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Abstract
Invasive species threaten global biodiversity, food security and ecosystem function. 
Such incursions present challenges to agriculture where invasive species cause sig-
nificant crop damage and require major economic investment to control production 
losses. Pest risk analysis (PRA) is key to prioritize agricultural biosecurity efforts, 
but is hampered by incomplete knowledge of current crop pest and pathogen dis-
tributions. Here, we develop predictive models of current pest distributions and test 
these models using new observations at subnational resolution. We apply general-
ized linear models (GLM) to estimate presence probabilities for 1,739 crop pests in 
the CABI pest distribution database. We test model predictions for 100 unobserved 
pest occurrences in the People's Republic of China (PRC), against observations of 
these pests abstracted from the Chinese literature. This resource has hitherto been 
omitted from databases on global pest distributions. Finally, we predict occurrences 
of all unobserved pests globally. Presence probability increases with host presence, 
presence in neighbouring regions, per capita GDP and global prevalence. Presence 
probability decreases with mean distance from coast and known host number per 
pest. The models are good predictors of pest presence in provinces of the PRC, with 
area under the ROC curve (AUC) values of 0.75–0.76. Large numbers of currently 
unobserved, but probably present pests (defined here as unreported pests with a 
predicted presence probability >0.75), are predicted in China, India, southern Brazil 
and some countries of the former USSR. We show that GLMs can predict presences 
of pseudoabsent pests at subnational resolution. The Chinese literature has been 
largely inaccessible to Western academia but contains important information that 
can support PRA. Prior studies have often assumed that unreported pests in a global 
distribution database represent a true absence. Our analysis provides a method 
for quantifying pseudoabsences to enable improved PRA and species distribution 
modelling.
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1  | INTRODUC TION

The spread of invasive species is homogenizing the biosphere, 
with wide‐ranging implications for natural ecosystems (Baiser, 
Olden, Record, Lockwood, & McKinney, 2012; Santini et al., 2013) 
and agriculture (Bebber, 2015; Bebber, Holmes, & Gurr, 2014; 
Fisher et al., 2012). The number of first observations of crop pests 
and pathogens has accelerated in recent years, driven primarily by 
global trade (Bacon, Aebi, Calanca, & Bacher, 2014; Ding, Mack, 
Lu, Ren, & Huang, 2008), but also potentially by climate change 
and our improving ability to monitor and identify threats (Bebber, 
2015; Bebber, Holmes, & Gurr, 2014). Here, we use the term ‘pest’ 
to describe any herbivorous arthropod, pathogenic microbe or 
virus known to attack agricultural crops. Emerging pests can be 
extremely damaging to agricultural production and the economy, 
causing both preharvest and postharvest losses (Bebber & Gurr, 
2015; Paini et al., 2016; Savary et al., 2017). Recently, for exam-
ple, sub‐Saharan Africa has suffered from the virulent Ug99 strain 
of the wheat stem rust fungus (Puccinia graminis tritici; Patpour  
et al., 2015), the newly evolved maize lethal necrosis viral syn-
drome (Wangai et al., 2012), arrival of the Asian citrus psyllid 
(Diaphorina citri) which vectors citrus greening disease (Shimwela 
et al., 2016) and the appearance of Tropical Race 4 of Fusarium 
oxysporum f. sp. cubense attacking Cavendish bananas (Ordonez 
et al., 2015). Central America, Europe, East Africa and Australia 
have been identified as hotspots of new pest invasions, with 
maize, bananas, citrus and potato as the crops most likely to be 
affected (Bebber, 2015). Outbreaks of resident pests due to fa-
vourable weather conditions, virulence evolution or crop manage-
ment factors add to the burden on farmers. For example, a major 
outbreak of coffee leaf rust (Hemileia vastatrix) in Latin America, 
likely to have been triggered by a failure in disease management, 
is reported to have caused large‐scale unemployment and social 
upheaval in recent years (Avelino et al., 2015).

Despite the expanding ranges of many pests, complete  
occupation of their potential ranges has not yet occurred (Bebber, 
Holmes, & Gurr, 2014), and so there remains a strong impetus for 
implementation of biosecurity measures at international borders 
(Fears, Aro, Pais, & Meulen, 2014; Flood & Day, 2016; MacLeod, 
Jones, Anderson, & Mumford, 2016). Control of spread within 
countries is extremely difficult because of unhindered transport 
of plants and soils (Ward, 2016), and biosecurity measures focus 
on quarantine and inspections at borders (MacLeod et al., 2016). 
A key component of international phytosanitary action is pest risk 
analysis (PRA), a suite of methods that allow countries to prioritize 
protective measures against those pests most likely to arrive and 
cause serious economic damage (Baker et al., 2014; Robinet et al., 
2012). PRA involves assessment of the likelihood of pest arrival, 
the likelihood of establishment, the potential economic impact if 
uncontrolled and the prospect of successful control or eradication 
(Baker et al., 2014). To date, PRA has primarily been based upon 
expert opinion regarding the likelihood of arrival and potential 

