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Abstract
Invasive	species	threaten	global	biodiversity,	food	security	and	ecosystem	function.	
Such	incursions	present	challenges	to	agriculture	where	invasive	species	cause	sig-
nificant	crop	damage	and	require	major	economic	investment	to	control	production	
losses.	 Pest	 risk	 analysis	 (PRA)	 is	 key	 to	 prioritize	 agricultural	 biosecurity	 efforts,	
but	 is	hampered	by	 incomplete	knowledge	of	current	crop	pest	and	pathogen	dis-
tributions.	Here,	we	develop	predictive	models	of	current	pest	distributions	and	test	
these	models	using	new	observations	at	subnational	resolution.	We	apply	general-
ized	linear	models	(GLM)	to	estimate	presence	probabilities	for	1,739	crop	pests	in	
the	CABI	pest	distribution	database.	We	test	model	predictions	for	100	unobserved	
pest	occurrences	 in	 the	People's	Republic	of	China	 (PRC),	 against	observations	of	
these	pests	abstracted	from	the	Chinese	literature.	This	resource	has	hitherto	been	
omitted	from	databases	on	global	pest	distributions.	Finally,	we	predict	occurrences	
of	all	unobserved	pests	globally.	Presence	probability	increases	with	host	presence,	
presence	in	neighbouring	regions,	per	capita	GDP	and	global	prevalence.	Presence	
probability	decreases	with	mean	distance	from	coast	and	known	host	number	per	
pest.	The	models	are	good	predictors	of	pest	presence	in	provinces	of	the	PRC,	with	
area	under	 the	ROC	curve	 (AUC)	values	of	0.75–0.76.	Large	numbers	of	currently	
unobserved,	but	probably	present	pests	 (defined	here	as	unreported	pests	with	a	
predicted	presence	probability	>0.75),	are	predicted	in	China,	India,	southern	Brazil	
and	some	countries	of	the	former	USSR.	We	show	that	GLMs	can	predict	presences	
of	 pseudoabsent	 pests	 at	 subnational	 resolution.	 The	Chinese	 literature	 has	 been	
largely	 inaccessible	 to	Western	 academia	but	 contains	 important	 information	 that	
can	support	PRA.	Prior	studies	have	often	assumed	that	unreported	pests	in	a	global	
distribution	 database	 represent	 a	 true	 absence.	 Our	 analysis	 provides	 a	 method	
for	 quantifying	 pseudoabsences	 to	 enable	 improved	PRA	 and	 species	 distribution	
modelling.
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1  | INTRODUC TION

The	 spread	 of	 invasive	 species	 is	 homogenizing	 the	 biosphere,	
with	 wide‐ranging	 implications	 for	 natural	 ecosystems	 (Baiser,	
Olden,	Record,	Lockwood,	&	McKinney,	2012;	Santini	et	al.,	2013)	
and	 agriculture	 (Bebber,	 2015;	 Bebber,	 Holmes,	 &	 Gurr,	 2014;	
Fisher	et	al.,	2012).	The	number	of	first	observations	of	crop	pests	
and	pathogens	has	accelerated	in	recent	years,	driven	primarily	by	
global	 trade	 (Bacon,	Aebi,	Calanca,	&	Bacher,	2014;	Ding,	Mack,	
Lu,	Ren,	&	Huang,	 2008),	 but	 also	potentially	 by	 climate	 change	
and	our	improving	ability	to	monitor	and	identify	threats	(Bebber,	
2015;	Bebber,	Holmes,	&	Gurr,	2014).	Here,	we	use	the	term	‘pest’	
to	 describe	 any	 herbivorous	 arthropod,	 pathogenic	 microbe	 or	
virus	 known	 to	 attack	 agricultural	 crops.	 Emerging	pests	 can	be	
extremely	damaging	to	agricultural	production	and	the	economy,	
causing	both	preharvest	and	postharvest	 losses	 (Bebber	&	Gurr,	
2015;	Paini	et	al.,	2016;	Savary	et	al.,	2017).	Recently,	for	exam-
ple,	sub‐Saharan	Africa	has	suffered	from	the	virulent	Ug99	strain	
of	 the	 wheat	 stem	 rust	 fungus	 (Puccinia graminis tritici;	 Patpour	 
et	 al.,	 2015),	 the	 newly	 evolved	maize	 lethal	 necrosis	 viral	 syn-
drome	 (Wangai	 et	 al.,	 2012),	 arrival	 of	 the	 Asian	 citrus	 psyllid	
(Diaphorina citri)	which	vectors	citrus	greening	disease	(Shimwela	
et	 al.,	 2016)	 and	 the	 appearance	 of	 Tropical	 Race	 4	 of	Fusarium 
oxysporum f.	 sp. cubense	 attacking	 Cavendish	 bananas	 (Ordonez	
et	 al.,	 2015).	Central	America,	 Europe,	 East	Africa	 and	Australia	
have	 been	 identified	 as	 hotspots	 of	 new	 pest	 invasions,	 with	
maize,	 bananas,	 citrus	 and	potato	 as	 the	 crops	most	 likely	 to	be	
affected	 (Bebber,	 2015).	Outbreaks	 of	 resident	 pests	 due	 to	 fa-
vourable	weather	conditions,	virulence	evolution	or	crop	manage-
ment	factors	add	to	the	burden	on	farmers.	For	example,	a	major	
outbreak	of	coffee	 leaf	 rust	 (Hemileia vastatrix)	 in	Latin	America,	
likely	to	have	been	triggered	by	a	failure	in	disease	management,	
is	 reported	 to	have	caused	 large‐scale	unemployment	and	social	
upheaval	in	recent	years	(Avelino	et	al.,	2015).

Despite	 the	 expanding	 ranges	 of	 many	 pests,	 complete	 
occupation	of	their	potential	ranges	has	not	yet	occurred	(Bebber,	
Holmes,	&	Gurr,	2014),	and	so	there	remains	a	strong	impetus	for	
implementation	of	biosecurity	measures	at	 international	borders	
(Fears,	Aro,	Pais,	&	Meulen,	2014;	Flood	&	Day,	2016;	MacLeod,	
Jones,	 Anderson,	 &	 Mumford,	 2016).	 Control	 of	 spread	 within	
countries	 is	extremely	difficult	because	of	unhindered	 transport	
of	plants	and	soils	 (Ward,	2016),	and	biosecurity	measures	focus	
on	quarantine	and	inspections	at	borders	(MacLeod	et	al.,	2016).	
A	key	component	of	international	phytosanitary	action	is	pest	risk	
analysis	(PRA),	a	suite	of	methods	that	allow	countries	to	prioritize	
protective	measures	against	those	pests	most	likely	to	arrive	and	
cause	serious	economic	damage	(Baker	et	al.,	2014;	Robinet	et	al.,	
2012).	PRA	 involves	assessment	of	 the	 likelihood	of	pest	arrival,	
the	 likelihood	of	establishment,	the	potential	economic	 impact	 if	
uncontrolled	and	the	prospect	of	successful	control	or	eradication	
(Baker	et	al.,	2014).	To	date,	PRA	has	primarily	been	based	upon	
expert	 opinion	 regarding	 the	 likelihood	 of	 arrival	 and	 potential	

