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Abstract 

The retrosplenial cortex and hippocampus are brain regions which have been 

shown to be highly involved in contextual memory. In order to discover 

neurophysiological correlates of contextual memory in these regions, we used in 

vivo electrophysiology in awake, behaving mice while they explored a series of 

novel and familiar environments. Additionally, in order to better understand the 

specific neurophysiological effects of Alzheimer’s disease-associated amyloid 

pathology on the retrosplenial cortex and hippocampus, we compared network 

activity between wild-type mice and J20 mice, a transgenic mouse model which 

develops widespread age-related amyloid pathology and memory impairments. 

We detected transient bursts of beta oscillations in both the retrosplenial cortex 

and hippocampus that were synchronous between these regions and 

upregulated during contextual novelty. Moreover, spiking of neurons in the 

retrosplenial cortex was significantly increased during beta bursts. In J20 mice, 

we noted numerous examples of altered network activity, including aberrant beta 

bursting which is not coupled to neuronal spiking. Through the use of EEG 

recordings in mice, we demonstrated that beta bursts can be detected across the 

cortex, and are highly synchronous between different brain regions. Finally, we 

demonstrated that it is possible to pharmacologically induce beta bursting in the 

retrosplenial cortex in vitro through the use of carbachol, a muscarinic 

acetylcholine receptor agonist, providing an assay for better understanding the 

mechanisms underlying beta bursting. These findings suggest that transient beta 

bursting across the brain provides brief windows of effective communication 

between brain regions, which may underlie the formation of cortical 

representation of contexts, and may be impaired in Alzheimer’s disease. 
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1 Introduction 

1.1 Retrosplenial Cortex 

1.1.1 Anatomy 

The retrosplenial cortex is made up of Brodmann areas 29 and 30 in humans 

(Brodmann, 1909), and named as such because it is found posterior to the 

thickest and most caudal part of the corpus callosum, known as the splenium 

(Morris et al., 2000). The anatomy of the retrosplenial cortex varies slightly 

between humans and rodents (Figure 1.1). In humans, the retrosplenial cortex is 

located deep within the brain, and forms part of the posterior cingulate cortex 

(Brodmann, 1909). In rodents, the retrosplenial cortex is far larger in comparison 

to the size of the brain, and found on the cortical surface, and due to the absence 

of Brodmann areas 23 and 31, makes up the entirety of the posterior cingulate 

cortex (Vogt et al., 2004). Brodmann areas 29 and 30 are also commonly referred 

to as the granular and dysgranular retrosplenial cortex, with dysgranular referring 

to the poorly defined layer IV (Vogt, 1976). In rodents, the dysgranular 

retrosplenial cortex is found on the ventral surface of the cortex, while the 

granular retrosplenial cortex is folded deep within the longitudinal fissure, directly 

above the corpus callosum. 

1.1.2 Connectivity 

In both primates and rodents, the retrosplenial cortex is reciprocally connected to 

specific thalamic nuclei and the subicular regions of the hippocampal formation 

(Figure 1.1, Groen and Wyss, 1990; van Groen and Wyss, 1992; Kobayashi and 

Amaral, 2003, 2007; Van Groen and Wyss, 2003). The retrosplenial cortex has a 

high degree of cortico-cortical connectivity, with reciprocal connections between 
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the entire retrosplenial cortex and the prefrontal and anterior cingulate cortices, 

and more specific connections between the dysgranular retrosplenial cortex and 

the visual and motor cortices (Vogt and Miller, 1983; Morris et al., 1999). In 

addition to the connections with the thalamic nuclei, the retrosplenial cortex 

receives inputs from other subcortical nuclei such as the diagonal band of Broca 

(Bigl et al., 1982). Many of these subcortical and cortico-cortical connections form 

part of the cingulum bundle, a white matter tract that runs adjacent to the 

cingulate cortex and projects extensively to the retrosplenial cortex (Mufson and 

Pandya, 1984; Bubb et al., 2018). The anatomical connectivity of the retrosplenial 

cortex places it as an anatomical interface between the cortex, thalamic nuclei 

and hippocampus, and as such the retrosplenial cortex is thought to be highly 

involved in numerous hippocampal functions (Vann et al., 2009). 
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Figure 1.1 Anatomy and connectivity of the retrosplenial cortex. 
A. The retrosplenial cortex is made up of Brodmann areas 29 and 30, and is 
located posterior to the thickest part of the corpus callosum. In humans, the 
retrosplenial cortex is located deep within the brain, and along with Brodmann 
areas 23 and 31 makes up the posterior cingulate cortex. B. In rodents, the 
retrosplenial cortex is found on the dorsal surface of the cortex, and due to the 
absence of Brodmann areas 23 and 31 in rodents, makes up the entire posterior 
cingulate cortex. C. Some notable connections of the retrosplenial cortex include 
visual cortex, numerous thalamic nuclei as well as the subicular complex of the 
hippocampal formation. AD, anterodorsal thalamic nucleus; AM, anteromedial 
thalamic nucleus; AV, anteroventral thalamic nucleus; Caud, caudate nucleus; 
Clau, claustrum; HF, hippocampal formation; LD, laterodorsal thalamic nucleus; 
LP, lateroposterior thalamic nucleus; MPulv, medial pulvinar; ParaS, 
parasubiculum; PH, parahippocampal cortex; Post, postsubiculum; PR, perirhinal 
cortex; PreS, presubiculum; STSd, dorsal superior temporal sulcus; Sub, 
subiculum; V4, visual area 4. Image modified from (Vann et al., 2009) 
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1.1.3 Role in Contextual Memory 

A large body of evidence exists that indicates the importance of the retrosplenial 

cortex in contextual memory and spatial navigation. Inhibition of protein synthesis 

in the retrosplenial cortex before contextual fear acquisition results in contextual 

memory impairment (Kwapis et al., 2015) and while temporary inactivation of the 

retrosplenial cortex with the AMPA receptor antagonist CNQX impaired 

performance in the Morris Water Maze, a spatial memory task (Czajkowski et al., 

2014). Numerous lesion studies have been performed to attempt to investigate 

the specific role of the retrosplenial cortex in memory. Excitotoxic lesions in the 

retrosplenial cortex after a spatial memory test resulted in the loss of these 

memories, and subsequently learned spatial memories were poorly retained 

(Haijima and Ichitani, 2008). In a contextual fear conditioning experiment, rats 

with lesions in the retrosplenial cortex had reduced fear responses to the context 

but not the auditory tone (Keene and Bucci, 2008). Lesions of the entire 

retrosplenial cortex impaired object-in-place memory, but spared recognition of 

the object itself (Vann and Aggleton, 2002). Due to the importance of both the 

hippocampus and cortex in learning and memory, it has been hypothesised that 

memories are rapidly stored in the hippocampus and slowly transferred to the 

cortex for long term storage (Marr, 1971), or concurrently stored in both regions 

(O’Reilly and Rudy, 2001). Considering that the retrosplenial cortex is highly 

involved in contextual memory process, it is thought that this may be a site where 

this contextual memory information is stored. Optogenetic stimulation of 

retrosplenial cortex neurons is able to retrieve (Cowansage et al., 2014) and 

consolidate contextual memories (De Sousa et al., 2019). Functional magnetic 

resonance imaging in humans revealed that the retrosplenial cortex was active 
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during both the formation and retrieval of contextual information (Iaria et al., 

2007). Finally, the retrosplenial cortex is highly affected during the earliest stages 

of Alzheimer’s disease, and is affected by both regional hypometabolism and 

atrophy (Minoshima et al., 1997; Choo et al., 2010), resulting in spatial memory 

deficits that are thought to be specific to the retrosplenial cortex (Laczó et al., 

2009; Vann et al., 2009; Morganti et al., 2013). It is hoped that future work into 

the role of the retrosplenial cortex in contextual memory will elucidate how 

contextual memory is encoded in this region, and how the retrosplenial cortex 

interacts with the hippocampus and other cortical areas to create contextual 

representations. 

1.2 Hippocampus 

1.2.1 Anatomy 

The hippocampal formation is a group of brain structures found in the medial 

temporal lobe which includes the entorhinal cortex, subicular complex and 

hippocampus proper (Schultz and Engelhardt, 2014). The different structures that 

make up the hippocampal formation are contiguous and highly folded, with 

relatively unidirectional intrinsic connectivity through the whole structure (Per et 

al., 2009).  Despite some differences, much of the structure and neuroanatomy 

of the hippocampal formation is highly conserved within mammals. The 

hippocampus proper is split into 3 major numbered subregions: CA1, CA2 and 

CA3, with CA referring to ‘cornu ammonis’ after the curved horn of the Egyptian 

god ammon (Lorente de Nó, 1934), however there is considerable disagreement 

about the CA2 as an independent region (Dudek et al., 2016). The hippocampus 

contains a wide variety of different cell types and has a highly laminar structure, 

with a single densely packed layer of pyramidal cell bodies (Per et al., 2009). Due 
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to the laminar structure of the pyramidal cell layer, the dendritic arbors are 

aligned, with the basal dendrites located in the stratum oriens, and the apical 

dendrites extending into stratum radiatum and stratum lacunosum-moleculare. A 

wide variety of interneurons are found within all layers of the hippocampus and 

have a variety of morphologies and functions (Klausberger and Somogyi, 2008). 

1.2.2 Connectivity 

The intrinsic connectivity within the hippocampal formation is thought to be 

relatively unidirectional, with the main pathways within the formation often 

referred to as the “trisynaptic circuit” (Andersen et al., 1971). First, the entorhinal 

cortex projects to the dentate gyrus via the perforant path, forming a key cortical 

input to the hippocampus (Witter and Amaral, 1991). Next, the granule cells of 

the dentate gyrus project to the CA3 region, known as the mossy fibre pathway 

(Schultz and Engelhardt, 2014). The final part of this circuit is the Schaffer 

collateral pathway from the CA3 which projects to the CA1 and terminates in 

stratum oriens and stratum radiatum (Ishizuka et al., 1990). These three 

pathways form the major pathways within the hippocampus, but there are 

numerous additional pathways of note within the hippocampal formation and 

between the hippocampal formation and the rest of the brain. The CA1 projects 

to the subiculum, which subsequently projects to numerous brain regions, 

including a variety of subcortical structures and perirhinal and retrosplenial 

cortices, making it a major output hub in the hippocampus (Witter and 

Groenewegen, 1990). In fact, projections from the subiculum to the retrosplenial 

cortex are dense compared to sparse projections to the nearby anterior cingulate 

cortex (Wyss and Van Groen, 1992). Subiculum projections to the entorhinal 
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cortex essentially closes the loop which returns to the start of the trisynaptic 

circuit. 
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Figure 1.2 Anatomy and connectivity of the hippocampal formation 
A. Rodent brain with the hippocampal formation highlighted in pink. The 
hippocampal formation is large in rodents compared to the rest of the brain, and 
curves in a C shape. B. Cross section of the hippocampus with the main regions, 
layers and pathways of the trisynaptic circuit. The first part of the trisynaptic circuit 
is the perforant path, made up of projections from the entorhinal cortex which 
perforate the hippocampal fissure and target the dentate gyrus (dark blue). The 
dentate gyrus projects to the CA3 region via the mossy fibre pathway (orange), 
which projects onwards to the CA1 region via the Schaffer collateral pathway 
(blue). Finally, projections from the CA1 to the entorhinal cortex complete the loop 
(red). C. Circuit diagram of the hippocampal trisynaptic circuit, showing additional 
connectivity and the specific layers of the entorhinal cortex where inputs and 
outputs are found. 
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1.2.3 Role in Contextual Memory 

The hippocampus, along with the retrosplenial cortex, are both part of the Papez 

circuit, once thought to be a key brain network for emotion (Papez, 1937).  More 

recently, some of the key functions of the hippocampus are thought to be spatial 

learning and navigation and contextual memory (for review, see Burgess et al., 

2002), and there is thought to be a high degree of overlap of these processes in 

the hippocampus (Hirsh, 1974; Smith and Bulkin, 2014). As with the retrosplenial 

cortex, lesions of the hippocampus impair responses to contexts during 

contextual fear conditioning, but preserve responses to other stimuli such as 

auditory tones (Kim and Fanselow, 1992; Phillips and LeDoux, 1992). The 

hippocampal formation receives a great deal of highly processed multimodal 

sensory information via a range of cortical regions, and as such, hippocampal 

neurons have been shown to respond to visual (Save et al., 2000), auditory 

(Itskov et al., 2012), and somatosensory stimuli (Stackman et al., 2002). 

Hippocampal neurons have been shown to have spatially modulated firing, with 

changes in firing rate depending on place (O’Keefe and Dostrovsky, 1971), and 

a variety of other spatially modulated cells have been discovered elsewhere in 

the hippocampal formation such as head direction cells (Taube et al., 1990; 

Sargolini et al., 2006) and boundary cells (Solstad et al., 2008; Lever et al., 2009; 

Boccara et al., 2010). Finally, reactivation of hippocampal neuronal ensembles 

active during a contextual fear conditioning task was sufficient to elicit a fear 

response in the absence of that context, demonstrating that contextual 

information is represented by hippocampal ensembles (Garner et al., 2012; Liu 

et al., 2012; Ramirez et al., 2013). The hippocampus is highly affected by during 

the early stages of Alzheimer’s disease, with amyloid plaque deposition (Thal et 
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al., 2002) and neurofibrillary tangle formation (Braak and Braak, 1995). 

Furthermore, volumetric magnetic resonance imaging (MRI) studies show that 

the hippocampus undergoes severe atrophy during Alzheimer’s disease, as 

shown by (Jack et al., 1997, 1998). Finally, synapse loss occurs in the 

hippocampus early in Alzheimer’s disease and is one of the best correlates of 

cognitive impairment (DeKosky and Scheff, 1990; Terry et al., 1991; DeKosky et 

al., 1996; Scheff et al., 2006). 

1.3 Neuronal Oscillations 

The activity of neurons within the brain generates electromagnetic fields within 

the extracellular space which can be measured in order to investigate the activity 

of neuronal networks (Buzsáki et al., 2012). This electrical activity can be 

measured from within the brain, known as the local field potential (LFP), or from 

outside the brain, known as an electroencephalogram (EEG). The movement of 

ions across cellular membranes creates current sources and sinks, and therefore 

one of the largest sources of electrical activity within the brain is from postsynaptic 

currents. The flow of positively charged ions such as Na+ ions through 

postsynaptic ion channels results in an excitatory postsynaptic potential (EPSP). 

Conversely, the flow of negatively charged ions such as Cl- ions through 

postsynaptic ion channels such as γ-aminobutyric acid (GABA) receptors results 

in an inhibitory postsynaptic potential (IPSP). Summation of numerous EPSPs or 

IPSPs in large populations of neurons can result in substantial electrical fields. 

Since the inception of EEG and the first human EEG recordings by Berger (1934), 

rhythmic oscillations have been demonstrated across the brain. These neural 

oscillations are thought to arise from the synchronous firing of large populations 

of neurons, and occur at a range of different frequencies all the way from 600 
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cycles per second to a single cycle every 40 seconds (Buzsáki and Draguhn, 

2004). Neuronal oscillations are not merely a passive product of ongoing 

electrical activity, however. Neural oscillations can coordinate the activity of large 

groups of neurons through a process called phase-locking, where neuronal firing 

“locks” to a specific phase of an oscillatory cycle  (Jensen, 2005). 

1.3.1 Oscillatory frequency bands 

Different oscillatory frequency ranges are often associated with different 

behavioural states or brain functions, and as such, neural oscillations are 

generally classified into one of a number of frequency bands. These frequency 

bands are highly variable between groups and as such there is little consistency 

with nomenclature, but some of these frequency bands are delta (1-5 Hz), theta 

(5-12 Hz), alpha (12-20 Hz), beta (20-30 Hz) and gamma (30-100 Hz). 

Oscillations also occur at a range of frequencies below 1 Hz and above 100 Hz, 

but oscillations in the frequency range 1-100 Hz are some of the most well 

studied. It is important to note that oscillations may vary dramatically between 

species; theta oscillations for example are found at a much lower frequency of 

around 1-4 Hz in humans, which explains some of the discontinuity in 

nomenclature and highlights the difficulty in directly translating findings in rodents 

to the human brain (Jacobs, 2014). Two of the most dominant oscillations in the 

rodent cortex and hippocampus during active wakefulness are theta and gamma 

oscillations, and both oscillations are strongly associated with memory processes 

(Vanderwolf, 1969; Buzsáki, 2002; Sirota et al., 2008; Lisman, 2010). 

Furthermore, while beta oscillations are far less established, a variety of studies 

have demonstrated the relevance of oscillations of this frequency band in both 
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health and disease (Sharott et al., 2005; McCarthy et al., 2011; Sherman et al., 

2016; Tinkhauser et al., 2018). 

1.3.2 Theta Oscillations 

Theta oscillations are prominent throughout the hippocampus and in numerous 

cortical regions and are present during active wake and paradoxical sleep 

(Jouvet, 1969; Vanderwolf, 1969; Mitchell and Ranck, 1980; Leung and Borst, 

1987). Theta-phase locking has been demonstrated in the hippocampus and 

cortex, with different neuronal subtypes firing at different phases of the theta cycle 

(Jensen, 2005; Klausberger and Somogyi, 2008). Furthermore, dynamic changes 

in the phase at which neurons fire, known as theta-phase precession, is thought 

to be one means by which information of encoded within the brain (O’Keefe and 

Recce, 1993; Jensen and Lisman, 2000; Hasselmo et al., 2002). Moreover, theta 

synchrony between the hippocampus and other brain regions, such as the 

prefrontal cortex, in combination with theta phase-locking of neurons may provide 

a means of communication and information flow between different brain regions 

(Siapas et al., 2005). It is thought that there is no single generator of theta 

oscillations within the brain. The cholinergic antagonist atropine only partially 

blocks theta oscillations in the hippocampus (Buzsáki et al., 1983), however in 

however this “atropine-resistant” theta is completely abolished by lesions of the 

entorhinal cortex (Vanderwolf and Leung, 1982). While this may suggest that the 

entorhinal cortex is the source of atropine-resistant theta oscillations in the 

hippocampus, it has been shown that atropine-resistant theta oscillations can 

emerge within the isolated hippocampus in vitro, indicating that theta oscillations 

can be generated independently in this region, and that different theta oscillators 

couple in vivo (Goutagny et al., 2009). 
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1.3.3 Gamma Oscillations 

Gamma oscillations are also a common feature of hippocampal and cortical 

network activity, and are often found during periods of theta oscillations (Buzsáki 

et al., 1983; Chrobak and Buzsáki, 1998; Sirota et al., 2008). The gamma band 

is often subdivided into low gamma (30-50 Hz) and high gamma (60-120 Hz), and 

work by Colgin et al. (2009) has suggested that gamma oscillations in different 

frequency bands differentially mediate the flow of information within the 

hippocampal formation. High oscillatory synchrony in the slow gamma was 

demonstrated between the CA1 and CA3 regions of the hippocampus, while 

oscillatory synchrony between the CA1 and medial entorhinal cortex was greater 

in the high gamma range. Despite gamma oscillations being generally considered 

as local oscillations (Von Stein and Sarnthein, 2000; Montgomery and Buzsáki, 

2007), gamma synchrony has been demonstrated between distant brain regions 

(Engel et al., 1991), and is thought to organise neuronal spiking into cell 

assemblies (Buzśaki and Wang, 2012). Network models of gamma oscillations 

have demonstrated the important of inhibitory interneurons to the formation of 

gamma oscillations (Whittington et al., 1995; Wang and Buzsáki, 1996), and 

gamma oscillations can be generated by interneuron-only networks (ING) or by 

networks of pyramidal cells and interneurons (PING) (Whittington et al., 2000).  

1.3.4 Beta Oscillations 

Beta oscillations are far less established, and are associated with a wide range 

of disparate behaviours, from motor control (Engel and Fries, 2010) to working 

memory (Lundqvist et al., 2016) and sensory processing (Leventhal et al., 2012). 

This diversity of behavioural correlates has precluded the development of an 

overarching hypothesis regarding the general role of beta oscillations within the 
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brain. Furthermore, beta oscillations are thought to be highly dependent on 

inhibitory interneurons (Faulkner et al., 1999; Traub et al., 1999), and as such are 

often conflated with gamma oscillations (Carr et al., 2012; Remondes and Wilson, 

2015). Recent studies have suggested that beta oscillations can occur in discrete 

bursts, rather than continuous oscillations, and that the rate and timing of beta 

bursts has functional relevance across a range of behaviours (Leventhal et al., 

2012; Lundqvist et al., 2016; Shin et al., 2017; Tinkhauser et al., 2018). Finally, 

beta bursting has gained a great deal of attention recently as pathological beta 

bursting is seen throughout the cortex and basal ganglia during Parkinson’s 

disease, and is strongly associated with the severity of motor impairments in this 

disease (Brown et al., 2001; Brittain et al., 2014; Tinkhauser et al., 2018). 

1.3.5 Phase-amplitude coupling 

Neural oscillations in the brain do not exist in isolation, and a variety of forms of 

“cross-frequency coupling” have been described, where oscillations of one 

frequency interact with those of another frequency (Canolty et al., 2006; Onslow 

et al., 2011; Belluscio et al., 2012). One of the best studied forms of cross-

frequency coupling is phase-amplitude coupling, where the amplitude of faster 

oscillation, such as gamma is coupled to the phase of a slow oscillation, such as 

theta. This “nesting” of gamma oscillations can be seen as a clear rhythmic 

change in gamma amplitude in time series data (Buzśaki and Wang, 2012). 

Theta-gamma coupling has been strongly associated with working memory (Tort 

et al., 2009; Axmacher et al., 2010; Lisman and Jensen, 2013), and memory 

encoding and retrieval have been demonstrated at different phases of theta 

oscillations (Kragel et al., 2020), or different frequencies of gamma (Colgin, 

2015a), providing a valuable functional framework for memory processing. 
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Finally, the coupling of large-scale oscillations such as theta with more local 

oscillations such as gamma is thought to allow coordination of local network 

activity across the brain (Sirota et al., 2008). 
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Figure 1.3 Phase-amplitude cross-frequency coupling 
 
A. Cross-frequency oscillatory coupling can occur in a number of ways, including 
phase-amplitude coupling, where the amplitude of a fast oscillation, in this case 
gamma, is coupled to the phase of a slower oscillation, such as theta. Gamma 
oscillations of different frequencies can differentially couple to the phase of the 
theta cycle. In this example, gamma amplitude peaks at the peak of the theta 
cycle. B. Histograms of the mean amplitude of a fast oscillation for each phase of 
a slow oscillation can reveal phase-amplitude coupling. An absence of phase-
amplitude coupling appears as a uniform amplitude that does not vary with phase. 
The Tort method of quantifying phase-amplitude coupling involves calculating the 
Kullback-Leibler distance of this distribution. A modified from Onslow et al. 
(2011), B modified from Tort et al. (2010). 
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1.3.6 Neuronal spiking recordings 

Action potentials can also be recorded in the extracellular space as large, high 

frequency deflections which last around 1 millisecond. These spikes are largest 

in amplitude near the soma, with amplitude decreasing dramatically with 

increasing distance from the cell. Neuronal spiking in extracellular recording that 

arises from multiple different neurons is known as multi-unit activity, while spikes 

from a single neuron are known as single-units. While multi-unit activity itself can 

provide a broad estimation of neuronal spiking (Stark and Abeles, 2007), 

variations in activity between different types of neurons may be diluted in multi-

unit data. Spike sorting is an analytical technique by which neuronal spikes are 

grouped into single units, in order to investigate the spiking activity of individual 

neurons. A variety of different methods can be employed to differentiate spikes 

for different neurons, such as analysing spike waveform features, and grouping 

spikes base on these features (Caro-Martín et al., 2018). Tetrode recordings, or 

high-density silicon probes, can make use of the fact that spikes from individual 

neurons are likely to have a distinct spatiotemporal profile that appears on 

multiple recording sites in order to cluster spikes together (Harris et al., 2000; 

Henze et al., 2000; Quiroga et al., 2004; Rossant et al., 2016). Spike sorting also 

allows tentative classification of cells as excitatory neurons or interneurons based 

on the waveform features or firing rates (Frank et al., 2001). The development of 

ultra-high-density silicon probes with high channel counts has made it possible to 

record from hundreds of individual neurons at once, making automated spike 

sorting a priority (Rossant et al., 2016; Jun et al., 2017).  
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1.4 Alzheimer’s Disease 

1.4.1 Dementia 

Dementia refers to a group of symptoms associated with impaired brain function, 

such as memory loss and cognitive impairment, which can result in difficulty 

performing normal daily activities, and can be caused by a wide range of diseases 

and pathologies. Some causes of dementia include Parkinson’s disease and 

vascular pathologies, but the most common cause of dementia is Alzheimer’s 

disease, which accounts for between 60-80% of all cases (Alzheimer’s 

Association, 2015). Dementia greatly increases in prevalence with age, but is not 

a normal feature of aging, as it was once thought to be (Berchtold and Cotman, 

1998; Nelson et al., 2011). Approximately 7% of people over the age of 65 have 

dementia, and in people over the age of 95, this number increases dramatically 

to around 40% (Prince et al., 2014). Aside from the emotional burden of living 

with dementia, there is also a huge socioeconomic burden. In England alone, the 

estimated annual cost of dementia was estimated to be £24.2 billion in 2015, with 

a large proportion of that cost taken on as unpaid care by those with dementia 

and their families (Wittenberg et al., 2019). Gradual increases in life expectancy 

alongside a variety of other societal factors have resulted in an aging global 

population, meaning age-related diseases such as dementia will likely increase 

in prevalence over time, creating a potentially disastrous public health problem in 

the future (United Nations, Department of Economic and Social Affairs, 2015). 

Importantly, for many of the underlying causes of dementia, there are no effective 

treatments which stop or even slow the progression of the disease, making 

research into dementia and discovery of novel therapeutics highly important. 
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1.4.2 Pathological hallmarks of Alzheimer’s disease 

Alzheimer’s disease is a progressive neurodegenerative disease that is 

associated with the appearance of a number of pathological hallmarks in the 

brain. In Alzheimer’s disease, progressive loss of neurons in the brain results in 

gross atrophy of a number of brain regions, including the hippocampus, but it is 

the loss of synapses that best correlates with the severity of cognitive impairment 

in Alzheimer’s disease (DeKosky and Scheff, 1990; DeKosky et al., 1996). 

Alzheimer’s disease was first described by Alois Alzheimer in 1907, who noted 

the presence of protein deposits throughout the cortex during a post-mortem 

analysis of the brain of a woman with severe dementia (Alzheimer, 1907). These 

protein deposits are known as senile plaques and neurofibrillary tangles, and are 

two of the two main pathological hallmarks of Alzheimer’s disease. Senile 

plaques, or amyloid plaques, are deposits of insoluble amyloid β (Aβ) protein 

which generally form in the extracellular space (Figure 1.4a, Glenner and Wong, 

1984). Conversely, neurofibrillary tangles are intracellular deposits of insoluble, 

hyperphosphorylated tau protein, that accumulate in the somatodendritic 

compartment of neurons (Figure 1.4b, Kosik et al., 1987). These two pathologies 

progressively spread throughout the brain in relatively stereotypical patterns, and 

their presence is considered the gold-standard for diagnosis of Alzheimer’s 

disease (Braak and Braak, 1991; Thal et al., 2002; Jucker and Walker, 2013). 
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Figure 1.4 Spatiotemporal progression of amyloid and tau pathology in 
Alzheimer’s disease. 
 
A. Extracellular senile plaques formed of amyloid β can be found throughout the 
brain in Alzheimer’s disease. Amyloid pathology appears diffusely throughout the 
neocortex, and progressively worsens, spreading into the hippocampus and other 
subcortical regions, before spreading to the brainstem and cerebellum in the latter 
stages of the disease. This spread has been staged according to Thal et al. 
(2002). B. Insoluble deposits of hyperphosphorylated tau protein, known as 
neurofibrillary tangles, can be found within neurons in Alzheimer’s disease. The 
spread of tau pathology is very different to the spread of amyloid pathology, and 
is thought to begin in the brainstem locus coeruleus and transentorhinal region, 
before spreading further into the hippocampal formation and the rest of the cortex. 
The spread of tau pathology has been thoroughly investigated, and staged 
according to Braak & Braak (1991). Figure modified from Jucker and Walker 
(2013). 
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1.4.3 Amyloid Pathology and the Amyloid Cascade Hypothesis 

Amyloid β is a protein created by the cleavage of amyloid precursor protein (APP) 

by two membrane-bound enzymes: β-secretase and γ-secretase (Nunan and 

Small, 2000). This pathway is considered to be amyloidogenic, but APP can also 

be processed through a non-amyloidogenic pathway, where it is cleaved by α-

secretase, before being cleaved by γ-secretase (Nunan and Small, 2000). APP 

is thought to have a number of functions in the healthy brain, such as promoting 

synaptogenesis (Ouimet et al., 1994; Wang et al., 2005). Amyloid β peptides can 

vary in length, but the most common forms are between 40 and 42 amino acids 

long, and are prone to aggregation into plaques due to the hydrophobic nature of 

Aβ42 (Jarrett et al., 1993). A number of missense mutations were discovered at 

codon 717 of the APP that are associated with familial Alzheimer’s disease 

including the ‘Indiana’ (V717F, Murrell et al., 1991) and ‘London’ mutations 

(V717I, Chartier-Harlin et al., 1991), which change valine for phenylalanine and 

isoleucine, respectively. Furthermore, the high prevalence of Alzheimer’s disease 

in Down’s syndrome was determined to arise from the trisomy of Chromosome 

21, where the gene for APP is found (Fried, 1959; Lejeune et al., 1959). These 

discoveries formed the basis of the Amyloid Cascade Hypothesis by Hardy and 

Higgins (1992) (Figure 1.5). This hypothesis states that the accumulation of 

amyloid β results in a cascade of neuropathology seen in Alzheimer’s disease, 

including tau pathology and neurodegeneration. Numerous genetic mutations in 

the APP gene are associated with familial Alzheimer’s disease (for review, see 

TCW and Goate, 2017), and have a number of pathological consequences, such 

as overproduction of APP (Citron et al., 1992), or increasing the production of 

aggregation-prone Aβ42 (Murrell et al., 1991). Conversely, the missense 
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‘Icelandic’ mutation (A673T), located near the site of β-secretase cleavage results 

in an approximate 40% reduction in the production of Aβ40 and Aβ42 (Jonsson 

et al., 2012). Additionally, gain-of-function mutations in presenilin 1 and 2, which 

form part of the γ-secretase complex (De Strooper et al., 1998), are the most 

common genetic cause of familial Alzheimer’s disease, and are associated with 

increased production of Aβ42 (Iwatsubo et al., 1994; Scheuner et al., 1996).The 

aggregation of amyloid β into oligomers, and then fibrils, results in the formation 

of amyloid plaques, but recent work has suggested that much of the toxic effect 

of amyloid β may arise from the oligomeric form of the protein (Hayden and 

Teplow, 2013). Reducing levels of amyloid beta oligomers without reducing 

plaque load results in cognitive improvement in transgenic mice (Lesné et al., 

2008). Amyloid β oligomers have been shown to disrupt N-methyl-D-aspartate 

(NMDA) receptor function, causing impaired excitatory synaptic transmission and 

the loss of dendritic spines, demonstrating that amyloid β may have affect 

neuronal function independent of its toxic effects (Snyder et al., 2005; Shankar et 

al., 2007). 

  



42 

 

 

  

Figure 1.5 Schematic of the original amyloid cascade hypothesis 
 
According to the amyloid cascade hypothesis, cleavage of amyloid precursor 
protein in the endolysosome results in the formation of amyloid β peptide which 
forms amyloid plaques, and results in the formation of neurofibrillary tangles and 
cell death. The hypothesised pathway underlying these changes was thought to 
be due to increased intraneuronal calcium, resulting in hyperphopshorylation of 
tau protein and excitotoxicity. Figure reproduced from Hardy and Higgins (1992). 
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1.4.4 Tau Pathology 

Tau is a microtubule-associated protein generally found in the axons of neurons, 

where it stabilises microtubules (Weingarten et al., 1975; Binder et al., 1985). The 

binding of tau to microtubules varies depending on its phosphorylation states at 

specific sites (Lindwall and Cole, 1984), and hyperphosphorylation of tau causes 

it to disassociate from microtubules and aggregate in the somatodendritic 

compartment of neurons, forming neurofibrillary tangles (Kosik et al., 1987; 

Goedert et al., 1989). It is therefore thought that toxicity due to tau protein could 

be due to both the toxicity of hyperphosphorylated tau and the loss of normal 

axonal transport due to microtubule destabilisation (Trojanowski and Lee, 2005). 

Tau pathology is another key pathological hallmark of Alzheimer’s disease, in that 

neurofibrillary tangles made up of insoluble tau protein can be found throughout 

the brain (Kosik et al., 1987). In the early stages of Alzheimer’s disease, tau 

pathology is found in a limited number of brain regions, including the entorhinal 

cortex, but over time spreads to numerous other brain regions in a sequence that 

varies very little between individuals, and is correlated with the progression of 

cognitive impairment (Braak and Braak, 1991). Tau pathology has been shown 

in a number of other neurodegenerative diseases, now known as tauopathies 

(Williams, 2006). The spatial patterns of tau pathology within the brain, as well as 

the species of pathological tau vary between different tauopathies, but 

progressive neurodegeneration is a common feature of all tauopathies (Williams, 

2006). Unlike amyloid β, there are no tau mutations associated with Alzheimer’s 

disease, however a number of mutations are associated with other tauopathies, 

such as frontotemporal dementia and parkinsonism linked to chromosome 17 

(FTDP-17, Hutton et al., 1998; Spillantini et al., 1998). 
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1.4.5 Treatment of Alzheimer’s Disease 

There have been numerous attempts to develop disease modifying agents for 

Alzheimer’s disease which are able to slow or stop the progression of the disease. 

From the year 2002 to the year 2012, the approval rate for Alzheimer’s disease 

drugs was around 0.4%, and those compounds that were approved were 

symptomatic treatments rather than disease-modifying agents (Cummings et al., 

2014). Three of these compounds, donepezil, galantamine and rivastigmine 

primarily inhibit the enzyme acetylcholinesterase, which catalyses the breakdown 

of acetylcholine (Sharma, 2019). Cholinergic signalling has been shown to be 

impaired in Alzheimer’s disease, likely due to neurodegeneration in the nucleus 

basalis of Meynert (Bartus et al., 1982), and blocking cholinergic signalling has 

been shown to cause cognitive impairment which worsen with age (Molchan et 

al., 1992), therefore treatment with acetylcholinesterase inhibitors is thought to 

increase concentrations of acetylcholine in the synaptic cleft and improve 

cognition. While these drugs improve cognition, they do not target the disease. 

A large number of experimental disease-modifying agents targeted amyloid β in 

an attempt to clear plaques or reduce the generation of amyloid β from APP. 

Some examples include the gamma secretase inhibitor semagacestat, and the 

amyloid β antibodies, bapineuzumab and solanazeumab, which aimed to clear 

plaques and reduce soluble amyloid β respectively (DeMattos et al., 2002; Kopan 

and Ilagan, 2004; Rinne et al., 2010). A number of these compounds were able 

to clear amyloid pathology in the brain, but failed to show improvements in 

cognition in humans (Schenk et al., 1999; DeMattos et al., 2001; Hyslop et al., 

2004). This lack of success caused many in the field, including Hardy himself, to 

re-examine the amyloid cascade hypothesis (Hardy, 2009; Karran and De 
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Strooper, 2016). While tau pathology and large-scale neurodegeneration are 

thought to be downstream of amyloid pathology according to the amyloid cascade 

hypothesis, both are notably absent in amyloid mouse models, despite 

widespread amyloid pathology (Karran and De Strooper, 2016). Furthermore, as 

previously mentioned, clearance of amyloid pathology did little to improve 

cognition in humans in Phase 3 clinical trials (Cummings et al., 2014), although it 

is important to note that, unlike tau, the extent of amyloid pathology in Alzheimer’s 

disease is not correlated with the severity of cognitive symptoms (Arriagada et 

al., 1992; Braak and Braak, 1995). Finally, many of these compounds had 

previously showed cognitive enhancing potential in preclinical rodent models, 

which has raised a number of questions about the translational value and validity 

of these models (Philipson et al., 2010).  

1.4.6 Mouse models of Dementia 

Numerous transgenic mouse models have been generated which recapitulate a 

number of the pathological hallmarks of Alzheimer’s disease. One of the first 

mouse models of Alzheimer’s disease was the PDAPP model which 

overexpressed human APP with the Indiana mutation (V717F), which results in 

an increased ratio of Aβ42/Aβ40 (Murrell et al., 1991; Tamaoka et al., 1994; 

Games et al., 1995). These mice begin to develop amyloid plaques in the 

hippocampus and cortex at around 6-9 months of age, and show memory 

impairments, including object recognition memory and spatial memory, as 

measured using the radial-arm maze (Dodart et al., 1999). Another commonly 

used model is the Tg2576 line, which overexpresses mutant APP with the 

Swedish mutation (KM670/671NL), which results in increased production and 

secretion of Aβ42 and Aβ40 (Citron et al., 1992; Mullan et al., 1992; Hsiao et al., 
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1996; Scheuner et al., 1996). Amyloid plaques were present in the hippocampus 

and cortex at around 11-13 months of age (Hsiao et al., 1996). Furthermore, 

contextual memory deficits have been demonstrated as early as 5 months of age 

(Jacobsen et al., 2006), and spatial memory deficits in the Morris Water maze 

around 6 months of age (Westerman et al., 2002). 

A model we have used extensively throughout this thesis is the J20 mouse line 

which overexpresses human APP with both the Indiana (V717F) and Swedish 

(KM670/671NL) mutations (Murrell et al., 1991; Mullan et al., 1992; Mucke et al., 

2000). The combination of these mutations accelerates plaque formation in these 

mice, with plaques appearing in the hippocampus and the deep layers of the 

neocortex around 5-7 months of age (Mucke et al., 2000). J20 mice have been 

shown to present with spatial memory deficits in both the Morris water maze and 

radial-arm maze at 4 months of age, prior to the appearance of amyloid plaques 

(Cheng et al., 2007; Wright et al., 2013). The rapid development of amyloid 

pathology in these mice, as well as the spatial distribution of amyloid plaques in 

the retrosplenial cortex and throughout the hippocampus (Figure 1.6, Whitesell 

et al., 2019), make the J20 mouse line a valuable mouse model for our 

experiments.  

Combined mutant models with APP and presenilin mutations have been 

developed that have even more severe pathology (Holcomb et al., 1998; Oakley 

et al., 2006; Whitesell et al., 2019), however some have suggested that presenilin 

mutations result in pathology independent of amyloid pathology, thus producing 

confounding factors (Shen and Kelleher, 2007). It is notable that none of the 

models previously discussed demonstrate either tau pathology, or significant 

neurodegeneration. Tau pathology has been modelled in mice, using mutations 
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commonly found in frontotemporal dementia with Parkinsonism linked to 

chromosome 17, another tauopathy (Lewis et al., 2000; Santacruz et al., 2005). 

These mice show widespread neurofibrillary tangle formation, and 

neurodegeneration, indicating the importance of tau pathology to this phenotype, 

and highlight the importance of completely recapitulating all aspects of 

Alzheimer’s disease. More recent models which express both amyloid and tau 

mutations show both plaque and tangle formation, and demonstrate that the 

presence of tau accelerates amyloid pathology, demonstrating an important 

interaction between these pathologies (Oddo et al., 2003).  
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Figure 1.6 Amyloid pathology in the J20 model of Alzheimer’s Disease 
 

A. Photomicrographs of the hippocampus from light microscopy at 4x of mouse 

brains stained for amyloid β using the 3D6 antibody. Above is the hippocampus 

from a 15-month old wild-type (WT) mouse, and below is the hippocampus from 

a 10-month old J20 mouse. Amyloid plaques can be seen throughout the 

hippocampus of J20 mice, particularly in the outer molecular layer of the dentate 

gyrus. B. Relative plaque density across the cortex of 13-month old J20 mice, as 

quantified using methoxy-X04 labelling and serial two-photon tomography. 

Amyloid plaques are highest in density within the retrosplenial cortex, with other 

regions of the neocortex demonstrating far lower relative plaque density. A 

modified from Mucke et al. (2000), B modified from Whitesell et al. (2019). 
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1.5 Aims 

As we have previously discussed, a large body of evidence has indicated the 

importance of the retrosplenial cortex in contextual memory, but the 

neurophysiological mechanisms underlying these memory processes in this 

region are unclear. While the role of the hippocampus in memory has been 

extensively studied throughout the last century, until recently the retrosplenial 

cortex has been generally overlooked. The first aim of this project was to attempt 

to further understand the specific role of the retrosplenial cortex in contextual 

memory, by investigating functional correlates of environmental novelty and 

familiarity through the use of in vivo electrophysiology. In vivo electrophysiology 

is an invaluable technique to probe the activity of both large-scale neuronal 

networks and of individual neurons, in awake, behaving animals, and functional 

correlates of behaviour allow us to better understand the specific processes that 

underlie the many functions performed by the brain. Our second aim was to 

investigate how the retrosplenial cortex interacts with other areas of the brain 

during contextual memory process. While there are countless studies detailing 

the anatomical connectivity of the retrosplenial cortex, few studies have 

investigated the functional connectivity of this region. Pure anatomical studies 

may provide an incomplete picture of the functional networks that make up the 

brain. A specific focus in this thesis is the interactions between the retrosplenial 

cortex and the hippocampus. As we have previously discussed, both regions are 

highly involved in contextual memory, and often appear to have overlapping 

functions, so these studies may provide insight into the dynamics which underlie 

communication between these two regions. The final main aim of this project is 

to investigate how the retrosplenial cortex network activity is affected by 
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Alzheimer’s disease-associated amyloid pathology, through parallel 

investigations using the J20 transgenic mouse line. The retrosplenial cortex is 

highly affected during the early stages of Alzheimer’s disease (Minoshima et al., 

1997; Choo et al., 2010), however the physiological consequences of amyloid 

pathology on neuronal network activity are unclear. Functional correlates of 

behaviour can provide measurable benchmarks of health against which the 

effects of neuropathology can be tested against. 
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2 General Methods 

2.1 Animals 

All procedures were carried out in accordance with the UK Animal (Scientific 

Procedures) Act 1986 65 and were approved by the University of Exeter Animal 

Welfare and Ethical Review Body. Access to food and water was provided ad 

libitum. All animals were kept on a 12-hour light/dark cycle, with the light/dark 

cycle matching the normal daylight/night-time cycle, meaning all interactions 

including handling, surgery and behaviour took place during the light cycle. 

Surgical mice were group housed prior to surgery, and single housed post-

surgery, in order to prevent damage to the surgical implants. 

2.2 In Vivo Data Collection 

Throughout experimental sessions, Local Field Potentials (LFPs) and 

Electroencephalograms (EEGs) were recorded using an Open Ephys Acquisition 

board (Open Ephys), which was tethered to the probe via a headstage (RHD 16-

Channel Recording Headstage or RHD 32-Channel Recording Headstage, Intan 

Technologies), and SPI cables (Intan Technologies). LFPs and EEGs on each 

channel were sampled at 30 kHz, while the animal’s location was monitored using 

a pair of light-emitting diodes (LED) soldered to the headstage, and a video 

camera, placed directly above the arena. The location of these LEDs was tracked 

using Bonsai tracking software, so the location and running speed of the animal 

could be estimated offline. In order to aid tracking, and to minimise stress and 

promote exploration, the arena was dimly lit from above by a faint light emitting 

diode (LED) light. All analysis was performed offline. The entire recording setup 

can be seen in (Figure 2.1). 
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Figure 2.1 Photograph of the entire recording and behaviour setup 
 
Experimental setup showing both the square (A) and circular arenas (B). 
Photograph was taken by an overhead camera used to track behaviour. The room 
was dimly lit by a small LED light on the ceiling, just out of shot. The animal was 
tethered to an Open Ephys acquisition board (Open Ephys) via a headstage 
(Intan Technologies) with a red and green LED soldered onto it to allow 
behavioural tracking, which can be seen in both images. Arenas were cleaned 
with 70% ethanol between behavioural recording sessions. Photographs 
courtesy of Maria Garcia Garrido. 
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2.3 Data Analysis 

LFPs were down-sampled by different amounts depending on the analysis used, 

and de-trended in order to remove any slow linear drift of the baseline that may 

occur across the session. Down-sampling was used in the experiments detailed 

in this thesis in order to reduce computation time, which was especially important 

for some of the more complex analyses, however for some analyses signals were 

not downsampled in order to preserve temporal precision. For each analysis the 

minimum amount of down-sampling was performed in order to retain temporal 

precision while reducing computation time. When digital filters were used, the 

order of each filter was chosen to achieve a balance between a sharp roll off rate 

at the edges of the pass band, while minimising the creation of spurious 

oscillations that may arise from filtering spikes of noise with high order filters (de 

Cheveigné and Nelken, 2019). Butterworth filters were used as they have a 

smooth frequency response with no ripples. The Chronux toolbox (Mitra and 

Bokil, 2008, http://chronux.org/) was used for a number of functions including the 

mtspecgramc and mtcohgramc functions, as well as a number of built in MATLAB 

functions. Additionally, a number of functions from the MVGC Multivariate 

Granger Causality toolbox were used to perform Granger causality analysis 

(Barnett and Seth, 2014). Finally, some functions from the MATLAB File 

Exchange were used including shadedErrorBar (Campbell, 2021) and polyfitZero 

(Mikofski, 2021). All other scripts used in this study were written in house, and 

are included in the Appendices of this thesis. In order to select channels in 

specific brain regions and to ensure these channels which were at equivalent 

depths between animals, a combination of post-hoc histology and functional 

outputs were used to determine the exact locations of each channel. One 
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functional output makes use of the fact that the phase of theta oscillations 

reverses across the pyramidal cell layer of the hippocampus (Buzsáki, 2002), so 

for probes which reached or crossed this layer, it is possible to work backwards 

to find the exact location of each channel to less than 100 µm. This allows us to 

greatly reduce variability between animals and is a worthwhile validation. 

2.4 Power Spectral Analysis 

LFPs for power spectral analysis were downsampled by 30 times to a sampling 

rate of 1000 Hz. Multi-taper spectral analysis was performed using the 

mtspecgramc function from the Chronux Toolbox (Mitra and Bokil, 2008), with a 

time-bandwidth product of 2 (1 second x 2 Hz), and 3 tapers, resulting in some 

smoothing of resulting spectra. Multi-taper spectral analysis was used to reduce 

spectral variance and improve the signal-to-noise ratio of power spectra, 

especially for the high frequency bands (Mitra and Bokil, 2008), and the 

parameters used allowed for a sufficient temporal and frequency resolution for 

our analyses. The mtspecgramc function generates a power spectrogram by 

generating multiple power spectra for short segments of time series data, using 

a moving window; in our case with the window size of 1 s with no overlap. As 

spectral power decreases with a 1/f distribution, power at high frequencies can 

be hard to visualise so in order to correct for this, spectrograms were then logged 

to the base 10, and multiplied by 10, in order to convert to decibels (dB). These 

individual spectra were averaged, resulting in a single mean power spectrum for 

the entire 15-minute session, or for the first minute of each session, as specified 

in the results. Spectral data from 47to 53 Hz, which incorporates line frequency 

noise (50 Hz), were removed and linearly interpolated between the nearest 

neighbours. The power of each frequency band was calculated as the mean 
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power in each of the following frequency ranges: delta (1-5 Hz, Joho et al., 1999), 

theta (5-12 Hz, Vanderwolf, 1969), alpha (12-20 Hz), beta (20-30 Hz, Sherman 

et al., 2016), gamma (30-100 Hz, Buzsáki et al., 2003). These frequency bands 

were similar to those used in the literature, however there is a great deal of 

variability in the field regarding these frequencies. Furthermore, while some 

studies subdivide the gamma band into low gamma and high gamma, we saw no 

evidence of divergence within this frequency range that would warrant this for 

these data. 

For some spectral analysis in this paper, the continuous wavelet transform was 

performed instead of the fast Fourier transform used in the mtspecgramc function, 

due to its superior temporal resolution in the frequency domain for short time 

series (Moca et al., 2021). Wavelet analysis was performed using the cwt function 

in MATLAB, with a Morlet wavelet with equal variance and time and frequency. 

The scale to frequency conversions are set by the sampling rate of 30 kHz. For 

all other power spectral analysis, such high temporal resolution was 

unnecessary, so the fast Fourier transform was used due to its lower 

computational power requirements. 

2.5 Beta Burst Detection 

LFPs for beta burst detection were downsampled by 10 times to a sampling rate 

of 3000 Hz, and band-pass filtered between 20-30 Hz to isolate the beta 

frequency band, using a Butterworth IIR filter with order 2. The amplitude and 

phase of this beta signal were calculated as the real and imaginary components 

of the Hilbert transform, respectively. Due to the sensitivity of this beta burst 

detection algorithm to noise, epochs were the beta amplitude exceeded 10 

median absolute deviations from the median were removed from the data. The 
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beta amplitude was subsequently z-scored, to standardise the data and 

investigate epochs where the beta amplitude deviated strongly from the mean. 

Epochs of the signal where this z-score exceeded 2 standard deviations from the 

mean amplitude were detected, as were the corresponding “edges” of these 

epochs, where the signal magnitude surpassed 1 standard deviation either side 

of the 2-standard deviation threshold. This was done in order to capture the time-

course of these high beta amplitude epochs. Events that did not persist longer 

than a minimum duration of 150 ms (i.e. fewer than 3 oscillation cycles) were 

discarded. These remaining events were then considered beta-bursts. A number 

of characteristics were calculated, including the magnitude of the bursts, as given 

by the amplitude from peak to trough. Beta bursts with magnitudes that exceeded 

3 median absolute deviations from the median were considered outliers and 

discarded.  

In order to investigate the distribution of beta bursting within sessions, the 

cumulative sum of beta bursts was calculated in 1-second bins for the whole 

session. This cumulative frequency data was used to estimate the rate of beta 

bursting during the first minute and the final 10 minutes of each session, by 

independently fitting linear regressions to the data, with the linear fit for the first 

minute constrained to zero using the function polyfitZero from the MATLAB file 

exchange (Mikofski, 2021). The rate of beta bursting, in beta bursts per minute, 

was calculated from the slope of these fits. 

2.6 Beta Burst Characteristics 

Following beta burst detection, a number of different beta burst characteristics 

were calculated. First, the duration and magnitude of each beta burst was 

calculated, and subsequently the frequency profile and rhythmicity. In order to 
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investigate the frequency profile of beta bursts, power spectral analysis was 

performed on each burst and epochs of equal length before and after each burst, 

using the Chronux function mtspectrumc. The time-bandwidth product of this 

analysis was 1 (1 second x 1 Hz), with a single taper, in order to account for the 

shorter time periods. All burst and pre-burst epochs were averaged, across all 

sessions. The final beta burst characteristic of interest was the extent of 

rhythmicity during, and outside, beta bursts in order to attempt to understand 

whether beta bursts are generated by a “dynamic amplitude modulation” 

mechanism or a “bursty generator” (Shin et al., 2017; van Ede et al., 2018), as 

illustrated in Figure 2.2 Dynamic amplitude modulation and bursty generator 

mechanisms are two theoretical models for transient neural oscillations. In order 

to investigate the rhythmicity of beta oscillations during burst and non-burst 

epochs, first the signal was band-pass filtered between 20-30 Hz to isolate the 

beta frequency band, using a Butterworth IIR filter with order 2. The start times 

and stop times of each beta burst were used to isolate burst and non-burst 

epochs, with non-burst epochs defined as time segments before the first beta 

burst or between beta bursts. Any non-burst epochs shorter than 66 ms 

(equivalent to two cycles of a 30 Hz oscillation) were discarded in order to focus 

on longer time segments which likely better represent the inter-burst interval. The 

built-in function findpeaks was used to find the peaks of the beta-filtered signal, 

with a minimum distance of 25 ms between adjacent peaks (equivalent to a 40 

Hz oscillation), for all burst and non-burst epochs, and the time between adjacent 

peaks was taken as the period of the beta oscillation. For each recording session, 

a histogram of the burst and non-burst beta periods was generated, in order to 

visualise the consistency of beta periods, which we considered as a measure of 

beta rhythmicity. 
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Figure 2.2 Dynamic amplitude modulation and bursty generator mechanisms 
are two theoretical models for transient neural oscillations. 
Illustration demonstrating two theoretical models of neural oscillations which may 
support the generation of transient neural oscillations such as beta bursts, as 
theorised by van Ede et al. (2018). While both dynamic amplitude modulation and 
bursty generator models are likely to produce oscillations which are visually 
similar in the frequency domain, as shown by the spectrograms above each trace,  
the key divergence between these two models can be seen in the time domain. 
Dynamic amplitude modulated signals are consistently rhythmic during, and 
outside, high amplitude events (as shown by the constant oscillatory period 
demonstrated by regular spacing between the dots). Conversely, bursty 
generators could be expected to produce oscillations which are tightly rhythmic 
during high amplitude events, and highly arrhythmic outisde these events. Figure 
modified from Shin et al. (2017). 
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2.7 Phase-Amplitude Coupling 

To calculate phase-amplitude coupling, and create phase-amplitude coupling 

comodulograms, modulation index (MI) was calculated individually for each pair 

of phase and amplitude frequencies as described by Tort et al. (2009). This 

method has been shown to be superior to alternative methods, and is less 

sensitive to changes in amplitude. A full explanation of this method can be found 

in (Tort et al., 2009), but will be briefly explained here. Phase-amplitude coupling 

was calculated between phase frequencies in bins of 0.25 Hz from 2 to 12 Hz, 

and amplitude frequencies in bins of 2 Hz from 10 to 100 Hz. For each pair, local 

field potentials were filtered in the phase frequency band and the amplitude 

frequency band, after which the instantaneous phase and amplitude of each 

filtered signal was calculated, respectively, using the Hilbert transform. The 

phases of the “phase signal” were binned in 10° bins, and the average amplitude 

of the “amplitude signal” was calculated for each phase bin, after which this 

“amplitude distribution” was normalised so that the sum of all bins is equal to 1. 

The existence of phase-amplitude coupling can be seen in these amplitude 

distributions as a non-uniform amplitude across the phase bins, and as such, the 

Kullback-Leibler distance was calculated to quantify the divergence of this 

amplitude distribution from the uniform distribution (Kullback and Leibler, 1951). 

In order to convert to Kullback-Leibler distance to Modulation Index, with a scalar 

value between 0 and 1, this value is divided by the natural logarithm of the number 

of phase bins, which in this case is 18. Although this method is far less sensitive 

to spurious coupling than other methods, we still normalised the resulting 

modulation index, as suggested in Tort et al. (2010). This was done by the 

generation of 100 surrogates, where the data was time shifted by a random 
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amount between 1 and 59 seconds, for which the modulation index was 

calculated. A gaussian distribution was then fitted to these surrogate modulation 

indicies and the actual modulation index was calculated as a z-score from the 

mean of this distribution. This same mathematical operation was performed for 

all phase and amplitude frequency pairs to create a comodulograms, and in order 

to smooth the resulting comodulograms, the data matrix was linearly interpolated 

in both dimensions by a factor of 2. 

As previously mentioned, In order to generate these comodulograms, signals 

were filtered in very narrow frequency bands in order to get a high degree of 

resolution in the frequency range. For the amplitude axis the width of this band 

was 2 Hz, while for the phase axis this band was even smaller at 0.25 Hz. In order 

to confirm that filtering in such narrow bands did not cause significant distortion 

to the waveform of the oscillation, a selection of these bandpass filtered signals 

was inspected, using the same frequency bands used in the phase-amplitude 

coupling analysis. An example of these signals can be seen in Figure 2.3a, which 

shows that these waveforms are free of any notable distortions, likely due to the 

lack of ripples in the frequency response of the Butterworth filter used. 

Furthermore, in order to verify that phase-amplitude coupling could be estimated 

from such narrow bandpass filtered signals, we investigated the strength of theta-

beta and theta-gamma coupling as previously described, using the same 

frequency bands shown in Figure 2.3a. As shown in Figure 2.3b, clear phase-

amplitude coupling can be seen from the probability distributions for beta 

amplitude (left) and gamma amplitude (right) at different phases of the theta 

oscillation, as shown by the non-uniform distribution across theta phase, and the 

modulation index (MI) values shown above both graphs. 
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Figure 2.3 Phase-amplitude coupling can be estimated even with narrow 
bandpass filtered local field potentials.  
A. Example bandpass filtered local field potentials from a single animal,  filtered 
in a small subsection of the theta (top), beta (middle) and gamma (bottom) 
freqency bands, as used in our phase-amplitude coupling analysis. These signals 
are free from any notable distortions which may arise as an artefact of filtering. 
B. Example probability distributions for beta (left) and gamma amplitude (right) at 
different phases of the theta oscillation, using signals filtered in the same narrow 
bands as those shown in the traces above. The probability distributions shown 
here show a high degree of non-uniformity, suggesting the presence of phase-
amplitude coupling, which is further supported by the high modulation index (MI) 
values calculated using these probability distributions (shown above). These data 
together support the validity of narrow bandpass filtered signals for phase-
amplitude coupling analysis across a large frequency range. All data comes from 
a single recording from the dygranular retrosplenial cortex of a single mouse. 
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2.8 Multi-Unit Activity 

Due to the distance between adjacent channels on the recording probe (100 µm) 

it is highly unlikely that activity of a single neuron would appear on multiple 

channels. This precluded the possibility of using standard spatiotemporal 

clustering techniques (Quiroga et al., 2004; Rossant et al., 2016). Consequently, 

individual channels were treated as individual multi-units. Raw local field 

potentials were first common average-referenced, using a mean of the signals 

from all other 15 channels, then filtered in the range of 500-5000 Hz, using a 

Butterworth IIR filter with order 4, in order to isolate the spiking frequency band. 

This common average-referencing allowed us to remove potential noise from the 

data, as spikes appearing simultaneously on many channels at once are unlikely 

to be biological and therefore are probably recording artefacts. Spikes were 

detected as peaks that crossed a threshold given by 4 medians of the absolute 

voltage of the signal divided by 0.6745, as suggested by Quiroga, Nadasdy and 

Ben-Shaul (2004), and had a minimum separation of 0.5 ms, equivalent to the 

time to peak amplitude for a spike waveform with a duration of 1 ms. According 

to Donoho and Johnstone (1994), the median of the absolute voltage of the signal 

divided by 0.6745 is an estimate of the standard deviation of the background 

noise. Average multi-unit waveforms were generated by averaging across all 

spike waveforms in all sessions, for all animals, while average firing rate was 

calculated as the average firing rate across all sessions, for all animals. In order 

to investigate multi-unit activity during beta bursts, bursts were detected as 

previously mentioned, and bursts that occurred within a second of each other 

were discarded, to remove overlapping segments. A single peri-burst histogram 

was created for each channel by taking the total number of spikes in 50 ms time 
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bins from 500 ms before burst onset, to 500 ms after, for all beta bursts. Each 

histogram was then normalised by dividing the count in each bin by the total 

number of spikes in all bins, averaged across all sessions and z-scored with 

respect to the baseline epoch (0.5 second pre-burst). The spike rate during beta 

bursting was calculated as the mean z-scored firing rate during the first 250 ms 

after burst onset, as this was determined to be the approximate time course of 

high beta amplitude. 

2.9 Coherence Analysis 

Coherence analysis is commonly used in neuroscience to investigate phase-

locking between neural oscillators and quantify this in the frequency domain 

(Lowet et al., 2016). Analysis was performed in a similar way to power spectral 

analysis, in that data processing prior to analysis was the same, as were the 

multi-taper parameters. LFPs for coherence analysis were downsampled by 30 

times to a sampling rate of 1000 Hz. Multi-taper coherence analysis was 

performed using the cohgramc function from the Chronux Toolbox (Mitra and 

Bokil, 2008), with a time-bandwidth product of 2 (1 second x 2 Hz), and 3 tapers, 

resulting in some smoothing of resulting spectra. The mtspecgramc function 

generates a power spectrogram by generating multiple power spectra for short 

segments of time series data, using a moving window; in our case with the 

window size of 1 s with no overlap. These individual spectra were averaged, 

resulting in a single mean coherence spectrum for the entire 15-minute session, 

or for the first minute of each session, as specified in the results. Coherence data 

from 47 to 53 Hz, which incorporates line frequency noise (50 Hz), were removed 

and linearly interpolated between the nearest neighbours. The coherence in each 

frequency band was calculated as the mean coherence in each of the following 
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frequency ranges: delta (1-5 Hz), theta (5-12 Hz), alpha (12-20 Hz), beta (20-30 

Hz), gamma (30-100 Hz). As before, we saw no evidence of divergence within 

the gamma frequency range that would warrant subdividing the gamma band for 

these data. 

2.10 Granger Causality Analysis 

Granger causality analysis is a technique by which potential directional 

interactions between neural oscillators can be investigated by determining 

whether the past of one time series can predict the future of another (Seth et al., 

2015). Granger causality analysis in this study was performed using the MVGC 

Multivariate Granger Causality toolbox (Barnett and Seth, 2014). First local field 

potentials were downsampled 30 times to a sampling rate of 1000 Hz. The signals 

were then segmented into 1-minute epochs, with each epoch analysed 

individually, in order to investigate the time course of Granger causality changes 

over the session. In order to estimate a suitable model order for vector 

autoregression, the Akaike information criteria was calculated for vector 

autoregression models up to a maximum model order of 20, using Morf’s version 

of the locally weighted regression algorithm. This estimated model order was then 

used to fit a vector autoregression model to the data, using the ordinary least 

squares solution. The resulting residuals covariance matrix and vector 

autoregression coefficients matrix were then used to calculate the 

autocovariance sequence up to a maximum lag of 50,000 samples. Spectral 

pairwise-conditional Granger causalities are then calculated from the 

autocovariance sequence up to the Nyquist frequency, or half the sampling rate, 

which in this instance is 500 Hz. The frequency resolution is set to be the number 

of autocovariance lags. In order to standardise between Granger causalities with 
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different frequency resolutions, these underwent 1-dimensional interpolation, in 

0.25 Hz steps from 0 to 120 Hz. A final check is performed to ensure that spectral 

multivariate Granger causalities integrate back to multivariate Granger causalities 

in the time domain, with minimal absolute difference less than 1e-5. These 

frequency domain Granger causality spectra were combined to produce 

‘Grangerograms’ for each direction, showing Granger causality across the 

session in 1-minute bins, and subtracted from each other in order to visualise the 

balance between both directions. 

2.11 Beta Burst Cross-Correlation 

For beta burst cross correlation, beta burst detection was performed as before, 

however local field potentials were not downsampled in order to maximise the 

temporal resolution of the analysis. Data signals from all channels were filtered 

in the beta frequency range as before, and beta burst detection was performed 

on the data from a single “reference” channel. The starts and stops of these 

reference channel beta bursts were used to isolate these burst epochs from all 

other channels. xcorr, a built-in MATLAB function was used to investigate the 

cross-correlation between each beta burst detected at the reference channel, and 

the time-locked beta signal from each other “test” channel. These cross 

correlations were normalised as a correlation coefficient, so the autocorrelation 

of the reference beta burst would be equal to 1 at zero lag. The peak cross 

correlation was calculated from these cross-correlations, as well as the lag at 

which this peak cross-correlation occurs. This process was repeated for all test 

channels and all beta bursts. 
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2.12 Histology 

Upon completion of the in vivo experiments, mice were killed using an overdose 

of sodium pentobarbital (Euthetal). For brain from experimental mice fitted with 

silicon depth probes, an isolated stimulator was used to produce electrolytic 

lesions at the recording sites. Mice were then transcardially perfused with 40% 

paraformaldehyde (PFA), and their brains were extracted and stored in 40% PFA 

for 24 hours, after which they were transferred to phosphate-buffered saline 

(PBS) prior to sectioning. Brains were sliced into 100 µm sagittal sections using 

a Lecia VT1200 vibratome (Leica), and stained depending on the desired 

protocol. For simple electrode location verification, brains were stained with 1% 

Cresyl Violet solution. For visualisation of amyloid plaque pathology, brains were 

stained with amylo-glo stain (Schmued et al., 2012). Slides were visualised on a 

Nikon Eclipse E800 microscope (Nikon), using either a 5x or 10x objective. Digital 

pictures were taken using either QCapture Pro 7 software (Qimaging) or SPOT 

Image Capture software (SPOT Imaging), and electrode sites were verified by 

comparing the lesion sites in these photographs to The Allen Mouse Brain Atlas 

(https://mouse.brain-map.org/static/atlas) and the Mouse Brain in Stereotaxis 

Coordinates by Paxinos and Franklin (2012). Due to the high channel count of 

these probes, as well as their linear geometry, it was possible to account for small 

differences in the depth of each probe by selecting channels of similar depths 

across different probes. This resulted in reduced variability between animals in a 

range of neurophysiological measures.   