impact of individual pests. For example, the UK's recently estab-
lished Plant Health Risk Register (Baker et al., 2014) employs sim-
ple climate‐matching (based on known pest distributions) and host 
availability to assign qualitative risks of invasion and impact, but 
not quantitative predictive models. Examples of registered pests 
include the Oleander aphid Aphis nerii which has been assigned 
very low likelihood of arrival and establishment, and would cause 
negligible damage if it did, whereas the Zebra chip phytoplasma 
Candidatus liberibacter solanacearum is thought moderately likely 
to arrive and would have a very serious impact if it did (DEFRA, 
2018).

While quantitative PRA protocols have been recently developed 
by the European Food Safety Authority (Jeger et al., 2018), examples 
of quantitative PRA are rare in international phytosanitary legisla-
tion and practice. This contrasts with the long and vibrant history 
of research in predictive species distribution modelling (SDM) for 
pests (Elith & Leathwick, 2009; Sutherst, 2014). The geographic 
distributions of species are non‐random, determined by their biotic 
environment (e.g. hosts or prey), the abiotic environment (e.g. cli-
mate, edaphic factors) and migration (dispersal to suitable habitat; 
Soberón, 2007; Soberón & Nakamura, 2009; Soberón & Peterson, 
2005). Thus, pest invasion risk is, in theory, quantifiable. Numerous 
modelling approaches are now available to predict the likely distri-
butions and impacts of pests (Elith & Leathwick, 2009; Robinet et al., 
2012; Venette et al., 2010), ranging from process‐based, or mech-
anistic models, to statistical, or correlative approaches (Dormann  
et al., 2012). Regional and global databases on known pest distri-
butions are commonly used to parameterize these models, either 
providing direct estimates of pests’ ecological niches (Kriticos, 2012; 
Venette et al., 2010), or indirectly via shared geographic ranges 
(Eschen et al., 2014; Paini et al., 2016; Paini, Worner, Cook, Barro, 
& Thomas, 2010).

One seldom‐acknowledged issue with pest distribution data 
in global databases is geographic bias in the likelihood that a pest 
will be detected, correctly identified, reported and recorded (Pyšek  
et al., 2008). Analysis of one of the most widely studied global pest 
distribution databases suggests that hundreds of pests already pres-
ent in many developing countries have not been reported (Bebber, 
Holmes, Smith, & Gurr, 2014). The total number of observed pests in 
an administrative area (country, or administrative division for larger 
countries) can be largely explained by scientific capacity and agri-
cultural production. Under a scenario of globally high scientific and 
technical capacity (i.e. where all countries have US‐level per capita 
GDP and research expenditure), analysis predicts that many coun-
tries across the developing world would report hundreds more pests. 
This suggests that a large fraction of the current agricultural pest 
burden is unreported and unknown, and that even the best global 
databases suffer from severe observational bias. This has potentially 
serious consequences for both plant biosecurity activities and for 
research based upon these databases. Such observational bias may 
have implications for SDM methods that infer environmental tol-
erances from observed distributions. Scientific capacity, economic 
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development and the ability to detect, identify and report pests 
are strongly correlated with latitude, as is climate (Bebber, Holmes, 
Smith, et al., 2014). Under‐reporting of pests at low latitudes will, 
therefore, bias estimation of climate tolerances, as occurrence is 
under‐reported in warmer regions. Reducing this observational bias 
by strengthening pest identification efforts in the developing world 
is, therefore, critical in improving scientific understanding of pest 
distributions, and in PRA.

The People's Republic of China (henceforth referred to as China) 
has been predicted to harbour the largest number of pests (Bebber, 
Holmes, Smith, et al., 2014). China produces the largest quantity of 
crops by tonnage globally, and has the greatest diversity of produc-
tion. Both factors are strong determinants of recorded pest numbers 
(Bebber, Holmes, Smith, et al., 2014). Yet, the actual recorded num-
ber of pests in China is much smaller than expected (Bebber, Holmes, 
Smith, et al., 2014). For many countries, under‐reporting of agricul-
tural pests is likely to be purely a function of the lack of institutional 
capacity to detect, identify and report incidences in the scientific 
and ‘grey’ literature used by CABI to populate the distribution data-
base. For China, there is potentially an interesting alternative. The 
Chinese literature was, until the reforms of 1978, largely inaccessible 
to Western academia. Even postreform and the opening of China 
instigated by Deng Xiaoping, Chinese‐language publications are not 
commonly accessed by English‐speaking researchers. A scientifically 
important translation of the Chinese literature is the reporting of 
the antimalarial compound artemisinin (Klayman, 1985). The Chinese 
research literature, having developed in isolation from the Western 
literature, therefore, provides a potentially independent data source 
for testing models of pest distributions.

