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Abstract

This research aims to understand the neural dynamics and mechanisms underlying per-
ceptual bistability. In perceptual rivalry, ambiguous sensory information leads to dynamic
changes in the perceptual interpretation of fixed stimuli. This phenomenon occurs when
participants receive sensory stimuli that support two or more distinct interpretations; this
results in spontaneous alternations between possible perceptual interpretations. Percep-
tual rivalry has been widely studied across different sensory modalities including vision,
audition, and to a limited extent, in the tactile domain. Common features of perceptual
rivalry across various ambiguous visual and auditory paradigms characterise the random-
ness of switching times and their dependence on input strength manipulations (Levelt’s
propositions).

Binocular rivalry occurs when the two eyes are presented with incompatible stimuli and
perception alternates between these two stimuli. This phenomenon has been investigated
in two types of experiments: 1) Traditional experiments where the stimulus is fixed, 2)
Eye-swap experiments in which stimulus periodically swaps between eyes many times per
second (Logothetis et al. 1996). In spite of the rapid swapping between eyes, perception can
be stable for many seconds with specific stimulus parameter configurations. Wilson intro-
duced a two-stage, hierarchical model to explain both types of experiments (Wilson 2003).
Wilson’s model and other rivalry models have been only studied with bifurcation analysis
for fixed inputs and different dynamical behaviours that can occur with periodic forcing
have yet to be explored. Here I report 1) a more complete description of the complex
dynamics in the unforced Wilson model, 2) a bifurcation analysis with periodic forcing.
Previously, bifurcation analysis of the Wilson model with fixed inputs has revealed three
main types of dynamical behaviours: Winner-take-all (WTA), Rivalry oscillations (RIV),
Simultaneous activity (SIM). The results presented here reveal richer dynamics including
mixed-mode oscillations (MMOs) and period-doubling cascade which corresponds to low
amplitude WTA (LAWTA) oscillations. On the other hand, studying rivalry models with
numerical continuation shows that periodic forcing with high frequency (e.g. 18 Hz, known
as flicker) modulates the three main types of behaviours that occur with fixed inputs by the
forcing frequency (WTA-Mod, RIV-Mod, SIM-Mod). However, the dynamical behaviour
will be different with low frequency periodic forcing (around 1.5Hz, so-called swap), and in
addition to WTA-Mod and SIM-Mod, cycle skipping and multi-cycle skipping behaviour
exist, which can also lead to chaotic dynamics. This research provides a framework for
either assessing binocular rivalry models for consistency checks against empirical results,
or for better understanding neural dynamics and the mechanisms necessary to implement
a minimal binocular rivalry model.



At present it remains unclear whether the general characteristics of perceptual rivalry are
preserved with tactile stimuli. I introduce a simple tactile stimulus capable of generat-
ing perceptual rivalry and explores whether general features of perceptual rivalry from
other modalities extend to the tactile domain. In these experiments, vibrotactile stimuli
consisted of anti-phase sequences of high and low intensity high frequency pulses, each
followed by a silent interval, delivered to the right and left index fingers. Participants per-
ceived the stimulus as either one simultaneous pattern of vibration on both hands (SIM),
or patterns of vibration that jumped from one hand to the other hand, giving a sensa-
tion of apparent movement (AM). For long stimulus presentations, perception switches
back and forth between these two percepts. Furthermore, my results confirm that Levelt’s
proposition II extends to tactile bistability, and that the stochastic characteristics of irreg-
ular perceptual alternations agree with non-tactile modalities. An analysis of correlations
between subsequent perceptual phases reveals a significant positive correlation at lag 1 (as
found in visual bistability), and a negative correlation for lag 2 (in contrast with visual
bistability).

In this study, a mathematical model of tactile rivalry is developed that focuses on ac-
curately reproducing the dynamics of the perceptual alternations. The model of tactile
rivalry presented here consists of two processing stages; first stage for producing perceptual
alternations; and a second stage for encoding the percept types (SIM and AM). Putative
neural populations of the first stage could be located early in the somatosensory pathway
at brainstem nuclei, and the neural populations of the second stage could be located within
area 3b of the primary somatosensory cortex, based on excitatory and lagged inhibitory
components of their receptive fields. The powerful combination of bifurcation analysis
along with optimisation tools have been used to tune certain features of the model, re-
sulting in a good qualitative and quantitative match to my experimental data. As well
as capturing the dynamical characteristics specific to the perceptual interpretations in
tactile rivalry, the model presented here is able to produce the general characteristics of
perceptual rivalry including Levelt’s proposition, short-tailed skewness of reversal time
distributions and a scaling property of this distribution’s first three moments.
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3.12 (A) Detailed bifurcation diagram of the reduced Wilson model (instan-
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varying adaptation strength h, g = 1.5. The dotted green line shows the as-
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the orbits having large period. All complex dynamical behaviours still per-
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ter. (C) Low amplitude winner-take-all (LAWTA) oscillations emerge from
Hopf bifurcation on the WTA branch and by further increasing the bifurca-
tion parameter, a cascade of period-doubling bifurcations emerges. Panels
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tile stimuli are delivered to subject’s index fingers. During a trial subject’s
perception of the stimuli changes and they report it by holding appropriate
keys on the keyboard using their thumbs. (D) Percept types. When the
patterns are played with equal intensity, they can be perceived as one si-
multaneous vibration (SIM). With a fixed intensity difference (∆I > 0 dB)
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and forth between two percepts: SIM (perceived as a fixed intensity on each
hand, even though the intensity is changing) and AM (perceived as pulses
of vibrations jumping from one hand to the other hand). We associate the
left arrow key with SIM and the right arrow key with AM. (E) Perceptual
phases. Perceptual interpretations of the stimuli for three different sub-
jects during 3-min trials at ∆I = 2 dB. (F) Relative scale of the stimuli.
A 4-s zoomed panel which shows the relation between the stimulus and the
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4.2 (A) The distribution of dominance durations at each trial with different ex-
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samples above the dashed line (larger than 150 s), were excluded from the
data set before further analysis (for similar analysis without excluding data
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distribution respectively. (D) Coefficient of variation (cv) and (E) skewness
divided by coefficient of variation (γ1/cv) for experimental conditions ∆I =
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5.1 (A) Vibrotactile stimuli. Vibrotactile stimuli consist of anti-phase se-
quences of high (dark blue) and low-intensity (light blue) of 200KHz vi-
brations to the right and left index finger (TD = 0.4 s, TR = 0.8 s).
(B) Percept types. During a trial subject’s perception of the stimuli
changes. When the patterns are played with equal intensity, they can be
perceived as one simultaneous vibration (SIM). With a fixed intensity dif-
ference (∆I > 0 dB) between the high- and low-intensity tactile pulses,
perception switches back and forth between two percepts: SIM (perceived
as a fixed intensity on each hand, even though the intensity is changing)
and AM (perceived as pulses of vibrations jumping from one hand to the
other hand). (C) Schematic of the model of tactile rivalry. Inhibitory
connections are shown with filled circles, and excitatory connections with
black arrows. (D) Schematic of the simplified model. . . . . . . . . . . 88
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5.2 Bifurcation analysis of the adapting recurrent model (without
adaptation g = 0). Mechanism of bistability with sufficient levels of
recurrent excitation and input (high levels of recurrent excitation and low
levels of input). (A) Adapting recurrent model. Population firing rate
ν driven by D and recurrent excitation with strength w. (B & C) One
parameter bifurcation diagram. Population rate steady state as a func-
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of recurrent excitation. Stable and unstable fixed points are indicated with
solid and dashed curves, respectively. (D) Two parameter bifurcation
diagram. w −D parameter space, bistable region (grey shaded area) sur-
rounded by two fold bifurcations (L) which merge together and disappear
through a cusp bifurcation (CP). . . . . . . . . . . . . . . . . . . . . . . . . 90

5.3 (A) Time histories of the 2TR-periodic states in system Equation 5.6.
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TD = 0.022, τi = 0.25, τ = 0.025, θ = 0.5. Adapted from (Ferrario and
Rankin 2021) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.4 Mechanism of encoding percepts. (A) Stimuli. One period (length
2TR = 1.6 s) of the stimuli to the left and right units consists of one full
amplitude pulse (length TD = 0.3 s), and one pulse that its amplitude is∆I
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bifurcation points (L). Branches of periodic orbits associated with SIM and
AM percepts coexist at this interval. (C) Time histories of model re-
sponses. Population activities are simulated for 50 s at ∆I = 0.5. Noise re-
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Nomenclature and Abbreviations

Acronyms and abbreviations
B&S Blanks and Swap.
EEG Electroencephalogram.
F&S Flicker and Swaps.
fMRI Functional Magnetic Resonance Imaging.
H High intensity.
HL Horizontal Left.
HR Horizontal Right.
L Low intensity.
Mod Modulated.
VL Vertical Left.
VR Vertical Right.

Dynamical states
AM Apparent movement.
LAWTA Low Amplitude Winner-take-all.
MMOs Mixed-mode Oscillations.
RIV Rivalry Oscillations.
SIM Simultaneous Activity.
WTA Winner-take-all.

Bifurcations
BP Branch Point.
H Hopf Bifurcation.
L Fold Bifurcation.
PD Period-doubling.
PF Pitchfork Bifurcation.
T Torus Bifurcation.



1. Introduction to perceptual
competition

In this chapter, I will explain perceptual bistability phenomenon and the fundamental
experiments that have remained as a benchmark for theorists and experimentalists. Later
in the chapter, physiological basis of sensory processing across visual and tactile domains
are reviewed, which will be helpful for understanding the architecture of models presented
in Chapter 3 and Chapter 5. I will finish this chapter by reviewing some of well-known
computational models for binocular rivalry, which dynamical analysis of these model have
been performed in Chapter 2 and Chapter 3.

1.1. Bistability experiments

Multistable perception is the spontaneous alternation between two or more perceptual
states that occurs when sensory information is ambiguous. In some special instances, the
brain struggles to reconcile competing inputs, and the competition between neural repre-
sentations resolves slowly over time, resulting in a bistable perceptual experience (Leopold
and Logothetis 1999; Sterzer et al. 2009). Binocular rivalry is an example of such a per-
ceptual phenomenon. In the experiments of binocular rivalry, the corresponding retinal
locations in the two eyes are presented with incompatible images. During binocular rivalry,
a stable visual perception gives way to perceptual alternations in which the dominant per-
cept switches between the two monocular images. Therefore, binocular rivalry provides a
unique opportunity to investigate how the brain deals with competing inputs and to study
intrinsic neural dynamics (Blake and Logothetis 2002).

Levelt’s propositions continue to be considered as a benchmark for modellers and exper-
imentalists since their publication in 1965. They highlight the key properties by which
perception during binocular rivalry depends on characteristics of the stimuli like image
contrast. The original propositions are as follows: (Levelt 1965)

I. Increasing stimulus strength for one eye will increase the perceptual predominance of
that eye’s stimulus.

II. Increasing stimulus strength for one eye will not affect the average perceptual dominance
duration of that eye’s stimulus. Instead, it will reduce the average perceptual dominance
duration of the other eye’s stimulus.

III. Increasing stimulus strength for one eye will increase the perceptual alternation rate.
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IV. Increasing stimulus strength in both eyes while keeping it equal between eyes will
increase the perceptual alternation rate.

These are one of the hallmarks that models aim to reproduce (Shpiro et al. 2007). Recently
original Levelt’s propositions have been modified to be compatible with current knowledge
of binocular rivalry. These four modified propositions are as follows:

I. Increasing stimulus strength for one eye will increase the perceptual predominance of
that eye’s stimulus.

II. Increasing the difference in stimulus strength between the two eyes will primarily act
to increase the average perceptual dominance duration of the stronger stimulus.

III. Increasing the difference in stimulus strength between the two eyes will reduce the
perceptual alternation rate.

IV. Increasing stimulus strength in both eyes while keeping it equal between eyes will
generally increase the perceptual alternation rate, but this effect may reverse at near-
threshold stimulus strengths (Brascamp et al. 2015).

1.2. The physiological basis of sensory perception

In this section, I will outline the advances that have been made in understanding the
initial operations that occur on visual and tactile input to the brain. Although the basic
senses (somatic sensation, vision, audition, and chemical senses) are very different from one
another, a few fundamental rules govern the way nervous system deals with each of these
diverse modalities. Here, I will begin with how highly specialized nerve cells (receptors)
convert the energy associate with mechanical sources and light into neural signals (afferent
sensory signals), and then I will describe how these afferent signals convey information
about the stimulus to the brain (sensory pathway).

1.2.1. Visual perception

Visual processing pathways

The neural circuitry of the retina transforms a fluctuating pattern of light into a pattern
of neural activity in retinal ganglion cells, which is then transmitted along the optic nerve
to the brain. The majority of retinal ganglion cells project to the lateral geniculate nuclei
(LGN) of the thalamus (see Figure 1.1). LGN cells are arranged in layers, and each layer
of LGN cells contains a retinotopic map of half of the visual field, those in the right LGN
having maps of the left side of the visual field and those in the left LGN maps of the
right side, because the optic nerves cross over completely at the optic chiasm to run to
the opposite sides of the brain (Bruce et al. 2003). The axons of LGN cells in turn form
the optic radiations (see Figure 1.1) and project to the visual cortex.

The primary visual cortex is that portion of the occipital lobe receiving input from the
LGN. It is sometimes referred to as area V1, in recognition of its being the first in a
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Figure 1.1. The main route for visual information to the brain is the projections from retina via
LGN to the visual cortex (geniculocortical pathway). The left and right sides of visual field are
shown with blue and green, respectively. Adapted from (Dragoi and Tsuchitani 2016)

hierarchy of cortical visual areas. From visual area V1, neural information is distributed
over a number of pathways to higher visual areas of the brain. Receptive fields in these
higher visual areas are significantly larger than those found in V1. This means a stimulus
may appear anywhere within a relatively large regions of visual space and still activate a
given neuron. The flow of information within this complex network is not unidirectional.
Every cortical region receiving input from another region also sends feedback connections
back to that other region. In addition, these visual areas are directly interlinked, with
the neural operations carried out in one set of areas influencing the operations carried out
within the others (Gegenfurtner et al. 1996).

Ocular dominance

A fundamental feature of human vision is that, despite having two eyes, we normally see
only one representation of the world around us. This phenomenon requires a seamless
combination of two completely separate neural signals. Where in the brain does this
happen? It might be expected that a harmonious integration of left and right would be
constructed at the thalamus which is the very first processing stage and both signals are
present in proximity there; however, it has long been known that this is not the case and
that the answer is somewhere in the visual cortex (Smith 2015).

Ocular dominance columns or ocular dominance stripes are regions of neurons in the visual
cortex that respond to the stimulation from either the left or right eye. The information
from the two eyes is distributed in separate layers of each (left and right) LGN, with
individual neurons receiving input from either one eye or the other. This ocular segregation
is retained in layer 4 of V1, the cortical layer receiving input from LGN. The left and
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Figure 1.2. The interdigitated stripes of neurons innervated by the right and left eyes appear as
alternating black and white bands. Adapted from (Najafian et al. 2019)

right eye neurons are segregated into snakelike stripes, which can easily be visualized by
injecting specially labelled dye into area V1 (Figure 1.2) (Horton and Hocking 1996).
Neurons in layer 4 of V1, in turn, send signals to other cortical layers immediately above
them, and at this stage, monocular (one eye) segregation gives way to binocular (two eyes)
integration. Within area V1, and outside layer 4, individual neurons are mostly innervated
from both eyes. The variation in the activation strength produced by the two eyes is called
ocular dominance. Any neuron that can be excited through both eyes, regardless of its
ocular dominance, is called a binocular neuron. Only a small fraction of V1 neurons are
monocular, meaning that the neuron can only be activated by stimulation of one eye or
the other but not both. The bulk of these monocular neurons reside in layer 4.

Orientation map

One of the most striking characteristics of cortical neurons is their orientation selectivity.
In contrast to retinal and geniculate cells which have circular-shape receptive fields, most
cortical neurons are tuned to some specific orientation of an edge or a contour (Blake and
Sekuler 2006). This means any particular neuron will respond only if the orientation of an
edge or line falls somewhere within a narrow range. Each cortical neuron has a preferred
orientation, one to which it is maximally responsive. If a line tilts a little away from this
optimum, the neuron’s response is markedly decreased; if the line tilts even more, the
neuron no longer responds at all.

These orientation-selective neurons are not randomly arranged; they are grouped in a
very orderly design within the cortex. Figure 1.3 shows schematically how orientation
is systematically mapped within a slab of cortical tissue. The visual cortex appears to
be composed of columns of neurons, within each column consisting of a stack of neurons
all preferring the same orientation and exhibiting the same ocular dominance. The ag-
gregation of adjacent columns (a region where each possible orientation is represented)
is collectively known as a hypercolumn. Each hypercolumn contains tens of thousands
neurons whose receptive fields all overlap on the same retinal territory.
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Figure 1.3. The visual cortex is composed of columns consisting of a stack of neurons
all preferring the same orientation and exhibiting the same ocular dominance. Adapted
from https://knowingneurons.com

1.2.2. Tactile perception

The somatic sensory system has two major components: a subsystem for the detection of
mechanical stimuli (such as light touch, vibration, pressure, and cutaneous tension), and
a subsystem for the detection of painful stimuli and temperature. This section focuses
on the mechanosensory subsystem. The skin on a human hand contains thousands of
mechanoreceptors. These receptors are sensitive to mechanical pressure or deformation of
the skin. Each individual afferent fiber signals when a particular region of the skin has
been touched. Similar to visual neuron’s receptive field (the area of retina within which
light affects activity of the neuron), the area of skin within which stimuli can influence a
fiber’s activity constitutes that fiber’s receptive field.

Mechanosensory processing of external stimuli is initiated by the activation of a diverse
population of cutaneous and subcutaneous mechanoreceptors at the body surface that
relays information to the central nervous system for interpretation and ultimately ac-
tion. Additional receptors located in muscles, joints, and other deep structures monitor
mechanical forces generated by the musculoskeletal system and are called proprioceptors.
Mechanosensory information is carried to the brain by several ascending pathways that run
in parallel through the spinal cord, brainstem, and thalamus to reach the primary somatic
sensory cortex in the postcentral gyrus of the parietal lobe. The primary somatosensory
cortex projects in turn to higher-order association cortices in the parietal lobe, and back
to the subcortical structures involved in mechanosensory information processing.
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Figure 1.4. The four classes of cutaneous afferents of the glabrous skin. (A) Morphology of the
different mechanoreceptors and their respective locations in the skin. (B) Adaptation properties
and receptive field (RF) size of the four classes of cutaneous afferents. Adapted from (Delhaye
et al. 2011)

Somatosensory periphery

Fibers carrying touch information from the human palm and fingertips are categorized
into four classes, each exhibiting different response properties (SA-type I, SA-type II, RA-
type I, RA-type II). These four categories are defined on the basis of the sharpness of the
boundaries of each fiber’s receptive field and on the fiber’s pattern of activity over time.
Differences in spatial and temporal response properties enable each class of fibers to signal
something unique about sources of stimulation within their receptive fields.

These four classes can be split into two categories according to their responses to skin
indentations: slowly adapting afferents (SA) produce a sustained response to a static in-
dentation of the skin, one that declines (adapts) slowly over time, whereas rapidly adapting
afferents (RA) respond only at the onset and offset of the indentation Figure 1.4. Each
of these classes can be further distinguished based on the size of their receptive fields:
mechanoreceptors innervated by type I afferents lie close to the surface of the skin and
have small and clearly defined receptive fields (punctuate), whereas mechanoreceptors in-
nervated by type II afferents are deeper in the skin and have large receptive fields with
ill-defined boundaries (diffuse). Receptive fields of type II afferents sometimes cover a
whole finger or the greater part of the palm.

