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Abstract

The COVID-19 epidemic continues to rage in many parts of the world. In
the UK alone, an array of mathematical models have played a prominent
role in guiding policymaking. Whilst considerable pedagogical material ex-
ists for understanding the basics of transmission dynamics modelling, there is
a substantial gap between the relatively simple models used for exposition of
the theory and those used in practice to model the transmission dynamics of
COVID-19. Understanding these models requires considerable prerequisite
knowledge and presents challenges to those new to the field of epidemiologi-
cal modelling. In this paper, we introduce an open-source R package, como-
models, which can be used to understand the complexities of modelling the
transmission dynamics of COVID-19 through a series of differential equation
models. Alongside the base package, we describe a host of learning resources,
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including detailed tutorials and an interactive web-based interface allowing
dynamic investigation of the model properties. We then use comomodels
to illustrate three key lessons in the transmission of COVID-19 within R
Markdown vignettes.

Highlights

• Compartmental models of transmission dynamics have been important
determinants of public health policy for COVID-19.

• Many important characteristics of the spread of COVID-19 can be de-
duced from relatively simple models.

• The comomodels package and its associated GUI allow users to learn
the characteristics of complex compartmental models in incremental
fashion.

• Estimating model parameters from data is generally difficult and hence
sensitivity analyses are key.

1. Introduction

Mathematical modelling of COVID-19 epidemiology has been a crucial
determinant of policymaking during the pandemic. For example, in the UK,
the release of “Report 9” by Imperial College London (Ferguson et al., 2020)
is widely believed to have been influential in the UK government’s deci-
sion to institute a first lockdown on 23rd March 2020 (IFG, 2021). Com-
partmental models of transmission dynamics (see, for example, Anderson
& May (1992); Brauer (2008)), in particular, have featured prominently.
In these models, individual people are allocated to compartments which,
amongst other things, indicate their disease state. Popular variants of com-
partmental models used during the pandemic include Susceptible-Exposed-
Infectious-Recovered (SEIR) and Susceptible-Exposed-Infectious-Recovered-
Dead (SEIRD) models, where individuals naive to infection are labelled sus-
ceptible (S); individuals who are infected but not yet infectious to others are
labelled exposed (E); exposed individuals then eventually become infectious
(I) and subsequently recover (R) or die (in the SEIRD model only with those
individuals falling into the “Dead” (D) compartment).
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The advice given to the UK government through the Chief Scientific Ad-
visor has been guided by the Scientific Pandemic Influenza Group on Mod-
elling (SPI-M), and a diversity of models have been used to inform this
(Anderson et al., 2020). These models include: the “Warwick model”, an or-
dinary differential equation (ODE) model with SEIR compartments with the
infected compartments broken down into symptomatic and asymptomatic
cases (Keeling et al., 2021). The model incorporates compartments repre-
senting admissions to hospital and intensive care units (ICUs), and is age-
and spatially structured by region of the UK; the “Cambridge / Public Health
England model” is an ODE model with an SEIR base structure extended to
include two exposed and two infectious compartments (Birrell et al., 2021).
In addition, the model is structured by age, incorporating age-dependent
contact structures which vary according to UK region which can change
over time in line with published mobility data; the model underlying Impe-
rial College’s Report 9 (Ferguson et al., 2020), which is a large stochastic,
individual-based model with SEIR compartments, which accounts for mixing
within-households, at specific places (e.g. work or school) or randomly in the
community. The model is spatial and age-structured. In it, the infectious in-
dividuals are stratified into asymptomatic, mild and “influenza-like illness”
groups. From this last, more severe symptomatic group, individuals may
be admitted to hospital, with a subset of hospitalised individuals requiring
care in ICUs; the “Manchester model”, which is a deterministic non-age-
structured SEIR model (Anderson et al., 2020). This model allows a piece-
wise transmission rate, which can change in response to non-pharmaceutical
interventions such as a lockdown. Apart from these mechanistic models, a
host of more statistical approaches, primarily based around renewal models
(Flaxman et al., 2020; Nouvellet et al., 2021) have also been used within SPI-
M. This latter class of models typically require fewer assumptions to be made
about the transmission dynamics and, because of this, are straightforward
to fit to data. A cost of their relative simplicity is that they are less able to
explore a diversity of future scenarios compared to mechanistic models. In
this paper and in our software, we currently focus on mechanistic models of
transmission, and we plan to introduce other model classes in the future.

Additionally, there have been a host of other models that have been influ-
ential in informing policymaking worldwide. Many of these models have in-
corporated detailed information bespoke to particular vaccines. For instance,
Hogan et al. (2020) extend a deterministic, age-structured SEIR compart-
ment model (described in Walker et al. (2020)) to include vaccinated com-
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partments. The modelling approach assumes that those who are currently
infected do not receive the vaccine and that vaccines offer partial protection
which can wane over time at rates specific to particular COVID-19 vaccines.
An international consortium of modellers named the “COVID-19 Modelling
(CoMo) Consortium” (Aguas et al., 2020) use a deterministic SEIRD-type
model structured by age which also includes, amongst other components,
compartments corresponding to individuals in quarantine, vaccinated indi-
viduals, and hospitalised individuals. This model inspired the development
of our package, hence we chose to name our package comomodels.

