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Abstract—In offline data-driven multiobjective optimization, no
new data is available during the optimization process. Approx-
imation models, also known as surrogates, are built using the
provided offline data. A multiobjective evolutionary algorithm
can be utilized to find solutions by using these surrogates.
The accuracy of the approximated solutions depends on the
surrogates and approximations typically involve uncertainties.
In this paper, we propose probabilistic selection approaches
that utilize the uncertainty information of the Kriging models
(as surrogates) to improve the solution process in offline
data-driven multiobjective optimization. These approaches are
designed for decomposition-based multiobjective evolutionary
algorithms and can, thus, handle a large number of objec-
tives. The proposed approaches were tested on distance-based
visualizable test problems and the DTLZ suite. The proposed
approaches produced solutions with a greater hypervolume,
and a lower root mean squared error compared to generic
approaches and a transfer learning approach that do not use
uncertainty information.

Index Terms—Kriging, Gaussian processes, metamodelling,
surrogate, kernel density estimation, Pareto optimality

1. Introduction

Sometimes, real-world multiobjective optimization prob-
lems (MOPs) consisting of conflicting objectives do not have
analytical functions or simulation models. Instead, the start-
ing point for optimization is data obtained by, e.g. physical
experiments, sensors or real-life processes. The available
data can be used to build surrogates (also known as meta-
models) that approximate the underlying objective functions
involved in the phenomenon. Optimization can be performed
using these surrogates by embedding them in multiobjective

Figure 1: Individuals in the surrogate objective space (left)
and underlying objective space (right) for a minimization
problem.

evolutionary algorithms (MOEAs) which have proven to
be suitable in solving black-box optimization problems [1].
Data-driven optimization can be categorized as online or
offline. In online data-driven optimization problems, getting
more data e.g. by conducting further (expensive) function
evaluations is possible, which enables updating the surro-
gates [2]. However, if no additional data can be acquired
during the optimization process, it is known as offline data-
driven optimization [3], which is the main focus of this
paper.

Updating the surrogates is not possible in offline data-
driven optimization [4]. Thus, while solving an offline MOP,
the approximation accuracy and hypervolume of the solu-
tions obtained are entirely dependent on the optimization al-
gorithms used and the surrogates (that involve uncertainty).

In Figure 1, we show an illustration of the objective
values and uncertainties of a few individuals approximated
by surrogates (e.g. Kriging). For simplicity, we call the
objective space of the individuals evaluated with the sur-
rogates and the underlying objective functions as surrogate
objective space and underlying objective space, respectively.
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The red individuals dominate the green ones in the surro-
gate objective space. However, as can be observed, these
nondominated individuals also have higher uncertainties. On
the right, we show the same individuals evaluated with the
underlying objective functions. It can be observed that the
green individuals dominate most of the red ones. Thus,
while solving offline data-driven MOPs, utilizing just the
surrogates’ mean approximation can lead to worse solutions.
One way to tackle this problem is by using the uncertainty
from the surrogates.

Most of the previous works on offline data-driven op-
timization such as [2], [3], [5] do not consider uncertainty
information provided by the surrogates. In [6], optimization
is assisted by coarse and fine surrogates. A coarse surrogate
is used by the MOEA to find a promising subregion in the
search space. Later, the knowledge about good solutions
from the coarse search is transferred to the fine search.
On the other hand, the works in [7], [8], [9] utilize the
approximated uncertainty information provided by Kriging
surrogates. The works in [7], [9] use probability of dom-
inance that can be applied to dominance-based MOEAs.
The approach in [8] utilizes the approximated uncertainties
as additional objective function(s), thereby minimizing the
objective values along with the uncertainties in the solutions.
However, this approach increases the number of objectives
and thus increases the complexity of the optimization prob-
lem.

A generic approach to solve offline MOPs using MOEA
utilises the mean approximations of surrogates as objectives
(without uncertainty). The MOEA finds a set of approx-
imated nondominated solutions that represents the trade-
offs between the objectives. However, the performance of
traditional MOEAs such as MOGA [10], MO-CMA-ES
[11], and NSGA-II [12], etc. deteriorates when the number
of objectives increases [13], [14], [15]. Decomposition-
based MOEAs (e.g. MOEA/D [15], NSGA-III [16] and
RVEA [14]) have explicitly been developed to handle a large
number of objectives (> 3).

In this paper, we propose a probabilistic selection ap-
proach and an extended version of it that incorporate un-
certainty information in the solution process of offline data-
driven MOPs. The proposed approaches utilize techniques
such as Monte-Carlo sampling [17] and kernel density esti-
mation (KDE) [18] to estimate the probability of selection
criterion in decomposition-based MOEAs. This is partic-
ularly advantageous when the closed form of the proba-
bility is not available. The proposed approaches are novel
in their adaptability or “plug and play” feature for any
decomposition-based MOEAs without the requirement of
further analytical derivations specific to the MOEA.As an
example, we incorporate the proposed probabilistic selec-
tion approaches in RVEA and MOEA/D for solving offline
MOPs.