impact	of	individual	pests.	For	example,	the	UK's	recently	estab-
lished	Plant	Health	Risk	Register	(Baker	et	al.,	2014)	employs	sim-
ple	climate‐matching	(based	on	known	pest	distributions)	and	host	
availability	 to	assign	qualitative	risks	of	 invasion	and	 impact,	but	
not	quantitative	predictive	models.	Examples	of	registered	pests	
include	 the	Oleander	 aphid	Aphis nerii	 which	 has	 been	 assigned	
very	low	likelihood	of	arrival	and	establishment,	and	would	cause	
negligible	damage	 if	 it	 did,	whereas	 the	Zebra	 chip	phytoplasma	
Candidatus liberibacter solanacearum	 is	 thought	moderately	 likely	
to	arrive	and	would	have	a	very	serious	 impact	 if	 it	did	 (DEFRA,	
2018).

While	quantitative	PRA	protocols	have	been	recently	developed	
by	the	European	Food	Safety	Authority	(Jeger	et	al.,	2018),	examples	
of	quantitative	PRA	are	 rare	 in	 international	phytosanitary	 legisla-
tion	and	practice.	This	contrasts	with	 the	 long	and	vibrant	history	
of	 research	 in	 predictive	 species	 distribution	modelling	 (SDM)	 for	
pests	 (Elith	 &	 Leathwick,	 2009;	 Sutherst,	 2014).	 The	 geographic	
distributions	of	species	are	non‐random,	determined	by	their	biotic	
environment	 (e.g.	 hosts	 or	 prey),	 the	 abiotic	 environment	 (e.g.	 cli-
mate,	edaphic	 factors)	and	migration	 (dispersal	 to	suitable	habitat;	
Soberón,	2007;	Soberón	&	Nakamura,	2009;	Soberón	&	Peterson,	
2005).	Thus,	pest	invasion	risk	is,	in	theory,	quantifiable.	Numerous	
modelling	approaches	are	now	available	to	predict	the	likely	distri-
butions	and	impacts	of	pests	(Elith	&	Leathwick,	2009;	Robinet	et	al.,	
2012;	Venette	et	al.,	2010),	 ranging	from	process‐based,	or	mech-
anistic	 models,	 to	 statistical,	 or	 correlative	 approaches	 (Dormann	 
et	 al.,	 2012).	 Regional	 and	 global	 databases	 on	 known	pest	 distri-
butions	 are	 commonly	 used	 to	 parameterize	 these	models,	 either	
providing	direct	estimates	of	pests’	ecological	niches	(Kriticos,	2012;	
Venette	 et	 al.,	 2010),	 or	 indirectly	 via	 shared	 geographic	 ranges	
(Eschen	et	al.,	2014;	Paini	et	al.,	2016;	Paini,	Worner,	Cook,	Barro,	
&	Thomas,	2010).

One	 seldom‐acknowledged	 issue	 with	 pest	 distribution	 data	
in	global	databases	 is	geographic	bias	 in	 the	 likelihood	 that	a	pest	
will	be	detected,	correctly	identified,	reported	and	recorded	(Pyšek	 
et	al.,	2008).	Analysis	of	one	of	the	most	widely	studied	global	pest	
distribution	databases	suggests	that	hundreds	of	pests	already	pres-
ent	in	many	developing	countries	have	not	been	reported	(Bebber,	
Holmes,	Smith,	&	Gurr,	2014).	The	total	number	of	observed	pests	in	
an	administrative	area	(country,	or	administrative	division	for	larger	
countries)	 can	be	 largely	explained	by	 scientific	 capacity	and	agri-
cultural	production.	Under	a	scenario	of	globally	high	scientific	and	
technical	capacity	(i.e.	where	all	countries	have	US‐level	per	capita	
GDP	and	research	expenditure),	analysis	predicts	that	many	coun-
tries	across	the	developing	world	would	report	hundreds	more	pests.	
This	 suggests	 that	 a	 large	 fraction	 of	 the	 current	 agricultural	 pest	
burden	 is	unreported	and	unknown,	and	that	even	the	best	global	
databases	suffer	from	severe	observational	bias.	This	has	potentially	
serious	 consequences	 for	 both	plant	 biosecurity	 activities	 and	 for	
research	based	upon	these	databases.	Such	observational	bias	may	
have	 implications	 for	 SDM	methods	 that	 infer	 environmental	 tol-
erances	 from	observed	distributions.	Scientific	capacity,	economic	
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development	 and	 the	 ability	 to	 detect,	 identify	 and	 report	 pests	
are	strongly	correlated	with	latitude,	as	is	climate	(Bebber,	Holmes,	
Smith,	 et	 al.,	 2014).	Under‐reporting	of	pests	 at	 low	 latitudes	will,	
therefore,	 bias	 estimation	 of	 climate	 tolerances,	 as	 occurrence	 is	
under‐reported	in	warmer	regions.	Reducing	this	observational	bias	
by	strengthening	pest	identification	efforts	in	the	developing	world	
is,	 therefore,	 critical	 in	 improving	 scientific	 understanding	 of	 pest	
distributions,	and	in	PRA.

The	People's	Republic	of	China	(henceforth	referred	to	as	China)	
has	been	predicted	to	harbour	the	largest	number	of	pests	(Bebber,	
Holmes,	Smith,	et	al.,	2014).	China	produces	the	largest	quantity	of	
crops	by	tonnage	globally,	and	has	the	greatest	diversity	of	produc-
tion.	Both	factors	are	strong	determinants	of	recorded	pest	numbers	
(Bebber,	Holmes,	Smith,	et	al.,	2014).	Yet,	the	actual	recorded	num-
ber	of	pests	in	China	is	much	smaller	than	expected	(Bebber,	Holmes,	
Smith,	et	al.,	2014).	For	many	countries,	under‐reporting	of	agricul-
tural	pests	is	likely	to	be	purely	a	function	of	the	lack	of	institutional	
capacity	 to	detect,	 identify	 and	 report	 incidences	 in	 the	 scientific	
and	‘grey’	literature	used	by	CABI	to	populate	the	distribution	data-
base.	For	China,	 there	 is	potentially	an	 interesting	alternative.	The	
Chinese	literature	was,	until	the	reforms	of	1978,	largely	inaccessible	
to	Western	 academia.	 Even	 postreform	 and	 the	 opening	 of	China	
instigated	by	Deng	Xiaoping,	Chinese‐language	publications	are	not	
commonly	accessed	by	English‐speaking	researchers.	A	scientifically	
important	 translation	 of	 the	Chinese	 literature	 is	 the	 reporting	 of	
the	antimalarial	compound	artemisinin	(Klayman,	1985).	The	Chinese	
research	literature,	having	developed	in	isolation	from	the	Western	
literature,	therefore,	provides	a	potentially	independent	data	source	
for	testing	models	of	pest	distributions.

