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Abstract 
In full-scale ambient vibration tests, challenging situations exist where in the frequency 

domain the measured data is dominated by other modes that ‘bury’ the subject mode of 

interest. In this case, conventional modal identification methods are either not applicable or 

inefficient to apply. This paper proposes a Bayesian frequency domain method for identifying 

the modal properties of such buried modes. The buried-mode situation is modelled and 

computation difficulties are addressed, leading to an efficient algorithm for modal 

identification in such challenging situation. The proposed method is validated by synthetic 

data examples. The associated uncertainty of the identified modal parameters are investigated. 

The method is also applied to identifying the buried modes of a long-span suspension bridge, 

demonstrating its utility with challenging modes encountered in field test data. 
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1. Introduction 
Ambient modal identification, conventionally known as ‘operational modal analysis’ (OMA), 

aims at identifying the modal properties (normally includes natural frequencies, damping 

ratios and mode shapes) of a structure under ambient excitation conditions [1]. OMA is a 

popular tool for assessing the in-situ modal properties of large scale civil infrastructure as it 

can be performed economically and efficiently under working conditions without artificial 

loading [2–4]. Ambient vibration test is becoming an important task in dynamic assessment 

of long-span bridges, e.g., early application on Golden Gate Bridge [5], long-term structural 

health monitoring of Tamar suspension bridge [6] and recent studies based on wireless 
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sensing systems [7,8]. It has also been widely used to investigate the dynamic properties of 

tall buildings subjected to strong winds [9–12].  

OMA is an ‘inverse’ or ‘backward’ problem where one is interested in gaining knowledge 

about the instrumented structure based on measured response rather predicting the response 

based on assumed properties (as in a ‘forward’ problem). Methods have been developed in 

both non-Bayesian and Bayesian manner. Bayesian methods view probability as a measure of 

plausibility that depend explicitly on available information (data) and assumptions. Non-

Bayesian methods view probability as a relative frequency of occurrence among conceptually 

repeated experiments. In OMA, non-Bayesian methods are conventional. Popular ones 

include stochastic subspace identification (SSI, time domain) [13–15] and frequency domain 

decomposition (FDD, frequency domain) [16]. Bayesian OMA methods are developed more 

recently and are less conventional. Methods based on different types of information have 

been developed, e.g., in the time domain [17] and in the frequency domain based on sample 

power spectral density (PSD) [18–20] and fast Fourier Transform (FFT) of measured data 

[21,22]. Among these, methods based on FFT are preferred as they do not involve averaging 

concepts (not so for PSD methods) and they allow one to make inference based on the FFT of 

a selected band around the subject mode (not possible in the time domain), which 

significantly simplifies the identification model and reduce the modelling error. See [23] for a 

recent monograph.  

Under ambient excitations, the magnitude of different modal response cannot be actively 

controlled and this can lead to challenging situations. One well-recognised situation is that of 

an inadequately excited mode below instrument noise level, for which artificial means (e.g., 

shaker) is necessary if the mode is desired, or dismissed (if ever known) from the set of 

identified modes. Another situation, which is less commonly discussed but nevertheless 

relevant and shall be focussed in this work, is that of a ‘buried mode’. In the frequency 

domain, even near the natural frequency of the mode of interest, the measured data is 

dominated by other modes. This renders conventional modelling and identification strategies 

inapplicable or inefficient. One typical case where buried-mode situation may occur is OMA 

with long-span bridges. The modal response in the vertical direction (mainly due to traffic) is 

often much larger than that in the transverse direction (mainly due to wind). When combined 

in a single data set, some transverse modes can be buried by vertical modes. To illustrate, 

Figure 1 shows the root PSD (power spectral density) spectrum calculated from a set of 

ambient data measured on a long-span bridge (see Section 6.3 for details later). Even in their 
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resonance bands, Mode 1 and Mode 2 (dominant in transverse direction with spectral peaks 

in solid lines) are ‘buried’ by their neighbouring modes (dominant in vertical direction with 

spectral peaks in dashed lines), whose spectral contributions are significant. Applying 

conventional frequency domain algorithms for well separated modes to identifying buried 

modes will incur significant modelling error because the unaccounted contribution from the 

burying modes cannot be modelled by simple prediction error models, e.g., independent and 

identically distributed (i.i.d.) among different measured degrees of freedom (DOFs). 

Two intuitive strategies are often used to handle buried modes. One strategy is to select (i.e., 

use the FFT as data) a frequency band that includes spectral peaks of both the subject (buried) 

mode and the dominant (burying) mode; and identify them together using a multiple 

(possibly closely-spaced) mode algorithm [24]. One issue with this strategy is that the two 

modes need not be close, necessitating a very wide band that significantly increases the 

modelling error risk (e.g., due to the contribution of other modes or unmodeled coloured 

activities in the band) and causes bias in the identification results. Mode 2 in Section 6.3 is a 

typical example where additional spectral peaks can be found between the burying mode and 

Mode 2 itself, which leads to identification errors and even convergence problems for the 

multiple mode algorithm. Another intuitive strategy is to identify using only the data of those 

measured DOFs not dominated by the burying modes. In this case, algorithms for well-

separated modes can be applied but the mode shape values in the excluded DOFs cannot be 

identified. Note also that this strategy is only feasible when the burying contribution appears 

only in the excluded DOFs, e.g., vertical DOFs for long-span bridges.  