The four different classes of afferents innervate different types of mechanoreceptors. Each
of these four types may deliver a distinct message to the central nervous system, because
each is best at signalling the presence of a particular kind of tactile stimulation. This
widely accepted view is commonly referred to as the “four-channel” model of mechanore-
ception.

Somatosensory pathways

Afferent touch fibers enter the dorsal, or back, side of the spinal cord Figure 1.5E. In-
side the spinal cord, these afferent fibers make synaptic contact with neurons that travel
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Figure 1.5. Diagram of the ascending lemniscal somatosensory pathway. (A) Cerebral cortex
and thalamus. Thalamic neurons send axons to the parietal lobe of the somatosensory cortex.
Note somatotopic representation of body parts outlining cortical surface (see Figure 1.6 for more
details). Inside the spinal cord, afferent fibers make synaptic contact with neurons that travel
upward to the brain, carrying input to different regions in the brainstem: (B) Midbrain. (C)
Pons. (D) Medulla. (E) Spinal cord. Adapted from https://www.kenhub.com

upward to the brain, carrying input to particular regions in the brainstem (including
Midbrain, Pods, Medulla Figure 1.5B-D). These neurons comprise the so-called lemniscal
pathway Figure 1.5A-E. Axons in the lemniscal pathway project to nuclei in the brainstem.
After synapsing, fibers in this pathway cross over the midline Figure 1.5D, projecting to
thalamic nuclei on the opposite side of the brain Figure 1.5A. At the level of the thalamus,
neurons receiving inputs from the superficial and deeper receptors in the skin are segre-
gated. Thalamic neurons send axons to the parietal lobe of the somatosensory cortex, an
area of the cerebral cortex largely devoted to sensory analysis of touch information Fig-
ure 1.5A.

Somatosensory Cortex

The somatosensory cortex consists of several neighbouring, functionally distinct areas
whose interconnections are complex and only partially understood. Consider, for exam-
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1. Introduction to perceptual competition

Figure 1.6. (A) Organization of somatosensory cortex. (B) Different regions of the somatosensory
cortex process tactile information from different parts of the body, with these regions forming a
map of the body surface on the cortical surface. Adapted from https://www.chegg.com

ple, the two major areas, the so-called first and second somatosensory areas, S1 and S2.
Although both receive touch information from the thalamus, S2 also receives input from
S1.

In each hemisphere of the cerebral cortex, S1 receives information arising from the con-
tralateral side of the body and face. This is because of the crossover within the lemniscal
pathway (see Figure 1.5D). Thus, S1 neurons in the left hemisphere have their receptive
fields on the right side of the body, and vice versa. Generally, neighbouring areas of the
body are represented within neighbouring regions of the cortex. The body, in other words,
is mapped topographically onto somatosensory cortex Figure 1.6B. Our fingers provide the
most detailed information about the quality and location of tactile stimulation. For exam-
ple, the fingertip can distinguish points separately when they are 2 or 3mm apart, while
the arm senses two points separately only when they are 35 to 40mm apart.
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The most anterior (forward) of S1’s four strips is known as area 3a, the most posterior
(rear) strip is known as area 2, areas 3b and 1 lay in between Figure 1.6. Actually, the
four strips, or maps, can be grouped into two sets: neurons in Areas 3b and 1 (the middle
strips) respond most vigorously when sites on the skin are touched lightly. They receive
inputs, via the thalamus, primarily from the most superficial skin receptors that innervate
the RA-type I and SA-type I fibers. Neurons in Areas 3a and 2 (the most anterior and most
posterior strips) respond poorly, if at all, to light touch on the skin. Instead, they respond
strongly either when particular joints are moved — such as the joints of the fingers — or
when other structures deep beneath the skin’s surface, for example, tendons and muscles,
are stimulated. These areas receive inputs, again via the thalamus, primarily from the
more deeply situated skin receptors that innervate the RA-type II and SA-type II fibers.

1.3. Neural competition models

Due to fascinating nonlinear dynamics of perceptual competition, powerful tools such as
mathematical modelling have been utilized that are able to capture temporal character-
istics of perceptual rivalry with a specific set of model parameters. So several models
of perceptual rivalry were developed to either describe neural competition more precisely
over a wider range of stimulus parameter, or change the common understanding of this
phenomenon by introducing a new structure or dynamics (Lehky 1988; Blake 1989; Laing
and Chow 2002; Shpiro et al. 2007; Wilson 2007; Curtu et al. 2008; Salinas 2003; Freeman
2005).

In models of binocular rivalry (Brascamp et al. 2013; Laing and Chow 2002; Li et al.
2017; Wilson 2003) competition takes place as a result of reciprocal inhibition between
two monocular patterns presented to two different eyes. In addition of reciprocal inhibi-
tion, there must exist a slow process which either decreases the activity of the dominate
group of neurons and thus allow the other group to be released from suppression and
become dominant (Shpiro et al. 2009) (release mechanism), or increases the activity of
the suppressed group of neurons which instead forces its competitor into the suppressed
state (escape mechanism). Spike-frequency adaptation and synaptic depression are two
candidates for the slow processes necessary for maintenance of rivalry in neural models.
Synaptic depression acts by decreasing the effective synaptic connectivity, directly reduc-
ing the amount of negative feedback (if in the inhibitory connection) in the system (Shpiro
et al. 2007). The second type of slow process is spike-frequency adaptation, which acts by
reducing the excitability of active neurons in the network, opposing the positive feedback
and external input.

1.3.1. Laing & Chow model

Several models of binocular rivalry have been proposed so far. One of these models was
presented by Laing and Chow (LC Model) (Laing and Chow 2002). Most of the mod-
els (Blake 1989; Lehky 1988) that have been presented up until this point, were neural
networks or rate models and it was not possible to compare model’s results with neuro-
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physiological recordings quantitatively. The Laing and Chow Model was a biologically
plausible model and focused on the specific biophysical mechanisms underlying binocular
rivalry and multistable perception.

This model consists of both excitatory and inhibitory populations of Hodgkin-Huxley
spiking neurons. These neurons are orientation selective and connected locally to other
neurons with similar preferred orientation (with a periodic feature space, see Figure 1.7A).
It is also notable that this model is supposed to mimic the binocular rivalry at higher
cortical layers after primary visual cortex. Thus, the input of the orientation selective
neurons contains information from both eyes together. For slow processes, they include
both spike-frequency adaptation and synaptic depression. One interesting point is that
synaptic depression could not alone generate rivalry. Spike-frequency adaptation is able
to produce rivalry alternations; however, it limits the dominance duration to the order of
time constant of adaptation current (around 80 ms). Both of them together can generate
robust alternations.

Figure 1.7B shows a raster plot of the firing events of the excitatory neurons in the network
given two stimuli centered at neurons whose preferred orientations differ by 90 degrees. At
every moment in time, the activity is localized into a bump that is centered at either of the
two locations of maximum external input. A bump in one of these locations is thought
to represent a perception of bars of the corresponding orientation. They also present
a reduced population rate model derived from the spiking neuronal network (Laing and
Chow 2002). The reduced model can be represented by mean-field dimensionless equations:



u̇1 = −u1 + f (αu1g1 − βu2g2 − a1 + I1) ,

τaȧ1 = −a1 +Φaf (αu1g1 − βu2g2 − a1 + I1) ,

τdġ1 = 1− g1 − g1Φdf (αu1g1 − βu2g2 − a1 + I1) ,

u̇2 = −u2 + f (αu2g2 − βu1g1 − a2 + I2) ,

τaȧ2 = −a2 +Φaf (αu2g2 − βu1g1 − a2 + I2) ,

τdġ2 = 1− g2 − g2Φdf (αu2g2 − βu1g1 − a2 + I2) .

(1.1)

Here ui represents the averaged activity of population i (i = 1, 2), normalized so that its
maximum value is 1; ai is the population adaptation variable, with time scale τa; and
gi is the synaptic depression variable, with time scale τd. Ii is external stimulus, α and
β are constants that define strength of recurrent excitation and cross-inhibition, respec-
tively. Φa and Φd are scaling constants for gain function of spike-frequency adaptation
and synaptic depression, respectively. The gain function f is a Heaviside step function,

f(x) =

{
1 , x ≥ θ

0 , x < θ
, where θ is a threshold.

Time histories from simulations of the reduced model (for the case when synaptic depres-
sion is off) is shown in Figure 1.7C. Parameter values are α = 0.2, β = 0.4, Φa = 0.4,
τa = 20, I1 = 0.43, I2 = 0.5. One population becomes active only when its adaptation
has worn off by a sufficient amount. For the parameters shown, population 1 switches on
when a1 = I1 − β = 0.03 and population 2 switches on when a2 = I2 − β = 0.1.
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Figure 1.7. (A) Two coupled networks of binocular, orientation-selective neurons. The neurons are
labelled with their preferred orientation in degrees. Current is injected to two groups of neurons
whose preferred orientations differ by 90 degrees. (B) Activity in the excitatory population as a
function of time. The current stimuli are centered at neurons 15 and 45. The right panel shows
detail of the left panel. (C) Solution of the reduced model in Equation 1.1. Parameter values are
α = 0.2, β = 0.4, Φa = 0.4, τa = 20, I1 = 0.43, I2 = 0.5, g1 = g2 = 1. The top plot is u1 and a1,
the bottom is u2 and a2. Adapted from (Laing and Chow 2002)

1.3.2. Shpiro models

To investigate the role of slow processes in the system’s behaviour separately, Shpiro et
al. modified the LC model to include only one of the slow processes, spike-frequency
adaptation or synaptic depression (Shpiro et al. 2007). In addition, they also omitted the
recurrent excitation term in the gain function inputs. The model which only includes the
spike-frequency adaptation (AdaptationLC model) described by:


u̇1 = −u1 + f (−βu2 − ga1 + I1) ,

τaȧ1 = −a1 + u1,

u̇2 = −u2 + f (−βu1 − ga2 + I2) ,

τaȧ2 = −a2 + u2.

(1.2)

Where Ii is the input to the population i (i = 1, 2), ui(t) is the firing rate of the population
i, ai(t) is the adaptation variable, β is cross-inhibition strength and g is the strength of
the adaptation. The gain function f is sigmoid function,

f(x) =
1

1 + e−k(x−θ)
(1.3)

Where k defines the slope and θ defines the threshold.

The model which only includes the synaptic depression (Depression-LC model) described
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Figure 1.8. Bifurcation diagrams and examples of activity time courses for neuronal competition
model in Equation 1.2 with parameter values g = 0.5, τ = 100, r = 10, θ = 0.2, and β = 1.1
(panels A–G), respectively, β = 0.75 (panels H–I ). Time courses of u1, u2 corresponding to panel
F for different values of I: (A) I = 1.86, (B) I = 1.5, (C) I = 1, (D) I = 0.5, and (E) I = 0.08.
Bifurcation diagrams of period T of the network oscillation versus input strength I (panels F and
H). Bifurcation diagram of population activity u1 versus I (panels G and I). Adapted from (Curtu
et al. 2008)

by: 
u̇1 = −u1 + f (−βu2g2 + I1) ,

τdġ1 = 1− g1 − γu1g1,

u̇2 = −u2 + f (−βu1g1 + I2) ,

τdġ2 = 1− g2 − γu2g2.

(1.4)

Where gi(t) is the synaptic depression variable. The gain function again is a sigmoid.

The system in Equation 1.2 exhibits five possible types of behaviour: for large values of
I (region I in Figure 1.8F) both populations are active at identically high levels (Fig-
ure 1.8A); the time courses of u1 and u2 tend to a stable steady state larger than u0. As I
decreases (region II, Figure 1.8F) the system starts oscillating with u1 and u2 alternatively
on and off (Figure 1.8B); in this region the period of oscillation decreases with increas-
ing input strength (escape mechanisms). At intermediate values of I a winner-take-all
kind of behaviour is observed (region III, Figure 1.8F); depending on the choice of initial
conditions, one of the two populations is active indefinitely, while the other one remains
inactive (Figure 1.8C). Decreasing I even more (region IV, Figure 1.8F) the neuronal
model becomes oscillatory again (Figure 1.8D) with u1 and u2 competing for the active
state; however, for this range of parameter the oscillation period T increases with input
value I (release mechanisms, an opposite behaviour to that observed in region II). Last,
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for small values of stimulus strength (region V, Figure 1.8F) both populations remain
inactive at identically low level firing rates (Figure 1.8E); the time courses of u1 and u2

tend to a stable steady state less than u0.

1.3.3. Wilson model

Spike-rate equations for the Wilson model (Wilson 2003) are given by:

τĖ1 = −E1 +
100(J1(t)− gI2)

2
+

(10 +H1)2 + (J1(t)− gI2)2+
,

τHḢ1 = −H1 + hE1,

τI İ1 = −I1 + E1,

τ Ė2 = −E2 +
100(J2(t)− gI1)

2
+

(10 +H2)2 + (J2(t)− gI1)2+
,

τHḢ2 = −H2 + hE2,

τI İ2 = −I2 + E2.

(1.5)

Here Ji is the input to populations i (i = 1, 2), Ei is the firing rate of the excitatory
population i, Hi is the adaptation variable, and Ii is the inhibitory firing rate. The
asymptotic firing rate, the second term on the right-hand side of the first and fourth
expressions in (1), is determined by a Naka–Rushton function for positive values of its
argument (J − gI)+, where (J − gI)+ = J − gI if J >= gI and (J − gI)+ = 0 if J < gI

(Naka and Rushton 1966). Parameters g and h are inhibition and adaptation strength,
respectively.

1.3.4. Conclusion

We went through different approaches in neural competition modelling. With a broad look
at these models, it seems that reciprocal inhibition and a slow negative feedback processes
are considered as the underlying mechanism for rivalry. However, the actual mechanism
that gives rise to binocular rivalry is still not entirely understood (Brascamp et al. 2015).

In addition to slow processes, noise also considered as the underlying mechanism for al-
ternating perception (Shpiro et al. 2009). We can distinguish between two approaches
in competition modelling: first, adaptation-driven models and second, noise-driven mod-
els. Adaptation-driven models, also called oscillator models, such as Laing and Chow
2002 (Laing and Chow 2002), Wilson 2003 (Wilson 2003), can generate oscillation even
in the absence of noise, but the oscillations are exactly periodic. As observed in exper-
iments (Levelt 1965; Logothetis et al. 1996; Cao et al. 2014), there is some variability
in dominance duration times which are characterized by an e.g. log-normal distribution.
Adding noise to adaptation-driven models captures this property. On the other hand, there
are noise-driven attractor models such as Salinas 2003 (Salinas 2003), Freeman 2005 (Free-
man 2005), that argue noise is an essential mechanism for generating oscillations. In this
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regime of modelling, adaptation processes even if they exist, are not strong enough to
produce alternation without noise.

In the computational models that have been presented so far, the stochastic nature of
dominance durations modelled with additive noise using an Ornstein-Uhlenbeck process.
However, the results of (Cao et al. 2014) and (Cao et al. 2016) showed that the distributions
of dominance durations must have a scaling property that cannot be captured with additive
noise. The stochastic process that they suggested for maintaining this scaling property
requires many equations and does not describe the phenomena biologically. One line
for future research is to focus on the introduction of a noise process to the previous
computational models like the Laing model (Laing and Chow 2002) which can produce
current stochasticity of dominant time durations preserving the scaling property.

The dynamical characteristics that are common between neural competition models had
been investigated in (Shpiro et al. 2007). For this aim they selected the Laing and Chow
model (Laing and Chow 2002) (firing-rate version), Wilson model (with one stage) and
two variations of the Laing and Chow model, which they called adaptation-LC model and
depression-LC model. Although these models posed different features in the implemen-
tation of cross-inhibition, slow processes and gain function, all of them showed common
qualitative characteristics for neural competition, some of which were reported for the first
time in (Shpiro et al. 2007). Bifurcation analysis of these models over a wider range of
input strength revealed that there is a lower range of stimulus strength in which, despite
Levelt’s proposition IV, dominance duration increases with increasing stimulus strength.
It seems that additional experimental tests of Levelt’s proposition IV are needed to de-
scribe perceptual rivalry more specifically.

1.4. Dissertation outline

In Chapter 2, I investigate a model of neural competition (Adaptation-LC model) analyt-
ically to describe different dynamical behaviours of the system that appear depending on
the input strength. These analytical investigations help us to understand the underlying
mechanisms of perceptual alternations in competition models, in order to refine the mech-
anisms in a way to be consistent with Levelt’s propositions. In Chapter 3, I have done
deeper dynamical analysis of a widely used binocular rivalry model (Wilson 2003) with
fixed and periodic stimuli. In Chapter 4, I have presented a new, simple form of tactile
rivalry and explored generalisations with respect to perceptual rivalry in other sensory
modalities. Chapter 5 includes dynamical analysis of a model for vibrotactile rivalry with
periodic stimuli and slow-fast timescale separation. Chapter 6 concludes the thesis with
a discussion of each chapter, links between them and future work.
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2. Piecewise linear analysis of
Adaptation-LC model

2.1. Introduction

For conventional models of binocular rivalry (Laing and Chow 2002; Wilson 2003), Levelt’s
proposition IV is valid only within a limited range of stimulus strength (Shpiro et al. 2007).
These differences between experimental reports and theory have important implications,
either predicting new possible dynamics in binocular rivalry or, if future experiments do
not confirm them, pointing to necessity for other types of models (Curtu et al. 2008).
Meanwhile it is important to understand the sources or mechanisms that lead to the non-
monotonic dependence of oscillation period on stimulus strength for these conventional
competition models. Here, a mathematical model of neural competition (Adaptation-LC
model, see subsection 1.3.2 for model description) (Laing and Chow 2002; Shpiro et al.
2007) is considered with the aim to describe different dynamical behaviours of the system
that appear depending on the input strength and the relative values of system’s parameters
such as cross-inhibition β and synaptic depression g.

In the following sections, I will consider some simplifying assumptions such as, linearising
the sigmoid function and turning off the adaptation process. Firstly, the sigmoid func-
tion was estimated with Heaviside function and found different dynamical behaviours over
different ranges of input strength. Secondly, the nonlinearity was considered as a piece-
wise linear function, I found the equilibria existing over different ranges of input strength
and their stability, and also showed when the system has limit cycle and oscillatory be-
haviours. Further study extends this analysis for the full model with sigmoidal nonlinearity
(see (Curtu et al. 2008)). These analytical investigations help us to understand the un-
derlying mechanisms of perceptual alternations in competition models, in order to refine
the mechanisms in a way to be consistent with Levelt’s propositions.