2.13 Statistics 

All statistical analysis was performed in MATLAB using a number of different built-

in functions. Statistical analysis varied depending on the type of analysis 

https://mouse.brain-map.org/static/atlas


68 

 

performed, however the majority of statistical analysis was performed using 

mixed ANOVA with varying number of factors. The Novel/Familiar environment 

task involved 2 novel sessions and 8 familiar sessions, so in order to account for 

this imbalance, data was averaged across all novel and all familiar sessions. For 

the majority of analyses, mixed ANOVAs had two factors, with genotype as the 

between-subjects factor, and novelty as the within-subjects factor. Other 

additional factors included region for the EEG analysis, and slice plane for the in 

vitro slice analysis. Significant main effects or interactions from an ANOVA was 

subsequently followed up with relevant planned comparisons. Statistical tests 

used for each analysis are noted alongside the results of that analysis, throughout 

this thesis. 
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3 Chapter 3 

3.1 Authors Note 

Some of the content of this Chapter has been previously submitted for 

publication, and is available on the preprint server bioRxiv (Walsh et al., 2021). 

In order to adhere to restrictions on word counts, the amount of content in this 

published work is greatly reduced compared to the work presented in this 

Chapter, and a variety of material changes have since been made, including key 

analytical changes. As such, the content of this published work is highly different 

to the work shown here, but for the sake of transparency, this work has been 

provided as an appendix to this thesis. 

3.2 Introduction 

The retrosplenial cortex (RSC) is considered to play a critical role in spatial 

learning and memory. Damage to this region results in severe impairments in 

navigation and landmark processing (see Mitchell et al., 2018 for review). There 

is a large body of experimental evidence suggesting the retrosplenial cortex is 

involved in the encoding, retrieval and consolidation of spatial and contextual 

memory (see Todd and Bucci, 2015 for review). Optogenetic stimulation of RSC 

neurons is sufficient to elicit retrieval and consolidation of contextual memories 

(Cowansage et al., 2014; De Sousa et al., 2019). RSC neurons encode a range 

of contextual information during navigation (Koike et al., 2017), and inactivation 

of the RSC during spatial memory and contextual fear memory tasks impairs 

performance in these tasks (Czajkowski et al., 2014; Kwapis et al., 2015), 

suggesting the RSC is involved in the storage of spatial information. Finally, Iaria 

et al., (2007) demonstrated that while hippocampal subregions are differentially 
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involved in the encoding and retrieval of spatial information, the entire RSC is 

active during both processes. Spatial learning and memory impairments have 

been shown to be one of the earliest aspects of cognitive impairment in 

Alzheimer’s disease (AD). Patients exhibit disturbances in specific spatial 

memory processes associated with the RSC (Laczó et al., 2009; Vann et al., 

2009; Morganti et al., 2013). During the early stages of AD, the retrosplenial gyrus 

has been shown to exhibit regional hypometabolism (as measured by FDG-PET), 

and considerable atrophy (Minoshima et al., 1997; Choo et al., 2010). As such, 

the RSC is a region of great interest in research into the brain’s function in health 

and AD. 

Measurable correlates of brain function can have great value in fundamental 

neuroscience. They can aid the understanding of the complex ways in which the 

brain processes information and performs its many tasks, and also indicate how 

such functionality may be affected in disease. Similarly, these “functional 

biomarkers” can provide measurable benchmarks against which to test 

interventions which may affect or restore normal brain function (Walsh et al., 

2017). Of the growing number of methodologies available for investigating brain 

function, in vivo electrophysiology remains a powerful tool with a superior 

temporal resolution to all others. The temporal resolution of electrophysiology 

combined with the spatial specificity afforded by intracranial recordings make in 

vivo electrophysiology an invaluable tool for discovering functional correlates of 

brain function and disease-associated dysfunction. Few local field potential 

studies have been performed in the RSC to date, and those which have focus on 

the relationships between the RSC and the hippocampus. Alexander et al (2018) 

demonstrated the presence of theta and gamma oscillations in the RSC during 
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wake, spiking of RSC neurons was phase locked to these theta and gamma 

oscillations, and that gamma amplitude was coupled to theta phase in this region.  

In order to investigate the role of the RSC in spatial learning and memory, we 

recorded LFPs and multi-unit spiking activity from this region, while mice freely 

explored either a novel or familiar environment. To probe the effects of AD-

associated amyloid pathology on RSC function we used J20 mice, a widely 

employed mouse model of amyloidopathy. In this Chapter, we describe short, 

phasic bursts of beta (20-30 Hz) oscillations, termed “beta bursts”, that occur 

within the RSC, while mice freely explore an environment. Beta bursting activity 

is significantly increased during exposure to a novel environment, and these 

bursts are correlated with increased neuronal spiking in the RSC. These data 

demonstrate that beta bursting in the RSC is a robust neurophysiological 

correlate of environmental novelty and may have a role in the storage and 

retrieval of cortical spatial representations. Finally, we observed aberrant beta 

bursting activity and an uncoupling of beta bursting from neuronal spiking in the 

RSC in J20 mice, which may disrupt its function, and underlie spatial learning and 

memory deficits seen in these mice (Cheng et al., 2007). 

3.3 Methods 

3.3.1 Animals 

8 male J20 mice and 6 wild-type littermates were bred at the University of Exeter 

and housed on a 12-hour light/dark cycle. All procedures were carried out in 

accordance with the UK Animal (Scientific Procedures) Act 1986 65 and were 

approved by the University of Exeter Animal Welfare and Ethical Review Body. 

Access to food and water was provided ad libitum. All animals were kept on a 12-

hour light/dark cycle, with the light/dark cycle matching the normal daylight/night-
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time cycle, meaning all interactions including handling, surgery and behaviour 

took place during the light cycle. Mice were group housed prior to surgery, and 

single housed post-surgery, in order to prevent damage to the surgical implants. 

All mice were between 6 to 8 months of age at the time of recordings. 

3.3.2 Surgery 

Mice were unilaterally implanted with a 16 channel, single shank silicon probe 

(NeuroNexus Technologies, A1x16-5mm-100-177-CM16LP), in the right 

retrosplenial cortex (AP –2 mm, ML +0.5 mm, DV +1.75 mm, 0° Pitch, Figure 

3.1c). Mice were anaesthetised using isoflurane and fixed into a stereotaxic 

frame. A small craniotomy was drilled over the desired co-ordinate, and at least 

one hole was drilled in each of the major skull plates, in which miniature screws 

were placed to act as supports (Antrin Miniature Specialties). The probe was 

slowly lowered into the desired location, and fixed in place with dental cement 

(RelyX Unicem, 3M). The ground wire from the probe was connected to a silver 

wire, attached to a screw overlying the cerebellum. Throughout surgery, body 

temperature was monitored with a rectal probe and regulated by a feedback-

controlled heat mat.  Animals were kept hydrated by subcutaneous injections of 

Hartmann’s solution once per hour of surgery (0.01 ml/g body weight).  

3.3.3 Behaviour 

The Novel/Familiar environment task was used to probe the neurophysiological 

responses to contextual novelty (Figure 3.1). Individual mice were tethered to the 

recording apparatus, and placed in one of two high-sided recording arenas: one 

square, with black and white stripes, and one circular and lacking stripes (Figure 

3.1a). These arenas were custom built by another member of our lab and this 

behavioural paradigm has been previously validated. These two arenas were 
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similar in size; the square arena measured 56x56 cm and the circular arena had 

a diameter of 62 cm, while the height of both arenas measured 65 cm. Both 

arenas each had two internal visual cues, placed on opposite sides of the arena. 

The experimental procedure is illustrated in (Figure 3.1b). Firstly, the animals 

were places into the area and were allowed to freely explore their environment 

for 15 minutes, after which, they were returned to their home cage. After 15 

minutes in their home cage, the animal was returned to the same recording arena 

for another 15 minutes, and allowed to freely explore. Following this, the animal 

was returned to its home cage. This protocol was repeated at the same time of 

day, for 5 consecutive days, but on the fifth day, the animal was placed in the 

other, previously unseen arena. The order of exposure to these arenas was 

counterbalanced between animals. Each session can therefore be described by 

the experimental day, and the particular session within that day, with session A 

being the first, and session B being the second. Using this nomenclature, 

Sessions 1a and 5a were ‘novel’ sessions, while the remaining sessions were 

‘familiar’ sessions. In order to reduce the stress associated with the recording 

process, animals were acclimatised to this process during 10-minute test session 

3 days prior to the start of the experiment, in which the animal was tethered and 

recorded from while in its home cage. An added benefit of this was to familiarize 

the animals with this experimental procedure, thus ensuring that perceived 

novelty during the first experimental session was limited to the environment, and 

not the experience of being tethered to the recording apparatus. 

3.3.4 Data Analysis 

All analyses were performed for a single central channel in the dysgranular and 

a separate single central channel in granular RSC. The location of each channel 
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was estimated from post-hoc histology. Due to a surgical inaccuracy in a single 

wild-type animal, the probe was too deep to isolate any channels in the 

dysgranular RSC. It is for that reason that for all analyses, n = 8 for J20 mice in 

both granular and dysgranular RSC, while in wild-type mice n = 5 in the 

dysgranular RSC and n = 6 in the granular RSC. Fourteen mice in total were used 

in this study, 6 wild-type and 8 J20, with each mouse undergoing a total of ten 

recording sessions (5 days, 2 sessions per day). Unfortunately, the local field 

potential data from Day 3 session 1 (i.e. session 3a) was corrupted for a single 

wild-type mouse, and therefore data for this mouse from this session was omitted 

from all figure making and statistics.  
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Figure 3.1 Experimental Design 
A. Diagrams of the recording arenas used for this study. Both are roughly equal 
sized, one is square, with black and white stripes along the walls and floor (left) 
and the other is cylindrical with plain brown floor and walls. B. Experimental 
procedure for the novel/familiar environment task. A mouse is placed in one of 
the recording arenas for two 15-minute sessions, referred to as sessions A and 
B, with a 15-minute break in their home cage between the two sessions. This is 
repeated in the same arena for 4 consecutive days, after which the arena is 
switched for the 5th and final day. C. Single shank, 16 channel silicon probe 
electrodes were implanted in the retrosplenial cortex (green), so that they 
spanned the dysgranular (upper green section) and granular (lower green 
section) subregions. In order to verify the location of the electrodes, electrolytic 
lesions were made prior to perfusion, and slices were histologically prepared 
using Cresyl Violet stain. An example is shown (right). 
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3.3.5 Histology 

Upon completion of the experiments, mice were killed using an overdose of 

sodium pentobarbital (Euthetal), and an isolated stimulator was used to produce 

electrolytic lesions at the recording sites. Mice were then transcardially perfused 

with 40% paraformaldehyde (PFA), and their brains were extracted and stored in 

PFA for 24 hours, after which they were transferred to phosphate-buffered saline 

(PBS) prior to sectioning. Brains were sliced into 100 µm sagittal sections using 

a vibratome (Leica VT1200), and stained with Cresyl Violet (Figure 3.1c, right). 

Digital pictures were taken using QCapture Pro 7 software (Qimaging), and 

electrode sites were verified by comparing the lesion sites in these photographs 

to The Allen Mouse Brain Atlas (https://mouse.brain-map.org/static/atlas). Due to 

the high channel count of these probes, as well as their linear geometry, it was 

possible to account for small differences in the depth of each probe by selecting 

channels of similar depths across different probes. This resulted in reduced 

variability between animals in a range of neurophysiological measures. As 

previously mentioned, in order to confirm age-related amyloid pathology in our 

J20 mice, we performed amylo-glo staining to stain for plaques in both 8-month 

old and 12-month old J20 mice, as well as age-matched wild-type littermates 

(Figure 3.2). This staining revealed an age-related deposition of amyloid plaques 

in both the hippocampus and retrosplenial cortex, with low levels of plaques in 8-

month old animals, but widespread plaques by 12 months of age. 

  

https://mouse.brain-map.org/static/atlas
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Figure 3.2 Amylo-glo staining of J20 mouse brains reveals amyloid plaques 
 
Brains from 8-month old and 12-month old J20 mice, and age matched littermates 
were sectioned and stained for amyloid plaques using amylo-glo staining.  
Amyloid plaques are completely absent from both the hippocampus (A) and 
retrosplenial cortex (B) of 12-month old wild-type mice. In 8-month old J20 mice, 
amyloid pathology is sparse, with only a few amyloid plaques in the hippocampus 
(C). These plaques appear small and dense, and are generally seen in the 
dentate gyrus (D). In 12-month old J20 mice, there are numerous plaques 
throughout both the retrosplenial cortex (E) and hippocampus (F). In the 
hippocampus these are most prevalent in the molecular layer of the dentate 
gyrus, and are more diffuse than plaques in 8-month old J20 mice. 
Magnifications: A-C, 4x; D-F, 10x. 
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3.4 Results 

To investigate neurophysiological correlates of spatial learning and memory in 

the retrosplenial cortex (RSC), local field potentials were recorded from across 

the entire dorsoventral axis of the RSC, while animals underwent a novel/familiar 

environment task. The RSC is made up of two distinct subdivisions: dysgranular 

(RSCdg), and granular (RSCg). While these regions are strongly interconnected, 

the neuroanatomical connectivity of these regions has been shown to differ (van 

Groen and Wyss, 1992; Van Groen and Wyss, 2003), therefore it is possible that 

the functional neurophysiology may vary as well, especially during a behavioural 

paradigm such as this, where spatial learning and memory processes may be 

stimulated. Due to the anatomical positioning of these subdivisions in rodents, it 

is possible to record from both RSCdg and RSCg simultaneously, using a single, 

vertical silicon probe (Figure 1C). Therefore, for this study, our analyses were 

performed for both subdivisions.  

3.4.1 Behaviour 

In order to investigate the behavioural response to environmental novelty, 

tracking data was used to investigate how locomotor activity varied between, and 

within recording sessions, and to determine whether there were any differences 

in locomotor activity between wild-type and J20 mice. Moreover, it is important to 

note that oscillatory activity in the brain can change dramatically with changes in 

running speed. In the hippocampus for example, theta and gamma power have 

been shown to be positively correlated with running speed (Chen et al., 2011; 

Ahmed and Mehta, 2012). It is for this reason that locomotor activity must be 

considered when interpreting changes in oscillatory activity.  
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As shown in (Figure 3.3a), location tracking reveals that during novel sessions, 

animals explore the environment thoroughly and continue exploring throughout 

the recording session. Conversely, during familiar sessions, animals explore a far 

smaller area of the arena, tending to spend most of the session at the edges of 

the arena and in the corners (Figure 3.3b). Running speed was calculated from 

tracking data and averaged across the entire 15 minutes of each recording 

session (Figure 3.3c, left). Average running speed was significantly higher overall 

during novel sessions (Main Effect Novelty - F(1,12) = 29.4, p = 1.5e-4, Mixed 

ANOVA). Running speed was higher on average during novel sessions for both 

wild-type (Nov: 6.8 ± 0.3; Fam: 5.1 ± 0.4, p = 0.002) and J20 mice (Nov: 8 ± 0.5; 

Fam: 6.7 ± 0.5, p = 0.003), and there was no significant overall difference 

between average running speed in wild-type and J20 mice (Main Effect Genotype 

- F(1,12) = 2.7, p = 0.13, Mixed ANOVA). In these experiments, the most 

important part of the session with regards to behaviour is likely to be the first 

minute or so, as the animal rapidly processes its environment and determines it 

to be either novel or familiar. For this reason, we repeated the previous running 

speed analysis but instead for only the first minute of each session (Figure 3.3c, 

right). As before, average running speed was significantly higher overall during 

novel sessions (Main Effect Novelty - F(1,12) = 33.7, p = 8.4e-5, Mixed ANOVA). 

Running speed was higher during the first minute of novel sessions than the first 

minute of familiar sessions for both wild-type ( Nov: 8.4 ± 0.5; Fam: 4.3 ± 0.5, p 

= 4.9e-4) and J20 mice (J20 - Nov: 9.6 ± 1; Fam: 7 ± 0.7, p = 0.005), and as 

before, there was no significant overall difference between average running 

speed in wild-type and J20 mice (Main Effect Genotype - F(1,12) = 2.1, p = 0.2, 

Mixed ANOVA). Finally, we calculated the total distance travelled during each 

second of each recording session in order to further quantify the animals 
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behaviour within sessions, and produced cumulative frequency graphs shown in 

Figure 3.3d. During both novel (left) and familiar sessions (right), animals move 

at a relatively steady pace throughout the entire 15 minutes of each session, as 

indicated by the linear relationship between total distance travelled and time. In 

order to quantify this, average running speed during the initial part of the session 

(first minute) and the final part of the session (last 10 minutes) were calculated 

for each session and averaged across novel (Figure 3.3e, left) and familiar 

sessions (Figure 3.3c, right). Average running speed was significantly higher 

overall during novel sessions (Main Effect Novelty - F(1,12) = 35, p = 7e-5, Mixed 

ANOVA), however there was no significant overall difference in running speed 

between the initial and final part of the recording sessions or between the two 

genotypes.  
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Figure 3.3 Animals explore significantly more during novel sessions. 
A. Graph showing the location of a single wild-type animal across the entire 15 
minutes of a novel session (Day1a), with the time represented by the color of the 
line. During novel sessions, animals thoroughly explore the arena, throughout the 
session. B. Graph showing the location of the same wild-type animal in A, but in 
the subsequent familiar session (Day1b). During familiar sessions, animals are 
far less exploratory and spend much more time at the edges of the arena.  
C. Graphs showing the average running speed of wild-type and J20 mice in each 
session, averaged across the whole session (left), and the first minute of each 
session (right). Average running speed was higher overall during novel sessions, 
for both the whole session (p = 1.5e-4) and first minute (p = 8.44e-5). There was 
no significant difference between average running speeds in wild-type and J20 
mice. D. Cumulative frequency graphs showing the total distance travelled by 
wild-type and J20 mice during novel (left) and familiar sessions (right). Animals 
appear to explore throughout both novel and familiar sessions. E. Graphs 
showing running speed during novel (left) and familiar sessions (right), for wild-
type and J20 mice. Running speed was quantified for the initial minute of each 
session, and final 10 minutes. Running speed was significantly higher overall 
during novel sessions (p = 7e-5), however there was no significant effect of time 
or genotype on running speed. (Data shown as mean ± SEM, WT: n = 6, J20: n 
= 8). 
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3.4.2 Dysgranular Spectral Analysis 

Local field potentials from RSCdg show a clear, continuous peak in theta 

frequency band (5-12 Hz) throughout recording sessions (Figure 3.4a), as well 

as less distinct peaks at higher frequencies. In order to investigate any changes 

in oscillatory activity in RSCdg during environmental novelty, power spectral 

analysis was performed on the entire 15 minutes of each session. These power 

spectra were averaged across novel and familiar sessions for wild-type and J20 

mice. Significant findings are summarised in Table 1, however a more detailed 

account of these findings, including descriptive statistics, will be listed here in-

text. Gamma power was significantly higher overall during novel sessions 

(Gamma: Main Effect Novelty - F(1,11) = 21.6, p = 7e-4, Mixed ANOVA). Gamma 

power was significantly higher during novel sessions in wild-type (WT - Nov: 10.6 

± 0.1 dB; Fam: 10.2 ± 0.1 dB, p = 0.01) and J20 mice (J20 - Nov: 11.2 ± 0.2 dB; 

Fam: 10.8 ± 0.2 dB, p = 0.004). There were significant interactions between the 

effects of genotype and novelty on delta, alpha and beta power (Delta: Interaction 

- F(1,11) = 9.4, p = 0.01, Mixed ANOVA; Alpha: Interaction - F(1,11) = 6, p = 0.03, 

Mixed ANOVA; Beta: Interaction - F(1,11) = 5.2, p = 0.04, Mixed ANOVA). Delta 

power was significantly higher during familiar sessions in wild-type (WT - Nov: 

22.1 ± 0.7 dB; Fam: 22.5 ± 0.7 dB, p = 0.02), but not J20 mice. Beta power was 

significantly higher during novel sessions in both wild-type (WT - Nov: 14.2 ± 0.2 

dB; Fam: 13.7 ± 0.2 dB, p = 0.02) and J20 mice (J20 - Nov: 16.7 ± 0.3 dB; Fam: 

15.8 ± 0.3 dB, p = 2e-5). Moreover, beta power was significantly higher in J20 

mice than in wild-type mice, for both novel (Nov - WT: 14.2 ± 0.2 dB; J20: 16.7 ± 

0.3 dB, p = 0.001) and familiar sessions (Fam - WT: 13.7 ± 0.2 dB; J20: 15.8 ± 

0.3 dB, p = 0.002). 
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Upon closer inspection of power spectrograms (Figure 3.4a), it was clear that 

spectral activity changed within novel sessions. Power in the 20 – 40 Hz range 

appeared to be higher in the first minute of the session and diminish over time. 

As exemplified in (Figure 3.4c), transient epochs of high power in the 20-40 Hz 

range are seen throughout the early stages of the session. By performing the 

same power spectral analysis as before on only the first minute of each session, 

clearer differences appeared between novel and familiar sessions. Theta, alpha, 

beta and gamma power were significantly higher overall during novel sessions 

(Theta: Main Effect Novelty - F(1,11) = 14.7, p = 0.003, Mixed ANOVA; Alpha: 

Main Effect Novelty - F(1,11) = 24.3, p = 4e-4, Mixed ANOVA; Beta: Main Effect 

Novelty - F(1,11) = 47.5, p = 3e-5, Mixed ANOVA; Gamma: Main Effect Novelty 

- F(1,11) = 19.9, p = 0.001, Mixed ANOVA). There was a significant interaction 

between the effects of genotype and novelty on delta power (Interaction - F(1,11) 

= 8.3, p = 0.01, Mixed ANOVA). Delta power was significantly higher during novel 

sessions in J20 mice (J20 - Nov: 22.8 ± 0.2 dB; Fam: 21.8 ± 0.2 dB, p = 0.006), 

but not wild-type mice. Moreover, alpha and beta power were significantly higher 

overall in J20 mice (Alpha: Main Effect Genotype - F(1,11) = 7.2, p = 0.02, Mixed 

ANOVA; Beta: Main Effect Genotype - F(1,11) = 21.9, p = 7e-4, Mixed ANOVA). 

Across these time series, increased beta power occurred in brief, discrete 

epochs, as shown in the expanded power spectrogram in (Figure 3.5a). This can 

also be seen clearly in beta-filtered local field potentials, where these periods of 

high beta amplitude intersperse an otherwise very low amplitude oscillation. In 

order to understand the timescale and frequency domains of these events, 

wavelet analysis was used to investigate their time course and frequency profile 
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further. As exemplified in (Figure 3.5c), these individual events were short in 

duration, and peaked in the 20-30 Hz, beta band. 
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Figure 3.4 Beta (20-30 Hz) power is significantly higher during novelty in the 
dysgranular retrosplenial cortex in wild-type and J20 mice. 
A. Example power spectrogram for an entire novel session in a wild-type mouse. 
B. Average power spectra for the entire 15 minutes of all novel and familiar 
sessions, for wild-type and J20 mice. Beta power was significantly higher during 
novel sessions in both wild-type (p = 0.02) and J20 mice (p = 2e-5). Moreover, 
beta power was significantly higher in J20 mice than in wild-type mice, during 
novel (p = 0.001) and familiar sessions (p = 0.002). C. Example power 
spectrogram shown in A, expanded to show the first 60 seconds of the session 
(before the white line). Short epochs of increased power in the 20-40 Hz range 
can be seen. D. Average power spectra for the first minute of all novel and familiar 
sessions, for wild-type and J20 mice. Beta power was significantly higher overall 
during novel sessions (p = 3e-5), and was significantly higher overall in J20 mice 
(p = 7e-4). (Data shown as mean ± SEM, WT: n = 5, J20: n = 8). 
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Table 1 Dysgranular spectral analysis - Summary of significant results 

N, novelty; G, genotype; N X G, interaction between novelty and genotype;  
n, novel; f, familiar; WT, wild-type; J20, J20; δ, delta; θ, theta; α, alpha; β, beta; 
γ, gamma  

Analysis Type Frequency Band Relationship p-value

δ N X G 0.01

δ fWT > nWT 0.02

α N X G 0.03

β N X G 0.04

β nWT > fWT 0.02

β nJ20 > fJ20 2.00E-05

β nJ20 > nWT 0.001

β fJ20 > fWT 0.002

γ n > f 7.00E-04

γ nWT > fWT 0.01

γ nJ20 > fJ20 0.004

δ N X G 0.01

δ nJ20 > fJ20 0.006

θ n > f 0.003

α n > f 4.00E-04

α J20 > WT 0.02

β n > f 3.00E-05

β J20 > WT 7.00E-04

γ n > f 0.001

First Minute

Whole Session
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Figure 3.5 Retrosplenial local field potentials are marked by short, phasic 
increases in beta power, referred to as beta bursts. 
A. Example power spectrogram showing transient increases in beta power. B. 
Local field potentials of data shown in A, both unfiltered (top), and filtered in the 
beta band (bottom), with the envelope amplitude in blue for clarity. The beta-
filtered local field potential shows clear epochs of high beta amplitude, which 
intersperse a low amplitude continuous beta oscillation. C. Expanded trace of the 
dashed area in shown in B (top), and a continuous wavelet spectrogram of this 
time series (bottom). Due to the high temporal resolution of wavelet-based 
methods, these periods of high beta amplitude can be seen to be brief in duration, 
only lasting around 100-200 ms. 
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It is important to note here that as we previously mentioned, neural oscillations 

can change depending on the running speed of the animal, which may confound 

data such as those just shown. In order to counteract this, it is common to “speed 

control” the data in order to analyse and compare epochs during which the animal 

is running at a certain speed (Booth et al., 2016). For the data shown throughout 

this thesis, we decided not to speed control our data for several reasons. Firstly, 

as shown in (Figure 3.3), we found no significant differences between running 

speed in wild-type and J20 mice, demonstrating that local field potential data is 

coming from comparable locomotor states, and therefore any differences 

between network activity in these animals is unlikely to arise from differences in 

locomotor activity. Secondly, we also found no significant differences between 

running speed during the first minute of recording sessions and the last 10 

minutes of recording sessions (Figure 3.3), again demonstrating that local field 

potential data is coming from comparable locomotor states, and that any 

differences in network activity between these two time points is not merely 

resulting from higher levels of locomotor activity in the first minute of the recording 

session, for example. Finally, as previously mentioned, an interesting feature of 

this data which will be explored in great detail throughout this thesis is the 

presence of transient oscillatory events in the 20-30 Hz band. Due to the transient 

nature of these oscillations, speed controlling this data would likely result in the 

exclusion of a large number of these events due to the discarding of epochs not 

in the speed band of interest, and therefore deprive us of a great deal of 

information such as the distribution of these events over time. With this decision 

in mind, it is therefore important to note that due to the significant overall increase 

in running speed during novel sessions in both wild-type and J20 mice, it is not 

possible to completely discount the effect this may have on network activity. 
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3.4.3 Dysgranular Beta Bursting Activity 

In order to investigate this phasic beta activity in more depth, an algorithm was 

written to detect and analyse these “beta bursts”; the basis of this algorithm is 

illustrated in (Figure 3.6a). Briefly, epochs where beta amplitude exceeded a 

“hard threshold” of 2 standard deviations from mean for longer than 150 

milliseconds were detected. The start and stop of each putative burst were 

determined as the moment the amplitude crossed a “soft threshold” of 1 standard 

deviation, prior to and following each burst. 

With these transient epochs of high beta power now classified as discrete beta 

bursts, it was possible to compare this beta activity between sessions. As shown 

in (Figure 3.6b), there were significantly more beta bursts detected overall during 

novel sessions (Main Effect Novelty - F(1,11) = 20.9, p = 8e-4, Mixed ANOVA). 

Furthermore, there were significantly more beta bursts detected overall in J20 

mice (Main Effect Genotype - F(1,11) = 16.8, p = 0.002, Mixed ANOVA). 

Moreover, from the cumulative frequency plots shown in (Figure 3.6c), it is 

possible to visualise the rate of beta bursting over time, within sessions. As 

illustrated by the slope of these lines, the rate of beta bursting was reasonably 

steady throughout familiar sessions (Figure 3.6c, right), but substantially higher 

during the first few minutes of novel sessions, for both genotypes (Figure 3.6c, 

left). Beta bursting rate during the initial part of the session (first minute) and the 

final part of the session (last 10 minutes), was calculated for each session and 

averaged across novel and familiar sessions (Figure 3.6d). The rate of beta 

bursting was significantly higher overall during novel sessions (Main Effect 

Novelty - F(1,11) = 18.6, p = 0.001, Mixed ANOVA), and also significantly higher 

overall during the initial part of recording sessions (Main Effect Time - F(1,11) = 
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24.5, p = 4e-4, Mixed ANOVA). During novel sessions, initial burst rate was 

significantly higher than final burst rate for wild-type (WT - Nov Initial: 13 ± 1.6; 

Final: 0.9 ± 0.1, p = 0.01), and J20 mice (J20 - Nov Initial: 14.1 ± 3.6; Final: 2.0 ± 

0.4, p = 0.004). Furthermore, there was no significant difference between wild-

type and J20 mice for initial burst rate or final burst rate (Nov Initial - WT: 13 ± 

1.6; J20: 14.1 ± 3.7, p = 0.8; Nov Final - WT: 0.9 ± 0.1; J20: 2 ± 0.4, p = 0.08). 

During familiar sessions, initial burst rate was significantly higher than final burst 

rate for J20 mice (J20 - Fam Initial: 5.1 ± 0.5; Final: 2.1 ± 0.2, p = 1e-4), but not 

wild-type mice (WT - Fam Initial: 2.7 ± 0.5; Final: 1.4 ± 0.1, p = 0.07). Furthermore, 

initial burst rate and final burst rate were significantly higher in J20 mice than in 

wild-type mice (Fam Initial - WT: 2.7 ± 0.5; J20: 5.1 ± 0.5, p = 0.006; Fam Final - 

WT: 1.4 ± 0.1; J20: 2.1 ± 0.2, p = 0.03). 

The minimum amplitude (2 standard deviations from mean) and duration 

thresholds (150 ms) used in this burst detection algorithm were chosen in order 

to detect the most significant events, however these thresholds were selected 

from visual inspection of the data and do not have any pre-existing physiological 

basis. While our minimum burst duration threshold was set at 150 ms, Sherman 

et al. (2016) noted that transient beta events in human neocortex typically lasted 

less than 150 ms. Therefore, we decided to perform the same burst detection 

analysis with different thresholds, in order to determine how sensitive our findings 

are to different algorithm parameters.  

Firstly, instead of a minimum amplitude threshold of 2 standard deviations from 

the mean, we tested our burst detection algorithm with a minimum amplitude 

threshold of 1 standard deviation from the mean (Figure 3.7 Novelty-associated 

beta bursting in the dysgranular retrosplenial cortex (RSCdg) . As shown in 
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(Figure 3.7b), there was a significant interaction between novelty and genotype 

on the total number of beta bursts detected (Interaction - F(1,11) = 7.9, p = 0.02, 

Mixed ANOVA). There were significantly more beta bursts detected during novel 

sessions for J20 mice (J20 - Nov: 152 ± 4.9; Fam: 115 ± 3, p = 8.9e-5), but not 

wild-type mice (WT - Nov: 103 ± 4.7; Fam: 94 ± 1.5, p = 0.27). As shown in (Figure 

3.7d), the rate of beta bursting was significantly higher overall during novel 

sessions (Main Effect Novelty - F(1,11) = 26.3, p = 3e-4, Mixed ANOVA), and 

also significantly higher overall during the initial part of recording sessions (Main 

Effect Time - F(1,11) = 44.3, p = 3.6e-5, Mixed ANOVA). During novel sessions, 

initial burst rate was significantly higher than final burst rate for wild-type (WT - 

Nov Initial: 29.6 ± 1.4; Final: 3.6 ± 0.3, p = 0.002), and J20 mice (J20 - Nov Initial: 

29.4 ± 5.4; Final: 6.5 ± 1, p = 8e-4). Furthermore, there was no significant 

difference between wild-type and J20 mice for initial burst rate or final burst rate 

(Nov Initial - WT: 29.6 ± 1.4; J20: 29.4 ± 5.4, p = 0.97; Nov Final - WT: 3.6 ± 0.3; 

J20: 6.5 ± 1, p = 0.05). During familiar sessions, initial burst rate was significantly 

higher than final burst rate for wild-type (WT - Fam Initial: 9.9 ± 0.7; Final: 5.8 ± 

0.2, p = 0.01), and J20 mice (J20 - Fam Initial: 14.7 ± 0.9; Final: 7.2 ± 0.6, p = 

2.3e-5). Furthermore, initial burst rate was significantly higher in J20 mice than in 

wild-type mice (Fam Initial - WT: 9.9 ± 0.7; J20: 14.7 ± 0.9, p = 0.003). 

Secondly, instead of a minimum duration threshold of 150 ms, we tested our burst 

detection algorithm with a minimum duration threshold of 100 ms (Figure 3.8). As 

shown in (Figure 3.8b), there were significantly more beta bursts detected overall 

during novel sessions (Main Effect Novelty - F(1,11) = 16.4, p = 0.002, Mixed 

ANOVA). Furthermore, there were significantly more beta bursts detected overall 

in J20 mice (Main Effect Genotype - F(1,11) = 28.1, p = 3e-4, Mixed ANOVA). 
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There were significantly more beta bursts detected during novel sessions for J20 

mice (J20 - Nov: 212 ± 5.7; Fam: 177 ± 3.8, p = 8e-4), but not wild-type mice (WT 

- Nov: 166 ± 4.9; Fam: 151 ± 2.3, p = 0.16). As shown in (Figure 3.8d), the rate 

of beta bursting was significantly higher overall during novel sessions (Main Effect 

Novelty - F(1,11) = 24.3, p = 5e-4, Mixed ANOVA), and also significantly higher 

overall during the initial part of recording sessions (Main Effect Time - F(1,11) = 

44.8, p = 3.4e-5, Mixed ANOVA). During novel sessions, initial burst rate was 

significantly higher than final burst rate for wild-type (WT - Nov Initial: 45.4 ± 2.7; 

Final: 6.4 ± 0.3, p = 0.001), and J20 mice (J20 - Nov Initial: 41.1 ± 7.7; Final: 9 ± 

1.4, p = 1e-3). Furthermore, there was no significant difference between wild-type 

and J20 mice for initial burst rate or final burst rate (Nov Initial - WT: 45.4 ± 2.7; 

J20: 41.1 ± 7.7, p = 0.7; Nov Final - WT: 6.4 ± 0.3; J20: 9 ± 1.4, p = 0.2). During 

familiar sessions, initial burst rate was significantly higher than final burst rate for 

wild-type (WT - Fam Initial: 15.9 ± 1.2; Final: 9.5 ± 0.2, p = 0.006), and J20 mice 

(J20 - Fam Initial: 21.2 ± 1.3; Final: 11 ± 0.7, p = 3.3e-5). Furthermore, initial burst 

rate was significantly higher in J20 mice than in wild-type mice (Fam Initial - WT: 

15.9 ± 1.2; J20: 21.2 ± 1.3, p = 0.02). 

These results show that reducing the amplitude and duration thresholds in the 

beta burst detection algorithm results in a dramatic increase in the number of beta 

bursts detected, however the dramatic increases in the rate of beta bursting 

during novelty are consistent across all thresholds tested. While this validates our 

findings, in order to focus on the most significant transient beta events we will 

continue with the original thresholds for all for the remainder of this thesis.  
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Figure 3.6 Beta bursting activity in the dysgranular retrosplenial cortex (RSCdg) 
is significantly higher during novelty. 
A. Diagram illustrating how beta bursts were detected. B. Graph showing the 
average number of beta bursts detected in RSCdg in each session, for wild-type 
(black) and J20 mice (green). Novel sessions Day1a and Day5a are highlighted 
in blue for clarity. Significantly more beta bursts were detected during novel 
sessions than during familiar sessions (p = 8e-4).  Moreover, significantly more 
beta bursts were detected overall in J20 mice (p = 0.002). C. Cumulative 
frequency graphs of beta bursts detected in novel (left) and familiar sessions 
(right), for wild-type and J20 mice. While beta bursting occurred monotonically 
during familiar sessions, during the first minute of a novel session, beta bursting 
was substantially increased. D. Graphs showing beta burst rate during novel (left) 
and familiar sessions (right), for wild-type and J20 mice. Burst rate was quantified 
for the initial minute of each session, and final 10 minutes. Beta burst rate was 
significantly higher overall during the initial minute of novel sessions than during 
the final 10 minutes of novel sessions for both wild-type (p = 0.01) and J20 mice 
(p = 0.004). (Data shown as mean ± SEM, WT: n = 5, J20: n = 8). 
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 Figure 3.7 Novelty-associated beta bursting in the dysgranular retrosplenial 
cortex (RSCdg) can be detected with a lower amplitude threshold. 
A. Diagram illustrating how beta bursts were detected, with the lower amplitude 
threshold (dotted) and detected beta bursts (solid) in red. B. Graph showing the 
average number of beta bursts detected in RSCdg in each session, for wild-type 
(black) and J20 mice (green). Novel sessions Day1a and Day5a are highlighted 
in blue for clarity. Significantly more beta bursts were detected during novel 
sessions than during familiar sessions for J20 mice (p = 8.8e-5) but not wild-type 
mice (p = 0.27). C. Cumulative frequency graphs of beta bursts detected in novel 
(left) and familiar sessions (right), for wild-type and J20 mice. While beta bursting 
occurred monotonically during familiar sessions, during the first minute of a novel 
session, beta bursting was substantially increased. D. Graphs showing beta burst 
rate during novel (left) and familiar sessions (right), for wild-type and J20 mice. 
Burst rate was quantified for the initial minute of each session, and final 10 
minutes. Beta burst rate was significantly higher overall during the initial minute 
of novel sessions than during the final 10 minutes of novel sessions for both wild-
type (p = 0.002) and J20 mice (p = 8e-4). (Data shown as mean ± SEM, WT: n = 
5, J20: n = 8). 
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 Figure 3.8 Novelty-associated beta bursting in the dysgranular retrosplenial 
cortex (RSCdg) can be detected with a lower duration threshold. 
A. Histogram showing the duration of all beta bursts detected across all sessions 
for wild-type (grey) and J20 mice (green), with the lower duration threshold in red. 
B. Graph showing the average number of beta bursts detected in RSCdg in each 
session, for wild-type (black) and J20 mice (green). Novel sessions Day1a and 
Day5a are highlighted in blue for clarity. Significantly more beta bursts were 
detected during novel sessions than during familiar sessions for J20 mice (p = 
7.6e-4) but not wild-type mice (p = 0.16). C. Cumulative frequency graphs of beta 
bursts detected in novel (left) and familiar sessions (right), for wild-type and J20 
mice. While beta bursting occurred monotonically during familiar sessions, during 
the first minute of a novel session, beta bursting was substantially increased. D. 
Graphs showing beta burst rate during novel (left) and familiar sessions (right), 
for wild-type and J20 mice. Burst rate was quantified for the initial minute of each 
session, and final 10 minutes. Beta burst rate was significantly higher overall 
during the initial minute of novel sessions than during the final 10 minutes of novel 
sessions for both wild-type (p = 0.001) and J20 mice (p = 0.001). (Data shown as 
mean ± SEM, WT: n = 5, J20: n = 8). 
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3.4.4 Dysgranular Beta Burst Characteristics 

In order to attempt to understand the nature of retrosplenial beta bursts, and the 

mechanisms which underlie them, a number of beta burst characteristics were 

investigated. For each beta burst, the duration and magnitude were calculated, 

as shown in (Figure 3.9a). Beta burst magnitude was significantly higher overall 

during novel sessions (Main Effect Novelty - F(1,11) = 43.6, p = 4e-5, Mixed 

ANOVA). As shown in (Figure 3.9b), beta bursts were significantly larger in 

magnitude during novel sessions in wild-type (Nov: 93.3 ± 3 µV; Fam: 78.5 ± 2.7 

µV, p = 0.004) and J20 mice (J20 - Nov: 121 ± 4.4 µV; Fam: 102 ± 3.3 µV, p = 

8e-5). Moreover, beta bursts were significantly larger in magnitude overall in J20 

mice (Main Effect Genotype - F(1,11) = 14.3, p = 0.003, Mixed ANOVA). Beta 

burst duration was also significantly higher overall during novel sessions (Main 

Effect Novelty - F(1,11) = 28.1, p = 3e-4, Mixed ANOVA). As shown in (Figure 

3.9c), beta bursts were significantly longer in duration during novel sessions in 

wild-type (WT - Nov: 190 ± 2.5 ms; Fam: 177 ± 1 ms, p = 0.003) and J20 mice 

(J20 - Nov: 189 ± 2 ms; Fam: 180 ± 0.9 ms, p = 0.004). 

In order to understand the frequency profile of beta bursts, and to determine 

whether these oscillations conformed to the beta frequency band (20-30 Hz), 

power spectral analysis was performed on individual beta bursts. As a control, 

these burst spectra were compared to power spectra of epochs of equal length 

directly prior to each burst. These power spectra were averaged across all bursts 

and “pre-bursts”, for wild-type and J20 mice (Figure 3.9d). Overall, beta bursts 

were associated with a large significant increase in beta power (Main Effect Burst 

- F(1,11) = 4811, p = 7e-16, Mixed ANOVA), and smaller significant increases in 

alpha and gamma power (Alpha: Main Effect Burst - F(1,11) = 169, p = 5e-8, 
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Mixed ANOVA; Gamma: Main Effect Burst - F(1,11) = 46, p = 3e-5, Mixed 

ANOVA). Alpha, beta and gamma power were significantly higher during beta 

bursts in both wild-type (Alpha: WT – Pre-Burst: 16.5 ± 0.4 dB; Burst: 17.6 ± 0.3 

dB, p = 3e-6; Beta: WT – Pre-Burst: 12.8 ± 0.3 dB; Burst: 19.9 ± 0.3 dB, p = 9e-

14; Gamma: WT – Pre-Burst: 8.3 ± 0.2 dB; Burst: 8.6 ± 0.1 dB, p = 0.002), and 

J20 mice (Alpha: J20 – Pre-Burst: 17.7 ± 0.4 dB; Burst: 18.6 ± 0.4 dB, p = 7e-7; 

Beta: J20 – Pre-Burst: 15.2 ± 0.3 dB; Burst: 22.3 ± 0.3 dB, p = 8e-15; Gamma: 

J20 – Pre-Burst: 9.4 ± 0.2 dB; Burst: 9.8 ± 0.2 dB, p = 1e-4). 

As illustrated by van Ede et al. (2018), continuous oscillations may appear as 

phasic burst events if their amplitude varies greatly over time. The time taken to 

complete one cycle of an oscillation is known as the period of the oscillation, and 

therefore how consistent this period is over a certain length of time can be 

considered as a measure of how rhythmic the oscillation is. The rhythmicity of 

beta oscillations during and outside of beta burst epochs can suggest potential 

mechanisms underlying their generation. Beta oscillations that are rhythmic both 

during and outside of bursts could be suggestive of a “dynamic amplitude 

modulation” mechanism, in that beta oscillations are a continuous oscillatory 

rhythm where the amplitude varies over time. Conversely, a loss of beta 

rhythmicity outside beta bursts may imply a “bursty generator” (Shin et al., 2017; 

van Ede et al., 2018), in that true beta oscillations only occur as transient bursts. 

Previous work suggests beta oscillations have a bursty generator, which we 

hoped to verify ourselves in this study (Shin et al., 2017). The period of beta 

oscillations was calculated for all beta bursts and all epochs without beta bursts, 

as described in the methods in Chapter 2, and the distribution of these beta 

periods were calculated and averaged across all burst and non-burst epochs, in 
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all sessions, for wild-type and J20 mice (Figure 3.9e). While the distribution of 

beta periods during beta bursts was reasonably consistent, peaking around 

0.04s, equivalent to a 25 Hz oscillation, the distribution of beta periods in non-

burst epochs was far more variable, with a large proportion of periods outside 

beta range. These data suggests that beta oscillations during beta bursts are 

highly rhythmic, while rhythmicity is far lower during non-burst epochs, suggesting 

a “bursty generator” model put forward by van Ede et al. (2018), however it is 

important to note that the data presented does not provide any conclusive proof 

of either mechanism, as neural oscillations are generated by synchronous firing 

of large populations of neurons, so more synchronous firing could be expected to 

result in both increased oscillatory amplitude, and increased rhythmicity. 

Furthermore, another caveat to this analysis is that digital filtering of complex 

signals is rarely perfect, and spectral leakage close to the band edges may result 

in irregular oscillations, especially when the oscillations are low in amplitude. 
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Figure 3.9 Beta burst characteristics in the dysgranular retrosplenial cortex 
(RSCdg). 
A. Diagram illustrating how the magnitude and duration of beta bursts were 
calculated. B. Graph showing the average beta burst magnitude in RSCdg in 
each session, for wild-type and J20 mice. Beta bursts were overall significantly 
larger in magnitude during novel sessions (p = 4e-5). Moreover, beta bursts were 
also significantly larger overall in J20 mice (p = 8e-5). C. Graph showing the 
average duration of beta bursts in RSCdg in each session, for wild-type and J20 
mice. Beta bursts were overall significantly longer in duration during novel 
sessions (p = 3e-4), however there was no significant overall difference between 
beta burst duration in wild-type and J20 mice. D. Average power spectra for beta 
burst, and pre-burst epochs. Beta bursts were associated with a large, significant 
increase in beta power during beta bursts (p = 7e-16). E. Average distributions of 
beta oscillation period for burst and non-burst epochs, in wild-type and J20 mice. 
Beta oscillations are tightly rhythmic during beta bursts, but highly arrhythmic 
during non-burst epochs. (Data shown as mean ± SEM, WT: n = 5, J20: n = 8). 
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3.4.5 Dysgranular Phase-amplitude Coupling 

Phase-amplitude coupling (PAC) involves coupling between the amplitude of an 

oscillation and the phase of a lower frequency oscillation (Canolty et al., 2006). 

This interaction is generally thought to allow slow, large amplitude oscillations to 

coordinate faster, small amplitude local oscillations. Theta-gamma coupling is the 

most well studied form of PAC but PAC has been previously demonstrated for a 

range of other oscillation frequencies (Canolty et al., 2006; Tort et al., 2009; 

Daume et al., 2017). We investigated PAC across a range of frequencies in this 

study to determine whether retrosplenial PAC was associated with contextual 

novelty. Additionally although our beta rhythmicity data argues against a dynamic 

amplitude modulation mechanism underlying beta bursts (van Ede et al., 2018), 

coupling of beta amplitude to the phase of a slower oscillation could modulate 

beta bursting in the retrosplenial cortex. 

Phase-amplitude coupling efficacy was calculated for a range of phase and 

amplitude frequencies, and plotted as comodulograms, showing the strength of 

coupling for pairs of frequencies. As shown in (Figure 3.10a), there were two large 

peaks in these comodulograms: one between theta phase and gamma amplitude, 

and another between theta phase and 12-30 Hz amplitude. This second peak did 

not conform to a single frequency band, and as such was treated as a composite 

of alpha and beta frequency. The strength of phase-amplitude coupling was 

quantified for theta-alpha/beta and theta-gamma coupling for each session 

(Figure 3.10b). There was a significant interaction between the effects of 

genotype and novelty on theta-alpha/beta coupling (Interaction - F(1,11) = 8.9, p 

= 0.01, Mixed ANOVA). Theta-alpha/beta coupling was significantly higher during 

novel sessions for wild-type (WT - Nov: 2.9 ± 0.1; Fam: 1.6 ± 0.1, p = 4e-4), but 
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not J20 mice (J20 - Nov: 2.3 ± 0.2; Fam: 2 ± 0.2, p = 0.15). There were no 

significant effects of novelty or genotype on theta-gamma coupling (Main Effect 

Novelty - F(1,11) = 0.2, p = 0.7, Mixed ANOVA; Main Effect Genotype - F(1,11) 

= 0.7, p = 0.4, Mixed ANOVA). It is important to note that in order to focus on the 

most physiologically and behaviourally relevant part of the session, this analysis 

was performed for the first minute of each session. When the same analysis was 

performed on the last minute of each session, there was no effect of genotype or 

novelty on coupling on either theta-alpha/beta coupling (Main Effect Genotype - 

F(1,11) = 0.4, p = 0.56, Mixed ANOVA; Main Effect Novelty - F(1,11) = 4.6, p = 

0.054, Mixed ANOVA; Figure 3.11b, left) or theta-gamma coupling (Main Effect 

Genotype - F(1,11) = 3.7, p = 0.08, Mixed ANOVA; Main Effect Novelty - F(1,11) 

= 0.2, p = 0.69, Mixed ANOVA; Figure 3.11b, right). 
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Figure 3.10 Theta-alpha/beta phase-amplitude coupling is increased in the 
dysgranular retrosplenial cortex (RSCdg) during novelty. 
A. Average comodulograms showing the strength of cross-frequency phase-
amplitude coupling in RSCdg during the first minute of novel and familiar 
sessions, for wild-type and J20 mice. Note the presence of two peaks in the theta-
alpha/beta and theta-gamma ranges (the boundaries of which are denoted by the 
dotted lines). B. Average MI in the theta-alpha/beta (left) and theta-gamma 
ranges (right), for each session, for wild-type (black) and J20 mice (green). Novel 
sessions Day1a and Day5a are highlighted in blue for clarity. Theta-alpha/beta 
coupling was significantly higher during novel sessions for wild-type (p = 0.01), 
but not J20 mice (p = 0.15). There was no significant effect of genotype or novelty 
on theta-gamma coupling (p = 0.4, p = 0.7, respectively). (Data shown as mean 
± SEM, WT: n = 5, J20: n = 8). 
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Figure 3.11 Phase-amplitude coupling during the final minute of each session in 
the dysgranular retrosplenial cortex. 
A. Average comodulograms showing the strength of cross-frequency phase-
amplitude coupling in RSCdg during the final minute of novel and familiar 
sessions, for wild-type and J20 mice. Note the presence of two peaks in the theta-
alpha/beta and theta-gamma ranges (the boundaries of which are denoted by the 
dotted lines). B. Average MI in the theta-alpha/beta (left) and theta-gamma 
ranges (right), for each session, for wild-type (black) and J20 mice (green). Novel 
sessions Day1a and Day5a are highlighted in blue for clarity. There was no 
significant effect of genotype or novelty on theta-alpha/beta coupling (p = 0.56, p 
= 0.054, respectively). There was no significant effect of genotype or novelty on 
theta-gamma coupling (p = 0.08, p = 0.69, respectively). (Data shown as mean ± 
SEM, WT: n = 5, J20: n = 8). 
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3.4.6 Dysgranular Spiking Activity 

In order to determine whether beta bursting was associated with a change in 

neuronal firing, multi-unit activity was investigated. Due to the linear geometry of 

the silicon probes, and the 100 µm distance between channels, it was not 

possible to reliably identify single unit activity, as activity from a single neuron 

was unlikely to appear on multiple channels, limiting spatiotemporal clustering 

methods generally used with tetrodes or higher density silicon probes. Therefore, 

spikes appearing on a single channel could be from one or more nearby neurons. 

This, however, does mean that it is possible to treat each individual probe channel 

as a single multi-unit, to facilitate investigation of the relationship between 

neuronal spiking activity and beta bursting. As shown in (Figure 3.12a, left), 

individual spike waveforms can be readily discerned, and there was no significant 

difference in the mean amplitude of these waveforms between wild-type (black) 

and J20 (green) mice (WT: -90.3 ± 6.4 µV; J20: -82 ± 7.7 µV; t(11) = -0.8, p = 0.5; 

unpaired t-test). Furthermore, as shown in (Figure 3.12a, right), there was no 

significant difference between average firing rate in wild-type and J20 mice (WT: 

46.7 ± 10.1 Hz; J20: 43 ± 10.5 Hz; t(11) = 0.24, p = 0.8; unpaired t-test). One 

caveat to both of these measures is that spike amplitude is highly dependent on 

the distance between the recording channel and the neuron, and therefore so is 

spike rate, as reduced spike amplitude could result in reduced spike detection. 

Furthermore, as this data is from multi-units both the average spike waveform 

and average firing rate may therefore vary greatly between animals depending 

on the distance between all detected neurons and the recording channel, which 

itself depends on the probe location. The average beta amplitude during beta 

bursts is shown in (Figure 3.12b), averaged across all bursts with non-

overlapping time segments. Beta bursts in both genotypes are associated with a 
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brief, monophasic increase in beta amplitude that lasts no more than 200 ms on 

average. Finally, (Figure 3.12c) shows peri-event time histograms for spike rate 

during beta bursts, as a Z score from the pre-burst baseline (left of the dotted 

line). In order to investigate statistically significant changes in spike rate during 

bursts, the mean z scored spike rate between 0 to 250 ms after burst onset was 

calculated, for each animal, and compared to the mean pre-burst spike rate (0 

due to z scoring of spike rate to baseline) using a one-sample t-test. Beta bursting 

in the RSCdg of wild-type mice was associated with a significant increase in spike 

rate during beta bursts (Z-scored spike rate from baseline: 0.9 ± 0.3; t(4) = 2.9, p 

= 0.04; one-sample t-test; Figure 7c, left). Conversely there was no significant 

increase in spike rate during beta bursts in J20 mice (Z-scored spike rate from 

baseline: 0.48 ± 0.53; t(7) = 0.9, p = 0.4; one-sample t-test; Figure 7c, right). 

These data suggest that beta bursts are coupled to neuronal spiking in RSCdg in 

wild-type mice, and that this relationship is absent in J20 mice. 
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Figure 3.12 Spiking activity in RSCdg is coupled to beta bursting in wild-type 
mice, but disrupted in J20 mice. 
A. Average spike waveforms for multi-unit activity in wild-type (black) and J20 
(green) mice (left) and graph of average firing rate for detected multi-units across 
all sessions (right). There was no significant difference between the mean 
amplitude of spike waveforms in wild-type and J20 mice (p = 0.5). Moreover, there 
was no significant difference between average firing rate in wild-type and J20 
mice (p = 0.8). B. Graphs showing beta amplitude over time for beta bursts, time 
locked to the onset of the burst (dotted line), and averaged across all detected 
bursts, for wild-type mice (left) and J20 mice (right). Beta bursting was associated 
with a monophasic increase in beta amplitude that returns to baseline after 
around 250 ms. C. Peri-event histograms showing multi-unit activity spike rate 
during beta bursts, for wild-type (left) and J20 mice (right). Data is shown as Z 
score from baseline (pre-burst epoch), and averaged across all beta bursts with 
non-overlapping time segments. Solid horizontal line is shown to indicate the 
baseline of zero, while the vertical lines indicate the time window of interest used 
to calculate the average spike rate during beta bursts. Beta bursts were 
associated with a significant increase in spike rate in wild-type (p = 0.04), but not 
J20 mice (p = 0.4). (Data shown as mean ± SEM, WT: n = 5, J20: n = 8). 
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3.4.7 Granular Spectral Analysis 

As in the RSCdg, in order to investigate any changes in oscillatory activity in 

RSCg during environmental novelty, power spectral analysis was performed on 

the entire 15 minutes of each session (Figure 3.13a). These power spectra were 

averaged across novel and familiar sessions for wild-type and J20 mice. 

Significant findings are summarised in Table 2, however a more detailed account 

of these findings, including descriptive statistics, will be listed here in-text. There 

was a significant interaction between the effects of genotype and novelty on beta 

power (Interaction - F(1,12) = 7.9, p = 0.02, Mixed ANOVA). Beta power was 

significantly higher during novel sessions in wild-type (WT - Nov: 14.4 ± 0.5 dB; 

Fam: 14 ± 0.5 dB, p = 0.001), and J20 mice (J20 - Nov: 17.8 ± 0.2 dB; Fam: 17 ± 

0.2 dB, p = 9e-7). Moreover, beta power was significantly higher in J20 mice 

during both novel (Nov - WT: 14.4 ± 0.5 dB; J20: 17.8 ± 0.2 dB, p = 4e-4) and 

familiar sessions (Fam - WT: 14 ± 0.5 dB; J20: 17 ± 0.2 dB, p = 8e-4). Gamma 

power was significantly higher overall during novel sessions (Main Effect Novelty 

- F(1,12) = 20.2, p = 7e-4, Mixed ANOVA). Gamma power was significantly higher 

during novel sessions in wild-type (WT - Nov: 10.7 ± 0.4 dB; Fam: 10.4 ± 0.4 dB, 

p = 0.008) and J20 mice (J20 - Nov: 12.4 ± 0.3 dB; Fam: 12 ± 0.3 dB, p = 0.008). 

Finally, gamma power was also significantly higher overall in J20 mice (Main 

Effect Genotype - F(1,12) = 6.9, p = 0.02, Mixed ANOVA).  

As in RSCdg, transient epochs of high power in the 20-40 Hz range are seen 

throughout the early stages of the session, as illustrated in Figure 3.13c. Power 

spectral analysis was performed on the first minute of each session (Figure 

3.13d). Theta, alpha, beta and gamma power were significantly higher overall 

during novel sessions (Theta: Main Effect Novelty - F(1,12) = 7, p = 0.02, Mixed 
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ANOVA; Alpha: Main Effect Novelty - F(1,12) = 13.3, p = 0.003, Mixed ANOVA; 

Beta: Main Effect Novelty - F(1,12) = 47.8, p = 2e-5, Mixed ANOVA; Gamma: 

Main Effect Novelty - F(1,12) = 15, p = 0.002, Mixed ANOVA). Theta power was 

significantly higher during novel sessions in wild-type (WT - Nov: 25.8 ± 0.5; Fam: 

25.2 ± 0.6, p = 0.01), but not J20 mice. Alpha power was significantly higher 

during novel sessions in J20 mice (J20 - Nov: 20.3 ± 0.3 dB; Fam: 19.5 ± 0.3 dB, 

p = 0.004), but not wild-type mice. Beta power was significantly higher during 

novel sessions in wild-type (WT - Nov: 16.3 ± 0.5 dB; Fam: 14.4 ± 0.5 dB, p = 4e-

4), and J20 mice (J20 - Nov: 19.3 ± 0.3 dB; Fam: 17.6 ± 0.1 dB, p = 3e-4). Gamma 

power was significantly higher during novel sessions in wild-type (WT - Nov: 11 

± 0.4 dB; Fam: 10.4 ± 0.4 dB, p = 0.005), but not J20 mice (J20 - Nov: 12.4 ± 0.2 

dB; Fam: 12 ± 0.3 dB, p = 0.08). Alpha, beta and gamma power were significantly 

higher overall in J20 mice (Alpha: Main Effect Genotype - F(1,12) = 7.9, p = 0.02, 

Mixed ANOVA; Beta: Main Effect Genotype - F(1,12) = 18.4, p = 0.001, Mixed 

ANOVA; Gamma: Main Effect Genotype - F(1,12) = 5.9, p = 0.03, Mixed ANOVA). 
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Figure 3.13 Beta (20-30 Hz) power is significantly higher during novelty in the 
granular retrosplenial cortex in wild-type and J20 mice. 
A. Example power spectrogram for an entire novel session in a wild-type mouse. 
B. Average power spectra for the entire 15 minutes of all novel and familiar 
sessions, for wild-type and J20 mice. Beta power was significantly higher during 
novel sessions in wild-type (p = 0.001) and J20 mice (p = 9e-7). Moreover, beta 
power was significantly higher in J20 mice than in wild-type mice during both 
novel (p = 4e-4) and familiar sessions (p = 8e-4). C. Example power spectrogram 
shown in A, expanded to show the first 60 seconds of the session. Short epochs 
of increased power in the 20-40 Hz range can be seen. D. Average power spectra 
for the first minute of all novel and familiar sessions, for wild-type and J20 mice. 
Beta power was significantly higher overall during novel sessions (p = 2e-5). 
Moreover, beta power was significantly higher overall in J20 mice (p = 0.001). 
(Data shown as mean ± SEM, WT: n = 6, J20: n = 8). 
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Analysis Type Frequency Band Relationship p-value

β N X G 0.02

β nWT > fWT 0.001

β nJ20 > fJ20 9.00E-07

β nJ20 > nWT 4.00E-04

β fJ20 > fWT 8.00E-08

γ n > f 7.00E-04

γ nWT > fWT 0.008

γ nJ20 > fJ20 0.008

γ J20 > WT 2.00E-02

θ n > f 0.02

θ nWT > fWT 0.01

α n > f 0.003

α nJ20 > fJ20 4.00E-03

α J20 > WT 0.02

β n > f 2.00E-05

β nWT > fWT 4.00E-04

β nJ20 > fJ20 3.00E-04

β J20 > WT 0.001

γ n > f 0.002

γ nWT > fWT 5.00E-03

γ J20 > WT 0.03

Whole Session

First Minute

Table 2 Dysgranular spectral analysis - Summary of significant results 

N, novelty; G, genotype; N X G, interaction between novelty and genotype;  
n, novel; f, familiar; WT, wild-type; J20, J20; θ, theta; α, alpha; β, beta; γ, 
gamma  
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3.4.8 Granular Beta Bursting Activity 

As in the RSCdg, beta bursts could be reliably detected in local field potential 

recordings from the RSCg (Figure 3.14a). As shown in (Figure 3.14b), there were 

significantly more beta bursts detected overall during novel sessions (Main Effect 

Novelty - F(1,12) = 29, p = 2e-4, Mixed ANOVA). Furthermore, there were 

significantly more beta bursts detected overall in J20 mice (Main Effect Genotype 

- F(1,12) = 80.3, p = 1e-6, Mixed ANOVA). 

As shown in (Figure 3.14c, right), similar to the RSCdg, the rate of beta bursting 

was reasonably steady throughout familiar sessions, but substantially higher 

during the first few minutes of novel sessions, for both genotypes (Figure 3.14c, 

left). The rate of beta bursting was significantly higher overall during novel 

sessions (Main Effect Novelty - F(1,12) = 18.8, p = 0.001, Mixed ANOVA), and 

also significantly higher overall during the initial part of recording sessions (Main 

Effect Time - F(1,12) = 22.9, p = 4e-4, Mixed ANOVA). Additionally, the rate of 

beta bursting was significantly higher overall in J20 mice (Main Effect Genotype 

- F(1,12) = 5.5, p = 0.04, Mixed ANOVA). During novel sessions, initial burst rate 

was significantly higher than final burst rate for wild-type (WT - Nov Initial: 9.8 ± 

1.5; Final: 1 ± 0.3, p = 0.02) and J20 mice (J20 - Nov Initial: 12.6 ± 3; Final: 2.6 ± 

0.4, p = 0.003). Furthermore, while there was no significant difference between 

wild-type and J20 mice for initial burst rate (Nov Initial - WT: 9.8 ± 1.5; J20: 12.6 

± 3, p = 0.5), final burst rate was significantly higher in J20 mice (Nov Final - WT: 

1 ± 0.3; J20: 2.6 ± 0.4, p = 0.01). During familiar sessions, initial burst rate was 

significantly higher than final burst rate for wild-type (WT - Fam Initial: 2.7 ± 0.5; 

Final: 1.2 ± 0.1, p = 0.05) and J20 mice (J20 - Fam Initial: 4.8 ± 0.5; Final: 2.5 ± 

0.3, p = 0.002). Furthermore, initial burst rate and final burst rate were significantly 
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higher in J20 mice than in wild-type mice (Fam Initial - WT: 2.7 ± 0.5; J20: 4.8 ± 

0.5, p = 0.02; Fam Final - WT: 1.2 ± 0.1; J20: 2.5 ± 0.3, p = 0.001). 
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Figure 3.14 Beta bursting activity in the granular retrosplenial cortex (RSCg) is 
significantly higher during novelty. 
A. Diagram illustrating how beta bursts were detected. B. Graph showing the 
average number of beta bursts detected in RSCdg in each session, for wild-type 
(black) and J20 mice (green). Novel sessions Day1a and Day5a are highlighted 
in blue for clarity. Significantly more beta bursts were detected overall during 
novel sessions (p = 2e-4). Moreover, significantly more beta bursts were detected 
overall in J20 mice (p = 1e-6). C. Cumulative frequency graphs of beta bursts 
detected in novel (left) and familiar sessions (right), for wild-type and J20 mice. 
As in the RSCdg, while beta bursting occurred monotonically during familiar 
sessions, during the first minute of a novel session, beta bursting was 
substantially increased. D. Graphs showing beta burst rate during novel (left) and 
familiar sessions (right), for wild-type and J20 mice. Burst rate was quantified for 
the initial minute of each session, and final 10 minutes. Beta burst rate was 
significantly higher overall during the initial minute of novel sessions than during 
the final 10 minutes of novel sessions, for wild-type (p = 0.02) and J20 mice (p = 
0.003). (Data shown as mean ± SEM, WT: n = 6, J20: n = 8). 
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3.4.9 Granular Beta Burst Characteristics 

The characteristics of beta bursts in the RSCg also vary depending on novelty 

and genotype. Beta burst magnitude was significantly higher overall during novel 

sessions (Main Effect Novelty - F(1,12) = 56.8, p = 7e-6, Mixed ANOVA). As 

shown in (Figure 3.15a), beta bursts were significantly larger in magnitude during 

novel sessions in wild-type (WT - Nov: 96.1 ± 5.3 µV; Fam: 131 ± 2.9 µV, p = 7e-

4) and J20 mice (J20 - Nov: 131 ± 2.9 µV; Fam: 115 ± 2.1 µV, p = 4e-5). Moreover, 

beta bursts were significantly larger in magnitude overall in J20 mice (Main Effect 

Genotype - F(1,12) = 22.7, p = 5e-4, Mixed ANOVA). Beta burst duration was 

also significantly higher overall during novel sessions (Main Effect Novelty - 

F(1,12) = 23.2, p = 4e-4, Mixed ANOVA). As shown in (Figure 3.15b), beta bursts 

were significantly longer in duration during novel sessions in wild-type (WT - Nov: 

189 ± 2.4 µV; Fam: 175 ± 0.5 µV, p = 0.001) and J20 mice (J20 - Nov: 188 ± 1.3 

µV; Fam: 181 ± 0.9 µV, p = 0.04). 