 

Figure 1. Root PSD Spectrum of Setup 1 (Dashed line: Vertical Direction; Solid Line: 

Transverse Direction; Details: See Section 6.3) 
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Motivated by the above considerations, this work proposes a Bayesian OMA method for 

buried mode capable of utilising all measured DOFs (i.e., no need to exclude DOFs), 

maintaining the efficiency of well-separated mode algorithms while avoiding modelling error 

from burying modes. The buried mode situation is modelled and the likelihood function for 

Bayesian inference is derived. A fast algorithm is then developed for efficiently determining 

the most probable values of modal parameters. The proposed method is validated and the 

identification uncertainty is investigated using synthetic data examples. The method is also 

applied to identifying the buried modes of a long-span bridge, where the applicability of the 

proposed method to field test data with challenging issues are discussed.  

2. Modelling buried mode 
The spectral characteristics of the buried mode and the burying mode are first investigated in 

this section. Focusing on the frequency range around the resonance peak of the buried mode, 

the theoretical PSD matrix for buried mode cases is modelled. Based on this model, the 

likelihood function is derived, which leads to the Bayesian OMA algorithm in the next 

section.  

Let { }N

j
n

j R
1

ˆ
=

Îx&&  denote the time histories of the measured ambient acceleration data with n  

measured DOFs and N  samples per DOF. The ‘scaled’ FFT of { }jx̂&&  is defined as: 

( )( )å
=

úû
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êë
é --
-
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112expˆ2 ix p&&F  (1) 

where 12 -=i and tD is the sampling interval. kF  corresponds to frequency 

( )Hz /)1(f tNkk D-=  for  ,...1 qNk = , where ( ) 12/int += NNq  (int(.) denotes integer part) 

is the index corresponding to the Nyquist frequency. Without loss of generality, consider the 

FFT of data kF  dominated by two modes: 

1 1 2 2k k k kh h= + +φ φ ε&& &&F  (2) 

where 1φ  and 2φ  denote the mode shape of the burying and the buried mode, respectively; 

1kh&&  and 2kh&& denote the corresponding FFT of modal acceleration; and kε  is the scaled FFT of 

prediction error due to measurement noise or modelling error.  
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Assuming classically damped modes, the modal acceleration satisfies the modal equation of 

motion: 

 ( ) ( ) ( ) ( )22i i i i i i it t t p th z wh w h+ + =&& &  1,2i =  (3) 

where 2i ifw p= (rad/s); if (Hz), iz  and ( )tpi  are the natural frequency, damping ratio and 

modal force of the mode.  

The modal force is modelled as a stationary process with a constant spectral density matrix; 

and prediction error as Gaussian white noise with a constant PSD, i.i.d. among the measured 

DOFs. The theoretical PSD is then given by 

*[ ] T
k k k k e nE S= = +E ΦH Φ IF F  (4) 

where [ ] 2
1 2

nR ´= ÎΦ φ φ ; eS  is the (constant) PSD of prediction error, nI  denotes the 

n n´  identity matrix and 2 2
k C ´ÎH  is the theoretical PSD matrix of modal acceleration 

given by: 

( ) ( )*
k k kdiag diag=H h S h  (5) 

Here, S  is the (constant) PSD matrix of modal forces, 2
k CÎh  is the vector of modal 

frequency response function with 

 ( ) ( )
12 1 2ik ik kh b zb

-
é ù= - +ë ûi  fik i kfb =  (6) 

and ( )kdiag h  denotes a diagonal matrix with the i th element equal to ikh .  

 

Figure 2. Schematic Diagram of Buried Mode Situation 
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The PSD matrix for modal acceleration in Eq.(4) holds for general multiple modes situation. 

To facilitate computation, it is now modified by taking account of the buried mode situation. 

Consider the frequency band around the resonance peak of the buried mode. The buried and 

burying modes are assumed to be well-separated, for otherwise they should be identified by 

existing closely-spaced modes algorithm [24]. The situation is illustrated in Figure 2. The 

symbol ‘[-]’ denotes the selected frequency band, whose FFT data will be used for making 

Bayesian inference (entering into the likelihood function). Without loss of generality, the 

figure assumes that the burying mode appears on the left of the buried mode, for otherwise 

the magnitude of its transfer function (hence FFT of modal response) in the band is inversely 

proportional to the frequency separation and hence small (no burying situation). The fact that 

the selected band is at the tail of the burying mode leads to simplification of the modal 

frequency response function kh  in Eq.(6). When the burying mode is on the left-hand side of 

the mode of interest and is well apart, 1 1kh -∼  and ( )kdiag h  can be approximated as 

( )
2

1
k

k

diag
h

-é ù
» ê ú

ë û
h  (7) 

This is justified when ( )2
1 2/ 1f f = . To see this, note that 1kh  depends on 1f  through the 

term 1kb . Within the frequency band of interest, i.e., around the resonance peak of the buried 

mode, kf  is close to 2f  and hence 1 1 2/k f fb ∼ . For small damping, 1kh  is dominant by the 

term ( )2 1ikb -  and 1 1kh -∼  when 2
1 1kb = . 