The numerical experiments show that the first proba-
bilistic selection approach produces solutions with a better
accuracy compared to the generic approach. The second
approach proposed is a hybrid selection approach that em-
ploys a combination of both the probabilistic and the generic

selection approaches. The hybrid approach produces solu-
tions better in hypervolume when compared to the parent
approaches. To summarize, the main contributions are:

• Uncertainty information from the surrogates are uti-
lized in the selection process of decomposition-
based MOEAs.

• Easy adaptability to any decomposition-based
MOEA without any need of analytical derivations.

As we use decomposition-based MOEAs, the proposed ap-
proaches are capable of handling a large number of objec-
tives.

The rest of the paper is organized as follows. Basic nota-
tions, the background of a generic approach, decomposition-
based MOEAs and probabilistic selection are discussed in
Section II. The proposed probabilistic and hybrid selec-
tion approaches are presented in Section III. Experimental
results with analyses are compiled in Section IV. Finally,
conclusions and future research perspectives are discussed
in Section V.

2. Background

In offline data-driven MOPs, there exists no functional
form or simulation model which can be accessed during
the optimization process. The available (pre-collected) data
is the output of a process or phenomenon. As mentioned
in the introduction, we refer to the process generating the
offline data as underlying objective functions. We consider
the underlying MOPs of the following form:

minimize {f1(x), . . . , fK(x)},
subject to x ∈ Ω,

(1)

where K ≥ 2 is the total number of objectives, and Ω is
the feasible region of the decision space Rn. For a feasible
decision vector x, the corresponding objective vector is f(x),
that comprises of the underlying objective (function) values
(f1(x), . . . , fK(x)).

A solution x1 ∈ Ω dominates another solution x2 ∈ Ω if
fk(x1) ≤ fk(x2) for all k = 1, . . . ,K and fk(x1) < fk(x2)
for at least one k = 1, . . . ,K. A solution of an MOP is
nondominated if it is not dominated by any other feasible
solution. An MOEA typically produces solutions that are
nondominated within the set of solutions it has found.
The solutions of (1) that are nondominated in Ω are also
called Pareto optimal solutions. In what follows, we refer to
solutions of MOEAs as approximated Pareto optimal ones.
The set of solutions in the objective space is called the
Pareto front and the corresponding set of decision vectors
is the Pareto set.

2.1. Generic Offline Data-Driven Multiobjective
Optimization

The generic approach to solve offline MOPs is shown in
Figure 2. As described in [3], [4], the solution process can
be split into three stages which are (a) data collection, (b)
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Figure 2: Flowchart of a generic offline data-driven multi-
objective optimization approach.

formulating the MOP and surrogate building, and (c) opti-
mization using an MOEA. The initial step of data collection
may include pre-processing if necessary. Surrogates are then
built using the provided offline data. Some of the popular
surrogates that are used for solving offline data-driven MOPs
are Kriging [19], neural networks [20], and support vector
machines [20]. Finally, an MOEA is used to solve the MOP
with the surrogates as objectives.

2.2. Decomposition-based MOEAs in Brief

Decomposition-based MOEAs are designed to solve
MOPs with more than three objectives [21], [22]. In general,
they decompose the problem into a number of single objec-
tive subproblems using scalarizing functions (e.g. MOEA/D
[15]) or multiple MOPs (e.g. MOEA/D-M2M [23], NS-
GAIII [16] and RVEA [14]). In this paper, we use RVEA
and MOEA/D as two decomposition-based algorithms and
apply our proposed approaches in them. These algorithms
start by creating a set of N uniformly distributed unit
reference vectors (or weight vectors) vj (j = 1, . . . , N).
The population of individuals is P and the objective vectors
for the individuals are F =

{
f1, . . . , f|P |

}
consisting of |P |

individuals. The ith individual in P is denoted by Ii. The
vector of minimum objective function values present in the
given population is zmin = (zmin

1 , . . . , zmin
K ).

2.2.1. MOEA/D in brief. MOEA/D [15] performs search
in the neighbourhood of each reference vector, it updates
the population sequentially. In each neighbourhood, the off-
spring population is generated using crossover and mutation,
which is then compared with the parent population. A selec-
tion criterion, e.g. PBI or Tchebycheff scalarizing function,
is used to select the population for the next generation. In
this article, we use PBI as the selection criterion and evaluate
it for x as:

gPBI
x = d1 + ρd2, (2)

where parameter ρ is the penalty term that
balances between convergence and diversity,
d1 = ||(zmin − f(x))Tvj ||/||vj || and d2 =
||f(x) − (zmin − d1vj)||, respectively. Here vj is the
jth reference vector in the neighbourhood. MOEA/D
updates solutions in their neighbourhood by checking if
gPBI
x′ ≤ gPBI

xj
, then set xj = x′ and f(xj) = f(x′).

Here, x′ is the offspring and xj is the jth solution in the
neighbourhood.

2.2.2. RVEA in brief. The RVEA algorithm first translates
the objective vectors as f ′i = fi−zmin, where i = 1, . . . , |P |.