The larger models used in transmission dynamics modelling of COVID-
19 comprise a complex mix of many different small modelling motifs. For
an individual new to this type of modelling, such as a graduate student or
a policymaker, understanding how these various components function and
interact is key to building intuition about how these models work. It is
also important in ensuring that the models themselves or their outputs are
not misused. Whilst there are ample pedagogical materials on basic SEIR
models, to our knowledge, there are no widely available tools used to teach
understanding of the more complex types of models often used to decide
public health policy for diseases like COVID-19. Others have recognised the
need for such materials: relatively early on during the pandemic, The Royal
Society published a rapid review of the science of estimating the reproduction
number for COVID-19, which included toy models used to explain facets of
transmission dynamics modelling of COVID-19 (Anderson et al., 2020).

Historically, mathematical modelling expertise has been concentrated in
high income countries (HICs), with several infectious disease modelling groups
forming consortia. These consortia inform policy for HICs but also consult for
policymakers in low and middle income countries (LMICs). This asymmetric
group of HIC modellers and LMIC policymakers that ultimately determines
policy for LMICs is inequitable and may lead to models far removed from
reality (Aguas et al., 2020). Part of this asymmetry likely stems from a lack
of capacity in LMICs, and we argue that part of this is due to a lack of widely
available pedagogical tools that teach how modelling is applied in practice.

This stimulated us to create an open-source pedagogical R package called
comomodels, which aims to produce accessible materials pertinent to applied
COVID-19 modellers. comomodels was developed using robust software de-
velopment principles including unit testing and continuous integration test-
ing. The main workhorses of the package are a series of deterministic com-
partmental models that represent the transmission dynamics of infectious
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diseases which are spread human-to-human, such as COVID-19. The start-
ing point of the package is the basic SEIRD model. Upon this foundation, we
build a series of models of increasing complexity (see Figure 1), each with a
tutorial vignette where that model is applied to explain elements of COVID-
19 transmission dynamics. By working incrementally through these tutorials,
an individual can build a foundation in modelling required for understanding
much of the applied work on mechanistic modelling of COVID-19. Alongside
the package, we have created an interactive web-based interface (The Como-
DTC Development Team, 2021), which visualises the structure of the model
and plots key outputs.

In this article, in §2, we briefly describe the models currently available
in the package. In §3, we describe package design choices and functionality
and outline the approach taken for development. Then in dynamic vignettes
described in §4, written in R Markdown, we use our package to illustrate
three key lessons in COVID-19 modelling.

2. Models

comomodels contains a series of deterministic ODE-based transmission
dynamics models of infectious diseases which are passed directly between
humans (see Figure 1). The set of models is tailored to highlight key elements
of models of COVID-19 infection dynamics in the literature. In this section,
we provide equations and a brief motivation for each model. For much more
detailed information, we recommend consulting the accompanying website2

which contains detailed tutorials for each model. This pedagogical material
is a keystone of the package and aims to help a user to build intuition behind
transmission dynamics modelling of COVID-19. In doing so, these tutorials
also explain how to effectively use the package functionality. These tutorials
can be run by cloning the Github repository. Alternatively, the rendered
markdown files can be viewed on the package website.

In what follows, each of the model systems described is closed with a set
of initial conditions, and we omit them in what follows for brevity. Across
all models, we assume that the states are normalised to 1: this means, for
example, in the SEIRD model, that S(t) + E(t) + I(t) +R(t) +D(t) = 1 for
all times t ≥ 0.

2See https://como-dtc-collaboration.github.io/como-models/.
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Figure 1: The set of models within the comomodels package. text above pictures
corresponds to model names, and the number corresponds to particular sections in §2. All
models are extensions of the SEIRD model (top; see §2.1). The models on the second row
have additional state variables and transitions between states compared to the SEIRD
model; the third row shows non-age-structured models which model the effect of interven-
tions on COVID-19 transmission; the bottom row shows the age-structured models.

2.1. SEIRD model

All the models in the package are extensions of the SEIRD model. This
model considers the dynamics of individuals within five compartments: Sus-
ceptibles (S), Exposed (E), Infectious (I), Recovered (R) and Dead (D) indi-
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viduals. The model is described by the following system of coupled ODEs:

dS

dt
= −βSI,

dE

dt
= βSI − κE,

dI

dt
= κE − (γ + µ)I,

dR

dt
= γI,

dD

dt
= µI.