Since the natural frequency and damping ratio of the burying mode are reflected in the 

theoretical PSD matrix (hence likelihood function) of data through the term 1kh  (which has 

now been approximated as -1), these properties are unlikely to be identifiable from the 

selected band. This is intuitive as the selected frequency band covers only the tail of the 

burying mode. This also implies that it is not possible to identify these two modes together 

using the original multiple mode algorithm [24] (e.g., the optimisation process for MPV will 

not converge) unless a wider frequency band involving the spectral peaks of both modes are 

used (which increases modelling error risk).  On the other hand, using a conventional well-

separated mode algorithm will lead to significant modelling error because the contribution of 

the burying mode cannot be accounted by a conventional prediction error model (e.g., i.i.d.) 

even when it is off-resonance in the selected band. The modal contribution of the burying 
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mode is significant among different DOFs and is neither independent nor identically 

distributed. The mode shape values of the burying mode 1φ  are still involved in the 

theoretical PSD matrix kE  (see Eq. (4)). The identifiability observation in Eq.(7) leads one 

to use a simplified model (rather than the original two-mode model) for identifying the buried 

mode, where unidentifiable parameters (i.e., natural frequency and damping ratio of the 

burying mode) are excluded. At the same time, the frequency band does not need to be 

unnecessarily wide, which effectively reduces modelling error due to unaccounted activities. 

Quantitatively, buried mode situation refers to the case when the modal contribution of one 

mode is larger than the modal contribution of the mode of interest in the selected frequency 

band. In this case, the former is considered as the burying mode and the latter is considered as 

the buried mode. In practice, the most direct way is to examine the singular value spectrum 

(i.e., the plot of eigenvalues of the PSD matrix kE . When there are significant eigenvalues 

that are larger than the spectral peak of the mode of interest, the effect of such modal 

contribution cannot be neglected and buried mode situation should be considered.  

3. Bayesian algorithm for most probable value 
Based on the theoretical PSD matrix for the buried mode in the last section, a Bayesian OMA 

method is developed in this section. For notational simplicity, the mode index i  is omitted in 

the following sections. The natural frequency and damping ratio of the buried mode will be 

abbreviated as f  and z , respectively. Let { }kF  denote the set of FFT data in the selected 

frequency band used for modal identification with fN  points; and θ denote the set of modal 

parameters to be identified (see Section 3.2 later for details). Using Bayes’ theorem and 

assuming a uniform prior distribution, the posterior probability density function (PDF) of θ  

given { }kF  is proportional to the likelihood function, i.e., { }( ) { }( )θθ kk pp FF µ . For high 

sampling rate and long data duration, it is a standard result in signal processing that { }kF  are 

asymptotically independent at different frequencies and jointly ‘complex Gaussian’ [25]. The 

likelihood function then can be given by 

{ }( ) ( )Õ å ú
û

ù
ê
ë

é
-´= ---

k k
kkkk

nN
k

fp FFF 1*1 expdet)( EEθ p  (8) 
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where ‘*’ denotes conjugate transpose and ][ * θE kkk E FF=  is the theoretical PSD matrix. 

For analysis or computation, it is more convenient to write: 

{ }( ) [ ])(exp θθ Lp k -µF  (9) 

where 

( ) åå -+=
k

kkk
k

kL FF 1*detln EEθ  (10) 

is the ‘negative log-likelihood function’ (NLLF).  For sufficient data, modal identification 

problem is ‘globally identifiable’ [26]. The most probable value (MPV) of θ  can be 

determined by maximising the posterior PDF, or equivalently minimising the NLLF with 

respect to θ .  

Brute-force numerical optimisation of the NLLF is not feasible as the measured DOFs n  can 

be moderate or large in real applications. Similar to other Bayesian FFT approaches, 

analytically resolving the dependence and singularity of the determinant and inverse of kE  

on the mode shape is the key to developing an efficient algorithm for the buried mode. 

The theoretical PSD matrix kE for buried mode involves the mode shape matrix Φ  (see 

Eq.(4)), which is similar to that in general multiple mode cases. To suppress the growth of 

computation effect when optimising the NLLF, the mode shape matrix Φ  is expressed 

through an orthonormal basis. Assume that the mode shape subspace has a dimension of 2, 

for otherwise the two mode shapes are not distinguishable. Define an orthonormal basis 

[ ] n nR ´
^¢ ¢= ÎB B B , where 2nR ´¢ÎB  is an orthonormal basis spanning the mode shape 

subspace and ( 2)n nR ´ -¢̂ ÎB  is an orthonormal basis in the orthogonal complement of ¢B . The 

mode shape matrix now can be represented as 

¢=Φ B α  (11) 

where 2 2R ´Îα  is the coordinate matrix of Φ  with respect to basis ¢B . Using the 

orthonormal properties of ¢B , it can be shown that [24] the determinant and inverse of kE  

are 
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2
2det det det det det detT n

k k e n e kS S -
-¢ ¢= =E B E I B E  (12) 

( )1 1 1 1
2

T
k e n e e kS S S- - - -¢ ¢ ¢= - -E I B I E B  (13) 

where k¢E  can be considered as a condensed form of kE  given by 

2
T

k k eS¢ = +E αH α I  (14) 

Substituting into the NLLF in Eq.(10), the NLLF now can be expressed as: 

( ) ( ) ( )

( )

1

1 * 1
2

2 ln ln detf e e k
k

T
e k e k k

k

L n N S S d

S S

-

- -

¢= - + +

¢ ¢ ¢- -

å

å

θ E

B I E BF F
 (15) 

where 

*
kkd FF=  (16) 

The dimension of the matrix computation involved in the NLLF (i.e., k¢E ) is now 2, which is 

much smaller than n  in the initial expression. The mode shape basis has also been segregated 

out in the NLLF and can now be optimised through the last (quadratic) term in Eq.(15) with 

orthonormal constraints.  