It then splits the population into subpopulations by assigning
individuals to reference vectors by measuring the cosine
between the reference vector and the translated objective
vector. The cosine value between the jth reference vector
vj and the ith translated objective vector f ′i is given by:

cos θi,j =
f ′i · vj

∥f ′i∥
, (3)

where ∥f ′i∥ is the Euclidean norm. An individual Ii is
included in the zth subpopulation P̄z if it has the lowest
angle θi,j between f ′i and vz (or highest cosθi,j value). The
index of the zth reference vector to which individual Ii is
assigned is:

Ii|z = argmax
j∈{1,...N}

cos θi,j . (4)

After the individuals are assigned to subpopulations, RVEA
selects the zth individual from each subpopulation, which
has the minimum APD between the ith individual and the
jth reference vector according to:

Iz|z = argmin
i∈{1,...,|P̄j|}

di,j , (5)

where APD (or di,j) is defined as,

di,j = (1 + P (θi,j)) · ||f ′i ||. (6)

Here P (θi,j) = K · (t/tmax)
α · θi,j/γvj

is the penalty func-
tion depending on θi,j , and γvj

= mini∈1,...,N,i ̸=j ⟨vi,vj⟩,
is the smallest angle between reference vector vj and the
other reference vectors. Here t is the generation counter,
tmax is the maximum number of generations and α controls
the rate of change of P (θi,j). For more details, see [14].

2.3. Probabilistic Selection in Single Objective Op-
timization

We here provide an overview of probabilistic selection in
single objective optimization, which is then further extended
to solve offline data-driven MOPs. Let us consider a single
objective offline data-driven minimization problem where
the given data may have noise due to e.g., experimental or
measurement error. The total uncertainty is due to the noise
in the data (that can be estimated by Kriging surrogate)
and the uncertainty in the approximation. Due to this, an
individual with worse (greater) underlying objective values
may be selected.

For example, in Figure 3, we have individuals A and B
with uncertain objective values. These two individuals have
a normally distributed probability density function (PDF).
The red star shows an example of a random sample y drawn
from PDFA. When a random sample is drawn from PDFB ,
we may observe a smaller value than y thus making us
select the individual with a worse objective value. The total
probability of selecting the wrong individual B over A by
observing a specific sample is the total area in the shaded
region under PDFB , or cumulative density function (CDF)
of B (denoted by CDFB(y)). The probability of drawing a
random sample y is PDFA(y). Thus the total probability of
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Figure 3: Probability of choosing the individual with worse
underlying objective value in selection between two indi-
viduals with uncertain objective values (approximated by
the surrogate) for a single objective minimization problem.

a random sample drawn from PDFB being smaller than y is
PDFA(y) ·CDFB(y). The probability of wrongly choosing
B over A when the underlying objective value of A is
smaller than that of B according to [7] is:

Pwrong(A > B) =

∫ ∞

−∞
PDFA(A−y)·CDFB((A−y) >

(B − y)) dy, (7)

We can replace CDFB as an integral of PDFB as:

Pwrong(A > B) =

∫ ∞

−∞
(PDFA(y)·

∫ y

−∞
PDFB(µ)dµ) dy.

(8)
The work in [7] used the following equation for com-

paring a set of individuals with uncertain objective values
and ranking them based on their probabilities:

Ri =

|P |∑
n=1

Pwrong(In > Ii)− 0.5, (9)

where Ri is the ranking score given to the ith individual
Ii. The total number of individuals to be compared is |P |,
and Pwrong(In > Ii) is the probability of making a wrong
decision in selection such that the fitness of Ii is smaller
than the fitness of In. A value of 0.5 is subtracted from
the ranking function as Pwrong(Ii > Ii) is always 0.5. The
individual with the best fitness value will have the smallest
rank or has the smallest probability of making the wrong
selection.

3. Probabilistic decomposition-based MOEAs

We utilize uncertainty in decomposition-based MOEAs
and propose approaches to solve offline data-driven MOPs.
Hence, the original selection process in decomposition-
based MOEAs has to be modified to utilize the uncertainty
approximated by the surrogates. This can be done by utiliz-
ing (7) and (8) to formulate a probabilistic selection criterion

specific to the MOEA. The probability of the selection
criterion can be computed analytically. However, this is
quite complex in decomposition-based MOEAs, and the
selection criterion has to be tailor-made for every variant of
MOEA. Next, we describe our plug and play probabilistic
approaches.

We summarize the generalized steps of the proposed
probabilistic approach in Algorithm 1. We start with offline
data of size ND. Next, we build a Kriging surrogate for each
underlying objective and initialize N uniformly distributed
unit reference vectors [24]. For initializing the population
we use the provided offline data set. We generate offspring
using crossover and mutation in the neighbourhood (a fixed
number in MOEA/D and the maximum number of reference
vectors in RVEA) and use Kriging models for approximating
the objective values of the offspring. As the approximation
distribution of Kriging surrogate is Gaussian, the multivari-
ate PDF [19] for Ii is:

PDFIi =

K∏
k=1

1

σ̂i,k

√
2π

exp

(
− (fk − f̂i,k)

2

2σ̂2
i,k

)
, (10)

where f̂i,k is the approximated kth objective function value
for the ith individual with σ̂i,k as its standard deviation.