(1)

Here, β > 0 quantifies the rate at which a susceptible individual becomes
infected (entering the exposed compartment) after coming into close contact
with an infectious individual; κ > 0 represents the rate at which exposed
individuals become infectious; γ > 0 indicates the rate that infectious indi-
viduals recover; and µ > 0 indicates the rate at which infectious individuals
die.

The SEIRD model tutorial describes how to parameterise the model to
simulate COVID-19 transmission dynamics. It then explains how R0, the
basic reproduction number (Diekmann et al., 1990), is calculated for this
model. Finally, it performs a sensitivity analysis, illustrating how changes to
β affect transmission.

2.2. SEIRDAge: an age-structured model

A natural extension to the SEIRD model in §2.1 is to add age-structure to
the population. This is equivalent to splitting each of the current compart-
ments into separate ones for each age group considered. This is done because
sociological – e.g. contact rates and patterns – and biological – e.g. mor-
tality and pathogen clearance rates – characteristics may vary, on average,
according to the age of individuals.

In these, so called, age-structured models, individual age groups have dif-
ferent characteristics, which are reflected in varying parameter values, such
as mortality and recovery rates. Additionally, heterogeneous mixing between
different age groups is introduced to allow certain combinations of age groups
to meet more often than others. For example, a newborn child will typically
spend most of a given day with their parents; a teenager may mix frequently
and mostly with other teenagers; an elderly person may mostly mix with
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younger members of their family; and so on. In age-structured models, so-
called contact matrices keep track of the expected number of contacts be-
tween people of different ages. It is also possible to estimate the number
of contacts which occur at various locations where people spend time: for
instance, the number of contacts occurring at home, school and work. More-
over, contact matrices can vary by geography to handle differences in social
structures typical of diverse societies. As part of comomodels, we make the
contact matrices estimated in Prem et al. (2017) for 152 countries available.
In Figure 2, we show a set of contact matrices for India, where each panel rep-
resents the average number of daily contacts between individuals of different
age groups for a particular location type (home, school, work and “other”).
In this case, the contact matrix used in simulations would be the sum of
these location-specific (l) matrices, C l

i,j:

Ci,j =
∑
l

C l
i,j (2)

where l ∈ {home, school,work, other}. The elements of the contact matrix
C l

i,j ≥ 0 indicate the expected number of contacts an individual of age class
i experiences with age class j per day in location l. The matrix Ci,j is
then the total number of daily contacts per individual in age class i with
those in age class j, on average. If all the elements of the Ci,j matrix are
1s and the death rates are set to be age-independent (i.e. µi = µ), the
infection dynamics recapitulate those from the base SEIRD. Running counter
to intuition, contact matrices are typically not symmetric: that is, Ci,j ̸= Cj,i

for reasons that we explain in the “S2” supplementary vignette.
The system of ODEs that describe our age-structured SEIRD model is
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given by:

dSi

dt
= −βSi

∑
j

Ci,jIj,

dEi

dt
= βSi

∑
j

Ci,jIj − κEi,

dIi
dt

= κEi − (γi + µi)Ii,

dRi

dt
= γiIi,

dDi

dt
= µiIi.

(3)

where i ∈ I indicates the categorical age group to which an individual is
assigned. For example, an individual may belong to the 0-5 year old group.
A user within age group i may be in any of the infection states: if they are
susceptible, they are counted towards Si; and so on. Overall, this means that
the system consists of 5|I| coupled ODEs.

The parameters β and κ have the same meaning as in the SEIRD model
(see §2.1). We allow an age group-specific death rate, µi, since, in COVID-
19, death rates are known to vary substantially according to age (Verity
et al., 2020). We also allow age group-specific recovery rates, γi, since this
facilitates flexible parameterisation for each group.

Note that this model should be used only to handle infection dynamics
over a relatively short period of time (i.e. up a few years), since individuals
do not age throughout the course of simulations.

The tutorial for this model explains how eqs. (3) allow the model to be pa-
rameterised using the mortality risk estimates for COVID-19 in Verity et al.
(2020). It also visualises and explains the use of the contact matrices avail-
able in the package, and shows how to calculate R0 for this age-structured
model. Finally, simulations are used to show how the transmission dynamics
of a COVID-19-like disease are affected by the age composition of the initial
infected population.

2.3. SEIaImIsRD: Varying infectiousness compartments model

COVID-19 is known to evoke a range of symptoms of differing levels
of severity across individuals, and individuals who are asymptomatic are
thought to play a significant role in driving transmission of COVID-19 (Gandhi
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Figure 2: India contact matrices broken down by those which occur at home,
school, work and “other” locations. Each plot displays the mean number of daily
contacts per individual by age group (via a colour scale). These data are from Prem et al.
(2017).

et al., 2020; Johansson et al., 2021; Byambasuren et al., 2020). This group is
particularly problematic for transmission, since they are unlikely to change
their behaviour whilst infectious, unlike those experiencing more severe in-
fections who may isolate or potentially enter care. Indeed, another reason
for stratifying by symptom severity is to be able to forecast the demand for
clinical care, such as intensive care unit beds.