An efficient iterative algorithm is proposed in Section 3.1 to optimise the mode shape matrix 

using the Caley Transform [27] to preserve the orthonormal constraint. The remaining 

parameters then can be obtained based on the MPV of mode shape basis (see Section 3.2), 

and vice versa, which leads to an iterative algorithm. Proper parameterisation schemes are 

also proposed to preserve the constraints on the remaining parameters so that their MPV can 

be determined through unconstrained optimisation. 

3.1 Most probable mode shape basis by Caley transformation 

The NLLF in Eq.(15) depends on the mode shape basis ¢B  through the last (quadratic) term. 

The MPV of ¢B  should be obtained by minimising the latter, which can be written as 

( )1 * 1
2

T
q e k e k k

k
L S S- -¢ ¢ ¢= - -å B I E BF F  (17) 

subjecting to constraint 
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2
T¢ ¢ =B B I  (18) 

This is an optimisation problem with orthogonality constraints. In the Bayesian multi-mode 

algorithm [24], a rotation matrix is proposed to take care of the orthonormal constraints and 

¢B  is updated through Newton iteration. However, this requires proper parameterisation of 

the free angles in the rotation matrix. The gradient and Hessian of qL  with respect to these 

free angles also need to be derived, which cannot be expressed in concise forms. To address 

these issues, ¢B  is determined through the Cayley transformation, which is also known as a 

type of Crank-Nicolson-like updating scheme [28]. It has been widely applied in solving 

inverse eigenvalue problems [29], heat equations and partial differential equations [30]. With 

proper step size, it is found that the Cayley transformation can also provide an efficient 

strategy for solving optimisation problems with orthogonality constraints [27]. Specifically, 

¢B  can be updated by 

1

2 2updated
t t-

æ ö æ ö¢ ¢= + -ç ÷ ç ÷
è ø è ø

B I D I D B  (19) 

where t  is the step size and  

T T¢ ¢= -D GB B G  (20) 

Here, G  is the gradient of qL  with respect to ¢B  given by 

( )1 * 1
22 Ree k k e k

k
S S- -é ù¢ ¢= - -ê ú

ë û
åG B I EF F  (21) 

Eq.(19) is the closed form expression of the new trial point based on the Crank-Nicolson-like 

updating scheme with orthogonality constraints. It can be obtained as an extension of finding 

the p-harmonic flow [31]. Detailed derivation (see [27]) is omitted as it is out of the scope of 

this paper. The Barzilai-Borwein step size [32] is used in this work for t  to guarantee 

convergence with nearly no extra cost. Compared to the rotation matrix method, this updating 

scheme does not require parameterisation of free angles and the Hessian matrix of qL . The 

MPV of mode shape basis now can be efficiently determined given the remaining parameters.  

3.2 Most probable spectral parameters 
Despite the mode shape basis, the remaining parameters include , , ,f z S α  and eS . Some 

parameters are subjected to constraints. Instead of incorporating these constraints into the 

optimisation procedure through numerical techniques (e.g., Lagrange multiplier), it is more 
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convenient to propose a parameterisation scheme that can automatically take care of the 

constraints. This issue has been investigated before and the approach here follows [24]. 

The mode shape coordinate matrix α  is subjected to the unit norm constraint inherited from 

the mode shape matrix Φ , i.e., 

( ) ( ) ( ) ( ) ( ) ( ) ( ) 2 1T T TTi i i i i i i¢ ¢= = = =α α α B B α Φ Φ Φ  (22) 

where ( )iα  and ( )iΦ  denote the i -th column of matrix α  and Φ , respectively. A 

parameterisation scheme is adopted that transfers the scaling of the modal force PSD to α

such that the resulting parameters are unconstrained. Specifically, define 

( ) ( ) ( )11 221 2s diag S Sé ù= = ë ûα α S α α  (23) 

Substituting into k¢E  in Eq.(14) gives 

2
T

k s k s eS¢ ¢= +E α H α I  (24) 

where 

( ) ( )*
k k kdiag diag¢ ¢=H h S h  (25) 

Here, ¢S  is the dimensionless form of modal force PSD matrix with diagonal elements equal 

to 1 and off-diagonal elements equal to the coherence between the modal forces of the 

burying and buried modes, i.e., 

1
1
c

c
é ù¢ = ê ú
ë û

S  (26) 

where 

12

11 22

S
S S

c =  (27) 

The coherence c  is subjected to the constraint 1c £ . For numerical optimisation, this 

constraint can be preserved by representing c  in terms of the angle { },u v  such that: 
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( )sin expu vc = i  (28) 

Based on the foregoing parameterisation, the unconstrained parameters sα  and { },u v  are 

used through the optimisation procedure in place of α  and S . After obtaining the MPV of 

sα  and { },u v , the latter can be recovered. Specifically, 

( ) ( )
( )

ˆ
ˆ

ˆ
s

s

i
i

i
=
α

α
α

 (29) 

( ) 2ˆii sS i= α  (30) 

for 1, 2i =  and  

( )12 11 22
ˆ ˆ ˆ ˆ ˆsin expS S S u v= i  (31) 

Here, a hat ‘^’ denotes MPV. 