We draw S samples using Monte-Carlo sampling [17]
from the distribution in (10) for the ith individual. Individ-
uals are then assigned to sub-populations in a probabilistic
manner depending on the decomposition-based MOEA. The
selection criterion is then calculated for all the generated
samples of objective values. In the next step, we apply
Kernel density estimation (KDE) [18] to approximate the
distribution of the selection criterion depending on the
decomposition-based MOEA. However, we may skip this
step if the closed form distribution of the selection criterion
is available (e.g. weighted sum and Tchebycheff as shown
in the supplementary material). We then use these estimated
PDFs to select individuals in a probabilistic way. The details
of KDE are provided in the supplementary material. The
reference vectors are then adapted after a certain number of
generations (or function evaluations) to obtain a uniformly
distributed set of solutions [14]. The stopping criterion is the
maximum number of function evaluations performed with
surrogates.

3.1. Probabilistic Selection in RVEA

The two major modifications to incorporate uncertain-
ties in approximated objective values in RVEA are a) the
assignment of individuals to reference vectors and b) the
selection of an individual using probabilistic APD (steps 10
and 11, respectively, in Algorithm 1).

3.1.1. Probabilistic Assigning to Reference Vectors. As
mentioned in Section II, assigning individuals to respective
reference vectors in RVEA depends on the objective values
as in (3). However, when the objective values (provided by
the Kriging models) have uncertainties, assigning individu-
als can not be deterministic. Hence, in step 10 we perform a
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Algorithm 1: Probabilistic decomposition-based
MOEA

Input: Offline data of size ND; N = number of
reference vectors; FEmax = maximum
number of function evaluations using
Kriging surrogates; S = number of samples
to be used for estimating the distributions

Output: Approximated solutions
1 Build Kriging surrogates for each objective using

the given offline data
2 Use the given data as the initial population;

initialize the number of function evaluations
FE = 0

3 Create a set of uniformly distributed unit reference
vectors V0 of size N

4 Find the neighbourhood for each unit reference
vector

5 while FE < FEmax do
6 Perform crossover and mutation on population

and generate offspring
7 Evaluate the individuals using the Kriging

surrogates and combine the parents and
offspring

8 Update FE = FE + |Poffspring|
9 Draw S samples using Monte-Carlo from the

distribution approximated by the surrogates
10 Perform algorithm specific sub-population

assigning
11 Perform algorithm specific probabilistic

selection
12 end

probabilistic assigning of individuals to reference vectors by
using the distribution of the approximated objective values.

As explained previously, we draw S samples using
Monte-Carlo sampling from the distribution in (10) for
the ith individual in the current population. The vector of
samples is used to calculate cos θi,j,l for the ith individual
and jth reference vector using (3), where l = 1, . . . , S is the
sample number. These samples can then be used to estimate
the PDF of cos θi,j using KDE. We use (9) for ranking the
PDFs of cos θi,j that gives us the rank Ri,j . We use the
following modification of (4) to include an individual to a
subpopulation:

P̄z =

{
Ii|z = argmax

j∈{1,...,N}
Ri,j

}
, (11)

where

Ri,j =

N∑
n=1

Pwrong( cos θi,n > cos θi,j)− 0.5 (12)

and P̄z is the zth subpopulation and Ri,j is the probabilistic
rank of assigning an individual to a subpopulation.

Computing Pwrong in (8) is computationally expensive
as it involves double integration. Hence, calculating Ri,j

in (12) for all the individuals becomes computationally
expensive with a complexity of O(N ·|P |). This is especially
high when the numbers of individuals and reference vectors
are large. To reduce the computation time, we calculate how
many samples out of S for every individual are assigned to
different reference vectors instead of performing numerical
integration. By such a voting mechanism, the ith individual
is assigned to the reference vector to which most samples
are assigned.
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Figure 4: Distribution of samples drawn for two individuals
with different mean objective values (indicated by the red
star) and standard deviations (indicated by ellipses). The
colour code indicates the reference vector a sample drawn
from the PDF of the individual is assigned to. The reference
vector the individual is assigned to is indicated by the
number.

We provide an illustration of the probabilistic assigning
of individuals to reference vectors in Figure 4. It shows the
samples drawn for two individuals in the objective space
for the approximated distribution and the corresponding
reference vectors they are assigned to. Samples assigned
to a reference vector are colour coded. The red stars show
the mean of the distributions of objective values for the
individuals as approximated by the surrogate. The ellipses
show the distributions of objective values for two standard
deviations. It can be observed in sub-figure (a) that most of
the samples are ‘blue’ or get assigned to reference vector
‘1’. Hence we can assign the individual to reference vector
‘1’. However, in sub-figure (b) when the distributions of
objective values are changed, the individual gets assigned
to reference vector ‘2’.

