J., Darolti, I., Bloch, N. I., Wright, A. E. & Mank, J. E. Shared and Species-Specif Patterns of Nascent Y Chromosome Evolution in Two Guppy Species. <i>Genes (Basel)</i> 9, doi:10.3390/genes9050238 (2018). Napolitano, L. M. & Meroni, G. TRIM family: Pleiotropy and diversification through homomultimer and heteromultimer formation. <i>IUBMB Life</i> 64, 64-71, doi:10.1002/iub.580 (2012). Sardiello, M., Cairo, S., Fontanella, B., Ballabio, A. & Meroni, G. Genomic analysis of th TRIM family reveals two groups of genes with distinct evolutionary properties. <i>BMC Evol. Biol.</i> 8, 225, doi:10.1186/1471-2148-8-225 (2008). Karki, R. <i>et al.</i> NLRC3 is an inhibitory sensor of PI3K-mTOR pathways in cancer. <i>Nature</i> 540, 583-587, doi:10.1038/nature20597 (2016).
 (2018). Morris, J., Darolti, I., Bloch, N. I., Wright, A. E. & Mank, J. E. Shared and Species-Specif Patterns of Nascent Y Chromosome Evolution in Two Guppy Species. <i>Genes (Basel)</i> 9, doi:10.3390/genes9050238 (2018). Al Napolitano, L. M. & Meroni, G. TRIM family: Pleiotropy and diversification through homomultimer and heteromultimer formation. <i>IUBMB Life</i> 64, 64-71, doi:10.1002/iub.580 (2012). Sardiello, M., Cairo, S., Fontanella, B., Ballabio, A. & Meroni, G. Genomic analysis of th TRIM family reveals two groups of genes with distinct evolutionary properties. <i>BMC Evol. Biol.</i> 8, 225, doi:10.1186/1471-2148-8-225 (2008). Karki, R. <i>et al.</i> NLRC3 is an inhibitory sensor of PI3K-mTOR pathways in cancer. <i>Nature</i> 540, 583-587, doi:10.1038/nature20597 (2016).
 Morris, J., Darolti, I., Bloch, N. I., Wright, A. E. & Mank, J. E. Shared and Species-Specif Patterns of Nascent Y Chromosome Evolution in Two Guppy Species. <i>Genes (Basel)</i> 9, doi:10.3390/genes9050238 (2018). Napolitano, L. M. & Meroni, G. TRIM family: Pleiotropy and diversification through homomultimer and heteromultimer formation. <i>IUBMB Life</i> 64, 64-71, doi:10.1002/iub.580 (2012). Sardiello, M., Cairo, S., Fontanella, B., Ballabio, A. & Meroni, G. Genomic analysis of th TRIM family reveals two groups of genes with distinct evolutionary properties. <i>BMC Evol. Biol.</i> 8, 225, doi:10.1186/1471-2148-8-225 (2008). Karki, R. <i>et al.</i> NLRC3 is an inhibitory sensor of PI3K-mTOR pathways in cancer. <i>Nature</i> 540, 583-587, doi:10.1038/nature20597 (2016).
 Patterns of Nascent Y Chromosome Evolution in Two Guppy Species. <i>Genes (Basel)</i> 9, doi:10.3390/genes9050238 (2018). Napolitano, L. M. & Meroni, G. TRIM family: Pleiotropy and diversification through homomultimer and heteromultimer formation. <i>IUBMB Life</i> 64, 64-71, doi:10.1002/iub.580 (2012). Sardiello, M., Cairo, S., Fontanella, B., Ballabio, A. & Meroni, G. Genomic analysis of th TRIM family reveals two groups of genes with distinct evolutionary properties. <i>BMC Evol. Biol.</i> 8, 225, doi:10.1186/1471-2148-8-225 (2008). Karki, R. <i>et al.</i> NLRC3 is an inhibitory sensor of PI3K-mTOR pathways in cancer. <i>Nature</i> 540, 583-587, doi:10.1038/nature20597 (2016).
 doi:10.3390/genes9050238 (2018). Napolitano, L. M. & Meroni, G. TRIM family: Pleiotropy and diversification through homomultimer and heteromultimer formation. <i>IUBMB Life</i> 64, 64-71, doi:10.1002/iub.580 (2012). Sardiello, M., Cairo, S., Fontanella, B., Ballabio, A. & Meroni, G. Genomic analysis of th TRIM family reveals two groups of genes with distinct evolutionary properties. <i>BMC Evol. Biol.</i> 8, 225, doi:10.1186/1471-2148-8-225 (2008). Karki, R. <i>et al.</i> NLRC3 is an inhibitory sensor of PI3K-mTOR pathways in cancer. <i>Nature</i> 540, 583-587, doi:10.1038/nature20597 (2016).
 A1 Napolitano, L. M. & Meroni, G. TRIM family: Pleiotropy and diversification through homomultimer and heteromultimer formation. <i>IUBMB Life</i> 64, 64-71, doi:10.1002/iub.580 (2012). A2 Sardiello, M., Cairo, S., Fontanella, B., Ballabio, A. & Meroni, G. Genomic analysis of th TRIM family reveals two groups of genes with distinct evolutionary properties. <i>BMC</i> <i>Evol. Biol.</i> 8, 225, doi:10.1186/1471-2148-8-225 (2008). Karki, R. <i>et al.</i> NLRC3 is an inhibitory sensor of PI3K-mTOR pathways in cancer. <i>Nature</i> 540, 583-587, doi:10.1038/nature20597 (2016).
 homomultimer and heteromultimer formation. <i>IUBMB Life</i> 64, 64-71, doi:10.1002/iub.580 (2012). 42 Sardiello, M., Cairo, S., Fontanella, B., Ballabio, A. & Meroni, G. Genomic analysis of th TRIM family reveals two groups of genes with distinct evolutionary properties. <i>BMC</i> <i>Evol. Biol.</i> 8, 225, doi:10.1186/1471-2148-8-225 (2008). Karki, R. <i>et al.</i> NLRC3 is an inhibitory sensor of PI3K-mTOR pathways in cancer. <i>Nature</i> 540, 583-587, doi:10.1038/nature20597 (2016).
 doi:10.1002/iub.580 (2012). Sardiello, M., Cairo, S., Fontanella, B., Ballabio, A. & Meroni, G. Genomic analysis of th TRIM family reveals two groups of genes with distinct evolutionary properties. <i>BMC</i> <i>Evol. Biol.</i> 8, 225, doi:10.1186/1471-2148-8-225 (2008). Karki, R. <i>et al.</i> NLRC3 is an inhibitory sensor of PI3K-mTOR pathways in cancer. <i>Nature</i> 540, 583-587, doi:10.1038/nature20597 (2016).
 Sardiello, M., Cairo, S., Fontanella, B., Ballabio, A. & Meroni, G. Genomic analysis of th TRIM family reveals two groups of genes with distinct evolutionary properties. <i>BMC</i> <i>Evol. Biol.</i> 8, 225, doi:10.1186/1471-2148-8-225 (2008). Karki, R. <i>et al.</i> NLRC3 is an inhibitory sensor of PI3K-mTOR pathways in cancer. <i>Nature</i> 540, 583-587, doi:10.1038/nature20597 (2016).
 TRIM family reveals two groups of genes with distinct evolutionary properties. <i>BMC</i> <i>Evol. Biol.</i> 8, 225, doi:10.1186/1471-2148-8-225 (2008). Karki, R. <i>et al.</i> NLRC3 is an inhibitory sensor of PI3K-mTOR pathways in cancer. <i>Nature</i> 540, 583-587, doi:10.1038/nature20597 (2016).
 <i>Evol. Biol.</i> 8, 225, doi:10.1186/1471-2148-8-225 (2008). Karki, R. <i>et al.</i> NLRC3 is an inhibitory sensor of PI3K-mTOR pathways in cancer. <i>Nature</i> 540, 583-587, doi:10.1038/nature20597 (2016).
621 43 Karki, R. <i>et al.</i> NLRC3 is an inhibitory sensor of PI3K-mTOR pathways in cancer. <i>Nature</i> 622 540 , 583-587, doi:10.1038/nature20597 (2016).
622 540 , 583-587, doi:10.1038/nature20597 (2016).
623 44 Sandkam, B. A. <i>et al. Tbx2a</i> Modulates Switching of RH2 and LWS Opsin Gene
624 Expression. <i>Mol. Biol. Evol.</i> 37 , 2002-2014, doi:10.1093/molbev/msaa062 (2020).
625 45 Showell, C., Christine, K. S., Mandel, E. M. & Conlon, F. L. Developmental expression
626 patterns of <i>Tbx1</i> , <i>Tbx2</i> , <i>Tbx5</i> , and <i>Tbx20</i> in <i>Xenopus tropicalis</i> . <i>Dev. Dyn.</i> 235 , 1623-16
627 doi:10.1002/dvdy.20714 (2006).
628 46 Gibson-Brown, J. J., S, I. A., Silver, L. M. & Papaioannou, V. E. Expression of T-box gene
629 Tbx2-Tbx5 during chick organogenesis. <i>Mech Dev</i> 74 , 165-169 (1998).
630 47 Tomaszkiewicz, M., Chalopin, D., Schartl, M., Galiana, D. & Volff, JN. A multicopy Y-
631 chromosomal SGNH hydrolase gene expressed in the testis of the platyfish has been
632 captured and mobilized by a Helitron transposon. <i>BMC Genet.</i> 15 (2014).
i i i i i i i i i i
633 48 Smit, A. F. Interspersed repeats and other mementos of transposable elements in
633 48 Smit, A. F. Interspersed repeats and other mementos of transposable elements in 634 mammalian genomes. <i>Curr. Opin. Genet. Dev.</i> 9 , 657-663, doi:10.1016/s0959-
63348Smit, A. F. Interspersed repeats and other mementos of transposable elements in mammalian genomes. <i>Curr. Opin. Genet. Dev.</i> 9, 657-663, doi:10.1016/s0959- 635635437x(99)00031-3 (1999).
 633 48 Smit, A. F. Interspersed repeats and other mementos of transposable elements in 634 mammalian genomes. <i>Curr. Opin. Genet. Dev.</i> 9, 657-663, doi:10.1016/s0959- 635 437x(99)00031-3 (1999). 636 49 Sotero-Caio, C. G., Platt, R. N., 2nd, Suh, A. & Ray, D. A. Evolution and Diversity of
 633 48 Smit, A. F. Interspersed repeats and other mementos of transposable elements in 634 mammalian genomes. <i>Curr. Opin. Genet. Dev.</i> 9, 657-663, doi:10.1016/s0959- 635 437x(99)00031-3 (1999). 636 49 Sotero-Caio, C. G., Platt, R. N., 2nd, Suh, A. & Ray, D. A. Evolution and Diversity of 637 Transposable Elements in Vertebrate Genomes. <i>Genome Biol Evol</i> 9, 161-177,
 633 48 Smit, A. F. Interspersed repeats and other mementos of transposable elements in 634 mammalian genomes. <i>Curr. Opin. Genet. Dev.</i> 9, 657-663, doi:10.1016/s0959- 635 437x(99)00031-3 (1999). 636 49 Sotero-Caio, C. G., Platt, R. N., 2nd, Suh, A. & Ray, D. A. Evolution and Diversity of 637 Transposable Elements in Vertebrate Genomes. <i>Genome Biol Evol</i> 9, 161-177, 638 doi:10.1093/gbe/evw264 (2017).
 633 48 Smit, A. F. Interspersed repeats and other mementos of transposable elements in 634 mammalian genomes. <i>Curr. Opin. Genet. Dev.</i> 9, 657-663, doi:10.1016/s0959- 635 437x(99)00031-3 (1999). 636 49 Sotero-Caio, C. G., Platt, R. N., 2nd, Suh, A. & Ray, D. A. Evolution and Diversity of 637 Transposable Elements in Vertebrate Genomes. <i>Genome Biol Evol</i> 9, 161-177, 638 doi:10.1093/gbe/evw264 (2017). 639 50 Felsenstein, J. The evolutionary advantage of recombination. <i>Genetics</i> 78, 737-756