As such, we include the SEIaImIsRD model, in the package which con-
siders separately individuals with different degrees of infection severity. This
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model is described by the following set of ODEs:

dS

dt
= −S(βaIa + βmIm + βaIs),

dE

dt
= S(βaIa + βmIm + βsIs)− κE,

dIa
dt

= ηaκE − (γa + µa)Ia,

dIm
dt

= ηmκE − (γm + µm)Im,

dIs
dt

= ηsκE − (γs + µs)Is,

dR

dt
= γaIa + γmIm + γsIs,

dD

dt
= µaIa + µmIm + µsIs.

(4)

where Ia, Im and Is indicate infectious individuals that are asymptomatic, or
have mild or severe symptoms. The proportions of individuals entering each
of these compartments is governed by the η parameters, and it is assumed
that exposed individuals must enter one of these three infectious states, so
that ηa + ηm + ηs = 1. The recovery and death rate parameters vary accord-
ing to the symptom category, and it is assumed that µs > µm ≥ µa ≈ 0.

The tutorial for this model provides a detailed explanation of how to
calculate R0 for it. We then assess the sensitivity of total deaths in the
epidemic to R0 and ηs.

2.4. SEIRD BD: Births and natural deaths and waning natural immunity

The current pandemic has raged for about two years meaning that births
and natural deaths (i.e. those not caused by COVID-19) are unlikely to
have influenced transmission dynamics. Over longer periods of time, births
and natural deaths can lead to replenishment and depletion of susceptibles,
altering the level of herd immunity in the population. Considering COVID-19
transmission, it appears that infection confers a protection against reinfection
for several months up to around a year post-infection (Leidi et al., 2021; Abu-
Raddad et al., 2021; Gallais et al., 2021), but this protection is thought to
eventually wane. Waning immunity, like births, can also supplement the
susceptible population and lead to conditions where COVID-19 can reinvade
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a population. We include a model incorporating these three processes:

dS

dt
= λ+ δR− βSI − νS,

dE

dt
= βSI − (κ+ ν)E,

dI

dt
= κE − (γ + µ+ ν)I,

dR

dt
= γI − (ν + δ)R,

dD

dt
= µI + ν(S + E + I +R).

(5)

Here, λ > 0 represents the birth rate, which is assumed constant; newborns
are assumed not to have maternal immunity, so enter into the susceptible
compartment. ν > 0 represents the rate of natural death which is assumed
the same across all compartments. δ > 0 is the rate at which recovered
individuals become susceptible again.

The SEIRD BD model tutorial shows how waves of infection can repeat-
edly sweep through the population. It also explains how this model, unlike
the SEIRD model, allows an equilibrium where the disease is endemic, and
it explores how many daily cases may be expected for COVID-19 at equilib-
rium.

2.5. SEIRD RU: an urban-rural metapopulation model

Although the pandemic has reached just about every corner of the world,
the global population does not behave as a fully well-mixed group of individ-
uals. It is thus important to consider how well different population centres
are connected and how this affects the spread of infection. This is often done
with a metapopulation model, in which multiple connected communities are
considered (Calvetti et al., 2020; Kramer et al., 2020). As a first step towards
this, we include a model which consists of two interacting communities, a ru-
ral (Y ) and an urban (U) community:
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dSU

dt
=− βSU

(
(IU + IY )(ϕUNU + ϕYNY )C +

IU
ϕU

NU(1− C)

)
,

dSY

dt
=− βSY

(
(IU + IY )(ϕUNU + ϕYNY )C +

IY
ϕY

NY (1− C)

)
,

dEU

dt
=βSU

(
(IU + IY )(ϕUNU + ϕYNY )C +

IU
ϕU

NU(1− C)

)
− κEU ,

dEY

dt
=βSY

(
(IU + IY )(ϕUNU + ϕYNY )C +

IY
ϕY

NY (1− C)

)
− κEY ,

dIU
dt

=κEU − (γ + µ)IU ,

dIY
dt

=κEY − (γ + µ)IY ,

dRU

dt
=γIU ,

dRY

dt
=γIY ,

dDU

dt
=µIU ,

dDY

dt
=µIY ,

(6)

where 0 ≤ ϕU ≤ 1 is the fraction of the population that lives in an urban
environment; ϕY = 1−ϕU is the fraction of the population that lives in a rural
environment; NU is the average number of contacts that an urban individual
has in a day; NY is the average number of contacts that a rural individual
has in a day. C is the “connectedness” parameter, where C = 1 means the
whole population is well-mixed, and C = 0 means the two communities are
isolated from one another.

In this model, individuals do not permanently move to the other commu-
nity but can interact with individuals in the other community. This should
thus be seen as short-term travel, e.g. commuting to work, quick shopping
trips, and so on.