3.1.2. Probabilistic Angle Penalized Distance. After as-
signing individuals to reference vectors, we select one in-
dividual from every subpopulation in step 11 of Algorithm
1. Given a subpopulation and its associated individuals with
their PDFs, we utilize the samples for each individual and
calculate their APD values using (6). These samples of
APD values are used to estimate the distribution of APD
for every individual, PDFdi,j

using KDE. In this work, we
used Gaussian kernel and adopted the Silvermann’s rule
[25] for selecting the bandwidth parameter that controls
the smoothness of the estimated distribution. The estimated
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PDFs of APD are ranked by modifying (5) utilizing (9) as:

Pnextgen =

Iz|z = argmin
i∈{1,...,|P̄j|}

R′
i,j

 , (13)

where

R′
i,j =

|P̄j|∑
n=1

Pwrong(dn,j > di,j)− 0.5. (14)

The rank of the ith individual in the subpopulation P̄j is
R′

i,j . The zth individual Iz is selected from subpopulation
P̄j , where j = 1, . . . , N , for population of the next genera-
tion Pnextgen.

To find R′
i,j in (14), a pairwise comparison between

PDFdi,j has to be performed. Thus, the computation cost
of performing the probabilistic selection is O(

∣∣P̄j

∣∣2), where∣∣P̄j

∣∣ is the number of individuals in the jth subpopula-
tion. The overall computation cost becomes high due to
the double integral involved while finding Pwrong between
PDFdi,j

of two individuals. Besides, there is an additional
computation cost involved while performing the KDE of
PDFdi,j

.
We propose an approach to compute Pwrong in an

efficient way. As we know from (13), the calculation of
the rank matrix R′

i,j in (14) is a pairwise comparison. Thus
Pwrong between an APD distribution with itself is always
0.5. Also, the computation needs to be done just once for
the same pair. We can alter the calculation of Pwrong as
follows:

Pwrong(dn,j > di,j) =

{
0.5 if n = i,

1− Pwrong(di,j > dn,j) if n > i.
(15)

The double integration in (8) with the inner integral
responsible for calculating the CDF from the approximated
PDF contributes the most to the computation cost. Instead,
we can use a coarse approximation of the CDF by computing
the empirical CDF from the APD samples which would
reduce the computation cost. To compute Pwrong in (8),
the lower limit during integration can be changed to zero
instead of −∞. This is because APD can never attain a
value below zero, and thus the PDF should be adjusted to
estimate the probability density for APD values lower than
zero. An illustration of the estimated PDF and empirical
CDF calculated from the APD samples is shown in Figure
5(a). To further reduce the computation cost, Pwrong values
for all the subpopulation individuals are computed in par-
allel. Applying all the proposed cost reduction approaches
reduced the computation cost for computing the rank R′

i,j
for every generation.

3.2. Probabilistic Selection in MOEA/D

In MOEA/D, the assignment of solutions for each ref-
erence vectors is performed by defining the neighborhood
of each vector [15]. Thus, step 10 in Algorithm 1 can be

skipped. Next we demonstrate how to implement probabilis-
tic selection with PBI as selection criterion (in step 11 of
Algorithm 1).

Similar to the probabilistic selection in RVEA, we first
draw S samples from the approximated distribution of ob-
jectives for the individuals in the neighbourhood and the
offspring. The vector of sampled objective values is used to
calculate PBI samples for the jth individual in the neigh-
bourhood and the offspring that we call as gPBI

xj,l
and gPBI

x′
l

,
respectively, where l = 1, . . . , S. Next, we approximate the
PDF of gPBI

xj
and gPBI

x′ using KDE. Again, similar to the
probabilistic RVEA, we use Gaussian kernel and Silver-
mann’s rule to select the bandwidth parameter. Since we
are comparing PDFs of PBI, we need to modify the update
operation in generic MOEA/D and calculate the Pwrong

utilizing (7). We update the solutions in the neighbourhood
by checking if Pwrong(g

PBI
x′ ≤ gPBI

xj
) < 0.5, then set

xj = x′ and f(xj) = f(x′).
It has to be noted that the comparison of PDFs of PBI

is one to many, whereas for PDFs of APD its pairwise. In
Figure 5(b), we show the estimated PDF of PBI samples for
one of the individuals and the empirical CDF.
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Figure 5: Samples drawn, histogram, estimated PDF and
empirical CDF of the selection criterion for (a) RVEA
(APD) and (b) MOEA/D (PBI) for one individual.