Here,	we	develop	statistical	models	of	global	pest	presence	using	
a	database	of	known	pest	occurrences	and	confront	the	predictions	
of	individual	pest	presence	in	Chinese	provinces	with	observations	
from	the	Chinese	literature.	In	addition,	we	compare	models	in	which	
pest	 absences	 are	 treated	 as	 true	 absences	with	models	 in	which	
absences	are	weighted	according	to	estimates	of	scientific	and	tech-
nical	capacity	of	a	given	country	to	report	plant	health	risks,	and	to	
investigate	the	effect	of	observational	bias	and	pseudoabsences	in	
pest	distribution	modelling.	We	then	apply	our	distribution	models	
globally	to	all	unreported	pests	in	all	regions,	to	give	predicted	prob-
abilities	of	presence.	Finally,	we	 list	 those	pests	 that	 are	probably	
present,	but	as	yet	unreported,	around	the	world.

2  | MATERIAL S AND METHODS

We	obtained	pest	distribution	data	from	the	CABI	Knowledge	Bank	
database	in	January	2014	with	permission	(CABI,	Wallingford,	UK).	
The	database	comprised	91,030	 records	of	 the	observed	distribu-
tions	 of	 1,901	 agricultural	 pests	 by	 the	 administrative	 division	 of	
each	 country,	 for	 example,	 U.S.	 States.	 In	 total,	 384	 geographical	
units	 were	 included	 in	 the	 model,	 comprising	 221	 countries	 plus	
subnational	divisions	for	Australia	(7),	Brazil	(28),	Canada	(13),	China	
(31),	India	(33)	and	the	United	States	(51).	Geographical	regions	(such	

as	Bouvet	Island)	which	were	smaller	than	a	single	pixel	(5	arc	minute	
resolution,	or	approximately	100	sq.	km)	of	the	gridded	crop	distri-
bution	database	we	employed	were	excluded	from	the	analysis.	Host	
crop	 spatial	 distributions	 for	175	 crops	 at	5	 arc	minute	 resolution	
were	obtained	from	the	EarthStat	database	(http://www.earth	stat.
org/;	 Monfreda,	 Ramankutty,	 &	 Foley,	 2008).	 Known	 plant	 hosts	
of	each	pest	were	taken	from	the	CABI	Knowledge	Bank,	and	the	
host	genera	matched	with	the	genera	in	the	list	of	175	crops.	Pests	
without	known	hosts	 in	 this	 list	of	175	crops	were	excluded	 from	
the	analysis.	Pests	from	taxonomic	groups	with	fewer	than	50	spe-
cies	(e.g.	Acari,	Gastropoda	and	various	other	insect	taxa)	were	also	
excluded	 from	 the	analysis.	This	 resulted	 in	a	 total	of	1,739	pests	
comprising	 46	 Acari,	 124	 species,	 subspecies	 and	 pathotypes	 of	
Bacteria,	106	Diptera,	215	Coleoptera,	398	Fungi,	233	Hemiptera,	
248	 Lepidoptera,	 99	 Nematoda,	 61	 Oomycota	 and	 209	 viruses.	
Assigning	 reported	 presences	 for	 each	 pest	 to	 each	 geographical	
region	 gave	 a	 dataset	 of	 667,776	 presences	 or	 absences	 for	 each	
pest‐region	pair.	In	total,	there	were	81,821	presences	(12.2%	of	the	
total)	in	the	final	data	set.

We	 developed	 generalized	 linear	models	 (GLM),	 using	 the	 glm 
function	(MASS	package)	in	R	v.3.4.0	with	logit	link	for	binomial	data	
(R	Development	Core	Team,	2017),	for	the	presence	or	(pseudo‐)	ab-
sence	of	each	pest	in	each	region.	Model	predictors	were	as	follows:	
log‐transformed	per	capita	GDP	for	the	country	as	a	whole	in	2016	
(World	 Bank	 data,	 http://data.world	bank.org/);	 log‐transformed	
total	 number	 of	 crop	 host	 genera	 for	 the	 pest	 (CABI	 Knowledge	
Bank,	 obtained	with	 permission);	 log‐transformed	 area	 (ha)	 of	 the	
pest's	 host	 crop	 distribution	 (summing	 planted	 areas	 of	 all	 known	
host	crops	in	each	geographical	region);	 log‐transformed	host	crop	
area	(ha)	of	neighbouring	(i.e.	with	land	border)	regions	which	have	
reported	the	pest	as	present	(set	to	zero	if	no	neighbours	have	re-
ported	the	pest);	 log‐transformed	total	fraction	of	regions	globally	
that	have	reported	the	pest;	and	 log	 transformed	distance	 (km)	of	
crop	area	to	the	coast	(calculated	as	the	distance	of	the	centroid	of	
the	 crop	 area	 distribution	 from	 the	 nearest	 coastline).	 Log	 trans-
formations	were	applied	to	distribute	the	predictor	variable	values	
more	evenly	across	the	sample	space.	Briefly,	the	rationale	for	these	
predictors	was	that	GDP	is	a	proxy	for	historical	trade	(Pyšek	et	al.,	
2010)	 and	 observational	 capacity	 (Bebber,	 Holmes,	 Smith,	 et	 al.,	
2014),	host	area	 indicates	the	available	habitat	for	each	pest,	host	
number	indicates	the	degree	of	biotic	generalism	of	the	pest,	neigh-
bouring	region	presence	indicates	the	potential	for	spread	across	a	
land	border,	fraction	of	regions	reporting	presence	indicates	global	
ubiquity	and	environmental	generalism	and	distance	 to	coast	 indi-
cates	 proximity	 to	 international	 shipping	 ports	 (Chapman,	 Purse,	
Roy,	&	Bullock,	2017).