Compared to a single-community model, splitting the population into two
communities primarily affects how susceptible individuals become infected,
i.e. the functional forms in equations dSU

dt
and dSY

dt
. These equations are

based on the model employed by Tun et al. (2021), where the infectious
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group that the susceptible group interacts with, which is represented as I
in a one-community model, now needs to take into consideration the degree
to which the communities are separated. If C = 1 and the communities are
completely well mixed, then we can multiple the average number of contacts
that a person in that community has in a day (ϕUNU + ϕYNY ) by the frac-
tion of those contacts that are infectious (IU + IY ) to give us the number
of infectious contacts for a susceptible individual. If the communities are
completely separate, i.e. C = 0, then a susceptible individual only contacts
people in their own community so we multiply the number of contacts an
individual has, NU or NY , by the fraction of their community that is infec-
tious, IU/ϕU or IY /ϕY . For any level of connectedness C, we weight these
two scenarios accordingly to obtain the number of infectious contacts for a
susceptible individual.

The tutorial for this model shows how it can be parameterised using con-
tact and demographic data, and illustrates the sensitivity of the outputs to
the connectedness parameter, C. A key point of this vignette is to illustrate
how spatial structure generally leads to slower spread of a pathogen through
a population compared to spatially homogeneous models. As such, inter-
ventions such as travel bans and travel restrictions may reduce connectivity
between subgroups of a population and thus can be used to effectively slow
disease spread.

2.6. SEmIRD model: a model with multiple exposed compartments

In the SEIRD model, there is a single exposed compartment, which im-
plies that the latent period follows an exponential distribution. An impli-
cation of the exponential distribution is that the rate at which infected in-
dividuals become infectious is greatest at the point when they first become
infected. This contrasts with laboratory studies, which indicate that there
is typically a non-negligible delay between when an individual becomes in-
fected with SARS-CoV-2 and when they become infectious to others (Xin
et al., 2021). One way to introduce delays in such ODE models is to break
up a compartment into multiple subcompartments. In the SEmIRD model,
we include a user-specified number of intermediate exposed compartments,
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E1, E2,...,En resulting in a model structure of the form:

dS

dt
= −βSI,

dEi

dt
=

{
βSI − κEi, if i = 1

κEi−1 − κEi, otherwise

dI

dt
= κEn − (γ + µ)I,

dR

dt
= γI,

dD

dt
= µI.

(7)

The tutorial for this model shows that the model eqs. (7) results in a latent
period distribution which is closer to what is observed experimentally.

2.7. SEIRDV and SEIRDVAge: models including vaccinations

A key intervention that has been used extensively by governments to
curb COVID-19 transmission is mass vaccination campaigns, and, here, we
present two different models for understanding their impact: the first is the
“base” SEIRDV model; the second is an age-structured version of this model
(SEIRDVAge). In these models, we add two compartments: one for vacci-
nated individuals who have not previously been infected (V ); and another
for those who have (VR). The SEIRDV model takes the form:

dS

dt
= −βSI − νInter(t)S + δV V + δRR + δVR

VR,

dE

dt
= βSI − κE,

dI

dt
= κE − (γ + µ)I,

dR

dt
= γI − δRR− νInter(t)R,

dD

dt
= µI,

dV

dt
= νInter(t)S − δV V,

dVR
dt

= νInter(t)R− δVR
VR.

(8)
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Here, we assume that vaccination provides perfect protection against infec-
tion while the person remains in the vaccinated compartment, but vaccinated
individuals eventually lose immunity and return to susceptible. We also as-
sume all (alive) non-vaccination compartments can be vaccinated with the
exception of infectious individuals, whom we assume are symptomatic and
do not participate at that time in vaccination campaigns.

The maximum rate at which individuals can be vaccinated is given by
ν > 0; the model allows dynamic changes in the vaccination campaign, and
this is controlled by a “vaccination protocol” function Inter(t) (whose outputs
are between 0 and 1) which modulates the intensity of the campaign. In this
model, the rate of loss of individuals’ immunity to reinfection is controlled
by parameters δV , δR and δVR

for those previously vaccinated, those who
have previously been infected and those who were vaccinated after they were
infected respectively.