641	51	Lenormand, T., Fyon, F., Sun, E. & Roze, D. Sex Chromosome Degeneration by
642		Regulatory Evolution. <i>Curr. Biol.</i> , doi:10.1016/j.cub.2020.05.052 (2020).
643	52	Hough, J., Wang, W., Barrett, S. C. H. & Wright, S. I. Hill-Robertson Interference Reduces
644		Genetic Diversity on a Young Plant Y-Chromosome. Genetics 207, 685 (2017).
645	53	Marais, G. A. et al. Evidence for degeneration of the Y chromosome in the dioecious
646		plant Silene latifolia. Curr. Biol. 18, 545-549, doi:10.1016/j.cub.2008.03.023 (2008).
647	54	Bachtrog, D. & Charlesworth, B. Reduced adaptation of a non-recombining neo-Y
648		chromosome. <i>Nature</i> 416 , 323-326, doi:10.1038/416323a (2002).
649	55	Mank, J. E. Small but mighty: the evolutionary dynamics of W and Y sex chromosomes.
650		Chromosome Res 20, 21-33, doi:10.1007/s10577-011-9251-2 (2012).
651	56	Kaiser, V. B. & Charlesworth, B. Muller's ratchet and the degeneration of the Drosophila
652		miranda neo-Y chromosome. <i>Genetics</i> 185 , 339-348, doi:10.1534/genetics.109.112789
653		(2010).
654	57	Keightley, P. D. & Otto, S. P. Interference among deleterious mutations favours sex and
655		recombination in finite populations. Nature 443, 89-92, doi:10.1038/nature05049
656		(2006).
657	58	Ritz, K. R., Noor, M. A. F. & Singh, N. D. Variation in Recombination Rate: Adaptive or
658		Not? Trends Genet. 33 , 364-374, doi:10.1016/j.tig.2017.03.003 (2017).
659	59	Metzger, D. C. H., Sandkam, B. A., Darolti, I. & Mank, J. E. Rapid evolution of complete
660		dosage compensation in <i>Poecilia</i> . <i>BioRxiv</i> , doi:10.1101/2021.02.12.431036 (2021).
661	60	Lemos, B., Araripe, L. O. & Hartl, D. L. Polymorphic Y chromosomes harbor cryptic
662		variation with manifold functional consequences. Science 319 , 91-93,
663		doi:10.1126/science.1148861 (2008).
664	61	Ellegren, H. Characteristics, causes and evolutionary consequences of male-biased
665		mutation. Proc Biol Sci 274, 1-10, doi:10.1098/rspb.2006.3720 (2007).
666	62	Tennessen, J. A. et al. Repeated translocation of a gene cassette drives sex-chromosome
667		turnover in strawberries. PLoS Biol. 16, e2006062, doi:10.1371/journal.pbio.2006062
668		(2018).
669	63	Bourque, G. et al. Ten things you should know about transposable elements. Genome
670		<i>Biol</i> 19 , 199, doi:10.1186/s13059-018-1577-z (2018).
671	64	Carleton, K. L. et al. Movement of transposable elements contributes to cichlid diversity.
672		doi:10.1101/2020.02.26.961987 (2020).
673	65	Brawand, D. et al. The genomic substrate for adaptive radiation in African cichlid fish.
674		Nature 513 , 375-+, doi:10.1038/nature13726 (2014).
675	66	Auvinet, J. et al. Mobilization of retrotransposons as a cause of chromosomal
676		diversification and rapid speciation: the case for the Antarctic teleost genus
677		Trematomus. <i>BMC Genomics</i> 19 , 339, doi:10.1186/s12864-018-4714-x (2018).
678	67	Naville, M. et al. Not so bad after all: retroviruses and long terminal repeat
679		retrotransposons as a source of new genes in vertebrates. Clin. Microbiol. Infect. 22,
680		312-323, doi:10.1016/j.cmi.2016.02.001 (2016).
681	68	Sinervo, B. & Calsbeek, R. The Developmental, Physiological, Neural, and Genetical
682		Causes and Consequences of Frequency-Dependent Selection in the Wild. Annual
683		Review of Ecology, Evolution, and Systematics 37 , 581-610,
684		doi:10.1146/annurev.ecolsys.37.091305.110128 (2006).