4. Initial guess of modal parameters 
In this section, proper initial guess of modal parameters for the iterative procedure is 

investigated. This is mainly based on the asymptotic characteristics of the MPV of modal 

parameters when the PSD of modal responses is much larger than that of the prediction error 

(i.e., high signal-to-noise ratio) within the selected frequency band. It can be shown that the 

asymptotic MPV of ¢B  and eS  can be obtained analytically and the remaining parameters 

can also be empirically determined given the measured data or nominally assigned. The 

results are similar to the case of closely-spaced modes [24] so detailed derivations are omitted 

in this section.  

The high signal-to-noise ratio condition refers to the case when 

1
2 2e kS -¢-I E I∼  (32) 

In this context, qL  in Eq.(17) can be expressed as: 

( ) ( ) ( ) ( )

1 *

1 1 1 2 2

T
q e k k

k

T T
e

L S

S

-

-

¢ ¢-

é ù¢ ¢ ¢ ¢= - +ë û

å B B

B DB B DB

∼ F F
 (33) 

where 
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*
k k k

k k
= =å åD D F F  (34) 

Due to the orthonormal properties of ¢B  (i.e., ( ) ( )T
iji j d¢ ¢ =B B  for , 1, 2i j = ), it is easy to 

show that the quadratic term in Eq.(33) is maximised (hence qL  is minimised) when ( )1¢B  

and ( )2¢B  are the eigenvectors of D  corresponding to the first two largest eigenvalues 

(normalised to unit norm).   

The initial guess of prediction error eS  can also be obtained based on the high signal-to-noise 

ratio asymptotic. The condensed form of theoretical PSD matrix k¢E  in Eq.(14) is dominated 

by the modal responses under high signal-to-noise condition and hence asymptotically 

independent of eS . The NLLF now depends on eS  through the terms without k¢E , which can 

be rewritten as 

( ) ( ) ( ) ( )12 ln terms do not depend on f e e eL n N S S d d S- ¢= - + - +θ  (35) 

where 

* T
k k

k
d ¢ ¢ ¢= å B BF F  (36) 

The NLLF are of the form ln /x a x+  in terms of eS . This form has a unique minimum of 

1 ln a+  at x a= . This yields the asymptotic MPV of eS  as: 

( )
ˆ

2e
f

d dS
n N

¢-
-

∼  (37) 

 

The initial guess of modal force PSD matrix S  can be empirically obtained by noting that 

around the resonant frequency of the mode, the first two largest eigenvalues of kD  in Eq.(34) 

are approximately equal to 11S  and 2
22 / 4S z . By nominally assuming the damping ratio of 

the mode of interest as 1%, 22S  can be roughly estimated.  

The initial guess of the remaining parameters can be nominally assigned. The initial guess for 

the natural frequency f  can be simply picked from the spectral peak of the mode of interest 

in the singular value spectrum. The initial guess for damping ratio can be nominally assumed 

as 1% (say). The angles of the coherence value { },u v  can be nominally assigned as 0.1, say. 
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The initial guess of the mode shape coordinate matrix α  can be assigned as 1 for diagonal 

terms and small random values for off-diagonal terms. The unconstrained parameter sα  then 

can be calculated in terms of the initial guess of α  and { }iiS  using Eq.(23).  

5. Summary of procedure 
Based on the foregoing analysis, an iterative procedure is proposed to determine the MPV of 

modal parameters for buried mode. Instead of optimising all the parameters simultaneously, 

the proposed method optimises them in groups (given the remaining parameters) and iterate 

until convergence. The convergence tolerance in the iteration can be set as 10-3 (say) on a 

fractional basis for all parameters. The iterative scheme is summarised as follows: 

1) Calculate the FFT of the measured data and plot the singular value spectrum. 

2) Select the frequency band for the mode of interest. 

3) Calculate the initial guess for , , , , ,s ef u v Sz α  and ¢B  according to Section 4. 

4) Update sα  and u  by minimising L  in Eq.(15). 

5) Update v  by minimising L  in Eq.(15). 

6) Update f  and z  by minimising L  in Eq.(15). 

7) Update eS  by minimising L  in Eq.(15). 

8) Update ¢B  using Eq.(19). 

Repeat Step 4 to 8 until convergence. 

After determining the MPVs of , ,s u vα  and ¢B , the MPV of α  can be obtained using Eq.(29) 

and the MPV of S  can be obtained using Eq.(30) and Eq.(31). The MPV of mode shape can 

be obtained based on the MPV of ¢B  and α  by 

ˆˆ ˆ¢=φ B α  (38) 

 

6. Illustrative examples 
Three examples are presented to illustrate the proposed method. The first example is based on 

synthetic data, which serves to verify the consistency of the method. The identification 

uncertainty is also discussed in this example. The identification quality of modal parameters 
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under different modal force PSDs of the burying mode are investigated in the second example 

based on a parametric study. In the third example, the proposed method is applied to modal 

analysis of field test ambient data measured on a long-span bridge. Modal identification 

focuses on two buried modes encountered in the measured data, where identification results 

are compared with those based on conventional methods that assume multiple modes with a 

wide frequency band and single mode around the resonance peak of the buried modes using 

data channels in the buried direction only. Challenges in field test conditions are also 

discussed. 