We	developed	two	pest	distribution	models.	The	‘unweighted’	
model	included	geographical	and	biological	predictors	and	treated	
all	unobserved	pests	as	absent	from	a	region.	The	‘weighted’	model	
treated	 unobserved	 pests	 as	 potentially	 pseudoabsent,	 using	 a	
function	of	 the	scientific	and	 technical	capacity	of	each	country	
(Bebber,	 Holmes,	 Smith,	 et	 al.,	 2014).	 Presences	 were	 taken	 as	
being	 correct	 and	 unambiguous,	 and	 given	 a	weighting	 of	 unity.	

http://www.earthstat.org/
http://www.earthstat.org/
http://data.worldbank.org/
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Absences	were	weighted	by	the	logarithm	of	the	agricultural	and	
biological	sciences	publication	output	of	each	country	from	1996	
to	2016	 (Scimago	Lab,	2017),	normalized	to	the	 logarithm	of	 the	
output	of	the	United	States	(the	world's	most	scientifically	produc-
tive	country),	 such	 that	 the	absence	weight	w0	=	 log(s)/log(sUSA). 
Thus,	pests	unreported	from	scientifically	advanced	nations	were	
assumed	 not	 to	 be	 present	 (or,	 present	 at	 undetectable	 popula-
tion	 density),	 while	 pests	 unreported	 from	 developing	 nations	
were	 less	 informative	of	absence.	China,	with	the	second	largest	
research	output,	had	w0	=	0.93,	suggesting	that	nonreporting	of	a	
pest	should	be	relatively	strong	evidence	of	its	physical	absence.	
However,	we	 hypothesized	 that	 nonreporting	 in	 the	 CABI	 data-
bases	could	be	due	to	lack	of	translation	from	the	Chinese	litera-
ture,	 therefore,	we	set	w0	 to	zero	for	China,	effectively	omitting	
these	 pseudoabsences	 from	 the	 analysis.	 The	weighted	 and	 un-
weighted	models	were	compared	with	a	null	model	assuming	con-
stant	presence	probability	using	Likelihood	Ratio	Tests.

To	validate	the	models,	we	predicted	the	probability	of	presence	
for	a	random	sample	of	100	as‐yet	unobserved	pests	in	all	Chinese	
provinces,	 excluding	 Taiwan.	 The	Chinese	 literature	was	 searched	
for	observations	of	these	unobserved	pests	in	China.	We	used	the	
text	 mining	 methodology	 designed	 by	 CABI	 for	 their	 Plantwise	
Knowledge	Bank.	The	following	rules	were	followed	to	locate	pest	
records	in	the	Chinese	literature:

•	 Include	 only	 papers	 that	 are	 primarily	 on	 distribution	 data,	 not	
those	where	distribution	is	mentioned,	but	where	something	else	
is	the	primary	focus.	If	this	is	unclear	do	not	process	the	paper.

•	 Mine	only	the	primary	literature	(including	master’s	and	doctoral	
theses),	not	meta‐analyses,	reviews	or	nonpeer‐reviewed	(‘grey’)	
literature.

•	 Pest	and	host	names	must	be	preferred	scientific	names,	follow-
ing	 the	 CAB	 Thesaurus	 (www.cabi.org/cabth	esaur	us/)	 and	 the	
Plant	List	(http://www.thepl	antli	st.org/).

•	 Record	country	and	 location	 information	given	 in	 the	paper,	 in-
cluding	latitude/longitude.	CABI	uses	five	levels	for	location,	from	
the	largest	scale	(i.e.	provincial)	to	the	smallest	(i.e.	village/town).

•	 Record	date	of	observation/collection	 (entering	each	year	sepa-
rately)	and	date	of	publication.	Can	be	left	blank	if	not	given,	or	
use	the	date	of	receipt	in	the	diagnostic	laboratory	as	a	surrogate	
for	date	of	collection.

•	 Record	 pest	 status—present/not	 found.	Only	 record	 absence	 if	
pest	absence	is	specifically	stated	in	the	paper.

•	 Record	pest	status	using	only	the	status	terms	defined	by	CABI,	
and	 only	 if	 used	 in	 the	 paper,	 for	 example,	 ‘widespread’,	 ‘re-
stricted’	 ‘soil	 only’	 ‘greenhouse	 only’	 (see	 CABI	 guidelines	 for	
complete	list).

•	 Record	if	the	paper	was	a	first	record	of	that	pest	or	not	and	de-
tails	of	this	 (e.g.	 ‘first	record	 in	<country/location>’,	 ‘first	record	
on	<host	species	name>’).

•	 Only	enter	data	where	the	pest/pathogen	has	been	clearly	identi-
fied,	not	just	symptoms	seen.

•	 Record	only	natural	infections,	not	artificial	inoculants.

Combinations	of	pests	and	locations	were	submitted	to	several	search	
engines.	The	priority	of	search	engines	was:	Baidu	(www.baidu.com),	
China	 National	 Knowledge	 Infrastructure	 (CNKI,	 http://www.cnki.
net),	 Chongqing	 VIP	 Information	 Company	 (CQVIP,	 http://lib.cqvip.
com/)	 and	Wangfang	Data	 (http://www.wanfa	ngdata.com.cn).	Baidu	
is	 the	most	 popular	Chinese	 internet	 search	 engine.	 CNKI	 is	 led	 by	
Tsinghua	 University,	 and	 supported	 by	 ministries	 of	 the	 Chinese	
Government.	 CQVIP,	 formerly	 known	 as	Database	Research	Center	
under	the	Chongqing	Branch	of	the	Institute	of	Scientific	and	Technical	
Information	of	China	(CB‐ISTIC),	was	China's	first	Chinese	journal	da-
tabase	research	institution.	Wanfang	Data	is	an	affiliate	of	the	Chinese	
Ministry	 of	 Science	 and	Technology,	 and	 provides	 access	 to	 a	wide	
range	of	database	resources.

Publication	titles	were	searched	first,	followed	by	full	text	inter-
rogation.	The	first	50	search	results	were	scanned	before	dismissing	
a	search	term.	The	first	search	term	combination	was	pest	name	and	
location	(province).	If	this	yielded	no	result,	then	pest	name	and	var-
ious	 distribution	 terms	were	 tried.	 These	 distribution	 terms	were:	
"catalogues"	OR	"checklists"	OR	"distribution"	OR	"inventories"	OR	
"new	records"	OR	"surveys"	OR	"geographical	distribution"	OR	"new	
geographic	records"	OR	"new	host	records".	Searches	included	local	
names	in	Chinese	which	were	known	or	could	be	identified	from	the	
literature,	 preferred	 scientific	 names	 and	 nonpreferred	 scientific	
names	from	CAB	Thesaurus	(https	://www.cabi.org/cabth	esaur	us/).	
Searches	continued	until	one	piece	of	literature	was	found	for	that	
pest	in	that	region	that	fitted	all	of	the	requirements	for	CABI	text	
mining.

If	a	pest	was	not	found	in	any	of	these	searches,	it	was	assumed	
to	be	absent	from	the	literature	and	thus	effectively	absent	from	the	
region.	We	cannot	prove,	however,	that	a	pest	is	present	at	very	low	
population	density	and	has	not	yet	been	detected	(Crooks,	2005).