Here, we develop statistical models of global pest presence using 
a database of known pest occurrences and confront the predictions 
of individual pest presence in Chinese provinces with observations 
from the Chinese literature. In addition, we compare models in which 
pest absences are treated as true absences with models in which 
absences are weighted according to estimates of scientific and tech-
nical capacity of a given country to report plant health risks, and to 
investigate the effect of observational bias and pseudoabsences in 
pest distribution modelling. We then apply our distribution models 
globally to all unreported pests in all regions, to give predicted prob-
abilities of presence. Finally, we list those pests that are probably 
present, but as yet unreported, around the world.

2  | MATERIAL S AND METHODS

We obtained pest distribution data from the CABI Knowledge Bank 
database in January 2014 with permission (CABI, Wallingford, UK). 
The database comprised 91,030 records of the observed distribu-
tions of 1,901 agricultural pests by the administrative division of 
each country, for example, U.S. States. In total, 384 geographical 
units were included in the model, comprising 221 countries plus 
subnational divisions for Australia (7), Brazil (28), Canada (13), China 
(31), India (33) and the United States (51). Geographical regions (such 

as Bouvet Island) which were smaller than a single pixel (5 arc minute 
resolution, or approximately 100 sq. km) of the gridded crop distri-
bution database we employed were excluded from the analysis. Host 
crop spatial distributions for 175 crops at 5 arc minute resolution 
were obtained from the EarthStat database (http://www.earth​stat.
org/; Monfreda, Ramankutty, & Foley, 2008). Known plant hosts 
of each pest were taken from the CABI Knowledge Bank, and the 
host genera matched with the genera in the list of 175 crops. Pests 
without known hosts in this list of 175 crops were excluded from 
the analysis. Pests from taxonomic groups with fewer than 50 spe-
cies (e.g. Acari, Gastropoda and various other insect taxa) were also 
excluded from the analysis. This resulted in a total of 1,739 pests 
comprising  46 Acari, 124 species, subspecies and pathotypes of 
Bacteria, 106 Diptera, 215 Coleoptera, 398 Fungi, 233 Hemiptera, 
248 Lepidoptera, 99 Nematoda, 61 Oomycota and 209 viruses. 
Assigning reported presences for each pest to each geographical 
region gave a dataset of 667,776 presences or absences for each 
pest‐region pair. In total, there were 81,821 presences (12.2% of the 
total) in the final data set.

We developed generalized linear models (GLM), using the glm 
function (MASS package) in R v.3.4.0 with logit link for binomial data 
(R Development Core Team, 2017), for the presence or (pseudo‐) ab-
sence of each pest in each region. Model predictors were as follows: 
log‐transformed per capita GDP for the country as a whole in 2016 
(World Bank data, http://data.world​bank.org/); log‐transformed 
total number of crop host genera for the pest (CABI Knowledge 
Bank, obtained with permission); log‐transformed area (ha) of the 
pest's host crop distribution (summing planted areas of all known 
host crops in each geographical region); log‐transformed host crop 
area (ha) of neighbouring (i.e. with land border) regions which have 
reported the pest as present (set to zero if no neighbours have re-
ported the pest); log‐transformed total fraction of regions globally 
that have reported the pest; and log transformed distance (km) of 
crop area to the coast (calculated as the distance of the centroid of 
the crop area distribution from the nearest coastline). Log trans-
formations were applied to distribute the predictor variable values 
more evenly across the sample space. Briefly, the rationale for these 
predictors was that GDP is a proxy for historical trade (Pyšek et al., 
2010) and observational capacity (Bebber, Holmes, Smith, et al., 
2014), host area indicates the available habitat for each pest, host 
number indicates the degree of biotic generalism of the pest, neigh-
bouring region presence indicates the potential for spread across a 
land border, fraction of regions reporting presence indicates global 
ubiquity and environmental generalism and distance to coast indi-
cates proximity to international shipping ports (Chapman, Purse, 
Roy, & Bullock, 2017).

We developed two pest distribution models. The ‘unweighted’ 
model included geographical and biological predictors and treated 
all unobserved pests as absent from a region. The ‘weighted’ model 
treated unobserved pests as potentially pseudoabsent, using a 
function of the scientific and technical capacity of each country 
(Bebber, Holmes, Smith, et al., 2014). Presences were taken as 
being correct and unambiguous, and given a weighting of unity. 

http://www.earthstat.org/
http://www.earthstat.org/
http://data.worldbank.org/
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Absences were weighted by the logarithm of the agricultural and 
biological sciences publication output of each country from 1996 
to 2016 (Scimago Lab, 2017), normalized to the logarithm of the 
output of the United States (the world's most scientifically produc-
tive country), such that the absence weight w0 =  log(s)/log(sUSA). 
Thus, pests unreported from scientifically advanced nations were 
assumed not to be present (or, present at undetectable popula-
tion density), while pests unreported from developing nations 
were less informative of absence. China, with the second largest 
research output, had w0 = 0.93, suggesting that nonreporting of a 
pest should be relatively strong evidence of its physical absence. 
However, we hypothesized that nonreporting in the CABI data-
bases could be due to lack of translation from the Chinese litera-
ture, therefore, we set w0 to zero for China, effectively omitting 
these pseudoabsences from the analysis. The weighted and un-
weighted models were compared with a null model assuming con-
stant presence probability using Likelihood Ratio Tests.