Power spectral analysis was also performed on beta bursts in the RSCg, as 

before (Figure 3.15c). Overall, beta bursts were associated with a large significant 

increase in beta power (Main Effect Burst - F(1,12) = 2906, p = 1e-15, Mixed 

ANOVA), small significant increases in alpha and gamma power (Alpha: Main 

Effect Burst - F(1,12) = 60.4, p = 5e-6, Mixed ANOVA; Gamma: Main Effect Burst 

- F(1,12) = 57.2, p = 7e-6, Mixed ANOVA), and a small significant decrease in 

theta power (Main Effect Burst - F(1,12) = 5.6, p = 0.04, Mixed ANOVA). Alpha, 

beta and gamma power were significantly higher during beta bursts in both wild-

type (Alpha: WT – Pre-Burst: 17.5 ± 0.6 dB; Burst: 18.3 ± 0.5 dB, p = 2e-4; Beta: 

WT – Pre-Burst: 13 ± 0.5 dB; Burst: 20.3 ± 0.5 dB, p = 1e-13; Gamma: WT – Pre-

Burst: 8.7 ± 0.3 dB; Burst: 9 ± 0.3 dB, p = 0.001), and J20 mice (Alpha: J20 – 
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Pre-Burst: 18.5 ± 0.3 dB; Burst: 19.3 ± 0.3 dB, p = 9e-5; Beta: J20 – Pre-Burst: 

16.1 ± 0.3 dB; Burst: 23.3 ± 0.2 dB, p = 3e-14; Gamma: J20 – Pre-Burst: 10.6 ± 

0.3 dB; Burst: 11 ± 0.2 dB, p = 2e-5). Theta power was significantly lower during 

beta bursts in J20 mice (J20 – Pre-Burst: 24.2 ± 0.2 dB; Burst: 23.8 ± 0.2 dB, p = 

0.01), but not wild-type mice. 

In order to investigate beta rhythmicity in RSCg, the period of beta oscillations 

was calculated for all beta bursts and all epochs without beta bursts, and the 

distribution of these beta periods were calculated and averaged across all burst 

and non-burst epochs, in all sessions, for wild-type and J20 mice (Figure 3.15d). 

As in the RSCdg, while the distribution of beta periods during beta bursts was 

reasonably consistent, peaking around 0.04s, equivalent to a 25 Hz oscillation, 

the distribution of beta periods in non-burst epochs was far more variable, with a 

large proportion of periods outside beta range. These data indicate that beta 

bursts are associated with high beta rhythmicity, while beta rhythmicity is far lower 

during non-burst epochs, suggesting a “bursty generator” model put forward by 

van Ede et al. (2018). As before it is important to note that this data presented 

does not provide any conclusive proof of either mechanism for the reasons stated 

earlier in this Chapter, and is included more as an attempt to better understand 

the nature of beta oscillations both during and outside the transient events 

outlined in this thesis. 
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Figure 3.15 Beta burst characteristics in the dysgranular retrosplenial cortex 
(RSCdg). 
A. Diagram illustrating how the magnitude and duration of beta bursts were 
calculated. B. Graph showing the average beta burst magnitude in RSCdg in 
each session, for wild-type and J20 mice. Beta bursts were overall significantly 
larger in magnitude during novel sessions (p = 7e-6). Moreover, beta bursts 
were also significantly larger overall in J20 mice (p = 5e-4). C. Graph showing 
the average duration of beta bursts in RSCdg in each session, for wild-type and 
J20 mice. Beta bursts were overall significantly longer in duration during novel 
sessions (p = 4e-4), however there was no significant overall difference 
between beta burst duration in wild-type and J20 mice. D. Average power 
spectra for beta burst, and pre-burst epochs. Beta bursts were associated with 
a large, significan increase in beta power during beta bursts (p = 1e-15). E. 
Average distributions of beta oscillation period for burst and non-burst epochs, 
in wild-type and J20 mice Beta oscillations are tightly rhythmic during beta 
bursts, but highly arrhythmic during non-burst epochs. (Data shown as mean ± 
SEM, WT: n = 6, J20: n = 8). 
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3.4.10 Granular Phase-amplitude Coupling 

Phase-amplitude coupling efficacy was calculated for a range of phase and 

amplitude frequencies, and plotted as comodulograms, as shown in (Figure 

3.16a). As in the RSCdg, there were two large peaks in these comodulograms, 

in the theta-gamma and theta-alpha/beta frequency ranges. The strength of 

phase-amplitude coupling was quantified for theta-alpha/beta and theta-gamma 

coupling for each session (Figure 3.16b). There was a significant interaction 

between the effects of genotype and novelty on theta-alpha/beta coupling 

(Interaction - F(1,12) = 10.4, p = 0.007, Mixed ANOVA). Theta-alpha/beta 

coupling was significantly higher during novel sessions for wild-type (WT - Nov: 

3 ± 0.1; Fam: 1.9 ± 0.1, p = 3e-4), but not J20 mice (J20 - Nov: 2.4 ± 0.2; Fam: 

2.3 ± 0.2, p = 0.4). There were no significant effects of novelty or genotype on 

theta-gamma coupling (Main Effect Novelty - F(1,12) = 0.9, p = 0.4, Mixed 

ANOVA; Main Effect Genotype - F(1,12) = 2.7, p = 0.1, Mixed ANOVA). As before, 

this analysis was performed for the first minute of each session, but when the 

same analysis was performed on the last minute of each session, there were a 

number of differences (Figure 3.17). There was a significant effect of novelty on 

theta-alpha/beta coupling (Main Effect Novelty - F(1,12) = 5.5, p = 0.04, Mixed 

ANOVA). Theta-alpha/beta coupling was significantly higher during novel 

sessions for J20 mice (J20 - Nov: 2.2 ± 0.2; Fam: 1.8 ± 0.1, p = 0.04), but not 

wild-type mice (WT - Nov: 1.9 ± 0.1; Fam: 1.7 ± 0.1, p = 0.3). While there was no 

significant effect of novelty on theta-gamma coupling (Main Effect Novelty - 

F(1,12) = 1.3, p = 0.3, Mixed ANOVA), theta-gamma coupling was significantly 

higher overall in wild-type mice (Main Effect Genotype - F(1,12) = 8, p = 0.01, 

Mixed ANOVA). 
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Figure 3.16 Theta-alpha/beta phase-amplitude coupling is increased in the 
granular retrosplenial cortex (RSCg) during novelty. 
A. Average comodulograms showing the strength of cross-frequency phase-
amplitude coupling in RSCg during the first minute of novel and familiar 
sessions, for wild-type and J20 mice. Note the presence of two peaks in the 
theta-alpha/beta and theta-gamma ranges (the boundaries of which are denoted 
by the dotted lines). B. Average MI in the theta-alpha/beta (left) and theta-
gamma ranges (right), for each session, for wild-type (black) and J20 mice 
(green). Novel sessions Day1a and Day5a are highlighted in blue for clarity. 
Theta-alpha/beta coupling was significantly higher during novel sessions for wild 
type (p = 3e-4) but not J20 mice (p = 0.4). There was no significant effect of 
genotype or novelty on theta-gamma coupling (p = 0.1, p = 0.4, respectively). 
(Data shown as mean ± SEM, WT: n = 6, J20: n = 8). 
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Figure 3.17 Phase-amplitude coupling during the final minute of each session in 
the granular retrosplenial cortex. 
A. Average comodulograms showing the strength of cross-frequency phase-
amplitude coupling in RSCg during the final minute of novel and familiar 
sessions, for wild-type and J20 mice. Note the presence of two peaks in the 
theta-alpha/beta and theta-gamma ranges (the boundaries of which are 
denoted by the dotted lines). B. Average MI in the theta-alpha/beta (left) and 
theta-gamma ranges (right), for each session, for wild-type (black) and J20 mice 
(green). Novel sessions Day1a and Day5a are highlighted in blue for clarity. 
Theta-alpha/beta coupling was significantly higher during novel sessions for J20 
mice (p = 0.04) but not wild-type mice (p = 0.3). There was no significant effect 
of novelty on theta-gamma coupling (p = 0.3), but theta-gamma coupling was 
significantly higher overall in wild-type mice (p = 0.015). (Data shown as mean ± 
SEM, WT: n = 6, J20: n = 8). 
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3.4.11 Granular Spiking Activity 

General neuronal spiking activity, as well as spiking during beta bursts was also 

investigated in the RSCg. As shown in (Figure 3.18a, left), the mean amplitude 

of spike waveforms was significantly higher in J20 mice (WT: -61.3 ± 2.9 µV; J20: 

-82 ± 7.8 µV; t(12) = 2.2, p = 0.05; unpaired t-test). Furthermore, as shown in 

(Figure 3.18a, right), there was no significant difference between average firing 

rate in wild-type and J20 mice (WT: 15.8 ± 8.8 Hz; J20: 36.6 ± 13.2 Hz; t(12) = -

1.2, p = 0.25; unpaired t-test). It is important to note that, as mentioned before, 

both the average spike waveform and average firing rate may vary greatly 

between animals depending on the distance between all detected neurons and 

the recording channel. The average beta amplitude during beta bursts is shown 

in (Figure 3.18b), averaged across all bursts with non-overlapping time 

segments. As in the RSCdg, beta bursts in both genotypes are associated with a 

brief, monophasic increase in beta amplitude that lasts no more than 200 ms on 

average. Finally, (Figure 3.18c) shows peri-event time histograms for spike rate 

during beta bursts, as a Z score from the pre-burst baseline (left of the dotted 

line). Beta bursting in the RSCg was not associated with a significant increase in 

spike rate during beta bursts in either wild-type (Z-scored spike rate from 

baseline: 0.3 ± 0.3; t(5) = 0.9, p = 0.4; one-sample t-test; Figure 12c, left) or J20 

mice (Z-scored spike rate from baseline: 1.1 ± 0.48; t(7) = 2.2, p = 0.06; one-

sample t-test; Figure 12c right). 
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Figure 3.18 Spiking activity in RSCg is coupled to beta bursting in wild-type and 
J20 mice. 
A. Average spike waveforms for multi-unit activity in wild-type (black) and J20 
(green) mice (left) and graph of average firing rate for detected multi-units across 
all sessions (right). The mean amplitude of spike waveforms was significantly 
higher in J20 mice (p = 0.05), but there was no significant difference between 
average firing rate in wild-type and J20 mice (p = 0.25). B. Graphs showing beta 
amplitude over time for beta bursts, time locked to the onset of the burst (dotted 
line), and averaged across all detected bursts, for wild-type mice (left) and J20 
mice (right). Beta bursting was associated with a monophasic increase in beta 
amplitude that returns to baseline after around 250 ms. C. Peri-event histograms 
showing multi-unit activity spike rate during beta bursts, for wild-type (left) and 
J20 mice (right). Data is shown as Z score from baseline (pre-burst epoch), and 
averaged across all beta bursts with non-overlapping time segments. Solid 
horizontal line is shown to indicate the baseline of zero, while the vertical lines 
indicate the time window of interest used to calculate the average spike rate 
during beta bursts. Beta bursts were not associated with a significant increase in 
spike rate in either wild-type (p = 0.4) or J20 mice (p = 0.06). (Data shown as 
mean ± SEM, WT: n = 6, J20: n = 8). 
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3.5 Discussion 

3.5.1 Summary 

The aim of this study was to identify electrophysiological correlates of 

environmental novelty across the mouse retrosplenial cortex (RSC), to 

understand the specific neurophysiological mechanisms which may support this 

region’s role in contextual learning and memory. Furthermore, the inclusion of 

J20 mice in this study as a mouse model of Alzheimer’s disease-related 

amyloidopathy allowed us to identify functional impairments in the RSC which 

may underlie cognitive impairments previously seen in these animals (Cheng et 

al., 2007; Wright et al., 2013). 

3.5.2 Power Spectral Analysis 

Power spectral analysis was performed in order to investigate oscillatory activity 

across a range of frequency bands, and compare the effects of novelty and 

genotype on retrosplenial cortex activity. When the entire 15-minute recording 

sessions were analysed, beta and gamma power were significantly higher during 

novelty, in both RSC subregions, for both genotypes. Furthermore, this increase 

was even greater when only the first minute of each session was analysed. 

Numerous studies have noted changes in beta activity in a range of  brain 

regions, during a variety of behaviours (see Spitzer and Haegens, 2017 for 

review). It is important to note that due to variability between groups in the naming 

and frequency ranges of neural oscillation frequency bands, cross-study 

comparison is often complicated. What we have referred to as beta, has 

previously been called upper beta (Spitzer and Haegens, 2017), beta2 (França 

et al., 2014), or slow gamma (Carr et al., 2012; Remondes and Wilson, 2015). 

For the sake of clarity, references to beta oscillations in this thesis refer to the 20-
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30 Hz frequency range. Beta oscillations have long been associated with motor 

activity and sensory processing, and a large body of work has also noted changes 

in beta activity in a range of brain regions during other cognitive tasks (see Engel 

and Fries, 2010 for review). Others have noticed similar novelty-induced beta 

oscillations in the hippocampus: Berke et al. (2008) reported a large increase in 

beta power that appeared when mice explored a novel environment, which 

persisted for around a minute, before returning to a lower level. The authors 

concluded that these oscillations may be a “dynamic state that facilitates the 

formation of unique contextual representations.” Work by França et al. (2014) 

demonstrated that beta power was also transiently enhanced in the hippocampus 

during exploration of novel objects, but not previously experienced familiar items. 

Furthermore, they found that administration of an amnestic agent, namely 

haloperidol, resulted in a similar increased beta activity upon re-exposure to 

previously encountered objects, suggesting they had been “forgotten” and were 

therefore novel again. This further reinforces the idea that hippocampal beta 

activity is related to novelty, and extends the previous work by demonstrating that 

hippocampal-dependent novel object recognition can also elicit beta oscillations. 

Subsequently, França, Borgegius and Cohen (2020) investigated novelty-

associated beta oscillations across a cortical-hippocampal novelty circuit, by 

simultaneously recording from hippocampus, prefrontal cortex and parietal cortex 

during environmental and object novelty. Novelty-associated increases in beta 

power were seen in the prefrontal cortex during environmental novelty. 

Beta power was significantly higher overall in J20 mice, in both RSC subregions. 

Previous work in this strain has demonstrated a hyperexcitability phenotype, but 

to the author’s knowledge, changes in the beta frequency band have yet to be 
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demonstrated in J20 mice (Palop et al., 2007; Palop and Mucke, 2009; Verret et 

al., 2012). Interestingly, aberrant beta oscillations have long been associated with 

another progressive neurodegenerative disease, Parkinson’s disease. Increased 

beta oscillatory activity in the basal ganglia and cortex are associated with motor 

impairments in Parkinson’s disease (for review see Brittain, Sharott and Brown, 

2014), and administration of levodopa has been shown to improve motor function 

and reduce beta oscillations (Brown et al., 2001). The relationship between beta 

oscillations in the RSC and environmental novelty demonstrated in this study 

suggest these oscillations may have a potential role in contextual memory 

processes, and aberrant oscillatory power in this same frequency band in J20 

mice may suggest a novel source of cognitive dysfunction in these animals 

(Cheng et al., 2007; Wright et al., 2013). 

3.5.3 Beta Bursting Activity 

Upon closer inspection of beta-filtered local potentials and power spectrograms, 

beta activity appears as discrete bursts rather than continuous oscillations. Due 

to the use of averaging across trials or analysis spanning long temporal 

segments, the phasic nature of transient oscillatory events can be easily lost. 

Previous studies into beta oscillations during novelty in rodents have generally 

viewed beta activity as continuous oscillations, rather than discrete events (Berke 

et al., 2008; França et al., 2014, 2020). This is despite Berke et al. (2008) noting 

that beta appears as pulses, and a brief mention of burst detection and 

characterisation by França et al. (2014). As demonstrated in this study, novelty-

associated beta oscillations in the RSC conform well to a model of discrete bursts, 

where their rate and characteristics can vary depending on environmental 

novelty. Beta bursts are significantly more frequent during novel sessions, due to 
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a large increase in beta burst rate during the first minute of these sessions. During 

familiar sessions, the rate of beta bursting is far lower, and generally stable 

across the entire session. Previous work on beta bursting across the brain in a 

range of behaviours has led some to suggest that the unifying function of beta 

oscillatory activity is the maintenance of the “status-quo”, be it the current motor 

state, sensory stimulus or cognitive set (Engel and Fries, 2010). This theory 

would suggest that, beta activity would be decreased during novelty, and 

increased during familiarity. As we have shown, this is not the case. While steady 

and persistent beta bursting during familiarity may support the maintenance of 

the contextual “status-quo”, in this case the environment, this theory does not 

reconcile the significant increases in beta activity that occur during novelty. It is 

possible that high beta burst rate could signal the creation of a new “cognitive 

set”, which is maintained by persistent bursting. While the relationship between 

beta bursting and novelty is maintained in J20 mice, there is a significant increase 

overall in burst detection in these animals. Interestingly, this difference arises 

from a significant increase in burst rate throughout familiar sessions, and a trend 

towards increased beta burst rate during the final 10 minutes of novel sessions. 

Notably, there was no significant difference between beta burst rate during the 

initial minute of novel sessions. The rate of beta bursting during familiarity in J20 

mice is approximately twice as high as that in wild-type mice, so a small increase 

in beta burst rate during novelty would be expected, and the absence of this 

difference may provide insight into the mechanisms underlying beta bursting. 

One possibility is that there is a theoretical maximum beta burst rate in the 

retrosplenial cortex, which could arise from the limitations of the local neuronal 

network physiology, or perhaps the slow firing rates of neurons from a distant 

projecting brain region. Another possibility is that there are different mechanisms 
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underlying the generation of slow “spontaneous” bursting, and rapid “induced” 

bursting. The steady beta bursting during familiarity suggests a “basal” beta 

bursting rate, but further investigation in a range of behavioural states would be 

required to confirm this. 

3.5.4 Beta Bursting Characteristics 

By treating transient beta oscillations as discrete events, a variety of 

characteristics can be investigated. Beta bursts are both larger in magnitude, and 

longer in duration during novelty. Due to the nature of our detection algorithm, 

this could partially support the increased beta burst detection seen during novelty. 

Increases in burst magnitude and duration could have beneficial effects on 

modulation of neuronal spiking activity. Greater amplitudes could allow 

modulation of larger populations of neurons, while longer durations could allow a 

wider temporal window for neuronal activation. In the somatosensory cortex, beta 

oscillations also appear as short events in both mice and humans; and beta burst 

characteristics, such as duration and frequency range, are highly conserved 

across tasks and species (Shin et al., 2017). On average, beta bursts were 

significantly larger in magnitude in J20 mice, but there was no change in burst 

duration between the two genotypes. The increase in burst magnitude may result 

from the same mechanisms underlying hyperexcitability and spontaneous 

epileptiform activity seen in this mouse model (Palop et al., 2007; Verret et al., 

2012). 

A notable discovery was that beta oscillations appear to be highly rhythmic during 

beta bursts, and more arrhythmic during non-burst epochs, which argues against 

the validity of averaging across burst and non-burst epochs when investigating 

beta activity. This mirrors data shown by Shin et al (2017), who demonstrated 
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that beta rhythmicity was absent outside beta burst epochs. As previously 

mentioned, other groups have characterised oscillations in the 20-30 Hz range 

as slow gamma (Carr et al., 2012; Remondes and Wilson, 2015). These data 

suggest that beta oscillations conform to a bursty generator model, while gamma 

oscillations have previously been shown to conform to a dynamic amplitude 

modulation model, where their amplitude is often coupled to theta phase (Canolty 

et al., 2006; Tort et al., 2009). This divergence supports the idea that beta is a 

valid frequency band that is distinct from the gamma band, arguing against this 

frequency range being named as “slow gamma” (Carr et al., 2012; Remondes 

and Wilson, 2015) and suggesting that beta oscillations may therefore arise from 

different mechanisms to those which underlie gamma oscillations (Buzśaki and 

Wang, 2012). Finally, spectral analysis of beta bursts demonstrate that the 

frequency range of beta bursts is firmly within the 20-30 Hz range, which both 

supports the classification of these transient events as “beta” bursts, and also 

validates the 20-30 Hz range as a distinct frequency band.  

3.5.5 Phase-Amplitude Coupling 

Lower frequency oscillations such as delta and theta have been shown to be 

highly correlated over large spatial distances within the brain, while fast 

oscillations such as gamma are generally thought to be more local, and spatially 

limited (Von Stein and Sarnthein, 2000). Therefore, phase-amplitude coupling is 

thought to allow for top-down coordination of local neuronal network activity by 

large-scale oscillatory activity (Canolty and Knight, 2010; Canolty et al., 2010). 

There are two main peaks in the phase-amplitude coupling comodulograms from 

the RSC, one between phase frequency at 7.5 Hz and amplitude frequency at 70 

Hz, indicating theta-gamma coupling, while the other peaking between phase 
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frequency at 7.5 Hz and amplitude frequency at approximately 15-25 Hz, between 

the alpha and beta bands. While the majority of this coupling was at alpha 

frequency, there was sufficient coupling in the beta band to warrant treatment as 

a composite theta-alpha/beta coupling. Theta-gamma coupling is likely the most 

well studied form of phase-amplitude coupling, and has long been associated 

with memory processes (Lega et al., 2016). The presence of theta-gamma 

coupling in the RSC data was notable, as while previous work by Koike et al 

(2017) demonstrated strong theta-gamma phase-amplitude coupling in the RSC 

during paradoxical sleep (although at a higher gamma frequency of 120Hz), the 

authors did not see notable theta-gamma PAC during active waking. Theta-

gamma coupling is generally the dominant form of phase-amplitude coupling in 

hippocampal and cortical recordings by a number of groups, and has been 

associated with a range of behaviours (for review, see Canolty and Knight, 2010). 

Interestingly, theta-gamma coupling was seemingly unaffected by novelty or 

familiarity in this study, remaining relatively constant between sessions. 

Furthermore, theta-alpha/beta was the dominant form of phase-amplitude 

coupling in the RSC during novelty. 

The relationship between theta-alpha/beta PAC and beta bursting in this study is 

unclear. The rhythmicity data argues against a dynamic amplitude modulation 

model, and the absence of theta-beta coupling separate from theta-alpha 

coupling suggests that it is unlikely that phase amplitude coupling between theta 

phase and beta amplitude is the sole mechanism underlying beta bursting. This 

is supported by the finding that theta-alpha/beta coupling is uncoupled from 

novelty in J20 mice. However, theta-alpha/beta coupling may support beta 

bursting by coordinating the timing of beta bursts during novelty, and aberrant 
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beta bursting in J20 mice could result from this uncoupling of beta oscillations 

from theta phase. Others have noted theta-beta PAC in humans as well, both in 

the hippocampus during a working memory task (Axmacher et al., 2010), and in 

the inferior temporal cortex during object novelty (Daume et al., 2017). These 

data also raise the possibility that beta bursting in the retrosplenial cortex is either 

being driven or modulated by a distant brain region (Canolty and Knight, 2010). 

Synchrony between theta oscillations in the RSC and another brain region, in 

combination with theta-beta coupling in the RSC could allow for control of 

retrosplenial beta bursting by this distant region. 

3.5.6 Neuronal spiking during Beta Bursts 

To our knowledge, this is the first study that has demonstrated increased 

neuronal spiking during beta bursts. Work by Rule et al (2017) in non-human 

primates, demonstrated transient beta oscillations in local field potential 

recordings from motor and premotor cortex, but showed no difference in single-

unit firing rates between high-beta and low-beta epochs. It is important to note 

that due to the geometry of the probes used in our study, it would not be possible 

to reliably isolate single units due to rapid decreases in amplitude with increasing 

distance from the soma (Buzsáki et al., 2012). By using multi-unit activity as a 

measure of overall spiking activity, it is possible to broadly investigate the effects 

of beta bursting on neuronal spiking, yet it is entirely possible that these multi-

units are composed of different neuronal subtypes, which may respond differently 

to beta bursts. Different neuronal populations can have vastly different responses 

to oscillatory events; during transient high frequency oscillations known as sharp 

wave ripples, spiking of neurons in the RSC can vary dramatically, depending on 

neuronal subtype or cortical layer (Nitzan et al., 2020; Opalka et al., 2020). 
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Therefore, it is also possible that the multi-units in this study may be composed 

of single-units with vastly different responses to beta bursts, which would 

undoubtedly dilute the effects. Future work into beta bursting should attempt to 

isolate single-units, and classify them into subgroups such as putative 

interneurons or excitatory neurons, before investigating the effect of beta bursts 

on the firing of these individual neurons. 

Many groups have previously shown that information may be rapidly represented 

and stored in the RSC (Cowansage et al., 2014; Czajkowski et al., 2014; Koike 

et al., 2017; Vedder et al., 2017). Beta oscillations have also been shown to carry 

a variety of different forms of contextual information in a range of brain regions, 

and phasic increases in beta power during working memory maintenance may 

represent reactivation of encoded information (Spitzer and Haegens, 2017). 

Supporting this is a study in which the authors employed transcranial magnetic 

stimulation to activate a currently unattended memory, as shown by an increase 

in content-specific beta activity (Rose et al., 2016). The theory put forth by Spitzer 

and Haegens (2017), is that beta oscillations can activate and reactivate neuronal 

ensembles to create and recall cortical representations. This theory is consistent 

with the data shown in this study: high beta bursting activity during perceived 

novelty activates neurons in the dysgranular RSC, which may encode content 

about the novel environment, and subsequent beta bursting may continuously 

reactivate these ensembles, further consolidating or altering this representation. 

Recent breakthroughs in real-time burst detection and neurofeedback have made 

it possible to artificially induce beta bursts in awake behaving animals, creating 

the possibility of testing this hypothesis directly (Karvat et al., 2020).  
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It was of note that beta bursting in wild-type mice was associated with an increase 

in neuronal spiking in the dysgranular RSC but not the granular RSC. This 

difference may due to layer specific differences, due to the location of the probe. 

In rodents, the retrosplenial cortex is found directly adjacent to the midline of the 

brain, and folds into the longitudinal fissure. The boundary between the two 

subregions is such that the superficial layer of the dysgranular RSC is visible on 

the dorsal surface of the cortex while the superficial layer of the granular RSC 

forms part of the longitudinal fissure. Due to the probe placement in this study, 

the silicon probe is perpendicular to the layers of the dysgranular RSC, yet 

parallel to those in the granular RSC, allowing us to sample from many layers of 

the RSCdg, but only a single, deep layer of the RSCg. Future work with probes 

angled away from midline could effectively record from the superficial layers of 

the dysgranular and granular RSC simultaneously, while avoiding damage to the 

sagittal sinus. In J20 mice, the coupling between beta bursting and neuronal 

spiking in the RSCdg was lost. Considering the hypothesised role of beta bursts 

in the activation of neuronal ensembles, this uncoupling would effectively render 

beta bursts ineffectual in this brain region, despite increased beta bursting in J20 

mice.  

3.5.7 Neurophysiological changes in J20 mice 

As we have shown in this chapter, several neurophysiological changes were seen 

across the RSC in J20 mice. Beta power was significantly higher overall, beta 

bursts were more frequent, and bursts were far larger in magnitude, especially in 

the RSCg. Averaging across trials, or in this case, long recording sessions can 

cause transient oscillatory events to appear as continuous oscillations. However, 

while it may appear as though increased beta power is as a result of increased 
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beta bursting, and increased beta burst magnitude, spectral analysis of beta 

bursts and pre-burst epochs demonstrate that beta power appears to be elevated 

outside of beta bursts. These data suggest that perhaps increased beta bursting 

in J20 mice is as a consequence of persistently increased beta oscillatory activity. 

To the best of our knowledge, beta oscillations have yet to be investigated in this 

strain. Previous work in J20 mice has demonstrated spontaneous epileptiform 

discharges in the cortex, which were associated with increased alpha power, and 

decreased gamma power (Palop et al., 2007; Hanson et al., 2020). While variable 

increases in alpha and gamma power were detected in the retrosplenial cortex in 

the J20 mice in this study, we saw no evidence of epileptiform discharges. 

Increased transient oscillatory activity appeared as beta bursts rather than 

epileptiform discharges, which were centred around beta frequency rather than 

alpha. It is notable that despite the changes discussed above, certain 

relationships between neural network activity and novelty were maintained in J20 

mice. During novelty, beta power was higher, beta bursting was increased, as 

was beta burst magnitude. This suggests that despite changes to retrosplenial 

beta oscillations in this strain, the mechanisms that underlie the beta response to 

novelty are functional. 

 At the age point used, amyloid pathology in J20 mice is thought to be 

predominantly located in the hippocampus in this model, although, amyloid 

pathology seems to develop in the RSC to a much greater extent than other 

cortical regions, especially in RSCg (Whitesell et al., 2019). Hyperexcitability of 

cortical neurons in a mouse model of amyloid pathology was more prevalent in 

neurones proximal to amyloid plaques (Busche et al., 2008), and inhibitory 

interneuron dysfunction in J20 mice has been shown to lead to cortical network 
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hypersynchrony and spontaneous epileptiform discharges (Verret et al., 2012). 

The hippocampus projects directly to RSCg, and indirectly, via the subiculum, to 

RSCdg (van Groen and Wyss, 1992; Van Groen and Wyss, 2003), so network 

dysfunction in RSC may be explained by its high levels of amyloid pathology or 

its anatomical connectivity with an increasingly dysfunctional hippocampus 

(Palop et al., 2007). These findings suggest a novel form of Alzheimer’s disease 

(AD) related cortical dysfunction, which may underlie or exacerbate cognitive 

dysfunction seen in these mice, and in people with AD. Erroneous attribution of 

novelty to familiar environments, could cause memory impairments, and result in 

wandering and confusion. The loss of coupling between beta bursting and 

neuronal spiking seen in J20 mice suggest that attenuating bursting without 

restoring this coupling may be ineffective in AD.  

3.5.8 Conclusions 

In conclusion, phasic bursts of beta oscillations in the retrosplenial cortex are 

strongly associated with contextual novelty, and may be responsible for activating 

neural ensembles, and forming cortical representations of environments. Network 

dysfunction in J20 mice results in aberrant beta oscillatory activity and an 

uncoupling of beta bursting from spiking, which may underlie cognitive 

impairments in these mice. 
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4 Chapter 4 

4.1 Introduction 

In Chapter 3 we demonstrated a number of neurophysiological correlates of 

contextual memory in the retrosplenial cortex, including transient bursts of beta 

oscillations that were far more frequent when animals were exposed to a novel 

environment. Through our investigations in J20 mice, a mouse model of 

Alzheimer’s disease-associated amyloidopathy, we demonstrated a range of 

neuronal network changes including altered oscillatory activity, aberrant beta 

bursting and an uncoupling of beta bursts from neuronal spiking. As we have 

previously discussed, much of the work into beta oscillations during novelty has 

been performed in the hippocampus, where novelty is associated with increased 

beta power (Berke et al., 2008; França et al., 2014, 2020). It was therefore of 

interest for us to extend our investigations to the hippocampus, to investigate how 

neurophysiological correlates of contextual novelty in this region compare to 

those in the retrosplenial cortex. This was made possible by our choice of silicon 

electrophysiology probes, as their length allowed us to span the entire 

retrosplenial cortex and reach the hippocampus, making conjunctive recording 

possible. Our hippocampal analysis had 3 main aims, firstly, to investigate 

whether contextual novelty was associated in increases in beta power, as 

previously seen (Berke et al., 2008; França et al., 2014, 2020), and to identify 

whether these beta oscillations conformed to a model of discrete beta bursts as 

in the retrosplenial cortex. Secondly, we aimed to investigate the extent of 

functional connectivity between the retrosplenial cortex and hippocampus in 

order to understand how these regions may interact during the processing of 

contextual information. There is a wealth of data that demonstrates that the 



135 

 

retrosplenial cortex and hippocampus are anatomically connected, predominantly 

via the subiculum, but little is known about how these regions interact in awake, 

behaving animals (Koike et al., 2017; Nitzan et al., 2020). The final aim was to 

investigate neuronal network activity in J20 mice, and compare any changes to 

those we have seen in the retrosplenial cortex (Chapter 3), and those previously 

described in the literature (Palop et al., 2007). Altered neuronal network activity 

may underlie cognitive impairments seen in Alzheimer’s disease, the specific 

nature of these changes may provide insights into the specific neurophysiological 

effects of amyloid pathology, revealing novel targets for cognitive-enhancing 

drugs. 

In order to investigate changes in hippocampal network activity during contextual 

novelty, we recorded LFPs and multi-unit spiking activity from the CA1 region of 

the hippocampus, while mice freely explored either a novel or familiar 

environment. As these recordings were made concurrent with our retrosplenial 

cortex recordings described in Chapter 3, the data in these two chapters are from 

the same experimental group. To probe the effects of AD-associated amyloid 

pathology on hippocampal activity we used J20 mice, a widely employed mouse 

model of amyloidopathy. In this chapter, we demonstrate that in addition to the 

previously demonstrated novelty-associated beta bursting in the retrosplenial 

cortex (Chapter 3), novelty-associated beta bursting also occurs in the 

hippocampus, and that these beta bursts are highly synchronous between these 

two regions. We also demonstrate a number of additional neurophysiological 

correlates of contextual memory in the hippocampus, many of which vary 

dramatically from those in the retrosplenial cortex. These data demonstrate that 

increased beta power in the hippocampus during novelty conforms well to a 
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model of discrete beta bursts, and that synchronous beta bursts in the 

retrosplenial cortex and hippocampus may form temporal windows of effective 

communication between these regions during contextual information processing. 

Finally, we observed a range of changes in hippocampal network activity in J20 

mice, including aberrant beta bursting and altered oscillatory activity, many of 

which are different to those in the retrosplenial cortex, and may underlie cognitive 

dysfunction in these animals (Cheng et al., 2007). Divergent changes in network 

activity in the retrosplenial cortex and hippocampus of J20 mice highlights the 

importance of uncovering the specific mechanisms by which amyloid pathology 

affects neuronal function. 

4.2 Methods 

4.2.1 Author’s Note 

As the data in this chapter was collected as part of the same study described in 

Chapter 3, this methods section will be generally the same as the one in the 

previous chapter, however there are a number of notable differences that warrant 

the inclusion of a separate methods section for this chapter. 

4.2.2 Animals 

8 male J20 mice and 6 wild-type littermates were bred at the University of Exeter 

and housed on a 12-hour light/dark cycle. All procedures were carried out in 

accordance with the UK Animal (Scientific Procedures) Act 1986 65 and were 

approved by the University of Exeter Animal Welfare and Ethical Review Body. 

Access to food and water was provided ad libitum. All animals were kept on a 12-

hour light/dark cycle, with the light/dark cycle matching the normal daylight/night-

time cycle, meaning all interactions including handling, surgery and behaviour 

took place during the light cycle. Mice were group housed prior to surgery, and 
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single housed post-surgery, in order to prevent damage to the surgical implants. 

All mice were between 6 to 8 months of age at the time of recordings. 

4.2.3 Surgery 

Mice were unilaterally implanted with a 16 channel, single shank silicon probe 

(NeuroNexus Technologies, A1x16-5mm-100-177-CM16LP), in the right 

retrosplenial cortex (AP –2 mm, ML +0.5 mm, DV +1.75 mm, 0° Pitch, Figure 

3.1c). These silicon probes penetrated the entire retrosplenial cortex, and were 

targeted towards the pyramidal cell layer of the dorsal hippocampal CA1 region. 

Mice were anaesthetised using isoflurane and fixed into a stereotaxic frame. A 

small craniotomy was drilled over the desired co-ordinate, and at least one hole 

was drilled in each of the major skull plates, in which miniature screws were 

placed to act as supports (Antrin Miniature Specialties). The probe was slowly 

lowered into the desired location, and fixed in place with dental cement (RelyX 

Unicem, 3M). The ground wire from the probe was connected to a silver wire, 

attached to a screw overlying the cerebellum. Throughout surgery, body 

temperature was monitored with a rectal probe and regulated by a feedback-

controlled heat mat.  Animals were kept hydrated by subcutaneous injections of 

Hartmann’s solution once per hour of surgery (0.01 ml/g body weight).  

4.2.4 Data Analysis 

All single-site LFP analyses were performed for a single channel in the stratum 

oriens of the CA1. The location of our probes was estimated from post-hoc 

histology, and for those animals where the probe crossed stratum pyramidale, a 

reversal of theta oscillation phase could be seen in LFP recordings. Due to the 

thickness of the corpus callosum towards the midline, in some experimental 

animals, probes did not reach the hippocampus, but stopped short. It is for that 
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reason that for all analyses, n = 5 for wild-type mice and n = 6 for J20 mice. 

Eleven mice in total were used in this study, 5 wild-type and 6 J20, with each 

mouse undergoing a total of ten recording sessions (5 days, 2 sessions per day). 

Unfortunately, the local field potential data from Day 3 session 1 (i.e. session 3a) 

was corrupted for a single wild-type mouse, and therefore data for this mouse 

from this session was omitted from all figure making and statistics.  

4.3 Results 

In order to investigate neurophysiological correlates of spatial learning and 

memory in the hippocampus (HC), and compare them to those demonstrated in 

the retrosplenial cortex in Chapter 3, local field potentials were recorded 

simultaneously from the CA1 region of the dorsal hippocampus, and the 

retrosplenial cortex, in the same experimental group as in Chapter 3. In rodents, 

the dorsal hippocampus can be found directly ventral to the RSC, making 

concurrent recordings possible using a single, vertical silicon probe. In order to 

directly compare the activity of the hippocampus to that which we have seen in 

the retrosplenial cortex in Chapter 3, similar analyses were performed, including 

spectral analysis, beta burst detection, and multi-unit activity analysis. 

Furthermore, through simultaneous recordings in different brain regions, it is 

possible to investigate temporal correlations between these regions, and probe 

functional connectivity across this network. As such, a number of analyses were 

performed to determine the extent of oscillatory interactions between the RSC 

and HC, and also between the subregions of the RSC itself. 

4.3.1 Hippocampal Spectral Analysis 

In order to investigate any changes in oscillatory activity in HC during 

environmental novelty, power spectral analysis was performed on the entire 15 
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minutes of each session (Figure 4.1a). These power spectra were averaged 

across novel and familiar sessions for wild-type and J20 mice (Figure 4.1b). 

Significant findings are summarised in Table 3, however a more detailed account 

of these findings, including descriptive statistics, will be listed here in-text. There 

was a significant interaction between the effects of genotype and novelty on theta 

power (F(1,9) = 20.8, p = 0.001, Mixed ANOVA). Theta power was significantly 

higher during novel sessions in wild-type mice (Nov: 28.9 ± 0.5 dB; Fam: 28.6 ± 

0.5 dB, p = 0.009), but significantly lower during novel sessions in J20 mice (Nov: 

25.3 ± 0.7 dB; Fam: 25.6 ± 0.7 dB, p = 0.01). Theta power was significantly lower 

in J20 mice than in wild-type mice, during both novel (WT: 28.9 ± 0.5 dB; J20: 

25.3 ± 0.7 dB, p = 0.02), and familiar sessions (WT: 28.6 ± 0.5 dB; J20: 25.6 ± 

0.7 dB, p = 0.04). Alpha power was significantly higher overall during familiar 

sessions (Main Effect Novelty - F(1,9) = 9.8, p = 0.01, Mixed ANOVA), while beta 

and gamma power were significantly higher overall during novel sessions (Beta: 

Main Effect Novelty - F(1,9) = 25.2, p = 7e-4, Mixed ANOVA; Gamma: Main Effect 

Novelty - F(1,9) = 10.4, p = 0.01, Mixed ANOVA). Alpha power was significantly 

higher during familiar sessions in wild-type (Nov: 21.5 ± 0.5 dB; Fam: 21.8 ± 0.5 

dB, p = 0.01), but not J20 mice. Beta power was significantly higher during novel 

sessions in both wild-type (Nov: 19.5 ± 0.6 dB; Fam: 19.2 ± 0.5 dB, p = 0.04) and 

J20 mice (Nov: 19.3 ± 0.4 dB; Fam: 18.8 ± 0.4 dB, p = 9e-4), while gamma power 

was only significantly higher during novel sessions in J20 mice (Nov: 13.5 ± 0.5 

dB; Fam: 13.3 ± 0.4 dB, p = 0.03). Delta and gamma power were significantly 

lower overall in J20 mice (Delta: Main Effect Genotype - F(1,9) = 7.7, p = 0.02, 

Mixed ANOVA; Gamma: Main Effect Genotype - F(1,9) = 12.6, p = 0.006, Mixed 

ANOVA).  
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We previously demonstrated that the retrosplenial cortex was highly active during 

the first minute upon exposure to a novel environment (Chapter 3). In order to 

investigate whether this was also the case in the hippocampus, power spectral 

analysis was performed on the first minute of each session (Figure 4.1d). There 

was a significant interaction between the effects of genotype and novelty on theta 

power (F(1,9) = 12.8, p = 0.006, Mixed ANOVA). Theta power was significantly 

higher during novel sessions in wild-type mice (Nov: 29.7 ± 0.7 dB; Fam: 28.7 ± 

0.6 dB, p = 0.01), but not in J20 mice. Theta power was significantly lower in J20 

mice than in wild-type mice, during novel sessions (WT: 29.7 ± 0.7 dB; J20: 25.2 

± 0.9 dB, p = 0.02), but not familiar sessions. Beta power was significantly higher 

overall during novel sessions (Main Effect Novelty - F(1,9) = 13.9, p = 0.005, 

Mixed ANOVA). Beta power was significantly higher during novel sessions for 

wild-type (Nov: 21.3 ± 0.9 dB; Fam: 19.6 ± 0.5 dB, p = 0.008), but not J20 mice. 

Delta and gamma power were significantly lower overall in J20 mice (Delta: Main 

Effect Genotype - F(1,9) = 11.6, p = 0.008, Mixed ANOVA; Gamma: Main Effect 

Genotype - F(1,9) = 10.4, p = 0.01, Mixed ANOVA).  
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Figure 4.1 Beta (20-30 Hz) power is marginally higher during novelty in the 
hippocampus. 
A. Example power spectrogram for an entire novel session in a wild-type 
mouse. B. Average power spectra for the entire 15 minutes of all novel and 
familiar sessions, for wild-type and J20 mice. Beta power was significantly 
higher during novel sessions in wild-type (p = 0.04) and J20 mice (p = 9e-4). 
Theta power was significantly higher during novel sessions in wild-type mice (p 
= 0.009), but significantly lower during novel sessions in J20 mice (p = 0.01). 
Delta and gamma power were significantly lower overall in J20 mice (p = 0.02, p 
= 0.006, respectively). C. Example power spectrogram shown in A, expanded to 
show the first 60 seconds of the session. D. Average power spectra for the first 
minute of all novel and familiar sessions, for wild-type and J20 mice. Beta 
power was significantly higher during novel sessions in wild-type (p = 0.008), 
but not J20 mice. Delta and gamma power were significantly lower overall in 
J20 mice (p = 0.008, p = 0.01, respectively). (Data shown as mean ± SEM, WT: 
n = 5, J20: n = 6).  
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Analysis Type Frequency Band Relationship p-value

δ WT > J20 0.02

θ N X G 0.001

θ nWT > fWT 0.009

θ fJ20 > nJ20 1.00E-02

θ nWT > nJ20 2.00E-02

θ fWT > fJ20 4.00E-02

α f > n 1.00E-02

α fWT > nWT 1.00E-02

β n > f 7.00E-04

β nWT > fWT 0.04

β nJ20 > fJ20 9.00E-04

γ n > f 0.01

γ nJ20 > fJ20 3.00E-02

γ WT > J20 0.006

δ WT > J20 0.008

θ N X G 6.00E-03

θ nWT > fWT 1.00E-02

θ nWT > nJ20 2.00E-02

β n > f 5.00E-03

β nWT > fWT 0.008

γ WT > J20 0.01

First Minute

Whole Session

Table 3 Hippocampal spectral analysis - Summary of significant results 

N, novelty; G, genotype; N X G, interaction between novelty and genotype;  
n, novel; f, familiar; WT, wild-type; J20, J20; δ, delta; θ, theta; α, alpha; β, beta; 
γ, gamma  



143 

 

4.3.2 Hippocampal Beta Bursting Activity 

Beta bursts can be detected in local field potential recordings from the 

hippocampus, using the same algorithm as used previously in the RSC (Figure 

4.2a). The number of beta bursts detected in the hippocampus was significantly 

higher overall during novel sessions (Main Effect Novelty - F(1,9) = 27.3, p = 5e-

4, Mixed ANOVA); there were significantly more beta bursts detected during 

novel sessions in both wild-type (WT - Nov: 31.9 ± 3.9; Fam: 22.9 ± 1.3, p = 0.02) 

and J20 mice (J20 - Nov: 66.2 ± 2.7; Fam: 51.6 ± 2.7, p = 0.001). Moreover, there 

were significantly more beta bursts detected overall in J20 mice than in wild-type 

mice (Main Effect Genotype - F(1,9) = 38.1, p = 2e-4, Mixed ANOVA). 

As shown in (Figure 4.2c, right), in the hippocampus, the rate of beta bursting 

was reasonably steady throughout familiar sessions, but higher during the first 

minute of novel sessions, for both genotypes (Figure 4.2c, left). Beta burst rate 

was significantly higher overall during novel sessions (Main Effect Novelty - F(1,9) 

= 14.7, p = 0.004, Mixed ANOVA), and also significantly higher overall during the 

initial part of recording sessions (Main Effect Time - F(1,9) = 7.9, p = 0.02, Mixed 

ANOVA). During novel sessions, initial burst rate was significantly higher than 

final burst rate in wild-type (WT - Nov Initial: 9.7 ± 3; Final: 1.2 ± 0.3, p = 0.03), 

but not J20 mice (J20 - Nov Initial: 8.7 ± 2.7; Final: 4.2 ± 0.6, p = 0.2). 

Furthermore, while there was no significant difference in initial burst rate during 

novel sessions between wild-type and J20 mice (Nov Initial - WT: 9.7 ± 3; J20: 

8.7 ± 2.7, p = 0.8), final burst rate during novel sessions was significantly higher 

in J20 mice than in wild-type mice (Nov Final - WT: 1.2 ± 0.3; J20: 4.2 ± 0.6, p = 

0.002). During familiar sessions, there was no significant difference between 

initial and final burst rate for either wild-type (WT - Fam Initial: 2.6 ± 0.5; Final: 
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1.4 ± 0.1, p = 0.3) or J20 mice (J20 - Fam Initial: 5.1 ± 0.9; Final: 3.5 ± 0.4, p = 

0.1). Furthermore, during familiar sessions, both initial burst rate and final burst 

rate were significantly higher in J20 mice than in wild-type mice (Fam Initial - WT: 

2.6 ± 0.5; J20: 5.1 ± 0.9, p = 0.04; Fam Final - WT: 1.4 ± 0.1; J20: 3.5 ± 0.4, p = 

0.002). 
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Figure 4.2 Beta bursting activity in the hippocampus. 
A. Diagram illustrating how beta bursts were detected. B. Graph showing the 
average number of beta bursts detected in HC in each session, for wild-type 
(black) and J20 mice (green). Novel sessions Day1a and Day5a are highlighted 
in blue for clarity. Significantly more beta bursts were detected during novel 
sessions as compared to familiar sessions, for both wild-type (p = 0.04) and J20 
mice (p = 0.002). On average, significantly more beta bursts were detected in 
J20 mice (p = 3.4e-4). C. Cumulative frequency graphs of beta bursts detected 
in novel (left) and familiar sessions (right), for wild-type and J20 mice. D. 
Graphs showing beta burst rate during novel (left) and familiar sessions (right), 
for wild-type and J20 mice. Beta burst rate was significantly higher overall 
during novel sessions (p = 0.005). During novel sessions, initial burst rate was 
significantly higher than final burst rate in wild-type (p = 0.03), but not J20 mice 
(p = 0.18). Final burst rate was significantly higher in J20 mice than in wild-type 
mice, for both novel (p = 0.002), and familiar sessions (p = 0.002). (Data shown 
as mean ± SEM, WT: n = 5, J20: n = 6). 
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4.3.3 Hippocampal Beta Burst Characteristics 

Hippocampal beta burst characteristics were investigated, to determine whether 

they vary depending on novelty or genotype, and to compare hippocampal beta 

bursts to their retrosplenial counterparts. Beta burst magnitude was significantly 

higher overall during novel sessions (Main Effect Novelty - F(1,9) = 26.1, p = 6e-

4, Mixed ANOVA). As shown in (Figure 4.3a), beta bursts were significantly larger 

in magnitude during novel sessions in wild-type (WT - Nov: 179 ± 13.7 µV; Fam: 

157 ± 9.6 µV, p = 0.001) and J20 mice (J20 - Nov: 153 ± 7.2 µV; Fam: 143 ± 6.1 

µV, p = 0.04). Beta burst duration was also significantly higher overall during 

novel sessions (Main Effect Novelty - F(1,9) = 7.2, p = 0.03, Mixed ANOVA). As 

shown in (Figure 4.3b), beta bursts were significantly longer in duration during 

novel sessions in wild-type (WT - Nov: 186 ± 3.8 ms; Fam: 175 ± 0.5 ms, p = 

0.02), but not J20 mice (J20 - Nov: 186 ± 1.2 ms; Fam: 184 ± 0.7 ms, p = 0.4). 

As before, in order to understand the frequency profile of hippocampal beta 

bursts, power spectral analysis was performed on individual beta bursts. As a 

control, these burst spectra were compared to power spectra of epochs of equal 

length directly prior to each burst. These power spectra were averaged across all 

bursts and “pre-bursts”, for wild-type and J20 mice (Figure 4.3c). Alpha power 

was significantly higher overall during beta bursts (Main Effect Burst - F(1,9) = 

20.5, p = 0.001, Mixed ANOVA). There were significant interactions between the 

effect of genotype and burst on theta, beta and gamma power (Theta: Interaction 

- F(1,9) = 16.4, p = 0.003, Mixed ANOVA; Beta: Interaction - F(1,9) = 9.6, p = 

0.01, Mixed ANOVA; Gamma: Interaction - F(1,9) = 12.9, p = 0.006, Mixed 

ANOVA). Beta bursts in wild-type mice were associated with significant increases 

in alpha, beta and gamma power (Alpha: WT – Pre-Burst: 21.1 ± 0.6 dB; Burst: 
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22.1 ± 0.6 dB, p = 0.003; Beta: WT – Pre-Burst: 18 ± 0.6 dB; Burst: 25.8 ± 0.6 

dB, p = 2e-12; Gamma: WT – Pre-Burst: 14.8 ± 0.6 dB; Burst: 15.5 ± 0.6 dB, p = 

2e-5). Beta bursts in J20 mice were associated with significant increases in beta 

and gamma power (Beta: J20 – Pre-Burst: 18 ± 0.4 dB; Burst: 25.1 ± 0.4 dB, p = 

2e-12; Gamma: J20 – Pre-Burst: 12 ± 0.4 dB; Burst: 12.3 ± 0.5 dB, p = 0.008), 

and a significant decrease in theta power (Theta: J20 – Pre-Burst: 24.5 ± 0.7 dB; 

Burst: 23.7 ± 0.8 dB, p = 0.002). 

In order to investigate beta rhythmicity in the hippocampus, the period of beta 

oscillations was calculated for all beta bursts and all epochs without beta bursts, 

and the distribution of these beta periods were calculated and averaged across 

all burst and non-burst epochs, in all sessions, for wild-type and J20 mice (Figure 

4.3d). As in the RSC, while the distribution of beta periods during beta bursts was 

reasonably consistent, peaking around 0.04s, equivalent to a 25 Hz oscillation, 

the distribution of beta periods in non-burst epochs was skewed heavily towards 

longer beta periods. These data suggests a loss of beta rhythmicity during non-

burst epochs, similar to what was seen in the retrosplenial cortex and supporting 

a “bursty generator” (van Ede et al., 2018), however due to a number of caveats 

to this type of analysis (discussed in Chapter 3), interpretation of this data is 

limited. 
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Figure 4.3 Beta burst characteristics in the hippocampus. 
A. Graph showing the average beta burst magnitude in HC in each session, for 
wild-type and J20 mice. Beta bursts were significantly larger in magnitude during 
novel sessions in wild-type (p = 0.003), but not J20 mice (p = 0.08). Furthermore, 
there was no significant overall difference between burst magnitude in wild-type 
and J20 mice. B. Graph showing the average duration of beta bursts in HC in 
each session, for wild-type and J20 mice. Beta bursts were significantly longer in 
duration during novel sessions in wild-type (p = 0.007), but not J20 mice (p = 0.6). 
C. Average power spectra for beta burst, and pre-burst epochs. Beta bursts are 
associated with a large, significant increase in beta power, in both wild-type (p = 
3.4e-12) and J20 mice (p = 3.5e-12). D. Average distributions of beta oscillation 
period for burst and non-burst epochs, in wild-type and J20 mice. Beta oscillations 
are tightly rhythmic during beta bursts, but not during non-burst epochs. (Data 
shown as mean ± SEM, WT: n = 5, J20: n = 6). 
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4.3.4 Hippocampal Phase-amplitude Coupling 

Phase-amplitude coupling efficacy in the hippocampus was calculated for a range 

of phase and amplitude frequencies, and plotted as comodulograms, as shown 

in (Figure 4.4a). As in the RSC, there were two large peaks in these 

comodulograms, in the theta-gamma and theta-alpha/beta frequency ranges. 

The strength of phase-amplitude coupling was quantified for theta-alpha/beta and 

theta-gamma coupling for each session (Figure 4.4b). Theta-alpha/beta coupling 

was significantly higher overall during novel sessions (Main Effect Novelty - F(1,9) 

= 9.7, p = 0.01, Mixed ANOVA). Theta-alpha beta coupling was significantly 

higher during novel sessions in wild-type (WT - Nov: 2.5 ± 0.3; Fam: 1.5 ± 0.1, p 

= 0.02), but not J20 mice (J20 - Nov: 2.4 ± 0.4; Fam: 2 ± 0.2, p = 0.2). There was 

a significant interaction between the effects of genotype and novelty on theta-

gamma coupling (Interaction - F(1,9) = 15.8, p = 0.003, Mixed ANOVA). Theta-

gamma coupling was significantly higher during novel sessions in wild-type (WT 

- Nov: 3.5 ± 0.2; Fam: 2.7 ± 0.2, p = 0.002), but not J20 mice (J20 - Nov: 2.2 ± 

0.3; Fam: 2.4 ± 0.3, p = 0.2). As before, this analysis was performed for the first 

minute of each session. When the same analysis was performed on the last 

minute of each session, there was no effect of genotype or novelty on coupling 

on either theta-alpha/beta coupling (Main Effect Genotype - F(1,9) = 4.2, p = 0.07, 

Mixed ANOVA; Main Effect Novelty - F(1,9) = 1.7, p = 0.2, Mixed ANOVA; Figure 

4.5b, left) or theta-gamma coupling (Main Effect Genotype - F(1,9) = 0.9, p = 0.4, 

Mixed ANOVA; Main Effect Novelty - F(1,9) = 2, p = 0.2, Mixed ANOVA; Figure 

4.5b, right). 
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Figure 4.4 Theta-gamma phase-amplitude coupling is increased in the 
hippocampus during novelty. 
A. Average comodulograms showing the strength of cross-frequency phase-
amplitude coupling in HC during the first minute of novel and familiar sessions, 
for wild-type and J20 mice. Note the presence of two peaks in the theta-
alpha/beta and theta-gamma ranges (the boundaries of which are denoted by the 
dotted lines). B. Average MI in the theta-alpha/beta (left) and theta-gamma 
ranges (right), for each session, for wild-type (black) and J20 mice (green). Novel 
sessions Day1a and Day5a are highlighted in blue for clarity. Theta-alpha/beta 
coupling was significantly higher during novel sessions for wild-type (p = 0.02), 
but not J20 mice (p = 0.2). Theta-gamma coupling was significantly higher during 
novel sessions for wild-type (p = 0.01), but not J20 mice (p = 0.8). (Data shown 
as mean ± SEM, WT: n = 5, J20: n = 6). 
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Figure 4.5 Phase-amplitude coupling during the final minute of each session in 
the granular retrosplenial cortex. 
A. Average comodulograms showing the strength of cross-frequency phase-
amplitude coupling in HC during the final minute of novel and familiar sessions, 
for wild-type and J20 mice. Note the presence of two peaks in the theta-
alpha/beta and theta-gamma ranges (the boundaries of which are denoted by the 
dotted lines). B. Average MI in the theta-alpha/beta (left) and theta-gamma 
ranges (right), for each session, for wild-type (black) and J20 mice (green). Novel 
sessions Day1a and Day5a are highlighted in blue for clarity. There was no 
significant effect of genotype or novelty on theta-alpha/beta coupling (p = 0.07, p 
= 0.2, respectively). There was no significant effect of genotype or novelty on 
theta-gamma coupling (p = 0.4, p = 0.2, respectively). (Data shown as mean ± 
SEM, WT: n = 5, J20: n = 6). 
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4.3.5 Hippocampal Spiking Activity 

General neuronal spiking activity, as well as spiking during beta bursts was also 

investigated in the stratum oriens of the HC. As shown in the left panel of (Figure 

4.6a), neuronal spike waveforms had larger amplitudes on average in J20 mice 

(green), compared to wild-type mice (black) (WT: -68.6 ± 5.2 µV; J20: -95.4 ± 6.3 

µV; t(9) = 3.2, p = 0.01; unpaired t-test). Furthermore, as shown in the right panel 

of (Figure 4.6a), neuronal firing rate was significantly higher on average in J20 

mice (WT: 33 ± 10.4 Hz; J20: 79.2 ± 11.2 Hz; t(9) = -3, p = 0.02; unpaired t-test). 

As mentioned in Chapter 3, both the average spike waveform and average firing 

rate may vary greatly between animals depending on the distance between all 

detected neurons and the recording channel, which is especially relevant in these 

hippocampal recordings due to this region’s dense laminar structure. The 

average beta amplitude during beta bursts is shown in (Figure 4.6b), averaged 

across all bursts with non-overlapping time segments. Beta bursts in both 

genotypes are associated with a brief, monophasic increase in beta amplitude 

that lasts no more than 200 ms on average. Finally, (Figure 4.6c) shows peri-

event time histograms for spike rate during beta bursts, as a Z score from the 

pre-burst baseline (left of the dotted line). Beta bursting in the HC was associated 

with a non-significant trend towards increased spike rate during beta bursts in 

wild-type mice (Z-scored spike rate from baseline: 1.5 ± 0.5; t(4) = 2.7, p = 0.053; 

one-sample t-test; Figure 5c, left), which appeared to be reduced in J20 mice (Z-

scored spike rate from baseline: 0.5 ± 0.7; t(5) = 0.8, p = 0.5; one-sample t-test; 

Figure 5c right). 
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Figure 4.6 The overall firing rate of hippocampal neurons in J20 mice is 
increased. 
A. Average spike waveforms for multi-unit activity in wild-type (black) and J20 
(green) mice (left) and graph of average firing rate for detected multi-units 
across all sessions (right). Spike waveforms had larger amplitudes on average 
in J20 mice (p = 0.01). Furthermore, neuronal firing rate was significantly higher 
on average in J20 mice (p = 0.02). B. Graphs showing beta amplitude over time 
for beta bursts, time locked to the onset of the burst (dotted line), and averaged 
across all detected bursts, for wild-type mice (left) and J20 mice (right). Beta 
bursting was associated with a monophasic increase in beta amplitude that 
returns to baseline after around 250 ms. C. Peri-event histograms showing 
multi-unit activity spike rate during beta bursts, for wild-type (left) and J20 mice 
(right). Data is shown as Z score from baseline (pre-burst epoch), and averaged 
across all beta bursts with non-overlapping time segments. Solid horizontal line 
is shown to indicate the baseline of zero, while the vertical lines indicate the 
time window of interest used to calculate the average spike rate during beta 
bursts. There was a non-significant trend towards increased spike rate during 
beta bursts in wild-type mice (p = 0.053), which appeared to be reduced in J20 
mice (p = 0.5). (Data shown as mean ± SEM, WT: n = 5, J20: n = 6). 
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4.3.6 Intra-Retrosplenial Coherence 

Coherence analysis is a technique used to investigate oscillatory synchrony 

between electrophysiological signals, to determine how strongly correlated these 

regions are in terms of oscillatory activity, and thus infer the strength of functional 

connectivity between them. Coherence values range from 0 to 1; identical signals 

will have a value of 1, while a coherence of 0 would indicate no similarity of phase 

or amplitude. Synchrony is a commonly used term in neuroscience and usually 

refers to phase-synchronisation, defined by Tass et al. (1998) as “the existence 

of preferred values of phase difference”, between two signals. While zero-lag 

phase synchrony could be considered as true synchrony, when we refer to 

synchrony throughout this thesis, we are merely referring to the extent of the 

similarity of phase between two signals. As with spectral analysis, coherence is 

quantified in the frequency domain, in order to investigate synchrony across a 

range of oscillation frequencies. In order to investigate the extent of oscillatory 

synchrony between the two retrosplenial subregions, coherence was calculated 

between a single channel in the RSCdg and single channel in the RSCg (the 

same channels used in chapter 1). Coherograms between RSCdg and RSCg 

show very high coherence between these two subregions, with a clear peak at 

theta frequency (5-12 Hz), and another peak at gamma frequency (60 Hz), that 

persisted throughout the session (Figure 4.7a). As in our power spectral analysis, 

these coherence spectra were averaged across novel and familiar sessions for 

wild-type and J20 mice (Figure 4.7b). Significant findings are summarised in 

Table 4, however a more detailed account of these findings, including descriptive 

statistics, will be listed here in-text. Delta and alpha coherence were significantly 

higher overall during familiar sessions (Delta: Main Effect Novelty - F(1,11) = 5.4, 

p = 0.04, Mixed ANOVA; Alpha: Main Effect Novelty - F(1,11) = 8.6, p = 0.01, 



155 

 

Mixed ANOVA). Delta coherence was significantly higher during familiar sessions 

in wild-type (Nov: 0.88 ± 0.03; Fam: 0.9 ± 0.02, p = 0.03), but not J20 mice (Nov: 

0.91 ± 0.01; Fam: 0.92 ± 0.01, p = 0.5), while alpha coherence was significantly 

higher during familiar sessions in J20 mice (Nov: 0.91 ± 0.01; Fam: 0.92 ± 0.01, 

p = 0.01), but not wild-type mice (Nov: 0.92 ± 0.01; Fam: 0.93 ± 0.01, p = 0.2). 