6.1 Synthetic data (validation) 
Consider a structure with six DOFs. Two modes are assumed for this structure with natural 

frequencies of 1Hz and 5Hz, respectively (while the other four modes are not considered 

when generating the synthetic data). The damping ratios of these two modes are assumed to 

be 1%. The mode shapes of these two modes (see Figure 3) are set to be [ ]1, 2,3, 4,5,6 T  and 

[ ]3,5, 4,1, 2, 5 T- -  respectively (simulating shear building behaviour) and normalised to unit 

norm (i.e., sum of squares equal to 1). The first mode is the burying one subjected to a white 

noise modal force with a PSD of 8 21 10 g /Hz-´ . The second mode is the buried one subjected 

to a white noise force with a PSD of 12 21 10 g /Hz-´ ,i.e., the RMS (root-mean-squared value) 

is 1% of the burying mode force. The modal forces of these two modes are correlated, with a 

coherence of 0.5. The simulated data is contaminated with i.i.d. Gaussian white noise with a 

PSD of 11 22.5 10 g /Hz-´ . A set of synthetic data is generated for 1000s with a sampling 

frequency of 100Hz. 

Figure 4 and Figure 5 show the (root) PSD and singular value spectrum of the data, 

respectively. It is difficult to detect the buried mode solely from the PSD spectrum. The 

spectral peak of the buried mode can be found as the second singular value in the plot of the 

singular value spectrum. The remaining singular values roughly reflect the noise level of the 

measured data. The two modes are well apart so a wide frequency band covering the spectral 

peaks of both modes is needed to identify modal parameters using conventional multi-mode 

algorithms. This is not necessary for the proposed method. Only the FFT points around the 

resonance peak of the buried mode are selected for modal identification. The frequency band 

selected to identify the buried mode in this example is [4.8 5.2]Hz.  
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Figure 3. Mode Shapes, Synthetic Data Example (Solid Line: Exact; Square: MPV) 

 

Figure 4. Root PSD Spectrum, Synthetic Data Example 
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Figure 5. Root Singular Value Spectrum, Synthetic Data Example 

Table 1. Identified Modal Parameters (MPV), Synthetic Data Example 

Mode 
(Hz)f  ( )%z  ( )12 210 g /HzS -  ( )11 210 g /HzeS -  c  

MPV Exact MPV Exact MPV Exact MPV Exact MPV Exact 
2 4.995 5.000 0.96 1.00 1.02 1.00 2.50 2.50 0.47 0.5 

 

Table 1 lists the identified modal parameters based on the proposed method. It can be seen 

that the proposed method provides a good estimation on the modal parameters of the buried 

mode where the identified values are quite close to the exact ones. Figure 3 plots the 

identified mode shapes (squares) and the exact ones (solid lines). These two types of mode 

shapes almost coincide. The MAC (modal assurance criterion) values are calculated to be 

0.9999 and 0.9949 for Mode 1 and 2, respectively. Although modal analysis focuses on the 

buried mode, the proposed method can also provide a good estimation on the mode shapes of 

the burying mode.  

In addition to the MPVs, the associated uncertainty of the identified modal parameters has 

also been investigated. In a Bayesian context, the identification uncertainty can be 

quantitatively assessed through the posterior covariance matrix (whose square root of the 

diagonal entry gives the posterior standard deviation of the corresponding modal parameters), 

which is equal to the inverse of Hessian of the NLLF at MPV. In this test, the posterior 

covariance matrix is calculated using the finite difference method and the identification 
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posterior standard deviation / MPV). Specifically, the posterior c.o.v. of mode shape is given 

by the square root sum of the eigenvalues of the corresponding partition in the full posterior 

covariance matrix [33]. For comparison, synthetic data simulating the single mode case 

without the buring mode was generated and the identification uncertainty was calculated 

using [34]. Table 2 lists the identification uncertainty of the modal parameters for these two 

cases. The posterior c.o.v.s of the natural frequency and damping ratio of the buried mode are 

similar to the values in the single mode case, suggesting that the burying situation does not 

have much effect on the identification uncertainty of these two parameters. This is not the 

case for the mode shape, however. The posterior uncertainty of the mode shape for the buried 

mode is significantly larger than that for the single mode case.  

Table 2. Identification Uncertainty of Modal Parameters 

 Posterior c.o.v. (%) 
Natural Frequency Damping Ratio Mode Shape 

Buried Mode 0.07 7.6 16 
Single Mode 0.06 8.9 1.3 

 

6.2 Effect of PSD of modal force for the burying mode  
In real applications, the ratio between the modal force PSD of the buried mode and that of the 

burying mode can be different. The spectral peak of the mode of interest can be partially 

buried by the burying mode or totally buried. In this example, such effect on the MPV and 

the identification quality of the mode of interest is investigated through a parametric study 

using synthetic data. Consider the same data configuration in Section 6.1 except for the 

modal force PSD of the burying mode. Six scenarios with increasing modal force PSD of the 

burying mode are considered, i.e. 11 21 10 g /Hz-´ , 10 21 10 g /Hz-´ , 9 21 10 g /Hz-´ , 8 21 10 g /Hz-´ , 
7 21 10 g /Hz-´  and 6 21 10 g /Hz-´ , giving the ratio of the modal force PSD between the two 

modes from 10 to 610 . Figure 6 shows the root singular value spectrum for these six 

scenarios based on a typical data set, respectively. For the first three scenarios, the mode of 

interest is partially buried by the burying mode as its modal response at the resonance peak is 

still larger that the modal response of the burying mode. On the other hand, the mode of 

interest is fully buried by the burying mode in the last three scenarios. For each scenario, 