2.2. Methods and Results

2.2.1. Heaviside nonlinearity and adaptation OFF

For the simplest case, I consider the Heaviside function as an approximation of the sigmoid
function (see Figure 2.1). At this time, I suppose that spike-frequency adaptation process
is off (g = 0 in Equation 1.2) and the two units u1 and u2 interact only through reciprocal
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Figure 2.1. The sigmoid function (purple solid curve) have been estimated with Heaviside function
fH(x) (dashed blue curved), and also with piecewise linear function fPL(x) (dashed red curved)

inhibition. The system’s equations will be as follows:{
u̇1 = −u1 + fH (−βu2 + I) = F (u1, u2, I),

u̇2 = −u2 + fH (−βu1 + I) = G(u1, u2, I),
(2.1)

fH(x) =

{
1 , x ≥ θ ,

0 , x < θ .
(2.2)

In order to find the steady states of the model I consider:{
u1

∗ = fH (−βu2
∗ + I) ,

u2
∗ = fH (−βu1

∗ + I) .
(2.3)

As fH is a Heaviside function, u1
∗ and u2

∗ can either be 0 or 1. So, there are three
parameter regimes with different solutions:

1) u1
∗ = u2

∗ = 0 for I < θ,
(2.4)

2)


u1

∗ = 0 and u2
∗ = 1

coexisting with
u1

∗ = 1 and u2
∗ = 0

for θ ≤ I < β + θ,
(2.5)

3) u1
∗ = u2

∗ = 1 for θ + β ≤ I. (2.6)

In order to check stability of the system, the Jacobian matrix A is examined at the
equilibrium points. As the slope of fH is always 0 (or undefined at the threshold), the
Jacobian matrix A evaluated at equilibrium will be as follows:

A|∗ =

[
∂F
∂u1

∂F
∂u2

∂G
∂u1

∂G
∂u2

]
|∗ =

[
−1 0

0 −1

]
. (2.7)
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Figure 2.2. (A) The bifurcation diagram varying input strength I when fH is a Heaviside function
and adaptation is OFF, (B) adaptation is ON, for g < β, (C) adaptation is ON, for g > β

This means both eigenvalues are negative for any steady state solutions. So, all steady
states are stable. The bifurcation diagram with respect to input strength I is shown in
Figure 2.2A.

2.2.2. Heaviside nonlinearity and adaptation ON

For the next step, the adaptation process is turned on and the model’s steady states are

investigated. At equilibrium point we have
{

a1 = u1

a2 = u2
and again by considering fH as a

Heaviside function, there are 3 parameter regimes with different solutions as:

1) u1 = u2 = 0 for I < θ,
(2.8)

2)


u1 = 0 and u2 = 1

coexisting with
u1 = 1 and u2 = 0

for g < β , θ + g ≤ I < θ + β,
(2.9)

3) u1 = u2 = 1 for θ + β + g < I. (2.10)

The second solution only exists when g < β. The bifurcation diagrams are shown in
Figure 2.2B and Figure 2.2C. Note that there are ranges for parameter I where the model
has no equilibria. This happens as very simple approximation for the sigmoid function
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Figure 2.3. (A) Bifurcation diagram varying input strength I when fPL is a piecewise linear
function and adaptation is OFF, for 2

k < β. (B) Bifurcation diagram varying input strength
I when fPL is a piecewise linear function and adaptation is OFF, for 2

k > β. (C) Bifurcation
diagram varying input strength I when fPL is a piecewise linear function and adaptation is ON,
for g + 2

k < β. (D) Bifurcation diagram varying input strength I when fPL is a piecewise linear
function and adaptation is ON, for g + 2

k > β

(with a discontinuity) has been considered. I expect oscillatory steady states in these
regions. I will investigate this in subsection 2.2.5.

2.2.3. Piece-wise linear approximation for nonlinearity and adaptation
OFF

Now I make the approximation of sigmoid function more accurately and suppose fPL to
be a piecewise linear function as described below (see Figure 2.1):

fPL(x) =


0 , x ≤ θ − 1

k
k
2 (x− θ) + 1

2 , θ − 1
k < x < θ + 1

k

1 , θ + 1
k ≤ x.

(2.11)

At first, the adaptation process is turned off. Considering three segments of the function
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fPL, we will have six different cases:

1) u1 = u2 = 0 for I ≤ θ − 1

k
(2.12)

2)


u1 = 0 and 0 < u2 < 1

coexisting with
u2 = 0 and 0 < u1 < 1

for 2

k
< β , θ − 1

k
< I < θ +

1

k
(2.13)

3) 0 < u1 < 1 and 0 < u2 < 1 for θ − 1

k
< I < θ + β +

1

k
(2.14)

4)


u1 = 0 and u2 = 1

coexisting with
u1 = 1 and u2 = 0

for 2

k
< β , θ +

1

k
≤ I ≤ θ + β − 1

k
(2.15)

5)


u1 = 1 and 0 < u2 < 1

coexisting with
u2 = 1 and 0 < u1 < 1

for 2

k
< β θ + β − 1

k
< I < θ + β +

1

k
(2.16)

6) u1 = u2 = 1 for β + θ +
1

k
≤ I (2.17)

The second, fourth and fifth solutions only exist when 2
k < β. The bifurcation diagrams

depending this condition are shown in Figure 2.3A and Figure 2.3B. For the stability
check, only at the third solution, matrix A can have eigenvalues different from -1.

A|∗ =

[
∂F
∂u1

∂F
∂u2

∂G
∂u1

∂G
∂u2

]
|∗ =

[
−1 −βk

2

−βk
2 −1

]
(2.18)

Which has eigenvalues λ1 =
βk
2 − 1, λ2 = −βk

2 − 1. One of these eigenvalues can be posi-
tive if 2

k < β. So, the middle branch in Figure 2.3A is a unstable equilibrium.

2.2.4. Piece-wise linear estimate for nonlinearity and adaptation ON

At this step, the adaptation process is turned on and model’s steady states are investigated.
At equilibrium point we have a1 = u1, a2 = u2, and again by considering the three pieces
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of function fPL, we can have six different cases:

1) u1 = u2 = 0 for I ≤ θ − 1

k
(2.19)

2)


u1 = 0 and 0 < u2 < 1

coexisting with
u2 = 0 and 0 < u1 < 1

for g +
2

k
< β , θ − 1

k
< I < θ + g +

1

k
(2.20)

3) 0 < u2 < 1 and 0 < u1 < 1 for θ − 1

k
< I < θ + β + g +

1

k
(2.21)

4)


u1 = 0 and u2 = 1

coexisting with
u1 = 1 and u2 = 0

for g +
2

k
< β , θ + g +

1

k
≤ I ≤ θ + β − 1

k
(2.22)

5)


u1 = 1 and 0 < u2 < 1

coexisting with
u2 = 1 and 0 < u1 < 1

for g + 2

k
< β , θ + β − 1

k
< I < θ + β + g +

1

k
(2.23)

6) u1 = u2 = 1 for θ + β + g +
1

k
≤ I (2.24)

The second, fourth and fifth solutions only exist when g+ 2
k < β . The bifurcation diagrams

depending this condition are shown in Figure 2.3C and Figure 2.3D.

2.2.5. Periodic solutions with Heaviside nonlinearity and adaptation ON

So far, the equilibria of the system have been found. For completing analysis of the
system, I need to look for periodic solutions as well. For finding periodic solutions, the
adaptation process needs to be on. For simplicity, the nonlinearity fH is considered to be
a Heaviside function. The adaptation dynamics is much slower than the average firing rate
dynamics. So, in our analysis we can suppose that u1 and u2 have reached their steady
states, however, a1 and a2 still evolve with time. Knowing that fH is a Heaviside function,
u1 and u2 must be either 0 or 1, and a1 and a2 have their own slow dynamics which can
change the states of u1 and u2 from 0 to 1 and vice versa. By this mechanism, oscillatory
behaviour can exist in this system for some range of model parameters.

When each of u1 and u2 is equal to 0 or 1, then the corresponding adaptation variable a1

and a2 evolves slowly with dynamics:

τaȧi = −ai + ui i = 1, 2. (2.25)

When ui is equal to one, then the solution of Equation 2.25 is:

ai(t) = 1 + (ai(t0)− 1)e−(t−t0)/τa , ui = 1, (2.26)

where ai(0) is the initial value of ai. And when ui is equal to 0, the solution of Equation 2.25
is:

ai(t) = ai(t0)e
−(t−t0)/τa , ui = 0. (2.27)
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iijr

Figure 2.4. 2D bifurcation diagram varying variables a1 and a2 which considered here as the
bifurcation parameters, when fH is a Heaviside function

As a1 and a2 evolve slowly, we can consider them as fixed parameters when analyse
the steady state values of u1 and u2. I want to assess different values of a1 and a2,
as parameters of the system, which correspond to different steady states of u1 and u2.
Here input strength is considered as a fixed parameter and the role of varying a1 and a2

is investigated in u1 and u2 steady states. Remembering fH is a Heaviside function, we
will have 4 different cases:

1) u1 = u2 = 0 for
{

a1 >
I−θ
g

a2 >
I−θ
g

(2.28)

2)

{
u1 = 0

u2 = 1
for

{
a1 >

I−θ−β
g

a2 <
I−θ
g

(2.29)

3)

{
u1 = 1

u2 = 0
for

{
a1 <

I−θ
g

a2 >
I−θ−β

g

(2.30)

4) u1 = u2 = 0 for
{

a1 <
I−θ−β

g

a2 <
I−θ−β

g

(2.31)

The summary of these cases has shown in Figure 2.4. This figure can be considered as a
2D bifurcation diagram varying a1 and a2 as bifurcation parameters. As Figure 2.4 shows,
two threshold lines in a1-a2 plan exist which when crossed over the steady states of u1 and
u2 will switch from 0 to 1 and vice versa.

We call the line ai =
I−θ−β

g low threshold and the line ai =
I−θ
g high threshold. As Fig-

ure 2.4 shows, if a1 and a2 are greater than high threshold, the steady states of both u1

and u2 are 1. If a1 and a2 are both less than low threshold, the steady states of both
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iijr

Figure 2.5. 2D bifurcation diagram according to a1 and a2, if I < θ

u1 and u2 are 1. If one of the a1 and a2 is less than high threshold and the other one is
greater than low threshold, we have rivalry with one of variables u1 and u2 is equal to 1
and the other one is equal to 0. If both of variables a1 and a2 are between the high and
low thresholds, we have winner-take-all case in which two steady states coexist.

For different range of input strength, depending if β < g or β > g, one or both of the
threshold lines can go beyond the valid range for a1 and a2 . If none of the thresholds is
present in the a1-a2 plane, we cannot have oscillatory behaviour. If one of the threshold
lines is presented, we will have oscillatory dynamics. If both threshold lines are presented,
we may have only one of two possible types of oscillations depending on the input strength.
In what follows, these cases will be discussed in more details.

I) If I < θ, both threshold lines go beyond the a1-a2 plane from the negative sides as
shown in Figure 2.5. So, for all values of a1 and a2, the system only has simultaneously
inactive responses.

II) If I > θ + β + g, both threshold lines go beyond the valid range of a1 and a2 (are always
less than one), and for the valid range of a1 and a2, as Figure 2.6 shows, the system only
has simultaneously active responses.

III) If θ + g < I < θ + β, and β > g, the high threshold go beyond the valid range from
the positive side and low threshold go beyond valid range from the negative side. As
Figure 2.7 shows, the system operates in a winner-take-all regime.

IV) If θ + β < I < θ + β + g, and β > g, and also if θ + g < I < θ + β + g, and β < g,
only the low threshold is in the valid range Figure 2.8.

V) If θ < I < θ + β, and θ < g, and also if θ < I < θ + g, and θ > g, only the high thresh-

44



2. Piecewise linear analysis of Adaptation-LC model

iijr

Figure 2.6. 2D bifurcation diagram according to a1 and a2, if I > θ + β + g

iijr

Figure 2.7. 2D bifurcation diagram varying a1 and a2, if θ + g < I < θ + β and β > g
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iijr

Figure 2.8. 2D bifurcation diagram according to a1 and a2, if θ + β < I < θ + β + g, and β > g,
and also if θ + g < I < θ + β + g, and β < g

Figure 2.9. 2D bifurcation diagram according to a1 and a2, if θ < I < θ + β, and θ < g, and also
if θ < I < θ + g, and θ > g
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Figure 2.10. 2D bifurcation diagram according to a1 and a2, if θ + β < I < θ + g, and β < g

old is in the valid range Figure 2.9.

VI) If θ + g < I < θ + β, and β < g, both threshold lines exist in a1 and a2 valid range Fig-
ure 2.10.

Oscillations may exist in the system for cases IV, V and VI. Figure 2.8, Figure 2.9, and
Figure 2.10 also show vector fields. The direction of a1 and a2 trajectories depend on the
state of u1 and u2. If ui is equal to 0, ai moves toward 0 and if ui is equal to 1, ai moves
toward 1. The direction of these trajectories may suddenly change if they cross over the
low threshold from the right side or above and also cross over the high threshold from left
side and beneath. As a1 and a2 evolve continuously, oscillations may exist if we have at
least one of threshold lines within the valid range for a1 and a2.

If the low threshold line only exists, the oscillation of a1 and a2 are limited to the low
threshold and a fixed value greater than the low threshold (Figure 2.8). The higher limita-
tion is equal to 1− I−θ−β

g and period of these oscillations is equal to 2τ ln(
g

I − θ − β
− 1).

If the high threshold line only exists, the oscillation of a1 and a2 are limited to 1− I−θ
g and

the high threshold (Figure 2.9). Period of these oscillations is equal to 2τ ln(
I − θ

g − I − θ
).

If both of the threshold lines are present in the valid range (Figure 2.10), the oscillations
are either limited to the low threshold (similar to case IV), or to the high threshold
(similar to case V). The first case happens if θ + g/2 < I < θ + (β + g)/2 and the second
case happens if θ + (β + g)/2 < I < θ + β + g/2.
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2.3. Discussion

In this models, five distinct regimes of behaviour was observed in different ranges of stimu-
lus strength. At very low stimulus strengths the system goes into fusion with both popula-
tions simultaneously active at a low level (SIM). Over a range of weak stimulus strengths
the period of oscillations increases with increasing input (increasing RIV branch). For
intermediate values of the stimulus strength, a winner-take-all regime is present (WTA).
Another oscillatory regime exists for larger inputs, with the period of oscillations decreas-
ing as input increases (decreasing RIV branch). For very strong stimuli alternation is
terminated and both populations are highly and identically active (SIM). Thus period
depends non-monotonically on stimulus strength with a winner-take-all behaviour that
separates the two oscillatory regimes.

These types of perceptual rivalry models are typically just investigated numerically with
a smooth firing rate function. Here, with the Heaviside nonlinearity and the adaptation
process, I showed analytically that periodic solution exists for some range of stimulus
strength. I also found expressions for the period of these oscillations which shows non-
monotonic dependence of the oscillation period on stimulus strength which means Levelt’s
proposition IV is valid only within a limited range of stimulus strength (Seely and Chow
2011). In another case, when a piece-wise nonlinearity function was considered, the model
does not have any periodic solution (but there is bistablity region). Thus perceptual
alternations can only occur through introduction of noise. In another study by Curtu
et al. (2008) some analysis with a Heaviside function has been done (but not with a
piece-wise linear function).

The presence of the winner-take-all and increasing-RIV regimes is common to all mutual-
inhibition models (Shpiro et al. 2007; Laing and Chow 2002; Wilson 2003), however, this
can be controlled by the strength of inhibition between two neuronal populations. The
strength of inhibition β affects whether there will be an increasing-RIV regime. It has
been shown in Shpiro et al. (2007) that there is a rather narrow range of β values where
models show a monotonic behaviour, that is, a decreasing period of oscillations as stimulus
strength is increased from zero to large values.

In this chapter, the existence of multiple modes of behaviour was investigated over ranges
of stimulus intensity. More generally, other model parameters, such as the strength of
inhibition may be varied, and other modes of behaviour are expected to occur. In Chap-
ter 3, this is pursued in a related model, where an in depth numerical analysis reveals
some previously unreported behaviour.
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3. Methods to assess binocular rivalry
with periodic stimuli

3.1. Introduction

In bistable perception, our perceptual experience evolves dynamically with fixed sensory
inputs, thus providing a window into the intrinsic neural computations underlying the
dynamics of sensory processing. Binocular rivalry is one example from a broad range of
bistable or multistable perceptually ambiguous stimuli. It occurs when the two eyes are
presented with incompatible monocular patterns (exclusively to one eye). Even though the
patterns are fixed, perceptual awareness alternates every 1-5 s between two perceptual in-
terpretations consistent with only one monocular pattern (Blake and Logothetis 2002). In
other words, one of the monocular patterns is suppressed totally and the other one is domi-
nant (thus winning the rivalry). This phenomenon has been investigated in a wide range of
experimental approaches: human behavioural studies (Logothetis et al. 1996; Wilke et al.
2003), primate physiological experiments (Logothetis and Schall 1989; Leopold and Logo-
thetis 1996), fMRI (functional magnetic resonance imaging) studies (Polonsky et al. 2000;
Tong and Engel 2001), and EEG (electroencephalogram) recordings in humans (Zhang
et al. 2011). Despite a long tradition of binocular rivalry research there are still questions
about the neuro-computational basis and the underlying mechanisms of this phenomena.
In addition to experimental investigations, powerful tools such as mathematical modelling
and bifurcation analysis have been utilized to explain this phenomenon (Laing and Chow
2002; Shpiro et al. 2007; Curtu et al. 2008), but many interesting questions remain.

There are contradictory ideas about whether rivalry takes place between neural popula-
tions associated with each eye or associated with stimulus features (Logothetis et al. 1996;
Lee and Blake 1999). The complex hierarchical architecture of visual cortical areas makes
it difficult to associate object perception to a particular locus in cortex. The locus of
visual perception and the level at which binocular rivalry is resolved are unknown. Previ-
ously, primary visual cortex (V1) had been considered as the locus of rivalry alternations
and the phenomena known as interocular eye rivalry (Sengpiel et al. 1995a;b; Li et al.
2005). According to this traditional interpretation, perceptual rivalry occurs as a result of
competition between monocular driven neurons in primary visual cortex (V1) (eye-based
rivalry). On the contrary, there are some studies which show correlation between percep-
tion during rivalry and activity in feature-selective higher cortical areas whose inputs are
pooled from both eyes (supporting stimulus rivalry) (Logothetis and Schall 1989; Leopold
and Logothetis 1996). In order to resolve this dispute, Logothetis et al. introduced a new
stimulus paradigm, so-called Flicker and Swap (F&S) in which monocular stimuli were



3. Methods to assess binocular rivalry with periodic stimuli

swapped between two eyes at 1.5 Hz (eye-swapping). The stimuli were flickered on and
off at 18 Hz in order to reduce the subject’s awareness of the swap times (Logothetis et al.
1996). The notion of eye rivalry predicts that a subject’s perception must follow the stim-
ulus as it switches between the eyes. However, F&S experiments, similar to traditional
experiments, showed that each period of perceptual dominance lasts on average around
2 seconds and spans over six to seven stimulus swaps (Logothetis et al. 1996). It can be
concluded from the F&S experiment that rivalry cannot be the result of suppressing one
eye completely (and dominance of the other eye). These results suggest that the stimulus
rivalry hypothesis is a more accurate interpretation of rivalry than eye rivalry notion.

For decades, the common empirical paradigm for studying binocular rivalry has been
through stimulation of each eye with fixed stimuli (always on) (Levelt 1965; Cao et al.
2014). Several computational models of binocular rivalry have been proposed that were
able to capture temporal characteristics of traditional rivalry (eye-based) with a specific
set of model parameters (Lehky 1988; Blake 1989; Laing and Chow 2002; Shpiro et al.
2007; Wilson 2007; Curtu et al. 2008; Salinas 2003; Freeman 2005). The minimal proper-
ties required to implement a model that is compatible with the existing rivalry evidence is
reciprocal inhibition between two monocular neural populations and a slow process (spike
frequency adaptation or synaptic depression) together with nonlinearity of the spike rate
gain function (Wilson 2007). Although these models posed different features in the im-
plementation of reciprocal inhibition, slow processes and gain function, all of them show
common qualitative characteristics for neural competition (Shpiro et al. 2007).