We illustrate the potential of the proposed probabilistic
selection approach for a bi-objective minimization prob-
lem in Figure 6. It shows different individuals with uncer-
tain objective values, with error bars representing the 95%
confidence interval of the approximated distributions. The
numbers represent the reference vector / sub-population the
individuals are assigned to. Green individuals are the ones
selected from a sub-population. It can be observed that for
the individuals assigned to reference vector ‘2’, the original
selection criterion (generic approach) selects the individual
that is better in objective values even though it has a much
higher uncertainty. On the other hand, the probabilistic
approach selects the individuals that are worse in terms of
objective values but have comparatively lower uncertainties.
For the individuals assigned to reference vector ‘0’, both
the individuals have the same approximated mean values.
However, the probabilistic approach selects the one with
lower uncertainties. For individuals assigned to reference
vector ‘3’ or in its neighbourhood, both the individuals have
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the same uncertainties with slightly different objective val-
ues. One can see that both the generic and the probabilistic
approach select the same individual with a better value of
the selection criterion.
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Figure 6: Selection of individuals using (a) generic approach
and (b) probabilistic approach for a minimization problem.
Error bars show the 95% confidence interval of the distri-
bution of objective values approximated by the surrogates.
Colours ‘green’ and ‘red’ show the individuals that are
selected and not selected by the approaches, respectively.

3.3. Hybrid of Probabilistic and Generic Ap-
proaches

The proposed probabilistic approach tends to select indi-
viduals with better objective values and lower uncertainties
(or high approximation accuracy). On the other hand, the
generic approach, without incorporating any uncertainty,
produces solutions with better hypervolume. Hence, a hybrid
of the two approaches can provide the benefits of both and
produce a set of solutions with a wider range of uncertainties
and objective values. This is especially advantageous for
decision making due to the wider choices it provides [26].

Dataset (as
parents)

Build Kriging
surrogates

Start

if

?

Stop

Yes

Select parents for
next generation

No

Probabilistic
selection

Generic
selection

Generate
offspring

Evaluate with
Kriging models

Combine parents
and offspring

Figure 7: Flowchart for the hybrid approach.

A flowchart of the hybrid approach is shown in Figure
7. In the proposed hybrid approach, we select individuals
based on both the criteria. An equal proportion of solutions
from both the generic and probabilistic selection criteria
are selected. This choice also helped in avoiding the need
of introducing extra parameters. The redundant copies of
the individuals (that were selected by both the approaches)
are removed and the entire selected population is used for

further crossover and mutation steps. It has to be noted that
all the solutions obtained by the generic and the probabilistic
approach (that are equal in number) are used, and no further
parameters are required.

4. Experimental Results

In this section, we demonstrate the potential of the
proposed approaches embedded in RVEA and MOEA/D
by solving distance-based multiobjective visualizable test
problems (DBMOPP) [27] and DTLZ [28] test problems
with different numbers of objectives. DBMOPP problems
have certain advantages over traditional benchmark suites.
First, we can simultaneously visualize the solutions in both
decision and objective spaces. Second, we can visualize the
search behaviour with the number of function evaluations.
Third, these problems do not have a limitation of having the
same values of many decision variables on the Pareto set as
in the DTLZ problems.

Experimental setup

• Benchmark problems: Two sets of DBMOPP prob-
lems denoted as P1 and P2 (details are in the
supplementary material) utilizing the code in [29].
Test results with DTLZ suite are provided in the
supplementary material.

• Number of objectives (K): 2-10
• Number of decision variables (n): 10
• Termination (FEmax): 40000 function evaluations

with surrogates.
• Kriging parameters: Scikit-learn python library [30]

for Kriging with Gaussian kernel and BFGS [31] to
maximize the marginal likelihood.

• Approach specific parameters: Number of samples
for Monte-Carlo sampling S = 1000. For KDE we
used Gaussian kernel with a bandwidth parameter set
by Silvermann’s rule (for details, see supplementary
material).

• Other algorithms: We compared the proposed prob-
abilistic approaches for RVEA and MOEA/D with
three generic approaches that use the approximated
values (posterior mean in this case) denoted as
generic (Gen-RVEA and Gen-MOEA/D) and trans-
fer learning (TL) approach [6] and the initial sam-
ples (Init). The probabilistic approaches for RVEA
and MOEA are denoted by Prob-RVEA and Prob-
MOEA/D, respectively. The hybrid approaches for
RVEA and MOEA/D are denoted by Hyb-RVEA and
Hyb-MOEA/D, respectively.

• MOEA parameter settings: The reference vectors
were generated by simplex lattice design [24]. The
number of reference vectors was varied with the
number of objectives as in [24]. All the approaches
except TL used reference vector adaptation after
every 10th generation as in [14] for all test instances.
We used simulated binary crossover with distribution
index 30 and probability 1.0, polynomial mutation
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with distribution index 20 and probability 1/n. For
APD we set α = 2. For MOEA/D the neighbour-
hood size was 20 and θ in PBI varied from 0 to 500
with function evaluations.

• Number of independent runs for each instance: 31
• Performance metrics: We used hypervolume and

RMSE as metrics to measure the performance of the
tested approaches. Further details regarding metrics
and reference points are provide in the supplemen-
tary material.

• Size of the initial data set (ND): 109
• Sampling of the initial data set: Latin hypercube

sampling (LHS) and multivariate normal sampling
(MVNS). In MVNS sampling, the objectives were
considered to be independent with mean at the mid-
point of the decision space (0 for P1 and P2). The
variance of the sampling distribution was set to 0.1
for all the objectives. Similarly, the mean of the
distribution for DTLZ instances was set to 0.5 with
variance of 0.1 for all objectives.