685	69	Sinervo, B. & Lively, C. M. The rock-paper-scissors game and the evolution of alternative
686		male strategies. <i>Nature</i> 380 , 240-243, doi:DOI 10.1038/380240a0 (1996).
687	70	Hartl, D. L. & Clark, A. G. Principles of Population Genetics. (Sinauer Associates, 1997).
688	71	Lank, D. B., Smith, C. M., Hanotte, O., Burke, T. & Cooke, F. Genetic polymorphism for
689		alternative mating behaviour in lekking male ruff Philomachus pugnax. Nature 378, 59-
690		62, doi:DOI 10.1038/378059a0 (1995).
691	72	Tuttle, E. M. et al. Divergence and Functional Degradation of a Sex Chromosome-like
692		Supergene. <i>Curr. Biol.</i> 26 , 344-350, doi:10.1016/j.cub.2015.11.069 (2016).
693	73	Hunt, B. G. Supergene Evolution: Recombination Finds a Way. Curr. Biol. 30, R73-R76,
694		doi:10.1016/j.cub.2019.12.006 (2020).
695	74	Charlesworth, D. The status of supergenes in the 21st century: recombination
696		suppression in Batesian mimicry and sex chromosomes and other complex adaptations.
697		<i>Evol Appl</i> 9 , 74-90, doi:10.1111/eva.12291 (2016).
698	75	Joron, M. et al. Chromosomal rearrangements maintain a polymorphic supergene
699		controlling butterfly mimicry. <i>Nature</i> 477 , 203-206, doi:10.1038/nature10341 (2011).
700	76	Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina
701		sequence data. Bioinformatics 30, 2114-2120, doi:10.1093/bioinformatics/btu170
702		(2014).
703	77	Elyanow, R., Wu, HT. & Raphael, B. J. Identifying structural variants using linked-read
704		sequencing data. Bioinformatics (Oxford, England) 34, 353-360,
705		doi:10.1093/bioinformatics/btx712 (2018).
706	78	Harris, R. S. Improved pairwise alignment of genomic DNA Doctor of Philosophy thesis,
707		Penn State, (2007).
708	79	Kent, W. J., Baertsch, R., Hinrichs, A., Miller, W. & Haussler, D. Evolution's cauldron:
709		duplication, deletion, and rearrangement in the mouse and human genomes. P Natl
710		Acad Sci USA 100, 11484-11489, doi:10.1073/pnas.1932072100 (2003).
711	80	Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods
712		9 , 357 (2012).
713	81	Li, H. & Durbin, R. Fast and accurate long-read alignment with Burrows–Wheeler
714		transform. Bioinformatics 26, 589-595, doi:10.1093/bioinformatics/btp698 (2010).
715	82	Palmer, D. H., Rogers, T. F., Dean, R. & Wright, A. E. How to identify sex chromosomes
716		and their turnover. <i>Mol. Ecol.</i> 28 , 4709-4724, doi:10.1111/mec.15245 (2019).
717	83	Ronquist, F. et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model
718		choice across a large model space. Syst. Biol. 61, 539-542, doi:10.1093/sysbio/sys029
719		(2012).
720	84	Carvalho, A. B. & Clark, A. G. Efficient identification of Y chromosome sequences in the
721		human and Drosophila genomes. Genome Res. 23, 1894-1907,
722		doi:10.1101/gr.156034.113 (2013).
723	85	Carvalho, A. B., Vicoso, B., Russo, C. A., Swenor, B. & Clark, A. G. Birth of a new gene on
724		the Y chromosome of Drosophila melanogaster. P Natl Acad Sci USA 112, 12450-12455,
725		doi:10.1073/pnas.1516543112 (2015).
726	86	Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25,
727		2078-2079, doi:10.1093/bioinformatics/btp352 (2009).