Wilson sought to explain the stimulus rivalry with a two-stage model (Wilson 2003). The
first stage represents monocular neurons in primary visual cortex, and the second stage
represents binocular neurons in later (higher) stages of processing (Figure 3.1A). The
Wilson model can account for maintained perceptual dominance across eye swaps with
F&S stimuli (Wilson 2003). However, this model predicts that monocular neural activ-
ities are not modulated during stimulus rivalry, which is contradicted by experimental
evidence (Brascamp et al. 2013). Whilst a later paper from Wilson (Wilson 2007) sug-
gested these could be accounted for by descending connections to the monocular layer,
Brascamp et al. claimed that it is possible to have stimulus rivalry without binocular
contributions (Brascamp et al. 2013). The Li et al. model (Li et al. 2017) similar to the
Wilson model (Wilson 2003) included a second stage to explain stimulus rivalry; however,
unlike the Wilson model this second layer is responsible for attentional modulation rather
than another layer of rivalry. Attentional modulation provides feedback to monocular
layers, and thus stimulus rivalry can be seen in the first layer. Li et al. (Li et al. 2017)
also note that stimulus rivalry can occur without flicker in experiments if there are blank
intervals before swaps times (van Boxtel et al. 2008; Denison and Silver 2012), which was
not captured by the Wilson model.

Traditional rivalry with a fixed stimulus in each eye was studied with theWilson model (Wil-
son 2003). Earlier work presented a bifurcation analysis of the Wilson model with fixed
inputs and identified parameter regions with different dynamical behaviour (Shpiro et al.
2007). However, we found that a richer bifurcation structure exists at the crucial tran-
sition from winner-take-all to rivalry. Thus, a bifurcation analysis for fixed inputs that
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investigates all bifurcations occurring between different dynamical states is required. Fur-
thermore, Wilson’s model and other rivalry models have been only studied using bifurca-
tion analysis for fixed inputs, whilst the different dynamical behaviour that can occur with
periodically forced inputs have only been investigated at isolated parameter values with
direct simulations (time histories) (Wilson 2003) (although see (Vattikuti et al. 2016)). In
general, sensitivity to model parameters with periodic inputs has not been studied so far.
To fully explain F&S experiments, we need to understand the bifurcations that distinguish
different states such as perception following the stimulus swaps and perception being sta-
ble for many seconds. Thus, a complete bifurcation analysis of the model with fixed and
periodic inputs with careful attention to complex dynamics phenomena is required.

We aim to properly explain and understand the dynamics of binocular rivalry and how they
change with different kinds of inputs (traditional, flickering, swapping, and F&S stimuli).
Here we focus on the Wilson model and we were successful in building a framework to
study rivalry models with, not only fixed input, but also with periodic forcing. For a
thorough dynamical analysis, we analyse the Wilson model with periodic input using
numerical continuation tools. This allows us to investigate different dynamical regimes
and boundaries between them (bifurcations), as computed for multiple parameters. The
approach presented here is applicable to a range of models for bistable perception with
periodically varying stimuli.

3.2. Methods

Here we focus on the two-stage, hierarchical Wilson model which can explain both tradi-
tional and F&S experiments (Wilson 2003). The first stage represents monocular neurons
in primary visual cortex, and the second stage represents binocular neurons in higher
cortical areas (Figure 3.1A). These neurons self-adapt, as modelled by spike-frequency
adaptation, and there is mutual inhibition between monocular neurons representing dif-
ferent eyes and grating orientations. We split the first level into two isolated subunits:

1) competition between neurons representing the horizontal grating in the left eye (HL)
and the vertical grating in the right eye (VR).

2) competition between neurons representing the vertical grating in the left eye (VL) and
the horizontal grating in the right eye (HR).

Spike-rate equations for the first isolated subunit in the first stage of theWilson model (Wil-
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Figure 3.1. Two stage Wilson neural network model. (A) The first stage comprises monocular
left and right neurons selective to orthogonal gratings. Reciprocal inhibition between different eyes
and grating orientations are represented by heavy lines with filled circles at the ends. The second
stage represents binocular neurons in higher cortical layers that receive summation of left and right
monocular neurons with the same grating orientation. (Wilson 2003). The isolated units at the
first stage that we analyse are marked with the dashed box. (B) Horizontal (H) and vertical (V)
stimuli swapped between the left (L) and the right (R) eyes (no flicker). At a specific time, one
eye receives horizontal stimuli and the other receives vertical stimuli, each stimulates their own
corresponding population at the first stage.

son 2003) are given by:

τĖHL = −EHL +
100(JHL(t)− gIV R)

2
+

(10 +HHL)2 + (JHL(t)− gIV R)2+
,

τHḢHL = −HHL + hEHL,

τI İHL = −IHL + EHL,

τ ĖV R = −EV R +
100(JV R(t)− gIHL)

2
+

(10 +HV R)2 + (JV R(t)− gIHL)2+
,

τHḢV R = −HV R + hEV R,

τI İV R = −IV R + EV R.

(3.1)

Here JHL and JV R are inputs to populations representing horizontal grating in the left
eye and vertical grating in the right eye, respectively. Ei is the firing rate of the excitatory
population i (i = HL, V R), Hi is the adaptation variable, and Ii is the inhibitory firing
rate. The asymptotic firing rate, the second term on the right-hand side of the first and
fourth expressions in (1), is determined by a Naka–Rushton function for positive values of
its argument (J −gI)+, where (J −gI)+ = J −gI if J >= gI and (J −gI)+ = 0 if J < gI

(Naka and Rushton 1966). The following values of the parameters are used: τ = 20ms,
τH = 900ms, τI = 11ms, as in the original paper (Wilson 2003). The values of inhibition
strength g and adaptation strength h are varied as part of the bifurcation analysis.
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Here we only consider one of the isolated subunits in the first stage (marked by a dashed
box in Figure 3.1A). By this simplification, we will only have two populations of neurons
which correspond to the monocular neurons sensitive to horizontal stimuli in the left eye
(HL) and vertical stimuli in the right eye (VR). For the traditional experiment, we will
not lose generality since each eye only receives horizontal or vertical stimuli and one of
the subunits always has no inputs. For the periodically forced cases, both subunits have
their own inputs (Figure 3.1B). However, because of symmetry and feed-forward nature of
network we can carry out our analysis without the other subunit at monocular layer. We
only investigate one of the subunits, which is further justified and considered along with
the implications of our results for full model in the discussion.

Stimuli for different cases: traditional rivalry, swap only, flicker only, F&S, and B&S are
shown in Figure 3.2. In order to produce periodic forcing stimuli, we add two ODEs to
the main equations in Equation 3.1, which describe a nonlinear oscillator,

ẋs = xs + (2πfs)ys − xs(x
2
s + y2s),

ẏs = −(2πfs)xs + ys − ys(x
2
s + y2s),

(3.2)

with solutions: xs(t) = sin(2πfst), ys(t) = cos(2πfst), where fs is the frequency of oscil-
lations. In order to build a smooth square waveform (a square wave that is differentiable,
i.e. with smooth transitions between 0 and 1) using the sinusoidal waveforms (xs(t)), we
will apply a steep sigmoid function,

x(t) =
1

1 + e−kxs(t)
, (3.3)

with k = 10. Thus our desirable periodic forcing for swap only (fs = 1.5Hz) and flicker
only (fs = 18Hz) cases can be applied by replacing JHL(t) = JV R(t) = x(t) in Equa-
tion 1.1. For F&S stimuli, we have two forcing terms with different frequencies. Consider-
ing that the flickering frequency is an integer multiple of swap frequency (ff = 12fs), we
first build the lower frequency forcing (xs) using equations Equation 1.2, and the higher
frequency forcing (xf ) can be computed by:

xf (t) = Re{[xs(t) + iys(t)]
12}. (3.4)

Then the F&S stimuli can be produced from its components:

xfs(t) = xf (t)xs(t). (3.5)

The nonlinear gain function that appears in the right-hand side of the original Wilson
model is a discontinuous function in its first derivative due to the rectification operation
(J−gI)+. Numerical continuation routines require smooth systems of equations. In order
to solve this problem we have used a steep sigmoid function to smooth out the transition
at zero. So instead of (J − gI)+ terms in Equation 1.1, we substitute R(J − gI) as:

R(x) =
x

1 + e−k(x−θ)
. (3.6)
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Figure 3.2. Stimuli for different input cases. Stimuli for monocular populations selective to
the horizontal grating in the left eye (HL) and vertical gratings in the right eye (VR) are shown
with red solid and blue dashed lines respectively. (A) Fixed inputs for traditional rivalry. (B)
Periodic 1.5 Hz square waves for swap only experiment. (C) Periodic 18 Hz square waves for
flicker only experiment. (D) Periodic 1.5 Hz square waves modulated with 18 Hz on/off switches
for the F&S experiment. (E) Periodic 1.5 Hz square waves with blank intervals (150ms duration)
inserted before swaps for the B&S experiment.

Where k = 30 defines the slope and θ = 0.05 defines the threshold. This becomes partic-
ularly important when we want to follow the locus of torus bifurcations (T) in parameter
plane. Further difficulties in following the locus of torus bifurcations were resolved by
introducing a small parameter (ϵ = 0.001) to break the HL ↔ V R symmetry in the first
ODE in Equation 1.1,

τĖHL = −EHL +
100(JHL(t)− gIV R)

2
+

(10 +HHL + ϵ)2 + (JHL(t)− gIV R)2+
. (3.7)

This removed a potential degeneracy in the torus bifurcation defining system that allowed
for the computations to be completed. The numerical integration of the initial value prob-
lems were carried out in MATLAB using a fourth-order Runge-Kutta method with time step
0.1ms. Numerical continuation was performed with the package AUTO07p, by and large us-
ing relatively standard constants, but notably increasing the mesh size (NTST) for the com-
putation of periodic orbits in the forced cases and when the period became large (Doedel
et al. 2007). Source code for the model is available in the GitHub repository farzaneh-
darki/Darki2020-methods: https://github.com/farzaneh-darki/Darki2020-methods.

3.3. Results

3.3.1. Bifurcation analysis of traditional rivalry with fixed inputs.

Previously, three main types of dynamical behaviours were found in many models of ri-
valry with fixed inputs (including the Wilson model): Winner-take-all (WTA), Rivalry
oscillations (RIV), Simultaneous activity (SIM). The bifurcation diagram with fixed inhi-
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bition strength g = 1.5, and varying adaptation strength h, is presented in Figure 3.3A. A
trivial symmetric equilibrium always exists, which is stable for large values of adaptation
strength and corresponds to simultaneous activity (SIM) (Figure 3.3C). This equilibrium
loses its stability with decreasing adaptation strength and a stable limit cycle emerges
from a supercritical Hopf bifurcation (H). These relaxation oscillations correspond to ri-
valry (RIV). For h increasing from zero on the symmetric unstable branch, a pair of
unstable fixed point branches emerge at a pitchfork bifurcation (PF) with the E1 = E2

symmetry broken. The complementary branches undergo fold bifurcations (L) nearby but
remain unstable. These two unstable fixed point branches go through two supercritical
Hopf bifurcations and become stable. These two stable equilibria create a bistable pa-
rameter range known as winner-take-all (WTA), which exists for small h. The qualitative
transformation of the system from RIV to WTA remains unclear and must involve as
yet undetermined bifurcations at changes in stability on the RIV branch (Figure 3.3B,
green curve). Existence of multiple fixed points in the intermediate region of adaptation
strength h separating WTA and RIV states is similar to the WTA bistability bifurcation
structure in a two-dimensional dynamical system for visual perception (You et al. 2011).
However, here we found the WTA branch becomes unstable at a Hopf bifurcation and
the other remaining fixed points which appear and disappear through pitchfork and fold
bifurcations are unstable (which is possible in a six-dimensional ODEs).

In this study, a more complete numerical bifurcation analysis has been carried out to
find other stable solutions in the small parameter gap between the WTA and RIV (Fig-
ure 3.3B). As seen in Figure 3.4A, a pair of stable limit cycles emerge from two super-
critical Hopf bifurcations (on upper and lower WTA branches) as adaptation strength
is increased. These low-amplitude oscillations move around the top-most and bottom-
most of the 5 equilibrium branches existing between PF and L. We call this dynamical
behaviour low-amplitude-winner-take-all (LAWTA) since there is bistability like WTA
behaviour; however, the stable states are oscillatory solutions with very small amplitude
around asymmetric unstable equilibria (Figure 3.4A). By further increasing adaptation
strength, a cascade of period-doubling bifurcations emerges from the LAWTA branch
(Figure 3.4C). For example, one period of the original limit cycle emerging from a super-
critical Hopf bifurcation looks like a sinusoidal signal with one peak and one trough. After
the first period-doubling bifurcation (PD), one period of oscillations will have two peaks
and two troughs with tiny differences between the peak and trough amplitudes. As seen
in Figure 3.5, even after three PD bifurcations, the difference in amplitude between the 8
peaks remains small.

On the other side, the limit cycle emerging from the supercritical Hopf bifurcation (green
branch labelled RIV in Figure 3.3A-B) becomes unstable as adaptation strength decreases;
however, the continuation software does not detect any bifurcation where the stability
changes. This appears to be a global bifurcation which is not detectable by local analysis.
We will refer to this putative global bifurcation at the change in stability at the RIV branch
as the global bifurcation. Without any specific bifurcation in hand, we cannot follow any
emerging stable branch. To tackle this issue we compute the stable periodic solution (as-
suming one exists, using numerical integration) for a specific value of adaptation strength
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Figure 3.3. Bifurcation analysis and time histories for traditional rivalry. (A) Bifurcation
diagram for the Wilson model (1) with fixed inputs varying adaptation strength h. Three main
types of dynamical behaviours are presented: Winner-take-all (WTA), Rivalry oscillations (RIV),
Simultaneous activity (SIM). Blue lines show fixed point branches and the green line shows the
maximum of E1&E2 on the limit cycle branch. The minimum of RIV branch oscillations is close
to zero once away from Hopf bifurcation (not shown). (B) Details of the diagram are shown in
a zoomed panel. The period of oscillations on the unstable limit cycle branch shown with green
dashed lines increase sharply as we move toward a critical parameter value h ≈ 4.22843 and
continuation fails. The dotted green line shows the assumed location of a branch segment that
proved difficult to compute due to the orbits having large period. The sequence of bifurcations
that transform the system from WTA to RIV periodic solutions has not been described previously.
(C) Time histories associated with each dynamical behaviour: WTA (h = 1), RIV (h = 4.3), SIM
(h = 15). Other parameters: g = 1.5, JHL = JV R = 10.
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Figure 3.4. Detailed bifurcation analysis for traditional rivalry. (A) Bifurcation diagram
of the Wilson model (1) with fixed inputs varying adaptation strength h. In addition to WTA,
RIV, and SIM, two other regions with different dynamical behaviour are revealed: (B) Mixed-mode
oscillations (MMOs) emerging from high amplitude relaxation oscillations (RIV) with discontinuous
transitions between segments. Each period of these MMOs has one high and one or more low
amplitude oscillations (see figure 6 for time histories). On MMO branches n:m defines n high to
m low amplitude oscillations ratio. The number of low amplitude oscillations starts from one and
is increased by one as we move down the bifurcation parameter. (C) Low amplitude winner-take-
all (LAWTA) oscillations emerge from supercritical Hopf bifurcation on the WTA branch and by
further increasing the bifurcation parameter, a cascade of period-doubling bifurcations emerges.
Panels B and C show the maximum of E1&E2 on the limit cycle branches. The minimum of
MMOs is close to zero. (D) Boundaries of different dynamical behaviours are shown in parameter
space (h, g). The region with the periodic solution (RIV) is confined by Hopf bifurcation (red solid
line) from beneath and by fold bifurcation (L, green dashed line) from above. Other parameters:
g = 1.5, JHL = JV R = 10.
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Figure 3.5. LAWTA oscillations time histories for traditional rivalry. (A) Time history of
LAWTA oscillatory activity for two neural populations (solid and dashed lines correspondingly).
(B) One period of LAWTA after PD3 in figure 4C. LAWTA has 8 different high and low peaks.
(C) Limit cycle in E1 − E2 plane. Parameters: h = 4.22842214, g = 1.5, JHL = JV R = 10.
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(in a range between last PD and the change in stability on the RIV branch) and then
follow any periodic solution branch using numerical continuation. On the right side of the
global bifurcation, time simulations show relaxation oscillations that reach high amplitude
rapidly before relaxing to baseline (Figure 3.6B). However, on the left side of the change
in stability (close to the global bifurcation), we observe that in addition to high amplitude
oscillations, one low amplitude oscillations appears (Figure 3.6C). By further decreasing
adaptation strength, there is always one high amplitude oscillation, but the number of low
amplitude oscillations increase (Figure 3.6C-F). The period of these oscillations increase
sharply as we move toward a critical parameter value h ≈ 4.22843 (Figure 3.6A). This com-
plex behaviour is known as mixed-mode oscillations (MMOs) since it is a mixture of low
and high amplitude oscillations. Using the approach described above we could complete
stable branches on the left side of global bifurcation (Figure 3.4B). Interestingly, stable
solutions occur through a series of discrete branches. The discontinuous transitions from
one branch segment to the next are similar to the spike adding mechanism from (Nowacki
et al. 2012). The bifurcation structure here appears similar to the canard induced MMOs
identified in a spiking neuron model (Ermentrout and Wechselberger 2009). The sharp
increase in amplitude of the limit cycle branch over a short parameter range emerging
near the critical value of h (Figure 3.6 caption) suggests the complex behaviour in this
region is also associated with canards. Bifurcation analysis of another simple rivalry model
with 4 ODEs and different nonlinearity revealed a similar structure for MMOs through
the interaction of canards and a singular Hopf point (Curtu and Rubin 2011). Whilst,
there are some similarities with the MMOs found in the present study, a more rigorous
approach would be needed to say whether these MMOs are canard-induced, Hopf-induced,
or result from an interaction of both mechanisms. The global bifurcation and the tran-
sitions between MMO branches remain to be determined. The behaviours reported here
are confined to a narrow region of the (g, h) parameter plane near the left-hand locus of
Hopf bifurcation (Figure 3.4D).

Here, a more complete analysis has revealed MMOs emerge from high amplitude RIV oscil-
lations (Figure 3.4B) and a cascade of period-doubling bifurcations emerge from LAWTA
oscillations (Figure 3.4C) which have not been reported before in the Wilson model. This
analysis describes the mechanism of state transition fromWTA to RIV which was not clear
before. Whilst MMOs have been reported in another model of rivalry (Curtu and Rubin
2011; Curtu 2010), the appearance of a stable PD cascade has revealed richer dynamics in
the Wilson model which may also play a part in the mechanisms that lead to appearance
and disappearance of limit cycles associated with MMOs. An interesting avenue of inves-
tigation will be to understand how the low-amplitude PD cascade (Figure 3.4C) interacts
with periodic forcing. This provides the context to fully understand the periodically forced
case.
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Figure 3.6. Periods of oscillatory states and MMOs time histories for traditional ri-
valry. (A) Periods of oscillations for three types of oscillatory dynamics: LAWTA (purple), MMOs
(brown) and rivalry oscillations (green). The period of oscillations increase sharply as we move
toward a critical parameter value h ≈ 4.22843 from either side. (B)-(F) Time histories associate
with different branch segments of MMOs with different adaptation strength in each panel. Number
of low amplitude oscillations increases as adaptation strength is decreased: (B) RIV (h = 4.3) (C)
One (h = 4.26) (D) two (h = 4.243) (E) three (h = 4.24) (F) four (h = 4.237) low amplitude
oscillations in one period. On MMOs branches n:m defines n high to m low amplitude oscillations
ratio. Other parameters: g = 1.5, JHL = JV R = 10.
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3.3.2. Bifurcation analysis of binocular rivalry with periodic forcing.