Gamma coherence was significantly higher overall during novel sessions (Main 

Effect Novelty - F(1,11) = 7.2, p = 0.02, Mixed ANOVA). Gamma coherence was 

significantly higher during novel sessions in J20 mice (Nov: 0.88 ± 0.01; Fam: 

0.87 ± 0.01, p = 0.01), but not wild-type mice (Nov: 0.88 ± 0.01; Fam: 0.88 ± 0.01, 

p = 0.3). As we have consistently shown, the greatest neurophysiological 

responses to contextual novelty are seen during the first minute after exposure 

to the environment. Therefore, we investigated coherence again, but averaging 

across only the first minute of each session (Figure 4.7c, d). Delta, theta and 

alpha coherence were significantly higher overall during familiar sessions (Delta: 

Main Effect Novelty - F(1,11) = 6.8, p = 0.02, Mixed ANOVA; Theta: Main Effect 

Novelty - F(1,11) = 9.7, p = 0.01, Mixed ANOVA; Alpha: Main Effect Novelty - 

F(1,11) = 8.7, p = 0.01, Mixed ANOVA). Delta coherence was significantly higher 

during familiar sessions in wild-type (Nov: 0.85 ± 0.03; Fam: 0.88 ± 0.03, p = 

0.03), but not J20 mice (Nov: 0.9 ± 0.02; Fam: 0.91 ± 0.01, p = 0.4). Theta and 

alpha coherence were significantly higher during familiar sessions in J20 mice 

(Theta: Nov: 0.95 ± 0.01; Fam: 0.97 ± 0.003, p = 0.01; Alpha: Nov: 0.9 ± 0.01; 

Fam: 0.92 ± 0.01, p = 0.02), but not wild-type mice (Theta: Nov: 0.95 ± 0.01; Fam: 

0.96 ± 0.01, p = 0.1; Alpha: Nov: 0.9 ± 0.01; Fam: 0.91 ± 0.01, p = 0.1). Gamma 

coherence was significantly higher overall during novel sessions (Main Effect 

Novelty - F(1,11) = 9.3, p = 0.01, Mixed ANOVA). Gamma coherence was 

significantly higher during novel sessions in J20 mice (Nov: 0.88 ± 0.01; Fam: 
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0.87 ± 0.01, p = 0.01), but not wild-type mice (Nov: 0.88 ± 0.008; Fam: 0.88 ± 

0.009, p = 0.2). 
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Figure 4.7 Intra-retrosplenial coherence varies depending on novelty. 
A. Example coherogram showing coherence between RSCdg and RSCg across 
an entire novel session in a wild-type mouse. B. Average coherence between 
RSCdg and RSCg for the entire 15 minutes of all novel and familiar sessions, for 
wild-type and J20 mice. Delta coherence was significantly higher during familiar 
sessions in wild-type (p = 0.03), but not J20 mice (p = 0.5), while alpha coherence 
was significantly higher during familiar sessions in J20 mice (p = 0.01), but not 
wild-type mice (p = 0.2). Gamma coherence was significantly higher during novel 
sessions in J20 mice (p = 0.01), but not wild-type mice (p = 0.3). C. Example 
coherogram shown in A, expanded to show the first 60 seconds of the session. 
D. Average coherence between RSCdg and RSCg for the first minute of all novel 
and familiar sessions, for wild-type and J20 mice. Theta and alpha coherence 
were significantly higher during familiar sessions in J20 mice (p = 0.01, p = 0.02, 
respectively), but not wild-type mice (p = 0.14, p = 0.13, respectively). Gamma 
coherence was significantly higher during novel sessions in J20 mice (p = 0.009), 
but not wild-type mice (p = 0.18). (Data shown as mean ± SEM, WT: n = 5, J20: 
n = 8). 
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Analysis Type Frequency Band Relationship p-value

δ f > n 0.04

δ fWT > nWT 0.03

α f > n 0.01

α fJ20 > nJ20 0.01

γ n > f 0.02

γ nJ20 > fJ20 1.00E-02

δ f > n 0.02

δ fWT > nWT 0.03

θ f > n 0.01

θ fJ20 > nJ20 0.01

α f > n 1.00E-02

α fJ20 > nJ20 0.02

γ n > f 0.01

γ nJ20 > fJ20 0.01

Whole Session

First Minute

Table 4 Intra-Retrosplenial Coherence - Summary of significant results 

n, novel; f, familiar; WT, wild-type; J20, J20; δ, delta; θ, theta; α, alpha; γ, 
gamma  
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4.3.7 Hippocampal-Retrosplenial Coherence 

Anatomical studies have demonstrated that the hippocampus and retrosplenial 

cortex are highly anatomically connected, via the subicular complex (Wyss and 

Van Groen, 1992), but little is known about functional connectivity between these 

structures, particularly in vivo. A recent study by Nitzan et al. (2020) has 

demonstrated that sharp wave ripples from the hippocampus propagate through 

the subiculum to the retrosplenial cortex, revealing a novel source of oscillatory 

interaction between these regions. In order to investigate extent of oscillatory 

synchrony between the retrosplenial cortex and the hippocampus, coherence 

was calculated between a single channel in the RSCg and single channel in the 

HC (the same hippocampal channel used throughout this chapter). Coherograms 

between RSCg and HC show high coherence between these two regions. As 

before, there were clear peaks at theta (5-12 Hz), and gamma frequencies (60 

Hz), that persisted throughout the session (Figure 4.8a). As in our power spectral 

analysis, these coherence spectra were averaged across novel and familiar 

sessions for wild-type and J20 mice (Figure 4.8b). Significant findings are 

summarised in Table 5, however a more detailed account of these findings, 

including descriptive statistics, will be listed here in-text. There was a significant 

interaction between the effects of genotype and novelty on delta coherence 

(F(1,9) = 9.5, p = 0.01, Mixed ANOVA). Delta coherence was significantly higher 

during novel sessions in wild-type (Nov: 0.83 ± 0.01; Fam: 0.81 ± 0.01, p = 0.04), 

but not J20 mice (Nov: 0.71 ± 0.01; Fam: 0.73 ± 0.01, p = 0.08). Furthermore, 

delta coherence was significantly lower in J20 mice than in wild-type mice, during 

novel (WT: 0.83 ± 0.01; J20: 0.71 ± 0.01, p = 0.001), and familiar sessions (WT: 

0.81 ± 0.01; J20: 0.73 ± 0.01, p = 0.01). Theta coherence was significantly lower 

overall in J20 mice than in wild-type mice (Main Effect Genotype - F(1,9) = 7.1, p 
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= 0.03, Mixed ANOVA). Beta coherence was significantly higher overall during 

novel sessions (Main Effect Novelty - F(1,9) = 6.4, p = 0.03, Mixed ANOVA). Beta 

coherence was significantly higher during novel sessions in wild-type (Nov: 0.79 

± 0.01; Fam: 0.77 ± 0.01, p = 0.03), but not J20 mice (Nov: 0.77 ± 0.01; Fam: 

0.76 ± 0.01, p = 0.4). As before, we investigated coherence again, averaging 

across only the first minute of each session (Figure 4.8c, d). Delta coherence was 

significantly lower overall in J20 mice than in wild-type mice (Main Effect 

Genotype - F(1,9) = 14.8, p = 0.004, Mixed ANOVA). There were significant 

interactions between the effects of genotype and novelty on theta and beta 

coherence (Theta: F(1,9) = 5.5, p = 0.04, Mixed ANOVA; Beta: Interaction - F(1,9) 

= 9.2, p = 0.01, Mixed ANOVA). Theta coherence was significantly lower in J20 

mice than in wild-type mice during novel sessions (WT: 0.93 ± 0.01; J20: 0.86 ± 

0.01, p = 0.01), but not familiar sessions (WT: 0.92 ± 0.01; J20: 0.88 ± 0.01, p = 

0.2).  
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Figure 4.8 Hippocampal-retrosplenial coherence is generally unaffected by 
novelty. 
A. Example coherogram showing coherence between RSCg and HC across an 
entire novel session in a wild-type mouse. B. Average coherence between 
RSCg and HC for the entire 15 minutes of all novel and familiar sessions, for 
wild-type and J20 mice. Delta coherence was significantly higher during novel 
sessions in wild-type (p = 0.04), but not J20 mice (p = 0.08). Delta coherence 
was significantly lower in J20 mice, during novel (p = 0.001) and familiar 
sessions (p = 0.01). Beta coherence was significantly higher during novel 
sessions in wild-type (p = 0.02), but not J20 mice (p = 0.5). C. Example 
coherogram shown in A, expanded to show the first 60 seconds of the session. 
D. Average coherence between RSCg and HC for the first minute of all novel 
and familiar sessions, for wild-type and J20 mice. Delta coherence was 
significantly lower overall in J20 mice than in wild-type mice (p = 0.004). Theta 
coherence was significantly lower in J20 mice than in wild-type mice during 
novel sessions (p = 0.01), but not familiar sessions (p = 0.17). (Data shown as 
mean ± SEM, WT: n = 5, J20: n = 6). 
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Analysis Type Frequency Band Relationship p-value

δ N X G 0.01

δ nWT > fWT 0.04

δ nWT > nJ20 1.00E-03

δ fWT > fJ20 1.00E-02

θ WT > J20 3.00E-02

β n > f 3.00E-02

β nWT > fWT 0.03

δ WT > J20 0.004

θ N X G 4.00E-02

θ nWT > nJ20 0.01

β N X G 0.01

Whole

First

Table 5 Hippocampal-Retrosplenial Coherence - Summary of significant results 

N, novelty; G, genotype; N X G, interaction between novelty and genotype;  
n, novel; f, familiar; WT, wild-type; J20, J20; δ, delta; θ, theta; β, beta  
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4.3.8 Intra-Retrosplenial Granger Causality 

Granger causality is an analytical technique used to investigate statistical 

causality between two time series (Granger, 1969). If past values of one signal 

can predict future values of another signal, then this is an indicator of Granger 

causality. In electrophysiology, this technique is often used to whether there is 

directionality in the functional connectivity between two brain regions, which could 

indicate what influence they have on each other (Seth et al., 2015). It is important 

to note that this “causality” is statistical, and not indicative of true causality. While 

coherence analysis is symmetrical, and provides no insight into directionality, 

Granger causality can provide valuable information about potential directionality 

of oscillations in a neuronal network. Furthermore, the passive spread of electrical 

fields through tissue, known as volume conduction, can lead to spurious 

coherence due to the instantaneous passive spread of oscillations from a 

common source (Cohen, 2015). In this regard, Granger causality is a superior 

measure to coherence, in that it is far less sensitive to indirect connectivity 

(Bastos and Schoffelen, 2016). We investigated Granger causality between both 

retrosplenial cortex subregions, in order to determine whether there is any 

directionality in oscillatory activity within this brain region. As shown in (Figure 

4.9a), in order to visualise the balance of Granger causality in the retrosplenial 

cortex, we calculated Granger causality in 15 second time bins across the entire 

15-minute session, and subtracted Granger causality in the RSCg to RSCdg 

direction from Granger causality in the RSCdg to RSCg direction. As shown in 

these “Grangerograms”, Granger causality from the RSCg to the RSCdg is highly 

dominant, throughout recording sessions, suggesting a potential unidirectional 

flow of oscillatory activity. Average Granger causality spectra were calculated for 

the first minute of each session for wild-type and J20 mice, and shown in (Figure 
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4.9b). Significant findings are summarised in Table 6, however a more detailed 

account of these findings, including descriptive statistics, will be listed here in-

text. There was a significant 3-way interaction between genotype, novelty and 

direction on Granger causality in all frequency bands (Delta: 3 Way Interaction - 

F(1,11) = 30.5, p = 2e-4, Mixed ANOVA; Theta: 3 Way Interaction - F(1,11) = 23, 

p = 6e-4, Mixed ANOVA; Alpha: 3 Way Interaction - F(1,11) = 14.3, p = 0.003, 

Mixed ANOVA; Beta: 3 Way Interaction - F(1,11) = 7.8, p = 0.02, Mixed ANOVA; 

Gamma: 3 Way Interaction - F(1,11) = 7, p = 0.02, Mixed ANOVA). In wild-type 

mice, Granger causality in the theta, alpha, beta and gamma bands were 

significantly higher overall in the granular to dysgranular direction (Theta: WT - 

Dg>G: 0.04 ± 0.02; G>Dg: 0.19 ± 0.05, p = 0.02; Alpha: WT - Dg>G: 0.02 ± 0.004; 

G>Dg: 0.13 ± 0.04, p = 0.01; Beta: WT - Dg>G: 0.01 ± 0.002; G>Dg: 0.1 ± 0.03, 

p = 0.02; Gamma: WT - Dg>G: 0.01 ± 0.004; G>Dg: 0.1 ± 0.03, p = 0.004). 

Furthermore, in wild-type mice, gamma Granger causality was significantly higher 

during novel sessions in the granular to dysgranular direction (WT - G>Dg Nov: 

0.13 ± 0.04; Fam: 0.09 ± 0.03, p = 0.03). In J20 mice, Granger causality in the 

alpha band was significantly higher overall in the granular to dysgranular direction 

(J20 - Dg>G: 0.03 ± 0.01; G>Dg: 0.1 ± 0.03, p = 0.04). Furthermore, in J20 mice, 

delta, theta and alpha Granger causality were significantly lower during familiar 

sessions in the dysgranular to granular direction (Delta: J20 - Dg>G Nov: 0.14 ± 

0.05; Fam: 0.08 ± 0.03, p = 0.007; Theta: J20 - Dg>G Nov: 0.07 ± 0.02; Fam: 

0.04 ± 0.004, p = 0.005; Alpha: J20 - Dg>G Nov: 0.05 ± 0.01; Fam: 0.03 ± 0.01, 

p = 0.02), while in the granular to dysgranular direction, delta, theta, alpha and 

beta Granger causality were significantly lower during novel sessions (Delta: J20 

- G>Dg Nov: 0.07 ± 0.02; Fam: 0.18 ± 0.04, p = 2e-4; Theta: J20 - G>Dg Nov: 

0.07 ± 0.02; Fam: 0.16 ± 0.03, p = 1e-4; Alpha: J20 - G>Dg Nov: 0.08 ± 0.02; 
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Fam: 0.14 ± 0.03, p = 3e-4; Beta: J20 - G>Dg Nov: 0.07 ± 0.02; Fam: 0.1 ± 0.03, 

p = 0.002).  
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Figure 4.9 Granger Causality is higher from the RSCg to the RSCdg. 
A. Average Grangerograms, illustrating the balance of Granger causality 
between RSCdg (Dg) and RSCg (G), averaged across novel (top) and familiar 
sessions (bottom), for wild-type (left) and J20 mice (right). Data shown is the 
Granger causality in the RSCg to RSCdg direction, subtracted from the Granger 
causality in the RSCdg to RSCg direction. Darker colors indicate a directional 
imbalance in Granger causality. B. Average Granger causality spectra for the 
first minute of novel and familiar sessions, in both directions, for wild-type (left), 
and J20 mice (right). In wild-type mice, Granger causality in the theta, alpha, 
beta and gamma bands was significantly higher overall in the RSCg to RSCdg 
direction (p = 0.02, p = 0.01, p = 0.02, p = 0.004, respectively). Furthermore, in 
wild-type mice, gamma Granger causality was significantly higher overall during 
novel sessions in the RSCg to RSCdg direction (p = 0.03). In J20 mice, Granger 
causality in the alpha band was significantly higher overall in the RSCg to 
RSCdg direction (p = 0.04). Furthermore, in J20 mice, delta, theta and alpha 
Granger causality were significantly lower during familiar sessions in the RSCdg 
to RSCg direction (p = 0.007, p = 0.005, p = 0.02, respectively), while in the 
RSCg to RSCdg direction, delta, theta, alpha and beta Granger causality were 
significantly lower during novel sessions (p = 2e-4, p = 1e-4, p = 3e-4, p = 
0.002, respectively). (Data shown as mean ± SEM, WT: n = 5, J20: n = 8). 
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Genotype Frequency Band Relationship p-value

δ N X G X D 2.00E-04

θ N X G X D 6.00E-04

α N X G X D 0.003

β N X G X D 0.02

γ N X G X D 0.02

θ G2D > D2G 2.00E-02

α G2D > D2G 0.01

β G2D > D2G 0.02

γ G2D > D2G 0.004

γ G2Dn > G2Df 0.03

α G2D > D2G 4.00E-02

δ D2Gn > D2Gf 0.007

θ D2Gn > D2Gf 0.005

α D2Gn > D2Gf 0.02

δ G2Df > G2Dn 2.00E-04

θ G2Df > G2Dn 1.00E-04

α G2Df > G2Dn 3.00E-04

β G2Df > G2Dn 0.002

WT

J20

N/A

Table 6 Intra-Retrosplenial Granger Causality - Summary of significant results 

N, novelty; G, genotype; D, direction; N X G X D, interaction between novelty, 
genotype and direction; D2G, RSCdg to RSCg; G2D, RSCg to RSCdg;  
n, novel; f, familiar; δ, delta; θ, theta; α, alpha; β, beta; γ, gamma  
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4.3.9 Hippocampal-Retrosplenial Granger Causality 

We investigated Granger causality between the RSCg and hippocampus, in order 

to determine the extent of directionality in oscillatory activity between these brain 

regions. As shown in (Figure 4.10a), in order to visualise the balance of Granger 

causality in the retrosplenial cortex, we calculated Granger causality in 15 second 

time bins across the entire 15-minute session, and subtracted Granger causality 

in the HC to RSCg direction from Granger causality in the RSCg to HC direction. 

As shown in these “Grangerograms”, there is a high degree of Granger causality 

from both RSCg to HC, and from HC to RSCg, suggesting bidirectional flow of 

oscillatory activity. Interestingly, Granger causality in the gamma band appears 

to be hippocampal dominant at around 70 Hz, and retrosplenial dominant at 

around 50 Hz. Average Granger causality spectra were calculated for the first 

minute of each session for wild-type and J20 mice, and shown in (Figure 4.10b). 

Significant findings are summarised in Table 7, however a more detailed account 

of these findings, including descriptive statistics, will be listed here in-text. There 

was a significant 3-way interaction between genotype, novelty and direction on 

Granger causality in all frequency bands (Delta: 3 Way Interaction - F(1,9) = 11.9, 

p = 0.007, Mixed ANOVA; Theta: 3 Way Interaction - F(1,9) = 9.7, p = 0.01, Mixed 

ANOVA; Alpha: 3 Way Interaction - F(1,9) = 8.9, p = 0.02, Mixed ANOVA; Beta: 

3 Way Interaction - F(1,9) = 7, p = 0.03, Mixed ANOVA; Gamma: 3 Way 

Interaction - F(1,9) = 20.8, p = 0.001, Mixed ANOVA). In wild-type mice, Granger 

causality in the delta, theta and alpha bands was significantly higher overall in 

the hippocampus to granular RSC direction (Delta: WT - G>HC: 0.4 ± 0.08; 

HC>G: 0.5 ± 0.05, p = 0.02; Theta: WT - G>HC: 0.16 ± 0.04; HC>G: 0.29 ± 0.04, 

p = 0.005; Alpha: WT - G>HC: 0.06 ± 0.02; HC>G: 0.15 ± 0.03, p = 0.007). 

Furthermore, in wild-type mice, delta, theta and gamma Granger causality were 
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significantly higher during familiar sessions in the granular RSC to hippocampus 

direction (Delta: WT - G>HC Nov: 0.2 ± 0.1; Fam: 0.4 ± 0.1, p = 0.006; Theta: WT 

- G>HC Nov: 0.08 ± 0.02; Fam: 0.2 ± 0.05, p = 0.03; Gamma: WT - G>HC Nov: 

0.09 ± 0.03; Fam: 0.13 ± 0.04, p = 0.002). In J20 mice, Granger causality in the 

delta, theta, alpha and beta bands were significantly higher overall in the 

hippocampus to granular RSC direction (Delta: J20 - G>HC: 0.18 ± 0.05; HC>G: 

0.4 ± 0.05, p = 0.04; Theta: J20 - G>HC: 0.09 ± 0.02; HC>G: 0.29 ± 0.03, p = 

0.004; Alpha: J20 - G>HC: 0.04 ± 0.01; HC>G: 0.19 ± 0.02, p = 0.002; Beta: J20 

- G>HC: 0.02 ± 0.006; HC>G: 0.12 ± 0.02, p = 0.009). Furthermore, in J20 mice, 

delta, theta, alpha and beta Granger causality were significantly lower during 

novel sessions in the hippocampus to granular RSC direction (Delta: J20 - HC>G 

Nov: 0.2 ± 0.05; Fam: 0.4 ± 0.06, p = 8e-5; Theta: J20 - HC>G Nov: 0.16 ± 0.03; 

Fam: 0.3 ± 0.04, p = 8e-4; Alpha: J20 - HC>G Nov: 0.12 ± 0.01; Fam: 0.2 ± 0.02, 

p = 0.004; Beta: J20 - HC>G Nov: 0.08 ± 0.01; Fam: 0.13 ± 0.02, p = 0.009).  
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Figure 4.10 Granger causality from the RSCg to the hippocampus is increased 
during familiar sessions. 
A. Average Grangerograms, illustrating the balance of Granger causality 
between RSCg (G) and HC, averaged across novel (top) and familiar sessions 
(bottom), for wild-type (left) and J20 mice (right). Data shown is the Granger 
causality in the HC to RSCg direction, subtracted from the Granger causality in 
the RSCg to HC direction. Darker colors indicate a directional imbalance in 
Granger causality. B. Average Granger causality spectra for the first minute of 
novel and familiar sessions, in both directions, for wild-type (left), and J20 mice 
(right). In wild-type mice, Granger causality in the delta, theta and alpha bands 
were significantly higher overall in the hippocampus to RSCg direction (p = 
0.02, p = 0.005, p = 0.007, respectively). Furthermore, in wild-type mice, delta, 
theta and gamma Granger causality were significantly higher during familiar 
sessions in the RSCg to hippocampus direction (p = 0.006, p = 0.03, p = 0.002, 
respectively). In J20 mice, Granger causality in the delta, theta, alpha and beta 
bands were significantly higher overall in the hippocampus to RSCg direction (p 
= 0.04, p = 0.004, p = 0.002, p = 0.009, respectively). Furthermore, in J20 mice, 
delta, theta, alpha and beta Granger causality were significantly lower during 
novel sessions in the hippocampus to RSCg direction (p = 8e-5, p = 8e-4, p = 
0.004, p = 0.009, respectively). (Data shown as mean ± SEM, WT: n = 4, J20: n 
= 5). 
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Genotype Frequency Band Relationship p-value

δ N X G X D 7.00E-03

θ N X G X D 1.00E-02

α N X G X D 0.02

β N X G X D 0.03

γ N X G X D 0.001

δ H2G > G2H 2.00E-02

θ H2G > G2H 0.005

α H2G > G2H 0.007

δ G2Hf > G2Hn 0.006

θ G2Hf > G2Hn 0.03

γ G2Hf > G2Hn 2.00E-03

δ H2G > G2H 0.04

θ H2G > G2H 0.004

α H2G > G2H 0.002

β H2G > G2H 9.00E-03

δ H2Gf > H2Gn 8.00E-05

θ H2Gf > H2Gn 8.00E-04

α H2Gf > H2Gn 0.004

β H2Gf > H2Gn 0.009

WT

J20

N/A

Table 7 Hippocampal-Retrosplenial Granger Causality - Summary of significant 
results 

N, novelty; G, genotype; D, direction; N X G X D, interaction between novelty, 
genotype and direction; H2G, Hippocampus to RSCg; G2H, RSCg to 
Hippocampus; n, novel; f, familiar; δ, delta; θ, theta; α, alpha; β, beta; γ, 
gamma  
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4.3.10 Burst Cross-Correlation 

We have demonstrated throughout this study that beta bursts can be reliably 

detected in both subregions of the retrosplenial cortex, and the hippocampus. So 

far, we have considered beta bursting in these regions as independent, and 

analysed their temporal profile, and characteristics accordingly. However, we 

have shown that oscillations within this network are highly correlated, and as 

such, beta bursts may also be temporally correlated as well. Cross-correlation 

analysis allows investigation into correlations between signals with at varying 

time lags. The strength of correlation, as well as the time lag at which the 

correlation is maximal, can provide insight into temporal correlations between 

oscillations and make suggestions about potential directionality (Figure 4.11a). 

The use of multi-site silicon probes in this study allows additional insight into how 

burst cross-correlation changes across the length of the probe (Figure 4.11b).  

Cross-correlation analysis is commonly used in electrophysiology to investigate 

relationships between the timing of spikes from different neurons, in order to 

investigate potential functional interactions between them (Ostojic et al., 2009). 

For these types of data, cross correlation analysis is performed on the time 

stamps of the spikes, and not the spike waveforms, as the point of interest is the 

temporal relationship between the timing of the spikes, and not correlations 

between the spike waveforms themselves. Conversely, the focus of our analysis 

was the extent of correlation between beta bursts in one area of the brain and 

beta oscillations in another area of the brain, with regards to waveform shape and 

phase synchrony, and as such our analysis was performed on time-locked beta-

filtered local field potentials, and not on the time stamps of these beta bursts. 

Beta bursts were detected in the RSCdg and cross-correlation analysis was 
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performed on a burst-by-burst basis between this burst signal, and time-locked 

signals from all other channels. The peak cross-correlation and peak lag were 

calculated across all channels, and averaged across all beta bursts in novel, and 

familiar sessions, for both wild-type and J20 mice. During beta bursts in the 

RSCdg, beta oscillations are highly correlated between RSCdg and RSCg 

(correlation coefficient > 0.9), in both novel (Figure 4.11c, top) and familiar 

sessions (Figure 4.11c, bottom). There was no significant effect of genotype or 

novelty on burst cross correlation between RSCdg and RSCg (Main Effect 

Novelty - F(1,8) = 5.3, p = 0.051, Mixed ANOVA; Main Effect Genotype - F(1,8) 

= 0.9, p = 0.4, Mixed ANOVA). During beta bursts in the RSCdg, beta oscillations 

were also highly correlated between RSCdg and hippocampus (correlation 

coefficient > 0.8), during both novel (Figure 4.11c, top) and familiar sessions 

(Figure 4.11c, bottom). Burst cross correlation between RSCdg and 

hippocampus was significantly lower overall during novel sessions (Main Effect 

Novelty - F(1,8) = 7.1, p = 0.03, Mixed ANOVA). Burst cross correlation was 

significantly lower during novel sessions in J20 mice (J20 - Nov: 0.8 ± 0.02; Fam: 

0.9 ± 0.01, p = 0.007), but not wild-type mice. As shown in (Figure 4.11d), beta 

oscillations are highly synchronous across the retrosplenial-hippocampal network 

during beta bursts. Burst cross correlation lags were statistically analysed using 

one-sample t-tests, to determine whether their peak lag was significantly non-

zero, and whether beta oscillations were synchronous. During novel sessions, 

beta bursts in RSCdg and RSCg were synchronous in both wild-type (-0.07 ± 

0.09 ms, t(3) = -0.48, p = 0.7; one-sample t-test) and J20 mice (0.2 ± 0.1 ms, t(5) 

= 1.6, p = 0.18; one-sample t-test). Conversely, during familiar sessions, beta 

bursts in RSCdg and RSCg were significantly asynchronous in both wild-type (-

0.19 ± 0.02 ms, t(3) = -6.4, p = 0.008; one-sample t-test) and J20 mice (-0.4 ± 0.1 
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ms, t(5) = -2.9, p = 0.03; one-sample t-test). During novel sessions, beta bursts 

in RSCdg and hippocampus were synchronous in both wild-type (-0.3 ± 0.3 ms, 

t(3) = -0.6, p = 0.6; one-sample t-test) and J20 mice (-2.9 ± 1.2 ms, t(5) = -1.9, p 

= 0.1; one-sample t-test). Conversely, during familiar sessions, beta bursts in the 

RSCdg and hippocampus were significantly asynchronous in both wild-type (-1.8 

± 0.3 ms, t(3) = -3.5, p = 0.04; one-sample t-test) and J20 mice (-2.2 ± 0.4 ms, 

t(5) = -4.1, p = 0.009; one-sample t-test).  
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Figure 4.11 Beta bursts in the RSC and hippocampus are highly correlated and 
synchronous. 
A. Example beta oscillations in the RSCdg (blue), RSCg (orange) and 
hippocampus (yellow). B. Diagram showing the probe location, as well as the 
relative locations of the retrosplenial and hippocampal channels. Horizontal lines 
indicate the depths of channels across the probe, from the RSC channel to the 
hippocampal channel, with distance from RSCdg channel in millimetres. C. Peak 
beta burst cross correlation, across the probe. Peak cross correlation was 
calculated for each beta burst detected in RSCdg, and averaged across all bursts, 
in novel sessions (above) and familiar sessions (below), for wild-type (blue, black) 
and J20 mice (green, dark green). Beta bursts were highly correlated across the 
probe. D. Peak beta burst cross correlation lag, across the probe. Peak lag is 
calculated as the time at which burst cross-correlation is at its peak. Positive 
values indicate that beta bursts in the RSCdg precede those detected at each 
depth, while negative values indicate that beta bursts in the RSCdg lag behind 
those detected at each depth. Peak lag was calculated for each beta burst 
detected in RSCdg, and averaged across all bursts, in novel sessions (above) 
and familiar sessions (below), for wild-type (blue, black) and J20 mice (green, 
dark green). (Data shown as mean ± SEM, WT: n = 4, J20: n = 6). 
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4.4 Discussion 

4.4.1 Summary 

The aim of this study was to investigate hippocampal network activity in response 

to contextual novelty, in order to compare electrophysiological correlates of 

novelty in the hippocampus to those described in the retrosplenial cortex in 

Chapter 3. Furthermore, through concurrent recordings in the retrosplenial cortex 

and hippocampus, we aimed to determine the extent of functional connectivity 

between these regions, through investigation into temporally correlated 

oscillatory activity. Furthermore, the inclusion of J20 mice in this study allowed us 

to investigate potential changes in hippocampal network activity, and compare 

them to those demonstrated in the retrosplenial cortex (Chapter 3). 

4.4.2 Power Spectral Analysis 

Power spectral analysis was performed in order to investigate oscillatory activity 

in the hippocampus across a range of frequency bands, and compare the effects 

of novelty and genotype on hippocampal activity. First, we performed power 

spectral analysis across the entire 15-minute recording sessions, in order to 

identify general oscillatory changes that occur while animals explore novel 

environments. During novel sessions, beta power was significantly increased in 

both genotypes. Furthermore, in wild-type mice, while theta power was 

significantly higher during novel sessions, alpha power was significantly lower. 

Increased hippocampal beta power during novelty mirrors the changes shown in 

the RSC in Chapter 3, and supports previous work by Berke et al. (2008) and 

França et al. (2020), who have previously demonstrated increased beta power in 

the hippocampus when mice explore novel environments. Furthermore, 

increased hippocampal beta power has also been shown during the exploration 
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of novel objects, or object locations (França et al., 2014, 2020; Iwasaki et al., 

2021). Iwasaki et al. (2021) also demonstrated that increased beta power during 

object memory encoding sessions was associated with improved performance 

during subsequent memory retrieval. These studies suggest that hippocampal 

beta oscillations are associated with memory encoding.  

We also performed power spectral analysis on the first minute of each session, 

in order to focus on the times immediately after the animal is exposed to the 

environment, during which it is thought that memory encoding or retrieval will 

occur. During novel sessions, theta and beta power were significantly increased 

in wild-type mice, but there was no effect of novelty on power in any frequency 

band in J20 mice, which suggests that increased beta power during novelty in 

J20s is not found during the first minute of the session, but throughout. 

Hippocampal delta and gamma power were consistently lower overall in J20 

mice. Reduced gamma activity has been previously demonstrated in 

electroencephalographic recordings from J20 mice (Verret et al., 2012), and was 

associated with inhibitory interneuron dysfunction seen in these mice (Palop et 

al., 2007), which is thought to result in epileptiform activity, although this was not 

seen in our mice, potentially due to our use of relatively short recordings. 

Interestingly, the overall increases in alpha, beta and gamma power seen in the 

RSC in J20 mice were absent in the hippocampus. Amyloid pathology has been 

demonstrated in both hippocampus and retrosplenial cortex in J20 mice 

(Whitesell et al., 2019), suggesting a divergence in the neurophysiological 

consequences of amyloid pathology between these two brain regions. 

As we have demonstrated, hippocampal beta activity is associated with 

contextual novelty in wild-type mice. Interestingly, the generalised increase in 
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beta power previously shown in the RSC of J20 mice was absent in the 

hippocampus (Chapter 3). Furthermore, while novelty-associated beta oscillatory 

activity was maintained in the RSC in J20 mice, in the hippocampus this 

relationship was lost. This together suggests that while beta oscillations can be 

found in both cortex and hippocampus, beta oscillations, and their associations 

with contextual novelty, are far more pronounced in the cortex. 

4.4.3 Beta Bursting Activity 

As in the retrosplenial cortex, hippocampal beta activity appears as discrete 

bursts rather than continuous oscillations, and beta bursts are significantly more 

frequent during novel sessions. These findings support previous work by (Berke 

et al., 2008; França et al., 2014). Beta burst rate was significantly higher overall 

during novel sessions, and while beta bursting was generally stable throughout 

familiar sessions, during novel sessions beta burst rate was significantly higher 

during the first minute of the session in wild-type mice. This novelty-associated 

bursting, and this pattern of novelty associated bursting in the hippocampus is 

similar to that which we have previously seen in the retrosplenial cortex (Chapter 

3). In wild-type mice, the total number of beta bursts detected in the hippocampus 

was similar to the total number of beta bursts detected in the retrosplenial cortex, 

however the initial rate of beta bursting during novel sessions appears to be far 

greater in the retrosplenial cortex. This suggests a more pronounced response to 

novelty in the retrosplenial cortex, and may explain the attenuated increase in 

beta power during the first minute of novel sessions in the hippocampus. 

In the hippocampus, as in the retrosplenial cortex, significantly more beta bursts 

were detected overall in J20 mice. It is notable that this increase in burst detection 

in the hippocampus was the largest of all three areas tested so far. Furthermore, 



179 

 

from plots of total number of bursts detected in J20 mice, a clear “saw-tooth” 

pattern can be seen (Figure 4.2 Beta bursting activity in the hippocampus., with 

higher numbers of bursts detected on the first session of every recording day, 

regardless of novelty. If a high level of beta bursting occurs during perceived 

novelty (i.e. the animal believes the environment to be novel), then increased 

beta bursting on the first session of each day could suggest that animals are 

uncertain whether the environment is familiar or not. While the second session of 

each day occurs only 15 minutes after the first, there is approximately 24 hours 

between the second session of one day, and the first session of the next, so 

disrupted memory encoding during each session or disrupted memory 

consolidation during this period could result in “forgetting” which could result in 

this saw-tooth pattern. The relationship between beta bursting and novelty was 

altered slightly in the hippocampus in J20 mice. While there were significantly 

more beta bursts detected during novel sessions in J20 mice, there was no 

significant difference between the beta burst rate during the first minute and final 

10 minutes of novel sessions. Furthermore, while there was no significant 

difference between beta burst rate in the initial minute of novel sessions between 

wild-type and J20 mice, beta burst rate was significantly higher in J20s during 

familiar sessions, and the final 10 minutes of novel sessions. These findings 

mirror those in the RSC, and support our hypothesis that there is either a 

theoretical regional maximum burst rate, or that different mechanisms underlie 

novelty-associated beta bursts and familiarity-associated beta bursts. While the 

rate of novelty-associated beta bursting in the RSCdg is almost double that in the 

hippocampus, the rate of beta bursting during familiar sessions appears to be 

remarkably similar, further supporting the idea of a basal beta burst rate, which 

is greatly increased in J20 mice.  
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4.4.4 Beta Bursting Characteristics 

Beta burst characteristics were investigated in the hippocampus, as before, in 

order to investigate how hippocampal beta bursts differ from their retrosplenial 

counterparts, and to determine whether any of these characteristics vary 

depending on novelty. Beta bursts were significantly larger in magnitude during 

novelty, in both genotypes, and beta bursts were significantly longer in duration 

during novelty in wild-type, but not J20 mice. If the function of beta bursts is to 

transiently activate neurons, then increases in beta burst magnitude or duration 

during novelty could serve to enhance this activation. In the retrosplenial cortex 

we noted a significant overall increase in burst magnitude in J20 mice, however 

this was notably absent in the hippocampus. Due to the nature of our beta burst 

detection algorithm, we had considered that overall increases in beta burst 

magnitude or duration during novel sessions could, at least in part, account for 

an increase in beta burst detection. It is therefore notable that beta burst detection 

was greatly increased in the hippocampus of J20 mice during novel sessions, in 

the absence of significant overall increases in beta burst magnitude or duration. 

This also argues against a simple increase in beta burst magnitude underlying 

the increased beta burst detection in the hippocampus of J20 mice.  

Spectral analyses during and outside of beta bursts allowed us to investigate how 

oscillatory activity changes during beta bursts, both within, and outside of the beta 

frequency band. Furthermore, this analysis allows us to determine which novelty-

associated spectral changes arise from increased beta bursting, and which do 

not. As in the retrosplenial cortex, the frequency of beta bursts lies within the 20-

30 Hz range, supporting their characterisation as such. Notably, in the 

hippocampus, beta power outside of beta bursts appeared to be roughly similar 
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between wild-type and J20 mice. Conversely, in the retrosplenial cortex of J20 

mice beta power is increased even outside of burst epochs (Chapter 3), 

suggesting that increased beta power in this region is independent of beta 

bursting. In J20 mice, beta bursting was associated with a significant decrease in 

theta power, suggesting that beta bursting in these animals may require a minor 

shift in hippocampal network activity.  

4.4.5 Phase-Amplitude Coupling 

Phase-amplitude coupling has been widely studied in the hippocampus, during a 

range of behaviours (Colgin et al., 2009; Tort et al., 2009; Lega et al., 2016). In 

this study, we show two main peaks in hippocampal phase-amplitude coupling 

comodulograms, which indicate coupling between the phase of theta (6-8 Hz) 

and the amplitude of alpha/beta (12-30 Hz) and gamma (50-100 Hz) oscillations, 

respectively. It is of note that the dominant form of phase-amplitude coupling in 

the hippocampus is theta-gamma coupling, while in the retrosplenial cortex, 

theta-alpha/beta coupling was greater. Furthermore, in the hippocampus of wild-

type mice, theta gamma coupling was significantly higher during novel sessions, 

while there was no effect of novelty on theta-gamma coupling in the retrosplenial 

cortex. These data highlight the relevance of theta-gamma coupling in the 

hippocampus, and suggest that perhaps theta-alpha/beta coupling is the cortical 

equivalent of theta-gamma coupling. Previous studies have demonstrated strong 

theta-gamma coupling in the hippocampus, and have also shown that different 

layers of the CA1 are associated with different frequencies of modulated gamma 

oscillations (for review, see Zhang et al., 2019a). In this study, our hippocampal 

channel is located in the stratum oriens, which is associated with 60-120 Hz 

gamma oscillations, similar to that previously seen in stratum lacunosum-
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moleculare (Zhang et al., 2019). Theta-fast gamma coupling has been associated 

with the encoding of sensory information (Bieri et al., 2014), so taken together, 

our results suggest that increased hippocampal theta-gamma coupling during 

contextual novelty supports memory encoding. In J20 mice, there is no effect of 

novelty on either theta-alpha/beta or theta-gamma coupling in the hippocampus, 

which therefore may impair memory encoding, and result in cognitive dysfunction 

previously shown in these animals (Cheng et al., 2007; Wright et al., 2013). 

Previous studies have demonstrated impaired theta-gamma phase-amplitude 

coupling in the hippocampus of J20 mice (Mondragón-Rodríguez et al., 2018), 

and that optogenetically driving medial septal neurons at gamma frequency was 

sufficient to restore hippocampal gamma power and theta-gamma coupling, and 

rescue spatial memory deficits in these animals (Etter et al., 2019). These studies 

demonstrate the importance of theta-gamma coupling to normal hippocampal 

function, and emphasise the impact of phase-amplitude coupling deficits on 

cognition. 

4.4.6 Neuronal spiking during Beta Bursts 

We have previously shown that retrosplenial beta bursts are associated with a 

significant increase in neuronal spiking rate (Chapter 3), and as such we 

hypothesised that beta bursts function to transiently activate neuronal 

ensembles, in order to create and encode cortical representations of 

environmental information. In our hippocampal data, we also saw a trend towards 

increased neuronal spiking during beta bursts, although this was not significant. 

As we have previously noted, due to the nature of this analysis as multi-unit 

activity, it is highly possible that we captured activity from a number of neurons, 

which may have different responses to beta bursts, thus causing the high 



183 

 

variability seen in this data. Different neurons may respond differently depending 

on neuronal subtype or classification, therefore important next steps would be to 

repeat this experiment with probes with greater channel density, in order to isolate 

single-units. In the hippocampus, we also noted an overall increase in spike 

amplitudes, and neuronal firing rates in J20 mice that was absent in the 

retrosplenial cortex. This data supports previous reports of neuronal 

hyperexcitability in the hippocampus in this model (Palop et al., 2007). 

Furthermore, numerous studies have demonstrated that both firing rates and 

spike waveforms can vary dramatically between different classes of neurons, with 

inhibitory interneurons generally showing faster firing rates (McCormick et al., 

1985; Henze et al., 2000; Nowak et al., 2003). Therefore an overall increase in 

neuronal firing rate in the hippocampus in J20 mice may be indicative of the 

compensatory inhibitory remodelling previously shown by Palop et al. (2007). 

Future studies into single-unit activity may reveal the effects of beta bursting on 

the spiking of specific neuronal populations in vivo, which may provide further 

insight into their function. 

4.4.7 Intra-retrosplenial Coherence 

Coherence analysis was performed between the dysgranular and granular 

retrosplenial cortex, in order to investigate the extent of oscillatory synchrony 

between these two subregions.  As expected for channels within the same brain 

region, coherence was high across a range of frequencies. When coherence was 

analysed across the whole 15-minute recording session, delta coherence was 

significantly higher during familiar sessions in wild-type mice, but not J20 mice. 

Conversely, in J20 mice, alpha coherence was significantly higher during familiar 

sessions, while gamma coherence was significantly higher during novel sessions. 
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When only the first minute was analysed, again, delta coherence was significantly 

higher during familiar sessions in wild-type mice. In J20 mice, theta and alpha 

coherence were significantly higher during familiar sessions, while gamma 

coherence was significantly higher during novel sessions. The increase in delta 

coherence during familiar sessions was surprising, considering the absence of 

notable changes to delta power in the retrosplenial cortex. Furthermore, delta 

oscillations are generally associated with slow-wave sleep, and thus often 

overlooked in studies in awake, behaving animals. However, work by Nacher et 

al. (2013) has shown that delta coherence between parietal and frontal cortex is 

associated with decision making. It is possible that increased delta coherence 

between the subregions of the retrosplenial cortex may be indicative of memory 

retrieval or the determination of novelty of familiarity. It is of note that despite 

dramatic increases in retrosplenial beta power during novel sessions in both 

genotypes, there was no concurrent increase in beta coherence. Furthermore, 

any differences in coherence between novel and familiar sessions appear to be 

negligible, considering the extremely high coherence values across all frequency 

bands. Moreover, there were no significant overall differences between wild-type 

and J20 mice in coherence in any frequency band, despite dramatic increases in 

spectral power in the 12-40 Hz range, as shown in Chapter 3. Due to the strong 

anatomical connectivity between these subregions, as well as the spatial 

proximity, oscillations in these subregions are highly synchronous, so it is 

possible that even dramatic changes in oscillatory activity may have little 

consequence on coherence across the retrosplenial cortex. 
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4.4.8 Hippocampal-Retrosplenial Coherence 

Numerous studies have investigated the extent of anatomical connectivity 

between the hippocampus and retrosplenial cortex. Both regions are thought to 

be heavily involved in navigation, spatial learning and memory and contextual 

memory (Bird and Burgess, 2008; Todd and Bucci, 2015). While direct anatomical 

connections from the hippocampal CA1 region to the RSCdg are sparse, the 

RSCg receives inputs from CA1 and subiculum (Wyss and Van Groen, 1992). 

Far less is known about the functional connectivity between the RSC and 

hippocampus, in vivo. Coherence analysis was performed between the RSCg 

and hippocampus, in order to determine the extent of oscillatory synchrony 

between them, during environmental novelty. Delta and beta coherence were 

significantly higher during novel sessions in wild-type mice. This novelty-

associated increase in delta coherence between retrosplenial cortex and 

hippocampus in combination with the novelty-associated decrease in delta 

coherence between retrosplenial cortex subregions could indicate that changes 

in delta synchrony in this network may support memory processes through 

dynamic modulation of cortico-cortical and cortico-hippocampal functional 

connectivity. Work by Fujisawa and Buzsáki (2011) demonstrated that phase 

coupling between 4 Hz oscillations in the prefrontal cortex and theta oscillations 

in the hippocampus facilitated joint modulation of local gamma oscillations and 

neuronal spiking. Theta coherence has been shown to increase between RSC 

and HC during contextual novelty, during a fear conditioning paradigm (Corcoran 

et al., 2016). Furthermore, theta coherence was lower during successful memory 

retrieval than unsuccessful memory retrieval (Corcoran et al., 2016). While we 

saw no evidence of novelty-associated changes in theta coherence, these data 

show that functional connectivity between the retrosplenial cortex and 
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hippocampus can vary during on contextual memory processing. While we saw 

no effect of novelty on beta coherence between the subregions of the 

retrosplenial cortex, beta coherence was increased between the hippocampus 

and retrosplenial cortex during novelty. This increase in beta coherence could 

indicate that beta oscillations are synchronous during novelty-associated beta 

bursting, but independent during spontaneous beta bursting during familiarity. 

This beta synchrony could develop directly, or by modulation from a common 

burst generator which drives beta bursting during novelty in both regions. Brief 

epochs of high beta synchrony have been demonstrated throughout the cortical-

basal ganglia network (Leventhal et al., 2012), supporting the idea that beta 

bursts may form temporal windows of functional connectivity between distant 

brain regions. If this is the case, then the absence of an increase in beta 

coherence during novelty in J20 mice would suggest a loss of beta burst 

synchrony between the hippocampus and retrosplenial cortex during novelty. 

Finally, decreased delta and theta coherence between these two regions could 

indicate a reduction in functional connectivity, mirroring the “disconnection” seen 

in human Alzheimer’s disease (Locatelli et al., 1998). One major caveat to 

coherence analysis is the influence of volume conduction on these measures. As 

previously mentioned, volume conduction refers to the passive spread of 

electrical fields through tissue, and is the process which allows the recording of 

neural oscillations from distant current sources (Cohen, 2015). High levels of 

coherence may be detected due to the instantaneous passive spread of 

oscillations from a common source, and as such are potentially a poor 

representation of genuine functional connectivity. One potential counter to this 

limitation is the use of alternative methods such as the weighted phase lag index, 

which is far less sensitive to the effects of volume conduction. 



187 

 

4.4.9 Intra-retrosplenial Granger Causality 

As previously discussed, Granger causality is a mathematical technique that can 

be used to investigate directional interactions between time series (Granger, 

1969), which in neuroscience is sometimes considered to represent the flow of 

information in neuronal networks (Stokes and Purdon, 2017). The reasoning 

behind this inference is that numerous aspects of neural oscillations including the 

power (Osipova et al., 2006), frequency (Colgin et al., 2009) and phase of neural 

oscillations (Jensen, 2005) can be considered to convey information, therefore 

directionality of these interactions could be considered to represent directional 

flow of this information. In this study we used Granger causality in order to 

investigate directionality in oscillatory activity between brain regions, and how this 

may be affected by novelty or genotype. Granger causality is generally used on 

electrophysiological recordings from distant brain regions or sensors (Seth et al., 

2015), however we decided to use this technique on local field potentials from 

the subregions of the retrosplenial cortex, in order to investigate directionality of 

oscillations within this region. We demonstrated that Granger causality is far 

greater in the theta, alpha, beta and gamma bands in the RSCg to RSCdg 

direction, which suggests that the flow of information within the retrosplenial is 

highly directional (Seth et al., 2015). Such an imbalance could be due to 

anatomical connectivity, and an imbalance in projections between the 

subregions. Additionally, as we have previously noted, due to the probe location, 

the channels in RSCg are in the deep layers of the cortex, while the channels in 

RSCdg are in more superficial layers, therefore, it is possible that this 

directionality is as a consequence of laminar projections within the cortex. 

Gamma Granger causality from the RSCg to the RSCdg was significantly higher 

overall during familiar sessions, which was of note considering we showed 
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increases in gamma power in both subregions of the retrosplenial cortex during 

novelty in Chapter 3, however as with our coherence analysis the effect of novelty 

on Granger causality within the retrosplenial cortex was minimal, indicating that 

intra-retrosplenial cortex communication is consistently high and reasonably 

invariant during health. In J20 mice, however, there were a number of differences. 

During novelty, Granger causality in the delta, theta and alpha band was 

decreased in the RSCg to RSCdg direction, but increased in the RSCdg to RSCg 

direction. These opposing changes could indicate a dramatic change in 

retrosplenial network activity, potentially arising from amyloid pathology or 

compensatory mechanisms. These results support the use of Granger causality 

in order to discover novel insights into directionality of oscillatory activity within 

brain regions.  

4.4.10 Hippocampal-Retrosplenial Granger Causality 

Granger causality was also investigated between the hippocampus and RSCg. 

Previous studies have shown direct and indirect anatomical connectivity from the 

hippocampus to the retrosplenial cortex and vice versa (Wyss and Van Groen, 

1992). It was therefore of interest to investigate the directionality of oscillatory 

activity between these two regions. As we have shown, coherence between RSC 

and HC is high, indicating a high degree of temporally correlated activity. In wild-

type mice, while Granger causality was significantly higher in the delta, theta and 

alpha bands in the HC to RSCg direction, this imbalance was far less than that 

previously shown within the retrosplenial cortex, indicating that oscillatory activity 

is far less unidirectional between these structures. Interestingly, gamma Granger 

causality was relatively equal in both directions, but peaked at different 

frequencies, with gamma Granger causality in the RSCg to HC direction peaking 
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around 50 Hz, while gamma Granger causality in the HC to RSCg direction 

peaked around 70 Hz. These two peaks are notable, as there has been a large 

body of work which has demonstrated that information flow between different 

structures in the hippocampal formation occurs at different frequencies of gamma 

(Colgin et al., 2009; Colgin, 2015b; López-Madrona et al., 2020). Our data 

indicates that the same happens between the retrosplenial cortex and the 

hippocampus, with two different “channels” potentially allowing for effective 

communication in both directions, simultaneously. Granger causality in the RSCg 

to HC direction was significantly higher in the delta, theta and gamma bands 

during familiar sessions, which may indicate information flow from the RSC to HC 

for the purpose of memory retrieval. 

In J20 mice, while Granger causality in the hippocampus to RSC direction was 

relatively normal, there appeared to be a large broadband reduction in Granger 

causality in the RSC to hippocampus direction, so much so that the gamma peak 

is completely absent. While delta, theta and gamma Granger causality from the 

RSC to HC are increased during familiarity in wild-type mice, this relationship is 

completely absent in J20 mice. This aberrant Granger causality that 

disproportionately affects the retrosplenial cortex to hippocampus direction is 

suggestive of complex retrosplenial cortex dysfunction that is not apparent in 

coherence analysis. Furthermore, while Granger causality in the hippocampus to 

RSC direction was unaffected by novelty in wild-type mice, during novel sessions 

Granger causality in the delta, theta, alpha and beta bands was decreased in the 

hippocampus to RSC direction in J20 mice. This difference is of note as it is 

remarkably similar to the decreased Granger causality in the delta, theta, alpha 

and beta bands in the RSCg to RSCdg direction in J20 mice. This suggests this 
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entire pathway from the hippocampus through the RSCg all the way to the RSCdg 

is hypoactive during novelty, resulting is a functional disconnection of the 

retrosplenial cortex from the hippocampus. These data provide unique insights 

into the directionality of oscillatory activity in this specific part of the Papez Circuit, 

and reveal specific pathways which are disrupted in a mouse model of 

Alzheimer’s disease  (Psychiatry and 1937, n.d.). 

4.4.11 Burst Cross Correlation 

In order to directly test the temporal relationship between beta bursts along the 

probe, we performed cross-correlation analysis between beta bursts detected in 

RSCdg, and time-locked beta filtered signals from the other channels. To clarify, 

our analysis was performed on time-locked beta-filtered local field potentials, and 

not on the time stamps of these beta bursts. From this data, it was clear that beta 

bursts across the retrosplenial cortex, and in the hippocampus were highly 

correlated, with a small decrease in burst cross correlation in J20 mice. 

Furthermore, beta bursts were highly synchronous during novel sessions, but 

significantly asynchronous during familiar sessions. It is important to note that this 

“asynchrony” is merely indicative of a significant non-zero lag between beta 

oscillations, this peak lag amounted to hippocampal beta oscillations leading 

retrosplenial beta oscillations by 2 milliseconds on average. Considering that the 

average duration of beta bursts is around 170 milliseconds, this time difference 

is minimal, but could provide some insight into the mechanisms underlying beta 

bursting. As previously mentioned earlier in this chapter, the effects of volume 

conduction are instantaneous, so the existence of non-zero phase lags between 

beta oscillations in distant regions indicates that beta oscillations in the 

retrosplenial cortex are not simply being volume conducted from the 
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hippocampus (Plonsey and Heppner, 1967; Stinstra and Peters, 1998). 

Secondly, a 2-millisecond lag during familiarity is within the realms of a bi-

synaptic conduction delay (Katz and Miledi, 1965), suggesting that beta 

oscillations in the retrosplenial cortex are potentially being driven by the 

hippocampus. These data support previous findings that beta bursts provide 

transient windows of beta synchrony between different brain regions that may 

facilitate effective communication over long distances (Leventhal et al., 2012; 

Lundqvist et al., 2018).  

4.4.12 Conclusions 

In conclusion, we have demonstrated a number of hippocampal correlates of 

contextual novelty, many of which are vastly different to those in the retrosplenial 

cortex. Additionally, we have identified a broad range of neurophysiological 

changes in the hippocampus of J20 mice, that are different to those seen in the 

retrosplenial cortex, raising interesting questions about the pathological 

mechanisms underlying these changes. Finally, we have demonstrated that 

oscillatory activity within the retrosplenial cortex, and between the retrosplenial 

cortex and hippocampus, show high temporal correlations and strong functional 

connectivity that vary dynamically, depending on contextual novelty. 
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5 Chapter 5 

5.1 Introduction 

Beta bursting has been previously described in a range of brain regions, and is 

associated with a wide variety of behaviours. Spontaneous beta bursts have been 

identified in the somatosensory cortex and frontal cortex in humans, rodents and 

non-human primates (Sherman et al., 2016), and pre-stimulus beta bursting in 

the somatosensory cortex of mice and humans is negatively correlated with tactile 

stimulus detection (Shin et al., 2017). In motor cortex in humans, beta bursts were 

associated with the termination of movement (Feingold et al., 2015), and in 

another study the timing of motor cortex beta bursts was associated with the 

timing of movement initiation, and errors were associated with delayed or reduced 

beta bursting (Little et al., 2019). Furthermore, pathological beta bursting 

throughout the striatum and motor cortex during Parkinson’s disease is correlated 

with poor motor performance (Sharott et al., 2005; McCarthy et al., 2011; 

Tinkhauser et al., 2018; Torrecillos et al., 2018). As we have shown, beta bursting 

in the retrosplenial cortex and hippocampus is enhanced during contextual 

novelty, and beta bursts are highly synchronous between these two structures. It 

was therefore of interest to investigate novelty-associated beta bursting across 

the cortex, and determine the temporal relationships between cortical beta bursts. 

As suggested by Feingold et al. (2015), the role of beta bursting may vary 

dramatically depending on its location within the brain. As shown by Leventhal et 

al. (2012), beta bursts were synchronous across the cortical-basal ganglia 

network during a movement task. In whole brain preparations in vitro, carbachol-

induced beta oscillations spread across the surface of the cortex, indicating that 

cortical beta synchrony may be high during beta bursts (Kilb and Luhmann, 
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2003). In order to investigate beta bursting across the cortex, mice were fitted 

with EEG style multi-electrode arrays (Figure 5.1b), covering the entire dorsal 

cortical surface (Figure 5.1c), and underwent a single-trial version of the 

Novel/Familiar environment task (Figure 5.1a). Furthermore, in order to 

investigate potential mechanisms underlying the aberrant beta bursting we saw 

in J20 mice in Chapters 3 and 4, we included an additional experimental group of 

J20 mice in this study. Whole-brain imaging has demonstrated dramatic 

differences in amyloid plaque density across the cortex in J20 mice, with highest 

relative plaque in the retrosplenial cortex (Whitesell et al., 2019), making this the 

ideal model to compare network activity across the cortex. In this Chapter, we 

demonstrate that spontaneous beta bursting occurs across the cortex, but 

novelty-associated beta bursting appears localised around the retrosplenial 

cortex, and that beta oscillations are highly synchronous across the cortex during 

beta bursts. Finally, excessive beta bursting in J20 mice appears localised above 

the retrosplenial cortex, suggesting a direct correlation between amyloid 

pathology and aberrant beta bursting. 

5.2 Methods 

5.2.1 Animals 

3 male J20 mice and 3 wild-type littermates were bred at the University of Exeter 

and housed on a 12-hour light/dark cycle. All procedures were carried out in 

accordance with the UK Animal (Scientific Procedures) Act 1986 65 and were 

approved by the University of Exeter Animal Welfare and Ethical Review Body. 

Access to food and water was provided ad libitum. All animals were kept on a 12-

hour light/dark cycle, with the light/dark cycle matching the normal daylight/night-

time cycle, meaning all interactions including handling, surgery and behaviour 
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took place during the light cycle. Mice were group housed prior to surgery, and 

single housed post-surgery, in order to prevent damage to the surgical implants. 

All mice were approximately 3 months of age at the time of recordings. 

5.2.2 Surgery 

Mice were fitted with 30-channel EEG probes (NeuroNexus Technologies, 

MouseEEG, Figure 5.1b), which were fixed to the dorsal surface of the skull. 

Surgery was performed generally the same as for depth electrode implantation. 

Mice were anaesthetised using isoflurane and fixed into a stereotaxic frame. An 

incision was made along the midline of the scalp, and the skull was revealed. The 

EEG probes used cover a large area, so a large area of the skull had to be 

exposed in order to adhere the array, and affix support screws. In order to attach 

the probe to the surface of the skull, a small droplet of saline was placed around 

the centre of the skull, upon which the probe was gently laid. The surface tension 

of the liquid kept the probe in contact with the skull, and allowed it to be moved 

in order to align the cross with bregma (see Figure 5.1b). Once in place, dental 

cement (RelyX Unicem, 3M) was applied to the gaps between the rows of 

electrodes, and around the outside of the probe to hold it in place while holes 

were drilled for support screws (Antrin Miniature Specialties). Screws were 

implanted in the frontal bones, and occipital bones, with the ground wire from the 

probe attached to a screw overlying the cerebellum using silver wire. The 

connector for the probe was manipulated and fixed in position above the probe, 

and the entire implant was covered with dental cement for support. Throughout 

surgery, body temperature was monitored with a rectal probe and regulated by a 

feedback-controlled heat mat.  Animals were kept hydrated by subcutaneous 
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injections of Hartmann’s solution once per hour of surgery (0.01 ml/g body 

weight). 

5.2.3 Behaviour 

During this study, we used a single-trial version of the Novel/Familiar environment 

task, where animals would only undergo a single novel session, equivalent to 

either Session 1a in our previous nomenclature. As we have shown in Chapters 

3 and 4, the most notable neurophysiological responses to novelty occur in the 

first couple of minutes after exposure to a novel environment, so by comparing 

network activity in the first minute of this single trial with network activity in the 

final 10 minutes of the trial, we could essentially use these as substrates for 

novelty and familiarity, respectively. For this study we used the square arena with 

black and white stripes from Chapters 3 and 4 study for continuity (Figure 5.1a). 

Each animal was places into the area and were allowed to freely explore their 

environment for 15 minutes, after which, they were returned to their home cage. 

As before, in order to reduce the stress associated with the recording process, 

animals were acclimatised to this process during 10-minute test session 3 days 

prior to the start of the experiment, in which they were tethered and recorded from 

while in their home cage. 

5.2.4 Data Analysis 

EEG-style surface probes allow sampling of electrophysiological data from 

across the entire dorsal surface of the cortex, however due to the spatial filtering 

properties of the skull, these recordings have far less spatial specificity than depth 

recordings (Srinivasan et al., 1998). In order to stratify analysis in this study, all 

channels on the probe were grouped based on the broad cortical areas above 

which they were located, however without source localisation techniques such as 
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those commonly used in human EEG or magnetoencephalography (MEG) 

studies, it is not possible to conclusively ascertain the exact source of oscillatory 

activity. Of the 30 channels on the probe, 4 regions were excluded from analysis, 

as they were found at the borders between multiple regions (Figure 5.1c). 

Analysis was performed as before, however some minor differences were made 

regarding downsampling of data to preserve memory when analysing data from 

this number of channels. Signals were downsampled by 30 times for beta burst 

detection, rather than 10 times, for a sampling rate of 1000 Hz, while signals for 

burst cross-correlation analysis were downsampled by 3 times, for a sampling 

rate of 10 kHz. Analysis was performed on each channel individually, and 

averaged across channels within the same brain region for much of the data. For 

the construction of heat maps, the built-in MATLAB function scatteredInterpolant 

was used to assign each value to the coordinate of its channel with relation to 

bregma, and interpolate between these scattered datapoints. Natural neighbour 

interpolation was used to interpolate between datapoints within the convex hull, 

but no extrapolation was performed outside the convex hull using 

scatteredInterpolant. Nearest neighbour extrapolation using scatteredInterpolant 

treats the nearest neighbour as the nearest true datapoint, rather than the outside 

edge of the convex hull, resulting in edge effects. Instead, we performed a “skirt” 

extrapolation, by which nearest neighbour extrapolation was instead performed 

on the outside edge of the convex hull, resulting in far superior heat maps. Heat 

maps were overlaid on images taken from Allen’s Brain Explorer (Wang et al., 

2020). 
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Figure 5.1 Experimental Design. 
A. Diagram of the recording arena used for this study, as well as the experimental 
procedure for the single-trial version of the novel/familiar environment task. The 
arena used in this study was the same as the one used previously. The mouse 
was placed in the novel arena for a single recording session and allowed to 
explore for 15 minutes. B. Photograph showing the type of recording probes used 
in this study, taken from the 2021 NeuroNexus catalogue. These probes are 
flexible arrays that are fixed to the skull, and span the entire dorsal cortical 
surface. C. Diagram showing the approximate locations of all recording sites, 
superimposed on an image of the mouse brain taken from Allen Brain Explorer. 
Channels were grouped based on general cortical region, as denoted by the 
letters (F – Frontal Cortex, S – Somatosensory Cortex, P – Parietal Cortex, R – 
Retrosplenial Cortex). Blank channels represent those channels not allocated to 
any group, due to positioning at the border of multiple regions. 
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5.3 Results 

In this study, we sought to investigate the relationship between beta bursts in the 

retrosplenial cortex, and those found in other cortical regions, mice were fitted 

with electroencephalography-style electrode arrays, which were directly attached 

to the dorsal surface of the skull. The high channel count of these probes, as well 

as the large spacing between adjacent channels allows the recording of 

electrophysiological signals from across the entire dorsal cortical surface. 

Furthermore, the ease of implantation of these probes allows for a high level of 

consistency in the placement of each channel. In addition to the retrosplenial 

cortex, these EEG probes allowed us to sample from a range of cortical regions 

where beta bursts have been previously demonstrated: the motor cortex, 

somatosensory cortex and parietal cortex. For a number of our analyses, we 

decided to average across channels positioned above these broad cortical areas, 

however it is important to note that while local field potential recordings from 

depth electrodes are thought to record from a relatively spatially limited area, 

EEG recordings have far less spatial specificity, due in part to the distance from 

the brain, and the spatial filtering properties of the skull (Srinivasan et al., 1998). 