728	87	Holt, C. & Yandell, M. MAKER2: an annotation pipeline and genome-database
729		management tool for second-generation genome projects. BMC Bioinformatics 12, 491,
730		doi:10.1186/1471-2105-12-491 (2011).
731	88	RepeatModeler Open-1.0 (<u>http://www.repeatmasker.org</u> , 2015).
732	89	RepeatMasker Open-4.0 (<u>http://www.repeatmasker.org</u> , 2015).
733	90	Howe, K. L. et al. Ensembl Genomes 2020-enabling non-vertebrate genomic research.
734		Nucleic Acids Res. 48, D689-D695, doi:10.1093/nar/gkz890 (2020).
735	91	Dreyer, C. et al. ESTs and EST-linked polymorphisms for genetic mapping and
736		phylogenetic reconstruction in the guppy, Poecilia reticulata. BMC Genomics 8, 269,
737		doi:10.1186/1471-2164-8-269 (2007).
738	92	Sharma, E. et al. Transcriptome assemblies for studying sex-biased gene expression in
739		the guppy, <i>Poecilia reticulata</i> . <i>BMC Genomics</i> 15 , 400, doi:10.1186/1471-2164-15-400
740		(2014).
741	93	Pertea, M. et al. StringTie enables improved reconstruction of a transcriptome from
742		RNA-seq reads. <i>Nat. Biotechnol.</i> 33 , 290-295, doi:10.1038/nbt.3122 (2015).
743	94	Stanke, M. et al. AUGUSTUS: ab initio prediction of alternative transcripts. Nucleic Acids
744		<i>Res.</i> 34 , W435-439, doi:10.1093/nar/gkl200 (2006).
745	95	Seppey, M., Manni, M. & Zdobnov, E. M. in <i>Gene Prediction</i> 227-245 (Springer, 2019).
746	96	Korf, I. Gene finding in novel genomes. BMC Bioinformatics 5, 59, doi:10.1186/1471-
747		2105-5-59 (2004).
748	97	Katoh, K., Asimenos, G. & Toh, H. Multiple alignment of DNA sequences with MAFFT.
749		Methods Mol Biol 537 , 39-64, doi:10.1007/978-1-59745-251-9_3 (2009).
750	98	Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2approximately maximum-likelihood
751		trees for large alignments. PLoS One 5, e9490, doi:10.1371/journal.pone.0009490
752		(2010).

753

754 Acknowledgements

755 We thank the members of the Mank lab and Dr. Nora Prior for stimulating conversations and excellent

756 feedback on early drafts of the manuscript. This was supported by the Natural Sciences and Engineering

757 Research Council of Canada through a Banting Postdoctoral Fellowship (to B.A.S.), the European

Research Council (Grants 260233 and 680951 to J.E.M.), and a Canada 150 Research Chair (to J.E.M.).

759 Field work was conducted under Permit 120616 SP: 015 from the Environmental Protection Agency of

760 Guyana. Sequencing was performed by the SNP&SEQ Technology Platform in Uppsala, Sweden. The

761 CEIBA Biological Center partially subsidized our expenses during field collection in Guyana. We thank

762 Clara Lacy for the fish illustrations.

764	Author Contributions
765	B.A.S. and J.E.M. designed research; B.A.S., J.E.M, F.B., G.R.B. conducted field work; B.A.S., P.A., I.A.,
766	B.L.S.F., W.v.d.B., and J.M. conducted bioinformatic analyses; B.A.S., P.A., I.A., B.L.S.F., W.v.d.B., J.M.,
767	G.R.B., F.B. and J.E.M. wrote the paper.
768	
769	Competing Interests
770	The authors declare no competing interests.
771	
772	
773	
774	
775	
776	
777	
778	
779	
780	
781	
782	
783	
784	
785	
786	
787	
788	
789	
790	

793 Figure 1. Coverage differences between the sexes (male:female log₂) for female scaffolds placed by 794 RACA on the reference Xiphophorus hellerii chromosomes. (A) Average immaculata (inner ring), the 795 three melanzona (middle ring) and parae morphs (outer ring) plotted across all chromosomes. Highlighted 796 in blue is X. hellerii chromosome 8 which is syntenic to the guppy sex chromosome (P. reticulata 797 chromosome 12). The decreased male coverage of chromosome 8 indicates this is also the sex 798 chromosome in P. parae. (B) All five P. parae morphs share the same pattern of XY divergence, 799 indicating a shared history of recombination suppression. (C) Pattern of P. parae XY divergence is the 800 same as the sister species P. picta, indicating recombination was stopped in the common ancestor of P. 801 parae and *P. picta* (14.8-18.5 mya²⁹). In each, horizontal grey-shaded areas represent the 95% 802 confidence intervals based on bootstrap estimates across the autosomes. 803

- 804
- 805

Figure 2. Bayesian Y chromosome phylogeny based on presence/absence of the 27,950,090 *P. parae* Ymers and 1,646 *P. picta* Y-mers²⁵ in each individual and rooted on *P. picta*. The posterior probability is presented above each node, below the node is the number of *P. parae* Y-mers unique to all members of that clade. The three major morphs of *P. parae* (immaculata, parae and melanzona) formed distinct clades and the Y-mers unique to all members of these clades are called morph-mers.