Flicker (18 Hz) only

Bifurcation analysis with the flickering stimulus shows that periodic forcing with high
frequency (e.g. 18 Hz) modulates the three main types of behaviours that occur with
fixed inputs. Instead of WTA and SIM fixed point branches in traditional rivalry with
fixed stimulus (Figure 3.3A), modulated WTA (WTA-Mod) and modulated SIM (SIM-
Mod) periodic solution branches are found with the flickering stimulus (Figure 3.7A).
Subsequently, the SIM-Mod branch undergoes a torus bifurcation (T) giving rise to a torus
branch with periodic oscillations corresponding to modulated slow rivalry alternations
(RIV-Mod). Following the torus bifurcation in the (g, h) parameter plane defines the
boundary of rivalry oscillations (Figure 3.7B). The locus of a pitchfork bifurcation (BP)
remains close to the left-hand torus curve (Figure 3.7B, not shown). It appears that the
MMO branches and PD cascade identified for fixed inputs disappear with the introduction
of flicker. This analysis found evidence that slow rivalry alternations RIV-Mod can exist
at parameter values adjacent to regions where stimulus-induced oscillations exist (SIM-
Mod). Time histories of these dynamical behaviours are shown in (Figure 3.7C). These
results are consistent with experiments: Flicker stimuli do not differ from the traditional
rivalry case (Lee and Blake 1999).

Swap (1.5 Hz) only

The dynamical behaviour with low frequency periodic forcing (around 1.5 Hz, so-called
swap) is different, and in addition to WTA-Mod behaviour (for small values of adaptation
strength) and SIM-Mod (for large values of adaptation strength), cycle skipping occurs
through a PD bifurcation on the SIM-Mod branch (Figure 3.8A). Cycle skipping refers to
the response of each competing population to every other stimulus onset. This means two
populations respond in turn to stimulus cycles and while one has high activity during a
cycle the other one stays inactive (Figure 3.9A). We note that the period of the period-
doubled solution is 1.333 s and is plausibly the result of a resonance with the fixed-input
limit-cycle, which has a period > 2 s, for larger values of h (Shpiro et al. 2007). SIM-
Mod and cycle skipping have been reported in a simpler model of rivalry (Jayasuriya and
Kilpatrick 2012) and via direct simulations of the Wilson model in (Li et al. 2017).

As seen in (Figure 3.8B-C), the cycle skipping branch loses stability at a fold bifurcation
(L) for decreasing h. For h increasing, branching off from the PD point on the WTA-mod
branch leads to a cascade of PD bifurcations (Figure 3.8D). In order to find the possi-
ble stable periodic branches between the last PD and the fold bifurcation, we compute
the stable periodic solution (assuming it exists) using numerical integration for a specific
value of adaptation strength, and then start continuation from this solution. With this
approach, we found a family of discontinuous branches, which correspond to multi-cycle
skipping (Figure 3.8C). On these branches, the number of stimulus cycles between switches
of activity from one population to the other is variable and increases by one as the bifur-
cation parameter decreases (Figure 3.9A-E). Here we found a small region of bistability
between the one cycle skipping and two cycle skipping behaviours (at around h = 0.05
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Figure 3.7. Bifurcation analysis and time histories for flicker only case. (A) Bifurcation
diagram for the Wilson model (1) with high frequency periodic forcing (flicker; 18Hz) varying
adaptation strength h, g = 1.5. Three main types of dynamical behaviours are modulated by forc-
ing frequency: 1) Modulated WTA (WTA-Mod), 2) Modulated rivalry (RIV-Mod), 3) Modulated
SIM (SIM-Mod). RIV-Mod branch which occurs through supercritical torus bifurcation (T), is
associated with slow rivalry alternations. Solid curve: stable limit cycle, dashed curve: unstable
limit cycle, filled circles: attracting torus. (B) Boundaries of different dynamical behaviour with
high frequency periodic forcing (flicker 18Hz) are shown in parameter space (h, g). The region
with RIV-Mod solution is confined by torus bifurcation. (C) Firing activity of each competing
population E1 (solid lines) and E2 (dashed lines) with high frequency periodic forcing; flicker 18Hz
and different adaptation strength h: WTA-Mod regime with h = 0.5, RIV-Mod regime with h = 2,
SIM-Mod regime with h = 6. Other parameters: [JHL]max = [JV R]max = 10.
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Figure 3.8. Bifurcation analysis for swap only case. (A) Bifurcation diagram for the Wilson
model (1) with low frequency periodic forcing (swap; 1.5Hz) varying adaptation strength h, g = 1.5.
Dynamical behaviour for large values of adaptation strength is modulated SIM (SIM-Mod). Cycle
skipping behaviour appears through period-doubling bifurcation (PD) in which every population
only responds to every other stimulus onset in turn. There also exists a pair of stable limit cycles for
very small values of adaptation strength which corresponds to modulated WTA (WTA-Mod). Solid
curve: stable limit cycle, dashed curve: unstable limit cycle. (B) Detailed bifurcation diagram for
the Wilson model with low frequency periodic forcing (swap; 1.5Hz) varying adaptation strength
h, g = 25. (C) Multi-cycle skipping occurs through discontinuous branches. The number of cycles
skipped between switches increases by one as we move left from each branch segment to the next.
(D) A cascade of period-doubling bifurcations which leads to chaos. In panels C and D, the
ordinate shows maximum of E1&E2. (E) Boundaries of different dynamical behaviours with low
frequency periodic forcing (swap 1.5Hz) are shown in parameter space (h, g). The region with the
cycle skipping solution is confined by period-doubling (PD) bifurcations from beneath and by fold
bifurcation from above (marked with arrows). Other parameters: [JHL]max = [JV R]max = 10.
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Figure 3.9. Cycle skipping, multi-cycle skiping and chaos time histories for Swap only
case. Firing activity of each competing population E1 (solid lines) and E2 (dashed lines) with low
frequency periodic forcing; swap 1.5Hz and different adaptation strength h. (A) Cycle skipping
regime with h = 1. (B-E) Multi-cycle skipping regime with variable number of cycles to respond
and skip between switches. (B) h = 0.03, (C) h = 0.02, (D) h = 0.0185, (E) h = 0.017. Chaotic
firing activity of (F) E1 and (G) E2 with irregular number of cycles to respond or skip between
switches, h = 0.01663. Other parameters: g = 25, [JHL]max = [JV R]max = 10.
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in Figure 3.8C). Therefore, in the full hierarchical model it would be possible to find an
asymmetric solution where the HL-VR units at the first stage behave differently. However,
as explained in the discussion the model normally operates close to the SIM-Mod region,
which is far away from the cycle skipping region with bistability in the parameter space.

Another interesting behaviour is the appearance of a chaotic attractor in a parameter
range between the PD cascade and multi-cycle skipping family branches (Figure 3.8C).
Figure 3.9F-G represents chaotic firing activity for each population in a 200 s simulation.
The number of cycles between switches does not show any regular or repeating pattern.

Flicker (18 Hz) & (1.5 Hz) Swap

The bifurcation structure with both high frequency flicker and low frequency swap appears
to be analogous to bifurcation structure with swap only case (Figure 3.10A–B). However,
the right-hand PD bifurcation point in the transition from cycle skipping to SIM-Mod
moves down in adaptation strength. This is shown in a direct comparison of two-parameter
bifurcation diagrams for the F&S and swap only cases in (Figure 3.11A). In fact, with the
same values of adaptation strength that we might expect cycle skipping from swap only
case, with F&S stimulus we can get SIM-mod, which turns out to be critical for obtaining
slow alternations, see discussion.

Blanks (150 ms) & (1.5 Hz) Swap

Our result shows that the effect of blank insertion before swap times, similar to the effect
of adding flicker to swap stimuli, moves the PD bifurcation point down the bifurcation
parameter (Figure 3.11B), but to a much lesser extent than the introduction of flicker,
compare Figure 3.11A and B.

3.4. Discussion

3.4.1. Summary

Earlier work with models of bistable perception has identified parameter ranges with
winner-take-all dynamics (WTA), rivalry oscillations (RIV) and simultaneous activity
(SIM) (Shpiro et al. 2009; Seely and Chow 2011). Such regimes are known for the Wilson
model as input strength is increased (Shpiro et al. 2007). Our results show that the Wilson
model with fixed inputs is capable of generating complex dynamical behaviours such as
MMOs and LAWTA oscillations, previously not reported. We have also built a framework
for studying rivalry models with periodic inputs using numerical continuation. Given sym-
metry between orientations (0◦ & 90◦) and eyes (L & R), and the feed-forward structure of
the hierarchical Wilson model, it is sufficient to study one pair of units in the monocular
layer. We found that periodic forcing with high frequency (e.g. 18 Hz, known as flicker)
modulates the three main types of behaviours that occur with fixed inputs with forcing
frequency (WTA-Mod, RIV-Mod, SIM-Mod). However, the dynamical behaviour changes
with low frequency periodic forcing (around 1.5Hz, so-called swap), and in addition to
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Figure 3.10. Bifurcation analysis for F&S rivalry. (A) Bifurcation diagram for the Wilson
model (1) with high frequency flickering (18Hz) and low frequency swap (1.5Hz) varying adaptation
strength h, g = 1.5. Dynamical behaviour for large values of adaptation strength is modulated SIM
(SIM-Mod). Cycle skipping behaviour appears through period-doubling bifurcation (PD) in which
every population only responds to every other stimulus onset in turn. There also exists a pair of
stable limit cycles for very small values of adaptation strength which corresponds to modulated
WTA (WTA-Mod), not visible at this scale. Solid curve: stable limit cycle, dashed curve: unstable
limit cycle. (B) Boundaries of different dynamical behaviours are shown in parameter space (h, g).
The region with cycle skipping solution is confined by period-doubling (PD) bifurcations. Other
parameters: [JHL]max = [JV R]max = 10.
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Figure 3.11. Why does the Wilson model produce slow alternations with the F&S ,but
not with Swap only and B&S stimuli? Two parameter bifurcation diagram for the Wilson
model (1) which defines regions with different dynamical behaviours. Blue curves show PD bifur-
cation and boundary for cycle skipping behaviour. Below this curve the dynamical behaviour is
SIM-Mod. The black dot defines the point where the Wilson model operates at. (A) Compar-
ison of swap and F&S cases. As seen, for swap only stimuli the monocular layer operates at
cycle skipping regime; however, for F&S stimuli it operates at SIM-Mod. The binocular layer for
F&S stimuli is effectively stimulated with flickering stimuli and by selecting the current inhibition
strength it is possible to get slow rivalry alternations in the second layer. (B) Comparison of
swap and B&S cases. Inserting blanks (with 150ms durations) before swap times, like adding
flicker, moves the boundary between Cycle skipping and SIM-Mod regions up in the parameter
plane (but to a lesser extent) and the likelihood of being in the SIM-Mod region increases.
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WTA-Mod and SIM-Mod, cycle skipping and multi-cycle skipping behaviour exist which
can lead to chaotic dynamics. Cycle skipping behaviour with swap stimuli (1.5Hz fast
alternations) is not consistent with experiments (Lee and Blake 1999; Blake et al. 1980),
where we expect slow rivalry alternation (duration around 2 s). In order to understand the
dynamics of the full hierarchical model with periodic forcing, we should consider that the
inputs for the second layer of the Wilson model are the responses of populations selective
to the same orientation from the first monocular layer (fFigure 3.1A). For example, if the
isolated subunits in the first layer are in the SIM-Mod regime (Figure 3.11A), the stimuli
for the second layer will look like a fixed stimulus to the second layer (where SIM-Mod oc-
curs in the first layer for the Swap only stimulus) or a flickering stimulus (where SIM-Mod
occurs in the first layer for the F&S stimulus). This means the second layer is effectively
stimulated with traditional or flickering stimuli and by selecting the current inhibition
strength it is possible to get slow rivalry alternations in the second layer. This provides
a deeper explanation of how the Wilson model produces slow alternations with the F&S
(but not Swap only stimulus).

3.4.2. Rivalry model complexity & comparison with other models

There are other computational models that can capture properties of perceptual domi-
nance durations in both types of experiments (traditional experiments and F&S experi-
ments) (Brascamp et al. 2013; Li et al. 2017). Brascamp’s model, with less complexity
than Wilson’s, has only one layer of monocular units with the extension of inhibition
to within-eye and cross-eye iso-orientation connections (Baker et al. 2007; Moradi and
Heeger 2009). The model proposed by Brascamp et al. correctly reflects the fluctuations
in monocular neurons; however, their model generates slow alternations only when the
blank intervals before swaps are short. The Li et al. model (Li et al. 2017) with another
layer of attentional modulations (in addition to monocular and binocular layers) is the
most sophisticated binocular rivalry model, accounting for a wide range of phenomena but
with greatly increased complexity (14 ODEs).

MMOs have already been reported in a simpler rivalry model with 4 ODEs (without an in-
hibition equation in each subunit) through interactions of singular Hopf and canard (Curtu
and Rubin 2011; Curtu 2010). However, the LAWTA regime emerging through a PD cas-
cade has not been reported before. The question arises as to whether there is a distinct
mechanism (from say (Curtu and Rubin 2011; Curtu 2010)) specific in the Wilson model
that leads to similar MMO dynamics. We found that by assuming instantaneous inhibition
dynamics (τI → 0 in Equation 1.1) in the Wilson model, all of the complex behaviours
with traditional stimuli still persist (Figure 3.12). Thus any differences to the bifurca-
tion structure across different models are likely due to the differences in the nonlinearity
processing inputs to each unit. In the Wilson model the Hopf bifurcation is supercritical
(subcritical in (Curtu and Rubin 2011)) and stable branches emerging in a PD cascade
appear to terminate (lose stability) at the h-value where MMOs first emerge. The large
increase in period and the large excursion in phase space required to jump from the PD
branch to the full-amplitude MMO branches at a critical value of h are consistent with
a canard mechanism, but more exotic than reported previously. Indeed, further analysis
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Figure 3.12. (A) Detailed bifurcation diagram of the reduced Wilson model (instantaneous inhibi-
tion dynamics, τI → 0 in Equation 1.1) with fixed inputs varying adaptation strength h, g = 1.5.
The dotted green line shows the assumed location of a branch segment that proved difficult to
compute due to the orbits having large period. All complex dynamical behaviours still persist:
(B) Mixed-mode oscillations (MMOs) with discontinuous transitions between segments. On MMO
branches n:m defines n high to m low amplitude oscillations ratio. The number of low amplitude
oscillations starts from one and is increased by one as we move down the bifurcation parameter.
(C) Low amplitude winner-take-all (LAWTA) oscillations emerge from Hopf bifurcation on the
WTA branch and by further increasing the bifurcation parameter, a cascade of period-doubling
bifurcations emerges. Panels B and C show the maximum of E1&E2 on the limit cycle branches.

would be needed to resolve how the PD cascade terminates and the MMO branches emerge
through a common mechanism.

3.4.3. Limitations of the Wilson model

As discussed in (Brascamp et al. 2013; Li et al. 2017), the Wilson model is only capable of
generating slow perceptual alternations with the F&S stimulus, and it fails to do so with
blank intervals inserted before each swap, so-called Blank & Swap (B&S) (van Boxtel
et al. 2008; Denison and Silver 2012). Our results show that blank insertion similar to
a flickering stimulus moves the boundaries up in adaptation-inhibition strength plane
(Figure 3.11B), but to a lesser change than F&S. In order to be in the SIM-Mod area,
which as discussed before is necessary for slow rivalry alternations at the second stage,
adaptation strength needs to be increased or inhibition strength decreased. On the other
hand, the existence of cycle skipping behaviour with swap stimuli leads to perceptual
alternation with a frequency half of the swap rate at the second stage (Li et al. 2017),
which to our knowledge is not consistent with empirical results (Blake et al. 1980; Lee and
Blake 1999). This reported limitation of the Wilson model could simply be avoided if the
parameters had been set in a way that the model operated in the SIM-Mod regime. Our
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result casts a new light on binocular rivalry with periodic forcing and it is now clear that
these two limitations of the Wilson model could be fixed by tuning model parameters.

3.4.4. Implications for experiments

Even though we showed that model parameters can be tuned for consistent behaviour with
experimental results, our results also predict apparently spurious dynamical behaviours
such as cycle skipping with swap stimuli at the monocular level that has not been reported
by experimental work. It is possible that this behaviour (a 1.5 Hz fast alternation) was not
distinguishable from 3 Hz fast alternation in perceptual reports. Future empirical studies
could investigate the existence of such behaviour at the early stages of visual processing
with monocular contributions and at later stages, i.e. higher cortical layers where the
activity would propagate.

3.4.5. Future work

Levelt’s propositions (Levelt 1965) with traditional rivalry are well known. However, they
have not been investigated with F&S stimuli in any of the existing models of rivalry. It has
been shown in experiments (Logothetis et al. 1996) that Levelt’s proposition II holds with
F&S stimuli (whilst to our knowledge Levelt’s proposition IV has yet to be investigated).
By implementation of these forcing cases with numerical continuation we now have the
tools to determine constraints on models such that they are consistent Levelt’s propositions
with periodic forcing (Wilson 2003).

The PD cascade found in the traditional rivalry case suggests the existence of chaotic
dynamics in a small range of parameter between PD cascade and MMOs branches. This
could be checked by computing Lyapunov exponents for a continuous-time dynamical
system. Note that these low amplitude oscillations (LAWTA) appear to interact with
periodic forcing to produce chaotic dynamics at high amplitude (Figure 3.9).

Taking the unforced system and adding periodic inputs we might expect the fine structure
from the traditional rivalry case to be washed out. This is true in e.g. the flicker case.
However, we find in the swap case that the periodic forcing does interact with the deter-
ministic dynamics to produce a family for cycle skipping branches and chaotic dynamics.
Noise plays an important role in rivalry, and this is often considered in models (Shpiro
et al. 2009). It remains outside the scope of the current work to explore whether the
regions of exotic dynamics found in the traditional case and in the swap case would be
washed out by the inclusion of noise. Nevertheless, the introduction of noise to timescale-
separated dynamical systems (like the Wilson model) can introduce dynamics not present
in the deterministic case, especially local to bifurcations (Berglund and Gentz 2008). In-
teractions between noise and the dynamics may modify the exotic dynamics reported here
in an interesting way, and could expand the parameter regions where these states persist.

Our approach for studying perceptual bistability with periodic stimuli is applicable for
a range of other stimuli including auditory streaming (Rankin et al. 2015), motion illu-
sions (Vattikuti et al. 2016), haptic bistability (Carter et al. 2013), and also for studying
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stochastic resonance and entrainment phenomena in binocular rivalry (Kim et al. 2006)
and in auditory streaming (Byrne et al. 2019).

3.4.6. Conclusions

The main conclusions of this work are drawn together and presented here. First, the results
of our study show that the transition from slow rivalry alternation to the WTA regime is
much more complicated than previously reported. As shown in Shpiro et al. (Shpiro et al.
2009), the stochastic characteristic of the dominance durations in the presence of noise are
best described near this boundary (transition from RIV to WTA). It would be of interest
to see how these complex dynamics (MMOs & LAWTA) will interact with noise. Further
analysis is needed to check whether these dynamical regimes persist or are modified in the
presence of noise.