All the approaches were implemented in Python utilizing
the DESDEO framework (desdeo.it.jyu.fi) 1. For the TL
approach, we used the Matlab implementation in [6].

It should be noted that we evaluated the approximated
solutions obtained with different approaches with under-
lying objective function values to calculate hypervolume
and RMSE. This is only for experimentation and such
evaluations may not be possible while solving real-life of-
fline MOPs. We refer to the hypervolume of the solutions
evaluated with the surrogates as surrogate hypervolume for
simplicity.

A pairwise Wilcoxon significance test [32] was con-
ducted between the different approaches and the calculated
p-values were later Bonferroni corrected. The threshold
α = 0.05 was considered for rejecting the null hypothesis.
The overall ranking of the approaches was done by a scor-
ing system where the approach considered as the alternate
hypothesis is given a score +1 when it is significantly better
than the null hypothesis. A score of zero is given if the
alternate approach is not significantly better or worse than
the null hypothesis. If the alternate approach is significantly
worse than the null hypothesis, it gets a score -1. The sum
of the scores of the hypothesis testings is used for ranking
all the approaches in a descending order of the score.

We show the median hypervolumes and RMSEs (along
with the standard deviations in different runs) for a few
DBMOPP test instances in Table 1. The items in bold
represent the best performing approaches. We also show the
heatmap for all the tested DBMOPP instances comparing
hypervolume and RMSE in Figure 8. The rankings of the
approaches are colour-coded from best (yellow) to worst
(purple) using the ‘viridis’ colourmap. It can be observed
that most of the yellow colours are around Prob-RVEA,
Hyb-RVEA and Prob-MOEA/D.

1. Python source code can be accessed from https://github.com/
industrial-optimization-group/offline data driven moea
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Figure 8: Heatmaps of: (a) hypervolume and (b) RMSE of
solutions obtained by initial sampling, transfer learning and
the generic, probabilistic and hybrid approaches for RVEA
and MOEA/D respectively for DBMOPP problem instances.

As we can observe, Hyb-RVEA and Prob-RVEA per-
formed best in terms of hypervolume followed by Prob-
MOEA/D. In terms of RMSE, Prob-MOEA/D performed
the best with Prob-RVEA coming second. For certain test
instances, the generic approaches and TL produced worse
solutions (both in hypervolume and RMSE) compared to
the initial sampling. This is because they do not consider
uncertainty in approximations when selecting solutions and
thus converged far from the Pareto front. Detailed results
on other DBMOPP and DTLZ instances are provided in the
supplementary material.

Overall, the probabilistic approaches outperformed their
generic counterparts, TL and initial sampling in both hyper-
volume and RMSE. However, we found that Hyb-MOEA/D
did not perform better than Prob-MOEA/D. This is because
of the extremely poor performance of Gen-MOEA/D in
terms of both hypervolume and RMSE.

We also show the progress or search behaviour of dif-
ferent approaches of the runs with median hypervolume
values in Figure 9. The first column shows the problem
instance and the initial samples (red ‘+’ showing the non-
dominated ones). The problem instance in the top row has
five objectives, and in the bottom row eight objectives with
two disconnected Pareto sets. The black circles with centers
denoted by ‘+’ are the Pareto set and dots on the circle with
different colors represent the points to which the objectives
or distances are minimized. In other words, if solutions are
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TABLE 1: Hypervolume (HV) and RMSE for a few DBMOPP test instances.

Sampling Problem K Metric Init. TL Gen-RVEA Prob-RVEA Hyb-RVEA Gen-MOEA/D Prob-MOEA/D Hyb-MOEA/D

LHS

P1 8
HV

9.09E+05 5.22E+05 5.98E+05 7.38E+05 6.88E+05 6.17E+05 6.52E+05 6.18E+05
(2.65E+04) (1.65E+05) (1.00E+05) (1.01E+05) (9.63E+04) (9.67E+04) (9.70E+04) (8.83E+04)

RMSE
— 1.76E+00 1.11E+00 1.59E+00 1.55E+00 1.73E+00 1.53E+00 1.61E+00

(3.92E-01) (4.01E-01) (3.69E-01) (3.87E-01) (4.16E-01) (3.93E-01) (3.84E-01)

P2 8
HV

7.33E+05 3.86E+05 7.77E+05 8.34E+05 8.16E+05 7.24E+05 7.78E+05 7.73E+05
(7.11E+04) (1.24E+05) (5.27E+04) (3.88E+04) (4.24E+04) (3.33E+04) (3.90E+04) (4.01E+04)

RMSE
— 1.56E+00 1.34E+00 1.48E+00 1.39E+00 1.67E+00 1.34E+00 1.46E+00

(2.76E-01) (3.48E-01) (2.96E-01) (2.23E-01) (2.81E-01) (3.21E-01) (3.23E-01)

MVNS

P1 6
HV

6.13E+03 7.22E+03 7.73E+03 8.62E+03 8.52E+03 7.78E+03 8.71E+03 7.78E+03
(4.31E+02) (1.82E-12) (3.35E+02) (3.23E+02) (3.24E+02) (4.50E+02) (3.76E+02) (2.53E+02)