Faced with vaccinating an entire country, governments have chosen to
prioritise vaccinations for those whom are most vulnerable. One dominant
characteristic of these campaigns has been to prioritise vaccinations for the
older age groups who are at higher risk of COVID-19 complications (Verity
et al. (2020)). To model age-specific vaccination campaigns, we extend eqs.
(8) to incorporate age-structuring as in eqs. (3):

dSi

dt
= −βSi

∑
j

CijIj − νInteri(t)Si + δV Vi + δRRi + δVR
VRi,

dEi

dt
= βSi

∑
j

CijIj − κEi,

dIi
dt

= κEi − (γ + µ)Ii,

dRi

dt
= γIi − δRRi − νInteri(t)Ri,

dVi
dt

= νInteri(t)Si − δV Vi,

dVRi

dt
= νInteri(t)Ri − δVR

VRi,

(9)

where Interi(t) indicates an age-specific vaccination protocol.
Tutorials for the SEIRDV and SEIRDVAge models illustrate the impor-

tance of mass vaccination campaigns for controlling the current pandemic.
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2.8. SEIRDNPIAge: a model including non-pharmaceutical interventions

Apart from pharmaceutical interventions such as vaccinations, a host of
non-pharmaceutical interventions (NPIs) have been used by governments
around the world (Hale et al., 2021). These include physical distancing,
shielding vulnerable groups (for example, the elderly), school closures, and
lockdowns. Different types of NPIs may introduce changes in social contact
matrices and/or the transmission rate β (Davies et al., 2020), which leads to
the following ODEs representation:

dSi

dt
= −β(t)Si

∑
j

Cij(t)Ij,

dEi

dt
= β(t)Si

∑
j

Cij(t)Ij − κEi,

dIi
dt

= κEi − (γi + µi)Ii,

dRi

dt
= γiIi,

dDi

dt
= µiIi.

(10)

In this model, there are two ways to allow a dynamic change in transmission
rates: the first is through contact matrices, with elements Cij(t), which can
vary through time – these could, for example, allow for those elderly age
groups to isolate themselves for a period of time; the second is through
dynamic transmission rate parameter, β(t), which could, for example, be
used to represent the impact of lockdowns when social contacts across all
ages are approximated as being reduced by a single common factor.

The tutorial for this model shows how this model can be used to inves-
tigate the effect of a lockdown similar to the one instituted in the UK on
23rd March 2020. In doing so, this illustrates how this NPI can “flatten” the
epidemic curve.

2.9. SEIRD CT

Contact tracing, testing and isolation are key elements of many govern-
ments’ responses to the COVID-19 pandemic. In this model, we consider
how these types of NPIs can be used to control the spread of COVID-19.
The model has the form:
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dS

dt
= −(β(P + I) + βaA)S,

dE

dt
= β(1− χ)(P + I)S + βaAS − ωE,

dP

dt
= (1− ηa)ωE − ψP,

dA

dt
= ηaωE − γA,

dI

dt
= (1− ϕ)ψP − (γ + µ)I,

dET

dt
= βχ(P + I)S − ωET ,

dP T

dt
= (1− ηa)ωE

T − ψP T ,

dAT

dt
= ηaωE

T − γAT ,

dIT

dt
= ψP T + ϕψP − (γ + µ)IT ,

dR

dt
= γ(I + IT + A+ AT ),

dD

dt
= µ(I + IT ).

(11)

The effectiveness of contact tracing and quarantining hinges crucially on the
timing of when individuals are isolated relative to their profile of infectious-
ness. It also depends on the difficulty of identifying infected and/or infectious
individuals in the first place. To adequately account for these difficulties, we
introduce a number of additions over and above the SEIRD model: since
COVID-19 is thought to be transmissible before symptoms appear (He et al.,
2020), we include a presymptomatic infectious compartment, P ; we also
introduce an asymptomatic infectious compartment, A (making up a corre-
sponding fraction 0 ≤ ηa ≤ 1 of overall cases). If infected individuals are
successfully isolated, they are assumed not to transmit infections from the
moment of isolation onwards. They then follow a series of transitions of
the same form as unisolated individuals: here, we index the isolated states
by a superscript T . This model considers two types of NPIs: self isolation
upon appearance of symptoms with a proportion 0 ≤ ϕ ≤ 1 of symptomatic
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individuals doing so; and isolation following being traced as having come
into contact with an infected individual: due to the difficulty in identify-
ing asymptomatic individuals, only contacts of individuals who go on to be
symptomatic cases are deemed traceable. Since the proportion of susceptible
individuals forced to isolate is likely small relative to the overall suscepti-
ble pool, we do not include a compartment for susceptible individuals who
are quarantined. Here, 0 ≤ χ ≤ 1 determines the proportion of contacts
of symptomatic cases that are traced and isolated. This model structure is
visualised in Figure 3.

The tutorial for this model considers the relative effectiveness of these
two types of NPIs and investigates their usefulness for controlling COVID-
19 epidemics induced by ancestral SARS-CoV-2 and the Delta and Omicron
variants.

3. Methods

3.1. Package structure

The comomodels package uses an object-oriented approach to design. In
particular, it uses R’s S4 classes to encapsulate each of the models described
in §2. These classes allow a user to instantiate an object, corresponding to
a particular compartmental model. Operations can then be performed in a
consistent manner between different models. For example, a user may set,
change or ask for the transmission parameters underpinning the model; a
user may set, change or ask for the initial conditions of the system; they may
run the model; and they may ask a model to return its basic reproduction
number.