Second, several competition models have been proposed to describe binocular rivalry with
periodic stimuli, however, interpretation of results from these models are based on a specific
set of parameters. Here we introduced a method to assess whether the existing models of
binocular rivalry are valid or not in a specific parameter regime and, more generally, to
find the parameter regions where these models work. This research provides a framework
for either assessing binocular rivalry models for consistency with empirical results, or
for better understanding neural dynamics and the mechanisms necessary to implement a
minimal binocular rivalry model.
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4. Perceptual rivalry with vibrotactile
stimuli

4.1. Introduction

Multistable perception occurs when sensory information is ambiguous and consistent with
two or more perceptual states. In this phenomenon, perception alternates intermittently
between two (bistable) or more (multistable) interpretations of the fixed stimulus (Sterzer
et al. 2009). Examples of multistable perception are well known in vision such as motion
direction with plaids (ambiguous barber poles) (Hupé and Rubin 2003; Wuerger et al.
1996), apparent motion (Meso et al. 2016; Ramachandran and Anstis 1983), the Necker
cube (Toppino 2003), and binocular rivalry (Blake 1989), and span across other sensory
modalities including audition (Pressnitzer and Hupé 2006) and olfaction (Zhou and Chen
2009). All of these multistable phenomena share common features, such as exclusivity of
perceptual interpretations, randomness, inevitability of alternations, independence of per-
ceptual phases (Lathrop 1966; Fox and Herrmann 1967), and Levelt’s propositions (Levelt
1965; Leopold and Logothetis 1999). These similar characteristics give rise to the conclu-
sion that perceptual ambiguity must have a common neural basis and is likely resolved at
a higher level of cognition that is not specific to individual sensory modalities (Pressnitzer
and Hupé 2006; Logothetis et al. 1996; Wolfe 1996). However, a more recent study sug-
gests that perceptual switching arises from a distributed system of similar but independent
processes (Denham et al. 2018). As far as we know, these theories have been limited to
the visual or auditory domains, and no previous research has investigated the possible
outcomes with tactile stimuli.

Many of the early studies of tactile perception were focused on investigating the existence
of tactual equivalents of apparent motion illusions. These kind of illusory experiments
were generally extensions of known illusions from vision (Lederman and Klatzky 2009).
In visual experiments, two spatially separated lights flash on and off in turn and can
produce the illusion of movement (also known as phi phenomenon or beta movement).
A tactile variant of smooth apparent motion was first produced with stimulation of two
vibrotactile bursts of 150Hz presented sequentially on the skin (Boring 1942; Sherrick and
Rogers 1966). Observers typically report that the series of discrete tactile vibrations feel
like vibratory stimulation moving across the skin (Burtt 1917; Kirman 1974; Lederman
and Jones 2011; Burtt 1917). Various stimulus parameters such as the inter-stimulus
onset interval (ISOI) and stimulus duration (from 25 to 400ms) have been studied to find
the optimal ranges for the induction of smooth apparent movement (Sherrick and Rogers
1966). Apparent motion can also happen with a bilateral stimulus delivered to each arm,
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however, the movement is less robust than the movement reported when stimulation is
delivered to a unilateral limb such as a single thigh or a single arm (Sherrick 1968).
These observations from illusory experiments provide insight into mechanisms leading to
perceptual alternations (bistability) with tactile stimuli.

Tactile pulses separated in location and time can induce a sensation of movement. For
more complicated patterns, where different directions of movement are consistent with
pulses, perception can be bistable. The first example of an apparent motion stimulus
that leads to perception of motion in different directions is the “apparent motion quartet”
stimulus realized in both the visual and tactile domains (Carter et al. 2008). In different
studies, pairs of vibrotactile stimuli were attached to the tip of a participant’s index
finger (Carter et al. 2008), at locations on both index fingers (Conrad et al. 2012), to the
thumbs and index fingers (Haladjian et al. 2020), or to both forearms (Liaci et al. 2016).
The position of each consecutive stimulus pair alternated between the opposing diagonal
corners of an imaginary rectangle which leads to switches between the perception of motion
travelling either horizontally or vertically (Figure 4.1A). The proximity of stimulus pairs
is the strongest contributor to the direction in which apparent motion is perceived, with
motion more likely to be experienced between closer stimulus pairs than more distant
ones (Gengerelli 1948).

There are numerous stimulus examples for perceptual ambiguity that show similar prop-
erties across sensory modalities and across different paradigms within the same sensory
modality. Levelt’s propositions have been broadly used to describe perceptual rivalry in
the visual (Moreno-Bote et al. 2010; Brascamp et al. 2015) and auditory (Rankin et al.
2015) domains. For example, the generalization of Levelt’s proposition II states that
increasing the difference between percept strengths increases the mean perceptual dom-
inance of the stronger percepts (Levelt 1965). Despite mean dominance times varying
widely in multistable experiment, across different observers and stimulus contrasts (Zhou
et al. 2004; Brascamp et al. 2005), the distribution of perceptual phases maintains a
constant shape (gamma-like distribution) (Blake et al. 1980; Cao et al. 2016; Denham
et al. 2018). Previous studies in vision suggested that the durations of successive percep-
tual phases are statistically independent (insignificant correlation) (Logothetis et al. 1996;
Pressnitzer and Hupé 2006), however, recent studies of binocular rivalry (van Ee 2009;
Cao et al. 2021) revealed positive correlations for perceptual phases that were one phase
apart (between different percepts). Auditory streaming experiments also show positive
correlations for durations separated by one phase and negative correlations for durations
that are two phases apart (between same percepts) (Barniv and Nelken 2015). To the
best of our knowledge, no previous research has investigated these stochastic properties of
perceptual rivalry in tactile modality.

Levelt’s propositions and other common characteristics in multistable perception have
yet to be explored with tactile stimuli. We hypothesize that Levelt’s propositions will
extend to tactile rivalry appropriately chosen stimulus parameter manipulations. Here we
present a new ambiguous tactile stimulus paradigm, similar to beta motion from vision,
presented at only two locations on the skin but still capable of producing tactile bistability
during minutes-long trials. Whilst beta motion in vision results from a fixed intensity
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Table 4.1. Two-way repeated measure ANOVA of mean duration of both percept types (AM,
SIM) with respect to intensity difference (∆I) and percept type for the preliminary experiment.
Analysis shows a significant effect of percept and also ∆I on the mean durations.
Source dfnum dfden F p ηp

2

(Intercept) 1 35 210.13 < .001
percept 1 35 41.50 < .001 .25± .08
∆I 2 70 15.74 < .001 .09± .06
∆I:percept 2 70 67.92 < .001 .37± .07

(contrast) moving dot, the stimulus presented here involves alternating changes in intensity
(vibration amplitude) at the locations on each index finger. Two different perceptual
interpretations can arise that compete for dominance over time. Because of the simplicity
of this tactile stimulus, it is well suited to investigate the mechanisms underlying tactile
rivalry. We varied intensity difference (∆I) asymmetrically during different trials as a
control parameter to assess its effect on perceptual durations. We aim to characterise
the stochasticity of perceptual alternations by looking at properties of the distribution
of switching times. Our results show that general characteristics of bistable perception
such as Levelt’s proposition II (LVII) and stochastic characteristics like a scaling property
hold for the tactile modality. This provides a new avenue to expand studies of the general
mechanisms underlying neural competition across multiple sensory modalities.

4.2. Methods

4.2.1. Power analysis

The factors tested in our experiments had not been tested in any earlier studies, so we
carried out a preliminary experiment with six participants. For each participant, we
had six repetitions at each intensity difference level (∆I = 2, 4, 6 dB), resulting in 36
samples for each condition. For calculations of partial η2, we used the effectsize package
in R to perform a two-way repeated measures ANOVA. The reported partial η2 values in
Table 4.1 correspond to the following Cohen’s measurements of effect size f(percept) = .58,
f(∆I) = .31, f(∆I : percept) = .77.

We used the minimum effect of η2 = .09 in the preliminary experiment to estimate the
sample size. The correlation between means of SIM and AM perceptual durations is −.43.
In order to detect an effect of partial η2 = .09 with 85% power in a two-way within-subjects
ANOVA (5 groups, α = .05, non-sphericity correction = 1), G*Power (Faul et al.) suggests
we would need 14 participants.

4.2.2. Participants

Fifteen volunteers (8 male, mean age 29.07±7.43 SD) were recruited from the University of
Exeter. Each gave written informed consent and received minor monetary compensation
for participating in a 1-h session. Participants were naive to the purpose of the study and
did not self-declare any neurological or sensory disorders. Procedures were in compliance
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Figure 4.1. (A) Apparent motion quartet. The stimulus consists of a cycle of four stimulus frames.
Two dots appear at the diagonal corners of an invisible square during stimulus interval, then
disappear during the inter-stimulus interval (ISI), reappear at the opposing corners and disappear
during the ISI. The stimulus is perceptually ambiguous and can yield either horizontal or vertical
motion percepts (indicated by the black arrows). For the tactile motion quartet, four stimulus
locations on e.g., a subject’s fingers are used with similar timing intervals. (B) Vibrotactile stimuli.
Sequences of high (darkblue) and low-intensity (lightblue) of 200KHz vibrations are delivered to
the right and the left index finger. (C) Experimental setup. Vibrotactile stimuli are delivered to
subject’s index fingers. During a trial subject’s perception of the stimuli changes and they report
it by holding appropriate keys on the keyboard using their thumbs. (D) Percept types. When the
patterns are played with equal intensity, they can be perceived as one simultaneous vibration (SIM).
With a fixed intensity difference (∆I > 0 dB) between the high- and low-intensity tactile pulses,
perception switches back and forth between two percepts: SIM (perceived as a fixed intensity
on each hand, even though the intensity is changing) and AM (perceived as pulses of vibrations
jumping from one hand to the other hand). We associate the left arrow key with SIM and the
right arrow key with AM. (E) Perceptual phases. Perceptual interpretations of the stimuli for
three different subjects during 3-min trials at ∆I = 2 dB. (F) Relative scale of the stimuli. A 4-s
zoomed panel which shows the relation between the stimulus and the perceptual phases.
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with guidelines for research with human subjects and approved by University of Exeter
Research Ethics Committee.

4.2.3. Experiment design and procedure

Participants sat in an acoustically isolated booth and attended to vibrotactile stimulators
attached to their right and left index fingers. We used miniature vibrotactile electromag-
netic solenoid-type stimulator (18mm diameter, Dancer Design tactors, www.dancerdesign
.co.uk) driven by a tactile amplifier (Dancer Design Tactamp) to deliver stimuli. Vibro-
tactile stimuli consisted of sequences of 400ms high (H) and low (L) intensity 200Hz
vibratory pulses, each followed by a 400ms silent interval (H-L-H-L for the right hand and
L-H-L-H for the left hand, “-” indicates the silent gap) (Figure 4.1B). The intensity of the
L stimulus was ∆I below the intensity of the H stimulus on a logarithmic scale (dB). We
chose the full-amplitude based on a value where differences in amplitude were noticeable
in unambiguous perception. The voltages applied to the tactors for full-amplitude 200Hz
sinusoidal vibration was 3.38V. To mask any unwanted low-intensity sound emitted by
the vibrotactile stimuli, participants listened to pink noise played through noise-isolating
headphones at a comfortable listening level. During a trial participants’ perception of the
stimulus changed over time and they reported their current perceptual interpretation with
key presses (sampled at 100Hz) on a keyboard (Figure 4.1C). Participants perceived the
stimulus as either one simultaneous pattern of vibration on both hands (SIM), or patterns
of vibration that jumped from one hand to the other hand, giving a sensation of apparent
movement (AM) (Figure 4.1D). Subjects were instructed to report their percepts passively
and not try to hold one perceptual interpretation over another.

During experimental sessions, 3-min trials were repeated three times in blocks of five trials
for a range of intensity differences (∆I = .5, 1, 2, 4, 6 dB) in random order. For a given
participant, this resulted in a total of 15 trials (45 min total trial time). The interval
between trials was a minimum of 20 s. We used a 5 × 5 Latin square design with nine
randomized and unique grids so that the order of conditions for each participant in a block
of trials was counterbalanced within/across participants and repetitions.

4.2.4. Data analysis

In the first stage of our analysis, every trial with average percept durations larger than
150 s (above dashed line in Figure 4.2A) or smaller than 4 s (equivalent to H-L-H-L-H-)
were excluded from data set before further analysis (91 trials were excluded from the total
of 225 trials). For each of 15 subjects, we take the average percept duration across all
repetitions. So, each subject contributes a mean SIM and a mean AM duration averaged
across all durations for the three repetitions at each condition. Other measures such as
proportion of time with SIM or AM percept, and the frequency of switches are computed
in a similar fashion. To see the effect of discarding trials with mean SIM and mean AM
durations below 4 s and beyond 150 s compare Figure 4.2 with Figure A.1 in supplementary
material (no qualitative change).
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Figure 4.2. (A) The distribution of dominance durations at each trial with different experimental
conditions (45 observations per experimental condition). All the samples above the dashed line
(larger than 150 s), were excluded from the data set before further analysis (for similar analysis
without excluding data see Figure A.1 in supplementary materials). It is assumed that durations
longer than 150 s are from trials where perception did not alternate. (B) Mean dominance duration,
(C) proportion of dominance for each percept type, (D) alternation rate, as a function of intensity
difference (∆I).

In order to establish whether the parameter ∆I had a significant effect on the measures
described above, we used repeated measure ANOVA with Bonferroni corrections. As we
had discarded some of the trials (due to unacceptably large or small means), we resampled
data from mean percept durations at each experimental condition to substitute discarded
trials and balance the number of observations across experimental conditions. ANOVA
tables and post hoc analyses are reported in full in Table A.1-Table A.7 (supplementary
material). A significance level of .05 is used throughout this paper. In ANOVA tables the
Greenhouse–Geisser (GG) corrected p-values are reported if a Mauchly sphericity (MS)
test reached significance. In post hoc analyses quoted p-values are Bonferroni corrected
to account for multiple comparisons. Standard measures of effect size (generalized eta-
squared) are quoted for statistically significant results. All statistical analyses were carried
out in the statistical package R.

The distributions of normalized percept durations of both types shown in Figure 4.3
were compared with gamma and log-normal distributions using a one-way Kolmogorov–
Smirnov (KS) test. The null hypothesis is that the test data are drawn from the standard
distribution and a significant result (p < .05) indicates that the test data are not drawn
from the comparison distribution.

In order to check for a scaling property, we first need to compute central moments. The
distribution shape of samples t may be quantified in terms of the mean µ1 ≡ E [t] and
the central moments µ2 ≡ E

[
(t− µ1)

2
]
, µ3 ≡ E

[
(t− µ1)

3
]
, etc., or, equivalently, in
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terms of normalized moments, such as the coefficient of variation cv = µ2
1/2/µ1and the

skewness γ1 = µ3/µ2
3/2. A scaling property obtains if central moments are proportional

to corresponding powers of the mean or, equivalently, if normalized moments are constant
as follows:

µ2 ∝ µ1
2,

µ3 ∝ µ1
3

⇔
cv = const,

γ1 = const.
(4.1)

The normalization of percept durations was used in order to combine data across par-
ticipants and different experimental conditions (Rankin et al. 2015), whilst accounting
for some of the subject variability in experiments (supplementary material Figure A.2).
For correlation analysis, durations were normalized to the average value of each percept
type separately within each trial and subject, in order to avoid spurious correlation due to
inter-subject and inter-trial differences in switching behaviour. Here we used the Pearson
correlation that measures the strength and direction of the linear relationship between two
variables. Pearson’s linear correlation coefficient Corr is defined as:

Corr(x, y) =
Σ(x− µx)(y − µy)√
Σ(x− µx)2Σ(y − µy)2

, (4.2)

where µx and µy are the means of variables x and y.

To ensure consistency of our method, we also computed the correlations with a second
method (Figure 4.4E–H) based on correlations in single trials without normalization. As
correlations may not be reliable as computed for single trials in isolation, we treated each
trial as a sample of the correlation and tested whether the mean of the distribution was
significantly above or below zero.

The data and materials for all experiments are available in the GitHub repository farzaneh-
darki/Darki2021_perceptual: https://github.com/farzaneh-darki/Darki2021_perceptual.

4.3. Results

The experiment with antiphase sequences of high and low intensity tactile stimuli on
the right and the left index finger showed irregular perceptual switches between two in-
terpretations for a range of the parameter ∆I. The average percept duration across all
participants and trials for both percept types was 17.9 s± 22.7 s, which spans on average
over 35 periods of the stimuli (Figure 4.1E and F). The average percept duration across
all participants for both percept types at ∆I = 2 dB was 15.8 s ± 19.4 s. The fraction of
time spent in SIM was .52. For some participants at small or large ∆I values perception
may not alternate, these trials were excluded from dataset.

4.3.1. Levelt’s proposition II

To establish whether Levelt’s proposition II extends to the tactile domain, we chose in-
tensity difference (∆I) as a control parameter and examined the temporal dynamics of
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Table 4.2. Two-way repeated measure ANOVA of mean duration of both percept types (AM,
SIM) with respect to intensity difference (∆I) and percept type. Analysis shows a significant
effect of ∆I and also ∆I:percept on the mean durations.
Source dfnum dfden F p ges p[GG]

Percept 1 41 3.34 .07
∆I 4 164 3.93 .004 .01 .01
∆I:Percept 4 164 50.01 < .001 .32 < .001

Table 4.3. One-way repeated measure ANOVA of mean duration of SIM perception with respect
to intensity difference (∆I). Analysis shows a significant effect of the intensity difference on the
mean durations.
Source dfnum dfden F p ges p[GG]

∆I 4 164 25.04 < .001 .03 < .001

perceptual alternations. The distribution of mean perceptual dominance time in each
trial across both percept types and ∆I conditions is plotted in Figure 4.2A. Mean dom-
inance duration, proportion of time spent in each percept type and alternation rate are
plotted against intensity difference (∆I), respectively in Figure 4.2B-D. Increasing inten-
sity difference (∆I) (intensity of the H stimulus is fixed, intensity of the L stimulus is
decreased), causes the mean dominance of SIM percept to decrease and AM percept to
increase (Figure 4.2B). A similar pattern is shown for proportion of perceptual dominance
(Figure 4.2C). The alternation rate reaches a maximum at equidominance ∆I = 2 dB (the
point where each percept approximately dominates half the time), and decreases symmet-
rically below and above this point (Figure 4.2D). Of the conditions tested ∆I = 2 dB is
closest to equidominance; from panels B and C in Figure 4.2 it appears ∆I = 3 dB, if
tested, would be closer still to equidominance and have a higher alternation rate. Results
from our experiments demonstrate that Levelt’s proposition II holds in tactile domain.

A two-way repeated measures ANOVA of mean duration of both percept types (SIM,
AM) was performed with Percept type (SIM, AM) and intensity difference ∆I as within-
subjects factors. The analysis reported in Table 4.2 shows a significant interaction for
∆I:percept, F (4, 164) = 50.01, p < .001. As for the individual factor, percept does
not reach significance F (1, 41) = 3.34, p = .07, however for the individual factor ∆I

reaches significance, F (4, 164) = 3.93, p = .004. A one-way repeated measures ANOVA
of mean duration of SIM percept was performed with ∆I as the within-subjects factor.
The analysis reported in Table 4.3 shows a significant effect of ∆I on mean dominance
SIM F (4, 164) = 25.04, p < .001 (Similar results for AM percept in Table 4.5). Pairwise
comparisons with Bonferroni-corrected significance levels revealed that each individual
condition has significant differences for all non-adjacent conditions and for the pair ∆I =

[2, 4] dB (Table 4.4, Similar results for AM percept in Table 4.6). Taken together, these
result demonstrate a significant main effect of varying ∆I on mean dominance duration
(Table 4.5 and Table 4.6) and proportion of dominance of each percept (Table A.2 and
Table A.3 in supplementary material).
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Table 4.4. Pairwise ttest, with Bonferoni corrected p-values, on the mean durations of SIM
perception with respect to intensity difference (∆I).