For the sake of clarity, we have referred to recordings from channels above a 

certain region as recordings from that region, however this does not preclude the 

possibility that these channels are sampling from a larger spatial area than this 

may suggest. In order to determine the effects of contextual novelty on oscillatory 

activity across the cortex, and compare them to those seen in the retrosplenial 

cortex in Chapter 3, these mice underwent a novel/familiar environment task, as 

before. From Chapters 3 and 4, it is clear that the most dramatic changes in 

oscillatory activity occur soon after exposure to the novel environment, and 
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persist for around a minute, before returning to normal. It is for this reason that 

we experimented with a “single-trial” design of the novel/familiar environment task 

for this study, where animals would only undergo a single recording session in a 

novel environment. We hypothesised that the first minute, and last 10 minutes of 

this single novel session could be effectively used as substrates for novelty and 

familiarity, respectively, although on a shorter time scale than in the multi-session 

design. We have previously demonstrated numerous examples of network 

dysfunction in the retrosplenial cortex (Chapter 3) and hippocampus (Chapter 4) 

in J20 mice, a mouse model of Alzheimer’s disease, and we noted that the 

changes seen in the hippocampus were often distinct from those in the 

retrosplenial cortex. It is for this reason that we included a group of J20 mice in 

this study, in order to determine whether the neurophysiological changes seen in 

the RSC in J20 were specific to this region, or were indicative of aberrant 

oscillatory activity across the cortex. We performed a range of analyses, many of 

which are similar to those used in Chapters 3 and 4, in order to dissect a range 

of aspects of oscillatory activity across the cortex, and directly compare between 

these distinct recording modalities. 

 

  



200 

 

5.3.1 Cortical Spectral Analysis 

In order to investigate any changes in oscillatory activity in across the cortex 

during environmental novelty, power spectral analysis was performed for all 

recording channels. As before, oscillatory activity was compared between the first 

minute of the session (the initial part), and the last ten minutes of the session (the 

final part). Spectral analysis was performed on the initial and final parts of the 

session, for all channels, and averaged across cortical regions for wild-type and 

J20 mice (Figure 5.2). It is of note that retrosplenial power spectra from EEG 

recordings are similar in shape to retrosplenial power spectra from LFP 

recordings, despite significant attenuation of spectral power across all frequency 

bands (Figure 5.2d). Power spectra for each cortical region are shown in (Figure 

5.2), while (Figure 5.3) shows spectral power in each frequency band across the 

entire cortical surface, during novelty and familiarity, for both genotypes. In the 

frontal cortex (FC), gamma power was significantly higher overall during novelty 

(Gamma: Main Effect Novelty - F(1,4) = 13.8, p = 0.02, Mixed ANOVA). Gamma 

power was significantly higher during novelty in J20 mice (Nov: 8.5 ± 0.8 dB; Fam: 

7.4 ± 0.8 dB, p = 0.03), but not wild-type mice. Furthermore, beta power was 

significantly higher overall in J20 mice compared to wild-type mice (Main Effect 

Genotype - F(1,4) = 8.8, p = 0.04, Mixed ANOVA). In the somatosensory cortex 

(SSC), theta, beta and gamma power were significantly higher overall during 

novelty (Theta: Main Effect Novelty - F(1,4) = 9.7, p = 0.04, Mixed ANOVA; Beta: 

Main Effect Novelty - F(1,4) = 16.4, p = 0.02, Mixed ANOVA; Gamma: Main Effect 

Novelty - F(1,4) = 28.1, p = 0.006, Mixed ANOVA). Beta and gamma power were 

significantly higher during novelty in J20 mice (Beta: Nov: 11 ± 0.4 dB; Fam: 9.7 

± 0.4 dB, p = 0.02; Gamma: Nov: 9.1 ± 0.7 dB; Fam: 7.4 ± 0.8 dB, p = 0.008), but 

not wild-type mice. In the parietal cortex (PC), delta power was significantly higher 
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overall during familiarity (Main Effect Novelty - F(1,4) = 21.6, p = 0.01, Mixed 

ANOVA). Delta power was significantly higher during novelty in J20 mice (Nov: 

16.2 ± 1.4 dB; Fam: 17.1 ± 1.5 dB, p = 0.02), but not wild-type mice. Finally, in 

the retrosplenial cortex, there was no significant effect of genotype or novelty on 

power in any frequency band. 

In order to investigate whether beta bursting could be detected in EEG 

recordings, we visually inspected a number of these recordings from channels 

overlying the retrosplenial cortex in the time and frequency domains (Figure 5.4), 

similar to our previous approach in Chapter 3 (Figure 3.5). As in local field 

potential recordings from the retrosplenial cortex (Figure 3.5), increased beta 

power occurred in brief, discrete epochs, as shown in the expanded power 

spectrogram in Figure 5.4. As before, this can also be seen clearly in beta-filtered 

local field potentials, where these periods of high beta amplitude intersperse an 

otherwise very low amplitude oscillation. In order to better understand the 

timescale and frequency domains of these events, and compare them to our local 

field potential recordings, wavelet analysis was used to investigate their time 

course and frequency profile further. As exemplified in Figure 5.4, these individual 

events were short in duration, and peaked in the 20-30 Hz, beta band. 
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Figure 5.2 Various spectral changes are observed across the cortex in J20 
mice. 
A. Average frontal cortex power spectra for the first minute of the session (N) and 
the last 10 minutes of the session (F), for wild-type and J20 mice. Gamma power 
was significantly higher during novelty in J20 mice (p = 0.03), while beta power 
was significantly higher overall in J20 mice (p = 0.04). B. Average somatosensory 
cortex power spectra for the first minute of the session (N) and the last 10 minutes 
of the session (F), for wild-type and J20 mice. Beta and gamma power were 
significantly higher during novelty in J20 mice (p = 0.02, p = 0.008, respectively). 
C. Average parietal cortex power spectra for the first minute of the session (N) 
and the last 10 minutes of the session (F), for wild-type and J20 mice. Delta power 
was significantly higher during novelty in J20 mice (p = 0.02). D. Average 
retrosplenial cortex power spectra for the first minute of the session (N) and the 
last 10 minutes of the session (F), for wild-type and J20 mice. There was no 
significant effect of genotype or novelty on power in any frequency band. (Data 
shown as mean ± SEM, WT: n = 3, J20: n = 3). 
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Figure 5.3 Heat maps illustrating the mean power in each frequency band 
across the entire cortical surface, during the first minute (Novel) and last 10 
minutes (Familiar) of the session, in both genotypes. 
A. Delta (1-5 Hz) power across the cortex. There appeared to be no effect of 
genotype or novelty on delta power across the cortex. B. Theta (5-12 Hz) power 
across the cortex. Theta power appeared to be marginally lower across the cortex 
in J20 mice. C. Alpha (12-20 Hz) power across the cortex. Alpha power appears 
to be marginally higher in J20 mice, but only above frontal regions. D. Beta (20-
30 Hz) power across the cortex. Beta power appears to be substantially higher in 
J20 mice in all areas except for central, retrosplenial channels. E. Gamma (30-
100 Hz) power across the cortex. Gamma power appears to be substantially 
higher in J20 mice in all areas except for central, retrosplenial channels. Overall, 
power in all frequency bands appears lowest in central, retrosplenial channels. 
(Data shown as mean, WT: n = 3, J20: n = 3). 
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Figure 5.4 Beta bursting can be seen in EEG recordings taken from channels 
above the retrosplenial cortex. 
A. Example power spectrogram showing transient increases in beta power. B. 
EEG recordings of data shown in A, both unfiltered (top), and filtered in the beta 
band (bottom), with the envelope amplitude in blue for clarity. The beta-filtered 
EEG shows clear epochs of high beta amplitude, which intersperse a low 
amplitude continuous beta oscillation. C. Expanded trace of the dashed area in 
shown in B (top), and a continuous wavelet spectrogram of this time series 
(bottom). Due to the high temporal resolution of wavelet-based methods, these 
periods of high beta amplitude can be seen to be brief in duration, only lasting 
around 100-200 ms.These beta bursts appear to be similar to those seen in local 
field potential recordings, although lower in amplitude. 
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5.3.2 Cortical Beta Bursting Activity 

Beta bursts could be recorded in EEG recordings from across the cortex, using 

the same algorithm used for local field potential recordings in Chapters 3 and 4, 

despite the low-pass filtering effect the of the skull (Pfurtscheller and Cooper, 

1975). In order to investigate the prevalence of beta bursts across the cortex, we 

compared the total number of beta bursts detected between cortical regions 

(Figure 5.5). There was a significant overall effect of region on total number of 

beta bursts detected (Main Effect Region - F(3,12) = 5.3, p = 0.02, Mixed 

ANOVA). In wild-type mice, the total number of beta bursts detected appeared to 

be similar across all regions of the cortex (Figure 5.5b), while in J20 mice there 

was a non-significant trend towards increased beta burst detection, especially 

over the retrosplenial cortex (Figure 5.5a, right). 

As in Chapter 3, contextual novelty is associated with a significant increase in 

retrosplenial beta burst rate during the first minute of novel sessions, after which 

it returns to a lower, baseline rate. Therefore, in order to determine whether beta 

bursting is associated with contextual novelty across the cortex, we investigated 

the rate of beta bursting during the initial part and final part of this single novel 

session, for all animals (Figure 5.5c). These data are shown as heat maps in 

(Figure 5.5c) and quantified in (Figure 5.6). While the total number of beta bursts 

detected was relatively consistent across the cortex in wild-type mice (Figure 

5.5a), beta burst rate appeared to be higher during novelty, especially over the 

retrosplenial cortex (Figure 5.5c, left), a pattern mirrored in J20 mice (Figure 5.5c, 

right). The distributions of beta bursts and beta burst rates shown in (Figure 5.6) 

show that in wild-type mice, beta burst rate appears to be reasonably steady 

throughout the session in FC, SSC and PC, while in the RSC the beta burst rate 
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appears to be substantially higher during the initial part of the session, with an 

approximate 3-fold increase. In J20 mice, however, beta burst rate appears to be 

higher during the initial part of the session for all cortical areas (Figure 5.6). Beta 

burst rate was significantly higher overall during novelty in the somatosensory 

cortex (Main Effect Novelty - F(1,4) = 9.2, p = 0.04, Mixed ANOVA), however this 

difference was only significant for J20 mice (Nov: 6.3 ± 1.3; Fam: 2.1 ± 0.3, p = 

0.05), and not wild-type mice. There was also a trend towards higher beta burst 

rates during novelty in the retrosplenial cortex, however this was not significant 

(Main Effect Novelty - F(1,4) = 6.8, p = 0.059, Mixed ANOVA).   
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Figure 5.5 Beta bursting activity across the cortex. 
A. Heat maps illustrating the total number of beta bursts detected at all channels, 
averaged across all wild-type (left) and J20 mice (right). In wild-type mice, 
relatively equal numbers of beta bursts were detected across the cortex. In J20 
mice, beta burst detection appeared to be increased across the cortex, in 
particular above the retrosplenial cortex. B. Graph showing the average number 
of beta bursts detected in all regions, for wild-type (black) and J20 mice (green). 
There was a significant effect of region of beta burst detection (p = 0.02) and a 
trend towards increased beta bursting in J20 mice. C. Heat maps illustrating the 
average beta burst rate during the first minute (initial) and last 10 minutes of the 
session (final), for wild-type (left) and J20 mice (right). In both wild-type and J20 
mice, beta burst rate appears to be far higher during the initial part of the session, 
particularly in retrosplenial cortex channels. (Data shown as mean ± SEM, WT: n 
= 3, J20: n = 3). 
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Figure 5.6 Beta burst distribution and rate across the cortex. 
A. Cumulative frequency graphs of beta bursts detected in each cortical region 
during the recording session, for wild-type and J20 mice. In wild-type mice, beta 
bursting appeared to be reasonably steady across the session in most regions, 
except for retrosplenial cortex, where there is increased beta bursting during the 
first minute of the session. In J20 mice, beta bursting appeared to be increased 
during the first minute of the session in all cortical regions. D. Graphs showing 
average beta burst rate in each cortical region, during the first minute (initial) and 
last 10 minutes (final) of the recording session, for wild-type and J20 mice. Beta 
burst rate was significantly higher overall during novelty in the somatosensory 
cortex (p = 0.04), but this was only significant for J20 mice (p = 0.05). There was 
a trend towards higher beta burst rates during novelty in the retrosplenial cortex, 
however this was not significant (p = 0.059). (Data shown as mean ± SEM, WT: 
n = 3, J20: n = 3). 
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5.3.3 Cortical Beta Burst Characteristics 

Beta burst characteristics were investigated across the cortex, in order to 

compare retrosplenial beta bursts to those in other cortical regions, and to 

investigate whether these characteristics vary depending on genotype. There 

was a significant overall effect of region on beta burst magnitude (Main Effect 

Region - F(3,12) = 18.3, p = 9e-5, Mixed ANOVA, Figure 5.7a, b). On average, 

beta bursts in the retrosplenial cortex were significantly smaller in magnitude than 

those in the frontal cortex (RSC: 44.6 ± 7.2 µV; FC: 59.4 ± 5.6 µV, p = 0.008), 

and somatosensory cortex (RSC: 44.6 ± 7.2 µV; SSC: 58.5 ± 5.8 µV, p = 0.009). 

There was no significant effect of genotype or region on beta burst duration 

(Figure 5.7c, d). 

As before, in order to understand the frequency profile of beta bursts across the 

cortex, power spectral analysis was performed on individual beta bursts. As a 

control, these burst spectra were compared to power spectra of epochs of equal 

length directly prior to each burst. These power spectra were averaged across all 

bursts and “pre-bursts”, for wild-type and J20 mice (Figure 5.8a). In the frontal 

cortex, alpha and beta power were significantly higher overall during beta bursts 

(Alpha: Main Effect Burst - F(1,4) = 11.9, p = 0.03, Mixed ANOVA; Beta: Main 

Effect Burst - F(1,4) = 298.8, p = 6.e-5, Mixed ANOVA). Beta power was 

significantly higher during beta bursts in both wild-type (Pre-Burst: 8.28 ± 0.89 

dB; Burst: 15.9 ± 0.7 dB, p = 3e-4) and J20 mice (Pre-Burst: 9.4 ± 0.5 dB; Fam: 

18.1 ± 0.7 dB, p = 2e-4), while alpha power was only significantly higher during 

beta bursts in J20 mice (Pre-Burst: 12.1 ± 0.2 dB; Fam: 13.8 ± 0.3 dB, p = 0.04). 

In the somatosensory cortex, alpha, beta and gamma power were significantly 

higher overall during beta bursts (Alpha: Main Effect Burst - F(1,4) = 9.8, p = 0.03, 
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Mixed ANOVA; Beta: Main Effect Burst - F(1,4) = 327.8, p = 5e-5, Mixed ANOVA; 

Gamma: Main Effect Burst - F(1,4) = 9.6, p = 0.04, Mixed ANOVA). Beta power 

was significantly higher during beta bursts in both wild-type (Pre-Burst: 7.98 ± 0.9 

dB; Burst: 15.8 ± 0.7 dB, p = 3e-4) and J20 mice (Pre-Burst: 9.2 ± 0.5 dB; Fam: 

18.1 ± 0.7 dB, p = 2e-4), while alpha and gamma were only significantly higher 

during beta bursts in J20 mice (Alpha: Pre-Burst: 11.1 ± 0.4 dB; Fam: 13 ± 0.5 

dB, p = 0.05; Gamma: Pre-Burst: 7.2 ± 1.2 dB; Fam: 9.3 ± 1.7 dB, p = 0.05). In 

the parietal cortex, alpha, beta and gamma power were significantly higher overall 

during beta bursts (Alpha: Main Effect Burst - F(1,4) = 39.9, p = 0.003, Mixed 

ANOVA; Beta: Main Effect Burst - F(1,4) = 306.7, p = 6e-5, Mixed ANOVA; 

Gamma: Main Effect Burst - F(1,4) = 22.4, p = 0.009, Mixed ANOVA). Alpha and 

beta power were significantly higher during beta bursts in both wild-type (Alpha: 

Pre-Burst: 8.5 ± 1.9 dB; Fam: 10.5 ± 2.1 dB, p = 0.01; Beta: Pre-Burst: 5.7 ± 1.5 

dB; Fam: 13.6 ± 1.3 dB, p = 3e-4) and J20 mice (Alpha: Pre-Burst: 9.3 ± 0.4 dB; 

Burst: 11.4 ± 0.7 dB, p = 0.01; Beta: Pre-Burst: 7.3 ± 0.8 dB; Fam: 16.4 ± 1.1 dB, 

p = 2e-4), while gamma power was only significantly higher during beta bursts in 

J20 mice (Gamma: Pre-Burst: 6 ± 1.6 dB; Burst: 8.5 ± 2.2 dB, p = 0.02). Finally, 

in the retrosplenial cortex, alpha, beta and gamma power were significantly higher 

overall during beta bursts (Alpha: Main Effect Burst - F(1,4) = 33.2, p = 0.005, 

Mixed ANOVA; Beta: Main Effect Burst - F(1,4) = 279, p = 8e-5, Mixed ANOVA; 

Gamma: Main Effect Burst - F(1,4) = 10.4, p = 0.03, Mixed ANOVA). Alpha and 

beta power were significantly higher during beta bursts in both wild-type (Alpha: 

Pre-Burst: 8 ± 2.2 dB; Fam: 9.6 ± 2.4 dB, p = 0.02; Beta: Pre-Burst: 4.6 ± 1.9 dB; 

Fam: 12.2 ± 1.6 dB, p = 4e-4) and J20 mice (Alpha: Pre-Burst: 8.4 ± 0.7 dB; Burst: 

10.5 ± 0.5 dB, p = 0.01; Beta: Pre-Burst: 6.7 ± 0.9 dB; Burst: 15.6 ± 1 dB, p = 2e-

4). 
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In order to investigate beta rhythmicity across the cortex, the period of beta 

oscillations was calculated for all beta bursts and all epochs without beta bursts, 

and the distribution of these beta periods was calculated and averaged across all 

burst and non-burst epochs, in all sessions, for wild-type and J20 mice (Figure 

5.8b). As before, while the distribution of beta periods during beta bursts was 

reasonably consistent, peaking around 0.04s, equivalent to a 25 Hz oscillation, 

the distribution of beta periods in non-burst epochs was far more variable, which 

is suggestive of a loss of beta rhythmicity during non-burst epochs, however this 

is inconclusive without further experiments (for discussion of the limitations of this 

analysis see Chapter 3). 
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Figure 5.7 Beta burst magnitude and duration across the cortex. 
A. Heat maps illustrating the average magnitude of beta bursts detected at all 
channels, averaged across all wild-type (left) and J20 mice (right). In J20 mice, 
beta burst magnitude appeared to be higher across the cortex. B. Graph showing 
the average magnitude of beta bursts detected in all cortical regions, for wild-type 
(black) and J20 mice (green). There was a significant effect of region on beta 
burst magnitude (p = 9e05). On average, beta bursts in the retrosplenial cortex 
were significantly smaller in magnitude in the retrosplenial cortex than in the 
frontal and somatosensory cortices (p = 0.008, p = 0.009, respectively). C. Heat 
maps illustrating the average duration of beta bursts detected at all channels, 
averaged across all wild-type (left) and J20 mice (right). Beta burst duration 
appeared to be generally unaffected by genotype across the cortex. D. Graph 
showing the average duration of beta bursts detected in all cortical regions, for 
wild-type (black) and J20 mice (green). There was no significant effect of 
genotype or region on beta burst duration. (Data shown as mean ± SEM, WT: n 
= 3, J20: n = 3). 
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Figure 5.8 Beta burst frequency profile and rhythmicity across the cortex. 
A. Average power spectra for beta burst and pre-burst epochs, for all cortical 
regions, averaged across all wild-type and J20 mice. Beta bursts are associated 
with a large, significant increase in beta power in all cortical regions, for both wild-
type (Frontal: p = 3e-4, Somatosensory: p = 3e-4, Parietal: p = 3e-4, 
Retrosplenial: p = 4e-4) and J20 mice (Frontal: p = 2e-4, Somatosensory: p = 2e-
4, Parietal: p = 3e-4, Retrosplenial: p = 2e-4). B. Average distributions of beta 
oscillation period for burst and non-burst epochs, for all cortical regions, averaged 
across all wild-type and J20 mice. Beta oscillations are tightly rhythmic during 
beta bursts, but not during non-burst epochs. (Data shown as mean ± SEM, WT: 
n = 3, J20: n = 3). 
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5.3.4 Burst Cross-Correlation 

In order to directly determine the temporal relationship between retrosplenial beta 

bursts, and beta bursts detected elsewhere in the cortex, we performed cross-

correlation analysis as described in Chapter 4. Briefly, beta bursts were detected 

at a single channel directly above the retrosplenial cortex, and cross-correlation 

analysis was performed on a burst-by-burst basis between each burst signal, and 

time-locked signals from all other recording sites. While our previous analysis 

investigated beta burst cross-correlations across the dorsoventral axis of the 

retrosplenial cortex (Chapter 3), and dorsal hippocampus (Chapter 4), these 

EEG-style probes allowed investigation into the spatio-temporal extent of 

retrosplenial beta bursts across the entire dorsal cortical surface. The peak cross-

correlation and peak lag were calculated across all channels, and averaged 

across all beta bursts, for both wild-type and J20 mice (Figure 5.9). During beta 

bursts in the retrosplenial cortex of wild-type mice, beta oscillations were highly 

correlated across the retrosplenial cortex (correlation coefficient > 0.95), and the 

rest of the cortical surface (correlation coefficient > 0.8) (Figure 5.9a). 

Furthermore, while beta oscillations appeared to be highly correlated across the 

retrosplenial cortex during beta bursts in J20 mice (correlation coefficient > 0.95), 

burst cross-correlation appeared to be reduced across the rest of the cortical 

surface (correlation coefficient > 0.7). Retrosplenial-somatosensory burst cross-

correlation was significantly decreased in J20 mice (WT: 0.92 ± 0.02; J20: 0.81 ± 

0.02, p = 0.04). 

Peak burst cross-correlation lag was also calculated in order to investigate the 

degree of synchrony between beta bursts detected over the retrosplenial and 

beta oscillations across the cortex. As shown in (Figure 5.9c, d), beta oscillations 
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are highly synchronous across the cortical surface during beta bursts. Burst cross 

correlation lags were statistically compared to zero to determine whether their 

peak lag was significantly non-zero, and the beta oscillations were synchronous. 

During retrosplenial beta bursts in wild-type mice, beta oscillations were 

synchronous between the retrosplenial cortex and all other cortical regions 

(Frontal: 2.9 ± 1.2 ms, t(2) = 2.5, p = 0.1; one-sample t-test; Somatosensory: 0.5 

± 0.2 ms, t(2) = 2.4, p = 0.143; one-sample t-test; Parietal: -0.1 ± 0.3 ms, t(2) = -

0.46, p = 0.7; one-sample t-test; Retrosplenial: 0.02 ± 0.02 ms, t(2) = 1.3, p = 0.3; 

one-sample t-test). During retrosplenial beta bursts in J20 mice, beta oscillations 

were synchronous across the frontal, somatosensory and retrosplenial cortices 

(Frontal: 1.7 ± 2.5 ms, t(2) = 0.7, p = 0.6; one-sample t-test; Somatosensory: 0.5 

± 0.4 ms, t(2) = 1, p = 0.4; one-sample t-test; Retrosplenial: -0.001 ± 0.04 ms, t(2) 

= -0.03, p = 0.97; one-sample t-test), however beta oscillations in the parietal 

cortex were significantly asynchronous (Parietal: 2 ± 0.5 ms, t(2) = 4.3, p = 0.05; 

one-sample t-test).  
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 Figure 5.9 Beta bursts are highly correlated and synchronous across the cortex. 
A. Heat maps illustrating the peak cross-correlation between beta bursts detected 
in the retrosplenial cortex (RSC) (star), and beta oscillations across the cortex, 
averaged across all beta bursts in all wild-type (left) and J20 mice (right). Beta 
oscillations are highly correlated across the entire RSC during beta bursts in both 
genotypes, however in J20 mice there appears to be a loss of correlation outside 
the RSC. B. Graph showing the peak cross-correlation between RSC beta bursts 
and beta oscillations in all cortical regions, averaged across all beta bursts in all 
wild-type (black) and J20 mice (green). Retrosplenial-somatosensory burst cross-
correlation was significantly lower in J20 mice (p = 0.04). C. Heat maps illustrating 
the peak lag between beta bursts detected in the RSC (star), and beta oscillations 
across the cortex, averaged across all beta bursts in all wild-type (left) and J20 
mice (right). Beta oscillations are highly synchronous across the entire RSC 
during beta bursts in both genotypes, however in J20 mice there appears to be a 
loss of synchrony outside the RSC. D. Graph showing the peak lag between RSC 
beta bursts and beta oscillations in all cortical regions, averaged across all beta 
bursts in all wild-type (black) and J20 mice (green). During retrosplenial beta 
bursts in wild-type mice, beta oscillations were synchronous across all cortical 
regions (Frontal: p = 0.1; Somatosensory: p = 0.143; Parietal: p = 0.7; 
Retrosplenial: p = 0.3). During retrosplenial beta bursts in J20 mice, beta 
oscillations in the parietal cortex were significantly asynchronous (p = 0.05). (Data 
shown as mean ± SEM, WT: n = 3, J20: n = 3). 
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5.4 Discussion 

5.4.1 Summary 

The aim of this study was to investigate oscillatory activity in a range of cortical 

regions in response to contextual novelty, and compare this to the 

neurophysiological correlates of novelty previously demonstrated in the 

retrosplenial cortex in Chapter 3. Furthermore, we interrogated beta bursting 

activity in a number of cortical areas, in order to determine whether beta bursting 

is ubiquitous across the cortex, or specific to the retrosplenial cortex. Finally, the 

inclusion of J20 mice in this study allowed us to determine whether the aberrant 

oscillatory activity in the retrosplenial cortex of these mice described in Chapter 

3 is limited to this region, or part of a larger generalised cortical dysfunction. 

5.4.2 Power Spectral Analysis 

Power spectral analysis was performed in order to investigate oscillatory activity 

across a range of frequency bands, between wild-type and J20 mice. In order to 

investigate the effect of novelty, spectral power was compared between the first 

minute and final 10 minutes of the session because, as we have shown in 

Chapters 3 and 4, oscillatory responses to contextual novelty peak within the first 

minute after exposure to the environment and rapidly diminish. Power spectra 

from these EEG recordings reveal a broadband attenuation of spectral power 

compared to power spectra from LFP recordings. Furthermore, heat maps of 

power in each frequency band reveal a gradient in power across the cortex, with 

higher power at the rostral end of the cortex, and lower power at the caudal end. 

The cause of this gradient is unclear, and while it is possible that this is due to 

the design of these probes, and suggestive of weaker adhesion of channels close 

to the connector, a similar gradient has been shown by Lee et al. (2011) despite 
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using different probes with the connector at the caudal end. There was no 

significant effect of novelty on beta power in the retrosplenial cortex, which is at 

odds with the results from our local field potential study, in which beta power is 

increased during novelty, and higher overall in J20 mice. There are a number of 

possible reasons for discrepancies between these two studies, for this analysis 

and all others. Firstly, Chapters 3 and 4 involved multiple recording sessions, so 

it is possible that repeated exposure to familiar environments solidifies the 

experience far more than previously considered. Additionally, the use of multi-

trial design allowed averaging across multiple novel and familiar sessions, 

reducing variability. It is important to note that the group sizes in this study were 

far smaller in this study, further increasing variability, and reducing statistical 

power. 

Beta power was significantly higher during novelty in the somatosensory cortex 

in J20 mice, but not wild-type mice, and in the frontal cortex, beta power was 

significantly higher overall in J20 mice. Beta power has been previously shown 

to decrease in the somatosensory cortex during tactile stimulus perception (van 

Ede and Maris, 2013; Shin et al., 2017), however it is important to note that many 

human EEG studies have demonstrated that somatosensory beta oscillations are 

closely associated with motor functions, and as such it is difficult to disentangle 

these two processes (Zhang et al., 2008; Engel and Fries, 2010; van Ede and 

Maris, 2013). This trend towards increased beta power in J20 mice, as well as a 

trend towards higher power in the 30-50 Hz range, mirrors the results seen in the 

Chapter 3 and suggests that this may be a broadly cortical phenomenon. 

Previous work by Palop et al. (2007) and Verret et al. (2012) has shown aberrant 

neuronal network activity across the neocortex in J20 mice, however these 
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appeared to be epileptiform in nature, while we found no evidence of overt 

epileptiform activity in these mice. 

5.4.3 Beta Bursting Activity 

We were able to detect beta bursts across the whole cortex, and in wild-type mice 

the total number of beta bursts detected was generally consistent across all 

cortical regions. This result supports previous studies demonstrating transient 

beta oscillations in a range of cortical areas, and supports the idea that beta 

oscillations are a broad cortical phenomenon which underlie a variety of functions 

depending on their location (Leventhal et al., 2012; Feingold et al., 2015; Shin et 

al., 2017). In J20 mice, beta burst detection appeared to be increased across the 

cortex, but especially over the retrosplenial cortex, which is consistent with our 

findings in Chapter 3 showing overall increased beta burst detection in the 

retrosplenial cortex in J20 mice. This pattern of increased beta bursting 

specifically around the retrosplenial cortex seems to mirror the pattern of amyloid 

plaque density in J20 mice demonstrated by Whitesell et al. (2019), where relative 

plaque density was highest in the retrosplenial cortex and adjacent areas. 

In order to investigate the relationship between contextual novelty and beta 

bursting across the cortex, we compared the beta burst rate during the first minute 

and last 10 minutes of the session. In wild-type mice, the rate of beta bursting 

appeared to be higher during the novel part of the session compared to the 

familiar part of the session, especially in the retrosplenial cortex, with an 

approximate 3-fold increase in retrosplenial beta burst rate during novelty, 

however this difference was not significant. While this result could be attributed 

to low statistical power due to small sample sizes in this study, it is important to 

note that while similar numbers of beta bursts were detected overall in the 
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retrosplenial cortex in this study and in Chapter 3, the difference between initial 

and final burst rate was far more pronounced in the previous chapter. During 

novel sessions, initial burst rate was around 18 times higher than final burst rate 

in the dysgranular retrosplenial cortex, and around 12 times higher than final burst 

rate in the granular retrosplenial cortex. 

These results support the assertation by us, and others (Shin et al., 2017), that 

cortical beta oscillations appear as transient bursts, which may not be apparent 

in averaged data. This data indicates that beta bursts can be detected 

ubiquitously across the cortex, but that contextual novelty-associated beta 

bursting is relatively specific to the retrosplenial cortex, suggesting that the role 

of beta bursts in this brain region is related to the processing of contextual 

information. 

5.4.4 Beta Bursting Characteristics 

As we have shown, beta bursts can be detected across the cortex. It was 

therefore of interest to investigate the characteristics of these beta bursts, to 

determine the degree of similarity between beta bursts in the retrosplenial cortex, 

and those in other cortical regions. There was a significant effect of region on 

beta burst magnitude, with beta bursts in the retrosplenial cortex being 

significantly smaller in magnitude than their frontal counterparts. This decrease 

in beta burst magnitude from rostral to caudal channels perfectly mirrored the 

gradient in spectral power seen earlier in this chapter, and as before, it is unclear 

whether the cause of this is a true biological gradient, or a technical anomaly 

resulting from poor channel adhesion. Due to the nature of burst detection 

algorithm, it is possible that reduced beta burst magnitude may result in a 

decreased signal-to-noise ratio in the beta band, thus decreasing overall beta 
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burst detection. It is also of note that there appeared to be a trend towards 

increased beta burst magnitude across the cortex in J20 mice, mirroring the 

increased retrosplenial beta burst magnitude seen in Chapter 3. There was no 

significant effect of genotype on beta burst duration, again mirroring the results 

from the retrosplenial cortex in Chapter 3. 

As before, spectral analysis was performed on beta burst and pre-burst epochs, 

in order to investigate the frequency profile of beta bursts, and determine whether 

this is consistent across the cortex. Beta bursts across the cortex were associated 

with a significant increase in beta power, that peaked around 25 Hz. Furthermore, 

this sharp increase in power was generally limited to the 20-30 Hz beta band, 

therefore supporting these frequencies as the beta band, and also supporting the 

naming of these transient oscillations as beta bursts.  

The striking consistency of beta burst characteristics across the cortex suggests 

that the mechanisms underlying the generation of beta bursts are generally 

similar between different cortical areas, despite vast differences in anatomical 

connectivity between these regions. This supports the idea that beta bursts are 

generated locally within the cortex, and suggests that it is changes in the rate of 

beta bursting that supports their varying functions within different cortical regions 

(Shin et al., 2017). 

5.4.5 Burst Cross Correlation 

Beta bursts can be detected throughout the cortex, and beta burst characteristics 

are generally consistent between different cortical areas, however the temporal 

relationship between beta oscillations in these different regions has yet to be 

shown. In order to investigate the extent of spatio-temporal correlations between 

retrosplenial beta bursts and beta oscillations throughout the cortex, we 
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performed cross-correlation analysis between beta bursts detected in the 

retrosplenial cortex, and time-locked beta filtered signals from all other recording 

sites. In wild-type mice, beta oscillations were highly correlated across the cortex 

during retrosplenial beta bursts, with average peak correlation coefficients 

greater than 0.8 throughout the cortex. Furthermore, during retrosplenial beta 

bursts, beta oscillations were synchronous throughout the cortex. In J20 mice, 

beta oscillations appeared to be less correlated across the cortex during beta 

bursts, with a significant decrease in retrosplenial-somatosensory burst cross-

correlation compared to wild-type mice, and beta oscillations were less 

synchronous, with significant asynchrony in the parietal cortex. These results 

mirror those seen between the retrosplenial cortex and hippocampus in Chapter 

4, with a trend towards reduced correlation and reduced synchrony between beta 

oscillations in the retrosplenial cortex and hippocampus during retrosplenial beta 

bursts and may underlie the reduced beta functional connectivity that has been 

demonstrated in human EEG studies of individuals with Alzheimer’s disease 

(Stam et al., 2007; Briels et al., 2020). 

Taken together, beta bursts are transient epochs of high beta amplitude and 

rhythmicity, and facilitate brief periods of high beta synchrony throughout the 

cortex. We have previously demonstrated that beta bursts are associated with 

increased neuronal spiking in the retrosplenial cortex (Chapter 4). The 

retrosplenial cortex has been shown to encode contextual information, so beta 

bursts may serve to transiently activate these same neuronal ensembles in order 

to form cortical representations (Czajkowski et al., 2014). Synchronous beta 

oscillations between cortical areas could facilitate the formation of cortical 

representations, through simultaneous activation of disparate neuronal 
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populations, and by providing temporal windows of high functional connectivity 

between distant brain regions. 

5.4.6 Experimental Design 

It is worth noting that combination of the low sample sizes in this study, in 

combination with the single-trial design of the novel/familiar environment task 

greatly reduced the statistical power of this study. These were the unfortunate 

consequences of issues we had with the stability of implants in a couple of our 

mice, which necessitated termination of these animals, and early termination of 

these experiments, after only a single recording session had been completed. 

While we were still able to obtain a great deal of valuable data from this study 

despite these issues, future experiments would entail larger sample sizes, and 

the same multi-trial version of the novel/familiar environment task used in 

Chapters 3 and 4. 

5.4.7 Conclusions 

In conclusion, we have demonstrated that beta bursts can be detected across the 

cortex, that beta burst characteristics are highly consistent between cortical 

regions, and that beta oscillations are highly correlated and highly synchronous 

across the cortex during in the retrosplenial beta bursts. These results provide 

valuable insight into the potential mechanisms underlying beta burst generation 

and support our hypothesised role of beta bursting throughout the cortex during 

contextual novelty. Finally, we have demonstrated that neurophysiological 

changes seen in the retrosplenial cortex of J20 mice in Chapter 3 can be found 

throughout the cortex, suggesting a broader cortical dysfunction in this strain, and 

that reduced beta cross-correlation and synchrony across the cortex during beta 
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bursts may underlie reduced beta functional connectivity in human Alzheimer’s 

disease (Stam et al., 2007; Briels et al., 2020). 
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6 Chapter 6 

6.1 Introduction 

Throughout this thesis, we have demonstrated that beta bursts occur across the 

brain, with a high degree of similarity regarding features such as duration and 

frequency profile. Many previous studies have demonstrated bursts of beta 

oscillations within the brain (Leventhal et al., 2012; Feingold et al., 2015; Shin et 

al., 2017), and even more have described that beta oscillations appear transient 

(Berke et al., 2008; França et al., 2014). The mechanisms underlying beta 

bursting are unclear, although numerous mathematical modelling and in vitro 

studies have provided a number of insights. Mechanisms underlying beta 

oscillations have been suggested to be similar to those underlying gamma 

oscillations, with a reliance on networks of interneurons to generate such high-

frequency oscillations , with a variable involvement of excitatory neurons 

depending on brain region (for review, see Bartos et al., 2007; Spitzer and 

Haegens, 2017). Spontaneous beta oscillations in the CA3 in hippocampal slices 

were shown to be insensitive to the NMDA receptor antagonist (2R)-amino-5-

phosphonovaleric acid (APV), but blocked by antagonists at GABA receptors 

(Treviño et al., 2007). A mathematical model of networks of GABAergic 

interneurons of the striatum, known as medium spiny neurons, suggested that 

interactions between GABA currents and M-currents promotes beta oscillations, 

which is enhanced by cholinergic signalling and suppressed by dopamine 

(McCarthy et al., 2011). Infusion of the cholinergic agonist carbachol into the 

striatum of awake mice was sufficient to induce beta oscillations, supporting these 

claims, and reduced dopamine signalling in Parkinson’s Disease has been shown 

to underlie pathological beta bursting in this disease (Sharott et al., 2005), likely 
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due to the disinhibition of striatal acetylcholine release (DeBoer et al., 1996). 

Cholinergic agonists have been shown to induce beta oscillations in the cortex 

(Kilb and Luhmann, 2003), and hippocampus in vitro (Shimono et al., 2000; Arai 

and Natsume, 2006). Furthermore the beta oscillations shown by Arai and 

Natsume (2006) were transient in nature, similar to our findings in vivo. These 

results suggest that acetylcholine signalling can induce beta bursting in the 

hippocampus and retrosplenial cortex, and microdialysis studies have 

demonstrated that acetylcholine release is increased in both the hippocampus 

and frontal cortex during contextual novelty (Aloisi et al., 1997; Giovannini et al., 

2001), further supporting this hypothesis. In this study, we aimed to 

pharmacologically induce beta bursting in the retrosplenial cortex in vitro, in order 

to further understand the mechanisms underlying beta bursting in the 

retrosplenial cortex. Furthermore, in order to attempt to elucidate the mechanisms 

underlying aberrant beta bursting in the retrosplenial cortex and hippocamps of 

J20 mice, we compared pharmacologically-induced beta bursting in brain slices 

from wild-type and J20 mice. In this Chapter, we demonstrate that continuous 

application of the cholinergic agonist carbachol is sufficient to induce rhythmic 

bursts of beta oscillations in the retrosplenial cortex that are strikingly similar to 

those seen in vivo in Chapter 3. Moreover, carbachol-induced beta bursting in 

slices from J20 mice was indistinguishable from beta bursting in slices from wild-

type mice, indicating that external factors are responsible for aberrant beta 

bursting in these mice. These data demonstrate that carbachol-induced beta 

bursting is a valuable in vitro assay for further investigations into mechanisms 

underlying beta bursting. 
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6.2 Methods 

6.2.1 Slice Preparation 

Mice were killed by cervical dislocation and their brains were immediately 

removed and transferred to ice-cold sucrose solution (~4 °C). The cerebellum 

and frontal cortex were removed and 400 µm thick coronal slices were cut in the 

same ice-cold sucrose solution, using a Leica VT1200 vibratome (Leica). With 

reference to (Paxinos and Franklin, 2012), four consecutive slices were chosen 

that spanned the region 1.3 to 2.4 mm posterior from bregma (Figure 6.1b). Slices 

were transferred to oxygenated artificial cerebrospinal fluid (aCSF), hemisected, 

before being transferred to a Haas Top incubation chamber (Warner 

Instruments), where slices were continuously perfused with the same aCSF at 

approximately 37 °C for a minimum of 30 minutes until ready for use. Each slice 

was transferred to the recording interface chamber and left to equilibrate for a 

minimum of 30 minutes before use. All mice were between 8 to 10 months of age 

at the time of termination. 

6.2.2 Data Collection 

Continuous extracellular recordings were made using a single glass pipette filled 

with aCSF, and the experimental protocol was kept consistent from experiment 

to experiment (Figure 6.1c). Data was amplified using an AxoClamp-2A (Axon 

Instruments), amplified and bandpass filtered between 1 Hz and 1.3 kHz by a 

LHBF-48X (npi Electronic Instruments), and line noise was removed using a 

HumBug Noise Eliminator (Quest Scientific). Finally, the signal was digitised at 2 

kHz by using a PCIe6341 (National Instruments) and acquired and visualised on 

MATLAB using the WaveSurfer application (Adam, 2021). Data was stored and 

analysed offline. 



228 

 

6.2.3 Experimental Protocol 

After the slice had equilibrated, the electrode was placed in the deep layers of 

the granular retrosplenial cortex and a 10-minute baseline was recorded. After 

this, 25 µM carbachol was continuously applied to the bath, which usually took 

around 5 minutes to begin to take effect. The recording was then continued for 

35 minutes, post administration of carbachol, during which time the network 

effects had plateaued. The recording was then stopped and the electrode 

transferred to the superficial layers of the granular retrosplenial cortex (Figure 

6.1b) and 10 minutes of data was recorded. This protocol allowed us to record 

from the deep and shallow layers of the retrosplenial cortex within the same slice, 

but precluded baseline recordings from the superficial layers of the retrosplenial 

cortex.  

6.2.4 Solutions 

Sucrose solution was composed of: 189 mM sucrose, 26 mM NaHCO3, 10 mM 

D-glucose, 5 mM MgSO4, 3 mM KCl, 1.25 mM NaH2PO4 and 0.1 mM CaCl2. 

aCSF was composed of 124 mM NaCl, 24 mM NaHCO3, 10 mM D-glucose, 3 

mM KCl, 1.2 mM CaCl2 and 1 mM MgSO4. 
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Figure 6.1 Experimental Design. 
A. Example photomicrograph of the recording setup (left), and the same 
photogram with key features highlighted (right). A single glass recording electrode 
was placed in the deep layers (shown) or shallow layers of the granular 
retrosplenial cortex. Layer 2/3 is clearly visible in the granular retrosplenial cortex, 
making consistent electrode placement possible. In order to record from the deep 
layers, electrodes were placed near the edge of the cingulum bundle, as indicated 
by the light patch above the corpus callosum. B. Four consecutive slices were 
chosen, in order to investigate potential changes in network activity across the 
rostro-caudal axis of the retrosplenial cortex. The approximate distances from 
bregma are given, and the electrode locations are shown for each plane. C. The 
general recording protocol consisted of a 10-minute baseline, with the slice in 
aCSF and the electrode in the deep layers of the granular retrosplenial cortex, 
following which 25 µM carbachol was washed on. This wash-on period lasted 
around 5 minutes, after which the effect of the carbachol on the activity of the 
slice became clear. Carbachol was washed on for 30 minutes, by which time the 
network activity would generally plateau, and then the electrode was moved to 
the shallow layers for another 10-minute recording. This design allows us to 
record from both deep and shallow layers within the same slice, but does not 
provide us a baseline recording for shallow layers of the retrosplenial cortex. 
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6.3 Results 

In this study, we aimed to find a means of pharmacologically induce beta bursting 

in the retrosplenial cortex in vitro, in order to develop an assay which could be 

used to probe the potential mechanisms underlying the generation of beta bursts. 

To this end, we performed a number of brain slice electrophysiology experiments, 

where we took continuous extracellular recordings from the retrosplenial cortex, 

in the presence, and absence of different pharmacological compounds. The 

region of the retrosplenial cortex chosen was used as it encompassed the region 

2 mm posterior from bregma where our in vivo local field potential recordings 

were performed in Chapter 3. Furthermore, the benefit of keeping slicing planes 

consistent between experiments was twofold. Firstly, we aimed to reduce 

variability which could arise from differences in recording location, and secondly, 

this allowed us to investigate whether there were differences in oscillatory activity 

across this rostro-caudal axis. As we have shown in Chapter 3, our EEG 

recordings show a gradient of decreasing spectral power from the rostral end of 

the retrosplenial cortex to the caudal end. As previously mentioned, we were 

unable to determine whether this was biological, or an experimental artefact due 

to poor adhesion of these electrodes to the skull. By investigating oscillatory 

activity across multiple rostro-caudal planes, we hoped to answer this question, 

and others. We chose to record from the granular retrosplenial cortex as the 

location of this subregion deep within the longitudinal fissure between 

hemispheres meant that the superficial layers of this region were likely to be 

better preserved during the removal and slicing of the brain. In each slice we also 

recorded from both the deep, and shallow layers of the retrosplenial cortex, 

around layer 2/3 and layer 5/6 respectively, in order to compare oscillatory activity 
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between these layers. In Chapter 3, we recorded from the deep layers of the 

granular retrosplenial cortex, and due to the vertical placement of our recording 

probes, these probes were likely running parallel to the layers of this subregion, 

allowing us to only sample from around layer 5/6. By recording from across the 

layers of the granular retrosplenial cortex, we were able to compare our findings 

to our in vivo findings from Chapter 3, and investigate network activity in the 

superficial layers of the retrosplenial cortex for the first time. As we have shown 

throughout this thesis, we have noted significant increases in the rate and 

magnitude of beta bursts in the retrosplenial cortex of J20 mice, compared to their 

wild-type counterparts. In order to attempt to understand the underlying cause of 

this aberrant oscillatory activity, be they structural or otherwise, we performed 

these experiments in J20 mice, and wild-type controls.  

We performed a range of analyses, to investigate whether beta oscillations could 

be pharmacologically induced in vitro, including spectral analysis and beta burst 

detection. We aimed to keep these analyses as similar as possible to those used 

in vivo, in order to directly compare the results of these studies and to maintain 

consistency. This was made possible by careful design of our analysis functions, 

such as beta burst detection algorithms with variable thresholding. 

6.3.1 Retrosplenial Spectral Activity In Vitro 

A number of previous studies have demonstrated that the muscarinic 

acetylcholine receptor agonist carbachol is sufficient to induce beta oscillations 

in the hippocampus and across the cortex (Shimono et al., 2000; Kilb and 

Luhmann, 2003; Arai and Natsume, 2006). In order to investigate the effects of 

carbachol on oscillatory activity in the retrosplenial cortex in brain slices, power 

spectral analysis was performed for both deep, and shallow electrode sites. For 
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deep layers, spectral analysis was performed on the entire 10-minute baseline 

period, and the final 10 minutes of the 30-minute drug period, in order to capture 

the oscillatory activity at the point by which this had plateaued. As shallow layer 

drug recordings were performed immediately after deep layer drug recordings, 

the activity in the slice would already have plateaued, so 10-minute recordings 

were sufficient to capture peak oscillatory activity. Therefore, for shallow layers, 

spectral analysis was performed on the entire 10-minute drug period. For all 

depths and planes, power spectra were averaged across all experiments, for both 

wild-type and J20 mice (Figure 6.2). 

As expected, in the absence of carbachol, local field potentials from the deep 

layers of the retrosplenial cortex showed no notable oscillatory activity in any 

plane, as indicated by almost perfectly flat power spectra (Figure 6.2a). In the 

presence of carbachol, there appeared to be a substantial increase in power 

across all frequency bands, peaking at around 7 Hz, for all depths and planes 

(Figure 6.2). We investigated the effect of slice plane and genotype on carbachol-

induced oscillatory power in a range of frequency bands, for both deep and 

shallow recordings, separately. In deep layers, there was a significant overall 

effect of plane on theta power (Main Effect Plane - F(3,75) = 2.8, p = 0.05, Two-

Way ANOVA). In J20 slices, theta power was significantly higher in Plane 2 than 

in Planes 1 and 3 (Plane 2: 24.3 ± 2.2 dB, Plane 1: 15.1 ± 3 dB, p = 0.01; Plane 

2: 24.3 ± 2.2 dB, Plane 3: 14.9 ± 2 dB, p = 0.002). Power in every frequency band 

was significantly higher overall in J20 slices than in wild-type slices (Delta: Main 

Effect Genotype - F(1,75) = 19, p = 4e-5, Two-Way ANOVA; Theta: Main Effect 

Genotype - F(1,75) = 13, p = 5e-4, Two-Way ANOVA; Alpha: Main Effect 

Genotype - F(1,75) = 67, p = 0.01, Two-Way ANOVA; Beta: Main Effect Genotype 
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- F(1,75) = 6.5, p = 0.01, Two-Way ANOVA; Gamma: Main Effect Genotype - 

F(1,75) = 7.4, p = 0.008, Two-Way ANOVA). In shallow layers, there was no 

significant effect of genotype or plane on power in any frequency band. 

These power spectra demonstrate that carbachol induces a broadband increase 

in spectral power in the retrosplenial cortex in vitro, that peaks in the theta range 

(5-12 Hz). While beta power appears to increase upon exposure to carbachol, 

there does not appear to be a specific peak in the beta frequency range, which 

could clearly indicate the induction of beta bursting. However, as we have 

previously shown from in vivo hippocampal LFP and cortical EEG data (Chapter 

3 and Chapter 4), beta bursting can appear in the absence of overt changes to 

beta power in averaged power spectra, due to their sparse, phasic nature. As 

shown in (Figure 6.3b), in the absence of carbachol beta oscillations in the deep 

layers of the retrosplenial cortex appear low in amplitude, and with variable 

rhythmicity, similar to beta oscillations during non-burst epochs in vivo. However, 

upon administration of carbachol, brief epochs of high beta amplitude and high 

beta rhythmicity can be seen (Figure 6.3c). Wavelet analysis of the data shown 

in (Figure 6.3d), demonstrated that this transient high amplitude epoch of beta 

oscillations appeared similar to beta bursts detected in vivo, with high power in 

the beta band (20-30 Hz) that lasted around 150 milliseconds. This data indicates 

that administration of carbachol is sufficient to induce beta bursts in the 

retrosplenial cortex, and allows us to further investigate this phenomenon in vitro. 
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Figure 6.2 Carbachol induced a broadband increase in spectral power that 
peaked around 7 Hz. 
A. Average baseline and carbachol-induced power spectra for deep layer 
recordings, across all planes, for both wild-type and J20 slices. In J20 slices, theta 
power was significantly higher in Plane 2 than in Planes 1 and 3 (p = 0.01, p = 
0.002, respectively). Furthermore, power in every frequency band was 
significantly higher overall in J20 slices than in wild-type slices (Delta: p = 4e-5; 
Theta: p = 5e-4; Alpha: p = 0.01; Beta: p = 0.01; Gamma: p = 0.008). B. Average 
carbachol-induced power spectra for shallow layer recordings, across all planes, 
for both wild-type and J20 slices. There was no significant effect of genotype or 
plane on power in any frequency band. (Data shown as mean ± SEM; Deep-WT: 
Plane 1: n = 5, Plane 2: n = 14, Plane 3: n = 9, Plane 4: n = 4; Deep-J20: Plane 
1: n = 6, Plane 2: n = 10, Plane 3: n = 11, Plane 4: n = 5; Shallow-WT: Plane 1: n 
= 4, Plane 2: n = 9, Plane 3: n = 9, Plane 4: n = 4; Shallow-J20: Plane 1: n = 7, 
Plane 2: n = 10, Plane 3: n = 8, Plane 4: n = 6). 
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6.3.2 Retrosplenial Beta Bursting Activity In Vitro 

In order to further investigate carbachol-induced beta bursting in the retrosplenial 

cortex in vitro, beta bursts were detected using the same algorithm previously 

used throughout all the studies describes in this thesis. In this algorithm, beta 

bursts are detected as epochs were beta amplitude exceeds 2 standard 

deviations from the mean, for greater than 150 milliseconds. This variable 

thresholding allows for effective beta burst detection in a variety of different 

systems, with greatly varying beta oscillation amplitudes. By analysing beta 

bursting in vitro in the same way as we have previously analysed beta bursting in 

vivo, we are able to directly compare this phenomenon between these different 

modalities.  

As we have shown throughout this thesis, the rate of beta bursting in the 

retrosplenial cortex can vary dramatically depending over time, and is 

significantly increased during contextual novelty. Moreover, we have also 

demonstrated that beta bursting is significantly increased in the retrosplenial 

Figure 6.3 Carbachol induces transient epochs of high beta power and beta 
rhythmicity in the retrosplenial cortex in vitro, that are reminiscent of beta 
bursts.  
A. Example power spectrogram for an entire recording session, from deep layers 
of granular retrosplenial cortex in a wild-type brain (slice plane 1). Administration 
of carbachol (at 10 minutes, denoted by the white line) induces a broadband 
increase in spectral power that peaks around 7 Hz. B. Local field potential 
recordings from the baseline period of the data shown in A, both unfiltered (top), 
and filtered in the beta band (bottom), with the envelope amplitude in blue for 
clarity. Beta amplitude and rhythmicity are low in the absence of carbachol. C. 
Local field potential recordings from the carbachol-on period of the data shown 
in A, both unfiltered (top), and filtered in the beta band (bottom), with the envelope 
amplitude shown in blue for clarity. In the presence of carbachol, transient 
increases in beta amplitude and rhythmicity appear in the local field potential. D. 
Wavelet spectrogram of the data shown in C, demonstrating the phasic nature of 
these beta oscillations, that persist for approximately 100-200 ms. 
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cortex in J20 mice. In order to determine the effect of carbachol on beta bursting 

in vitro, we investigated the rate of beta bursting in the absence and presence of 

carbachol, in both wild-type and J20 mice (Figure 6.4 and Figure 6.5). In both 

deep, and shallow layers of the retrosplenial cortex, carbachol induces a relatively 

steady rate of beta bursting, as shown by the relatively linear cumulative 

frequency plots shown in (Figure 6.4 and Figure 6.5, respectively). In the deep 

layers of the retrosplenial cortex, carbachol significantly increased the rate of beta 

bursting, compared to baseline (Main Effect Condition - F(1,131) = 169, p = 2e-

25, 3-Way ANOVA), however there was no significant effect of genotype or plane 

on beta burst rate (Figure 6.4). In the shallow layers of the retrosplenial cortex, 

carbachol induced a significant rate of beta bursting (Main Effect Condition - 

F(1,96) = 358, p = 3e-34, 3-Way ANOVA), however there was no significant effect 

of genotype or plane on beta burst rate (Figure 6.5). 

 

 

 

 



237 

 

  

Figure 6.4 Beta burst distribution and rate in the deep layers of the retrosplenial 
cortex in vitro. 
A. Cumulative frequency graphs of beta bursts detected during the recording 
session in the deep layers of the retrosplenial cortex, for each slice plane, 
averaged across all experiments for both wild-type and J20 slices. Carbachol 
induces a steady rate of beta bursting that persists for the entire session, in all 
slice planes, for both wild-type and J20 slices. In the absence of carbachol, beta 
bursts do not spontaneously occur. B. Graphs showing the average beta burst 
rate in the deep layers of the retrosplenial cortex, in the absence and presence 
of carbachol (control and drug respectively), for all slice planes, for wild-type and 
J20 slices. Carbachol significantly increased the rate of beta bursting (p = 2e-25), 
however there was no significant effect of genotype or plane on beta burst rate. 
(Data shown as mean ± SEM; Deep-WT: Plane 1: n = 5, Plane 2: n = 17, Plane 
3: n = 15, Plane 4: n = 5; Deep-J20: Plane 1: n = 7, Plane 2: n = 13, Plane 3: n = 
15, Plane 4: n = 6). 



238 

 

 

  

Figure 6.5 Beta burst distribution and rate in the shallow layers of the 
retrosplenial cortex in vitro. 
A. Cumulative frequency graphs of beta bursts detected during the recording 
session in the shallow layers of the retrosplenial cortex, for each slice plane, 
averaged across all experiments for both wild-type and J20 slices. In the 
presence of carbachol (the entire 10 minutes shown), there is a steady rate of 
beta bursting in all slice planes, for both wild-type and J20 slices. B. Graphs 
showing the average beta burst rate in the shallow layers of the retrosplenial 
cortex, in the absence and presence of carbachol (control and drug respectively), 
for all slice planes, for wild-type and J20 slices. Carbachol significantly increased 
the rate of beta bursting compared to zero (p = 3e-34), however there was no 
significant effect of genotype or plane on beta burst rate. (Data shown as mean 
± SEM, Shallow-WT: Plane 1: n = 4, Plane 2: n = 9, Plane 3: n = 9, Plane 4: n = 
4; Shallow-J20: Plane 1: n = 6, Plane 2: n = 10, Plane 3: n = 8, Plane 4: n = 6). 
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6.3.3 Retrosplenial Beta Burst Characteristics In Vitro 

In order to compare   carbachol-induced beta bursts in vitro to spontaneous beta 

bursts in vivo, a number of beta burst characteristics were investigated in the 

deep (Figure 6.6) and shallow layers of the retrosplenial cortex (Figure 6.7). 

Moreover, as we have previously shown in Chapter 3, specific beta burst 

characteristics vary between wild-type and J20 mice. By investigating beta burst 

characteristics in the retrosplenial cortex in brain slices from J20 mice, and 

comparing them to the changes we see in vivo, we may better understand the 

source of aberrant beta bursting in these animals. There was no significant effect 

of genotype or plane on total number of beta bursts detected in either the deep 

(Figure 6.6a), or shallow layers of the retrosplenial cortex (Figure 6.7a). Beta 

bursts were significantly larger in magnitude overall in J20 slices in the deep 

layers of the retrosplenial cortex (Main Effect Genotype - F(1,75) = 6, p = 0.01, 

Two-Way ANOVA, Figure 6.6b), but not in the shallow layers (Figure 6.7b). There 

was no significant effect of genotype or plane on beta burst duration in either the 

deep (Figure 6.6c), or the shallow layers of the retrosplenial cortex (Figure 6.7c). 
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Figure 6.6 Beta burst number, magnitude and duration in the deep layers of the 
retrosplenial cortex in vitro. 
A. Graph showing the average number of beta bursts detected in the deep layers 
of the retrosplenial cortex, in all slice planes for wild-type (black) and J20 slices 
(green). There was no significant effect of genotype or plane on the total number 
of beta bursts detected. B. Graph showing the average magnitude of beta bursts 
detected in the deep layers of the retrosplenial cortex, in all slice planes for wild-
type (black) and J20 slices (green). Overall, beta bursts were significantly larger 
in magnitude in J20 slices (p = 0.01). C. Graph showing the average duration of 
beta bursts detected in the deep layers of the retrosplenial cortex, in all slice 
planes for wild-type (black) and J20 slices (green). There was no significant effect 
of genotype or plane on beta burst duration. (Data shown as mean ± SEM; Deep-
WT: Plane 1: n = 5, Plane 2: n = 17, Plane 3: n = 15, Plane 4: n = 5; Deep-J20: 
Plane 1: n = 7, Plane 2: n = 13, Plane 3: n = 15, Plane 4: n = 6). 
 
Figure 6. Beta burst number, magnitude and duration in the deep layers of the 
retrosplenial cortex in vitro. A. Graph showing the 
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Figure 6.7 Beta burst number, magnitude and duration in the shallow layers of 
the retrosplenial cortex in vitro. 
A. Graph showing the average number of beta bursts detected in the shallow 
layers of the retrosplenial cortex, in all slice planes for wild-type (black) and J20 
slices (green). There was no significant effect of genotype or plane on the total 
number of beta bursts detected. B. Graph showing the average magnitude of beta 
bursts detected in the shallow layers of the retrosplenial cortex, in all slice planes 
for wild-type (black) and J20 slices (green). There was no significant effect of 
genotype or plane on the beta burst magnitude. C. Graph showing the average 
duration of beta bursts detected in the shallow layers of the retrosplenial cortex, 
in all slice planes for wild-type (black) and J20 slices (green). There was no 
significant effect of genotype or plane on beta burst duration. (Data shown as 
mean ± SEM, Shallow-WT: Plane 1: n = 4, Plane 2: n = 9, Plane 3: n = 9, Plane 
4: n = 4; Shallow-J20: Plane 1: n = 6, Plane 2: n = 10, Plane 3: n = 8, Plane 4: n 
= 6). 
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In order to investigate the frequency profile of beta bursts in vitro, and compare it 

to the frequency profile of beta bursts in vivo, power spectral analysis was 

performed on individual beta bursts, and compared to epochs of equal length 

prior to immediately prior to each burst. As before, these power spectra were 

averaged across all bursts and “pre-burst” epochs, for each depth and plane, for 

both wild-type and J20 mice (Figure 6.8a and Figure 6.9a). In the deep layers of 

the retrosplenial cortex (Figure 6.8), beta bursts were associated with a significant 

increase in beta power for all slice planes (Plane 1: Main Effect Burst  - F(1,10) = 

738, p = 1e-10, Mixed ANOVA; Plane 2: Main Effect Burst - F(1,28) = 1282, p = 

6e-25, Mixed ANOVA; Plane 3: Main Effect Burst - F(1,28) = 2576, p = 4 e-29, 

Mixed ANOVA; Plane 4: Main Effect Burst - F(1,9) = 458, p = 5e-9, Mixed 

ANOVA). Additionally, in the deep layers of Plane 2 there was a significant 

interaction between the effects of genotype and burst on alpha power (Interaction 

- F(1,28) = 6, p = 0.02, Mixed ANOVA), and a significant increase in gamma 

power during beta bursts (Main Effect Novelty - F(1,28) = 4.9, p = 0.03, Mixed 

ANOVA). Furthermore, in the deep layers of Plane 2, delta, theta, beta and 

gamma power were significantly higher overall in J20 mice (Delta: Main Effect 

Genotype - F(1,28) = 9.6, p = 0.004, Mixed ANOVA; Theta: Main Effect Genotype 

- F(1,28) = 7.3, p = 0.01, Mixed ANOVA; Beta: Main Effect Genotype - F(1,28) = 

9.3, p = 0.005, Mixed ANOVA; Gamma: Main Effect Genotype - F(1,28) = 8.1, p 

= 0.008, Mixed ANOVA). In the shallow layers of the retrosplenial cortex (Figure 

6.9), beta bursts were associated with a significant increase in beta power for all 

slice planes (Plane 1: Main Effect Burst - F(1,8) = 243, p = 3e-7, Mixed ANOVA; 

Plane 2: Main Effect Burst - F(1,17) = 1010, p = 1e-16, Mixed ANOVA; Plane 3: 

Main Effect Burst - F(1,15) = 607, p = 2e-13, Mixed ANOVA; Plane 4: Main Effect 

Burst - F(1,8) = 606, p = 8e-9, Mixed ANOVA). Additionally, beta bursts in the 



243 

 

shallow layers of Planes 2 and 4 were associated with significantly higher delta 

power (Plane 2: Main Effect Burst - F(1,17) = 4.8, p = 0.04, Mixed ANOVA; Plane 

4: Main Effect Burst - F(1,8) = 5.4, p = 0.05, Mixed ANOVA), while beta bursts in 

the shallow layers of Plane 3 were associated with a significant decrease in 

gamma power (Main Effect Novelty - F(1,15) = 6.9, p = 0.02, Mixed ANOVA). 

There were significant interactions between genotype and burst on alpha power 

in Plane 1 (Interaction - F(1,8) = 5.6, p = 0.05, Mixed ANOVA) and theta power 

in Plane 3 (Interaction - F(1,15) = 5.4, p = 0.04, Mixed ANOVA). Finally, there 

was no significant effect of genotype on power in any frequency band. 