To validate the models, we predicted the probability of presence 
for a random sample of 100 as‐yet unobserved pests in all Chinese 
provinces, excluding Taiwan. The Chinese literature was searched 
for observations of these unobserved pests in China. We used the 
text mining methodology designed by CABI for their Plantwise 
Knowledge Bank. The following rules were followed to locate pest 
records in the Chinese literature:

•	 Include only papers that are primarily on distribution data, not 
those where distribution is mentioned, but where something else 
is the primary focus. If this is unclear do not process the paper.

•	 Mine only the primary literature (including master’s and doctoral 
theses), not meta‐analyses, reviews or nonpeer‐reviewed (‘grey’) 
literature.

•	 Pest and host names must be preferred scientific names, follow-
ing the CAB Thesaurus (www.cabi.org/cabth​esaur​us/) and the 
Plant List (http://www.thepl​antli​st.org/).

•	 Record country and location information given in the paper, in-
cluding latitude/longitude. CABI uses five levels for location, from 
the largest scale (i.e. provincial) to the smallest (i.e. village/town).

•	 Record date of observation/collection (entering each year sepa-
rately) and date of publication. Can be left blank if not given, or 
use the date of receipt in the diagnostic laboratory as a surrogate 
for date of collection.

•	 Record pest status—present/not found. Only record absence if 
pest absence is specifically stated in the paper.

•	 Record pest status using only the status terms defined by CABI, 
and only if used in the paper, for example, ‘widespread’, ‘re-
stricted’ ‘soil only’ ‘greenhouse only’ (see CABI guidelines for 
complete list).

•	 Record if the paper was a first record of that pest or not and de-
tails of this (e.g. ‘first record in <country/location>’, ‘first record 
on <host species name>’).

•	 Only enter data where the pest/pathogen has been clearly identi-
fied, not just symptoms seen.

•	 Record only natural infections, not artificial inoculants.

Combinations of pests and locations were submitted to several search 
engines. The priority of search engines was: Baidu (www.baidu.com), 
China National Knowledge Infrastructure (CNKI, http://www.cnki.
net), Chongqing VIP Information Company (CQVIP, http://lib.cqvip.
com/) and Wangfang Data (http://www.wanfa​ngdata.com.cn). Baidu 
is the most popular Chinese internet search engine. CNKI is led by 
Tsinghua University, and supported by ministries of the Chinese 
Government. CQVIP, formerly known as Database Research Center 
under the Chongqing Branch of the Institute of Scientific and Technical 
Information of China (CB‐ISTIC), was China's first Chinese journal da-
tabase research institution. Wanfang Data is an affiliate of the Chinese 
Ministry of Science and Technology, and provides access to a wide 
range of database resources.

Publication titles were searched first, followed by full text inter-
rogation. The first 50 search results were scanned before dismissing 
a search term. The first search term combination was pest name and 
location (province). If this yielded no result, then pest name and var-
ious distribution terms were tried. These distribution terms were: 
"catalogues" OR "checklists" OR "distribution" OR "inventories" OR 
"new records" OR "surveys" OR "geographical distribution" OR "new 
geographic records" OR "new host records". Searches included local 
names in Chinese which were known or could be identified from the 
literature, preferred scientific names and nonpreferred scientific 
names from CAB Thesaurus (https​://www.cabi.org/cabth​esaur​us/). 
Searches continued until one piece of literature was found for that 
pest in that region that fitted all of the requirements for CABI text 
mining.

If a pest was not found in any of these searches, it was assumed 
to be absent from the literature and thus effectively absent from the 
region. We cannot prove, however, that a pest is present at very low 
population density and has not yet been detected (Crooks, 2005).