Modelled	probabilities	of	reported	pest	presence	in	the	global	
dataset,	PG,	were	obtained	 from	 the	predictor	variables	 for	each	
pest‐region	combination,	for	each	GLM	(predict	function	in	R).	We	
then	compared	PG	with	 the	observed	presence–absence	data	 for	
our	Chinese	 sample	 data	 using	 logistic	 regressions	 (glm	 function	
in	 R)	 and	 receiver	 operating	 characteristic	 (ROC)	 curves	 (pROC 
library	 for	R).	 The	 logistic	 regression	 coefficients	c and m	 deter-
mine	 the	 probability	 of	 pest	 presence	 in	 the	 Chinese	 sample	 as	
PC	=	1/(1	+	exp(−(c	+	mPG))).	ROC	curves	describe	the	relationship	
between	 the	 true‐positive	 rate	 (sensitivity,	 the	 fraction	 of	 pres-
ences	 correctly	 identified	 as	 presences)	 and	 false‐positive	 rate	
(1	−	specificity,	where	specificity	 is	 the	fraction	of	absences	cor-
rectly	classified	as	absences)	as	the	threshold	for	a	binary	classifier	
is	decreased	from	1	(classifying	any	presence	probability	less	than	
1	 as	 absent)	 to	 zero	 (classifying	 any	positive	probability	 as	 pres-
ent).	A	good	predictor	will	have	a	high	true‐positive	rate	and	low	
false‐positive	rate	for	any	classification	threshold,	whereas	a	poor	
predictor	will	have	roughly	equal	true	and	false‐positive	rates	(i.e.	
be	 uninformative).	 The	 area	 under	 the	 curve	 (AUC)	 for	 the	ROC	
curves	gives	the	probability	that,	for	a	random	pair	of	presence	and	
absence	observations,	the	presence	probability	will	be	greater	for	
the	presence	than	the	absence	(Jiménez‐Valverde,	2012).	Models	

http://www.cabi.org/cabthesaurus/
http://www.theplantlist.org/
http://www.baidu.com
http://www.cnki.net
http://www.cnki.net
http://lib.cqvip.com/
http://lib.cqvip.com/
http://www.wanfangdata.com.cn
https://www.cabi.org/cabthesaurus/


     |  2707BEBBER Et al.

with	 good	 discrimination	 ability	 should	 have	 AUC	 significantly	
greater	than	half.

For	 illustration,	 we	 identified	 probably	 present	 pests	 (PPP)	 as	
those	which	are	currently	unreported	from	a	particular	region,	but	
for	which	PG	>	0.75	in	our	weighted	model.	This	threshold	was	cho-
sen	 based	on	 the	Kent	 scale	which	 suggests	 a	 probability	 of	 0.75	
as	an	event	 that	would	generally	be	described	as	 ‘probable’	 (Kent,	
1994).	This	is	an	arbitrary	definition	but	allows	us	to	suggest	some	
of	the	pests	that	PRA	and	phytosanitary	activities	should	be	focused	
upon.

3  | RESULTS

Globally,	 PG	 increased	 significantly	 with	 presence	 in	 neighbour-
ing	 regions,	 the	area	of	host	 crops,	 the	global	prevalence	of	 the	
pest	 and	 per	 capita	 GDP	 in	 both	 models	 (Table	 1).	 PG declined 
with	mean	distance	 from	the	coast	and	known	host	crop	genera	
per	pest.	The	models	explained	similar	fractions	of	the	deviance,	
and	had	very	similar	ROC	curves	with	AUC	around	88%	(Table	1).	
PG	was	always	higher	for	the	weighted	model,	because	absences	
were	 down‐weighted	 (i.e.	 fewer	 true	 zeros),	 but	 predictions	 for	
the	two	models	were	very	highly	correlated	(r	=	0.98).	The	models	
found	the	highest	PG	for	Hemiptera	and	Lepidoptera,	and	lowest	
for	Nematoda,	Bacteria	and	Acari,	compared	with	other	taxonomic	
groupings.

For	 illustration,	 we	 defined	 a	 ‘probably	 present	 pest’	 (PPP)	
as	 one	 unreported	 from	 a	 region,	 but	 with	 PG	 >	 0.75	 (using	 the	
weighted	model).	Overall,	only	4,702	of	585,955	(0.8%)	of	all	unre-
ported	pest‐region	combinations	 fell	 into	 this	class	 (Table	S1).	The	
number	 of	 PPPs	 per	 pest	 category	was	 greatest	 for	 Fungi	 (2,052)	
and	Hemiptera	(859).	Overall,	86%	of	unreported	pest‐region	com-
binations	 were	 predicted	 to	 be	 unlikely	 (PG	 <	 0.25).	 China,	 India,	
the	United	States	and	Eastern	Europe	had	 the	 largest	numbers	of	
predicted	PPPs,	 along	with	other	parts	of	East	Asia	 and	Southern	
Brazil	(Figure	1).	The	top	10	PPPs	by	number	of	global	regions	were	
Cochliobolus heterostrophus	 (Ascomycota:	 Pleosporales,	 a	 patho-
gen	 of	maize),	Rhopalosiphum padi	 (Arthropoda:	Hemiptera,	 cereal	
pest),	Gibberella fujikuroi	(Ascomycota:	Hypocreales,	rice	pathogen),	
Sitophilus zeamais	 (Arthropoda:	 Coleoptera,	 maize	 and	 rice	 pest),	
Schizaphis graminum	 (Arthropoda:	Hemiptera,	 pest	 of	 Poaceae	 ce-
reals), Setosphaeria turcica	(Ascomycota:	Pleosporales,	maize	patho-
gen),	 Aphis spiraecola	 (Arthropoda:	 Hemiptera,	 wide	 host	 range), 
Nezara viridula	(Arthropoda:	Hemiptera,	legume	pest),	Acyrthosiphon 
pisum	 (Arthropoda:	 Hemiptera,	 legume	 pest)	 and	 Rhopalosiphum 
maidis	(Arthropoda:	Hemiptera,	pest	of	maize	and	other	crops).

Total	number	of	recorded	pests	in	China's	provinces	and	munici-
palities	increased	from	northern	and	central	regions	to	southern	and	
coastal	regions	(Figure	2a),	except	for	the	central	province	of	Gansu	
which	had	826	reported	pests.	There	is	no	obvious	reason	why	the	
numbers	would	be	so	large	in	Gansu.	Here,	agricultural	production	
is	moderate,	and	there	is	no	particular	academic	centre	which	could	

TA B L E  1  Generalized	linear	models	for	global	pest	presence

 

Unweighted model Weighted model

Mean SE Z Pr(>|Z|) Mean SE Z Pr(>|Z|)