812

813

- 814
- 815
- 816
- 817

Figure 3. The distribution of the 27,950,090 *P. parae* Y-mers reveals strong differences across morphs.

821 While there are very few Y-mers present in all morphs, each morph harbors unique Y-mers. The

822 melanzona and parae morphs share more Y-mers with one another than either share with immaculata.

Figure 4. Relative corrected scaffold coverage of 39 individuals when aligned to melanzona (A-B), immaculata (C-D), and parae (E-F) *de novo* genomes. Scaffolds containing morph-mers (colored) had higher coverage by males than females (A,C,E) confirming these scaffolds contain male specific sequence. Scaffolds containing morph-mers also had higher coverage by males of the reference morph than males of the other morphs (B,D,F), indicating the Y chromosome sequence is substantially diverged across morphs. In each, corrected scaffold coverage of focal morph is on the Y axis and corrected scaffold coverage of the compared morph is on the X axis. The 1:1 line is denoted as a grey dashed line.

- 844 The linear regression and standard error across all scaffolds are shown as a thick black line that is nearly
- 845 1:1 for all morphs (note 95% confidence interval is presented but too small to distinguish from the
- 846 regression line). The scaffolds containing morph-mers are shown as colored points, the linear regression
- 847 and standard error of morph-mer scaffolds are shown as a colored line and shaded region respectively.

Supplementary Information for

Extreme Y chromosome polymorphism corresponds to five extreme male reproductive morphs of a freshwater fish

Benjamin A Sandkam^{*}, Pedro Almeida, Iulia Darolti, Benjamin Furman, Wouter van der Bijl, Jake Morris, Godfrey Bourne, Felix Breden, Judith E. Mank

*Benjamin A Sandkam Email: <u>sandkam@zoology.ubc.ca</u>

Extended Data Fig. 1 Divergence between X and Y in *Poecilia parae* and the sister species *Poecilia picta* indicate recombination was stopped before the five morphs controlled by the Y chromosome evolved in *Poecilia parae*. (A) M:F log₂ coverage of RACA anchored scaffolds for all five morphs of *P. parae* (red) and the close relative *P. picta* (black)²⁵. Lines represent sliding window of 15 scaffolds. Shaded bars represent the 95% confidence interval based on bootstrapping coverage across the autosomes for *P. parae* (pink) and *P. picta* (grey). (B) Phylogeny from The Fish Tree of Life²⁹. Orange indicate species for which chr 8 is known to be the Y and is highly diverged from the X. Blue indicates species for which chr 8 is known to be not degraded²⁵. Green star denotes the branch on which X-Y recombination was arrested and the Y chromosome diverged. None of the male morphs of *P. parae* are found in other species, making the most parsimonious explanation that all five morphs arose after recombination stopped.

Extended Data Fig. 2 Bayesian phylogeny built on presence/absence of the 27,950,090 *P. parae* Y-mers and the 646,754 *P. picta* Y-mers in each individual and rooted on *P. picta* (as in Figure 2). The posterior probability is presented at each node. The number of Y-mers each individual shares with *P. picta* Y-mers is denoted to the right. *P. picta* Y-mers are distributed across all morphs indicating that they have been segregating on non-recombining regions of the Y chromosome since recombination was stopped in the common ancestor of *P. parae* and *P. picta*.

Extended Data Fig. 3 Validation of morph-mer identification pipeline using random sets of individuals from each of the different morphs. Different samples were used for each set except for blue where the 1 sample was used in validation set 2 and validation set 3. There were a low number of Y-mers unique to sets of four random individuals and zero Y-mers unique to sets with more than four individuals. This demonstrates the false positive rate of our morph-mer analysis was quite low because all major morphs had at least four individuals.

Extended Data Fig. 4 Mapping distribution for each set of morph-mers mapped to de novo scaffolds of males of that morph with no mismatches, gaps, or trimming. There was a low incidence of individual morph-mers mapping to more than one scaffold (0 of the 59 Y-mers were contained in more than one scaffold across all males; 0 of the 1,435 parae-mers were contained in more than one scaffold in parae males; 131 of the 87,629 melanzona-mers were contained in more than one scaffold in melanzona males; 138 of the 64,515 immaculata-mers were contained in more than one scaffold in immaculata males). Left: cumulative morph-mers mapped for each individual, each change in hue is a different scaffold. A large percentage of morph-mers generally map to just one or a few scaffolds indicating that our k-mer approach reveals regions of highly diverged morph specific sequence rather than single SNPs distributed throughout the genome. Right: cumulative morph-mers mapped presented as a function of the number of scaffolds. The strong deviation from 1:1 shows morph-mer mapping is non-random and further supports the morph-mers approach is identifying regions of morph specific sequence. The total number of unique morph-mers identified for that morph is indicated in red on the axis (note the variation in number of morph-mers mapped is due to some individuals having morph-mers map to multiple scaffolds). Astrix in P02 of the melanzona-mers indicates the example alignment scaffold with melanzona-mers presented in Supplementary Figure 5.

Extended Data Fig. 5 Melanzona-mers aligned to scaffold 104666 of sample P02 with no mismatches, gaps, or trimming. Each 31bp melanzona-mer is shown aligned below the reference sequence, and coverage is shown in purple above the reference sequence. Of the 87,629 unique melanzona-mers; 23,773 aligned to this scaffold. Regions of Ns are denoted on the reference genome in grey and explain a lack of melanzona-mers aligning to these regions. The strong clustering and overlapping nature of the melanzona-mers indicates sequence is highly diverged both from females and from the other morphs.

Extended Data Fig. 6 Morph specific Y chromosome sequence is composed of significantly more interspersed repeats than the autosomes and X chromosome. For males, only scaffolds containing >5 morph-specific Y-mers were evaluated, ensuring sequence is morph-specific and Y linked. To determine rates of autosomes and X chromosomes, female full *de novo* genomes were evaluated. Stars indicate significant differences between morphs (* P<0.05, ** P<0.01).