1000 data sets are simulated to investigate the sample mean and variance of the identified 

modal parameters.  
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The sample mean of the identified natural frequencies and damping ratios of the buried mode 

among simulated data sets are calculated to be 5Hz and 1% respectively for all the scenarios, 

suggesting practically no bias in the MPV of these two parameters.  

Table 3 lists the sample c.o.v of natural frequency and damping ratio MPVs of the buried 

mode among the simulated data sets. It should be noted that the sample c.o.v. investigated in 

this example is different from the posterior c.o.v. discussed in the previous example. The 

posterior c.o.v. is the unresolved uncertainty given measured data and model assumptions 

while the sample c.o.v. also involves the effect of modelling error. The ratio of modal force 

PSDs is the one between the modal force PSD of the burying mode and that of the buried 

mode. It can be seen that the sample c.o.v.s are of the same order of magnitude among 

different scenarios for both frequency and damping ratio. The PSD of modal force for the 

burying mode has little effect on the identification accuracy of these two parameters. This is 

not the case for the identified mode shapes, however. Figure 7 shows the sample mean of the 

mode shape MAC against the ratio of modal force PSDs. The MAC values are calculated 

between the identified mode shape and the exact mode shape that is used to generate 

synthetic data. It can be seen that the MAC values are close to one for the first four scenarios, 

suggesting good estimation quality on the identified mode shapes. However, there is a 

decrease in the MAC values for the last two cases. This indicates that when the modal force 

of the burying mode is several orders of magnitude larger than that of the buried mode, the 

mode shape of the buried mode cannot be well identified. This is reasonable as the mode 

shape value for a particular channel can only be identified based on the measured data within 

that channel. When the modal response of the burying mode is extremely large in some 

channels, the randomness in those channels will also be very high, which affects the 

estimation of the mode shape values for the buried mode. 
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Figure 6. Root Singular Value Spectrum for The Six Scenarios 

Table 3. Sample c.o.v.s of Natural Frequency and Damping Ratio MPVs (buried mode) 

Modal Parameters Ratio of Modal force PSDs  
10 102 103 104 105 106 

( )41 10f -´  10 8.7 8.3 8.0 7.9 8.5 

( )21 10z -´  8.6 7.3 7.5 7.5 7.2 7.5 
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Figure 7. Sample Mean Mode Shape MAC against Ratio of Modal Force PSD (buried mode) 
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Figure 8. Jiangyin Yangtze River Bridge 

 

Figure 9. Elevation of Jiangyin Yangtze River Bridge 
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Ambient vibration tests were conducted on this bridge in April 2017. Eight uniaxial force-

balanced accelerometers with three data acquisition (DAQ) units were used in the test. Figure 

10 shows a set of equipment for each measurement location on site. Due to the limited 

number of sensors and DAQ units, multiple setups were conducted, roving from the south 

side to the north side of the bridge in order to capture the overall vibration pattern of the 

bridge. Most of the setups are conducted on the east side of the bridge deck with one on the 

west side (capturing the torsional modes) and three on the south tower (capturing the tower 

motion).  For the measurement locations on the deck, the sensors were placed near the hanger 

with a spacing of 4 hangers (48m) between two locations. The vibration responses in vertical 

and transverse directions were measured (see Figure 10). For the setups on the bridge tower, 

the vibration responses were measured in transverse and longitudinal directions. Two 

reference locations near the south tower of the bridge were chosen in order to assemble the 

overall mode shapes of the bridge. Despite the reference locations, each setup covers two 

measurement locations with 13 setups in total (i.e., ( )2 13 2 2 56´ + ´ =  DOFs). One hour of 

ambient data was measured in each setup with a sampling frequency of 25.6Hz. See [36] for 

detailed field implementation and OMA of this test. 

 

Figure 10. Equipment per Measurement Location on Site 
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Figure 1 (see Section 1) shows the (root) PSD spectrum of the measured data in the first setup. 

It can be seen that there are two groups of data with PSDs of different orders of magnitude. 

The upper plots (dashed lines) correspond to vertical direction and the lower ones (solid lines) 

correspond to the transverse direction. This is a typical situation in ambient vibration tests for 

long-span bridges as the traffic load (in the vertical direction) is normally much larger than 

the wind load (in the transverse direction). The corresponding root singular value spectrum is 

shown in Figure 11. Modal identification in this example focuses on two buried modes 

(indicated in the spectra) with natural frequency around 0.145Hz and 0.24Hz, respectively. 

Identification results based on the proposed method are investigated by comparing with those 

based on a wide band with two modes; and those based on a narrower band with a single 

mode using transverse channels only [24]. The overall mode shapes are assembled based on 

the identified mode shapes within individual setups using the global least square method [37]. 