Modelled probabilities of reported pest presence in the global 
dataset, PG, were obtained from the predictor variables for each 
pest‐region combination, for each GLM (predict function in R). We 
then compared PG with the observed presence–absence data for 
our Chinese sample data using logistic regressions (glm function 
in R) and receiver operating characteristic (ROC) curves (pROC 
library for R). The logistic regression coefficients c and m deter-
mine the probability of pest presence in the Chinese sample as 
PC = 1/(1 + exp(−(c + mPG))). ROC curves describe the relationship 
between the true‐positive rate (sensitivity, the fraction of pres-
ences correctly identified as presences) and false‐positive rate 
(1 − specificity, where specificity is the fraction of absences cor-
rectly classified as absences) as the threshold for a binary classifier 
is decreased from 1 (classifying any presence probability less than 
1 as absent) to zero (classifying any positive probability as pres-
ent). A good predictor will have a high true‐positive rate and low 
false‐positive rate for any classification threshold, whereas a poor 
predictor will have roughly equal true and false‐positive rates (i.e. 
be uninformative). The area under the curve (AUC) for the ROC 
curves gives the probability that, for a random pair of presence and 
absence observations, the presence probability will be greater for 
the presence than the absence (Jiménez‐Valverde, 2012). Models 

http://www.cabi.org/cabthesaurus/
http://www.theplantlist.org/
http://www.baidu.com
http://www.cnki.net
http://www.cnki.net
http://lib.cqvip.com/
http://lib.cqvip.com/
http://www.wanfangdata.com.cn
https://www.cabi.org/cabthesaurus/
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with good discrimination ability should have AUC significantly 
greater than half.

For illustration, we identified probably present pests (PPP) as 
those which are currently unreported from a particular region, but 
for which PG > 0.75 in our weighted model. This threshold was cho-
sen based on the Kent scale which suggests a probability of 0.75 
as an event that would generally be described as ‘probable’ (Kent, 
1994). This is an arbitrary definition but allows us to suggest some 
of the pests that PRA and phytosanitary activities should be focused 
upon.

3  | RESULTS

Globally, PG increased significantly with presence in neighbour-
ing regions, the area of host crops, the global prevalence of the 
pest and per capita GDP in both models (Table 1). PG declined 
with mean distance from the coast and known host crop genera 
per pest. The models explained similar fractions of the deviance, 
and had very similar ROC curves with AUC around 88% (Table 1). 
PG was always higher for the weighted model, because absences 
were down‐weighted (i.e. fewer true zeros), but predictions for 
the two models were very highly correlated (r = 0.98). The models 
found the highest PG for Hemiptera and Lepidoptera, and lowest 
for Nematoda, Bacteria and Acari, compared with other taxonomic 
groupings.

For illustration, we defined a ‘probably present pest’ (PPP) 
as one unreported from a region, but with PG  >  0.75 (using the 
weighted model). Overall, only 4,702 of 585,955 (0.8%) of all unre-
ported pest‐region combinations fell into this class (Table S1). The 
number of PPPs per pest category was greatest for Fungi (2,052) 
and Hemiptera (859). Overall, 86% of unreported pest‐region com-
binations were predicted to be unlikely (PG  <  0.25). China, India, 
the United States and Eastern Europe had the largest numbers of 
predicted PPPs, along with other parts of East Asia and Southern 
Brazil (Figure 1). The top 10 PPPs by number of global regions were 
Cochliobolus heterostrophus (Ascomycota: Pleosporales, a patho-
gen of maize), Rhopalosiphum padi (Arthropoda: Hemiptera, cereal 
pest), Gibberella fujikuroi (Ascomycota: Hypocreales, rice pathogen), 
Sitophilus zeamais (Arthropoda: Coleoptera, maize and rice pest), 
Schizaphis graminum (Arthropoda: Hemiptera, pest of Poaceae ce-
reals), Setosphaeria turcica (Ascomycota: Pleosporales, maize patho-
gen), Aphis spiraecola (Arthropoda: Hemiptera, wide host range), 
Nezara viridula (Arthropoda: Hemiptera, legume pest), Acyrthosiphon 
pisum (Arthropoda: Hemiptera, legume pest) and Rhopalosiphum 
maidis (Arthropoda: Hemiptera, pest of maize and other crops).

Total number of recorded pests in China's provinces and munici-
palities increased from northern and central regions to southern and 
coastal regions (Figure 2a), except for the central province of Gansu 
which had 826 reported pests. There is no obvious reason why the 
numbers would be so large in Gansu. Here, agricultural production 
is moderate, and there is no particular academic centre which could 

TA B L E  1  Generalized linear models for global pest presence

 

Unweighted model Weighted model

Mean SE Z Pr(>|Z|) Mean SE Z Pr(>|Z|)