Extended Data Fig. 7 Unrooted approximately-maximum-likelihood trees (FastTree) of each of the autosomes confirm that the extreme divergence across morphs is specific to the Y chromosome, and not the result of cryptic sub-populations. Trees were built using the consensus sequence of the longest scaffold from each chromosome (as identified by RACA). Tips denote sample name, color indicates morph, and numbers on branches indicate FastTree support value.

Parae Immaculata Melanzona Melanzona Melanzona Yellow Blue Red Ref. (((() · Physiology **Body Size** Large Small Medium Medium Medium 1 Resembles juvenile Vertical stripes Horizontal stripes Horizontal stripes 1,2,3 **Color Pattern** Horizontal stripes female 1,2,3 Coloration Silver/purple None Red Yellow Blue Medium (90% of Small (70% of Medium (90% of Small (70% of Absolute Largest 1 immaculata) **Testis Mass** immaculata) immaculata) immaculata) Testis/Body Intermediate High Low Intermediate Low 1 Mass Sperm Long Short Long Long Long 1 Midpiece Flagellum Short Short Intermediate Short 1 Long Length Sperm per Most Fewer Fewer Fewer 1 Fewer Ejaculate Sperm Length Short Long Short Long Short 1 Behavior Interaction w/ Highly aggressive Non-aggressive Aggressive Aggressive Non-aggressive 3 other males Courtship Display Display 1 Force copulate Sneak copulate Display **Behavior**

Supplementary Table 1. Phenotypic characteristics that differ across the five male morphs of *Poecilia parae*.

(1) Hurtado-Gonzales and Uy. 2009. Anim. Behav. 77,1187-1194.
(2) Lindholm et al. 2004. Heredity 92, 156-162.
(3) Hurtado-Gonzales and Uy. 2010. BMC Evol Biol 10, 391.
(4) Liley. 1966. Behaviour Supplement 13, 1-197.

Supplementary Table 2. Sequencing method (10X Chromium linked reads or direct PE Illumina) and number of paired reads used for coverage analyses of all 40 wild caught individuals.

Morph	Sample	Population	Sequencing	# Paired Reads
	P 15	Cemetery	10X	566,474,152
	P 26	Seawall Trench	10X	586,091,672
	P 32	Cemetery	10X	642,872,944
	P 34	Seawall Trench	10X	599,429,008
	P 36	Cemetery	10X	587,807,726
Females	P 37	Seawall Trench	10X	586,019,978
	P 16	Cemetery	Illumina	755,768,880
	P 25	Seawall Trench	Illumina	861,217,302
	P 33	Cemetery	Illumina	591,002,416
	P 35	Cemetery	Illumina	813,848,774
	P 39	Seawall Trench	Illumina	541,464,112
	P 05		10X	665,696,764
	P 06	Seawall Trench	10X	687,641,508
Immaculata Morph	P 09	Seawall Trench	10X	666,405,666
	P 10	Seawall Trench	10X	628,472,300
	P 40	Seawall Trench	Illumina	492,568,288
	P 03	Seawall Trench	10X	636,937,278
	P 04	Seawall Trench	10X	673,606,290
Darao Mornh	P 27	Seawall Trench	10X	682,154,596
	P 29 Seawall Trench		10X	697,480,156
	P 30	Seawall Trench	10X	598,808,486
	P 31	Seawall Trench	10X	634,574,988

	P 28	Cemetery	Illumina	799,757,386
	P 01	Cemetery	10X	605,264,908
	P 02	Cemetery	10X	599,899,768
	P 11	Seawall Trench	10X	663,454,532
Red Melanzona	P 12	Cemetery	10X	679,401,488
Morph	P 19	Cemetery	10X	619,323,522
	P 20	Seawall Trench	10X	614,834,422
	P 21	Cemetery	10X	564,829,682
	P 38	Seawall Trench	Illumina	789,618,098
	P 13	Seawall Trench	10X	632,280,752
Yellow	P 14	West Watuka	10X	622,311,946
Melanzona Morph	P 22	Seawall Trench	10X	649,735,580
-	P 23 West Watuka		10X	674,089,582
	P 24	West Watuka	10X	587,826,556
	P 17	Cemetery	10X	705,952,894
Blue Melanzona	P 07	Seawall Trench	Illumina	771,876,214
Morph	P 08	Cemetery	Illumina	479,310,754
	P 18	Seawall Trench	Illumina	813,513,894

Supplementary Table 3. Assembly statistics for each of the 29 genomes *de novo* assembled by Supernova. Bold samples indicate those used for follow-up coverage analyses. Genome size is expected to be ~730Mb based on close relatives with known genome sizes (*Poecilia reticulata* 731Mb, *Xiphophorus helleri* 730Mb).

Morph	Sample	Assembly Size (Mb)	Scaffold N50 (kb)	No. Scaffolds <u>≥</u> 10kb	No. Scaffolds <u>≥</u> 1kb	Contig N50 (kb)	Phased N50 (kb)	Coverage
	P01	663.83	3201.95	2081	20376	38.36	2252.96	53X
	P02	664.43	2150.00	2493	20516	38.78	1359.88	51X
	P11	562.45	44.07	17986	70941	23.36	70.98	52X
Red Melanzona	P12	661.61	3683.18	2114	22269	37.97	2240.87	60X
	P19	582.84	47.86	17071	67134	23.08	100.55	48X
	P20	611.40	45.28	18734	63207	23.45	94.87	42X
	P21	665.11	1679.06	2677	20797	38.28	1266.47	51X
	P13	654.30	1212.01	3205	23821	36.88	1120.80	53X
	P14	616.95	50.94	16711	58496	24.61	115.13	49X
Yellow Melanzona	P22	665.85	61.08	15566	53875	27.00	137.91	46X
	P23	655.37	97.46	12443	43298	27.22	190.30	61X
	P24	234.10	17.09	13932	117930	13.32	5.82	45X
Blue Melanzona	P17	654.75	1995.50	2568	23989	33.84	1598.03	63X
	P03	655.50	93.43	12361	43771	28.68	165.34	51X
	P04	658.87	599.09	4375	25416	34.50	599.94	55X
Dama Maruh	P27	667.40	274.95	6754	28937	30.94	312.62	59X
Parae Morph	P29	599.06	38.95	20291	68801	21.92	84.43	46X
	P30	341.91	20.87	17566	108816	15.66	40.56	39X
	P31	604.74	39.45	20427	65373	21.69	91.41	44X
luovo o ovilot-	P05	71.97	14.71	4740	138919	13.03	5.44	42X
Immaculata	P06	623.35	46.83	18525	62105	24.07	105.78	53X