Understanding a model’s structure can be made easier if the system’s
states and flows between them are visualised using a compartmental di-
agram. In comomodels, we provide this functionality to a user: calling
the ode_structure_diagrammethod plots the compartmental structure (see
Figure 3).

Apart from deciding on a model structure, the most important consid-
eration in modelling the spread of any infectious disease is choice of pa-
rameter values, since the (typically) non-linear ODE system permits a va-
riety of dynamics, and only a subset of these is epidemiologically realistic.
Since this package is specific to COVID-19 modelling, we provide users with
some predetermined parameter sets characterising the spread of ancestral
SARS-CoV-2 and two of its variants: Delta and Omicron. Whilst there
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Figure 3: Compartmental model structure of the SEIRD CT model. See 2.9 for
a description of this model.

is ample uncertainty in these parameter values (particularly for Omicron),
these parameter sets represent reasonable starting points for exploring how
the different variants spread. These parameter sets are accessed through
the covid_transmission_parameters function, which can, in addition, re-
turn age group-specific parameters if the model being parameterised is age-
structured. The associated function documentation provides information on
the studies and assumptions made in deriving these parameter value choices.

To run the age-structured models and the SEIRD RU model, further in-
puts are required: an age-structured model requires contact matrices (see
§2.2 and Figure 2) and to set the initial conditions requires fractions of the
population in each age group; the urban-rural model requires fractions of
individuals living in rural versus urban environments. As part of the pack-
age, we provide datasets for each of these elements across a diverse range of
countries.

On running each model, an R list is returned with two named dataframe
objects: “states”, which contains the dynamic evolution of the state vari-
ables of the ODE (for example, for the SEIRD model, there are time series
for susceptibles, exposed, infectious, recovered and dead individuals); and
“changes”, which calculate the number of individuals becoming infected or
dying on a daily basis. This latter dataframe is particularly useful for com-
parison with observed epidemiological data. Each of these dataframes is
in the long format to facilitate quick and powerful graphing through the gg-
plot2 package (Wickham, 2016). The dataframes each have column headings:
“time” (in days), “compartment”, “age range” and “value”. If the model is
not age-structured, an age range of 0-150 is assigned to each data point. Fig-
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ure 4 plots the “states” from running the age-structured SEIRD model for
a parameter set typical for transmission of ancestral SARS-CoV-2 (see the
tutorial for this model for more information).
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Figure 4: Example visualisation: modelled states for an age-structured model.
Each panel corresponds to a different state (see §2.2); each line corresponds to an age
group where the colours are given by the legend.

Along with the raw package functionality, the package comes with a series
of detailed tutorials3 – one for each model described in §2.

3.2. The ComoModel GUI

To complement the comomodels package, we have also produced an R
shiny application (The Como-DTC Development Team, 2021) as an openly
accessible web-based interface to the model. This tool allows users to se-
lect from the suite of models within the package, producing an interactive
visualisation of the model structure. For each of the submodels, we intro-
duce the model structure through a compartment structure diagram and its

3Note that these tutorials are different to those described in §4.
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full ODE system. To use the application interactively, users first access a
target model by selecting a header tab. Then by either clicking on the corre-
sponding parameter on the diagram or directly navigating through the side
bar, the user can tune the model’s parameters (see Fig 5). Additionally, for
age-structured models, users can upload social contact matrices from a host
of countries (Prem et al., 2017) and population demography files (United
Nations, 2019). Each time a parameter is modified, a simulation is run au-
tomatically, and the outputs are interactively visualised using plotly (Plotly
Technologies Inc. (2015)). The model states and the daily incidence and
deaths are visualised in separate panels. These simulation results can then
be downloaded as comma-separated values (csv) files.

Figure 5: Using comomodels-explore to investigate the SEIRDV submodel. Here,
the user selects the parameter γ (see §2.7) by clicking on the ODE structure diagram,
which allows them to change this input.

3.3. Software engineering approach

The model underpinning the influential Imperial College Report 9 (Fer-
guson et al., 2020) received substantial criticism for its code and software
engineering practices (Baker, 2020). The bulk of these criticisms were un-
fair and ill-spirited given the time pressure the Imperial team were under
to deliver a message of key importance for public health policymaking. As
a silver lining, however, there has subsequently been a call for an increased
focus on the quality of research software used to direct policy in public health
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(Horner & Symons, 2020; Habli et al., 2020). We aimed to create software
according to robust software engineering practices, which included collabo-
rative development over Github using pull requests with reviews, class and
function documentation, pedagogical vignettes (as discussed above), style
checking of code, unit testing of individual functions and continuous integra-
tion testing. Before we began to design the software, the team had a mix
of skill levels in software engineering, with some having not done any formal
development previously, including the use of Github; others had little or no
experience in transmission dynamics modelling. As such, the process of cre-
ating comomodels produced a useful byproduct – it taught a host of (mostly)
early career scientists how to do software engineering and introduced them
to epidemiological modelling in the midst of a pandemic.