As before, in order to verify that beta bursts in vitro were associated with 

increased beta rhythmicity, the period of beta oscillations was calculated for all 

beta bursts and all epochs without beta bursts, and the distribution of these beta 

periods was calculated and averaged across all burst and non-burst epochs, for 

each depth and plane, for both wild-type and J20 mice (Figure 6.8b and Figure 

6.9b). As before, while the distribution of beta periods during beta bursts was 

reasonably consistent, generally peaking around 0.04s, equivalent to a 25 Hz 

oscillation, the distribution of beta periods in non-burst epochs was far more 

variable, which is suggestive of reduced beta rhythmicity during non-burst 

epochs, although interpretation of this analysis is limited (for limitations of this 

analysis see Chapter 3). 
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Figure 6.8 Beta burst frequency profile and rhythmicity in the deep layers of the 
retrosplenial cortex in vitro. 
A. Average power spectra for beta burst and pre-burst epochs, in all slice planes, 
averaged across all wild-type and J20 slices. Beta bursts in the deep layers of 
the retrosplenial cortex are associated with a large, significant increase in beta 
power in all slice planes (Plane 1: p = 1e-10; Plane 2: p = 6e-25; Plane 3: p = 4 
e-29; Plane 4: p = 5e-9). B. Average distributions of beta oscillation period for 
burst and non-burst epochs in the deep layers of the retrosplenial cortex, for all 
slice planes, averaged across all wild-type and J20 slices. Beta oscillations are 
tightly rhythmic during beta bursts, but not during non-burst epochs. (Data shown 
as mean ± SEM; Deep-WT: Plane 1: n = 5, Plane 2: n = 17, Plane 3: n = 15, 
Plane 4: n = 5; Deep-J20: Plane 1: n = 7, Plane 2: n = 13, Plane 3: n = 15, Plane 
4: n = 6). 
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   Figure 6.9 Beta burst frequency profile and rhythmicity in the shallow layers of 
the retrosplenial cortex in vitro. 
A. Average power spectra for beta burst and pre-burst epochs, in all slice planes, 
averaged across all wild-type and J20 slices. Beta bursts in the shallow layers of 
the retrosplenial cortex are associated with a large, significant increase in beta 
power in all slice planes (Plane 1: p = 3e-7; Plane 2: p = 1e-16; Plane 3: p = 2e-
13; Plane 4: p = 8e-9). B. Average distributions of beta oscillation period for burst 
and non-burst epochs in the shallow layers of the retrosplenial cortex, for all slice 
planes, averaged across all wild-type and J20 slices. Beta oscillations are tightly 
rhythmic during beta bursts, but not during non-burst epochs. (Data shown as 
mean ± SEM, Shallow-WT: Plane 1: n = 4, Plane 2: n = 9, Plane 3: n = 9, Plane 
4: n = 4; Shallow-J20: Plane 1: n = 6, Plane 2: n = 10, Plane 3: n = 8, Plane 4: n 
= 6). 



246 

 

6.4 Discussion 

6.4.1 Summary 

The aim of this study was to attempt to pharmacologically induce beta oscillations 

in the retrosplenial cortex in vitro, in order to gain some insight into the potential 

mechanisms that underlie this oscillatory activity, including potential 

neurotransmitters or neuronal populations. By comparing oscillatory activity 

across the rostro-caudal axis of the retrosplenial cortex, and between deep and 

shallow layers, we aimed to interrogate the spatial patterns of beta bursting we 

have previously demonstrated in this region. Finally, we investigated oscillatory 

activity in J20 mice, in order to determine whether the aberrant neuronal network 

activity seen in the cortex and hippocampus of these mice in vivo is recapitulated 

in vitro, so that we could better understand the potential causes of this 

dysfunction. 

6.4.2 Power Spectral Analysis 

Power spectral analysis was performed in order to investigate oscillatory activity 

in the deep and shallow layers of the retrosplenial cortex in vitro. Additionally, 

spectral analysis was performed during each experiment, in order to verify that 

slices were viable and healthy and ensure that noise was at a minimum. In the 

absence of carbachol, there was no noticeable oscillatory activity in the 

retrosplenial cortex. Administration of carbachol resulted in a broadband increase 

in spectral power, peaking at theta frequency (7 Hz), which was consistent across 

all slice planes and probe depths, in both wild-type and J20 slices. It is well 

established that carbachol and other cholinergic agonists are able to induce theta 

oscillations in the hippocampus and cortex in vitro, and that this theta oscillation 

is similar to theta oscillations seen in vivo (Konopacki et al., 1987; Lévesque et 
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al., 2017). Furthermore, direct infusion of carbachol to the stratum oriens of the 

hippocampus of rats under urethane anaesthesia elicits theta oscillations 

(Rowntree and Bland, 1986). Lesions of the medial septum and diagonal band of 

Broca have been shown to completely abolish theta oscillations in both the 

hippocampus and cortex (Petsche et al., 1962; Kolb and Whishaw, 1977; Rawlins 

et al., 1979). These data together support our finding that cholinergic agonism 

alone is sufficient to generate theta oscillations in vitro, although it is important to 

note that the theta peak in the retrosplenial cortex in vitro is far broader than we 

have seen in vivo. In the deep layers of the retrosplenial cortex, there was a 

significant increase in power in every frequency band in slices from J20 mice, 

compared to slices from wild-type mice. Similar increases in power were seen in 

the retrosplenial cortex of J20 mice in vivo in Chapter 3, although this increase 

was limited to alpha and beta frequency bands, as opposed to a large increase 

across all frequency bands. Increased spectral power in the retrosplenial in vivo 

could result from a number of causes, and could be driven by changes in the 

activity of any number of regions that project to the retrosplenial cortex, however 

in vitro, many of these connections have been severed, which raise the possibility 

that the cause of cortical hyperexcitability in these mice may be local. Previous 

work in this strain has demonstrated that aberrant cortical network activity in this 

strain is associated with interneuron dysfunction in the parietal cortex, due to 

reduced expression of the voltage-gated sodium channel Nav1.1 (Verret et al., 

2012). Furthermore, application of nanomolar concentrations of soluble amyloid-

β to mouse brain slices is sufficient to induce hyperexcitability of pyramidal cells 

in the cingulate cortex by reducing inhibition by fast-spiking interneurons (Ren et 

al., 2018). It is therefore possible that increased broadband activity in the 

retrosplenial cortex in J20 mice may be indicative of cortical hyperexcitability, 
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arising from disinhibition due to interneuron dysfunction. Interestingly, in the 

shallow layers of the retrosplenial cortex there was no such increased power.  

6.4.3 Beta Bursting Activity 

The main aim of this study was to investigate whether it was possible to 

pharmacologically induce beta bursting in the retrosplenial cortex in vitro. While 

power spectral analysis indicated a significant increase in beta power upon 

administration of carbachol, power spectra failed to consistently show a peak in 

the beta frequency range similar to what is seen in vivo (Chapters 3 and 5). 

However, as we have shown in the hippocampus and in EEG recordings, sparse, 

transient beta bursting can have little to no effect on power spectra averaged 

across long time periods. As such, we detected carbachol-induced beta bursting 

throughout the retrosplenial cortex in vitro. In intact cerebral cortex preparations 

from new-born rats, carbachol has been shown to induce transient beta 

oscillations which propagate across the cortex (Kilb and Luhmann, 2003). 

Carbachol has also been shown to induce beta oscillations in hippocampal slices 

(Shimono et al., 2000). The amplitude of these oscillations was largest in the 

apical dendrites of the CA1 and CA3, where the medial septum cholinergic 

projections have been shown to terminate (Houser et al., 1983). Furthermore, 

work by Arai and Natsume (2006) built on these findings, by demonstrating that 

carbachol-induced beta oscillations in the CA3 region of the hippocampus 

appears as rhythmic bursts, with consistent duration and inter-burst interval. 

These data suggest that cholinergic signalling may underlie the generation of 

beta oscillations in the cortex and hippocampus. Additionally, the appearance of 

beta oscillations in the cortex in brain slices, where subcortical inputs have been 

severed, argues against theories that cortical beta oscillations originate in the 
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basal ganglia or striatum (Holgado et al., 2010; McCarthy et al., 2011). The 

retrosplenial cortex receives cholinergic projections from a number of basal 

forebrain nuclei including the medial septum and diagonal band of Broca (Shute 

and Lewis, 1967; Eckenstein et al., 1988; Gage et al., 1994). These projections, 

along with numerous other subcortical projections, form the cingulum bundle, 

which travels along the length of the brain to supply the cingulate cortex, and 

subsequently the retrosplenial cortex (for review, see Bubb et al., 2018). As 

shown in (Figure 6.1a), the cingulum bundle is visible in coronal slices, as a light-

coloured area found close to the deep layers of the retrosplenial cortex, directly 

above the corpus callosum. Some cholinergic projections to the retrosplenial 

cortex travel through the fornix, which is also known to be the pathway by which 

cholinergic medial septum neurons project to the hippocampus, with dense axon 

terminals in stratum oriens (Houser et al., 1983; Gage et al., 1994). It is of key 

importance that in this study, and in previous work in slices, beta oscillations 

appear as rhythmic bursts, despite carbachol being administered continuously, 

which provides a number of insights into the mechanisms underlying beta 

bursting (Shimono et al., 2000; Kilb and Luhmann, 2003; Arai and Natsume, 

2006). Firstly, that beta oscillations occur as spontaneous and rhythmic “bursts”, 

even in brain slices, suggests that beta oscillations naturally occur as bursts, and 

that there is no central pacemaker for the timing of beta bursts. Previous work 

has suggested that beta bursts may arise from synchronous bursts of excitatory 

activity at the proximal and distal dendrites of pyramidal neurons, and in a 

computational model, continuous proximal and distal drive at 10 Hz was sufficient 

to produce beta bursts (Sherman et al., 2016). This second finding could explain 

the strong phase-amplitude coupling we have seen between theta (5-12 Hz) and 

beta oscillations in the retrosplenial cortex (Chapter 3). 
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One notable finding in our data was that there was no significant difference 

between the rate of beta bursting in slices from the brains of wild-type and J20 

mice. This was reasonably surprising given the substantial increases in beta burst 

rate in the granular retrosplenial cortex of J20 mice that we have previously 

shown. In Chapter 3, we demonstrated that beta burst rate in the granular 

retrosplenial cortex increases dramatically during environmental novelty, and was 

only significantly higher in J20 mice during familiar sessions, and the final parts 

of novel sessions. This led us to suggest that perhaps there is a theoretical 

“maximum beta burst rate” that is being reached during periods of intense beta 

bursting in novelty, or that there are different mechanisms underlying the different 

rates of beta bursting during novelty and familiarity. Similar rates of carbachol-

induced beta bursting in the retrosplenial cortex between wild-type and J20 slice 

in vitro could therefore indicate that carbachol-induced beta bursting is equivalent 

to the novelty-associated beta bursting seen in vivo. Acetylcholine release has 

been shown to increase significantly in the hippocampus and cortex in rats during 

exploration of a novel environment, so it is possible that carbachol in this 

experiment is mimicking the natural increase in cholinergic signalling during 

contextual novelty (Giovannini et al., 2001).  

6.4.4 Beta Bursting Characteristics 

We have demonstrated that carbachol induces beta bursting in the retrosplenial 

cortex in vitro, however it was of interest to determine how similar these beta 

bursts were to those detected in vivo, and whether these beta burst 

characteristics varied depending on genotype or location.  Beta bursts were 

significantly larger in magnitude overall in J20 slices compared to wild-type slices, 

but only in the deep layers of the retrosplenial cortex. This result recapitulates the 
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increased beta burst magnitude seen in J20 mice in vivo in Chapter 3, and 

suggests that the underlying cause of this change is located in the retrosplenial 

cortex. It is of note that the broadband increase in spectral power in the 

retrosplenial cortex in J20 mice was also limited to the deep layers of the 

retrosplenial cortex, indicating some layer specificity of this cortical 

hyperexcitability phenotype. The underlying cause of this is uncertain, but may 

arise from the inhibitory interneuron dysfunction previously demonstrated in this 

line (Palop et al., 2007; Verret et al., 2012). Another alternative hypothesis could 

be related to cholinergic signalling in the retrosplenial cortex. As we have 

previously mentioned, the cingulum bundle is a significant source of cholinergic 

projections to the retrosplenial cortex (Bubb et al., 2018), so it is possible that 

increased densities of acetylcholine receptors in the deep layers of the 

retrosplenial cortex could make this region more sensitive to the effects of 

carbachol. The magnitude of beta bursts in vitro (~40 µV) was far lower than in 

vivo (~80 µV). This is to be expected, as previous work has demonstrated that 

carbachol-induced beta oscillations were far smaller in amplitude and far lower in 

frequency in coronal slices than in in vitro whole-brain preparations, suggesting 

that beta oscillations involve large cortical networks, and that the loss of cortico-

cortical connectivity in brain slices attenuates these oscillations (Kilb and 

Luhmann, 2003). 

On average, the duration of beta bursts in vitro (~180 ms) was strikingly similar 

to the duration of beta bursts in vivo (~180 ms), as was the frequency profile. This 

suggests that carbachol-induced beta bursts are characteristically similar to beta 

bursts in vivo and are therefore a valid model for beta bursting, but also supports 

our previous assertions that beta oscillations naturally occur as bursts within the 
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cortex, and that the mechanism underlying the time course of these beta bursts 

is maintained in vitro. 

6.4.5 Conclusions 

In conclusion, we have demonstrated that beta bursts can be induced in the 

retrosplenial cortex in vivo upon administration of carbachol, an agonist at 

acetylcholine receptors, shown, for the first time, that these beta bursts are 

strikingly similar to those seen in vivo, with regards to temporal dynamics and 

features. These data provide a number of key insights into the mechanisms 

underlying beta bursting in the cortex and hippocampus and provides a valuable 

assay for further studying beta bursts across the brain in a model system. One 

such area of research is the effect of difference neurotransmitters of beta bursting 

activity. Work by Kondabolu et al. (2016) has suggested that pathological beta 

bursting seen in the motor cortex and basal ganglia in Parkinson’s disease is 

merely an aberration from normal cortico-striatal network activity, arising from the 

loss of dopamine signalling (Kondabolu et al., 2016; Tinkhauser et al., 2018). 

Dopamine has been shown to suppress the release of acetylcholine in the 

striatum, so a loss of dopamine signalling could result in excessive cholinergic 

signalling, which may enhance beta oscillatory activity  (DeBoer et al., 1996; 

Ikarashi et al., 1997). Accordingly, dopamine depletion in rats results in increased 

beta power in the frontal cortex and basal forebrain, and increased beta 

coherence between these regions (Sharott, 2005). This assay provides a means 

to test the acute effects of different neurotransmitters such as dopamine, and 

learn more about that pathophysiology of Parkinson’s disease. 
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7 General Discussion 

7.1 Key Findings 

Throughout this thesis, we have described numerous discoveries which provide 

valuable insight into how a number of areas of the brain respond to contextual 

novelty. Furthermore, the findings in this study may be highly relevant to future 

research into Alzheimer’s Disease and Parkinson’s Disease, while providing 

functional assays for the testing of potential cognitive enhancing or disease 

modifying therapies. In this section, we will detail some of these findings, and 

discuss their potential implications. 

7.2 Beta Bursting across the Brain 

Throughout this thesis we have demonstrated that discrete “bursts” of beta 

oscillations, termed beta bursts, can be detected across the rodent cortex, and 

the hippocampus in vivo. In Chapters 3, 4 and 5, we demonstrated that beta 

bursts occur spontaneously throughout the brain during active waking in mice, 

and that this spontaneous beta bursting generally occurs at a steady rate. These 

beta bursts lasted between 170 and 180 milliseconds on average, which was 

consistent across all brain areas, even in the EEG recordings in Chapter 5. It is 

important to note that our beta burst detection algorithm had a minimum duration 

threshold of 150 milliseconds, so it is possible that beta bursts can be shorter 

than 150 milliseconds, and the beta bursts detected throughout these studies are 

on the longer end of this spectrum, although the low variability of beta burst 

duration in this study argues otherwise. The magnitude of beta bursts differed 

between the retrosplenial cortex and the hippocampus, although this is to be 

expected given the tight laminar structure of the hippocampal CA1 region, and 
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the looser laminar structure of the retrosplenial cortex. Notably, in EEG 

recordings, beta burst magnitude appeared to be consistent across the cortex. 

The consistency of these beta burst characteristics across the brain indicates that 

the beta bursts previously discovered across the cortex, and subcortical regions 

are one in the same, and that similar mechanisms underly beta bursting 

throughout the brain (Berke et al., 2008; Leventhal et al., 2012). 

Beta bursts were associated with a significant increase in neuronal spiking in the 

dysgranular retrosplenial cortex, but not the granular retrosplenial cortex. 

Additionally, while there was a trend towards increased neuronal spiking during 

beta bursts in the hippocampus, this was not significant. Our analysis of neuronal 

spiking throughout this study was multi-unit activity, as due to the geometry of our 

probes we would be unable to reliably separate spikes from individual neurons, 

known as single units, using traditional spatiotemporal clustering methods 

(Quiroga et al., 2004). The putative multi-units in this study may include spiking 

from multiple different classes of neurons, which could have vastly different 

responses to beta bursts, which would greatly dilute the results. During sharp 

wave ripples, for example, spiking of neurons in the retrosplenial cortex varies 

dramatically between different neuronal subtypes or neurons in different cortical 

layers (Nitzan et al., 2020; Opalka et al., 2020). In order to better compare the 

effects of beta bursting on neuronal spiking across the retrosplenial cortex, it 

would therefore be optimal to record from neurons in the same cortical area in 

both subregions, and also to detect single units rather than multi-units. 

The most notable aspect of beta bursting in this study was the dramatic effects 

of contextual novelty on beta bursting activity. During novel recording sessions, 

beta burst detection was significantly increased in the retrosplenial cortex and 
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hippocampus. Furthermore, while beta bursting occurred in the retrosplenial 

cortex and hippocampus at a steady rate during familiar sessions, during novel 

sessions, the rate of beta bursting was significantly higher during the first minute 

after exposure to the environment, resulting in the increased overall beta burst 

detection during novel sessions. This increase in beta bursting was considerable, 

with an approximate 10-fold increase in beta burst rate in the retrosplenial cortex 

and hippocampus during this initial part of the session. In Chapter 5, we 

demonstrate that while beta bursts could be detected across the cortex, this 

novelty-associated increase in beta bursting was absent, suggesting that this 

process is specific to brain regions involved in contextual learning and memory. 

Additionally, during novel sessions beta bursts were significantly larger in 

magnitude in both the retrosplenial cortex and the hippocampus, and significantly 

longer in duration in the retrosplenial cortex. Considering our findings that beta 

bursts are associated with increases in neuronal spiking, increases in beta burst 

magnitude could strengthen this modulation, or modulate a larger number of 

neurons. Furthermore, increases in beta burst duration could provide longer 

temporal windows for increased beta bursting, or longer windows for 

synchronous beta oscillations between distant brain regions, facilitating transient 

epochs of effective communication (Kilb and Luhmann, 2003). 

Finally, through our beta burst cross-correlation analysis in Chapters 4 and 5, we 

demonstrated that during beta bursts in the retrosplenial cortex, beta oscillations 

are highly correlated and synchronous between the retrosplenial cortex and the 

hippocampus, and across the entire cortex. These results mirror previous findings 

which demonstrated that transient beta bursts occur synchronously across the 

cortex-basal ganglia network (Leventhal et al., 2012), and that extensive cortico-
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cortical connections allow beta oscillations to propagate across the entire cortex 

(Kilb and Luhmann, 2003). One theory in cognitive neuroscience is that 

communication within the brain can occur through oscillatory synchrony. This 

“communication through coherence” would mean that transient epochs of high 

beta synchrony across the brain could therefore provide temporal windows of 

effective communication across large scale brain networks (Kopell et al., 2000; 

Varela et al., 2001; Fries, 2005, 2015). 

7.3 Additional Functional Correlates of contextual novelty 

In addition to the previously discussed findings regarding beta bursting, we also 

demonstrated a number of functional correlates of contextual novelty that were 

seemingly independent of, or unrelated to, beta bursting. In the retrosplenial 

cortex, we noted increases in gamma power during novelty. Power spectra reveal 

that this increased gamma power is generally in the 30 to 50 Hz frequency range. 

As this frequency range is adjacent to the beta band (20-30 Hz), at first glance 

this may appear as a result of frequency spill over from increased beta power due 

to increased beta bursting activity during novelty, however power spectral 

analysis revealed only marginal increases in gamma power during beta bursting. 

Numerous studies have demonstrated increases in cortical gamma power during 

memory encoding, and was predictive of successful memory encoding 

(Sederberg et al., 2003, 2007; Kahana, 2006; Jun et al., 2021). This suggests 

that the increased gamma power during novelty shown in this study, in particular 

during the first minute of novel sessions, may be indicative of contextual memory 

encoding in the retrosplenial cortex. While we have demonstrated throughout this 

thesis that beta oscillations conform to a model of discrete burst, the nature of 

gamma oscillations in this study was not investigated. Previous studies have 
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demonstrated that gamma oscillations appear as transient bursts as well, and 

that these gamma bursts have been associated with encoding and reactivation 

of sensory information (Lundqvist et al., 2016), however the amplitude of gamma 

oscillations can vary dramatically, especially when coupled to the phase of lower 

frequency oscillations such as theta (Canolty and Knight, 2010). This dynamic 

amplitude modulation could result in gamma oscillations appearing as discrete 

bursts (van Ede et al., 2018), so care should be taken to characterise these 

“gamma bursts” with the same rigour as we have characterised beta bursts in this 

study. In Chapters 3 and 5, we investigated phase-amplitude coupling across a 

range of frequencies, to investigate the extent of this cross-frequency coupling in 

the retrosplenial cortex and hippocampus, and to compare between the two. In 

this study, we identified two types of phase-amplitude coupling in the retrosplenial 

cortex and hippocampus: theta-alpha/beta and theta-gamma. Furthermore, while 

both forms were present in both areas, theta-alpha/beta coupling was dominant 

in the retrosplenial cortex, while theta-gamma coupling was dominant in the 

hippocampus. Theta-gamma coupling has been well extensively studied, and in 

the hippocampus, theta-gamma coupling is thought to support both memory 

encoding and retrieval (Colgin et al., 2009; Axmacher et al., 2010; Newman et 

al., 2013; Lega et al., 2016). As such, theta-gamma coupling was significantly 

higher during novel sessions in the hippocampus, but there was no effect of 

novelty on theta-gamma coupling in the retrosplenial cortex. Theta-alpha/beta 

coupling was significantly higher during novelty in both the retrosplenial cortex 

and the hippocampus. While theta-beta coupling is far less established within the 

field, theta-beta phase amplitude coupling has been demonstrated in the 

hippocampus and inferior temporal cortex during working memory and object 

novelty, respectively (Axmacher et al., 2010; Daume et al., 2017). Whether theta-
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beta coupling has any connection to beta bursting is uncertain: our beta 

rhythmicity data indicate that beta bursts do not conform to a dynamic amplitude 

modulation model like gamma oscillations (Shin et al., 2017; van Ede et al., 

2018), so it is unlikely that beta bursts are solely a product of theta-beta coupling. 

However one distinct possibility is that theta-beta phase amplitude coupling 

allows synchronous theta oscillations across large brain networks to modulate 

local beta oscillations, which could support the long distance beta synchrony 

demonstrated here and in previous studies (Canolty and Knight, 2010; Canolty et 

al., 2010; Leventhal et al., 2012).  

Finally, in Chapter 4 coherence analysis and Granger causality analysis allowed 

us to investigate oscillatory interactions between the subregions of the 

retrosplenial cortex, and between the retrosplenial cortex and the hippocampus. 

Coherence between the retrosplenial cortex and the hippocampus was high, 

indicating high functional connectivity between these two brain regions. 

Furthermore, while retrosplenial-hippocampal delta coherence was increased 

during novel sessions, intra-retrosplenial delta coherence was increased during 

familiar sessions. While delta oscillations are generally associated with slow-

wave sleep, these data suggest that they may be relevant during active wake 

than previously considered, and that dynamic changes in delta coherence may 

support different contextual memory processes within the cortex and 

hippocampus (Fries et al., 2008; Fujisawa and Buzsáki, 2011; Nacher et al., 

2013). Interestingly, beta coherence between the retrosplenial cortex and 

hippocampus was significantly higher during novelty, while intra-retrosplenial 

beta coherence was unchanged. In combination with the burst cross-correlation 

analysis in Chapters 4 and 5, this suggests that while beta synchrony is a 
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persistent feature across the cortex, likely due to extensive cortico-cortical 

connectivity, beta synchrony can vary between the retrosplenial cortex and the 

hippocampus, potentially allowing gating of beta bursts. 

7.4 Aberrant beta bursting in J20 mice 

In order to probe the specific neurophysiological consequences of amyloid 

pathology on cortical and hippocampal network activity, we included J20 mice in 

all of the studies previously mentioned. In Chapters 3, 4 and 5, we demonstrated 

that neuronal network activity in J20 mice was altered in a number of different 

ways, including a variety of dramatic changes to beta bursting activity. Firstly, 

beta burst detection was significantly higher overall in the retrosplenial cortex and 

the hippocampus, and EEG data demonstrated a trend towards increased beta 

bursting across the entire cortex, with the largest increase centred over the 

retrosplenial cortex. In the hippocampus in J20 mice, plots of total beta burst 

detection revealed a “saw-tooth” pattern, with increased beta bursting during the 

first session of each day, in familiar days as well as novel days. If increased beta 

bursting in the retrosplenial cortex and hippocampus is indicative of perceived 

novelty, then increased beta bursting during upon first exposure to an already 

familiar environment could indicate uncertainty towards the novelty of the 

environment, due to contextual memory deficits in these mice. A notable feature 

of increased beta bursting in J20 mice is that this increase in beta burst detection 

arose from a significant increase in beta bursting during familiarity, but not 

novelty. In fact, while the rate of beta bursting during familiar sessions was more 

than doubled in J20 mice, there was no significant difference between the rate of 

beta bursting during the first minute of novel sessions, where the rate beta 

bursting is highest. As previously mentioned during Chapters 3 and 4, this could 
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have a number of implications for the mechanisms underlying beta bursting. 

Firstly, this could indicate a “maximum beta burst rate” which is already reached 

during novelty-associated beta bursting, and acts as a ceiling which cannot be 

exceeded even during aberrant beta bursting in J20 mice. This maximum beta 

burst rate may be set by a pacemaker or could be intrinsic, similar to how the 

refractory period of action potentials sets the maximal spontaneous firing rate of 

the neuron (Barrett and Barret, 1976). Beta bursts are high amplitude oscillatory 

events so it is highly possible that such an intense depolarisation could be 

followed by a period of hyperpolarisation. 

In order to verify that beta bursts in J20 mice were the same as beta bursts in 

wild-types, and not the emergence of a different pathological phenomenon, we 

compared the frequency profiles and rhythmicity distributions of beta bursts in 

both genotypes. As in wild-type mice, beta bursts in J20 mice were associated 

with a large increase in beta power that peaked around 25 Hz, and an increase 

in beta oscillatory rhythmicity compared to non-burst epochs. These features 

were almost identical in both genotypes, which confirmed that we were most likely 

measuring the same phenomenon in J20 mice that we had identified in wild-type 

mice. We also compared beta burst magnitude and duration between genotypes. 

Due to the design of our beta burst detection algorithm, increases in beta burst 

magnitude or duration could, at least in part, account for increased beta burst 

detection. In J20 mice, beta bursts were significantly larger overall in magnitude 

in the retrosplenial cortex but not the hippocampus. Furthermore, beta burst 

duration was significantly higher during novelty in wild-type mice, but not J20 

mice. This divergence is notable considering that amyloid pathology in J20 mice 

at this age is thought to be widespread in both the hippocampus and retrosplenial 
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cortex (Mucke et al., 2000; Whitesell et al., 2019), so this cannot simply be 

explained by differential amyloid pathology in these two regions. A cortical 

hyperexcitability phenotype has been previously demonstrated in this mouse line 

and is thought to underlie the increased risk of epilepsy in people with Alzheimer’s 

disease (Hauser et al., 1986; Minkeviciene et al., 2009), and while compensatory 

inhibitory modelling has been demonstrated in the hippocampus (Palop et al., 

2007), no such changes have been demonstrated in the cortex. This 

compensatory inhibitory modelling in the hippocampus may account for the non-

significant trend towards reduced beta burst magnitude we see in the 

hippocampus in J20 mice. These results point towards excessive beta bursting 

as a neurophysiological phenotype of amyloid pathology in J20 mice, and 

considering the significant increases in neuronal spiking during beta bursting in 

wild-type mice, this aberrant beta bursting in these animals could be expected to 

result in excessive neuronal activation in. However, this is not the case, and one 

of the most notable changes to beta bursting in J20 mice is that neuronal spiking 

is not modulated by beta bursting in the retrosplenial cortex. If the hypothesised 

function of beta bursting in the retrosplenial cortex is to activate neurons to create 

cortical representations of environments (or objects, as shown by França et al. 

(2014)), then uncoupling of beta bursting from neuronal spiking would render beta 

bursts ineffectual. The cause of this uncoupling is uncertain, and it is possible 

that this is actually a compensatory mechanism in order to prevent aberrant 

neuronal activation due to excessive beta bursting, similar to other inhibitory 

compensation within the brain (Palop et al., 2007; Pan et al., 2018). 
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7.5 Altered network activity in J20 mice 

Alongside the aberrant beta bursting activity, we found a number other of 

examples of altered network activity in J20 mice. Beta power was higher overall 

in J20 mice across the retrosplenial cortex, and while at first glance this may 

appear to result from increased beta bursting in these mice, power spectral 

analysis of burst and non-burst epochs reveals that this increased beta power 

occurs independent of beta bursting. Increased beta power could result in a lower 

threshold for beta burst generation, resulting in the increased rate of spontaneous 

familiarity-associated beta bursting seen in J20 mice. Moreover, gamma power 

in the retrosplenial cortex was significantly higher overall in J20 mice, and was 

centred around the 30-60 Hz frequency range, while in the hippocampus, gamma 

power was significantly lower overall in J20 mice. This decrease in gamma power 

in the hippocampus has been previously shown in this mouse line (Mondragón-

Rodríguez et al., 2018; Etter et al., 2019), and was associated with increased 

epileptiform activity (Verret et al., 2012), although epileptiform activity was not 

noted in our animals. Phase-amplitude coupling was also altered in J20 mice, in 

both the retrosplenial cortex, and hippocampus. In wild-type mice, we 

demonstrated novelty-associated increases in theta-gamma coupling in the 

hippocampus, and theta-alpha/beta coupling in the retrosplenial cortex, yet these 

relationships were completely lost in J20 mice. While the relevance of theta-

alpha/beta coupling is unclear, previous studies have demonstrated reduced 

theta-gamma coupling in the hippocampus of J20 mice, resulting from 

impairments in gamma oscillations, not theta oscillations (Mondragón-Rodríguez 

et al., 2018; Etter et al., 2019). Restoring hippocampal gamma oscillations 

restored theta-gamma coupling and rescued spatial memory in these animals, 
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highlighting the importance of these oscillations and indicating a potential avenue 

for rescuing cognitive impairments in Alzheimer’s disease. Finally, we noted 

numerous reductions in coherence and Granger causality in J20 mice that were 

suggestive of disintegration of cortico-hippocampal networks. Delta and theta 

coherence were reduced between the hippocampus and retrosplenial cortex, 

indicating a loss of functional connectivity between these two structures, while 

disproportionate reductions in broadband Granger causality from the granular 

retrosplenial cortex to the hippocampus suggested impaired oscillatory activity 

flow in this specific edge of the cortico-hippocampal network. Impaired 

communication between the hippocampus and the cortex in Alzheimer’s disease 

is thought to have a number of detrimental effects to cognition in Alzheimer’s 

disease (Stoub et al., 2006; Allen et al., 2007). 

7.6 Potential mechanisms underlying beta bursting 

Through our investigations into beta bursting activity we came up with a number 

of suggestions for the generation of beta bursting activity across the brain. 

Numerous previous studies have aimed to elucidate the mechanisms underlying 

beta oscillations, including the brain regions and neurotransmitters involved 

(Shimono et al., 2000; Kilb and Luhmann, 2003; Arai and Natsume, 2006; 

Holgado et al., 2010; McCarthy et al., 2011). As described in Chapter 6, in order 

to investigate potential mechanisms underlying beta bursting in the retrosplenial 

cortex, we attempted to pharmacologically induce beta bursting in vitro. We found 

that administration of the cholinergic agonist carbachol was sufficient to induce 

beta bursts in the retrosplenial cortex that were strikingly similar to those we have 

found in vivo. This supported previous findings that application of carbachol to a 

whole-brain preparation in vitro was able to induce transient beta oscillations 
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which propagate across the cortical surface (Kilb and Luhmann, 2003), and 

application of carbachol to hippocampal slices is sufficient to induce beta 

oscillations (Shimono et al., 2000). Our findings indicate that cholinergic inputs to 

the cortex and hippocampus and generate beta oscillations which naturally 

appear as transient bursts in the absence of subcortical inputs. This in vitro model 

of beta bursting provides a valuable assay by which mechanisms underlying beta 

bursting can be further investigated. 

7.7 Animal models of Alzheimer’s disease 

A number of considerations have to be taken into account when producing animal 

models of disease. The Three R’s: Replacement, Refinement and Reduction, 

were set out by Russell and Burch (1959) to be a set of principles for humane 

animal research. Replacement refers to replacing in vivo experiments on living 

animals, with in vitro experiments, Reduction refers to reducing the number of 

animals to the minimum necessary for appropriate statistical power, and 

Refinement refers to the lessening of severity of necessary in vivo procedures. 

The use of rodents in animal research provides numerous practical advantages, 

and provides a means to study complex aspects of mammalian physiology on 

one of the lower order mammals. Alzheimer’s disease does not occur naturally in 

mice and rats, but numerous other mammals show a variety of the pathological 

hallmarks of Alzheimer’s disease, including canines and a variety of non-human 

primates (Walker et al., 2009; Fast et al., 2013; Prpar Mihevc and Majdič, 2019). 

Alzheimer’s disease is thought to develop over a period of decades, while the 

typical lifespan for a mouse is between 1.3 to 3 years, so it is thought that this 

short lifespan may not provide the time necessary for the slow aggregation of 

neuropathology seen in Alzheimer’s disease (Comfort, 1959). However, in non-
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human primates, amyloid beta deposition has been shown to begin proportional 

to these species lifespans, generally around middle age even in species such as 

squirrel monkeys, whose lifespans are far shorter than ours, at around 30 years 

(Walker et al., 2009). As previously mentioned, Alzheimer’s disease pathology 

also appears in canines, as does an age-relative cognitive disorder known as 

canine cognitive dysfunction (CCD) (Fast et al., 2013; Prpar Mihevc and Majdič, 

2019). This data suggests that non-human primates and dogs would be superior 

models to rodents for sporadic Alzheimer’s disease, however there are numerous 

ethical concerns with the use of higher order animals in research, especially non-

human primates, which greatly limit their use. 

Transgenic mouse models of Alzheimer’s disease have come under a great deal 

of criticism of late, in part due to a number of late-stage clinical trials for amyloid 

β-targeted therapeutics. These compounds were able to demonstrate beneficial 

effects in transgenic mouse models of amyloid pathology, but these results were 

unable to be replicated in humans, bringing into question the validity of these 

models. Numerous transgenic mouse models of Alzheimer’s disease, including 

the J20 mouse model used in this study, induce amyloid pathology by 

overexpression of APP with one or many mutations found in the familial variant 

of the disease. This means of modelling Alzheimer’s disease has a variety of 

limitations. Firstly, the overexpression of APP can cause a variety of physiological 

disturbances unrelated to amyloid-β pathology, and could result in confounding 

phenotypes that are a poor representation of Alzheimer’s disease (for review see 

Sasaguri et al., 2017). In order to avoid these issues, a number of newer “knock-

in” transgenic lines were developed in which the endogenous mouse amyloid β 

gene is humanised and different mutations are added, resulting in 
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neuropathology without overexpression of APP (Saito et al., 2014). Secondly, 

while a small proportion of Alzheimer’s disease cases are associated with 

autosomal dominant mutations in APP or presenilin (approximately 1%), the vast 

majority of cases are sporadic, with unknown aetiology (Bekris et al., 2010; R 

Cacace, 2016). This means that these transgenic mouse lines are effectively 

modelling the familial form of Alzheimer’s disease, and attempting to extend these 

findings to the sporadic form of the disease. Finally, most of the commonly used 

amyloid mouse models fail to show any tau pathology, another key pathological 

hallmark of Alzheimer’s disease (Games et al., 1995; Hsiao et al., 1996; 

Sturchler-Pierrat et al., 1997). Amyloid β has been shown in accelerate the 

development of tau pathology (Götz et al., 2001; Lewis et al., 2001), and depletion 

of endogenous tau in J20 mice resulted in improved cognition and prolonged 

survival (Roberson et al., 2007). Many mouse models of amyloidopathy fail to 

show any considerable neurodegeneration,  which is often considered to be as a 

consequence of tau pathology (Hardy and Higgins, 1992; Walsh et al., 2017). In 

conclusion, mouse models which fail to replicate key aspects of Alzheimer’s 

disease-related neuropathology may provide an incomplete or inaccurate 

representation of the neurophysiological dysfunction caused by Alzheimer’s 

disease. 

7.8 Implications for Future Study 

The findings detailed in this thesis have a number of broader implications for 

electrophysiology. Firstly, we have demonstrated that beta oscillations across the 

brain conform to a model of discrete bursts of high beta amplitude, and high beta 

rhythmicity. While other patterns of oscillatory activity such as sleep spindles and 

sharp-wave ripples are well established as discrete events (Loomis et al., 1935; 
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Vanderwolf, 1969; O’Keefe, 1976), the classification of beta oscillations varies, 

with some studies considering it as a continuous oscillation, and others 

considering it as discrete bursts. Whether oscillations are classified as continuous 

or transient can reveal a great deal of information about their mechanisms, and 

direct appropriate analysis. There has been a great deal of discussion in recent 

years regarding the transient nature of a number of oscillations (Jones, 2016; van 

Ede et al., 2018). Averaging across trials or long behavioural epochs can cause 

transient oscillations to smear and appear as continuous oscillations, potentially 

precluding the identification of a range of behaviourally relevant oscillatory events 

(Shin et al., 2017). As such, some studies identified the transient nature of beta 

oscillations, but averaged the data across long epochs (relative to event 

duration), potentially diluting important rate information (Berke et al., 2008; 

França et al., 2014). A number of recent studies have demonstrated that even 

theta oscillations demonstrate substantial heterogeneity, such as varying levels 

of cross-frequency coupling, on a cycle-by-cycle basis (Colgin et al., 2009; Lopes-

dos-Santos et al., 2018; López-Madrona et al., 2020). These data demonstrate 

that there is a great deal of insight that can be gained from investigating 

oscillatory activity over short timescales. 

 It is important to note that there are a number of methodological considerations 

to be taken into account when analysing transient neural oscillations. Firstly, as 

we have previously mentioned, continuous oscillations which vary dramatically in 

their amplitude over time may appear as transient events in the time or frequency 

domain (Shin et al., 2017; van Ede et al., 2018). It was for this reason that we 

took care to investigate the rhythmicity of beta oscillations during burst and non-

burst epochs. Our results demonstrated that beta oscillations are highly 
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arrhythmic outside of burst epochs, which supported their classification as burst-

like events. However, recent studies into putative gamma bursts during working 

memory seem do not take into account potential rhythmic changes in gamma 

amplitude, such as those that occur during theta-gamma phase-amplitude 

coupling, so it is possible that these events are not “true bursts” (Lundqvist et al., 

2016, 2018). Furthermore, as demonstrated by Jones (2016), oscillatory events 

which appear to be similar in the frequency domain can result from completely 

different waveforms. It is for this reason that careful removal of recording artefacts 

is a particularly important processing step for this kind of analysis, which must 

occur before automated detection of transient oscillatory events.   

Another key methodological consideration regarding neural oscillations is the 

importance of focusing on behaviourally relevant epochs for analysis. This is 

relevant not only for the analysis of transient oscillations, as discussed above, but 

also for other oscillatory activity. We demonstrated that novelty-associated 

increases in beta power were highest during the first minute of novel sessions, 

which led us to investigate the nature of this beta activity further. Novelty-

associated beta bursting generally occurred during the first minute of the session, 

after which beta bursting was far lower. Phase-amplitude coupling analysis 

revealed notable differences when performed on either the first minute, or final 

minute of recording sessions. Across the retrosplenial cortex and in the 

hippocampus, theta-alpha/beta coupling was significantly higher during novel 

sessions in wild-type mice, but only during the first minute of the recording 

session, and the same was seen for theta-gamma coupling in the hippocampus. 

While assessment of behaviourally relevant epochs is straightforward in event-

related potential tasks or other tasks with clear phases and requirements, such 
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as delayed alternation tasks, these results demonstrate the value of finding 

behaviourally relevant epochs in tasks or paradigms with less clear-cut sections. 

7.9 Future Directions 

As we have mentioned, these results open up a number of possible avenues for 

future experimentation, and while our findings have provided numerous insights 

into contextual memory processing in the brain, there are a multitude of questions 

yet to be answered.  

• As repeatedly stated throughout this thesis, beta bursting in the 

retrosplenial cortex and hippocampus is a functional correlate of 

contextual novelty. This means that while we have shown that beta 

bursting is correlated with contextual novelty, we have not demonstrated 

a causal link between the two. Firstly, as the novel/familiar environment 

task is a behavioural paradigm and not a behavioural task, per se, we are 

unable to determine the success of contextual memory encoding. The use 

of a contextual memory task with a measurable behavioural outcome, 

such as freezing during contextual fear conditioning, would allow 

investigation into the strength of correlations between beta bursting and 

successful memory encoding. Furthermore, by investigating the 

behavioural effects of either suppressing beta bursting during contextual 

novelty, or inducing beta bursting during contextual familiarity, a casual 

role for beta bursting may be revealed. Through the use of techniques 

such as optogenetics, it is possible to elicit or suppress oscillatory activity 

either acutely or chronically with great success (Iaccarino et al., 2016; Etter 

et al., 2019). 
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• An additional benefit to using a contextual memory task with a measurable 

behavioural outcome would be the ability to investigate the extent of 

cognitive dysfunction in mouse models of Alzheimer’s disease, such as 

J20 mice, and therefore determine whether memory deficits in these 

animals’ correlate with neuronal network dysfunction. This may reveal 

novel sources of cognitive impairment in Alzheimer’s disease, and provide 

novel insights into how learning and memory are processed within the 

brain.  

• As previously discussed, there are a number of limitations to mouse 

models of Alzheimer’s disease, including the J20 line used throughout this 

project. It is therefore unclear whether aberrant beta bursting seen in these 

animals is seen in other mouse models of Alzheimer’s disease, or human 

Alzheimer’s disease. While aberrant beta bursting is a well-established 

pathological hallmark of Parkinson’s disease (McCarthy et al., 2011), to 

the authors knowledge, this has not been demonstrated in Alzheimer’s 

disease. It is therefore important to clarify whether this occurs in other 

animal models of Alzheimer’s disease, or ideally in human Alzheimer’s 

disease itself. As we have demonstrated, beta bursts can be detected in 

EEG recordings despite spatial filtering by the scalp and skull (Srinivasan 

et al., 1998). Understanding the cause of aberrant beta bursting in J20 

mice may provide novel insights into the mechanisms underlying 

pathological beta bursting in Parkinson’s disease. 

• Another valuable avenue of research would be confirmation of novelty-

associated beta bursting in humans or non-human primates. Due to the 

size and anatomical position of the retrosplenial cortex in rodents, we were 
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able to non-intrusively investigate retrosplenial beta bursting using rodent 

EEG, however in humans and non-human primates, the retrosplenial 

cortex is far deeper in the brain, machining non-intrusive recordings far 

more difficult. Analytical techniques such as source localisation of EEG or 

MEG signals could allow recording of oscillatory activity from the 

retrosplenial cortex or hippocampus in order to investigate beta bursting 

activity during contextual novelty. The use of virtual reality technology 

allows human subjects to explore virtual environments while in spatially 

restricted laboratory environments, while brain activity is recorded using 

techniques such as EEG or MRI (Tremmel et al., 2019).  These 

technologies make it possible to further delve into the role of beta bursting 

in humans. 

• Finally, we have demonstrated that it is possible to pharmacologically 

induce beta bursting in vitro, and that these beta bursts are similar to those 

seen in vivo. While our experiments were fairly limited, there are numerous 

applications for this assay. Firstly, the effects of numerous other 

pharmacological agents on beta bursting could be tested, such as the 

effect of glutamatergic or GABAergic compounds, which may reveal the 

specific cell types underlying the generation of beta bursts. Alternatively, 

other modulatory neurotransmitters such as dopaminergic agonists may 

reveal how beta bursting is modulated within the brain. This in vitro assay 

provides a versatile platform to test a variety of hypotheses surrounding 

beta bursting in both health and disease. 
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7.10 Final Conclusions  

Throughout this thesis we have described a number of novel neurophysiological 

correlates of contextual memory across a range of brain regions. We have 

demonstrated that transient bursts of beta oscillations are highly upregulated 

during contextual novelty in both the cortex and hippocampus, and that these 

beta bursts are highly synchronous across distant brain regions. 

Neurophysiological correlates of behaviour such as those described throughout 

this thesis can provide novel insights into how the brain performs its various 

functions. Through our work in J20 mice, we have identified numerous examples 

of altered neuronal work activity, including aberrant beta bursting activity, which 

may underlie cognitive impairments seen in these animals. By furthering our 

understanding of the specific neurophysiological alterations that occur as a result 

of Alzheimer’s disease pathology, we may better understand this disease and 

potentially discover invaluable methods of restoring cognitive function in 

dementia. 
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9 Appendix 1 

9.1 Power Spectral Analysis - SpectraWYW (While-You-Work) 

function [SpectraStructure] = SpectraWYW(Folder,Channel) 

 

%First selects the folder with the data, and locates all the LFP data 

folder = Folder; 

folder = dir(folder); 

foldername = folder.folder; 

subfolders = {folder.name}; 

subfolders = subfolders(contains(subfolders,'Day')); 

subfolders = strcat(foldername,'\',subfolders); 

sessionnames = 

["Day1a","Day1b","Day2a","Day2b","Day3a","Day3b","Day4a","Day4b","Day5a","Day5b"]; 

cd(foldername); 

 

%Starts a megaloop to analyse and cycle through each session in an animals 

%folder. 

for ind0 = 1:length(subfolders) 

 

    files = dir(subfolders{ind0}); 

    files = files(arrayfun(@(x) ~strcmp(x.name(1),'.'),files)); 

    channels = {files.name}; 

    channels = channels(contains(channels,Channel)); 

    channels = strcat(subfolders{ind0},'\',channels); 

    channelname = string(channels{1}(end-14:end-11)); 

 

    animalnumber = foldername(end-1:end); 

    animal = strcat('Mouse',animalnumber); 

    session = files.folder; 

    session = session(end-4:end); 

 

    [~,~,extension] = fileparts(channels{1}); 

    signals = []; 

 

    for indch = 1 

        if strcmp(extension,'.continuous') 

            %Performs tracking, calculates speed and total distance travelled in m 

            [x,y,~,speed_out,distance] = 

TrackingNovelFamiliar(subfolders{ind0},1,'two'); 

            tsf = fillmissing(speed_out.ts,'linear'); 

            speed = speed_out.speed; 

            %Imports the .continuous data into MatLab 

            [signals(:,indch),~,info] = load_open_ephys_data_faster(channels{indch}); 

        elseif strcmp(extension,'.mat') 

            [x,y,ts,speed_out,distance] = 

TrackingNovelFamiliarSplitSession(subfolders{ind0}); 

            tsf = fillmissing(speed_out.ts,'linear'); 

            speed = speed_out.speed; 

            %Imports the .continuous data into MatLab 

            load(channels{indch}); 

            signals(:,indch) = sig; 

            info.header.sampleRate = 30000; 

        end 
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    end 

 

    %Cuts the signals to the experiment duration ie 15minutes in this case 

    ExpDurationMinutes = 15; 

    Fs = info.header.sampleRate; 

    ExpDurationFrames = (ExpDurationMinutes*60)*Fs; 

    ExpDurationSeconds = ExpDurationMinutes*60; 

    signals = signals(1:ExpDurationFrames,:); 

 

    %Downsamples the signals and timestamps, to reduce computation time, 

    %and detrends to remove any baseline fluctuations 

    downsampleX = 30; 

    signalsds = downsample(signals,downsampleX); 

    signaldsdt = detrend(signalsds); 

 

    %Set the parameters for Chronux analysis 

    Fs = Fs/downsampleX; 

    params.Fs = Fs; 

    params.pad = 2; 

    params.tapers = [2 3]; 

    params.err = 0; 

    params.trialave = 0; 

    params.segave = 0; 

 

    %Performs multi-taper spectral analysis, firstly, for the unbinned 

    %signal (ie the whole session) then for the binned signal, for each 

    %frequency band. As it is not possible to manually set the bandwidth, 

    %this allows us to cut off each band at the exact start and end. 

    params.fpass = [1 120]; 

    [SpecgFull,t,fF] = mtspecgramc(signaldsdt,[1 1],params); 

    SpecgFull = 10*log10(SpecgFull); 

 

    MeanSpec = mean(SpecgFull,1); 

 

    MeanSpec(fF>47 & fF<53) = NaN; 

    MeanSpec(fF>97 & fF<103) = NaN; 

    MeanSpec = fillmissing(MeanSpec,'linear'); 

%     params.smoothfactorlow = length(fF(fF>=3 & fF<30))/9; 

%     MeanCoh(fF>=3 & fF<30) = smoothdata(MeanCoh(fF>=3 & 

fF<30),'gaussian',params.smoothfactorlow); 

%     params.smoothfactorhigh = length(fF(fF>=30 & fF<=120))/6; 

%     MeanCoh(fF>=30 & fF<=120) = smoothdata(MeanCoh(fF>=30 & 

fF<=120),'gaussian',params.smoothfactorhigh); 

 

    fD = fF(fF>=1 & fF<5); 

    fT = fF(fF>=5 & fF<12); 

    fA = fF(fF>=12 & fF<20); 

    fB = fF(fF>=20 & fF<30); 

    fG = fF(fF>=30 & fF<=100); 

    fLG = fF(fF>=30 & fF<65); 

    fHG = fF(fF>=65 & fF<=120); 

    MeanDelta = MeanSpec(fF>=1 & fF<5); 

    MeanTheta = MeanSpec(fF>=5 & fF<12); 

    MeanAlpha = MeanSpec(fF>=12 & fF<20); 

    MeanBeta = MeanSpec(fF>=20 & fF<30); 

    MeanGamma = MeanSpec(fF>=30 & fF<=100); 

    MeanLowGamma = MeanSpec(fF>=30 & fF<65); 

    MeanHighGamma = MeanSpec(fF>=65 & fF<=120); 
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    clearvars PowerD PowerT PowerA PowerB PowerG PowerLG PowerHG 

    clearvars FreqD FreqT FreqA FreqB FreqG FreqLG FreqHG 

 

    %Calculates the raw power of each speed bin as the mean power in each 

    %frequency band, and the freqency, as the frequency at which the power 

    %is maximal. 

    PowerD = mean(MeanDelta); 

    PowerT = mean(MeanTheta); 

    PowerA = mean(MeanAlpha); 

    PowerB = mean(MeanBeta); 

    PowerG = mean(MeanGamma); 

    PowerLG = mean(MeanLowGamma); 

    PowerHG = mean(MeanHighGamma); 

 

    PeakDC = max(MeanDelta,[],2); 

    PeaksDC = find(MeanDelta==PeakDC); 

    FreqD = median(fD(PeaksDC)); 

    PeakTC = max(MeanTheta,[],2); 

    PeaksTC = find(MeanTheta==PeakTC); 

    FreqT = median(fT(PeaksTC)); 

    PeakAC = max(MeanAlpha,[],2); 

    PeaksAC = find(MeanAlpha==PeakAC); 

    FreqA = median(fA(PeaksAC)); 

    PeakBC = max(MeanBeta,[],2); 

    PeaksBC = find(MeanBeta==PeakBC); 

    FreqB = median(fB(PeaksBC)); 

    PeakGC = max(MeanGamma,[],2); 

    PeaksGC = find(MeanGamma==PeakGC); 

    FreqG = median(fG(PeaksGC)); 

    PeakLGC = max(MeanLowGamma,[],2); 

    PeaksLGC = find(MeanLowGamma==PeakLGC); 

    FreqLG = median(fLG(PeaksLGC)); 

    PeakHGC = max(MeanHighGamma,[],2); 

    PeaksHGC = find(MeanHighGamma==PeakHGC); 

    FreqHG = median(fHG(PeaksHGC)); 

 

    %Stores all data of interest as a non-scalar structure, making it easy 

    %to look at and compare data from different sessions. 

    SpectraStructure(ind0).Session = session; 

    SpectraStructure(ind0).Parameters = params; 

    SpectraStructure(ind0).fF = fF; 

    SpectraStructure(ind0).MeanSpectrum = MeanSpec; 

    SpectraStructure(ind0).SpecgFull = SpecgFull; 

    SpectraStructure(ind0).X = x; 

    SpectraStructure(ind0).Y = y; 

    SpectraStructure(ind0).Distance = distance; 

    SpectraStructure(ind0).Speed = speed; 

    SpectraStructure(ind0).DeltaPower = PowerD; 

    SpectraStructure(ind0).ThetaPower = PowerT; 

    SpectraStructure(ind0).AlphaPower = PowerA; 

    SpectraStructure(ind0).BetaPower = PowerB; 

    SpectraStructure(ind0).GammaPower = PowerG; 

    SpectraStructure(ind0).LowGammaPower = PowerLG; 

    SpectraStructure(ind0).HighGammaPower = PowerHG; 

    SpectraStructure(ind0).DeltaFrequency = FreqD; 

    SpectraStructure(ind0).ThetaFrequency = FreqT; 

    SpectraStructure(ind0).AlphaFrequency = FreqA; 
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    SpectraStructure(ind0).BetaFrequency = FreqB; 

    SpectraStructure(ind0).GammaFrequency = FreqG; 

    SpectraStructure(ind0).LowGammaFrequency = FreqLG; 

    SpectraStructure(ind0).HighGammaFrequency = FreqHG; 

 

end 

 

%Session Analysis 

MeanSpec = cell2mat({SpectraStructure.MeanSpectrum}'); 

NovelSpecs = MeanSpec(1:8:9,:); 

FamiliarSpecs = MeanSpec([2 3 4 5 6 7 8 10],:); 

MeanNovelSpec = mean(NovelSpecs); 

MeanFamiliarSpec = mean(FamiliarSpecs); 

NovelStd = std(NovelSpecs,0,1); 

FamiliarStd = std(FamiliarSpecs,0,1); 

NovelSEM = NovelStd/sqrt(size(NovelSpecs,1)); 

FamiliarSEM = FamiliarStd/sqrt(size(FamiliarSpecs,1)); 

 

% %Creates the mean spectrums for Novel and Familiar with SEM. 

Spectrums = strcat(foldername,'\','Spectrums'); 

mkdir(Spectrums); 

cd(Spectrums); 

figure2name = strcat(animal,'-',Channel,'-','SpectrumFamiliarity'); 

figure('Name',figure2name); 

NovelSpec = shadedErrorBar(fF,MeanNovelSpec,NovelSEM); 

set(NovelSpec.edge,'LineStyle','none') 

NovelSpec.mainLine.LineWidth = 1.5; 

NovelSpec.mainLine.Color = [1 0 0]; 

NovelSpec.patch.FaceColor = [0.6 0 0]; 

hold on; 

FamiliarSpec = shadedErrorBar(fF,MeanFamiliarSpec,FamiliarSEM); 

set(FamiliarSpec.edge,'LineStyle','none') 

FamiliarSpec.mainLine.LineWidth = 1.5; 

FamiliarSpec.mainLine.Color = [0 0 1]; 

FamiliarSpec.patch.FaceColor = [0 0 0.6]; 

alpha(0.3); 

set(gca,'LineWidth',1.5); 

set(gca,'FontSize',12) 

xlabel('Frequency (Hz)','fontsize',14); 

ylabel('Power (DB)','fontsize',14); 

legend({'Novel','Familiar'}); 

legend boxoff 

set(gca,'box','off'); 

hgsave(figure2name) 

 

%Save the finished data structure as a .mat file for later use 

SpectraFolder = strcat(foldername(1:end-2),'Analysed\','Spectra'); 

mkdir(SpectraFolder); 

cd(SpectraFolder); 

save(strcat('Spectra','-',(animal),'-',Channel,'.mat'),'SpectraStructure'); 

 

end 

Published with MATLAB® R2019b 

https://www.mathworks.com/products/matlab


308 

 

9.2 Beta Burst Detection - BurstDetectionWYW (While-You-Work) 

function [EventData] = BurstDetectionWYW(Folder,Channel) 

%First selects the folder with the data, and locates all the LFP data 

folder = Folder; 

folder = dir(folder); 

foldername = folder.folder; 

subfolders = {folder.name}; 

subfolders = subfolders(contains(subfolders,'Day')); 

subfolders = strcat(foldername,'\',subfolders); 

sessionnames = 

["Day1a","Day1b","Day2a","Day2b","Day3a","Day3b","Day4a","Day4b","Day5a","Day5b"]; 

cd(foldername); 

 

%Starts a megaloop to analyse and cycle through each session in an animals 

%folder. 

for ind0 = 1:length(subfolders) 

 

    files = dir(subfolders{ind0}); 

    files = files(arrayfun(@(x) ~strcmp(x.name(1),'.'),files)); 

    channels = {files.name}; 

    channels = channels(contains(channels,Channel)); 

    channels = strcat(subfolders{ind0},'\',channels); 

    channelname = string(channels{1}(end-14:end-11)); 

 

    if sum(contains(["CH13","CH14","CH19","CH20"],channelname)) == 1 

        location = "RSA"; 

    elseif sum(contains(["CH45","CH46","CH51","CH52"],channelname)) == 1 

        location = "MEC"; 

    end 

 

    animalnumber = Folder(end-1:end); 

    animal = strcat('Mouse',animalnumber); 

    session = files.folder; 

    session = session(end-4:end); 

 

    [~,~,extension] = fileparts(channels{1}); 

 

    if strcmp(extension,'.continuous') 

        %Performs tracking, calculates speed and total distance travelled in m 

        [x,y,~,speed_out,distance] = TrackingNovelFamiliar(subfolders{ind0},1,'two'); 

        tsf = fillmissing(speed_out.ts,'linear'); 

        speed = speed_out.speed; 

        %Imports the .continuous data into MatLab 

        signals = []; 

        [signals(:,1),~,info] = load_open_ephys_data_faster(channels{1}); 

    elseif strcmp(extension,'.mat') 

        [x,y,ts,speed_out,distance] = 

TrackingNovelFamiliarSplitSession(subfolders{ind0}); 

        tsf = fillmissing(speed_out.ts,'linear'); 

        speed = speed_out.speed; 

        %Imports the .continuous data into MatLab 

        load(channels{1}); 

        signals(:,1) = sig; 

        info.header.sampleRate = 30000; 

    end 



309 

 

 

    %Cuts the signals to the experiment duration ie 15minutes in this case 

    ExpDurationMinutes = 15; 

    Fs = info.header.sampleRate; 

    ExpDurationFrames = (ExpDurationMinutes*60)*Fs; 

    ExpDurationSeconds = ExpDurationMinutes*60; 

    signals = signals(1:ExpDurationFrames,:); 

 

    %Downsamples the signals and timestamps, to reduce computation time, 

    %and detrends to remove any baseline fluctuations 

    downsampleX = 10; 

    Fs = Fs/downsampleX; 

    ExpDurationFrames = ExpDurationFrames/downsampleX; 

    signalsds = downsample(signals,downsampleX); 

    signalsdsdt = detrend(signalsds); 

    signalmagnitude = abs(hilbert(signalsdsdt)); 

    %     noisethreshold = prctile(signalmagnitude,99.99); 

    %     noisyframes = signalmagnitude > noisethreshold; 

    %     noisysecs = reshape(noisyframes,[Fs,ExpDurationSeconds]); 

    %     noisysecs = sum(noisysecs,1); 

    %     noiseindex = noisysecs>0; 

    %     signalmatrix = reshape(signalsdsdt,[Fs,ExpDurationSeconds]); 

    %     signalmatrix(:,noiseindex) = []; 

    %     signalsdsdt = signalmatrix(:); 

 

    %Set the parameters for Chronux analysis 

    params.Fs = Fs; 

    params.pad = 2; 

    params.tapers = [1 1]; 

    params.fpass = [1 120]; 

    params.err = 0; 

    params.trialave = 0; 

    params.segave = 0; 

 

    % Creates a filter in the beta frequency band (20-30Hz) and applies 

    %it to the signal. Then uses a hilbert transform to find the envelope 

    %amplitude of the signal, and the instantaneous phase. 

    betafilter = 

designfilt('bandpassiir','FilterOrder',2,'HalfPowerFrequency1',20,'HalfPowerFrequency2',

30,'DesignMethod','butter','SampleRate',Fs); 

    betasignal = filtfilt(betafilter,signalsdsdt); 

    betasignalmagnitude = abs(hilbert(betasignal)); 

    noisethreshold = median(betasignalmagnitude)+10*mad(betasignalmagnitude,1); 

    betasignalmagnitude(betasignalmagnitude>noisethreshold) = 0; 

    zscorebetasignalmagnitude = zscore(betasignalmagnitude); 

    betasignalphase = rad2deg(angle(hilbert(betasignal))); 

 

    %Sets the beta burst detection parameters. The burst must cross 3 standard 

    %deviations from the mean for at least 150ms, to be classified. 

    burststdthreshold = 2; 

    minbetaburstdurationms = 150; 

    minbetaburstsamples = Fs*(minbetaburstdurationms/1000); 

    minburstcycles = 3; 

 

    %The amplitude detection parameter is applied to the beta signal, in order 

    %to find indexes of when the burst reaches the detection threshold. A second 

threshold of half the detection threshold 

    % is also used to find the starts and stops of each putative burst, in 
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    % order to include the sides of each burst. 

    burstdetectionthreshold = zscorebetasignalmagnitude>=burststdthreshold; 

    burstsidethreshold = zscorebetasignalmagnitude>=burststdthreshold/2; 

 

    %The two thresholds are combined so that a burst would show as 01210, 

    %ie below threshold 1, above threshold 1, above thresholds 1+2, and 

    %then back down. 

    BdtBst = burstdetectionthreshold + burstsidethreshold; 

    difBdtBst = diff(BdtBst); 

    %Find is used to find where these changes between threshold levels 

    %occur in the signal. 

    [blocations,~,bchanges] = find(difBdtBst); 

    revblocations = flipud(blocations); 

    %strfind is used to find the starts of sequences with the change 

    %+1+1-1-1, ie 01210, and also the starts of sequences with the change 

    %-1-1+1+1, ie the reverse, to find the stops of these 01210 sequences. 

    bpatternseek = strfind(bchanges',[1 1 -1 -1]); 

    revbpatternseek = strfind(flipud(bchanges)',[-1 -1 1 1]); 

    betaburststarts = blocations(bpatternseek); 

    betaburststops = flipud(revblocations(revbpatternseek)); 

    %These stretches are then removed from the data, to turn it into 01110, 

    %so that bursts that don't return to 0, such as 0121210, can be 

    %detected without redetecting the previously discovered bursts. These 

    %bursts that don't return to 0 are referred to as "waves" for now. 

    for idy = 1:length(betaburststarts) 

        burstdetectionthreshold(betaburststarts(idy):betaburststops(idy)) = 0; 

    end 

    %Bursts that started before recording are discarded, as are those that stopped after 

recording. 

    if betaburststops(1)<betaburststarts(1) 

        betaburststops = betaburststops(2:end); 

    end 

    if betaburststarts(end)>betaburststops(end) 

        betaburststarts = betaburststarts(1:end-1); 

    end 

    %In order to detect "waves", we can just look at the detection 

    %threshold and only pick out the 2's of 0121's, rather than 121's. This 

    %method prevents excessive combination of adjacent waves into extra long 

    %events. 

    difBdt = diff(burstdetectionthreshold); 

    [wlocations,~,wchanges] = find(difBdt); 

    revwlocations = flipud(wlocations); 

    wpatternseek = strfind(wchanges',[1 -1]); 

    revwpatternseek = strfind(flipud(wchanges)',[-1 1]); 

    wavestarts = wlocations(wpatternseek); 

    wavestops = flipud(revwlocations(revwpatternseek)+1); 

 

    %"Waves" that started before recording are discarded, as are those that stopped 

after recording. 

    if length(wavestops)>1 

        if wavestops(1)<wavestarts(1) 

            wavestops = wavestops(2:end); 

        end 

        if wavestarts(end)>wavestops(end) 

            wavestarts = wavestarts(1:end-1); 

        end 

 

        wavelength = wavestops-wavestarts; 
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        wavestarts = wavestarts(wavelength>minbetaburstsamples); 

        wavestops = wavestops(wavelength>minbetaburstsamples); 

    else 

    end 

 

    %A previosly assigned MINIMUM DURATION parameter is applied to find bursts with 

    %sufficient duration to be classified, while all shorter events are removed. 

    betaburstlength = betaburststops-betaburststarts; 

    betaburststarts = betaburststarts(betaburstlength>minbetaburstsamples); 

    betaburststops = betaburststops(betaburstlength>minbetaburstsamples); 

 

    %The burst starts and "wave" starts are combined and put in 

    %ascending order, as are the stops. These starts and stops are now the indexes of 

all putative bursts. 

    ratiob2w = length(betaburststarts)/length(wavestarts); 

    betaburststarts = [betaburststarts;wavestarts]; 

    betaburststops = [betaburststops;wavestops]; 

    [betaburststarts,sortI] = sort(betaburststarts); 

    betaburststops = betaburststops(sortI); 

    betaburstlength = betaburststops-betaburststarts; 

 

    %     burstphase = cell(length(betaburststarts),1); 

    %     burstcycles = zeros(length(betaburststarts),1); 

    %     for indbcycles = 1:length(betaburststarts) 

    %         burstphase{indbcycles} = 

betasignalphase(betaburststarts(indbcycles):betaburststops(indbcycles),:); 

    %         minBValue1 = min(burstphase{indbcycles}); 

    %         paddedBSignal1 = [minBValue1;burstphase{indbcycles};minBValue1]; 

    %         %As the phase signal is constantly increasing, findpeaks picks up 

    %         %where each cycle ends. As there is no built in "findtroughs" 

    %         %function, in order to find the start of each cycle, this is all 

    %         %repeated for the -ve of the phase signal. 