∆I = .5 ∆I = 1 ∆I = 2 ∆I = 4

∆I = 1 .28 - - -
∆I = 2 .001 .45 - -
∆I = 4 < .001 < .001 .004 -
∆I = 6 < .001 < .001 .001 1.0

Table 4.5. One-way repeated measure ANOVA of mean duration of AM perception with respect
to intensity difference (∆I). Analysis shows a significant effect of the intensity difference on the
mean durations.
Source dfnum dfden F p ges p[GG]

∆I 4 164 27.26 < .001 .34 < .001

4.3.2. Statistics of dominance durations and scaling property

Perceptual phases for bistable stimuli have been shown to be fit well by gamma or log-
normal distributions. However, experiments with large numbers of participants found the
log-normal distribution to be a better fit across visual and auditory bistable stimuli (Den-
ham et al. 2018). The distributions of normalized perceptual phases for experimental
conditions close to equidominance are shown in Figure 4.3A–C. In the temporal analysis
of perceptual durations for bistable stimuli, the perceptual phases are normalized by the
mean for each percept type (see Figure A.2 in supplementary material for normalization
method). The coefficient of variation (cv), which is the ratio of the standard deviation
to the mean, is used as a measure of variability in the perceptual phases. The result of
one-way KS tests shows that, except for the gamma standard distributions at ∆I = 1 dB

(p(gamma) < .05), all the other histograms are compatible with the comparison distribu-
tions.

To assess how well tactile rivalry conforms to the scaling property reported in (Cao et al.
2014; 2016), we compared observations from three intermediate experimental conditions
(∆I = 1, 2, 4 dB). The extreme conditions were discarded from further analysis, as they
had fewer perceptual phases leading to inaccurate computation of second and third mo-
ments. A scaling property obtains if normalized moments, such as the coefficient of varia-
tion cv and ratio of skewness and coefficient of variation γ1/cv are constant. Figure 4.3D
and E illustrates the results in terms of the coefficient of variation and skewness across
different experimental conditions. The coefficient of variation remained consistently near

Table 4.6. Pairwise ttest, with Bonferoni corrected p-values, on the mean durations of AM per-
ception with respect to intensity difference (∆I).

∆I = .5 ∆I = 1 ∆I = 2 ∆I = 4

∆I = 1 1.0 - - -
∆I = 2 1.0 1.0 - -
∆I = 4 < .001 < .001 < .001 -
∆I = 6 < .001 < .001 < .001 .017
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Figure 4.3. Histograms of normalized perceptual phases for experimental conditions close to
equidominance, (A) ∆I = 1 dB, (B) ∆I = 2 dB and (C) ∆I = 4 dB combined across participants
and percept type after normalization by the mean. Solid and dashed curves show the estimated
log-normal and gamma distribution respectively. (D) Coefficient of variation (cv) and (E) skewness
divided by coefficient of variation (γ1/cv) for experimental conditions ∆I = 1, 2, 4 dB.

cv = .6 (Figure 4.3D) and ratio of skewness and coefficient of variation γ1/cv remained
roughly constant (Figure 4.3E). In other words, a scaling property was maintained over
intermediate experimental conditions.

4.3.3. Analysis of correlation

Figure 4.4A–D plots the normalized duration of each perceptual phase against the duration
of the next, for the two possible transitions (lag1: SIM→AM and AM→SIM). Importantly,
durations were normalized to the average value of each percept type separately within each
trial and subject, in order to avoid spurious correlations due to inter-subject and inter-trial
differences in switching behaviour (see Methods). For consecutive phase durations (lag
1), the correlation was small but significantly larger than zero (Figure 4.4A and B). For
the phase durations that were one phase apart (lag 2: SIM→SIM and AM→AM), the
correlation was significantly smaller than zero (Figure 4.4C and D).

We also calculated correlation coefficients separately for each switch type in each individual
trial. Figure 4.4E–H shows histograms of the single trial correlations between subsequent
phases (lag 1) and between phase durations that are one phase apart (lag 2). Using a
t-statistic, we found a significant deviation of the histogram towards positive correlation
values for lag 1; SIM→AM transition (Figure 4.4E), and negative correlation values for
lag2; SIM→SIM transition (Figure 4.4H). Single trial correlations for lag1; AM→SIM and
lag 2; AM→AM were not significantly different from zero.
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Figure 4.4. (A–D) Scatter plots of normalized durations. The correlation coefficient (corr) between
perceptual phases for each scatter is indicated in each panel with the corresponding p-value and
number of pairs (p and N , respectively). (E–H) Histograms of correlation coefficients between
perceptual phases in single trials. The mean (m) and standard deviation (std) are indicated in
each panel, followed by the t-statistic of the fixed effect, its significance (p) and the number of
trials for which it was possible to calculate the correlation (N). The vertical solid lines mark zero
correlation, and the vertical dashed lines mark the mean of each distribution. The transition types
are marked above each histogram (A&E) AM following SIM. (B&F) SIM following AM. (C&G)
SIM. (D&H) AM.

4.4. Discussion

4.4.1. Summary

Earlier studies with tactile stimuli have identified bistability in somatosensation; these
have typically investigated the spatial proximity of stimulation sites as a control parameter.
Future studies are needed to characterize the full range of spatial and temporal stimulation
parameters capable of inducing bistable tactile apparent motion. Here we introduced a
simple tactile stimulus which can evoke bistability through stimulating only two sites (in
comparison with four sites in previous studies). We investigated the effect of varying
intensity difference (∆I) asymmetrically on perceptual durations. Our results show that
Levelt’s proposition II (LVII) and other characteristics of sensory bistability that generalise
in vision and auditory sensation extend to the tactile modality.

4.4.2. Novelty of the introduced stimuli and experiment design

In this study, we introduced a new ambiguous tactile stimulus, consisting of anti-phase
sequences of high- and low-intensity vibration pulses on the right and left index fingertips.
While in similar work on tactile bistability stimuli were presented on at least four sites
on the skin (Carter et al. 2008; Liaci et al. 2016), our stimulus is simpler and was only
presented at two sites. Our approach probes how motion perception is affected by feature
(intensity) differences other than just location. This could be extended to look at other
features, e.g., vibration frequency, temporal cues, presentation rate, etc. Another impor-
tant difference is in the way participants reported their perception and also in the analyses
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of perceptual responses. In one study, participants were asked to attend to the stimuli
and report their perception at the end of short representations of tactile stimuli (Liaci
et al. 2016). In another study, participants reported their perception continuously during
long representations of the stimuli, however; the analysis considered temporal evolution of
the average responses pooled across all participants (Carter et al. 2008), which does not
account for the dynamics of individual perceptual durations and inter-subject variability.
In neither study is the intensity difference varied as a control parameter, but the results
of our experiment show that it significantly affects the higher-level interpretation of the
stimulus. Here, our analysis involves the temporal durations of perceptual phases and in-
vestigates the effect of varying the intensity difference (∆I) asymmetrically on perceptual
durations.

4.4.3. Similar properties of perceptual competition across different
modalities

Perception of the tactile stimuli showed the following similarities to other sensory modal-
ities. First, visual, auditory and tactile stimuli can induce the perception of apparent
motion which can be ambiguous in a certain range of stimulus parameters, for example
here with a synchronous percept (SIM). Second, Levelt’s proposition generalizes to other
visual modalities including ambiguous motion (Moreno-Bote et al. 2010) and to auditory
bistability (Rankin et al. 2015). Here our analysis showed Levelt’s proposition II extends
to include tactile bistability. Third, in the experiments of visual and auditory bistability,
the distribution of perceptual phases maintains a characteristic, gamma-like shape (Blake
et al. 1980). Denham et al. showed these distributions to be specifically log-normal in
experiments with a large number of participants (Denham et al. 2018). Even though mean
perceptual phases vary widely between participants and stimulus properties, the variance
and skewness of perceptual phases keep a characteristic proportion to the mean (Cao et al.
2014; 2016). Our analysis shows that the scaling property holds in the tactile domain, sim-
ilar to multistability in other modalities.

Despite these similarities, differences between the other sensory modalities and tactile
perception were observed as well. Experiments with an auditory stimulus which utilised
sequences of anti-phase high and low tones in each ear showed that the percept can be like
a single tone oscillating from ear to ear, which is a form of apparent motion. However,
there were other percepts like sensation of either the high tone in the left ear and the low
tone in the right ear or vice versa, and the two percepts switching back and forth (Deutsch
1974). While we used a similar stimulus paradigm, the possible perceptual interpretations
that we observed in the tactile domain were different. It remains to be determined whether
perceptual interpretations equivalent to those reported in audition can be evoked by dif-
ferent ranges of spectrotemporal features in tactile stimuli. On the other hand, we found
that perceptual phases in the tactile modality were generally more stable than in the other
bistable perception like visual (Conrad et al. 2012) or auditory modality (Rankin et al.
2015) (mean dominance durations were longer in the tactile experiment). Previous stud-
ies in vision (van Ee 2009; Cao et al. 2021) and auditory streaming (Barniv and Nelken
2015) suggested that the durations of successive perceptual phases are positively corre-
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lated, however, for lag 2 they have been shown to be negatively correlated in auditory
streaming (albeit their result did not prove to be statistically significant) (Barniv and
Nelken 2015) and to be positively correlated in binocular rivalry (Cao et al. 2021). Our
analysis with tactile stimuli shows a significant positive correlation for lag 1 (from one
percept type to the other), and a negative correlation for lag 2 (between similar percept
types). Existing studies of auditory perception have established that first durations are
typically longer than subsequent durations (Pressnitzer and Hupé 2006). However, we
found no such trend in our data on vibrotactile bistability (see Table A.3 and Table A.8
in supplementary material). The effects of attentional focus on dominance durations have
been widely reported with other bistable modalities (Toppino 2003; Meng and Tong 2004;
van Ee et al. 2006; Pressnitzer and Hupé 2006) but this remains to be explored for tactile
bistability.

4.4.4. Locus of tactile rivalry and modelling

To the best of our knowledge, there are no models for tactile rivalry. Computational
models of perceptual ambiguity have helped significantly with our understanding of other
types of bistability. In order to develop a computational model of tactile rivalry, one must
consider how inputs from the left and right hands project to primary somatosensory cortex
(S1) and how features like amplitude, frequency and timing are encoded there. It is known
that information from each half of the body-surface is projected to the opposite side of
the brain (Maldjian et al. 1999). Ipsilateral stimuli do not travel directly to the neurons
in the primary somatosensory cortex (S1) (Eshel et al. 2010). However, an extensive
range of research from invasive studies in monkeys (Clarey et al. 1996), to behavioural or
neuroimaging studies of humans (Hlushchuk and Hari 2006) showed that somatosensory
processing in the left side of the brain can be modulated by the right side and vice versa.
For instance, during unilateral touch, contralateral activation can be observed as well as
ipsilateral deactivation in S1 (Hlushchuk and Hari 2006; Kastrup et al. 2008).

In contrast, intracranial recording (Noachtar et al. 1997), functional magnetic resonance
imaging (fMRI) (Hämäläinen et al. 2002; Nihashi et al. 2005) and magnetoencephalog-
raphy (MEG) (Korvenoja et al. 1995; Schnitzler et al. 1995) in humans, demonstrated
that unilateral tactile stimulation activates bilateral S1 response. Moreover, single-cell
recording in monkeys showed that some neurons in S1 display bilateral hand receptive
fields (Iwamura et al. 2001). These results suggest that interhemispheric connections may
not be purely inhibitory for somatosensation and they are likely to have excitatory effects
as well (Eshel et al. 2010). We might use modelling to check whether purely inhibitory
interactions can account for observed behavioural responses, or whether other types of
interhemispheric interplay might explain the results instead.

The experiments presented here used tactile pulses at 200Hz lasting 400ms. The neural
encoding of location and of spectro-temporal properties of tactile stimuli is relatively well
documented. There exist quite a lot of discussions in the literature about the cortical
representation of flutter frequencies (less than 80Hz) (Talbot et al. 1968; Romo and Sali-
nas 2003), however, it is under debate whether the somatosensory cortices process high
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frequencies. There is some evidence to suggest that the temporal patterning of the neural
activities in primary and secondary somatosensory cortex does not contain information
about the frequency of the stimuli in the vibration range (greater than 80Hz) (Ferrington
and Rowe 1980). The perception of flutter and high frequency vibration may be pro-
cessed through distinct processing streams (Tommerdahl et al. 2005). Auditory cortex
undoubtedly plays a main role in the spectro-temporal representation of acoustic stim-
uli. There are some hypotheses that the putative neural populations are independently
stimulated by tactile and auditory sensory modalities (Yau et al. 2009). The cutaneous
vibration frequency can be distinguished at a significantly lower resolution (with Weber
fractions around .2 for tactile versus .003 for auditory), and over a narrower range than
auditory tone pitch (up to 1 kHz for tactile versus 20 kHz for auditory stimuli) (Saal et al.
2016). The resolution of perception is likely hierarchical as supported by modelling work
in visual (Wilson 2003) and auditory bistability (Rankin et al. 2015).

There is a need for a tactile rivalry model that accounts for both well-established results on
the timing of dominance intervals and is also compatible with the physiological evidence
and structure of somatosensation. General models of rivalry usually incorporate a slow
process together with reciprocal inhibition to produce perceptual alternations. Perceptual
bistability results from a competition between units representing neural populations asso-
ciated with different percepts (e.g. units driven by inputs from the left and right eyes in
binocular rivalry) (Wilson 2003; Rankin et al. 2015; Cao et al. 2021). A possible model
of tactile rivalry could be based on competition between neural populations in primary
somatosensory cortex associated with the right and the left hands. For the development
of a model, an important aspect of tactile rivalry is that information is integrated across
locations and over time to form the SIM and AM percepts. Dynamical analysis of models
with different architecture and connectivity can help us to find a model that induces ob-
served percept types with the specific characteristics and intrinsic dynamics. Our result
show that Levelt’s proposition II (LVII) holds in the tactile modality. This provides a new
avenue to test and expand the computational and neurobiological models for bistability
currently dominated by vision science. The correlation structure and statistical distribu-
tion properties can be used as an important constraint on models of tactile rivalry, and
could reveal mechanistic differences with other modalities.

4.4.5. Conclusions

We presented a new, simple form of tactile rivalry and explored generalisations with respect
to perceptual rivalry in other sensory modalities. First, the results of our study show that
Levelt’s proposition II which describes the relation between stimulus features and mean
perceptual dominance extends to tactile bistability. Second, the stochastic characteristics
of irregular perceptual alternations were shown to follow similar distribution shapes across
different experimental conditions and with different mean perceptual dominance (known
as a scaling property). Third, we found negative correlations for durations that were one
phase apart (lag 2) which is opposite to the effect found in vision (Cao et al. 2021). In
auditory bistability no significant correlation was found, though it trended in the same
direction as the tactile modality results (Barniv and Nelken 2015). The paradigm intro-
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duced here and the methods of analysis provide a basis to further explore how similar
processes generate changes in perception across different senses. This opens up a new av-
enue for a range of experiments to explore the role of e.g., adaptation and cross-inhibition
in somatosensation, voluntary control (attention), perceptual memory and the integration
of tactile cues with the other senses. This approach will allow for insights gained in pre-
vious work from a substantial literature on auditory and visual perception to deepen our
understanding of tactile perception.
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5.1. Introduction

Perceptual rivalry occurs when sensory information is ambiguous and the brain cannot
commit to a single percept; instead, it switches between mutually exclusive interpretations
every few seconds (Sterzer et al. 2009). Examples of perceptual rivalry span across different
sensory modalities including vision (Hupé and Rubin 2003; Meso et al. 2016; Blake 1989),
audition (Pressnitzer and Hupé 2006) and olfaction (Zhou and Chen 2009). In the tactile
domain, perceptual rivalry was introduced with a tactile illusion based on the apparent-
motion quartet (Carter et al. 2008; Conrad et al. 2012; Liaci et al. 2016; Haladjian et al.
2020). Recent experiments with vibrotactile stimuli have shown that several of the general
characteristics of perceptual rivalry extend to tactile domain (Darki and Rankin 2021) (see
Chapter 4). In these experiments, vibrotactile stimuli consisted of anti-phase sequences of
400ms high and low intensity high frequency pulses (200Hz), each followed by a 400ms
silent interval, delivered to the right and left index fingers. Participants perceived the
stimulus as either one simultaneous pattern of vibration on both hands (SIM), or patterns
of vibration that jumped from one hand to the other hand, giving a sensation of apparent
movement (AM), and for long presentations of the stimulus (> 30 s), perception switches
back and forth between these two percepts.

The spatio-temporal characteristics of tactile perception have been investigated with a
range of experimental approaches. At the somatosensory periphery, the firing rate re-
sponse of tactile fibres to a vibration is dependent not only on its amplitude but also on
its frequency. Therefore, the amplitude information carried in the firing rates of any pop-
ulation of tactile fibres is ambiguous. Rather, the intensity of skin vibrations is encoded
in the firing rate evoked in all tactile nerve fibres, weighted by fibre type (Muniak et al.
2007). So it is unclear how these two stimulus dimensions can be independently decoded
by downstream structures (Harvey et al. 2013).

The different types of tactile receptors differ in their frequency sensitivity profiles. Slowly
adapting fibres (SA1) tend to be more sensitive at low frequencies (below about 10Hz), PC
fibres (RA2) peak in sensitivity at around 250Hz (40-400Hz), and rapidly adapting fibers
(RA1) prefer intermediate frequencies (5-50Hz) (Talbot et al. 1968). Neural signals from a
single class of receptors can convey ambiguous information. Afferent signals from different
types of mechanoreceptors are combined to give rise to tactile percepts. A striking aspect of
afferent responses to skin vibrations is that they exhibit phase locked response to periodic
vibratory stimuli (that is, they produce one spike or burst of spikes within a restricted
portion of each stimulus cycle) as do their counterparts in the auditory nerve (Freeman
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and Johnson 1982a;b). This temporal patterning in afferent responses carries information
about the frequency composition of vibratory stimuli applied to the skin (Birznieks and
Vickery 2017). However, how afferent spiking activity translates into the perception of
frequency is still unknown. Neurons in somatosensory cortex also exhibit phase locking
to low-frequency vibrations, but the constancy of the phase locking decreases rapidly as
vibratory frequency increases.

There are numerous stimulus examples for perceptual ambiguity across different sensory
modalities and across different paradigms within the same sensory modality. In spite
of this diversity, general characteristics of this phenomenon appear to be quasiuniversal.
Firstly, Levelt’s propositions have been widely used to describe perceptual rivalry in the
visual (Moreno-Bote et al. 2010; Brascamp et al. 2015), auditory (Rankin et al. 2015)
and recently in tactile domains (Darki and Rankin 2021). For example, the generalization
of Levelt’s proposition II states that increasing the difference between percept strengths
increases the mean perceptual dominance of the stronger percepts (Levelt 1965). Sec-
ondly, despite mean dominance times varying widely in multistable experiments, across
different observers and stimulus contrasts (Zhou et al., 2004; Brascamp et al., 2005), the
statistical distribution of perceptual phases maintains a constant shape, resembling a log-
normal or gamma distribution with similar parameters (Cao et al. 2016; Denham et al.
2018; Darki and Rankin 2021). Thirdly, the durations of successive perceptual phases are
correlated positively for perceptual phases that were one phase apart (between different
percepts) (van Ee 2009; Barniv and Nelken 2015; ?; Darki and Rankin 2021). These simi-
lar properties in multistable phenomena suggest that the underlying mechanisms may be
general.

Computational models of perceptual alternations have helped significantly with our un-
derstanding of sensory processing across visual and auditory domains. These models focus
on the neural processing of sensory information, the dependence of average switching times
on stimulus parameters and the statistical distribution of times between switches (Laing
and Chow 2002; Shpiro et al. 2007; Wilson 2003; Brascamp et al. 2005; Moreno-Bote et al.
2007; Rankin et al. 2015). General models of rivalry usually incorporate a slow process
together with reciprocal inhibition to produce perceptual alternations. Perceptual bista-
bility results from a competition between units representing neural populations associated
with different percepts (e.g. units driven by inputs from the left and right eyes in binoc-
ular rivalry) (Wilson 2003; Rankin et al. 2015; ?). To the best of my knowledge, there
are no mathematical models that capture perceptual alternations for tactile rivalry. The
research in this chapter addresses a need for tactile rivalry model that accounts for both
well-established results on the timing of dominance intervals and is also compatible with
the physiological evidence and structure of somatosensation.