4. Results

We used the comomodels package to produce three key lessons in under-
standing the transmission of COVID-19, which are contained within dynamic
R markdown vignettes included as supplementary materials. In this section,
we provide a brief description of these.

4.1. On the numerical solution of compartmental models

All of the models considered in comomodels are systems of ODEs which
do not have general analytical solutions. Thus, for any set of parameter
values, the equations are solved approximately using numerical methods. In
the vignette labelled “S1”, we first describe a simple approach to solving
differential equations using a fixed step size and demonstrate the importance
of choosing an appropriate step size for the SEIRD model. In particular, we
show that simulations of daily cases and deaths obtained using a daily time
step differ significantly from those obtained with smaller steps. Next, we
provide a brief overview of adaptive step size solvers and show how these are
used in comomodels to obtain accurate solutions with reasonable runtimes.
Finally, we illustrate how allowing discontinuous changes in intervention vari-
ables, such as vaccination coverage, can cause problems for numerical solution
of compartmental models, and we describe approaches to avoid some of these
issues.

Overall, these analyses demonstrate the importance of considering inbuilt
ODE solvers not as oracular – rather as a set of tools which must be yielded
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with care and consideration. Of particular import when doing applied mod-
elling is to experiment with the numerical solver step size to investigate if
substantial changes to the outputs result when step size is decreased. If so,
this signifies that the ODE solution has likely been poorly approximated.

4.2. The importance of uncertainty in age-specific contact patterns for quan-
tifying COVID-19 risk

Contact matrices are an important element of age-structured transmission
dynamics models, where they are used to dictate intra- and inter-generational
mixing (eq. (3)). In the “S2” vignette, we perform a type of sensitivity
analysis on this element of the model. To do so, we use the socialmixr
package (with POLYMOD contact data (Mossong et al., 2008)) to generate
bootstrapped samples of the contact matrix in the United Kingdom. By
performing multiple simulations of the SEIRDAge model (once for each con-
tact matrix sample), we propagate the uncertainty in the contact matrix and
estimate the corresponding uncertainty in epidemic trajectories and deaths.
The results show substantial uncertainty in both of these quantities, motivat-
ing the importance of incorporating uncertainty in the contact matrix either
when making projections or when performing inference on age-structured
models.

4.3. The importance of sensitivity analysis and model inference

Epidemiological models allow us to infer key model parameters of the dis-
ease from data, such as the infection rate. Using these parameter estimates,
the models can be used to predict the trajectory of an ongoing epidemic. The
reliability of such predictions, however, rests on (a) whether the model itself
is a faithful approximation of reality and (b) whether the data are sufficient
to identify parameters.

In the “S3” vignette, we show how using limited data, typical of that
encountered early on during an epidemic, can lead to considerable uncertainty
in key model parameter estimates. In particular, we use early COVID-19 case
incidence and deaths data for London (UK Health Security Agency (UK
HSA), 2021) collected early on during the first wave in 2020 to illustrate
that many diverse parameter sets are compatible with the observed data. A
consequence of this is that, at that stage in the epidemic, there were many
plausible future epidemic trajectories.

To further illustrate this issue with model identifiability, we conduct a
profile likelihood analysis (Murphy & Van der Vaart, 2000; Kreutz et al.,
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2013) using simulated data. This analysis highlights the difficulties involved
in estimating the parameters of the SEIRD model directly from observed
cases and deaths, particularly early on during the epidemic. This means
that, in reality, a number of key parameters are typically estimated using
other sources of data – for instance, studies of patients admitted to hospital
with COVID-19.

5. Discussion and conclusion

The mathematical models used to inform public health policy for COVID-
19 are often large and intricate, due to the inherent complexities of the mani-
fold ways that this epidemic has affected society. Understanding these models
can be challenging, particularly for those new to infectious disease modelling.
Our software, comomodels, helps people to understand the common mod-
elling motifs that appear in these models: bridging the gap between intro-
ductory SEIRD models and more intricate models used for policymaking.

As models become more complex, there is a greater chance of coding
errors. Accordingly, we designed the comomodels package using robust soft-
ware development practices, including unit testing and continuous integration
testing.

The package thus far focuses on deterministic compartmental models of
COVID-19 transmission dynamics. A number of other modelling frameworks
have been used, including stochastic compartmental models (e.g. Ferguson
et al. (2020)) and stochastic renewal models (e.g. Flaxman et al. (2020);
Nouvellet et al. (2021)). Compartmental models have also been extended
spatially, to allow spatial variation in transmission and to explore how inter-
and intra-country mobility patterns influence transmission (Ferguson et al.,
2020; Keeling et al., 2021; Danon et al., 2021). In the future, we intend to
expand the package to explore further these modelling frameworks.
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