    %         [bcyclestart,bcyclestartloc] = findpeaks(paddedBSignal1); 

    %         minBValue2 = min(-burstphase{indbcycles}); 

    %         paddedBSignal2 = [minBValue2;-burstphase{indbcycles};minBValue2]; 

    %         [bcyclestop,bcyclestoploc] = findpeaks(paddedBSignal2); 

    %         bcyclestop = -bcyclestop; 

    %         if bcyclestoploc(1)<bcyclestartloc(1) 

    %             bcyclestop = bcyclestop(2:end); 

    %         end 

    %         if bcyclestartloc(end)>bcyclestoploc(end) 

    %             bcyclestart = bcyclestart(1:end-1); 

    %         end 

    %         %The length of each cycle is calculated, and then the total length 

    %         %of all these cycles is calculated, and then divided by 360degrees 

    %         %(a full cycle phase), and rounded down to get the number of 

    %         %complete burst cycles. 

    %         bcyclelength = bcyclestart-bcyclestop; 

    %         totalbcycles = sum(bcyclelength); 

    %         burstcycles(indbcycles) = floor(totalbcycles/360); 

    %     end 

 

    %Artefact removal on a burst by burst basis, by detecting large almost 

    %instantaneous changes in the unfiltered LFP. 

    for ib = 1:length(betaburststarts) 

        pbm(ib) = max(betasignalmagnitude(betaburststarts(ib):betaburststops(ib),:)); 

    end 

    discard = isoutlier(pbm); 
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    params.discardrate = sum(discard)/length(betaburststarts); 

    betaburststarts(discard) = []; 

    betaburststops(discard) = []; 

    betaburstlength(discard) = []; 

 

    %Now the burst start and stop indexes of all putative bursts that do 

    %not meet these 2 criteria have been removed, all remaining can 

    %be counted as bursts, so we can calculate the total number of bursts 

    %in this session, as well as the duration of each burst in 

    %milliseconds. 

    betaburstnumber = length(betaburstlength); 

    burstduration = (betaburstlength/Fs)*1000; 

    meanburstduration = mean(burstduration); 

    stdburstduration = std(burstduration); 

    semburstduration = stdburstduration/sqrt(length(burstduration)); 

    betaburststartsds = ceil(betaburststarts./Fs); 

    betaburststopsds = ceil(betaburststops./Fs); 

 

    %Finally the burst start and stop indexes are used to isolate the 

    %filtered and unfiltered bursts, and the peak magnitude of each burst 

    %is ascertained. These are averaged, and SEM calculated to gain an 

    %idea of the burst dynamics for the session. 

    betabursts = cell(betaburstnumber,1); 

    betaburstsunfiltered = cell(betaburstnumber,1); 

    peakburstmagnitude = zeros(betaburstnumber,1); 

    if betaburstnumber>0 

        for ind6 = 1:betaburstnumber 

            betabursts{ind6} = betasignal(betaburststarts(ind6):betaburststops(ind6),:); 

            betaburstsunfiltered{ind6} = 

signalsdsdt(betaburststarts(ind6):betaburststops(ind6),:); 

            peakburstmagnitude(ind6) = 

max(betasignalmagnitude(betaburststarts(ind6):betaburststops(ind6),:)); 

            burstphase{ind6} = 

betasignalphase(betaburststarts(ind6):betaburststops(ind6),:); 

            burstspeed(ind6) = 

mean(speed(:,betaburststartsds(ind6):betaburststopsds(ind6))); 

            %         burstx(ind6) = 

nanmean(x(betaburststartscds(ind6):betaburststopscds(ind6))); 

            %         bursty(ind6) = 

nanmean(y(betaburststartscds(ind6):betaburststopscds(ind6))); 

 

            burstmiddle = length(betabursts{ind6})/2; 

            [~,locs] = findpeaks(betabursts{ind6},'MinPeakDistance',100); 

            [~,closestpeak] = min(abs(locs-burstmiddle)); 

            middlepeak(ind6) = locs(closestpeak); 

        end 

        meanburstmagnitude = mean(peakburstmagnitude); 

        stdburstmagnitude = std(peakburstmagnitude); 

        semburstmagnitude = stdburstmagnitude/sqrt(length(peakburstmagnitude)); 

        biggestburstleftlength = middlepeak(find(betaburstlength == 

max(betaburstlength))); 

        biggestburstrightlength = max(betaburstlength)-biggestburstleftlength; 

 

        %As in (Shin et al 2017), to attempt to determine the mechanism 

        %underlying beta bursts (bursty vs dynamic amplitude modulation), 

        %calculate the time lag modulus for the burst and non-burst segments. 

        [ifq] = instfreq(betasignal,Fs); 

        medianbf = median(ifq); 
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        for indb = 1:betaburstnumber 

            [~,locs] = findpeaks(betabursts{indb},'MinPeakDistance',100); 

            tla(indb) = locs(end)-locs(1); 

            %Also calculate average burst frequency 

            burstfreq(indb) = Fs/((locs(end)-locs(1))/(length(locs)-1)); 

        end 

        tlmb = (tla - medianbf.*round(tla./medianbf))/medianbf; 

        tlmbh = histcounts(tlmb,-0.5:0.1:0.5,'Normalization','probability'); 

        for indb = 1:betaburstnumber 

            if indb == 1 

                nonburstsignal = betasignal(1:betaburststarts(indb),:); 

            else 

                nonburstsignal = betasignal(betaburststops(indb-

1):betaburststarts(indb),:); 

            end 

            if length(nonburstsignal)>=200 

                [~,locs] = findpeaks(nonburstsignal,'MinPeakDistance',100); 

                tlb(indb) = locs(end)-locs(1); 

                %Also calculate average burst frequency 

                nonburstfreq(indb) = Fs/((locs(end)-locs(1))/(length(locs)-1)); 

            else 

                tlb(indb) = NaN; 

            end 

        end 

        tlmn = (tlb - medianbf.*round(tlb./medianbf))/medianbf; 

        tlmnh = histcounts(tlmn,-0.5:0.1:0.5,'Normalization','probability'); 

 

        % Alternate Method 

 

        MinPeakDist = Fs/40; 

        for indb = 1:betaburstnumber 

            [~,locsb] = findpeaks(betabursts{indb},'MinPeakDistance',MinPeakDist); 

            bperiod{indb} = diff(locsb)./Fs; 

            %Also calculate average burst frequency 

            burstfreq(indb) = Fs/((locs(end)-locs(1))/(length(locs)-1)); 

            if indb == 1 

                nonburstsignal = betasignal(1:betaburststarts(indb),:); 

            else 

                nonburstsignal = betasignal(betaburststops(indb-

1):betaburststarts(indb),:); 

            end 

            if length(nonburstsignal)>=2*(Fs/30) 

                [~,locsn] = findpeaks(nonburstsignal,'MinPeakDistance',MinPeakDist); 

                %Also calculate average burst frequency 

                nonburstfreq(indb) = Fs/((locs(end)-locs(1))/(length(locs)-1)); 

                nbperiod{indb} = diff(locsn)./Fs; 

            end 

        end 

        bperiodh = 

histcounts(cell2mat(bperiod'),0.025:0.0025:0.1,'Normalization','probability'); 

        nbperiodh = 

histcounts(cell2mat(nbperiod'),0.025:0.0025:0.1,'Normalization','probability'); 

 

        meanburstfreq = mean(burstfreq); 

        stdburstfreq = std(burstfreq); 

        semburstfreq = stdburstfreq/sqrt(length(burstfreq)); 

        meannonburstfreq = mean(nonburstfreq); 

        stdnonburstfreq = std(nonburstfreq); 
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        semnonburstfreq = stdnonburstfreq/sqrt(length(nonburstfreq)); 

 

        %As bursts vary in length, in order to compare them time locked to 

        %eachother, they are padded with varying numbers of NaNs on either side 

        %to center them all. 

        burstsegpad = cell(1,betaburstnumber); 

        burstrawsegpad = cell(1,betaburstnumber); 

        for ind7 = 1:betaburstnumber 

            burstprepadsize = floor(biggestburstleftlength - middlepeak(ind7)); 

            burstpostpadsize = round(biggestburstrightlength - (betaburstlength(ind7)-

middlepeak(ind7))); 

            if any([burstprepadsize burstpostpadsize] < 0) 

                burstsegpad{ind7}(max(betaburstlength)+1,1) = NaN; 

                burstrawsegpad{ind7}(max(betaburstlength)+1,1) = NaN; 

            else 

                burstsegpad{ind7} = 

padarray(betabursts{ind7},burstprepadsize,NaN,'pre'); 

                burstsegpad{ind7} = 

padarray(burstsegpad{ind7},burstpostpadsize,NaN,'post'); 

                burstrawsegpad{ind7} = 

padarray(betaburstsunfiltered{ind7},burstprepadsize,NaN,'pre'); 

                burstrawsegpad{ind7} = 

padarray(burstrawsegpad{ind7},burstpostpadsize,NaN,'post'); 

            end 

        end 

        burstsegpad = cell2mat(burstsegpad); 

        burstrawsegpad = cell2mat(burstrawsegpad); 

        meanburstseg = nanmean(burstsegpad,2)'; 

        burstvar = nanstd(burstsegpad,1,2)'; 

        burstvarlow = meanburstseg-burstvar; 

        burstvarhigh = meanburstseg+burstvar; 

        [~,meanburstpeaks] = findpeaks(meanburstseg,'MinPeakDistance',100); 

        meanburstpeaks = meanburstpeaks./(Fs/1000); 

 

        %In order to investigate oscillatory dynamics before, during and after 

        %bursts, power spectra of each burst segment, as well as equal length 

        %segments before and after the burst are generated and averaged across 

        %bursts. Any bursts that less than a bursts length from the start or 

        %end of the session are discarded from this particular analysis. 

        fFinterp = linspace(1,120,238); 

        bbstarts = betaburststarts(betaburststarts > betaburstlength); 

        bblength = betaburstlength(betaburststarts > betaburstlength); 

        bbstops = betaburststops(betaburststarts > betaburstlength); 

        %The start of a burst is called its start, the start of the whole 

        %segment, including the pre-burst, is called the beginning. The same 

        %applies to its stop, and its end, respectively. 

        bbbegin = bbstarts-bblength; 

        bbstarts(bbbegin<=0) = []; 

        bblength(bbbegin<=0) = []; 

        bbstops(bbbegin<=0) = []; 

        bbend = bbstops+bblength; 

        bbstarts(bbend>length(signalsdsdt)) = []; 

        bblength(bbend>length(signalsdsdt)) = []; 

        bbstops(bbend>length(signalsdsdt)) = []; 

        newbetaburstnumber = length(bbstarts); 

 

        %The signal segments are indexed and then undergo spectral analysis. 

        %Each burst spectrum has 50Hz and 100Hz removed and linearly 
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        %interpolated, then it is logged. 

        signalbeforebursts = cell(newbetaburstnumber,1); 

        signalduringbursts = cell(newbetaburstnumber,1); 

        signalafterbursts = cell(newbetaburstnumber,1); 

        spectrumbeforebursts = cell(newbetaburstnumber,1); 

        spectrumduringbursts = cell(newbetaburstnumber,1); 

        spectrumafterbursts = cell(newbetaburstnumber,1); 

        for ind8 = 1:newbetaburstnumber 

            signalbeforebursts{ind8} = signalsdsdt(bbstarts(ind8)-

bblength(ind8):bbstarts(ind8),:); 

            signalduringbursts{ind8} = signalsdsdt(bbstarts(ind8):bbstops(ind8),:); 

            signalafterbursts{ind8} = 

signalsdsdt(bbstops(ind8):bbstops(ind8)+bblength(ind8),:); 

            fullsignal{ind8} = signalsdsdt(bbstarts(ind8)-

bblength(ind8):bbstops(ind8)+bblength(ind8)); 

            filtsignal{ind8} = betasignal(bbstarts(ind8)-

bblength(ind8):bbstops(ind8)+bblength(ind8)); 

            [spectrumbeforebursts{ind8},fF{ind8}] = 

mtspectrumc(signalbeforebursts{ind8},params); 

            [spectrumduringbursts{ind8}] = mtspectrumc(signalduringbursts{ind8},params); 

            [spectrumafterbursts{ind8}] = mtspectrumc(signalafterbursts{ind8},params); 

            spectrumbeforeburstsi(:,ind8) = 

interp1(fF{ind8},spectrumbeforebursts{ind8},fFinterp); 

            spectrumbeforeburstsi(:,ind8) = 10*log10(spectrumbeforeburstsi(:,ind8)); 

            %         spectrumbeforeburstsi(fFinterp>40 & fFinterp<60,ind8) = NaN; 

            %         spectrumbeforeburstsi(fFinterp>90 & fFinterp<110,ind8) = NaN; 

            %         spectrumbeforeburstsi(:,ind8) = 

fillmissing(spectrumbeforeburstsi(:,ind8),'linear'); 

            spectrumduringburstsi(:,ind8) = 

interp1(fF{ind8},spectrumduringbursts{ind8},fFinterp); 

            spectrumduringburstsi(:,ind8) = 10*log10(spectrumduringburstsi(:,ind8)); 

            %         spectrumduringburstsi(fFinterp>40 & fFinterp<60,ind8) = NaN; 

            %         spectrumduringburstsi(fFinterp>90 & fFinterp<110,ind8) = NaN; 

            %         spectrumduringburstsi(:,ind8) = 

fillmissing(spectrumduringburstsi(:,ind8),'linear'); 

            spectrumafterburstsi(:,ind8) = 

interp1(fF{ind8},spectrumafterbursts{ind8},fFinterp); 

            spectrumafterburstsi(:,ind8) = 10*log10(spectrumafterburstsi(:,ind8)); 

            %         spectrumafterburstsi(fFinterp>40 & fFinterp<60,ind8) = NaN; 

            %         spectrumafterburstsi(fFinterp>90 & fFinterp<110,ind8) = NaN; 

            %         spectrumafterburstsi(:,ind8) = 

fillmissing(spectrumafterburstsi(:,ind8),'linear'); 

        end 

        %These burst spectra are then averaged across all bursts. 

        meansbb = mean(spectrumbeforeburstsi,2); 

        meansdb = mean(spectrumduringburstsi,2); 

        meansab = mean(spectrumafterburstsi,2); 

 

    else 

    end 

 

    %Stores all data of interest as a non-scalar structure, making it easy 

    %to look at and compare data from different sessions. 

    %First the parameters and settings. 

    EventData(ind0).Session = session; 

    EventData(ind0).Parameters = params; 

    EventData(ind0).Parameters.MinimumBurstDurationms = minbetaburstdurationms; 

    EventData(ind0).Parameters.MinimumBurstCycles = minburstcycles; 
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    EventData(ind0).Parameters.BurstThreshold = burststdthreshold; 

 

    %Then Burst Data 

    EventData(ind0).NumberOfBetaBursts = betaburstnumber; 

    if betaburstnumber>0 

        EventData(ind0).BurstStarts = betaburststarts; 

        EventData(ind0).BurstStops = betaburststops; 

        EventData(ind0).BurstMagnitude = peakburstmagnitude; 

        EventData(ind0).BurstLength = betaburstlength; 

        EventData(ind0).BurstDuration = burstduration; 

        EventData(ind0).BurstFreq = burstfreq; 

        EventData(ind0).BurstTimeLagModulusHist = tlmbh; 

        EventData(ind0).NonBurstTimeLagModulusHist = tlmnh; 

        EventData(ind0).BurstPeriodH = bperiodh; 

        EventData(ind0).NonBurstPeriodH = nbperiodh; 

        EventData(ind0).AllBurstSegments = burstsegpad; 

        EventData(ind0).AllBurstRawSegments = burstrawsegpad; 

        EventData(ind0).BurstRS = burstspeed; 

        EventData(ind0).FullBurstSignal = fullsignal; 

        EventData(ind0).FiltBurstSignal = filtsignal; 

        EventData(ind0).SignalBeforeBursts = signalbeforebursts; 

        EventData(ind0).SignalDuringBursts = signalduringbursts; 

        EventData(ind0).SignalAfterBursts = signalafterbursts; 

        EventData(ind0).SpectrumBeforeBursts = meansbb; 

        EventData(ind0).SpectrumDuringBursts = meansdb; 

        EventData(ind0).SpectrumAfterBursts = meansab; 

        EventData(ind0).Frequency = fFinterp; 

        EventData(ind0).Signal = signalsdsdt; 

    else 

    end 

 

    clearvars -except Folder Channel folder foldername subfolders sessionnames ind0 

animal channelname EventData 

 

end 

 

 

 

RipplesAndBursts = strcat(foldername,'\','RipplesAndBursts'); 

mkdir(RipplesAndBursts); 

cd(RipplesAndBursts); 

 

NumberOfBetaBursts = [EventData(:).NumberOfBetaBursts]; 

figure2name = strcat(animal,'-',channelname,'-','NumberOfBetaBursts'); 

figure('Name',figure2name); 

subplot(2,2,[1,3]) 

bar(NumberOfBetaBursts,'b'); 

set(gca,'LineWidth',1.5); 

set(gca,'FontSize',12); 

xlabel('Session','fontsize',12); 

ylabel('Number Of Beta Bursts','fontsize',14); 

set(gca,'box','off'); 

BurstDuration = vertcat(EventData(:).BurstDuration); 

subplot(2,2,2); 

histogram(BurstDuration,'FaceColor','b'); 

set(gca,'LineWidth',1.5); 

set(gca,'FontSize',12); 

set(gca,'TickLength',[0.02,0.02]); 
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xlabel('Burst Length (ms)','fontsize',12); 

set(gca,'box','off'); 

BurstMagnitude = vertcat(EventData(:).BurstMagnitude); 

subplot(2,2,4); 

histogram(BurstMagnitude,'FaceColor','b'); 

set(gca,'LineWidth',1.5); 

set(gca,'FontSize',12); 

set(gca,'TickLength',[0.02,0.02]); 

xlabel('Burst Magnitude (µV)','fontsize',12); 

set(gca,'box','off'); 

set(gcf, 'Position',  [250, 100, 750, 500]) 

hgsave(figure2name) 

 

for indz2 = 1:10 

    Fs = EventData(indz2).Parameters.Fs; 

    BetaBurstStarts{indz2} = (EventData(indz2).BurstStarts/(Fs*60)); 

    BurstDist{indz2} = cumsum(histcounts(BetaBurstStarts{indz2},0:(1/60):15)'); 

    EventData(indz2).BurstDistribution = BurstDist{indz2}; 

end 

 

NovelBurstDist = BurstDist{9}; 

FamiliarBurstDist = BurstDist{8}; 

NormNovelBurstDist = NovelBurstDist/max(NovelBurstDist)*100; 

NormFamiliarBurstDist = FamiliarBurstDist/max(FamiliarBurstDist)*100; 

 

figure6name = strcat(animal,'-',channelname,'-','BurstProfileNovelty'); 

figure('Name',figure6name); 

subaxis3 = subplot(2,1,1); 

plot(NovelBurstDist,'LineWidth',2,'Color','r') 

hold on 

plot(FamiliarBurstDist,'LineWidth',2,'Color','b') 

xlim([0 900]) 

set(gca,'xTick',0:60:900) 

set(gca,'Xticklabel',[]) 

ylab1 = ylabel('Total Number of Bursts','fontsize',14); 

set(ylab1, 'Units', 'Normalized', 'Position', [-0.08, 0.5, 0]); 

set(gca,'FontSize',12); 

legend({'Novel','Familiar'},'Location','northwest'); 

legend boxoff 

set(gca,'box','off'); 

subaxis4 = subplot(2,1,2); 

plot(NormNovelBurstDist,'LineWidth',2,'Color','r') 

hold on 

plot(NormFamiliarBurstDist,'LineWidth',2,'Color','b') 

xlim([0 900]) 

set(gca,'xTick',0:60:900) 

set(gca,'xTickLabel',0:1:15) 

alpha(gca,0.75) 

xlabel('Time (min)','fontsize',14); 

ylab2 = ylabel('Percentage of Bursts (%)','fontsize',14); 

set(ylab2, 'Units', 'Normalized', 'Position', [-0.08, 0.5, 0]); 

set(gca,'FontSize',12); 

set(gca,'box','off'); 

set(gcf, 'Position',  [300, 100, 500, 630]) 

set(subaxis3,'Position',[0.13 0.55 0.775 0.4]); 

set(subaxis4,'Position',[0.13 0.11 0.775 0.4]); 

hgsave(figure6name) 
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SpectrumBeforeBursts = [EventData(:).SpectrumBeforeBursts]'; 

fFinterp = linspace(1,120,238); 

MMSBB = mean(SpectrumBeforeBursts); 

stdSBB = std(SpectrumBeforeBursts); 

semSBB = stdSBB/sqrt(size(SpectrumBeforeBursts,1)); 

SBBLow = MMSBB-semSBB; 

SBBHigh = MMSBB+semSBB; 

SpectrumDuringBursts = [EventData(:).SpectrumDuringBursts]'; 

MMSDB = mean(SpectrumDuringBursts); 

stdSDB = std(SpectrumDuringBursts); 

semSDB = stdSDB/sqrt(size(SpectrumDuringBursts,1)); 

SDBLow = MMSDB-semSDB; 

SDBHigh = MMSDB+semSDB; 

SpectrumAfterBursts = [EventData(:).SpectrumAfterBursts]'; 

MMSAB = mean(SpectrumAfterBursts); 

stdSAB = std(SpectrumAfterBursts); 

semSAB = stdSAB/sqrt(size(SpectrumAfterBursts,1)); 

SABLow = MMSAB-semSAB; 

SABHigh = MMSAB+semSAB; 

 

figure7name = strcat(animal,'-',channelname,'-','BeforeDuringAfterBurstSpectrums'); 

figure('Name',figure7name); 

SBBbar = patch([fFinterp fFinterp(end:-1:1) fFinterp(1)],[SBBLow SBBHigh(end:-1:1) 

SBBLow(1)], 'r'); 

hold on; 

SBBline = line(fFinterp,MMSBB,'LineWidth',1.5); 

SDBbar = patch([fFinterp fFinterp(end:-1:1) fFinterp(1)],[SDBLow SDBHigh(end:-1:1) 

SDBLow(1)], 'r'); 

SDBline = line(fFinterp,MMSDB,'LineWidth',1.5); 

SABbar = patch([fFinterp fFinterp(end:-1:1) fFinterp(1)],[SABLow SABHigh(end:-1:1) 

SABLow(1)], 'r'); 

SABline = line(fFinterp,MMSAB,'LineWidth',1.5); 

alpha(0.3); 

set(SBBbar, 'facecolor', [0 1 0.8667], 'edgecolor', 'none'); 

set(SDBbar, 'facecolor', [0 (12/255) 1], 'edgecolor', 'none'); 

set(SABbar, 'facecolor', [1 0 (233/255)], 'edgecolor', 'none'); 

set(SBBline, 'color', [0 0.8 0.8]); 

set(SDBline, 'color', [0 0 0.8]); 

set(SABline, 'color', [0.8 0 0.8]); 

set(gca,'LineWidth',1.5); 

set(gca,'FontSize',12) 

xlabel('Frequency (Hz)','fontsize',14); 

ylabel('Power (DB)','fontsize',14); 

legend([SBBline SDBline SABline],{'Before Burst','During Burst','After Burst'}); 

legend boxoff 

set(gca,'box','off'); 

set(gcf, 'Position',  [400, 100, 600, 500]) 

% xlim([3 40]) 

hgsave(figure7name) 

 

%Save the finished data structure as a .mat file for later use 

EventFolder = strcat(foldername(1:end-2),'Analysed\','EventData'); 

mkdir(EventFolder); 

cd(EventFolder); 

save(strcat('EventData','-',(animal),'-',(channelname),'.mat'),'EventData'); 

end 
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9.3 Phase Amplitude Coupling Analysis (Tort Method) - 

PhaseAmplitudeCouplingTort 

function [PACData] = PhaseAmplitudeCouplingTort(Folder,Channel) 

 

folder = Folder; 

folder = dir(folder); 

foldername = folder.folder; 

subfolders = {folder.name}; 

subfolders = subfolders(contains(subfolders,'Day')); 

subfolders = strcat(foldername,'\',subfolders); 

sessionnames = 

["Day1a","Day1b","Day2a","Day2b","Day3a","Day3b","Day4a","Day4b","Day5a","Day5b"]; 

cd(foldername); 

 

%Starts a megaloop to analyse and cycle through each session in an animals 

%folder. 

for ind0 = 1:length(subfolders) 

 

    files = dir(subfolders{ind0}); 

    files = files(arrayfun(@(x) ~strcmp(x.name(1),'.'),files)); 

    channels = {files.name}; 

    channels = channels(contains(channels,Channel)); 

    channels = strcat(subfolders{ind0},'\',channels); 

    channelname = string(channels{1}(end-14:end-11)); 

 

    animalnumber = foldername(end-1:end); 

    animal = strcat('Mouse',animalnumber); 

    session = files.folder; 

    session = session(end-4:end); 

 

    %Imports the .continuous data into MatLab 

    signal = []; 

    [signal(:,1),~,info] = load_open_ephys_data_faster(channels{1}); 

 

    %Cuts the signals to the experiment duration ie 15minutes in this case 

    ExpDurationMinutes = 15; 

    Fs = info.header.sampleRate; 

    ExpDurationFrames = (ExpDurationMinutes*60)*Fs; 

    ExpDurationSeconds = ExpDurationMinutes*60; 

    signal = signal(1:ExpDurationFrames,:); 

 

    %Downsamples the signals and timestamps, to reduce computation time, 

    %and detrends to remove any baseline fluctuations 

    downsampleX = 10; 

    Fs = Fs/downsampleX; 

    signalsds = downsample(signal,downsampleX); 

    signalsdsdt = detrend(signalsds); 

    signalsdsdt(isnan(signalsdsdt)) = []; 

 

    signalsdsdt = signalsdsdt(1:60*Fs); 

 

    %Sets the theta and gamma frequency bins to investigate, and 
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    %preallocates the modulation index matrix. 

    phasebinstart = 2; 

    phasebinstep = 0.25; 

    phasebinstop = 12; 

    phasebins = (phasebinstart:phasebinstep:phasebinstop); 

    numpbins = (length(phasebins)-1); 

    amplitudebinstart = 10; 

    amplitudebinstep = 2; 

    amplitudebinstop = 100; 

    amplitudebins = (amplitudebinstart:amplitudebinstep:amplitudebinstop); 

    numabins = (length(amplitudebins)-1); 

 

    MI = zeros(numel(amplitudebins)-1,numel(phasebins)-1); 

    for indpf = 1:numpbins 

        phasefilter{indpf} = 

designfilt('bandpassiir','FilterOrder',2,'HalfPowerFrequency1',phasebins(indpf),'HalfPow

erFrequency2',phasebins(indpf+1),'DesignMethod','butter','SampleRate',Fs); 

    end 

    for indaf = 1:numabins 

        amplitudefilter{indaf} = 

designfilt('bandpassiir','FilterOrder',2,'HalfPowerFrequency1',amplitudebins(indaf),'Hal

fPowerFrequency2',amplitudebins(indaf+1),'DesignMethod','butter','SampleRate',Fs); 

    end 

 

    %For the calculation of a normalised MI value, a number of surrogate 

    %MI values are calculated by circularly shifting the signals with 

    %random magnitude delays. Here, the number of surrogates calculated, as 

    %well as the maximum and minimum delays are given. Fs is used to 

    %prevent the data being shifted only one second forward or backward. 

    NumberOfPoints = length(signalsdsdt); 

    NumberOfSurrogates = 100; 

    MinSkip = Fs; 

    MaxSkip = NumberOfPoints-Fs; 

    phasebars = (0:10:360); 

    nphasebars = length(phasebars)-1; 

    Q = repmat(1/nphasebars,[1 nphasebars]); 

 

    clear surrogate_amplitude 

    for indp = 1:numpbins 

        phasesignal = filtfilt(phasefilter{indp},signalsdsdt); 

        phase = angle(hilbert(phasesignal)); 

        phase = rad2deg(phase)+180; 

        [phasesorted,phasesort] = sort(phase); 

        for inda = 1:numabins 

            amplitudesignal = filtfilt(amplitudefilter{inda},signalsdsdt); 

            amplitude = abs(hilbert(amplitudesignal)); 

            amplitudesorted = amplitude(phasesort); 

            for ibin = 1:36 

                P(ibin) = mean(amplitudesorted(phasesorted >= phasebars(ibin) & 

phasesorted < phasebars(ibin+1))); 

            end 

            P = P./sum(P); 

            temp =  P.*log(P./Q); 

            temp(isnan(temp)) = 0; 

            DKL = sum(temp,2); 

            mraw = DKL/log(nphasebars); 

 

            % compute surrogate values 



321 

 

            skip = randi([MinSkip MaxSkip],[NumberOfSurrogates,1]); 

            surrogateamplitude = zeros(length(amplitude),NumberOfSurrogates); 

            for inds = 1:NumberOfSurrogates 

                surrogateamplitude = circshift(amplitude,-skip(inds)); 

                surrogateamplitudesorted = surrogateamplitude(phasesort); 

                for ibin = 1:36 

                    P(ibin) = mean(surrogateamplitudesorted(phasesorted >= 

phasebars(ibin) & phasesorted < phasebars(ibin+1))); 

                end 

                P = P./sum(P); 

                temp =  P.*log(P./Q); 

                temp(isnan(temp)) = 0; 

                DKL = sum(temp,2); 

                surrogateM(inds) = DKL/log(nphasebars); 

            end 

 

            %Fits gaussian to surrogate data and normalize length using surrogate data 

(z-score) 

            [surrogatemean,surrogatestd] = normfit(surrogateM); 

            mnormlength = (mraw-surrogatemean)/surrogatestd; 

            MI(inda,indp) = abs(mnormlength); 

        end 

    end 

 

    pbt = (phasebinstart+phasebinstep/2:phasebinstep:phasebinstop-phasebinstep/2); 

    abt = (amplitudebinstart+amplitudebinstep/2:amplitudebinstep:amplitudebinstop-

amplitudebinstep/2); 

    numphaseticks = numpbins; 

    numamplitudeticks = numabins; 

    interpfactor = 2; 

    pbi = phasebinstart:phasebinstep/interpfactor:phasebinstop; 

    abi = amplitudebinstart:amplitudebinstep/interpfactor:amplitudebinstop; 

    pbti = 

(phasebinstart+(phasebinstep/2)/interpfactor:phasebinstep/interpfactor:phasebinstop-

(phasebinstep/2)/interpfactor); 

    abti = 

(amplitudebinstart+(amplitudebinstep/2)/interpfactor:amplitudebinstep/interpfactor:ampli

tudebinstop-(amplitudebinstep/2)/interpfactor); 

    numphaseticksint = interpfactor*numphaseticks; 

    numamplitudeticksint = interpfactor*numamplitudeticks; 

 

    phaseticksi = linspace(pbt(1),pbt(end),numphaseticksint); 

    amplitudeticksi = linspace(abt(1),abt(end),numamplitudeticksint); 

    [PT,AT] = ndgrid(pbt,abt); 

    F = griddedInterpolant(PT,AT,MI'); 

    [PTI,ATI] = ndgrid(pbti,abti); 

    MIinterp = F(PTI,ATI)'; 

 

    %Sets the theta and gamma frequency bins to investigate, and 

    %preallocates the modulation index matrix. 

    phasefocus = [4 12]; 

    amplitudefocus = [30 120]; 

    phasebars = (0:10:360); 

    phasebarstr = string(phasebars); 

    phasefocusfilter = 

designfilt('bandpassiir','FilterOrder',2,'HalfPowerFrequency1',phasefocus(1),'HalfPowerF

requency2',phasefocus(2),'DesignMethod','butter','SampleRate',Fs); 

    amplitudefocusfilter = 



322 

 

designfilt('bandpassiir','FilterOrder',2,'HalfPowerFrequency1',amplitudefocus(1),'HalfPo

werFrequency2',amplitudefocus(2),'DesignMethod','butter','SampleRate',Fs); 

 

    phasefocussignal = filtfilt(phasefocusfilter,signalsdsdt); 

    focusphase = angle(hilbert(phasefocussignal)); 

    amplitudefocussignal = filtfilt(amplitudefocusfilter,signalsdsdt); 

    focusamplitude = abs(hilbert(amplitudefocussignal)); 

    phasedeg = rad2deg(focusphase)+180; 

    [phasesorted,phasesort] = sort(phasedeg); 

    amplitudesorted = focusamplitude(phasesort); 

    for izz3 = 1:36 

        meanamplitude(izz3) = mean(amplitudesorted(phasesorted >= phasebars(izz3) & 

phasesorted < phasebars(izz3+1))); 

    end 

    totalamplitude = sum(meanamplitude); 

    meanamplitude = meanamplitude./totalamplitude; 

    meanmeanamplitude = mean(meanamplitude); 

    meanamplituderep = [meanamplitude meanamplitude]; 

 

    TPACFigureFolder = strcat(foldername,'\','ThetaPACHeatMaps'); 

    mkdir(TPACFigureFolder); 

    cd(TPACFigureFolder); 

    figurename = strcat(animal,'-',session(end-1:end),'-',channelname,'-','ThetaPAC'); 

    figure('Name',figurename); 

    imagesc(pbti,abti,MIinterp); 

    axis xy 

    set(gca,'LineWidth',1.5); 

    set(gca,'FontSize',12); 

    xLabel = xlabel('Phase Frequency (Hz)','fontsize',14); 

    yLabel = ylabel('Amplitude Frequency (Hz)','fontsize',14); 

    set(gca,'box','off'); 

    grid off 

    CB = colorbar; 

    caxis([0 10]); 

    CBtitle = get(CB,'Title'); 

    set(CBtitle,'String','MI'); 

    CBpos = get(CBtitle,'Position'); 

    set(CBtitle,'Position',[CBpos(1) CBpos(2)-320]); 

    set(CBtitle,'FontSize',14); 

    hgsave(figurename) 

 

    PACData(ind0).PhaseBins = phasebins; 

    PACData(ind0).AmplitudeBins = amplitudebins; 

    PACData(ind0).NumberOfSurrogates = NumberOfSurrogates; 

    PACData(ind0).MI = MI; 

    PACData(ind0).PhaseBinsinterp = pbi; 

    PACData(ind0).AmplitudeBinsinterp = abi; 

    PACData(ind0).MIinterp = MIinterp; 

 

end 

 

%Save the finished data structure as a .mat file for later use 

 

PACFolder = strcat(foldername(1:end-2),'Analysed\','PACtData'); 

mkdir(PACFolder); 

cd(PACFolder); 

save(strcat('PACtData','-',(animal),'-',(channelname),'.mat'),'PACData'); 
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end 
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9.4 Multi-Unit Activity Analysis - SimpleMUADuringBursts 

function [BurstMUAData] = SimpleMUADuringBursts(Folder) 

 

%First selects the folder with the data, and locates all the LFP data 

folder = Folder; 

folder = dir(folder); 

foldername = folder.folder; 

subfolders = {folder.name}; 

subfolders = subfolders(contains(subfolders,'Day')); 

subfolders = strcat(foldername,'\',subfolders); 

sessionnames = 

["Day1a","Day1b","Day2a","Day2b","Day3a","Day3b","Day4a","Day4b","Day5a","Day5b"]; 

cd(foldername); 

 

%Starts a megaloop to analyse and cycle through each session in an animals 

%folder. 

for ind0 = 1:length(subfolders) 

 

    cd(Folder) 

    files = dir(subfolders{ind0}); 

    files = files(arrayfun(@(x) ~strcmp(x.name(1),'.'),files)); 

    channels = {files.name}; 

    channels = channels(contains(channels,'CH')); 

    channels = strcat(subfolders{ind0},'\',channels); 

 

    animalnumber = Folder(end-1:end); 

    animal = strcat('Mouse',animalnumber); 

    session = files.folder; 

    session = session(end-4:end); 

 

    [~,~,extension] = fileparts(channels{1}); 

    signals = []; 

 

    for ich = 1:length(channels) 

        if strcmp(extension,'.continuous') 

            %Imports the .continuous data into MatLab 

            [signals(:,ich),~,info] = load_open_ephys_data_faster(channels{ich}); 

            channelnames{ich} = channels{ich}(end-14:end-11); 

        elseif strcmp(extension,'.mat') 

            %Imports the .continuous data into MatLab 

            load(channels{ich}); 

            signals(:,ich) = sig; 

            info.header.sampleRate = 30000; 

            channelnames{ich} = channels{ich}(end-14:end-11); 

        end 

    end 

 

    %Cuts the signals to the experiment duration ie 15minutes in this case 

    ExpDurationMinutes = 15; 

    Fs = info.header.sampleRate; 

    ExpDurationFrames = (ExpDurationMinutes*60)*Fs; 

    ExpDurationSeconds = ExpDurationMinutes*60; 

    signals = signals(1:ExpDurationFrames,:); 

 

    %Downsamples the signals and timestamps, to reduce computation time, 

    %and detrends to remove any baseline fluctuations 
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    signalsdt = detrend(signals); 

 

    %Set the parameters for Chronux analysis 

    params.fpass = [500 5000]; 

 

    for ich = 1:length(channels) 

 

        %Common Average Referencing 

        refchannels = 1:length(channelnames); 

        refchannels(ich) = []; 

        refsignal = mean(signalsdt(:,refchannels),2); 

        signaldt = signalsdt(:,ich); 

        signal = signaldt-refsignal; 

 

        % Creates a filter in the MUA frequency band (600-6000Hz) and applies 

        %it to the signal. Then uses a hilbert transform to find the envelope 

        %amplitude of the signal, and the instantaneous phase. 

        muafilter = 

designfilt('bandpassiir','FilterOrder',4,'HalfPowerFrequency1',params.fpass(1),'HalfPowe

rFrequency2',params.fpass(2),'DesignMethod','butter','SampleRate',Fs); 

        muasignal = filtfilt(muafilter,signal); 

 

        threshold = 4*median(abs(muasignal)/0.6745); 

 

        %Sets the beta burst detection parameters. The burst must cross 3 standard 

        %deviations from the mean for at least 150ms, to be classified. 

        [~,peaklocations] = 

findpeaks(abs(muasignal),'MinPeakHeight',threshold,'MinPeakDistance',Fs/2000); 

 

        peakstarts = peaklocations - Fs/1000; 

        peakstops = peaklocations + Fs/1000; 

 

        peaksbeforesession = peakstarts <= Fs; 

        peakstarts(peaksbeforesession) = []; 

        peakstops(peaksbeforesession) = []; 

        peaksaftersession = peakstops >= (ExpDurationFrames-Fs); 

        peakstarts(peaksaftersession) = []; 

        peakstops(peaksaftersession) = []; 

 

        peaklength = peakstops-peakstarts; 

        peaknumber = length(peaklength); 

 

%         for indpeaks = 1:peaknumber 

%             waveforms(:,indpeaks) = 

muasignal(peakstarts(indpeaks):peakstops(indpeaks)); 

%             [~,maxind] = max(abs(waveforms(:,indpeaks))); 

%             wfamplitude(indpeaks) = waveforms(maxind,indpeaks); 

%         end 

 

        for indpeaks = 1:peaknumber 

            waveforms(:,indpeaks) = muasignal(peakstarts(indpeaks):peakstops(indpeaks)); 

            [~,maxind(indpeaks)] = max(abs(waveforms(:,indpeaks))); 

            peakstarts(indpeaks) = peakstarts(indpeaks) + (maxind(indpeaks)-31); 

            peakstops(indpeaks) = peakstops(indpeaks) + (maxind(indpeaks)-31); 

            if waveforms(maxind(indpeaks),indpeaks)<0 

                waveforms(:,indpeaks) = 

muasignal(peakstarts(indpeaks):peakstops(indpeaks)); 

            else 
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                waveforms(:,indpeaks) = -

muasignal(peakstarts(indpeaks):peakstops(indpeaks)); 

            end 

            wfamplitude(indpeaks) = waveforms(31,indpeaks); 

        end 

        peaks = [peakstarts peakstops]; 

        [~,idx,~] = unique(peaks,'rows'); 

        peakstarts = peakstarts(idx); 

        peakstops = peakstops(idx); 

        waveforms = waveforms(:,idx); 

        wfamplitude = wfamplitude(idx); 

 

        % Creates a filter in the beta frequency band (20-30Hz) and applies 

        %it to the signal. Then uses a hilbert transform to find the envelope 

        %amplitude of the signal, and the instantaneous phase. 

        betafilter = 

designfilt('bandpassiir','FilterOrder',2,'HalfPowerFrequency1',20,'HalfPowerFrequency2',

30,'DesignMethod','butter','SampleRate',Fs); 

        betasignal = filtfilt(betafilter,signaldt); 

        betasignalmagnitude = abs(hilbert(betasignal)); 

        noisethreshold = median(betasignalmagnitude)+10*mad(betasignalmagnitude,1); 

        betasignalmagnitude(betasignalmagnitude>noisethreshold) = 0; 

        zscorebetasignalmagnitude = zscore(betasignalmagnitude); 

        betasignalphase = rad2deg(angle(hilbert(betasignal))); 

 

        %Sets the beta burst detection parameters. The burst must cross 3 standard 

        %deviations from the mean for at least 150ms, to be classified. 

        burststdthreshold = 2; 

        minbetaburstdurationms = 150; 

        minbetaburstsamples = Fs*(minbetaburstdurationms/1000); 

        minburstcycles = 3; 

 

        %The amplitude detection parameter is applied to the beta signal, in order 

        %to find indexes of when the burst reaches the detection threshold. A second 

threshold of half the detection threshold 

        % is also used to find the starts and stops of each putative burst, in 

        % order to include the sides of each burst. 

        burstdetectionthreshold = zscorebetasignalmagnitude>=burststdthreshold; 

        burstsidethreshold = zscorebetasignalmagnitude>=burststdthreshold/2; 

 

        %The two thresholds are combined so that a burst would show as 01210, 

        %ie below threshold 1, above threshold 1, above thresholds 1+2, and 

        %then back down. 

        BdtBst = burstdetectionthreshold + burstsidethreshold; 

        difBdtBst = diff(BdtBst); 

        %Find is used to find where these changes between threshold levels 

        %occur in the signal. 

        [blocations,~,bchanges] = find(difBdtBst); 

        revblocations = flipud(blocations); 

        %strfind is used to find the starts of sequences with the change 

        %+1+1-1-1, ie 01210, and also the starts of sequences with the change 

        %-1-1+1+1, ie the reverse, to find the stops of these 01210 sequences. 

        bpatternseek = strfind(bchanges',[1 1 -1 -1]); 

        revbpatternseek = strfind(flipud(bchanges)',[-1 -1 1 1]); 

        betaburststarts = blocations(bpatternseek)+1; 

        betaburststops = flipud(revblocations(revbpatternseek)); 

        %These stretches are then removed from the data, to turn it into 01110, 

        %so that bursts that don't return to 0, such as 0121210, can be 
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        %detected without redetecting the previously discovered bursts. These 

        %bursts that don't return to 0 are referred to as "waves" for now. 

        for idy = 1:length(betaburststarts) 

            burstdetectionthreshold(betaburststarts(idy):betaburststops(idy)) = 0; 

        end 

        %Bursts that started before recording are discarded, as are those that stopped 

after recording. 

        if betaburststops(1)<betaburststarts(1) 

            betaburststops = betaburststops(2:end); 

        end 

        if betaburststarts(end)>betaburststops(end) 

            betaburststarts = betaburststarts(1:end-1); 

        end 

        %In order to detect "waves", we can just look at the detection 

        %threshold and only pick out the 2's of 0121's, rather than 121's. This 

        %method prevents excessive combination of adjacent waves into extra long 

        %events. 

        difBdt = diff(burstdetectionthreshold); 

        [wlocations,~,wchanges] = find(difBdt); 

        revwlocations = flipud(wlocations); 

        wpatternseek = strfind(wchanges',[1 -1]); 

        revwpatternseek = strfind(flipud(wchanges)',[-1 1]); 

        wavestarts = wlocations(wpatternseek); 

        wavestops = flipud(revwlocations(revwpatternseek)+1); 

 

        %"Waves" that started before recording are discarded, as are those that stopped 

after recording. 

        if length(wavestops)>1 

            if wavestops(1)<wavestarts(1) 

                wavestops = wavestops(2:end); 

            end 

            if wavestarts(end)>wavestops(end) 

                wavestarts = wavestarts(1:end-1); 

            end 

 

            wavelength = wavestops-wavestarts; 

            wavestarts = wavestarts(wavelength>minbetaburstsamples); 

            wavestops = wavestops(wavelength>minbetaburstsamples); 

        else 

        end 

        %A previosly assigned MINIMUM DURATION parameter is applied to find bursts with 

        %sufficient duration to be classified, while all shorter events are removed. 

        betaburstlength = betaburststops-betaburststarts; 

        betaburststarts = betaburststarts(betaburstlength>minbetaburstsamples); 

        betaburststops = betaburststops(betaburstlength>minbetaburstsamples); 

 

        %The burst starts and "wave" starts are combined and put in 

        %ascending order, as are the stops. These starts and stops are now the indexes 

of all putative bursts. 

        ratiob2w = length(betaburststarts)/length(wavestarts); 

        betaburststarts = [betaburststarts;wavestarts]; 

        betaburststops = [betaburststops;wavestops]; 

        [betaburststarts,sortI] = sort(betaburststarts); 

        betaburststops = betaburststops(sortI); 

        betaburstlength = betaburststops-betaburststarts; 

 

        %Artefact removal on a burst by burst basis, by detecting large almost 

        %instantaneous changes in the unfiltered LFP. 
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        for ib = 1:length(betaburststarts) 

            betaburstmagnitude(ib) = 

max(betasignalmagnitude(betaburststarts(ib):betaburststops(ib),:)); 

        end 

        discard = isoutlier(betaburstmagnitude); 

        betaburststarts(discard) = []; 

        betaburststops(discard) = []; 

        betaburstlength(discard) = []; 

        betaburstmagnitude(discard) = []; 

 

        %Now the burst start and stop indexes of all putative bursts that do 

        %not meet these 2 criteria have been removed, all remaining can 

        %be counted as bursts, so we can calculate the total number of bursts 

        %in this session, as well as the duration of each burst in 

        %milliseconds. 

        SegLengthF = Fs/2; 

        SegStepF = 1500; 

        tooearly = betaburststarts < SegLengthF; 

        betaburststarts(tooearly) = []; 

        betaburststops(tooearly) = []; 

        betaburstlength(tooearly) = []; 

        betaburstmagnitude(tooearly) = []; 

        toolate = betaburststarts + SegLengthF > ExpDurationFrames; 

        betaburststarts(toolate) = []; 

        betaburststops(toolate) = []; 

        betaburstlength(toolate) = []; 

        betaburstmagnitude(toolate) = []; 

 

        % Detect beta burst segments (burststart-Fs:burststart+Fs) that 

        % overlap with eachother and remove them 

        bsegstarts = betaburststarts-SegLengthF; 

        bsegstops = betaburststarts+SegLengthF; 

        for i = 1:length(bsegstarts) 

            burstseg{i} = bsegstarts(i):bsegstops(i); 

        end 

        for i = 1:length(bsegstarts) 

            for i2 = 1:length(bsegstarts) 

                overlap(i,i2) = ~isempty(intersect(burstseg{i},burstseg{i2})); 

            end 

        end 

        OL = sum(overlap,1)>1; 

 

        betaburststarts(logical(OL)) = []; 

        betaburststops(logical(OL)) = []; 

        betaburstlength(logical(OL)) = []; 

        betaburstmagnitude(logical(OL)) = []; 

        numberofbetabursts = length(betaburststarts); 

 

        if numberofbetabursts > 0 

 

            rasteredges = [-SegLengthF SegLengthF]; 

            spikeraster = zeros(ExpDurationFrames,1); 

            spikeraster(peakstarts) = 1; 

 

            for indbr = 1:numberofbetabursts 

                periburstspikeR(indbr,:) = spikeraster(betaburststarts(indbr)-

SegLengthF:betaburststarts(indbr)+SegLengthF); 

                periburstbinnedspikeR(indbr,:) = 
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histcounts(peakstarts,betaburststarts(indbr)-

SegLengthF:SegStepF:betaburststarts(indbr)+SegLengthF); 

            end 

            periburstspikeH = sum(periburstbinnedspikeR,1); 

            periburstspikeH = periburstspikeH./sum(periburstspikeH); 

 

        else 

        end 

 

        %Stores all data of interest as a non-scalar structure, making it easy 

        %to look at and compare data from different sessions. 

        %First the parameters and settings. 

        BurstMUAData(ich).Channel = channelnames{ich}; 

        %Then Burst Data 

        BurstMUAData(ich).NumberOfBetaBursts = numberofbetabursts; 

        BurstMUAData(ich).TimeStamps = peakstarts; 

        BurstMUAData(ich).Waveforms = waveforms; 

        if numberofbetabursts>0 

            BurstMUAData(ich).BurstLengths = betaburstlength; 

            BurstMUAData(ich).BurstMagnitude = betaburstmagnitude; 

            BurstMUAData(ich).RasterEdges = rasteredges; 

            BurstMUAData(ich).PeriBurstSpikeRaster = periburstspikeR; 

            BurstMUAData(ich).HistogramEdges = -SegLengthF:SegStepF:SegLengthF; 

            BurstMUAData(ich).PeriBurstSpikeHistogram = periburstspikeH; 

%             BurstMUAData(ich).MeanBurstSpike = meanburstspike; 

%             BurstMUAData(ich).MeanNonBurstSpike = meannonburstspike; 

        else 

        end 

 

    clearvars -except Folder folder foldername subfolders sessionnames ind0 ich animal 

channelnames signalsdt Fs params ExpDurationFrames BurstMUAData 

 

    end 

 

    %Save the finished data structure as a .mat file for later use 

    MUAFolder = strcat(foldername(1:end-2),'Analysed\','MUAData'); 

    warning('off', 'MATLAB:MKDIR:DirectoryExists'); 

    mkdir(MUAFolder); 

    cd(MUAFolder); 

    save(strcat('BurstMUAData','-',(animal),'-

',sessionnames{ind0},'.mat'),'BurstMUAData'); 

 

end 

 

end 

Published with MATLAB® R2019b 

9.5 Beta Burst Cross-Correlation Analysis - BurstXCorr 

function [BXCData] = BurstXCorr(Folder,RefChannel) 

 

%First selects the folder with the data, and locates all the LFP data 

folder = Folder; 

folder = dir(folder); 

foldername = folder.folder; 
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subfolders = {folder.name}; 

subfolders = subfolders(contains(subfolders,'Day')); 

subfolders = strcat(foldername,'\',subfolders); 

sessionnames = 

["Day1a","Day1b","Day2a","Day2b","Day3a","Day3b","Day4a","Day4b","Day5a","Day5b"]; 

cd(foldername); 

 

%Starts a megaloop to analyse and cycle through each session in an animals 

%folder. 

for ind0 = 1:length(subfolders) 

 

    files = dir(subfolders{ind0}); 

    files = files(arrayfun(@(x) ~strcmp(x.name(1),'.'),files)); 

    channels = {files.name}; 

    channels = channels(contains(channels,'CH')); 

    channels = strcat(subfolders{ind0},'\',channels); 

 

    animalnumber = Folder(end-1:end); 

    animal = strcat('Mouse',animalnumber); 

    session = files.folder; 

    session = session(end-4:end); 

 

    [~,~,extension] = fileparts(channels{1}); 

    Fs = 30000; 

    ExpDurationMinutes = 15; 

    ExpDurationFrames = (ExpDurationMinutes*60)*Fs; 

 

    for indch = 1:length(channels) 

        if strcmp(extension,'.continuous') 

            %Imports the .continuous data into MatLab 

            [signal,~,info] = load_open_ephys_data_faster(channels{indch}); 

            signals(:,indch) = signal(1:ExpDurationFrames); 

        elseif strcmp(extension,'.mat') 

            %Imports the .continuous data into MatLab 

            load(channels{indch}); 

            signals(:,indch) = sig; 

            info.header.sampleRate = 30000; 

        end 

    end 

 

    %Downsamples the signals and timestamps, to reduce computation time, 

    %and detrends to remove any baseline fluctuations 

%     downsampleX = 1; 

%     signalsds = downsample(signals,downsampleX); 

%     Fs = Fs/downsampleX; 

    signalsdsdt = detrend(signals); 

 

    %Set the parameters for Chronux analysis 

    params.Fs = Fs; 

    params.pad = 2; 

    params.tapers = [2 3]; 

    params.err = 0; 

    params.trialave = 0; 

    params.segave = 0; 

 

    %Creates a filter in the beta frequency band (20-30Hz) and applies 

    %it to the signal. Then uses a hilbert transform to find the envelope 

    %amplitude of the signal, and the instantaneous phase. 
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    betafilter = 

designfilt('bandpassiir','FilterOrder',2,'HalfPowerFrequency1',20,'HalfPowerFrequency2',

30,'DesignMethod','butter','SampleRate',Fs); 

    betasignal = filtfilt(betafilter,signalsdsdt); 

    betasignalmagnitude = abs(hilbert(betasignal(:,RefChannel))); 

    noisethreshold = median(betasignalmagnitude)+10*mad(betasignalmagnitude,1); 

    betasignalmagnitude(betasignalmagnitude>noisethreshold) = 0; 

    zscorebetasignalmagnitude = zscore(betasignalmagnitude); 

    betasignalphase = rad2deg(angle(hilbert(betasignal))); 

 

    %Sets the beta burst detection parameters. The burst must cross 3 standard 

    %deviations from the mean for at least 150ms, to be classified. 

    burststdthreshold = 2; 

    minbetaburstdurationms = 150; 

    minbetaburstsamples = Fs*(minbetaburstdurationms/1000); 

 

    %The amplitude detection parameter is applied to the beta signal, in order 

    %to find indexes of when the burst reaches the detection threshold. A second 

threshold of half the detection threshold 

    % is also used to find the starts and stops of each putative burst, in 

    % order to include the sides of each burst. 

    burstdetectionthreshold = zscorebetasignalmagnitude>=burststdthreshold; 

    burstsidethreshold = zscorebetasignalmagnitude>=burststdthreshold/2; 

 

    %The two thresholds are combined so that a burst would show as 01210, 

    %ie below threshold 1, above threshold 1, above thresholds 1+2, and 

    %then back down. 

    BdtBst = burstdetectionthreshold + burstsidethreshold; 

    difBdtBst = diff(BdtBst); 

    %Find is used to find where these changes between threshold levels 

    %occur in the signal. 

    [blocations,~,bchanges] = find(difBdtBst); 

    revblocations = flipud(blocations); 

    %strfind is used to find the starts of sequences with the change 

    %+1+1-1-1, ie 01210, and also the starts of sequences with the change 

    %-1-1+1+1, ie the reverse, to find the stops of these 01210 sequences. 

    bpatternseek = strfind(bchanges',[1 1 -1 -1]); 

    revbpatternseek = strfind(flipud(bchanges)',[-1 -1 1 1]); 

    betaburststarts = blocations(bpatternseek)+1; 

    betaburststops = flipud(revblocations(revbpatternseek)); 

    %These stretches are then removed from the data, to turn it into 01110, 

    %so that bursts that don't return to 0, such as 0121210, can be 

    %detected without redetecting the previously discovered bursts. These 

    %bursts that don't return to 0 are referred to as "waves" for now. 

    for idy = 1:length(betaburststarts) 

        burstdetectionthreshold(betaburststarts(idy):betaburststops(idy)) = 0; 

    end 

    %Bursts that started before recording are discarded, as are those that stopped after 

recording. 

    if betaburststops(1)<betaburststarts(1) 

        betaburststops = betaburststops(2:end); 

    end 

    if betaburststarts(end)>betaburststops(end) 

        betaburststarts = betaburststarts(1:end-1); 

    end 

    %In order to detect "waves", we can just look at the detection 

    %threshold and only pick out the 2's of 0121's, rather than 121's. This 

    %method prevents excessive combination of adjacent waves into extra long 
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    %events. 

    difBdt = diff(burstdetectionthreshold); 

    [wlocations,~,wchanges] = find(difBdt); 

    revwlocations = flipud(wlocations); 

    wpatternseek = strfind(wchanges',[1 -1]); 

    revwpatternseek = strfind(flipud(wchanges)',[-1 1]); 

    wavestarts = wlocations(wpatternseek); 

    wavestops = flipud(revwlocations(revwpatternseek)+1); 

 

    %"Waves" that started before recording are discarded, as are those that stopped 

after recording. 

    if length(wavestops)>1 

        if wavestops(1)<wavestarts(1) 

            wavestops = wavestops(2:end); 

        end 

        if wavestarts(end)>wavestops(end) 

            wavestarts = wavestarts(1:end-1); 

        end 

 

        wavelength = wavestops-wavestarts; 

        wavestarts = wavestarts(wavelength>minbetaburstsamples); 

        wavestops = wavestops(wavelength>minbetaburstsamples); 

    else 

    end 

 

    %A previosly assigned MINIMUM DURATION parameter is applied to find bursts with 

    %sufficient duration to be classified, while all shorter events are removed. 

    betaburstlength = betaburststops-betaburststarts; 

    betaburststarts = betaburststarts(betaburstlength>minbetaburstsamples); 

    betaburststops = betaburststops(betaburstlength>minbetaburstsamples); 

 

    %The burst starts and "wave" starts are combined and put in 

    %ascending order, as are the stops. These starts and stops are now the indexes of 

all putative bursts. 

    ratiob2w = length(betaburststarts)/length(wavestarts); 

    betaburststarts = [betaburststarts;wavestarts]; 

    betaburststops = [betaburststops;wavestops]; 

    [betaburststarts,sortI] = sort(betaburststarts); 

    betaburststops = betaburststops(sortI); 

    betaburstlength = betaburststops-betaburststarts; 

 

    %Artefact removal on a burst by burst basis, by detecting large almost 

    %instantaneous changes in the unfiltered LFP. 

    for ib = 1:length(betaburststarts) 

        pbm(ib) = max(betasignalmagnitude(betaburststarts(ib):betaburststops(ib),:)); 

    end 

    discard = isoutlier(pbm); 

    params.discardrate = sum(discard)/length(betaburststarts); 

    betaburststarts(discard) = []; 

    betaburststops(discard) = []; 

    betaburstlength(discard) = []; 

 

    %Now the burst start and stop indexes of all putative bursts that do 

    %not meet these 2 criteria have been removed, all remaining can 

    %be counted as bursts, so we can calculate the total number of bursts 

    %in this session, as well as the duration of each burst in 

    %milliseconds. 

    betaburstnumber = length(betaburstlength); 
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    burstduration = (betaburstlength/Fs)*1000; 

    meanburstduration = mean(burstduration); 

    stdburstduration = std(burstduration); 

    semburstduration = stdburstduration/sqrt(length(burstduration)); 

    betaburststartsds = ceil(betaburststarts./Fs); 

    betaburststopsds = ceil(betaburststops./Fs); 

 

    %Finally the burst start and stop indexes are used to isolate the 

    %filtered and unfiltered bursts, and the peak magnitude of each burst 

    %is ascertained. These are averaged, and SEM calculated to gain an 

    %idea of the burst dynamics for the session. 

    betabursts = cell(betaburstnumber,1); 

    betaburstsunfiltered = cell(betaburstnumber,1); 

    peakburstmagnitude = zeros(betaburstnumber,1); 

    if betaburstnumber>0 

        for indb = 1:betaburstnumber 

            betabursts{indb} = betasignal(betaburststarts(indb):betaburststops(indb),:); 

            betaburstsunfiltered{indb} = 

signalsdsdt(betaburststarts(indb):betaburststops(indb),:); 

            for indch = 1:length(channels) 

                [XCorr{indb}(:,indch),lags] = 

xcorr(betabursts{indb}(:,indch),betabursts{indb}(:,RefChannel),'coeff'); 

                [PeakXCorr(indch,indb),PeakInd] = max(XCorr{indb}(:,indch)); 

                PeakDelay(indch,indb) = lags(PeakInd)/(Fs/1000); 

            end 

        end 

    else 

    end 

 

    load ColorMap7 

    ColorMapBurst = interp1(1:7,ColorMap7,linspace(1,7,betaburstnumber)); 

    ColorMapChannel = interp1(1:7,ColorMap7,linspace(1,7,16)); 

 

    figure('Position', [50 200 1200 500]) 

    subplot(1,2,1) 

    plot(PeakXCorr') 

    xlim([0 betaburstnumber+1]) 

    xlabel('Burst Number') 

    ylabel('Correlation') 

    set(gca,'box','off'); 

    subplot(1,2,2) 

    plot(PeakDelay') 

    xlim([0 betaburstnumber+1]) 

    xlabel('Burst Number') 

    ylabel('Delay (ms)') 

    set(gca,'box','off'); 

    colororder(ColorMapChannel) 

 

    %Stores all data of interest as a non-scalar structure, making it easy 

    %to look at and compare data from different sessions. 

    %First the parameters and settings. 