 

Figure 11. Root Singular Value Spectrum of Setup 1 

Mode 1 

Mode 1 is buried by the mode with a natural frequency about 0.13Hz on the left-hand side. It 

should be noted that in some setups, this mode is not fully buried (i.e., the spectral density of 

this mode at its resonance peak is higher than that of the mode on its left-hand side. In this 

context, the order of the initial guesses ( )1¢B  and ( )2¢B  (see Section 4.1) need to be 

swapped when forming the mode shape basis ¢B  as the largest singular value now reflects the 

spectral properties of the buried mode instead of the burying mode.  
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Figure 13 shows the identified mode shape based on the proposed method; the conventional 

method assuming multiple modes (abbreviated as ‘multi-mode method’) and single mode 

(abbreviated as ‘single mode method’), respectively. The selected frequency band for the 

proposed method and single mode method is [0.14 0.16]Hz and that for the multi-mode 

method is [0.12 0.16]Hz (to involve the burying mode). It is a transverse mode with a modal 

node in the middle of the bridge. It can be seen that the assembled overall mode shapes based 

on these methods generally agree well with each other. Figure 12 shows the identified natural 

frequencies and damping ratios in individual setups for the proposed method and multi-mode 

method, where the dashed line represents the mean value among the setups. The identified 

values between these two methods are generally close to each other but discrepancies can be 

found in some setups, especially for the identified damping ratios. This is reasonable as they 

are actually identified based on the FFT data in different frequency bands where the wide 

band for the multi-mode method may involve more modelling error. For the single mode 

method, the mode shape values in the vertical direction are not identified and are set to zero 

in the plot. It can be seen that the transverse part of the identified mode shape based on the 

proposed method also agrees well with the one based on the single mode method.  

 

Figure 12. Identified Natural Frequency and Damping Ratio of Mode 1 Among Setups (Blue 

Circle: Proposed Method; Black cross: Multi-mode Method; Dashed Line: Mean Value) 
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Figure 13. Identified Mode Shape of Mode 1, (a) Proposed Method (b) Multi-Mode Method 

(c) Single Mode Method 

Mode 2 

Figure 14 shows the identified mode shape of Mode 2 based on the proposed method and the 

single mode method, respectively, where the selected frequency band is [0.237 0.242]Hz. It is 

a mode swaying in both vertical and transverse directions, but with lopsided transverse 
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horizontal data channels only. Similar to the first mode, the identified mode shapes are close 

to those horizontal parts based on the proposed method. However, the vertical motion of this 

mode cannot be identified as only transversal data channels are used in modal identification 

in this case. 

 

Figure 14. Identified Mode Shape of Mode 2 (a) Proposed Method (b) Single Mode Method 

 

Figure 15. Root PSD Spectrum of Setup 5 (Dashed Line: Vertical Direction; Solid Line: 
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7. Conclusions 
This paper has proposed a Bayesian modal identification method for buried modes based on 

ambient vibration data.  Buried mode situation happens when the spectral response of a mode 

is significant around the resonance peak of the mode of interest. In this context, the spectral 

characteristics of the latter can be buried by the former within the frequency band of interest. 

Such a situation has been modelled around the resonance peak of the buried mode and the 

Bayesian modal identification formulation for the buried mode has been derived. 

Computational difficulties have been addressed and a fast iterative procedure has been 

proposed for efficient determination of MPVs of modal parameters. The proposed method 

has been validated using a synthetic data example. The example shows that the burying 

situation does not have a significant effect on the identification uncertainty of the natural 

frequency and damping ratio. However, the identified mode shape has much larger 

uncertainty compared to the single mode case. A parametric study illustrates that the 

proposed method can provide a good estimation of natural frequencies and damping ratios. 

The identification quality of mode shapes is also good unless the PSD of modal force for the 

burying mode is several orders of magnitude larger than that of the buried mode. The 

proposed method has been applied to modal identification of the buried modes in a full-scale 

ambient test. As seen in this example, the proposed method can provide a good estimation on 

the modal properties of buried modes under field test conditions. The proposed method 

involves reduced modelling error and computational effort as modal identification focuses on 

the FFT data around the resonance peak of the buried mode. Compared to conventional 

methods where only a subset of the data channels is used for modal identification, the mode 

shape values of the buried mode in all measured DOFs now can be identified using the 

proposed method. This provides an opportunity to gain more insights on the nature of buried 

modes, especially the mode shape. New information on bridge behaviour might be revealed 

by re-examination of data sets from long-span bridge investigations using traditional OMA 

procedures.  

This paper mainly focuses on determining the MPV of modal parameters for buried mode 

situations. Deriving the analytical expressions of the posterior uncertainties for buried mode 

situations is also an important task in the development of OMA techniques, which can be one 

of the future works. In this paper, the proposed method only considers one burying mode and 

one buried mode. In practice, more complicated situation can be encountered with more than 

one buring mode or more than one buried mode within the frequency band of interest. 
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Bayesian OMA methods for such situation can be developed based on the general multiple 

mode algorithms but the relationship between the modes should be well considered. For 

example, one mode can be buried by another mode while it can also bury the third mode. In 

this case, whether this mode should be considered as the burying mode or buried mode 

depends on the mode of interest and different assumptions and models should be applied. 

Further development based on this issue can be challenging but the resulting method will be 

useful in practice. 
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