Acari (intercept) −3.67 0.051 −72.3 0.000 −0.897 0.055 −16.3 0.000

+Bacteria −0.091 0.032 −2.9 0.004 −0.073 0.034 −2.2 0.014

+Coleoptera 0.036 0.030 1.2 0.240 0.039 0.032 1.2 0.180

+Diptera 0.092 0.034 2.7 0.006 0.104 0.036 2.9 0.026

+Fungi 0.027 0.028 1.0 0.337 0.033 0.030 1.1 0.380

+Hemiptera 0.167 0.029 5.7 0.000 0.150 0.031 4.8 0.000

+Lepidoptera 0.145 0.029 4.9 0.000 0.134 0.032 4.2 0.000

+Nematoda −0.150 0.033 −4.5 0.000 −0.143 0.035 −4.1 0.000

+Oomycota 0.046 0.034 1.4 0.176 0.061 0.037 1.7 0.151

+Virus 0.047 0.030 1.6 0.120 0.067 0.033 2.1 0.137

log(CoastDist + 1) −0.176 0.004 −49.0 0.000 −0.222 0.004 −57.7 0.000

log(GDP + 1) 0.295 0.004 81.5 0.000 0.086 0.004 22.3 0.000

log(Hosts + 1) −0.300 0.004 −71.4 0.000 −0.297 0.005 −65.6 0.000

log(HostArea + 1) 0.171 0.001 123.1 0.000 0.159 0.001 108.1 0.000

log(NeigArea + 1) 0.140 0.001 181.2 0.000 0.142 0.001 173.5 0.000

log(Prevalence) 0.842 0.007 124.3 0.000 0.867 0.007 121.3 0.000

The unweighted model treated unobserved pests as true absences. The weighted model weighted pseudoabsences as a function of country 
scientific capacity. The unweighted model had AIC = 339,872, AUC = 0.88, Nagelkerke R2 = 0.40, McFadden R2 = 0.32. The weighted model had 
AIC = 308,171, AUC = 0.88, Nagelkerke R2 = 0.37, McFadden R2 = 0.31. CoastDist is distance of crop centroid from the coast (km), GDP is per capita 
GDP (US$), Hosts is reported number of host crop genera, HostArea is harvested area of known host crops, NeigArea is harvested area of host crops 
in neighbouring regions that have reported the pest and Prevalence is the fraction of all regions that have reported the pest.
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account for observational bias. Hence, the Gansu values appear 
to be an artefact of the CABI database. The smallest numbers of 
recorded pests were in the mountainous provinces of Qinghai (0) 
and Xizang Zizhiqu (Tibet) (73), the central provinces of Ningxia (48) 
and the municipalities of Chongqing (24), Tianjin (3), Beijing (50) and 
Shanghai (55). Total numbers were largest in the coastal provinces of 
Guangdong (301), Zeijiang (294), Jiangsu (293), Fujian (263), and also 
in the southern provinces of Yunnan (291) and Sichuan (259).

We validated our models using published pest observations from 
the Chinese literature. Both models were significant predictors of 
pest presence/absence for 100 randomly sampled pest–province 
combinations, of which 27 were found to be present (Figure 3,  
Table S2). For the unweighted model, the coefficients of the logis-
tic function were c = −1.73 ± 0.34 and m = 3.52 ± 1.25 (likelihood 
ratio test vs. null model, p = 0.0043). For the weighted model, the 
coefficients were −1.90 ± 0.38 and 3.19 ± 0.96 (likelihood ratio test, 
p  =  0.0006). The predictive power of the models was also tested 
using ROC curves, demonstrating significant discriminant ability with 
AUC of 0.76 (95% confidence interval 0.66–0.86) for the unweighted 

model, and AUC 0.75 (0.64–0.86) for the weighted model (Figure 3). 
Our analysis revealed gaps in the CABI database, which is commonly 
used for analyses of global pest distributions. Taking one import-
ant potato pest, late blight Phytophthora infestans (Oomycota), as 
an example, we predicted  high presence probabilities (>0.75) for 
10 provinces listed as not reporting this pest in the CABI database. 
However, this pathogen has been reported present throughout the 
potato‐growing regions of China, including Guangdong (Guo, Zhu, 
Hu, & Ristaino, 2010).

For China, the total number of PPPs increased from west to 
east (Figure 2b), and was greatest in the north eastern provinces 
of Jilin (59), Heilongjiang (58) and Inner Mongolia (58), the eastern 
provinces of Shandong (60) and Anhui (61), as well as the ports 
of Shanghai (71) and Tianjin (51). The eastern provinces of Xizang 
Zizhiqu (Tibet) (1), Qinhai (1), Gansu (0) and Ningxia (2) had the low-
est numbers, along with the island of Hainan (0) (Figure 3). The total 
number of PPPs in China was 827, the majority being Fungi (332) 
and Hemiptera (175). The top 10 most‐common PPPs in China were 
(in decreasing order) Gibberella fujikuroi (Ascomycota: Hypocreales, 

F I G U R E  1  Total number of probably 
present pests in all countries and 
subnational regions
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rice pathogen), Aphis spiraecola (Arthropoda: Hemiptera, generalist), 
Delia platura (Arthropoda: Diptera, pest of legumes), Acyrthosiphon 
pisum (Arthropoda: Hemiptera, legume pest), Rhopalosiphum 
padi (Arthropoda: Hemiptera, cereal pest), Schizaphis gram‐
inum (Arthropoda: Hemiptera, pest of Poaceae), Curvularia sp. 
(Fungi: Ascomycota, generalist pathogen), Rhopalosiphum maidis 
(Arthropoda: Hemiptera, pest of maize and other crops), Agrotis 
ipsilon (Arthropoda: Lepidoptera, generalist pest) and Lasiodiplodia 
theobromae (Ascomycota: Botryosphaeriales, generalist pathogen). 
Thus, many of the most common PPPs in China were also common 
globally.