Acari	(intercept) −3.67 0.051 −72.3 0.000 −0.897 0.055 −16.3 0.000

+Bacteria −0.091 0.032 −2.9 0.004 −0.073 0.034 −2.2 0.014

+Coleoptera 0.036 0.030 1.2 0.240 0.039 0.032 1.2 0.180

+Diptera 0.092 0.034 2.7 0.006 0.104 0.036 2.9 0.026

+Fungi 0.027 0.028 1.0 0.337 0.033 0.030 1.1 0.380

+Hemiptera 0.167 0.029 5.7 0.000 0.150 0.031 4.8 0.000

+Lepidoptera 0.145 0.029 4.9 0.000 0.134 0.032 4.2 0.000

+Nematoda −0.150 0.033 −4.5 0.000 −0.143 0.035 −4.1 0.000

+Oomycota 0.046 0.034 1.4 0.176 0.061 0.037 1.7 0.151

+Virus 0.047 0.030 1.6 0.120 0.067 0.033 2.1 0.137

log(CoastDist	+	1) −0.176 0.004 −49.0 0.000 −0.222 0.004 −57.7 0.000

log(GDP	+	1) 0.295 0.004 81.5 0.000 0.086 0.004 22.3 0.000

log(Hosts	+	1) −0.300 0.004 −71.4 0.000 −0.297 0.005 −65.6 0.000

log(HostArea	+	1) 0.171 0.001 123.1 0.000 0.159 0.001 108.1 0.000

log(NeigArea	+	1) 0.140 0.001 181.2 0.000 0.142 0.001 173.5 0.000

log(Prevalence) 0.842 0.007 124.3 0.000 0.867 0.007 121.3 0.000

The	unweighted	model	treated	unobserved	pests	as	true	absences.	The	weighted	model	weighted	pseudoabsences	as	a	function	of	country	
scientific	capacity.	The	unweighted	model	had	AIC	=	339,872,	AUC	=	0.88,	Nagelkerke	R2	=	0.40,	McFadden	R2	=	0.32.	The	weighted	model	had	
AIC	=	308,171,	AUC	=	0.88,	Nagelkerke	R2	=	0.37,	McFadden	R2	=	0.31.	CoastDist	is	distance	of	crop	centroid	from	the	coast	(km),	GDP	is	per	capita	
GDP	(US$),	Hosts	is	reported	number	of	host	crop	genera,	HostArea	is	harvested	area	of	known	host	crops,	NeigArea	is	harvested	area	of	host	crops	
in	neighbouring	regions	that	have	reported	the	pest	and	Prevalence	is	the	fraction	of	all	regions	that	have	reported	the	pest.
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account	 for	 observational	 bias.	 Hence,	 the	 Gansu	 values	 appear	
to	 be	 an	 artefact	 of	 the	CABI	 database.	 The	 smallest	 numbers	 of	
recorded	 pests	were	 in	 the	mountainous	 provinces	 of	Qinghai	 (0)	
and	Xizang	Zizhiqu	(Tibet)	(73),	the	central	provinces	of	Ningxia	(48)	
and	the	municipalities	of	Chongqing	(24),	Tianjin	(3),	Beijing	(50)	and	
Shanghai	(55).	Total	numbers	were	largest	in	the	coastal	provinces	of	
Guangdong	(301),	Zeijiang	(294),	Jiangsu	(293),	Fujian	(263),	and	also	
in	the	southern	provinces	of	Yunnan	(291)	and	Sichuan	(259).

We	validated	our	models	using	published	pest	observations	from	
the	Chinese	 literature.	Both	models	were	 significant	 predictors	of	
pest	 presence/absence	 for	 100	 randomly	 sampled	 pest–province	
combinations,	 of	 which	 27	 were	 found	 to	 be	 present	 (Figure	 3,	 
Table	S2).	For	the	unweighted	model,	the	coefficients	of	the	 logis-
tic	function	were	c	=	−1.73	±	0.34	and	m	=	3.52	±	1.25	(likelihood	
ratio	test	vs.	null	model,	p	=	0.0043).	For	the	weighted	model,	the	
coefficients	were	−1.90	±	0.38	and	3.19	±	0.96	(likelihood	ratio	test,	
p	 =	 0.0006).	 The	 predictive	 power	 of	 the	models	was	 also	 tested	
using	ROC	curves,	demonstrating	significant	discriminant	ability	with	
AUC	of	0.76	(95%	confidence	interval	0.66–0.86)	for	the	unweighted	

model,	and	AUC	0.75	(0.64–0.86)	for	the	weighted	model	(Figure	3).	
Our	analysis	revealed	gaps	in	the	CABI	database,	which	is	commonly	
used	 for	 analyses	 of	 global	 pest	 distributions.	 Taking	 one	 import-
ant	 potato	 pest,	 late	 blight	 Phytophthora infestans	 (Oomycota),	 as	
an	 example,	 we	 predicted	 high	 presence	 probabilities	 (>0.75)	 for	
10	provinces	listed	as	not	reporting	this	pest	in	the	CABI	database.	
However,	this	pathogen	has	been	reported	present	throughout	the	
potato‐growing	 regions	of	China,	 including	Guangdong	 (Guo,	Zhu,	
Hu,	&	Ristaino,	2010).

For	 China,	 the	 total	 number	 of	 PPPs	 increased	 from	 west	 to	
east	 (Figure	 2b),	 and	was	 greatest	 in	 the	 north	 eastern	 provinces	
of	Jilin	 (59),	Heilongjiang	 (58)	and	Inner	Mongolia	 (58),	 the	eastern	
provinces	 of	 Shandong	 (60)	 and	 Anhui	 (61),	 as	 well	 as	 the	 ports	
of	Shanghai	 (71)	 and	Tianjin	 (51).	The	eastern	provinces	of	Xizang	
Zizhiqu	(Tibet)	(1),	Qinhai	(1),	Gansu	(0)	and	Ningxia	(2)	had	the	low-
est	numbers,	along	with	the	island	of	Hainan	(0)	(Figure	3).	The	total	
number	of	PPPs	 in	China	was	827,	 the	majority	being	Fungi	 (332)	
and	Hemiptera	(175).	The	top	10	most‐common	PPPs	in	China	were	
(in	decreasing	order)	Gibberella fujikuroi	(Ascomycota:	Hypocreales,	

F I G U R E  1  Total	number	of	probably	
present	pests	in	all	countries	and	
subnational	regions

0 1 2 4 8 16 32 64 128 256

F I G U R E  2   (a)	Total	number	of	pests	recorded	in	the	CABI	pest	distribution	database	by	China	province	(excluding	Taiwan).	Hatched	
region	is	Gansu;	see	text	for	details.	(b)	Total	number	of	probably	present	pests	in	China	provinces
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rice	pathogen),	Aphis spiraecola	(Arthropoda:	Hemiptera,	generalist),	
Delia platura	 (Arthropoda:	Diptera,	pest	of	 legumes),	Acyrthosiphon 
pisum	 (Arthropoda:	 Hemiptera,	 legume	 pest),	 Rhopalosiphum 
padi	 (Arthropoda:	 Hemiptera,	 cereal	 pest), Schizaphis gram‐
inum	 (Arthropoda:	 Hemiptera,	 pest	 of	 Poaceae),	 Curvularia	 sp.	
(Fungi:	 Ascomycota,	 generalist	 pathogen),	 Rhopalosiphum maidis 
(Arthropoda:	 Hemiptera,	 pest	 of	 maize	 and	 other	 crops),	 Agrotis 
ipsilon	 (Arthropoda:	 Lepidoptera,	 generalist	pest)	 and	Lasiodiplodia 
theobromae	 (Ascomycota:	 Botryosphaeriales,	 generalist	 pathogen).	
Thus,	many	of	the	most	common	PPPs	in	China	were	also	common	
globally.