	P09	651.69	3308.41	2291	22613	35.38	2284.14	61X
	P10	650.86	105.21	11446	39921	28.88	183.48	52X
	P15	69.89	15.53	4441	140510	13.68	3.91	44X
	P26	96.86	13.50	6848	144112	11.90	6.34	38X
Fomolo	P32	600.79	40.57	19565	62451	23.02	75.27	48X
remaie	P34	508.35	34.52	18503	79658	20.75	92.35	37X
	P36	329.51	23.33	15804	103659	16.40	35.28	18X
	P37	382.74	23.43	18121	95193	17.16	41.07	21X

Supplementary Table 4. Amount of sequence in scaffolds with >5 morph-mers. Bold indicates samples used for annotation.

Morph	Sample	Number of Scaffolds	Scaffold N50 (kb)	Amount of sequence
	P01	77	20.23	995,370
	P02	80	25.71	1,122,565
	P11	85	14.89	865,095
	P12	81	27.33	1,153,044
	P13	92	66.15	1,610,202
Molonzono	P14	91	15.42	926,825
Morph	P17	104	3169.34	4,250,903
Morph	P19	82	20.11	990,514
	P20	94	18.81	877,954
	P21	80	25.52	1,070,743
	P22	95	28.44	1,164,800
	P23	98	25.18	1,283,990
	P24	113	7.69	668,430
	P03	19	17.37	164,531
	P04	14	9.57	127,542
Parae	P27	14	8.17	84,778
Morph	P29	12	15.89	90,235
	P30	9	24.16	96,497
	P31	14	11.35	114,805
	P05	126	5.53	521,712
Immaculata	P06	100	24.92	1,035,078
Morph	P09	100	5995.38	9,748,162
	P10	81	155.60	1,388,117

Supplementary Table 5. Genes annotated on the scaffolds with the Y-mers that are present in every male.

Gene Name	Copies
CRYBB1	3
CRYBA4	1
GGTA1	1
Retrovirus-related Pol polyprotein from	
type-2 retrotransposable element R2DM	
Retrovirus-related Pol polyprotein from	
type-1 retrotransposable element R2	

Supplementary Table 6. *Melanzona morph*: Genes predicted on sample P01 (red melanzona) scaffolds containing >5 melanzona-mers and >1.5-fold melanzona male: female coverage. Scaffolds with >0.025X coverage by melanzona males but <0.025X coverage by females are considered 'Male Unique'. Scaffolds with >0.025X coverage by melanzona males but <0.025X coverage by non-melanzona males are considered 'Melanzona Melanzona males are considered 'Melanzona Melanzona Mela

Gene	P01 Scaffold	Melanzona:Female Coverage	Melanzona:Non- Melanzona Coverage
TRIM35	111589_P01	Male Unique	Melanzona Unique
Tbx3	113310_P01	Male Unique	5.08
Tbx3	113310_P01	Male Unique	5.08
Texim2	114702_P01	Male Unique	14.57
KAT7	115621_P01	Male Unique	4.09
Retrovirus-related	111503_P01	Male Unique	3.15
Texim3	111503_P01	Male Unique	3.15
Translation initiation factor IF-2 (low E)	112167_P01	15.69	0.55
Texim2	103684_P01	13.63	10.75
Unknown	103684_P01	13.63	10.75
Unknown	111891_P01	8.69	4.48
LINE-1 type transposase	115646_P01	3.78	3.52
Texim2	112537_P01	1.67	2.12
Unknown	112537_P01	1.67	2.12
Amyloid-beta A4 precursor	116260_P01	1.91	0.97

Supplementary Table 7. *Immaculata morph*: Genes predicted on sample P09 scaffolds containing >5 immaculata-mers and >1.5 fold immaculata male: female coverage. Scaffolds with >0.025X coverage by immaculata males but <0.025X coverage by females are considered 'Male Unique'. Scaffolds with >0.025X coverage by immaculata males but <0.025X coverage by non-immaculata males are considered 'Immaculata Unique'.

Gene	P09 Scaffold	Immac:Female Coverage	Immac:Non-Immac Coverage
NLRC3	124510_P09	Male Unique	Immaculata Unique
Trim39	125211_P09	Male Unique	Immaculata Unique
Ty3 retrotransposon	141715_P09	Male Unique	2.01
MSI1	143420_P09	Male Unique	11.57
Tbx3	143386_P09	Male Unique	2.40
Trypsin-2	143386_P09	Male Unique	2.40
R2DM retrovirus	154564_P09	Male Unique	3.94
Tbx3	140269_P09	Male Unique	1.62
TBX3	87093_P09	Male Unique	0.94
GPI-anchored protein 58	102953_P09	4.14	8.25
NLRC3	139939_P09	4.06	7.46
unknown	139939_P09	4.06	7.46
NLRC3	124079_P09	4.13	3.01
Cetn3	137893_P09	1.57	1.15
Retrovirus PABLB	149075_P09	4.17	2.08
Texim2	131979_P09	3.90	1.31
unknown	126759_P09	5.56	1.27
unknown	148405_P09	3.56	1.95

Supplementary Table 8. Scaffolds containing >5 of the 59 Y-mers present in all males contain 8,547 transposable elements in their 30,558,901bp.