4  | DISCUSSION

The Chinese literature provided strong and significant support for 
the predictions of pest distribution models based upon host distri-
bution, pest prevalence and other socioeconomic factors. China's 
growing economy is expected to lead to large influxes of invasive 
species, including pests, in coming years (Ding et al., 2008). Analysis 
of temporal trends in CABI pest observations show a relatively 
smooth increase in pests from 1950 to 2000, but the pattern for 
China is more complex, with a slow increase from 1950 until the late 
1970s, a step increase, and then a more rapid growth in pest num-
bers from 1980 onwards (Bebber, Holmes, & Gurr, 2014). One po-
tential determinant of this sudden acceleration is the strong support 

for science and technology given by Deng Xiaoping in 1978, which 
led to an increase in funding and academic freedom following the 
anti‐intellectualism of the Cultural Revolution. China now ranks sec-
ond only to the United States in annual R&D expenditure (IMF, 2013) 
and scientific output (Scimago Lab, 2017).

We identified a number of pests that were very likely to be pres-
ent, and the majority of these PPPs were globally distributed and 
had wide host ranges. Their distributions commonly spanned wide 
latitudinal ranges, indicating broad climatic tolerances. C. heteros‐
trophus, or Southern Leaf Spot, is primarily known as a pathogen of 
maize but has a wide host range. It has a wide geographic distribution 
both latitudinally and across continents, resulting in a high likelihood 
of occurrence in other regions where hosts are present. For exam-
ple, C. heterostrophus is currently recorded only in eastern regions 
of North America, where most maize is grown. The lack of reported 
observations in the western regions of North America may be due 
to the fact that maize, the major host, is uncommon, and hence the 
disease currently has little impact. C. sativus, causing root and foot 
rot, also has a very wide geographic distribution, but an even wider 
host range. It is reported from Texas, Oklahoma, Mississippi, Illinois 
and Tennessee, but not from neighbouring Arkansas or Missouri; 
hence, the high presence probability in these States. A similar pat-
tern is seen for the maize pathogen S. turcica. Another global spe-
cies, R. maidis, the green corn aphid, is reported across Europe and in 
Russia, but, like many other pests, not from the former Soviet states 
of Ukraine, Belarus, Lithuania, Latvia and Estonia. It is plausible that 

F I G U R E  3  Model prediction tests. 
Observed presence/absence of 100 pest–
province combinations versus PG from 
(a) unweighted model and (b) weighted 
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fits. Tick marks show observed data. Grey 
diagonals show identity relationship. 
Receiver operating characteristic curves 
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models. Error bars show 95% CI for 
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reporting from these nations was less likely when they were part of 
the USSR.

Predictors like host availability, presence in neighbouring terri-
tories and global prevalence were expected to have positive rela-
tions with presence probability. The negative relation with distance 
from coast is likely to be related to import via shipping ports (Huang, 
Zhang, Kim, & Suarez, 2012; Liebhold et al., 2013), and supports the 
observation that islands report more pests than countries with land 
borders (Bebber, Holmes, Smith, et al., 2014). Detailed modelling of 
individual pest climate responses (Bregaglio, Cappelli, & Donatelli, 
2012; Kriticos, Morin, Leriche, Anderson, & Caley, 2013) for such a 
large number of pests was beyond the scope of this study. Implicitly, 
we can assume that the presence of the host crop indicates that 
the climate is suitable for the pest (Paini et al., 2016), though we 
acknowledge that this is not necessarily the case (Berzitis, Minigan, 
Hallett, & Newman, 2014). The negative relationship with number 
of host genera per pest might suggest that host specialists are more 
likely to invade and establish than host generalists, once host avail-
ability has been taken into account. For the practical purposes of 
PRA, our models provide reliable probability estimates for the pres-
ence of unreported pests at subnational resolution, and we have 
provided a global list of the unreported pests whose presence is 
most likely (Table S2).