    BXCData(ind0).Session = session; 

    BXCData(ind0).Parameters = params; 

    BXCData(ind0).Parameters.MinimumBurstDurationms = minbetaburstdurationms; 

    BXCData(ind0).Parameters.BurstThreshold = burststdthreshold; 

    %Then Burst Data 

    BXCData(ind0).NumberOfBetaBursts = betaburstnumber; 

    if betaburstnumber>0 
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        BXCData(ind0).BurstStarts = betaburststarts; 

        BXCData(ind0).BurstStops = betaburststops; 

        BXCData(ind0).BurstLength = betaburstlength; 

        BXCData(ind0).BurstDuration = burstduration; 

        BXCData(ind0).BetaBursts = betabursts; 

        BXCData(ind0).BetaBurstsUnfiltered = betaburstsunfiltered; 

        BXCData(ind0).PeakXCorr = PeakXCorr; 

        BXCData(ind0).PeakDelay = PeakDelay; 

    else 

    end 

 

    clearvars -except Folder RefChannel folder foldername subfolders sessionnames ind0 

animal channelname BXCData 

 

end 

 

%Save the finished data structure as a .mat file for later use 

BXCFolder = strcat(Folder(1:end-2),'Analysed\','BurstXCData'); 

mkdir(BXCFolder); 

cd(BXCFolder); 

save(strcat('BurstXCData','-',(animal),'-

','Channel',num2str(RefChannel),'.mat'),'BXCData'); 

 

end 

Published with MATLAB® R2019b 

9.6 Coherence Analysis - CoherenceWYW (While-You-Work) 

function [CoherenceStructure] = CoherenceWYW(Folder,Channels) 

 

%First selects the folder with the data, and locates all the LFP data 

folder = Folder; 

folder = dir(folder); 

foldername = folder.folder; 

subfolders = {folder.name}; 

subfolders = subfolders(contains(subfolders,'Day')); 

subfolders = strcat(foldername,'\',subfolders); 

sessionnames = 

["Day1a","Day1b","Day2a","Day2b","Day3a","Day3b","Day4a","Day4b","Day5a","Day5b"]; 

cd(foldername); 

 

%Starts a megaloop to analyse and cycle through each session in an animals 

%folder. 

for ind0 = 1:length(subfolders) 

 

    files = dir(subfolders{ind0}); 

    files = files(arrayfun(@(x) ~strcmp(x.name(1),'.'),files)); 

    channels = {files.name}; 

    channels = channels(contains(channels,Channels)); 

    channels = strcat(subfolders{ind0},'\',channels); 

    channelname = string(channels{1}(end-14:end-11)); 

 

    animalnumber = foldername(end-1:end); 

    animal = strcat('Mouse',animalnumber); 

    session = files.folder; 
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    session = session(end-4:end); 

 

    [~,~,extension] = fileparts(channels{1}); 

    signals = []; 

 

    for indch = 1:2 

        if strcmp(extension,'.continuous') 

            %Performs tracking, calculates speed and total distance travelled in m 

            [x,y,~,speed_out,distance] = 

TrackingNovelFamiliar(subfolders{ind0},1,'two'); 

            tsf = fillmissing(speed_out.ts,'linear'); 

            speed = speed_out.speed; 

            %Imports the .continuous data into MatLab 

            [signals(:,indch),~,info] = load_open_ephys_data_faster(channels{indch}); 

        elseif strcmp(extension,'.mat') 

            [x,y,ts,speed_out,distance] = 

TrackingNovelFamiliarSplitSession(subfolders{ind0}); 

            tsf = fillmissing(speed_out.ts,'linear'); 

            speed = speed_out.speed; 

            %Imports the .continuous data into MatLab 

            load(channels{indch}); 

            signals(:,indch) = sig; 

            info.header.sampleRate = 30000; 

        end 

    end 

 

    %Cuts the signals to the experiment duration ie 15minutes in this case 

    ExpDurationMinutes = 15; 

    Fs = info.header.sampleRate; 

    ExpDurationFrames = (ExpDurationMinutes*60)*Fs; 

    ExpDurationSeconds = ExpDurationMinutes*60; 

    signals = signals(1:ExpDurationFrames,:); 

 

    %Downsamples the signals and timestamps, to reduce computation time, 

    %and detrends to remove any baseline fluctuations 

    downsampleX = 30; 

    signalsds = downsample(signals,downsampleX); 

    signalsdsdt = detrend(signalsds); 

 

    %Set the parameters for Chronux analysis 

    Fs = Fs/downsampleX; 

    params.Fs = Fs; 

    params.pad = 2; 

    params.tapers = [2 3]; 

    params.err = 0; 

    params.trialave = 0; 

    params.segave = 0; 

 

    signal1 = signalsdsdt(:,1); 

    signal2 = signalsdsdt(:,2); 

 

    %Performs multi-taper spectral analysis, firstly, for the unbinned 

    %signal (ie the whole session) then for the binned signal, for each 

    %frequency band. As it is not possible to manually set the bandwidth, 

    %this allows us to cut off each band at the exact start and end. 

    params.fpass = [1 120]; 

    [CohgFull,~,~,~,~,t,fF] = cohgramc(signal1,signal2,[1 1],params); 
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    MeanCoh = mean(CohgFull,1); 

 

    MeanCoh(fF>47 & fF<53) = NaN; 

    MeanCoh(fF>97 & fF<103) = NaN; 

    MeanCoh = fillmissing(MeanCoh,'linear'); 

%     params.smoothfactorlow = length(fF(fF>=3 & fF<30))/9; 

%     MeanCoh(fF>=3 & fF<30) = smoothdata(MeanCoh(fF>=3 & 

fF<30),'gaussian',params.smoothfactorlow); 

%     params.smoothfactorhigh = length(fF(fF>=30 & fF<=120))/6; 

%     MeanCoh(fF>=30 & fF<=120) = smoothdata(MeanCoh(fF>=30 & 

fF<=120),'gaussian',params.smoothfactorhigh); 

 

    fD = fF(fF>=1 & fF<5); 

    fT = fF(fF>=5 & fF<12); 

    fA = fF(fF>=12 & fF<20); 

    fB = fF(fF>=20 & fF<30); 

    fG = fF(fF>=30 & fF<=100); 

    fLG = fF(fF>=30 & fF<65); 

    fHG = fF(fF>=65 & fF<=120); 

    MeanDelta = MeanCoh(fF>=1 & fF<5); 

    MeanTheta = MeanCoh(fF>=5 & fF<12); 

    MeanAlpha = MeanCoh(fF>=12 & fF<20); 

    MeanBeta = MeanCoh(fF>=20 & fF<30); 

    MeanGamma = MeanCoh(fF>=30 & fF<=100); 

    MeanLowGamma = MeanCoh(fF>=30 & fF<65); 

    MeanHighGamma = MeanCoh(fF>=65 & fF<=120); 

 

    clearvars CohD CohT CohA CohB CohG CohLG CohHG 

    clearvars FreqD FreqT FreqA FreqB FreqG FreqLG FreqHG 

 

    %Calculates the raw power of each speed bin as the mean power in each 

    %frequency band, and the freqency, as the frequency at which the power 

    %is maximal. 

    CohD = mean(MeanDelta); 

    CohT = mean(MeanTheta); 

    CohA = mean(MeanAlpha); 

    CohB = mean(MeanBeta); 

    CohG = mean(MeanGamma); 

    CohLG = mean(MeanLowGamma); 

    CohHG = mean(MeanHighGamma); 

 

    PeakDC = max(MeanDelta,[],2); 

    PeaksDC = find(MeanDelta==PeakDC); 

    FreqD = median(fD(PeaksDC)); 

    PeakTC = max(MeanTheta,[],2); 

    PeaksTC = find(MeanTheta==PeakTC); 

    FreqT = median(fT(PeaksTC)); 

    PeakAC = max(MeanAlpha,[],2); 

    PeaksAC = find(MeanAlpha==PeakAC); 

    FreqA = median(fA(PeaksAC)); 

    PeakBC = max(MeanBeta,[],2); 

    PeaksBC = find(MeanBeta==PeakBC); 

    FreqB = median(fB(PeaksBC)); 

    PeakGC = max(MeanGamma,[],2); 

    PeaksGC = find(MeanGamma==PeakGC); 

    FreqG = median(fG(PeaksGC)); 

    PeakLGC = max(MeanLowGamma,[],2); 

    PeaksLGC = find(MeanLowGamma==PeakLGC); 



337 

 

    FreqLG = median(fLG(PeaksLGC)); 

    PeakHGC = max(MeanHighGamma,[],2); 

    PeaksHGC = find(MeanHighGamma==PeakHGC); 

    FreqHG = median(fHG(PeaksHGC)); 

 

    %Stores all data of interest as a non-scalar structure, making it easy 

    %to look at and compare data from different sessions. 

    CoherenceStructure(ind0).Session = session; 

    CoherenceStructure(ind0).Parameters = params; 

    CoherenceStructure(ind0).fF = fF; 

    CoherenceStructure(ind0).MeanCoherence = MeanCoh; 

    CoherenceStructure(ind0).CohgFull = CohgFull; 

    CoherenceStructure(ind0).X = x; 

    CoherenceStructure(ind0).Y = y; 

    CoherenceStructure(ind0).Distance = distance; 

    CoherenceStructure(ind0).Speed = speed; 

    CoherenceStructure(ind0).DeltaCoherence = CohD; 

    CoherenceStructure(ind0).ThetaCoherence = CohT; 

    CoherenceStructure(ind0).AlphaCoherence = CohA; 

    CoherenceStructure(ind0).BetaCoherence = CohB; 

    CoherenceStructure(ind0).GammaCoherence = CohG; 

    CoherenceStructure(ind0).LowGammaCoherence = CohLG; 

    CoherenceStructure(ind0).HighGammaCoherence = CohHG; 

    CoherenceStructure(ind0).DeltaFrequency = FreqD; 

    CoherenceStructure(ind0).ThetaFrequency = FreqT; 

    CoherenceStructure(ind0).AlphaFrequency = FreqA; 

    CoherenceStructure(ind0).BetaFrequency = FreqB; 

    CoherenceStructure(ind0).GammaFrequency = FreqG; 

    CoherenceStructure(ind0).LowGammaFrequency = FreqLG; 

    CoherenceStructure(ind0).HighGammaFrequency = FreqHG; 

 

end 

 

%Session Analysis 

MeanCoh = cell2mat({CoherenceStructure.MeanCoherence}'); 

NovelSpecs = MeanCoh(1:8:9,:); 

FamiliarSpecs = MeanCoh([2 3 4 5 6 7 8 10],:); 

MeanNovelSpec = mean(NovelSpecs); 

MeanFamiliarSpec = mean(FamiliarSpecs); 

NovelStd = std(NovelSpecs,0,1); 

FamiliarStd = std(FamiliarSpecs,0,1); 

NovelSEM = NovelStd/sqrt(size(NovelSpecs,1)); 

FamiliarSEM = FamiliarStd/sqrt(size(FamiliarSpecs,1)); 

 

% %Creates the mean spectrums for Novel and Familiar with SEM. 

Coherence = strcat(foldername,'\','Coherence'); 

mkdir(Coherence); 

cd(Coherence); 

figure2name = strcat(animal,'-',(strcat(Channels{1},Channels{2})),'-

','CoherenceFamiliarity'); 

figure('Name',figure2name); 

NovelSpec = shadedErrorBar(fF,MeanNovelSpec,NovelSEM); 

set(NovelSpec.edge,'LineStyle','none') 

NovelSpec.mainLine.LineWidth = 1.5; 

NovelSpec.mainLine.Color = [1 0 0]; 

NovelSpec.patch.FaceColor = [0.6 0 0]; 

hold on; 

FamiliarSpec = shadedErrorBar(fF,MeanFamiliarSpec,FamiliarSEM); 
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set(FamiliarSpec.edge,'LineStyle','none') 

FamiliarSpec.mainLine.LineWidth = 1.5; 

FamiliarSpec.mainLine.Color = [0 0 1]; 

FamiliarSpec.patch.FaceColor = [0 0 0.6]; 

alpha(0.3); 

ylim([0.5 1]); 

set(gca,'LineWidth',1.5); 

set(gca,'FontSize',12) 

xlabel('Frequency (Hz)','fontsize',14); 

ylabel('Coherence','fontsize',14); 

legend({'Novel','Familiar'}); 

legend boxoff 

set(gca,'box','off'); 

hgsave(figure2name) 

 

%Save the finished data structure as a .mat file for later use 

CoherenceFolder = strcat(foldername(1:end-2),'Analysed\','Coherence'); 

mkdir(CoherenceFolder); 

cd(CoherenceFolder); 

save(strcat('Coherence','-',(animal),'-

',(strcat(Channels{1},Channels{2})),'.mat'),'CoherenceStructure'); 

 

end 

Published with MATLAB® R2019b 

9.7 Granger Causality Analysis - GrangerGram 

function [GGData] = GrangerGram(Folder,Channels) 

 

%First selects the folder with the data, and locates all the LFP data 

folder = Folder; 

folder = dir(folder); 

foldername = folder.folder; 

subfolders = {folder.name}; 

subfolders = subfolders(contains(subfolders,'Day')); 

subfolders = strcat(foldername,'\',subfolders); 

sessionnames = 

["Day1a","Day1b","Day2a","Day2b","Day3a","Day3b","Day4a","Day4b","Day5a","Day5b"]; 

cd(foldername); 

 

%Starts a megaloop to analyse and cycle through each session in an animals 

%folder. 

for ind0 = 1:length(subfolders) 

 

    files = dir(subfolders{ind0}); 

    files = files(arrayfun(@(x) ~strcmp(x.name(1),'.'),files)); 

    channels = {files.name}; 

    channels = channels(contains(channels,Channels)); 

    channels = strcat(subfolders{ind0},'\',channels); 

    channelname = string(channels{1}(end-14:end-11)); 

 

    animalnumber = foldername(end-1:end); 

    animal = strcat('Mouse',animalnumber); 

    session = files.folder; 

    session = session(end-4:end); 
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    [~,~,extension] = fileparts(channels{1}); 

    signals = []; 

 

    for indch = 1:length(Channels) 

        if strcmp(extension,'.continuous') 

            %Imports the .continuous data into MatLab 

            [signals(indch,:,1),~,info] = load_open_ephys_data_faster(channels{indch}); 

        elseif strcmp(extension,'.mat') 

            %Imports the .continuous data into MatLab 

            load(channels{indch}); 

            signals(indch,:,1) = sig; 

            info.header.sampleRate = 30000; 

        end 

    end 

 

    %Cuts the signals to the experiment duration ie 15minutes in this case 

    ExpDurationMinutes = 15; 

    Fs = info.header.sampleRate; 

    ExpDurationFrames = (ExpDurationMinutes*60)*Fs; 

    ExpDurationSeconds = ExpDurationMinutes*60; 

    signals = signals(:,1:ExpDurationFrames); 

 

 

    %Downsamples the signals and timestamps, to reduce computation time, 

    %and detrends to remove any baseline fluctuations 

    downsampleX = 30; 

    Fs = Fs/downsampleX; 

    signals = downsample(signals',downsampleX)'; 

 

    %Parameters 

 

    regmode   = 'OLS';  % VAR model estimation regression mode ('OLS', 'LWR' or empty 

for default) 

    icregmode = 'LWR';  % information criteria regression mode ('OLS', 'LWR' or empty 

for default) 

    morder    = 'AIC';  % model order to use ('actual', 'AIC', 'BIC' or supplied 

numerical value) 

    momax     = 20;     % maximum model order for model order estimation 

    acmaxlags = 50000;     % maximum autocovariance lags (empty for automatic 

calculation) 

    tstat     = '';     % statistical test for MVGC:  'F' for Granger's F-test (default) 

or 'chi2' for Geweke's chi2 test 

    alpha     = 0.05;   % significance level for significance test 

    mhtc      = 'FDR';  % multiple hypothesis test correction (see routine 

'significance') 

    fres      = [];     % frequency resolution (empty for automatic calculation) 

    segsize   = 15;     % time segment size in seconds 

    segsizem  = segsize/60; 

    segsizef  = segsize*Fs; 

    segedges = [1 segsizef:segsizef:length(signals)]; 

    Ggram12 = zeros(481,60); 

    Ggram21 = zeros(481,60); 

    Ggram = zeros(481,60); 

 

    for indseg = 1:ExpDurationMinutes/segsizem 

 

        signalseg = signals(:,segedges(indseg):segedges(indseg+1)); 
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        [nvars,nobs,ntrials] = size(signalseg); 

 

        % Model order estimation (<mvgc_schema.html#3 |A2|>) 

 

        % Calculate information criteria up to specified maximum model order. 

        [AIC,BIC,moAIC,moBIC] = tsdata_to_infocrit(signalseg,momax,icregmode,false); 

 

        % Select model order. 

        if strcmpi(morder,'AIC') 

            morder = moAIC; 

        elseif strcmpi(morder,'BIC') 

            morder = moBIC; 

        else 

        end 

 

        % VAR model estimation (<mvgc_schema.html#3 |A2|>) 

 

        % Estimate VAR model of selected order from data. 

 

        [A,SIG] = tsdata_to_var(signalseg,morder,regmode); 

 

        % Check for failed regression 

        assert(~isbad(A),'VAR estimation failed'); 

 

        % NOTE: at this point we have a model and are finished with the data! - all 

        % subsequent calculations work from the estimated VAR parameters A and SIG. 

 

        % Autocovariance calculation (<mvgc_schema.html#3 |A5|>) 

 

        % The autocovariance sequence drives many Granger causality calculations (see 

        % next section). Now we calculate the autocovariance sequence G according to the 

        % VAR model, to as many lags as it takes to decay to below the numerical 

        % tolerance level, or to acmaxlags lags if specified (i.e. non-empty). 

 

        [G,info] = var_to_autocov(A,SIG,acmaxlags); 

 

        % The above routine does a LOT of error checking and issues useful diagnostics. 

        % If there are problems with your data (e.g. non-stationarity, colinearity, 

        % etc.) there's a good chance it'll show up at this point - and the diagnostics 

        % may supply useful information as to what went wrong. It is thus essential to 

        % report and check for errors here. 

 

        var_info(info,true); % report results (and bail out on error) 

 

        % Granger causality calculation: time domain  (<mvgc_schema.html#3 |A13|>) 

 

        % Calculate time-domain pairwise-conditional causalities - this just requires 

        % the autocovariance sequence. 

 

        F = autocov_to_pwcgc(G); 

 

        % Check for failed GC calculation 

 

        assert(~isbad(F,false),'GC calculation failed'); 

 

        % Significance test using theoretical null distribution, adjusting for multiple 

        % hypotheses. 
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        pval = mvgc_pval(F,morder,nobs,ntrials,1,1,nvars-2,tstat); % take careful note 

of arguments! 

        sig  = significance(pval,alpha,mhtc); 

 

        % Granger causality calculation: frequency domain  (<mvgc_schema.html#3 |A14|>) 

 

        % Calculate spectral pairwise-conditional causalities at given frequency 

        % resolution - again, this only requires the autocovariance sequence. 

 

        f = autocov_to_spwcgc(G,fres); 

 

        % Check for failed spectral GC calculation 

 

        assert(~isbad(f,false),'spectral GC calculation failed'); 

 

        % Plot spectral causal graph. 

 

        gc12 = squeeze(f(2,1,:)); 

        gc21 = squeeze(f(1,2,:)); 

 

        n = size(f,1); 

        assert(ndims(f) == 3 && size(f,2) == n,'must be a 3-dim matrix with the first 

two dims square'); 

        h = size(f,3); 

        fres = h-1; 

        faxis = sfreqs(fres,Fs)'; 

        fiaxis = 0:0.25:120; 

        gc12i = interp1(faxis,gc12,fiaxis); 

        gc21i = interp1(faxis,gc21,fiaxis); 

 

        % Granger causality calculation: frequency domain -> time-domain  

(<mvgc_schema.html#3 |A15|>) 

 

        % Check that spectral causalities average (integrate) to time-domain 

        % causalities, as they should according to theory. 

 

        Fint = smvgc_to_mvgc(f); % integrate spectral MVGCs 

        mad = maxabs(F-Fint); 

        madthreshold = 1e-5; 

        if mad < madthreshold 

            fprintf('maximum absolute difference OK: = %.2e (< 

%.2e)\n',mad,madthreshold); 

        else 

            fprintf(2,'WARNING: high maximum absolute difference = %e.2 (> 

%.2e)\n',mad,madthreshold); 

        end 

 

        Ggram12(:,indseg) = gc12i; 

        Ggram21(:,indseg) = gc21i; 

        Ggram(:,indseg) = gc12i-gc21i; 

 

    end 

 

    GGData(ind0).Frequency = fiaxis; 

    GGData(ind0).Ggram12 = Ggram12; 

    GGData(ind0).Ggram21 = Ggram21; 

    GGData(ind0).Ggram = Ggram; 
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end 

 

%Save the finished data structure as a .mat file for later use 

GCFolder = strcat(foldername(1:end-2),'Analysed\','Granger Causality'); 

mkdir(GCFolder); 

cd(GCFolder); 

save(strcat('GG','-',(animal),'-',(strcat(Channels{1},Channels{2})),'.mat'),'GGData'); 

 

end 

Published with MATLAB® R2019b 
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Abstract 1 

The retrosplenial cortex (RSC) plays a significant role in spatial learning and memory, and is 2 

functionally disrupted in the early stages of Alzheimer’s disease. In order to investigate 3 

neurophysiological correlates of spatial learning and memory in this region we employed in vivo 4 

electrophysiology in awake, behaving mice, comparing neural activity between wild-type and J20 5 

mice, a mouse model of Alzheimer’s disease-associated amyloidopathy. To determine the response of 6 

the RSC to environmental novelty local field potentials were recorded while mice explored novel and 7 

familiar recording arenas. In familiar environments we detected short, phasic bursts of beta (20-30 8 

Hz) oscillations (beta bursts) which arose at a low but steady rate.  Exposure to a novel environment 9 

rapidly initiated a dramatic increase in the rate, size and duration of beta bursts. Additionally, theta-10 

beta cross-frequency coupling was significantly higher during novelty, and spiking of neurons in the 11 

RSC was significantly enhanced during beta bursts. Finally, aberrant beta bursting was seen in J20 12 

mice, including increased beta bursting during novelty and familiarity, yet a loss of coupling between 13 

beta bursts and spiking activity. These findings, support the concept that beta bursting may be 14 

responsible for the activation and reactivation of neuronal ensembles underpinning the formation and 15 

maintenance of cortical representations, and that disruptions to this activity in J20 mice may underlie 16 

cognitive impairments seen in these animals. 17 

Introduction 18 

The retrosplenial cortex (RSC) is considered to play a critical role in spatial learning and memory. 19 

Damage to this region results in severe impairments in navigation and landmark processing (see 20 

Mitchell et al., 2018 for review). There is a large body of experimental evidence suggesting the 21 

retrosplenial cortex is involved in the encoding, retrieval and consolidation of spatial and contextual 22 

memory (see Todd and Bucci, 2015 for review). Optogenetic stimulation of RSC neurons is sufficient 23 

to elicit retrieval and consolidation of contextual memories (Cowansage et al., 2014; De Sousa et al., 24 

2019). RSC neurons encode a range of contextual information during navigation (Koike et al., 2017), 25 



and inactivation of the RSC during impairs performance in spatial memory and contextual fear 26 

memory tasks (Czajkowski et al., 2014; Kwapis et al., 2015), suggesting the RSC is involved in the 27 

storage of spatial information. Finally, Iaria et al., (2007) demonstrated that while hippocampal 28 

subregions are differentially involved in the encoding and retrieval of spatial information, the entire 29 

RSC is active during both processes. Spatial learning and memory impairments have been shown to 30 

be one of the earliest aspects of cognitive impairment in Alzheimer’s disease (AD). Patients exhibit 31 

disturbances in specific spatial memory processes associated with the RSC (Laczó et al., 2009; Vann et 32 

al., 2009; Morganti et al., 2013). During the early stages of AD, the retrosplenial gyrus has been shown 33 

to exhibit regional hypometabolism (as measured by FDG-PET), and considerable atrophy (Minoshima 34 

et al., 1997; Choo et al., 2010). As such, the RSC is a region of great interest in research into the brain’s 35 

function in health and AD. 36 

Measurable correlates of brain function can have great value in fundamental neuroscience. They can 37 

aid the understanding of the complex ways in which the brain processes information and performs its 38 

many tasks, and also indicate how such functionality may be affected in disease. Similarly, these 39 

“functional biomarkers” can provide measurable benchmarks against which to test interventions 40 

which may affect or restore normal brain function (Walsh et al., 2017). Of the growing number of 41 

methodologies available for investigating brain function, in vivo electrophysiology remains a powerful 42 

tool with a superior temporal resolution to all others. The coordinated firing of large groups of neurons 43 

in the brain gives rise to waves of electrical activity, known as neural oscillations, which can be 44 

recorded as intracranial local field potentials (LFPs) or extracranial electroencephalograms (EEGs). It 45 

is thought that one of the roles of these oscillations in the brain is to coordinate the spiking activity of 46 

neurons, allowing computation and communication between potentially distant brain regions 47 

(Canolty et al., 2010). The temporal resolution of electrophysiology combined with the spatial 48 

specificity afforded by intracranial recordings make in vivo electrophysiology an invaluable tool for 49 

discovering functional correlates of brain function and disease-associated dysfunction. 50 



In order to investigate the function of the RSC in spatial learning and memory, we recorded LFPs and 51 

multi-unit spiking activity from this region, while mice freely explored either a novel or familiar 52 

environment. To probe the effects of AD-associated amyloid pathology on RSC function we used J20 53 

mice, a widely employed mouse model of amyloidopathy. In this manuscript, we describe short, phasic 54 

bursts of beta (20-30 Hz) oscillations, termed “beta bursts”, that occur within the RSC, while mice 55 

freely explore an environment. Beta bursting activity is significantly increased during exposure to a 56 

novel environment, and these bursts are correlated with increased neuronal spiking in the RSC. These 57 

data demonstrate that beta bursting in the RSC is a robust neurophysiological correlate of 58 

environmental novelty and may have a role in the storage and retrieval of cortical spatial 59 

representations. Finally, we observed aberrant beta bursting activity and an uncoupling of beta 60 

bursting from neuronal spiking in the RSC in J20 mice, which may disrupt its function, and underlie 61 

spatial learning and memory deficits seen in these mice (Cheng et al., 2007). 62 

Methods 63 

Ethics 64 

All procedures were carried out in accordance with the UK Animal (Scientific Procedures) Act 1986 65 

and were approved by the University of Exeter Animal Welfare and Ethical Review Body. 66 

Animals 67 

8 male J20 mice and 6 wild-type littermates were bred at the University of Exeter and housed on a 12 68 

hour light/dark cycle. Access to food and water was provided ad libitum. All mice underwent surgery 69 

at between 6-8 months of age. Mice were group housed prior to surgery, and single housed post-70 

surgery, in order to prevent damage to the surgical implants. 71 

Surgery 72 



Mice were unilaterally implanted with a 16 channel, single shank silicon probe (NeuroNexus 73 

Technologies, A1x16-5mm-100-177-CM16LP), in the right retrosplenial cortex (AP –2 mm, ML +0.5 74 

mm, DV +1.75 mm, 0° Pitch). Mice were anaesthetised using isoflurane and fixed into a stereotaxic 75 

frame. A small craniotomy was drilled over the desired co-ordinate, and at least one hole was drilled 76 

in each of the major skull plates, in which miniature screws were placed to act as supports (Antrin 77 

Miniature Specialties). The probe was slowly lowered into the desired location, and fixed in place with 78 

dental cement (RelyX Unicem, 3M). The ground wire from the probe was connected to a silver wire, 79 

attached to a screw overlying the cerebellum. Throughout surgery, body temperature was monitored 80 

with a rectal probe and regulated by a feedback-controlled heat mat.  Animals were kept hydrated by 81 

subcutaneous injections of Hartmann’s solution once per hour of surgery (0.01 ml/g body weight).  82 

Behaviour 83 

After at least one week of post-surgical recovery, animals underwent a Novel/Familiar environment 84 

task, as shown in (Fig. 1). Individual mice were tethered to the recording apparatus, and placed in one 85 

of two high-sided recording arenas: one square, with black and white stripes, and one circular and 86 

lacking stripes. Both arenas each had two internal visual cues, placed on opposite sides. The animals 87 

were allowed to freely explore their environment for 15 minutes, after which, they were returned to 88 

their home cage. After 15 minutes in their home cage, the animal was returned to the same recording 89 

arena for another 15 minutes, and allowed to freely explore. Following this, the animal was returned 90 

to its home cage. This protocol was repeated at the same time of day, for 5 consecutive days, but on 91 

the fifth day, the animal was placed in the other, previously unseen arena. The order of exposure to 92 

these arenas was counterbalanced between animals. Each session can therefore be described by the 93 

experimental day, and the particular session within that day, with session A being the first, and session 94 

B being the second. Using this nomenclature, Sessions 1a and 5a were ‘novel’ sessions, while the 95 

remaining sessions were ‘familiar’ sessions. In order to reduce the stress associated with the recording 96 

process, animals were acclimatised to this process during a 10 minute test session 3 days prior to the 97 



start of the experiment, in which the animal was tethered and recorded from while in its home cage. 98 

An added benefit of this was to familiarize the animals with this experimental procedure, thus 99 

ensuring that perceived novelty during the first experimental session was limited to the environment, 100 

and not the experience of being tethered to the recording apparatus. 101 

Data Collection 102 

Throughout experimental sessions, Local Field Potentials (LFPs) were recorded using an Open Ephys 103 

Acquisition board (Open Ephys), which was tethered to the probe via a headstage (RHD 16-Channel 104 

Recording Headstage, Intan Technologies), and SPI cables (Intan Technologies). LFPs on each channel 105 

were sampled at 30 kHz, while the animal’s location was monitored using a pair of light-emitting 106 

diodes (LED) soldered to the headstage, and a video camera, placed directly above the arena. The 107 

location of these LEDs was tracked using Bonsai tracking software, so the location and running speed 108 

of the animal could be estimated offline. 109 

Data Analysis 110 

LFPs were down-sampled (Spectral Analysis: 1 kHz, Burst Detection and Phase Amplitude Coupling: 3 111 

kHz, Multi-Unit Activity: N/A) and de-trended, in order to remove any slow linear drift of the baseline 112 

that may occur across the session. The Chronux toolbox (Mitra and Bokil, 2008, http://chronux.org/) 113 

was used for the mtspecgramc function, as well as a number of built in MATLAB functions. All scripts 114 

used in this study were written in house, and are now publicly available (see Software Accessibility). 115 

All LFP analyses were performed for a single channel in the dysgranular and a separate single channel 116 

in granular RSC, except for multi-unit activity analysis, in which all channels in each region were used. 117 

The location of each channel was estimated from post-hoc histology. 118 

Power Spectra 119 

Multi-taper spectral analysis was performed using the mtspecgramc function from the Chronux 120 

Toolbox, with a time-bandwidth product of 2 (1 second x 2 Hz), and 3 tapers, resulting in some 121 



smoothing of resulting spectra. The mtspecgramc function generates a power spectrogram by 122 

generating multiple power spectra for short segments of time series data, using a moving window; in 123 

our case with the window size of 1 s with no overlap. These spectrograms were then logged to the 124 

base 10, and multiplied by 10, in order to correct for the tendency of spectral power to decrease with 125 

a 1/f distribution. These individual spectra were averaged, resulting in a single mean power spectrum 126 

for the entire session, or for the first minute of each session, as specified in the results. Spectral data 127 

from 48 to 52 Hz, which incorporates line frequency noise (50 Hz), were removed, and linearly 128 

interpolated. The power of each frequency band was calculated as the mean power in each of the 129 

following frequency ranges: delta (1-5 Hz), theta (5-12 Hz), alpha (12-20 Hz), beta (20-30 Hz), low 130 

gamma (30-65 Hz), and high gamma (65-120 Hz). 131 

Beta Burst Detection 132 

The data were band-pass filtered between 20-30 Hz, to isolate the beta frequency band. The 133 

amplitude and phase of this beta signal were calculated as the real and imaginary components of the 134 

Hilbert transform, respectively. The amplitude was z-scored, in order to give the instantaneous 135 

standard deviation of the beta signal amplitude from the mean. Epochs of the signal where this z-136 

score exceeded 2 standard deviations from the mean amplitude were detected, as were the 137 

corresponding “edges” of these epochs, where the signal magnitude surpassed 1 standard deviation 138 

either side of the 2 standard deviation threshold. This was done in order to capture the time-course 139 

of these high beta amplitude epochs. Events that did not persist longer than a minimum duration of 140 

150 ms (i.e. fewer than 3 oscillation cycles) were discarded. Furthermore, due to the sensitivity of this 141 

method to large, amplitude noise artefacts, any event whose peak amplitude exceeded three scaled 142 

median absolute deviations from the median of the events detected in that session were discarded as 143 

well. These remaining events were then considered beta-bursts. The duration and peak magnitude of 144 

each burst was calculated, as well as the distribution and total number of bursts in the session.  145 

Phase-Amplitude Coupling 146 



To calculate phase-amplitude coupling, and create a comodulogram, modulation index was calculated 147 

individually for each pair of phase and amplitude frequencies. Modulation index was calculated as 148 

described by Canolty et al. (2006), with modification and vectorisation of some of the MATLAB code, 149 

for phase frequencies in bins of 0.25 Hz from 2 to 12 Hz, and for amplitude frequencies in bins of 2 Hz 150 

from 10 to 100 Hz. For each pair, local field potentials were filtered in the phase frequency band and 151 

the amplitude frequency band, after which the instantaneous phase and amplitude of each filtered 152 

signal was calculated, respectively, using the Hilbert transform. Subsequently, modulation index (MI) 153 

was calculated, but in order to attempt to reduce the possibility of spurious coupling, this was 154 

normalised through the use of 10 surrogates, created by time shifting the data by a random amount 155 

(between 1 and 59 seconds). In order to smooth the resulting comodulograms, the data matrix was 156 

linearly interpolated in both dimensions by a factor of 2. 157 

Multi-Unit Activity 158 

Due to the distance between adjacent channels on the recording probe (100 µm) it is highly unlikely 159 

that activity of a single neuron would appear on multiple channels. Consequently, each channel was 160 

treated as an individual multi-unit. Raw local field potentials were first common average-referenced, 161 

using a mean of the signals from all other 15 channels, then filtered in the range of 500-14250 Hz, in 162 

order to isolate the spiking frequency band. Spikes were detected as peaks that crossed a threshold 163 

given by the median of the absolute voltage values of the signal, multiplied by 0.6745, as suggested 164 

by Quiroga, Nadasdy and Ben-Shaul (2004), and had a minimum separation of 0.5 ms. In order to 165 

investigate multi-unit activity during beta bursts, bursts were detected as previously mentioned, and 166 

bursts that occurred within a second of each other were discarded, to remove overlapping segments. 167 

A single peri-burst histogram was created for each channel by taking the total number of spikes in 20 168 

ms time bins from 1 second before burst onset, to 1 second after, for all beta bursts. Each histogram 169 

was then normalised by dividing the count in each bin by the total number of spikes in all bins, 170 



averaged across all channels within the region, and then across all sessions, smoothed with a 100 ms 171 

moving mean filter, and z-scored with respect to the baseline epoch (1 second pre-burst). 172 

Software Accessibility 173 

All code has been made publicly available at https://github.com/cfle/In-Vivo-Ephys-Code. This code is 174 

freely accessible for viewing, or use. If using any of this code in a paper, please, cite this paper as well 175 

as the GitHub repository (https://github.com/cfle/In-Vivo-Ephys-Code). 176 

Statistics 177 

All statistical analysis was performed in MATLAB. Fourteen mice in total were used in this study, 6 178 

wild-type and 8 J20, with each mouse undergoing a total of ten recording sessions (5 days, 2 sessions 179 

per day). Unfortunately, the local field potential data from Day 3 session 1 (i.e. session 3a) was 180 

corrupted for a single wild-type mouse, and therefore data for this mouse from this session was 181 

omitted from all figure making and statistics. Therefore the n numbers for all statistics are (wild-type: 182 

n = 6 (except from Day3a where n = 5), J20: n = 8). All statistics, unless stated otherwise, were 183 

performed using a two-way ANOVA, with genotype (wild-type/J20) and novelty (novel/familiar) as 184 

factors. It is important to note that due to the experimental design of our Novel/Familiar environment 185 

task, there were multiple novel and familiar sessions (2 novel, and 8 familiar). All sessions were either 186 

classified as novel or familiar and analysed accordingly. Following a significant main effect or 187 

interaction, Bonferroni-corrected multiple comparisons was performed, to investigate pairwise 188 

differences between different levels of either factor. 189 

Histology 190 

Upon completion of the experiments, mice were killed using an overdose of sodium pentobarbital 191 

(Euthetal), and an isolated stimulator was used to produce electrolytic lesions at the recording sites. 192 

Mice were then transcardially perfused with 40% paraformaldehyde (PFA), and their brains were 193 

extracted and stored in PFA for 24 hours, after which they were transferred to phosphate-buffered 194 

https://github.com/cfle/In-Vivo-Ephys-Code


saline (PBS) prior to sectioning. Brains were sliced into 100 µm sagittal sections using a vibratome 195 

(Leica), and stained with Cresyl Violet. Digital pictures were taken using QCapture Pro 7 software 196 

(Qimaging), and electrode sites were verified by comparing the lesion sites in these photographs to 197 

The Allen Mouse Brain Atlas (https://mouse.brain-map.org/static/atlas). Due to the high channel 198 

count of these probes, as well as their linear geometry, it was possible to account for small differences 199 

in the depth of each probe by selecting channels of similar depths across different probes. This 200 

resulted in reduced variability between animals in a range of neurophysiological measures.   201 

Results 202 

To investigate neurophysiological correlates of spatial learning and memory in the retrosplenial cortex 203 

(RSC), local field potentials were recorded from across the entire dorsoventral axis of the RSC, while 204 

animals underwent a novel/familiar environment task. The RSC is made up of two distinct subdivisions: 205 

dysgranular (RSCdg), and granular (RSCg). While these regions are strongly interconnected, the 206 

neuroanatomical connectivity of these regions has been shown to differ (van Groen and Wyss, 1992; 207 

Van Groen and Wyss, 2003a, 2003b), therefore it is possible that the functional neurophysiology may 208 

vary as well, especially during a behavioural paradigm such as this, where spatial learning and memory 209 

processes may be stimulated. Due to the anatomical positioning of these subdivisions in rodents, it is 210 

possible to record from both RSCdg and RSCg at once, using a single, vertical silicon probe (Figure 1C). 211 

Therefore for this study, our analyses were performed for both subdivisions. We found very little 212 

difference between the electrophysiological activities seen in the two subregions. Furthermore, any 213 

changes seen in J20 mice were generally common to both subregions, with marginally greater effects 214 

in RSCg. For the sake of conciseness, we have decided to only show the data from RSCg in this paper. 215 

Spectral Analysis 216 

Local field potentials from RSCg show a clear peak in theta frequency band (5-12 Hz) throughout 217 

recording sessions (Fig. 2a). In order to investigate any changes in oscillatory activity in RSCg during 218 
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environmental novelty, power spectral analysis was performed on the entire 15 minutes of each 219 

session. These power spectra were averaged across novel and familiar sessions for wild-type and J20 220 

mice. Beta and low gamma power were significantly higher overall during novel sessions (Main Effect 221 

Novelty - Beta: F(1,135) = 16.4,p = 8.8e-5; Low Gamma: F(1,135) = 10.8, p = 0.001, 2-way ANOVA). 222 

Furthermore, while alpha, beta, low gamma and high gamma power were significantly higher overall 223 

in J20 mice (Main Effect Genotype – Alpha: F(1,135) = 21.4, p = 8.46e-6; Beta: F(1,135) = 253, p = 1.01e-224 

32; Low Gamma: F(1,135) = 43.3, p = 9.56e-10; High Gamma: F(1,135) = 14.4, p = 2.3e-4, 2-way 225 

ANOVA), delta and theta power were significantly lower (Main Effect Genotype - Delta: F(1,135) = 226 

9.23, p = 0.03; Theta: F(1,135) = 7.92, p = 0.006, 2-way ANOVA). Beta power was significantly higher 227 

during novel sessions in J20 (Nov: 17.7 ± 0.18; Fam: 16.9 ± 0.09; p = 4.7e-4) but not wild-type mice 228 

(Nov: 15.1 ± 0.21; Fam: 14.7 ± 0.1; p = 0.4). Upon closer inspection of power spectrograms (Fig. 2a), it 229 

was clear that spectral activity changed within novel sessions. Power in the alpha, beta and low gamma 230 

range appeared to be higher in the first minute of the session and diminish over time. As exemplified 231 

in (Fig. 2c), transient epochs of high power in the 12-40 Hz range are seen throughout the early stages 232 

of the session. By performing the same power spectral analysis as before on only the first minute of 233 

each session, clear differences appeared between novel and familiar sessions. Alpha, beta and low 234 

gamma power were significantly higher overall during novel sessions (Main Effect Novelty - Alpha: 235 

(F(1,135) = 5.73, p = 0.02; Beta: F(1,135) = 75.7, p = 1.01e-14; Low Gamma: F(1,135) = 35.6, p = 1.98e-236 

8, 2-way ANOVA). Furthermore, alpha, beta, low gamma and high gamma power were significantly 237 

higher overall in J20 mice (Main Effect Genotype - Alpha: F(1,135) = 40.9, p = 2.47e-9; Beta: F(1,135) 238 

= 132, p = 1.1e-21; Low Gamma: F(1,135) = 14.1, p = 2.52e-4; High Gamma: F(1,135) = 12.9, p = 4.65e-239 

4, 2-way ANOVA). Beta and low gamma power were significantly higher in wild type (Beta: Nov: 17 ± 240 

0.28; Fam: 15 ± 0.14; p = 5.47e-8; Low Gamma: Nov: 14.6 ± 0.26; Fam: 13.2 ± 0.13; p = 3.62e-5) and 241 

J20 mice (Beta: Nov: 19.2 ± 0.25; Fam: 17.5 ± 0.12; p = 3.59e-8; Low Gamma: Nov: 15.1 ± 0.23; Fam: 242 

14.2 ± 0.11; p = 0.002). 243 



Across these time series, increased beta power occured in brief, discrete epochs, as shown in the 244 

expanded power spectrogram in (Fig. 3a). This can also be seen clearly in beta-filtered local field 245 

potentials, where these periods of high beta amplitude intersperse an otherwise very low amplitude 246 

oscillation. In order to understand the timescale and frequency domains of these events, wavelet 247 

analysis was used to investigate them further. As exemplified in (Fig. 3C), these individual events were 248 

short in duration, and peaked in the 20-30 Hz, beta band. 249 

Beta Bursting Activity 250 

In order to investigate this phasic beta activity in more depth, an algorithm was written to detect and 251 

analyse these “beta bursts”; the basis of this algorithm is illustrated in (Fig. 4a). Once all putative bursts 252 

have been detected, the duration and magnitude of these beta bursts was calculated (Fig. 4a). With 253 

these transient epochs of high beta power now classified as discrete beta bursts, it is possible to 254 

compare this beta activity between sessions. Overall, there were significantly more beta bursts 255 

detected during novel sessions compared to familiar sessions (Main Effect Novelty - F(1,135) = 74, p = 256 

1.73e-14, 2-way ANOVA). As shown in (Fig. 4b), there were significantly more beta bursts detected 257 

during novelty, for wild-type (Nov: 33.7 ± 2.42; Fam: 21.4 ± 1.22; p = 7.59e-5) and J20 mice (Nov: 56.3 258 

± 2.1; Fam: 37.8 ± 1.05; p = 4.83e-12). Furthermore, on average the number of beta bursts detected 259 

was significantly higher in J20 mice (Main Effect Genotype – F(1,135) = 118, p = 3.45e-20, 2-way 260 

ANOVA). Furthermore, it is possible to investigate the distribution of beta bursts within sessions. As 261 

shown in (Fig. 4c), during familiar sessions the rate of beta busting was reasonably steady, as indicated 262 

by the linear relationship between time and burst number shown in the cumulative frequency plot, 263 

for both wild-type and J20 mice. During novel sessions, however, there was a high rate of beta bursting 264 

during the first 1-3 minutes of the session, which gradually decreased over time to a steady rate. The 265 

rate of beta bursting was significantly higher in J20 mice during familiar sessions, and during the initial 266 

and final part of novel sessions. 267 



The features of these beta bursts may also vary depending on novelty and genotype. Burst magnitude 268 

was significantly higher overall during novel sessions (Main Effect Novelty - F(1,135) =48.7, p = 1.21e-269 

10, 2-way ANOVA). Furthermore, burst magnitude was significantly higher overall in J20 mice (Main 270 

Effect Genotype - F(1,135) = 137, p = 2.97e-22, 2-way ANOVA). As shown in (Fig, 4d), beta bursts were 271 

significantly larger in magnitude during novelty, for both wild-type (Nov: 106 ± 2.96; Fam: 90.4 ± 1.5; 272 

p = 2.88e-5) and J20 mice (Nov: 131 ± 2.57; Fam: 117 ± 1.28; p = 5.16e-6). There was also a significant 273 

interaction between the effects of genotype and novelty on beta burst duration (F(1,135) = 8.04, p = 274 

0.005, 2-way ANOVA). As shown in (Fig.4e), beta bursts were significantly longer in duration during 275 

novel sessions for both wild-type (Nov: 192 ± 2.1; Fam: 176 ± 1.1; p =3.32e-9) and J20 mice (Nov: 189 276 

± 1.8; Fam: 182 ± 0.9; p = 0.005). 277 

Phase-amplitude Coupling 278 

As elegantly shown by van Ede et al. (2018), continuous oscillations may appear as phasic burst events 279 

if their amplitude varies greatly over time. The amplitude of high frequency oscillations such as gamma 280 

may be modulated by the phase of low frequency oscillations such as theta (Canolty et al., 2006). This 281 

interaction is generally thought to allow slow, large amplitude oscillations to coordinate faster, small 282 

amplitude local oscillations. For this reason, it was of interest for us to investigate whether the 283 

amplitude of beta oscillations was coupled to the phase of theta oscillations, an increase in which may 284 

underlie the increased beta bursting activity seen during novelty. As shown in (Fig. 5a), phase-285 

amplitude coupling efficacy was calculated for a range of phase and amplitude frequencies, and the 286 

effect of novelty and genotype determined. The strength of phase-amplitude coupling was quantified 287 

for theta-alpha, theta-beta and theta-gamma coupling for each session (Fig. 5b). There were 288 

significant interactions between the effects of genotype and novelty for theta-alpha coupling (F(1,135) 289 

= 12.8, p = 4.72e-4) and theta-beta coupling (F(1,135) = 17.7, p = 4.73e-5, 2-way ANOVA). Theta-alpha 290 

coupling was significantly higher in novel sessions for wild-type (Nov: 2.59 ± 0.15; Fam: 1.6 ± 0.07; p = 291 

2.4e-7) but not J20 mice (Nov: 2.2 ± 0.13; Fam: 1.98 ± 0.06; p = 1). Theta-beta coupling was also 292 



significantly higher in novel sessions for wild-type (Nov: 1.65 ± 0.08; Fam: 1.16 ± 0.04; p = 1.04e-6) but 293 

not J20 mice (Nov: 1.23 ± 0.07; Fam: 1.23 ± 0.03; p = 1). There were no significant effects of novelty 294 

on theta-gamma coupling, but theta-gamma coupling was lower on average, in J20 mice (Main Effect 295 

Genotype – F(1,135) = 19.7, p = 1.87e-5). It is important to note that in order to focus on the most 296 

physiologically and behaviourally relevant part of the session, this analysis was performed for the first 297 

minute of each session. When the same analysis was performed on the last minute of each session, 298 

there was no effect of novelty on coupling in any band for either genotype (data not shown). 299 

Spiking Activity 300 

In order to determine whether beta bursting was associated with a change in neuronal firing, multi-301 

unit activity was investigated. Due to the linear geometry of the silicon probes, and the 100 µm 302 

distance between channels, it was not possible to reliably identify single unit activity, as activity from 303 

a single neuron was unlikely to appear on multiple channels, limiting spatiotemporal clustering 304 

methods such as those enabled by tetrodes or higher density silicon probes. Therefore, spikes 305 

appearing on a single channel could be from one or more nearby neurons. This, however, does mean 306 

that it is possible to treat each individual probe channel as a single multi-unit, to facilitate investigation 307 

of the relationship between neuronal spiking activity and beta bursting. As shown in the left panel of 308 

(Fig. 6a), individual spike waveforms can be readily discerned, and these spike waveforms are similar 309 

in wild-type (black) and J20 (green) mice. Furthermore, there was a trend towards higher multi-unit 310 

firing rate in J20 mice compared to wild-type mice (WT: 12.9 Hz ± 4.9; J20: 33.5 Hz ± 7.3; t(12) = -2.18, 311 

p = 0.05; unpaired t-test, Fig. 6a, right). The average beta amplitude during beta bursts is shown in 312 

(Fig. 6b), averaged across all bursts with non-overlapping time segments. Beta bursts in both 313 

genotypes are associated with a brief, monophasic increase in beta amplitude that lasts no more than 314 

200 ms on average. Finally, (Fig. 6c) shows peri-event time histograms for spike rate during beta 315 

bursts, as a Z score from the pre-burst baseline (left of the dotted line). In order to investigate 316 

statistically significant changes in spike rate during bursts, the maximum z scored spike rate was 317 



determined at the peak of beta amplitude (approximately 100 ms after burst onset), for each animal, 318 

and compared to the mean pre-burst spike rate (0 due to z scoring of spike rate to baseline) using a 319 

one-sample t-test. Beta bursting in the RSCg of wild-type mice was associated with a significant 320 

increase in spike rate during beta bursts (Z-scored spike rate from baseline: 2.24 ± 0.46, t(5) = 4.86, p 321 

= 0.005, one-sample t-test; Figure 6c, left). Conversely there was no significant increase in spike rate 322 

during beta bursts in J20 mice (Z-scored spike rate from baseline: 0.78 ± 0.39, t(7) = 1.98, p = 0.09, 323 

one-sample t-test; Figure 6c, right). The difference between spike rate during beta bursts in wild-type 324 

and J20 mice, as determined by a two-sample t-test, was significant (t(12) = 2.4, p = 0.03, two-sample 325 

t-test). These data indicate that beta bursts are closely coupled to neuronal spiking in RSCg in wild-326 

type mice, and that this relationship is effectively uncoupled in J20 mice. 327 

Discussion 328 

In this study we attempted to identify neurophysiological correlates of environmental novelty in the 329 

mouse retrosplenial cortex (RSC), and investigate how these may be affected by amyloid pathology. 330 

We observed phasic increases in the amplitude of beta frequency neuronal oscillations, termed beta 331 

bursts, which occurred more frequently and with larger amplitude during novelty, and were positively 332 

correlated with neuronal spiking. A number of aberrant neurophysiological changes were seen in the 333 

RSC in J20 mice. Alpha, beta and low gamma power were significantly increased, and increases in beta 334 

bursting activity were seen during both novelty and familiarity. Beta bursts were more frequent, and 335 

larger in magnitude, yet the coupling of beta bursts to spiking activity was lost, suggesting a functional 336 

uncoupling of beta bursting with local neuronal activity. Finally, theta-beta phase-amplitude coupling 337 

was also disrupted, resulting in a loss of an effect of novelty on this activity. These results together 338 

indicate that beta bursting activity is a neurophysiological correlate of environmental novelty in the 339 

RSC, which is disrupted in J20 mice. 340 

Numerous studies have noted changes in beta activity in a range of  brain regions, during a variety of 341 

behaviours (see Spitzer and Haegens, 2017 for review). It is important to note that due to variability 342 



between groups in the naming and frequency ranges of neural oscillation frequency bands, cross-343 

study comparison is often complicated. What we have referred to as beta, has previously been called 344 

upper beta (Spitzer and Haegens, 2017), beta2 (França et al., 2014), or slow gamma (Carr et al., 2012; 345 

Remondes and Wilson, 2015). For the sake of clarity, references to beta oscillations in this paper refer 346 

to the 20-30 Hz frequency range. Others have noticed similar novelty-induced beta oscillations in the 347 

hippocampus: Berke et al. (2008) reported a large increase in beta power that appeared when mice 348 

explored a novel environment, which persisted for around a minute, before returning to a lower level. 349 

The authors concluded that these oscillations may be a “dynamic state that facilitates the formation 350 

of unique contextual representations.” As shown in Igarashi et al. (2014), coherent 20-40 Hz oscillatory 351 

activity increased between the hippocampus and lateral entorhinal cortex during odour 352 

discrimination, and coincided with the development of odour-specific neural representations in these 353 

regions. Work by França et al. (2014) demonstrated that beta power was also transiently enhanced in 354 

the hippocampus during exploration of novel objects, but not previously experienced familiar items. 355 

Furthermore, they found that administration of an amnestic agent, namely haloperidol, resulted in a 356 

similar increased beta activity upon re-exposure to previously encountered objects, suggesting they 357 

had been “forgotten” and were therefore novel again. This further reinforces the idea that 358 

hippocampal beta activity is related to novelty, and extends the previous work by demonstrating that 359 

hippocampal-dependent novel object recognition can also elicit beta oscillations. Subsequently, 360 

França, Borgegius and Cohen (2020) investigated novelty-associated beta bursting in a larger 361 

hippocampal novelty circuit, by simultaneously recording from hippocampus, prefrontal cortex and 362 

parietal cortex during environmental and object novelty. Novelty-associated increases in beta power 363 

were seen in the prefrontal cortex during environmental novelty, and authors demonstrated 364 

significant phase-amplitude coupling of delta and theta to beta oscillations, which were increased in 365 

novelty. Similarly, in the RSC we see strong coupling between theta phase and beta amplitude, which 366 

is significantly higher during novelty, but only in wild-type mice. Others have noted theta-beta PAC in 367 

humans as well, both in the hippocampus during a working memory task (Axmacher et al., 2010), and 368 



in the inferior temporal cortex during object novelty (Daume et al., 2017). Interestingly, the studies 369 

mentioned above tend to view beta activity as continuous oscillations, rather than discrete events. 370 

This is despite Berke et al. (2008) noting that beta appears as pulses, and a brief mention of burst 371 

detection and characterisation by França et al. (2014). As demonstrated in this study, novelty-372 

associated beta oscillations in the RSC conform well to a model of discrete bursts, where their rate, 373 

magnitude and duration can vary depending on environmental novelty. Due to the use of averaging 374 

across trials or analysis spanning long temporal segments, the phasic nature of transient oscillatory 375 

events can be easily lost. Furthermore, in the somatosensory cortex, beta synchronicity appears in 376 

short events in both mice and humans; the features of which, such as duration and frequency range, 377 

are highly conserved across tasks and species (Shin et al., 2017). 378 

Beta oscillations have long been associated with motor activity and sensory processing, and a large 379 

body of work has also noted changes in beta activity in a range of brain regions during other cognitive 380 

tasks (see Engel and Fries, 2010 for review). This gave rise to the hypothesis that the unifying function 381 

of beta oscillatory activity in these different regions was the maintenance of the “status-quo”, be it 382 

the current motor state, sensory stimulus or cognitive set (Engel and Fries, 2010). This theory would 383 

suggest that, beta activity would be decreased during novelty, and increased during familiarity. As we 384 

have shown, this is not the case. While steady and persistent beta bursting during familiarity may 385 

support the maintenance of the contextual “status-quo”, in this case the environment, this theory 386 

does not reconcile the significant increases in beta activity that occur during novelty. 387 

Many groups have previously shown that information may be rapidly represented and stored in the 388 

RSC (Cowansage et al., 2014; Czajkowski et al., 2014; Koike et al., 2017; Vedder et al., 2017). Beta 389 

oscillations have also been shown to carry a variety of different forms of contextual information in a 390 

range of brain regions, and phasic increases in beta power during working memory maintenance may 391 

represent reactivation of encoded information (Spitzer and Haegens, 2017). Supporting this is a study 392 

in which the authors employed transcranial magnetic stimulation to activate a currently unattended 393 



memory, as shown by an increase in content-specific beta activity (Rose et al., 2016). The theory put 394 

forth by Spitzer and Haegens (2017), is that beta oscillations can activate and reactivate neuronal 395 

ensembles to create and recall cortical representations. This theory is consistent with the data shown 396 

in this study: high beta bursting activity during perceived novelty activates neurons in the RSC, which 397 

may encode content about the novel environment, and subsequent beta bursting may continuously 398 

reactivate these ensembles, further consolidating or altering this representation. Recent 399 

breakthroughs in real-time burst detection and neurofeedback have made it possible to artificially 400 

induce beta bursts in awake behaving animals, creating the possibility of testing this hypothesis 401 

directly (Karvat et al., 2020).  402 

A number of neurophysiological changes were seen in the RSC in J20 mice. Increases in alpha, beta 403 

and gamma power are indicative of a hyperexcitability phenotype, which has been previously noted 404 

in this strain (Palop et al., 2007; Palop and Mucke, 2009). Increases in beta bursting rate and burst 405 

magnitude were also notable. Finally, and most importantly, beta bursting activity was effectively 406 

uncoupled from neuronal spiking in J20 mice, potentially impairing the ability to form neuronal 407 

ensembles that encode and store information in the RSC. At the age point used, amyloid pathology in 408 

J20 mice is thought to be predominantly located in the hippocampus in this model, although, amyloid 409 

pathology seems to develop in the RSC to a much greater extent than other cortical regions, especially 410 

in RSCg (Whitesell et al., 2019). Hyperexcitability of cortical neurons in a mouse model of amyloid 411 

pathology was more prevalent in neurones proximal to amyloid plaques (Busche et al., 2008), and 412 

inhibitory interneuron dysfunction in J20 mice has been shown to lead to cortical network 413 

hypersynchrony and spontaneous epileptiform discharges (Verret et al., 2012). The hippocampus 414 

projects directly to RSCg, and indirectly, via the subiculum, to RSCdg (van Groen and Wyss, 1992; Van 415 

Groen and Wyss, 2003a, 2003b), so network dysfunction in RSC may be explained by its high levels of 416 

amyloid pathology or its anatomical connectivity with an increasingly dysfunctional hippocampus 417 

(Palop et al., 2007). 418 



These findings demonstrate a novel form of Alzheimer’s disease (AD) related cortical dysfunction, 419 

which may underlie or exacerbate cognitive dysfunction seen in these mice, and in people with AD. 420 

Erroneous attribution of novelty to familiar environments, could cause memory impairments, and 421 

result in wandering and confusion. Interestingly, aberrant beta bursting has long been associated with 422 

another progressive neurodegenerative disease, Parkinson’s disease. Increased beta oscillatory 423 

activity in the basal ganglia and cortex are associated with motor impairments in Parkinson’s disease 424 

(for review see Brittain, Sharott and Brown, 2014), and administration of levodopa has been shown to 425 

improve motor function and reduce beta oscillations (Brown et al., 2001). The loss of coupling 426 

between beta bursting and neuronal spiking seen in J20 mice suggest that attenuating bursting 427 

without restoring this coupling may be ineffective in AD. Furthermore, the dysfunction in novelty-428 

associated beta bursting identified in this study may be a useful functional biomarker of AD-related 429 

amyloidopathy, which could be used to measure the neurophysiological effectiveness of possible 430 

disease modifying therapeutics. 431 

In conclusion, phasic bursts of beta oscillations may be a functional means of activating neural 432 

ensembles to form, and subsequently reactivate cortical representations. Network dysfunction in J20 433 

mice results in aberrant beta bursting and an uncoupling of beta bursting from spiking, which may 434 

underlie cognitive impairments in these mice. 435 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Experimental Design A. Diagrams of the recording arenas used for this study. Both are 

roughly equal sized, one is square, with black and white stripes along the walls and floor (left) and 

the other is cylindrical with plain brown floor and walls. B. Experimental procedure for the 

novel/familiar environment task. A mouse is placed in one of the recording arenas for two 15 

minute sessions, referred to as sessions A and B, with a 15 minute break in their home cage 

between the two sessions. This is repeated in the same arena for 4 consecutive days, after which 

the arena is switched for the 5th and final day. C. Single shank, 16 channel silicon probe electrodes 

were implanted in the retrosplenial cortex (green), so that they spanned the dysgranular (upper 

green section) and granular (lower green section) subregions. In order to verify the location of the 

electrodes, electrolytic lesions were made prior to perfusion, and slices were histologically 

prepared using Cresyl Violet stain. An example is shown (right). 



 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Beta (20-30 Hz) power is significantly higher during novelty in the granular retrosplenial 

cortex in wild-type and J20 mice. A. Example power spectrogram for an entire novel session in a 

wild-type mouse. B. Average power spectra for the entire 15 minutes of all novel and familiar 

sessions, for wild-type and J20 mice. Beta power was significantly higher during novelty in J20 (p = 

4.7e-4) but not wild-type mice. When compared to WT power in the alpha, beta, low gamma and 

high gamma bands were significantly higher overall in J20 mice (p = 8.46e-6, p = 1.01e-32, p = 

9.56e-10, 2.3e-4 respectively), whereas power in the delta and theta band were significantly lower 

(p = 0.03, p = 0.006 respectively). C. Example power spectrogram shown in A, expanded to show 

the first 60 seconds of the session. Short epochs of increased power in the 20-40 Hz range can be 

seen. D. Average power spectra for the first minute of all novel and familiar sessions, for wild-type 

and J20 mice. Beta and low-gamma power were significantly higher during novelty, for both wild-

type (p = 5.47e-8, p = 3.62e-5 respectively) and J20 mice (p = 3.59e-8, p = 0.002 respectively). 

Alpha, beta, low gamma and high gamma power were significantly higher overall in J20 mice (p = 

2.47e-9, p = 1.1e-21, p = 2.52e-4, p = 4.65e-4 respectively). (Data shown as mean ± SEM, WT: n = 

6, J20: n = 8). 



 

 

 

 

 

 

 

 

 

 

Figure 3. Retrosplenial local field potentials are marked by short, phasic increases in beta power, 

referred to as beta bursts. A. Example power spectrogram showing transient increases in beta 

power. B. Local field potentials of data shown in A, both unfiltered (top), and filtered in the beta 

band (bottom), with the envelope amplitude in blue for clarity. The beta-filtered local field 

potential shows clear epochs of high beta amplitude, which intersperse a low amplitude 

continuous beta oscillation. C. Expanded trace of the dashed area in shown in B (top), and a 

continuous wavelet spectrogram of this time series (bottom). Due to the high temporal resolution 

of wavelet-based methods, these periods of high beta amplitude can be seen to be brief in 

duration, only lasting around 100-200ms. 



 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Beta bursting activity in the granular retrosplenial cortex (RSCg) is highly associated with 

novelty, and dysregulated in J20 mice. A. Diagram illustrating how beta bursts were detected, as 

well as how the magnitude and duration of these events were calculated. B. Graph showing the 

average number of beta bursts detected in RSCg in each session, for wild-type (black) and J20 mice 

(green). Novel sessions Day1a and Day5a are highlighted in blue for clarity. There were significantly 

more beta bursts in novel sessions as compared to familiar sessions, for both wild-type (p = 7.59e-

5) and J20 mice (p = 4.83e-12). C. Cumulative frequency graphs of number of bursts detected in 

novel and familiar sessions, for wild-type and J20 mice, showing the time course of bursting activity 

within sessions. While beta bursting occurred monotonically during familiar sessions, during the 

first 2-3 minutes of a novel session, beta bursting was substantially increased. D. Graph showing 

the average magnitude of beta bursts in RSCg in each session, for wild-type and J20 mice. Beta 

bursts were significantly larger in magnitude in novel sessions, for wild-type (p = 2.88e-5) and J20 

mice (p = 5.16e-6). Beta bursts were also, on average, significantly larger in magnitude in J20 mice 

(p = 2.97e-22). E. Graph showing the average duration of beta bursts in RSCg in each session, for 

wild-type and J20 mice. Beta bursts were significantly longer in duration in novel sessions, for wild-

type (p = 3.32e-9) and J20 mice (p = 0.005). (Data shown as mean ± SEM, WT: n = 6, J20: n = 8). 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Theta-alpha and theta-beta phase-amplitude coupling are increased during novelty in the 

granular retrosplenial cortex (RSCg). A. Average comodulograms showing the strength of cross-

frequency phase-amplitude coupling in RSCg during the first minute of novel and familiar sessions, 

for wild-type and J20 mice. Note the presence of three peaks in the first comodulogram, in the 

theta-alpha, theta-beta and theta-gamma ranges (the boundaries of which are denoted by the 

dotted lines). B. Average MI in the theta-alpha (left), theta-beta (center) and theta-gamma ranges 

(right), for each session, for wild-type (black) and J20 mice (green). Novel sessions Day1a and Day5a 

are highlighted in blue for clarity. Theta-alpha and theta-beta coupling were significantly higher in 

novel sessions for wild-type mice (p = 2.4e-7, p = 1.04e-6 respectively), but not J20 mice. (Data 

shown as mean ± SEM, WT: n = 6, J20: n = 8). 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Spiking activity in RSCg is coupled to beta bursting in wild-type mice, but disrupted in J20 

mice. A. Average spike waveforms for multi-unit activity in wild-type (black) and J20 (green) mice 

(left) and graph of average firing rate for detected multi-units across all sessions (right). There was 

a trend towards increased multi-unit firing rate in J20 mice compared to wild-type mice (p = 0.052, 

unpaired t-test). B. Graphs showing beta amplitude over time for beta bursts, time locked to the 

onset of the burst (dotted line), and averaged across all detected bursts, for wild-type mice (left) 

and J20 mice (right). Beta bursting was associated with a monophasic increase in beta amplitude 

that returns to baseline after around 250 ms. C. Peri-event histograms showing multi-unit activity 

spike rate during beta bursts, for wild-type (left) and J20 mice (right). Data is shown as Z score from 

baseline (pre-burst epoch), and averaged across all beta bursts with non-overlapping time 

segments. Dotted vertical line denotes the burst onset, while the solid horizontal line is shown to 

indicate the baseline of zero. Spike rate significantly increased during bursts in wild-type mice (p = 

0.005), but not in J20 mice (p = 0.09). 
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