Class/family	Copies identified by repeat masker	
DNA	264	
DNA/CMC-EnSpm	297	
DNA/Crypton-V	10	
DNA/Dada	13	
DNA/Ginger-1	13	
DNA/IS3EU	62	
DNA/Kolobok-T2	32	
DNA/MULE-MuDR	27	
DNA/Maverick	99	
DNA/Merlin	31	
DNA/P	5	
DNA/PIF-Harbinger	63	
DNA/PIF-ISL2EU	63	
DNA/PiggyBac	12	
DNA/Sola-1	2	
DNA/TcMar	8	
DNA/TcMar-ISRm11	34	
DNA/TcMar-Tc1	4626	
DNA/TcMar-Tc2	30	
DNA/TcMar-Tigger	5	
DNA/Zisupton	31	
DNA/hAT	17	
DNA/hAT-Ac	314	
DNA/hAT-Blackjack	14	
DNA/hAT-Charlie	225	
DNA/hAT-Tip100	75	

DNA/hAT-hAT5	35
DNA/hAT-hAT6	11
LINE/Dong-R4	120
LINE/I	54
LINE/L1	77
LINE/L1-Tx1	30
LINE/L2	776
LINE/Penelope	14
LINE/R2-Hero	2
LINE/RTE-BovB	361
LINE/Rex-Babar	399
LTR/Copia	6
LTR/ERV1	37
LTR/Gypsy	113
LTR/Ngaro	65
LTR/Pao	36
RC/Helitron	22
Retroposon	4
SINE	1
SINE/tRNA-Core-RTE	1
SINE/tRNA-V	7
SINE/tRNA-V-RTE	4

Supplementary Table 9. Scaffolds containing >5 melanzona-mers contain 392 transposable elements in their 995,370bp.

Class/family	Copies identified by repeat masker
DNA	13
DNA/CMC-EnSpm	22
DNA/Dada	1
DNA/IS3EU	11
DNA/Kolobok-T2	3
DNA/Maverick	10
DNA/Merlin	3
DNA/PIF-Harbinger	1
DNA/PIF-ISL2EU	1
DNA/TcMar-Tc1	3
DNA/Zisupton	2
DNA/hAT	6
DNA/hAT-Ac	27
DNA/hAT-Charlie	28
DNA/hAT-Tip100	2
LINE/I	2
LINE/L1	24
LINE/L1-Tx1	2
LINE/L2	38
LINE/RTE-BovB	27
LINE/Rex-Babar	1
LTR/Copia	3
LTR/ERV1	5
LTR/Gypsy	43
LTR/Pao	22
RC/Helitron	90
SINE/tRNA-Core-RTE	2

Supplementary Table 10. Scaffolds containing >5 immaculata-mers contain 2,565 transposable elements in their 9,748,162bp.

Class/Family	Copies identified by repeat masker
DNA	103
DNA/CMC-EnSpm	104
DNA/Crypton-H	1
DNA/Crypton-V	7
DNA/Dada	4
DNA/Ginger-1	3
DNA/IS3EU	47
DNA/Kolobok-T2	13
DNA/MULE-MuDR	8
DNA/MULE-NOF	1
DNA/Maverick	25
DNA/Merlin	25
DNA/P	1
DNA/PIF-Harbinger	20
DNA/Sola-1	1
DNA/TcMar	4
DNA/TcMar-ISRm11	9
DNA/TcMar-Tc1	1026
DNA/TcMar-Tc2	21
DNA/TcMar-Tigger	4
DNA/Zisupton	8
DNA/hAT	12
DNA/hAT-Ac	145
DNA/hAT-Blackjack	2
DNA/hAT-Charlie	68
DNA/hAT-Tip100	39
DNA/hAT-hAT5	18
DNA/hAT-hAT6	4
DNA/hAT-hobo	1
LINE/Dong-R4	37
LINE/I	21
LINE/L1	28
LINE/L1-Tx1	7

LINE/L2	340
LINE/Penelope	3
LINE/R2-Hero	1
LINE/RTE-BovB	112
LINE/Rex-Babar	112
LTR/Copia	1
LTR/ERV1	12
LTR/Gypsy	55
LTR/Ngaro	14
LTR/Pao	9
RC/Helitron	38
Retroposon	1
SINE/tRNA-Core-L2	45
SINE/tRNA-V	4
SINE/tRNA-V-RTE	1

Supplementary Table 11. Proportion of morph-linked Y scaffolds (scaffolds containing > 5 of the respective morph-mer dataset) made up of interspersed repeats. In females proportion of total *de novo* genome made up of interspersed repeats. Interspersed repeats indicate transposable element activity. Comparing proportion of interspersed repeats between morph-linked Y scaffolds and female genomes indicates increased effect of transposable element activity on the Y chromosomes.

Morph	Sample	Sequence in morph-specific Y scaffolds (bp)	% Sequence Comprised of Total Interspersed Repeats
	P01	995,370	68.08
	P02	1,122,565	66.38
	P11	865,095	65.15
Red Melanzona	P12	1,153,044	58.75
	P19	990,514	63.80
	P20	877,954	64.38
	P21	1,070,743	60.04
	P13	1,610,202	42.22
Vallow	P14	926,825	67.07
Molonzono	P22	1,164,800	61.72
Weidlizolia	P23	1,283,990	59.16
	P24	668,430	65.33
Blue Melanzona	P17	4,250,903	28.59
	P03	164,531	46.20
	P04	127,542	40.99
Parao Mornh	P27	84,778	45.32
	P29	90,235	44.59
	P30	96,497	41.21
	P31	114,805	46.36
	P05	521,712	53.98
Immaculata	P06	1,035,078	47.84
mmaoulata	P09	9,748,162	24.35
	P10	1,388,117	36.48
	P15	469,458,131	28.72
	P26	524,160,639	27.55
Female	P32	760,885,093	26.97
(Full genome)	P34	728,337,754	26.88
	P36	650,681,137	26.42
	P37	660,609,987	26.98

	Melanzona	Immaculata	Parae
LINE	12.37% <u>+</u> 0.40	12.87% <u>+</u> 1.31	8.12% <u>+</u> 1.51
SINE	0	0.01% <u>+</u> 0.01	0
Penelope	0	0	0
DNA transposons	3.89% <u>+</u> 0.80	8.07% <u>+</u> 2.29	3.94% <u>+</u> 1.22
LTR elements	10.81% <u>+</u> 0.69	6.41% <u>+</u> 1.38	10.23% <u>+</u> 1.19
Unclassified	72.92% <u>+</u> 0.73	72.65% <u>+</u> 1.23	77.71% <u>+</u> 2.14

Supplementary Table 12. Composition of interspersed repeats on the Y linked scaffolds by TE type for each morph (mean \pm standard error).