We addressed the issue of pseudoabsences in the CABI data by 
statistically weighting missing pest observations in proportion to 
the scientific output of the reporting nation, since scientific output 
had been confirmed as a strong determinant of total reported pest 
numbers (Bebber, Holmes, Smith, et al., 2014). Often, unreported 
pests are treated as true absences in pest risk analyses (Paini et al., 
2016). The positive relation of GDP with presence probability sup-
ports our hypothesis that wealthy countries are more likely to detect 
and report pests (Bebber, Holmes, Smith, et al., 2014). Once obser-
vational bias is controlled for using scientific capacity‐based weight-
ing, per capita GDP becomes a weaker determinant. Our weighted 
model has similar overall explanatory power to our unweighted 
model. Nevertheless, the issue of observational biases related to 
country‐level socioeconomic variation has been raised several times 
for various classes of organism (Bebber, Holmes, Smith, et al., 2014; 
Bebber, Ramotowski, & Gurr, 2013; Boakes et al., 2010; Jones et al., 
2008; Pyšek et al., 2008; Westphal, Browne, MacKinnon, & Noble, 
2008), and we, therefore, recommend the application of appropriate 
statistical controls when analysing datasets produced from reports 
of species presences (as opposed to distributional datasets derived 
from rigorous sampling protocols).

Our SDM was statistical, fitting response functions for var-
ious predictors to the probability of pest presence. Many SDM 
approaches exist, from highly mechanistic models based on pest 
biology and ecology (Bregaglio et al., 2012; Skelsey, Cooke, Lynott, 
& Lees, 2016) to purely statistical models that utilize only patterns 
in known distributions (Paini et al., 2010). The rarity of quantitative 
model input into PRAs is partly due to the scarcity of empirical data 
available on pest biology and epidemiology required to parameter-
ize mechanistic models, and so key biological parameters are often 

inferred from known distributions (Robinet et al., 2012). This is par-
ticularly the case for newly emergent pathogens for which experi-
mental investigations have not yet been conducted. The European 
Food Safety Authority has developed quantitative PRA guidelines 
that recommend modelling approaches and data sources for assess-
ing invasion and establishment risk (Jeger et al., 2018), and applica-
tion of these methods was attempted for Diaporthe vaccinii, a pest of 
blueberries (Jeger et al., 2017). However, most of the epidemiolog-
ical data required for this pest was unavailable, and the risk assess-
ment was thus based on expert opinion or data from related pests 
(Jeger et al., 2017). Epidemiological parameters can be poorly con-
strained even for long‐established pests. For example, coffee leaf 
rust fungus (Hemileia vastatrix) has affected coffee production for 
more than a century, but a recent infection model relied upon tem-
perature response functions derived from the single available study 
published three decades previously (Bebber, Castillo, & Gurr, 2016). 
Initiatives such as the EU‐funded PRATIQUE project (2008–11) have 
attempted to fill this knowledge gap and enable modelling by col-
lating available ecophysiological data for insect pests (Baker, 2012). 
While the advantages and disadvantages of the many different pest 
distribution and impact models continue to be researched and de-
bated (Dormann et al., 2012; Robinet et al., 2012; Sutherst, 2014; 
Venette et al., 2010), it is clear that practical application of these 
methods in PRA remains limited.

SDM for pests has direct policy implications for PRA and plant bi-
osecurity. PRA is guided by International Standards for Phytosanitary 
Measures (ISPM), which is part of the International Plant Protection 
Convention (MacLeod, Pautasso, Jeger, & Haines‐Young, 2010). 
ISPMs tend to rely on expert judgement for PRA, rather than quanti-
tative modelling to support decision‐making. ISPM No. 21 ‘Pest Risk 
Analysis for Regulated Non‐Quarantine Pests’, endorsed in 2004, 
mentions use of pest and host life cycle and epidemiological infor-
mation, but not quantitative modelling (FAO, 2004). Individual PRAs 
similarly employ a qualitative approach. For example, the Australian 
Government's PRA for Drosophila suzukii references only a single 
unpublished report on SDM for this species, conducted for North 
America. Probabilities of D. suzukii spread within Australia are qual-
itatively assessed by comparison with observations in other coun-
tries (Department of Agriculture, Fisheries, & Forestry, 2013). The 
European and Mediterranean Plant Protection Organization PRAs 
occasionally include model results. For example, a climate matching 
for the bacterium Xanthomonas axonopodis pv. allii was undertaken 
using the CLIMEX model, to identify areas at risk within the EPPO 
region (EPPO, 2008). However, as discussed previously, appropriate 
empirical studies are rare (Jeger et al., 2017). Our results contrib-
ute to the quantification of risk within PRA by providing probabi-
listic estimates for the presence of hundreds of unreported pests 
around the world, thereby improving understanding of the threats 
to global agriculture. With growing evidence that pest ranges are 
shifting poleward in response to global climate change (Bebber et 
al., 2013), our poor knowledge of pest distributions, particularly in 
the developing world, is troubling, both because of the burden these 
organisms place on farmers who have little access to detection and 
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control technologies, and because invasions of temperate regions 
are likely to occur from warmer regions. Improved targeting of phy-
tosanitary measures through quantitative PRA is therefore vital to 
crop protection.
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