4  | DISCUSSION

The	Chinese	 literature	provided	strong	and	significant	support	 for	
the	predictions	of	pest	distribution	models	based	upon	host	distri-
bution,	 pest	 prevalence	 and	 other	 socioeconomic	 factors.	 China's	
growing	economy	 is	 expected	 to	 lead	 to	 large	 influxes	of	 invasive	
species,	including	pests,	in	coming	years	(Ding	et	al.,	2008).	Analysis	
of	 temporal	 trends	 in	 CABI	 pest	 observations	 show	 a	 relatively	
smooth	 increase	 in	 pests	 from	1950	 to	 2000,	 but	 the	 pattern	 for	
China	is	more	complex,	with	a	slow	increase	from	1950	until	the	late	
1970s,	a	step	increase,	and	then	a	more	rapid	growth	in	pest	num-
bers	from	1980	onwards	(Bebber,	Holmes,	&	Gurr,	2014).	One	po-
tential	determinant	of	this	sudden	acceleration	is	the	strong	support	

for	science	and	technology	given	by	Deng	Xiaoping	in	1978,	which	
led	 to	an	 increase	 in	 funding	and	academic	 freedom	following	 the	
anti‐intellectualism	of	the	Cultural	Revolution.	China	now	ranks	sec-
ond	only	to	the	United	States	in	annual	R&D	expenditure	(IMF,	2013)	
and	scientific	output	(Scimago	Lab,	2017).

We	identified	a	number	of	pests	that	were	very	likely	to	be	pres-
ent,	 and	 the	majority	of	 these	PPPs	were	globally	distributed	and	
had	wide	host	ranges.	Their	distributions	commonly	spanned	wide	
latitudinal	 ranges,	 indicating	 broad	 climatic	 tolerances.	C. heteros‐
trophus,	or	Southern	Leaf	Spot,	is	primarily	known	as	a	pathogen	of	
maize	but	has	a	wide	host	range.	It	has	a	wide	geographic	distribution	
both	latitudinally	and	across	continents,	resulting	in	a	high	likelihood	
of	occurrence	in	other	regions	where	hosts	are	present.	For	exam-
ple,	C. heterostrophus	 is	currently	 recorded	only	 in	eastern	 regions	
of	North	America,	where	most	maize	is	grown.	The	lack	of	reported	
observations	in	the	western	regions	of	North	America	may	be	due	
to	the	fact	that	maize,	the	major	host,	is	uncommon,	and	hence	the	
disease	currently	has	little	impact.	C. sativus,	causing	root	and	foot	
rot,	also	has	a	very	wide	geographic	distribution,	but	an	even	wider	
host	range.	It	is	reported	from	Texas,	Oklahoma,	Mississippi,	Illinois	
and	 Tennessee,	 but	 not	 from	 neighbouring	 Arkansas	 or	Missouri;	
hence,	the	high	presence	probability	 in	these	States.	A	similar	pat-
tern	 is	seen	for	the	maize	pathogen	S. turcica.	Another	global	spe-
cies,	R. maidis,	the	green	corn	aphid,	is	reported	across	Europe	and	in	
Russia,	but,	like	many	other	pests,	not	from	the	former	Soviet	states	
of	Ukraine,	Belarus,	Lithuania,	Latvia	and	Estonia.	It	is	plausible	that	

F I G U R E  3  Model	prediction	tests.	
Observed	presence/absence	of	100	pest–
province	combinations	versus	PG	from	
(a)	unweighted	model	and	(b)	weighted	
model.	Curves	and	shaded	areas	show	
mean	and	95%	CI	for	logistic	regression	
fits.	Tick	marks	show	observed	data.	Grey	
diagonals	show	identity	relationship.	
Receiver	operating	characteristic	curves	
for	(c)	unweighted	and	(d)	weighted	
models.	Error	bars	show	95%	CI	for	
specificity	and	sensitivity	derived	from	
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reporting	from	these	nations	was	less	likely	when	they	were	part	of	
the	USSR.

Predictors	 like	host	availability,	presence	 in	neighbouring	terri-
tories	 and	 global	 prevalence	were	 expected	 to	 have	positive	 rela-
tions	with	presence	probability.	The	negative	relation	with	distance	
from	coast	is	likely	to	be	related	to	import	via	shipping	ports	(Huang,	
Zhang,	Kim,	&	Suarez,	2012;	Liebhold	et	al.,	2013),	and	supports	the	
observation	that	islands	report	more	pests	than	countries	with	land	
borders	(Bebber,	Holmes,	Smith,	et	al.,	2014).	Detailed	modelling	of	
individual	pest	 climate	 responses	 (Bregaglio,	Cappelli,	&	Donatelli,	
2012;	Kriticos,	Morin,	Leriche,	Anderson,	&	Caley,	2013)	for	such	a	
large	number	of	pests	was	beyond	the	scope	of	this	study.	Implicitly,	
we	 can	 assume	 that	 the	 presence	 of	 the	 host	 crop	 indicates	 that	
the	 climate	 is	 suitable	 for	 the	 pest	 (Paini	 et	 al.,	 2016),	 though	we	
acknowledge	that	this	is	not	necessarily	the	case	(Berzitis,	Minigan,	
Hallett,	&	Newman,	2014).	The	negative	 relationship	with	number	
of	host	genera	per	pest	might	suggest	that	host	specialists	are	more	
likely	to	invade	and	establish	than	host	generalists,	once	host	avail-
ability	 has	been	 taken	 into	 account.	 For	 the	practical	 purposes	of	
PRA,	our	models	provide	reliable	probability	estimates	for	the	pres-
ence	 of	 unreported	 pests	 at	 subnational	 resolution,	 and	 we	 have	
provided	 a	 global	 list	 of	 the	 unreported	 pests	 whose	 presence	 is	
most	likely	(Table	S2).