RMSE
— 1.85E+00 1.77E+00 1.81E+00 1.80E+00 1.89E+00 1.79E+00 1.85E+00

(1.31E-01) (1.57E-01) (1.19E-01) (1.53E-01) (1.19E-01) (1.30E-01) (1.22E-01)

P2 10
HV

4.52E+07 3.37E+07 8.05E+07 8.62E+07 9.14E+07 6.96E+07 8.85E+07 8.70E+07
(2.92E+06) (1.10E+07) (8.61E+06) (9.34E+06) (4.53E+06) (7.29E+06) (2.74E+06) (4.60E+06)

RMSE
— 1.11E+00 5.00E-01 9.16E-01 9.43E-01 1.29E+00 4.50E-01 8.81E-01

(3.50E-01) (3.59E-01) (3.22E-01) (3.64E-01) (3.48E-01) (3.00E-01) (3.35E-01)
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Figure 9: Progress of the solution process with median hypervolume values. DBMOPP P1 with K = 5 with LHS and P2
with K = 8 with MVNS. The colour code represents the number of function evaluations during the solution process.

on or in the circle, they are on the Pareto front. Therefore,
with these visualizations, we can see how close the solutions
from an approach can get to the Pareto front. The next seven
columns show the progress of the solutions by evaluating
with the underlying objectives for the different approaches
tested. The color of the solutions represent the function
evaluations count, and the nondominated solutions of the
last generations are shown in red ‘+’. For visualizing the
solution of the tested DBMOPP problem instances, a 10-
dimensional decision space is projected to 2-dimensional.

It can be observed that Prob-RVEA in (d) and (l), Hyb-
RVEA in (e) and (m), Prob-MOEA/D in (g) and (o) and
Hyb-MOEA/D in (h) and (p) converged much closer to
the Pareto front. However, the solutions for the Gen-RVEA
in (c) and (k), Gen-MOEA/D in (f) and (n), and TL in
(b) and (j) converged further away from the Pareto front.
One can also see that the nondominated solutions in the
initial sampling in (a) and (i) are much closer to the Pareto
front compared to the generic approaches and TL. We also
observed that all approaches failed to get solutions closer
to both disconnected Pareto sets in the bottom row. This is

because of the lack of adequate offline data for solving such
MOPs.

In Figure 10, we show the surrogate hypervolume, hy-
pervolume in the underlying objective space and RMSE after
every 1000 function evaluations. As can be seen, the prob-
abilistic and hybrid approaches improved the hypervolume
in the underlying objective space with function evaluations.
However, the generic approaches and TL could not further
improve the hypervolume. On the contrary, the surrogate
hypervolume for TL improved with function evaluations and
the probabilistic approaches it gradually decreased. This is
because the probabilistic approaches reject solutions with
better objective values if they have high uncertainties. The
RMSE increased for all the approaches in the initial function
evaluations. However, in the later function evaluations, it
gradually reduced for the probabilistic approaches (espe-
cially for Prob-RVEA). The final RMSE in TL was the
worst.

The performances of the generic approaches and TL
were poor because they did not consider uncertainty in
the solutions during the optimization process. Hence, the
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Figure 10: Progress of the solution process with median hypervolume values. DBMOPP P1 with K = 5 and LHS showing
the variation of hypervolume (HV) in surrogate and underlying objective spaces, and RMSE with function evaluations.

solutions, when evaluated with the underlying objectives,
produced worse objective values compared to what was
observed in the surrogate objective space. TL performed the
worst because the sparse search adopted in the approach led
to faster convergence in the surrogate objective space but far
from the Pareto front.

5. Conclusions

We have proposed two probabilistic selection approaches
for solving offline data-driven MOPs. These approaches
are designed for decomposition-based MOEAs and utilize
uncertainty in the approximations of Kriging surrogates. The
first approach estimates the distribution of selection criterion
embedding in a decomposition-based MOEA. The second
one is a hybrid of the first approach and a generic approach
(that does not use any uncertainty in the approximations).
We demonstrated the potential of the proposed approaches
with RVEA and MOEA/D, that also showed its adaptability.
For benchmarking, we used several distance-based multi-
objective visualizable test problems and DTLZ problems.
We used different sampling techniques and numbers of
objectives.

Considering the accuracy of the solutions is often ne-
glected in offline data-driven optimization. The proposed
probabilistic approaches are more focused on improving the
accuracy of the solutions. A detailed analysis of quality
measures (hypervolume and RMSE), visualization of the
solution process and comparison with existing approaches
clearly showed the advantages of the proposed approaches.
For the problem instances tested, we can conclude that
depending on the indicators used, MOEAs and problem
characteristics, both probabilistic and hybrid approaches
have their strengths. However, if more accurate solutions
are required, the probabilistic approach should be preferred.

In future, we plan to test the proposed approaches in
other decomposition-based MOEAs with different normal-
ization techniques. We will also test on real-world problems
and develop approaches to handle constraints.
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