We	addressed	the	issue	of	pseudoabsences	in	the	CABI	data	by	
statistically	 weighting	 missing	 pest	 observations	 in	 proportion	 to	
the	scientific	output	of	the	reporting	nation,	since	scientific	output	
had	been	confirmed	as	a	strong	determinant	of	total	reported	pest	
numbers	 (Bebber,	Holmes,	 Smith,	 et	 al.,	 2014).	Often,	 unreported	
pests	are	treated	as	true	absences	in	pest	risk	analyses	(Paini	et	al.,	
2016).	The	positive	relation	of	GDP	with	presence	probability	sup-
ports	our	hypothesis	that	wealthy	countries	are	more	likely	to	detect	
and	report	pests	(Bebber,	Holmes,	Smith,	et	al.,	2014).	Once	obser-
vational	bias	is	controlled	for	using	scientific	capacity‐based	weight-
ing,	per	capita	GDP	becomes	a	weaker	determinant.	Our	weighted	
model	 has	 similar	 overall	 explanatory	 power	 to	 our	 unweighted	
model.	 Nevertheless,	 the	 issue	 of	 observational	 biases	 related	 to	
country‐level	socioeconomic	variation	has	been	raised	several	times	
for	various	classes	of	organism	(Bebber,	Holmes,	Smith,	et	al.,	2014;	
Bebber,	Ramotowski,	&	Gurr,	2013;	Boakes	et	al.,	2010;	Jones	et	al.,	
2008;	Pyšek	et	al.,	2008;	Westphal,	Browne,	MacKinnon,	&	Noble,	
2008),	and	we,	therefore,	recommend	the	application	of	appropriate	
statistical	controls	when	analysing	datasets	produced	from	reports	
of	species	presences	(as	opposed	to	distributional	datasets	derived	
from	rigorous	sampling	protocols).

Our	 SDM	 was	 statistical,	 fitting	 response	 functions	 for	 var-
ious	 predictors	 to	 the	 probability	 of	 pest	 presence.	 Many	 SDM	
approaches	 exist,	 from	 highly	 mechanistic	 models	 based	 on	 pest	
biology	and	ecology	(Bregaglio	et	al.,	2012;	Skelsey,	Cooke,	Lynott,	
&	Lees,	2016)	to	purely	statistical	models	that	utilize	only	patterns	
in	known	distributions	(Paini	et	al.,	2010).	The	rarity	of	quantitative	
model	input	into	PRAs	is	partly	due	to	the	scarcity	of	empirical	data	
available	on	pest	biology	and	epidemiology	required	to	parameter-
ize	mechanistic	models,	and	so	key	biological	parameters	are	often	

inferred	from	known	distributions	(Robinet	et	al.,	2012).	This	is	par-
ticularly	the	case	for	newly	emergent	pathogens	for	which	experi-
mental	 investigations	have	not	yet	been	conducted.	The	European	
Food	Safety	Authority	 has	developed	quantitative	PRA	guidelines	
that	recommend	modelling	approaches	and	data	sources	for	assess-
ing	invasion	and	establishment	risk	(Jeger	et	al.,	2018),	and	applica-
tion	of	these	methods	was	attempted	for	Diaporthe vaccinii,	a	pest	of	
blueberries	(Jeger	et	al.,	2017).	However,	most	of	the	epidemiolog-
ical	data	required	for	this	pest	was	unavailable,	and	the	risk	assess-
ment	was	thus	based	on	expert	opinion	or	data	from	related	pests	
(Jeger	et	al.,	2017).	Epidemiological	parameters	can	be	poorly	con-
strained	even	 for	 long‐established	pests.	 For	 example,	 coffee	 leaf	
rust	 fungus	 (Hemileia vastatrix)	 has	 affected	 coffee	production	 for	
more	than	a	century,	but	a	recent	infection	model	relied	upon	tem-
perature	response	functions	derived	from	the	single	available	study	
published	three	decades	previously	(Bebber,	Castillo,	&	Gurr,	2016).	
Initiatives	such	as	the	EU‐funded	PRATIQUE	project	(2008–11)	have	
attempted	 to	 fill	 this	knowledge	gap	and	enable	modelling	by	col-
lating	available	ecophysiological	data	for	insect	pests	(Baker,	2012).	
While	the	advantages	and	disadvantages	of	the	many	different	pest	
distribution	and	 impact	models	continue	to	be	researched	and	de-
bated	 (Dormann	et	al.,	2012;	Robinet	et	al.,	2012;	Sutherst,	2014;	
Venette	 et	 al.,	 2010),	 it	 is	 clear	 that	 practical	 application	of	 these	
methods	in	PRA	remains	limited.

SDM	for	pests	has	direct	policy	implications	for	PRA	and	plant	bi-
osecurity.	PRA	is	guided	by	International	Standards	for	Phytosanitary	
Measures	(ISPM),	which	is	part	of	the	International	Plant	Protection	
Convention	 (MacLeod,	 Pautasso,	 Jeger,	 &	 Haines‐Young,	 2010).	
ISPMs	tend	to	rely	on	expert	judgement	for	PRA,	rather	than	quanti-
tative	modelling	to	support	decision‐making.	ISPM	No.	21	‘Pest	Risk	
Analysis	 for	 Regulated	Non‐Quarantine	 Pests’,	 endorsed	 in	 2004,	
mentions	use	of	pest	and	host	life	cycle	and	epidemiological	 infor-
mation,	but	not	quantitative	modelling	(FAO,	2004).	Individual	PRAs	
similarly	employ	a	qualitative	approach.	For	example,	the	Australian	
Government's	 PRA	 for	Drosophila suzukii	 references	 only	 a	 single	
unpublished	 report	on	SDM	for	 this	 species,	 conducted	 for	North	
America.	Probabilities	of	D. suzukii	spread	within	Australia	are	qual-
itatively	assessed	by	comparison	with	observations	 in	other	coun-
tries	 (Department	of	Agriculture,	Fisheries,	&	Forestry,	2013).	The	
European	 and	Mediterranean	 Plant	 Protection	Organization	 PRAs	
occasionally	include	model	results.	For	example,	a	climate	matching	
for	the	bacterium	Xanthomonas axonopodis	pv.	allii	was	undertaken	
using	the	CLIMEX	model,	to	identify	areas	at	risk	within	the	EPPO	
region	(EPPO,	2008).	However,	as	discussed	previously,	appropriate	
empirical	 studies	are	 rare	 (Jeger	et	 al.,	 2017).	Our	 results	 contrib-
ute	 to	 the	quantification	of	 risk	within	PRA	by	providing	probabi-
listic	 estimates	 for	 the	 presence	of	 hundreds	 of	 unreported	pests	
around	the	world,	thereby	 improving	understanding	of	the	threats	
to	 global	 agriculture.	With	 growing	 evidence	 that	 pest	 ranges	 are	
shifting	poleward	 in	 response	 to	global	 climate	change	 (Bebber	et	
al.,	2013),	our	poor	knowledge	of	pest	distributions,	particularly	 in	
the	developing	world,	is	troubling,	both	because	of	the	burden	these	
organisms	place	on	farmers	who	have	little	access	to	detection	and	
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control	 technologies,	 and	 because	 invasions	 of	 temperate	 regions	
are	likely	to	occur	from	warmer	regions.	Improved	targeting	of	phy-
tosanitary	measures	through	quantitative	PRA	is	therefore	vital	to	
crop	protection.
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