In this study, I develop a mathematical model of tactile rivalry that focuses on accurately
reproducing the dynamics of the perceptual alternations. This formulation is directly
motivated from physiological studies of tactile perception (Noachtar et al. 1997; Maldjian
et al. 1999; Nihashi et al. 2005) and general models of perceptual bistability (Ferrario
and Rankin 2021). The model of tactile rivalry presented here consists of two processing
stages; first stage for producing perceptual alternations; and a second stage for encoding
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the percept types (SIM and AM). The powerful combination of bifurcation analysis along
with optimisation tools have been used to tune certain features of the model. The model
presented here is able to produce common characteristics of tactile rivalry, as observed in
tactile rivalry experiments.

5.2. Model overview, design and analysis

In the experiments of tactile rivalry, stimuli consist of sequences of high (H) and low
(L) intensity vibratory pulses, with duration TD that followed by a silent interval with
duration TR−TD (sequences of H−L−H−L for the right hand and L−H−L−H for the
left hand, “−” indicates the silent gap) (Figure 5.1A). The intensity of the L stimulus was
∆I below the intensity of the H stimulus on a logarithmic scale (dB). During experimental
trials of tactile rivalry, these stimuli are perceived as either one simultaneous pattern of
vibration on both hands (SIM), or patterns of vibration that jumped from one hand to
the other hand, giving a sensation of apparent movement (AM) (Figure 5.1B).

Here I want to introduce a computational model of tactile rivalry to capture the char-
acteristics of this phenomenon as observed in the experiments. To this end, we consider
how inputs from the left and right hands project to primary somatosensory cortex (S1)
and how features like amplitude, frequency and timing are encoded there. The model pre-
sented here consist of two processing stages (Figure 5.1C); first stage which is responsible
for generating perceptual alternations, and a second stage which is encoding the percepts
(SIM and AM).

Inputs presented to the model are illustrated in Equation 5.8, and Equation 5.9 (and also
sketched in Figure 5.1A). In addition to contra-lateral excitation, ipsi-lateral inhibition
has been observed during unilateral touch in S1 (Hlushchuk and Hari 2006; Kastrup et al.
2008). These effects are shown in Figure 5.1C, as inputs iR and iL have excitatory effect
on the opposite sides (units νL and νR, respectively), and inhibitory effects on the same
sides (units νR and νL, respectively). Thus, units νR and νL effectively receive iL − iR,
and iR − iL, respectively, which are antiphase pulses with amplitude equal to ∆I (Fig-
ure 5.6A). Units νR and νL are adapting recurrent models which can produce UP/DOWN
alternations. The dynamics and parameters of the model are further described in subsec-
tion 5.2.1.

The second stage in Figure 5.1C shows units uR and uL that receive direct ipsi-lateral
excitatory inputs from the right and the left side (iR and iL, respectively), and also
inhibitory ipsi- and contra-lateral connections through the earlier stage (units νR and νL).
Existence of these direct ipsi-lateral excitation motivated by the fact that some neurons
in S1 display bilateral hand receptive fields (Iwamura et al. 2001; Nihashi et al. 2005).
Interhemispheric connections at the second stage are assumed to exist between units uR

and uL through direct fast excitation with strength a, and the delayed, slowly decaying
inhibition with strength b. Dynamics of units uR and uL are described with a system of
ODEs in Equation 5.11.
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Figure 5.1. (A) Vibrotactile stimuli. Vibrotactile stimuli consist of anti-phase sequences of
high (dark blue) and low-intensity (light blue) of 200KHz vibrations to the right and left index
finger (TD = 0.4 s, TR = 0.8 s). (B) Percept types. During a trial subject’s perception of
the stimuli changes. When the patterns are played with equal intensity, they can be perceived
as one simultaneous vibration (SIM). With a fixed intensity difference (∆I > 0 dB) between the
high- and low-intensity tactile pulses, perception switches back and forth between two percepts:
SIM (perceived as a fixed intensity on each hand, even though the intensity is changing) and AM
(perceived as pulses of vibrations jumping from one hand to the other hand). (C) Schematic of
the model of tactile rivalry. Inhibitory connections are shown with filled circles, and excitatory
connections with black arrows. (D) Schematic of the simplified model.
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5.2.1. Stage 1 - encoding perceptual alternations

Here I introduce adapting recurrent model from (Levenstein et al. 2019) which can pro-
duce UP/DOWN alternations. Previously, this model has been used to study the state
of hippocampal and neocortical populations during NREM sleep (UP/DOWN states ob-
served as spontaneous transitions during sleep). The analysis in their study provides a
useful reference to tune model parameters. The population activity of this model is used
at the first stage to modify the net inputs to the uR and uL units at the second stage
and produce alternations between different dynamical states of the model encoding the
percepts (switches between SIM and AM percepts). When the first stage units are in the
DOWN state, inputs drive the second stage in its default setting where typically SIM is
encoded, unless ∆I is very large. If the first stage units are in the UP state, inputs driving
the second stage are less excitatory, leading to AM, unless ∆I is very small (see subsub-
section 5.2.4).

The dynamics of this model is described in terms of the mean firing rate ν, and activity-
driven adaptation a (Figure 5.7A):{

τν ν̇ = −ν +N∞ (wν − ga+D + ζ(t)) ,

τaȧ = −a+A∞ (ν) .
(5.1)

Where w is the strength of recurrent excitation, g is the strength of adaptation, D is
the level of input and ζ(t) is noisy fluctuations. N∞(x) and A∞(r) are assumed to be
sigmoidal functions.

N∞(x) =
1

1 + e−(x−x0)
(5.2)

A∞(ν) =
1

1 + e−k(ν−ν0)
(5.3)

Unless otherwise specified, I use x0 = 5, ν0 = 0.5 and k = 15 to parametrize the activation
functions. Noise ζ(t) was implemented using Ornstein-Uhlenbeck model described with;

dζ = −θζdt+ σ
√
2θdtWt, (5.4)

where Wt is a Weiner process. Time scale θ = 0.05 and standard deviation σ = 0.25 were
used unless otherwise specified.

We used two of these adapting excitatory units (Figure 5.1C), one for the right and one for
the left side (similar equations for variables νR, aR for the left side, and variables νL, aL
for the left side). Where inputs DR and DL to these models are the stimulus differences
from the right and left as follow;

DR = f(iL − iR),

DL = f(iR − iL).
(5.5)

Function f is a nonlinearity which will be determined later.
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Figure 5.2. Bifurcation analysis of the adapting recurrent model (without adaptation
g = 0). Mechanism of bistability with sufficient levels of recurrent excitation and input (high levels
of recurrent excitation and low levels of input). (A) Adapting recurrent model. Population
firing rate ν driven by D and recurrent excitation with strength w. (B & C) One parameter
bifurcation diagram. Population rate steady state as a function of inputD, for a population with
low (w = 3), and high (w = 7.5) level of recurrent excitation. Stable and unstable fixed points are
indicated with solid and dashed curves, respectively. (D) Two parameter bifurcation diagram.
w−D parameter space, bistable region (grey shaded area) surrounded by two fold bifurcations (L)
which merge together and disappear through a cusp bifurcation (CP).

Stage 1 - Bifurcation analysis

In the adapting recurrent model, UP/DOWN alternations are possible only if the popu-
lation activity can potentially exist in an UP or a DOWN state. This requires adequate
strength of recurrent excitation w, to self-maintain the UP state under conditions of low
drive. I show this first for a reduced case without adaptation dynamics (g = 0 in Equa-
tion 5.1).

Bifurcation analysis of the model in the absence of noise was implemented in Auto07p. For
the statistical analysis of dominance duration distributions, similar codes was implemented
in MATLAB for simulations of the model with noisy input.

Figure 5.3. (A) Time histories of the 2TR-periodic states in system Equation 5.6. Units’ threshold
crossings are shown by green dots. (B) The total number of threshold crossings for both units is
shown in greyscale for simulated trajectories at varying PR and df (black = 2, gray =3, lightest
gray = 4 crossings). Parameters PR and df in panel (A) are shown by white dots in panel (B). The
remaining parameters are a = 2, b = 2.8, c = 5.5, δ = 0.015, TD = 0.022, τi = 0.25, τ = 0.025,
θ = 0.5. Adapted from (Ferrario and Rankin 2021)
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The steady states of firing rate variable ν, depend on the level of drive D, and the strength
of recurrent excitation w. If recurrent excitation is weak (w = 0), the right-hand side of
Equation 5.1 increases monotonically with D, and has only one root which is a stable
fixed point (Figure 5.2C). As recurrent excitation increases, the right-hand side of Equa-
tion 5.1 shows a region of bistability between a low-rate bifurcation point at weak drive
and a high-rate bifurcation point at strong drive (Figure 5.2B). In the w −D parameter
space, the bistable region (grey shaded area) has borders that correspond to saddle-node
bifurcations (Figure 5.2D). UP/DOWN bistability emerges at a critical value of recurrent
excitation (w = 4), and a critical level of drive (D = 3). Consequently, a first general
insight of adapting recurrent models is that UP/DOWN bistability will emerge in neuronal
populations with sufficiently strong recurrent excitation, during conditions of low drive.

5.2.2. Stage 2 - encoding perceptual interpretation

The starting point for the model is a periodically driven competition network of two
localised Wilson–Cowan units previously used for the encoding of different perceptual
interpretations of the auditory streaming paradigm (Ferrario and Rankin 2021). The
model is described by the following system of DDEs:

τ u̇R = −uR(t) +H(auL(t)− bsL(t− δ) + ciR(t)),

ṡR =
H(uR(t)− θ)(1− sR(t))

τ
− sR(t)

τi
,

τ u̇L = −uL(t) +H(auR(t)− bsR(t− δ) + ciL(t)),

ṡL =
H(uL(t)− θ)(1− sL(t))

τ
− sL(t)

τi
,

(5.6)

where units uR and uL represent the average firing rate of two neural populations encoding
sequences of tone inputs with timescale τ . The Heaviside gain function H(x) with activity
threshold θ is described in Equation 5.7. Mutual coupling through direct fast excitation
has strength a. The delayed, slowly decaying inhibition has timescale τi, strength b and
delay δ. The model is driven by excitatory inputs iR(t) and iL(t) (described below) with
strength c. The synaptic variables sR and sL describe the time-evolution of the inhibitory
dynamics.

H(x) =

{
1 x >= θ,

0 otherwise.
(5.7)

The input functions iR(t) and iL(t) as defined by Equation 5.8 and Equation 5.9, respec-
tively, are anti-phase periodic square waves (Ferrario and Rankin 2021) (Figure 5.1A).

iR(t) =
∞∑
k=0

χIkhigh
(t) + (1−∆I)

∞∑
k=0

χIklow
(t),

Ikhigh = [2kTR, 2kTR+ TD],

Iklow = [(2k + 1)TR, (2k + 1)TR+ TD].

(5.8)
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iL(t) = (1−∆I)
∞∑
k=0

χIklow
(t) +

∞∑
k=0

χIkhigh
(t),

Iklow = [2kTR, 2kTR+ TD],

Ikhigh = [(2k + 1)TR, (2k + 1)TR+ TD].

(5.9)

Where ∆I represents the intensity difference between high and low amplitude vibratory
pulses. χI is the standard indicator function over the set I, defined as χI(t) = 1 for
t ∈ I and 0 otherwise. The intervals when high and low intensity vibrations are on are
respectively given by Ikhigh and Iklow (see Figure 5.1A). The parameter TD represents the
duration of each tone’s presentation, and TR is the time between tone onsets (called
repetition time; PR = 1/TR is the presentation rate).

Transformation to continuous model for bifurcation analysis

As shown in (Ferrario and Rankin 2021), this system exhibits three different dynami-
cal states relevant to perceptual interpretations of alternating stimuli (Figure 5.3A). The
states are distinguishable by the number of threshold crossings per 2TR period: (1) both
units (uL and uR) cross threshold in response to both input pulses (low and high) (total
of 4 crossings, corresponds to integration in auditory streaming), (2) the R unit crosses
threshold twice and the L unit once (total of 3 crossings, corresponds to bistability in audi-
tory streaming), and (3) both units cross threshold once (total of 2 crossings, corresponds
to segregation in auditory streaming).

The states (1) and (3) match the percepts observed in the experiments of tactile rivalry
(SIM, AM). However, the state (2) does not have any specific meaning in the tactile
domain (Figure 5.3B). So, I am looking for a region in the parameter space that the state
(2) does not exist.

The model in Equation 5.6 has been described using a system of DDEs. To be able
to perform bifurcation analysis (using Auto07p), I need to transform it to a system of
ODEs. For this reason, the dynamics of direct inhibitory synapses sR(t) and sL(t) is
replaced with the dynamics of an indirect synapse (to describe the dynamics of sR(t− δ)

and sL(t − δ)). These indirect synapses are modelled by introducing two other synaptic
variables xR(t) and xL(t) (Rubin and Terman 2000) which their dynamics described with
following equations:

ṡi = αsH(ui − θu)(1− si)− βssi,

ẋi = ϵαxH(si − θs)(1− xi)− ϵβxxi.
(5.10)

Here, αi and βi (i = s, x) are positive constants and ϵ is small relative to 1. These indirect
synapses have the effect of introducing a delay in the synaptic action, and this delay takes
place on the slow timescale. Once ui crosses the threshold θu, then si will activate. The
activation of xi must wait until si crosses the second threshold θs, thus introducing a delay.

We can choose αs =
1

τ
, βs =

1

τi
, and θu = θ, and fit parameters ϵ, αx, βx, and θs, so
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Figure 5.4. Mechanism of encoding percepts. (A) Stimuli. One period (length 2TR = 1.6 s)
of the stimuli to the left and right units consists of one full amplitude pulse (length TD = 0.3 s), and
one pulse that its amplitude is ∆I below the intensity of the full amplitude pulse on a logarithmic
scale (dB). (B) Model encoding percepts. Schematic of the model consisting of mutual fast
excitation with strengths a and delayed inhibition with strength b. Inhibition is delayed of the
amount D. (C) SIM percept. Model can encode percept SIM, when uL and uR have full respond
to both pulses. (D) AM percept is encoded when they only respond to the full amplitude pulse
and no response to the low intensity pulse. (E) Bifurcation analysis with respect to intensity
difference ∆I. One parameter bifurcation diagram sketched at three different values of a, with
other parameters fixed at, b = 2.8, c = 5.5, τ = 0.001 s, τi = 0.25 s, δ = 0.005 s, ϵαx = 50,
ϵβx = 8, and θs = 0.22. Blue curve shows the branch of periodic orbit, in which there is a sharp
transition between periodic respond encodes SIM and AM percepts (top panel). For higher values
of excitation (middle panel) this boundary moves to the right, and for lower values of excitation
(bottom panel) moves to the left.

that the dynamics of xR(t) and xL(t) can generate delays equal to δ. Then sR(t− δ) and
sL(t − δ) in Equation 5.6 can be replaced with xR(t) and xL(t), respectively. Now the
dynamics of the model can be described by the following system of ODEs:

τ u̇R = −uR +H(auL − bxL + ciR − θ),

ṡR =
H(uR − θ)(1− sR)

τ
− sR

τi
,

ẋR = ϵαxH(sR − θs)(1− xR)− ϵβxxR,

τ u̇L = −uL +H(auR − bxR + ciL − θ),

ṡL =
H(uL − θ)(1− sL)

τ
− sL

τi
,

ẋL = ϵαxH(sL − θs)(1− xL)− ϵβxxL.

(5.11)
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Stage 2 - Bifurcation analysis

Bifurcation analysis of the second stage with respect to intensity difference ∆I have been
shown in Figure 5.4. The left and the right units receive inputs iL and iR, which are
antiphase sequences of high and low amplitude pulses (∆I below the full amplitude pulse)
with duration TD (Figure 5.4A). There are reciprocal excitatory (with strength a) and
inhibitory (with strength b) connections between the two units (Figure 5.4B). Population
activities uL and uR can encode percept SIM, when uL and uR have full respond to both
pulses (Figure 5.4C). AM percept is encoded when they only respond to the full amplitude
pulse and no response to the low intensity pulse (Figure 5.4D). One parameter bifurcation
diagram sketched at three different values of mutual excitation a, with other parameters
fixed (b = 2.8, c = 5.5). Blue curve shows the branch of periodic orbit, in which there
is a sharp transition between periodic responses encoding the SIM and AM percepts (top
panel in Figure 5.4E). The boundary between these two dynamical behaviours moves to
the right with higher values of excitation (middle panel), and to the left with lower values
of excitation (bottom panel).

5.2.3. Full tactile rivalry model

To present the model of tactile rivalry, the model described for encoding the alternations
at the first stage is incorporated with the model described for encoding the percepts at
the second stage (Figure 5.1C). The unites νR and νL in the first stage make inter- and
intra-hemispheric inhibitory connections with the units uR and uL in the second stage.

τν ν̇R = −νR +N∞ (wνR − gaR + f(iL − iR) + ζ(t)) ,

τaȧR = −aR +A∞ (νR) ,

τν ν̇L = −νL +N∞ (wνL − gaL + f(iR − iL) + ζ(t)) ,

τaȧL = −aL +A∞ (νL) ,

τ u̇R = −uR +H(auL − bxL − d(νR + νL) + ciR − θ),

ṡR =
H(uR − θ)(1− sR)

τ
− sR

τi
,

ẋR = ϵαxH(sR − θs)(1− xR)− ϵβxxR,

τ u̇L = −uL +H(auR − bxR − d(νR + νL) + ciL − θ),

ṡL =
H(uL − θ)(1− sL)

τ
− sL

τi
,

ẋL = ϵαxH(sL − θs)(1− xL)− ϵβxxL.

(5.12)

Where d is the strength of inhibitory connections between the first and the second stage.

5.2.4. Simplified tactile rivalry model

As the inputs (DR and DL) are anti-phase and there is also symmetry in the first stage
of the tactile rivalry, the model can be simplified, and units νR and νL can be replaced by
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Figure 5.5. Mechanism of perceptual alternations. (A) Simplified model of tactile
rivalry. The adapting recurrent model (Figure 5.2) makes inhibitory connections with strength
d to the model encoding the percepts (Figure 5.4). (B) Bifurcation analysis with respect
to intensity difference ∆I. There is a region of bistability between two fold of limit cycle
bifurcation points (L). Branches of periodic orbits associated with SIM and AM percepts coexist
at this interval. (C) Time histories of model responses. Population activities are simulated
for 50 s at ∆I = 0.5. Noise realization (top panel), UP/DOWN alternations of the first stage unit
driven by noise (second panel, g = 0), firing activities of the second stage unit (two bottom panels).
Perceptual switching times are shown between SIM (blue) and AM (red) with dashed lines. Other
parameters are d = 0.8, τν = 0.9 s

one adapting recurrent model with input D (Figure 5.7D).

D = f(∆I). (5.13)

Where ∆I is a positive constant, and f is a nonlinearity which should be determined. The
simplified tactile rivalry model is described by;

τν ν̇ = −ν +N∞ (wν − ga+D + ζ(t)) ,

τaȧ = −a+A∞ (ν) ,

τ u̇R = −uR +H(auL − bxL + ciR − dν − θ),

ṡR =
H(uR − θ)(1− sR)

τ
− sR

τi
,

ẋR = ϵαxH(sR − θs)(1− xR)− ϵβxxR,

τ u̇L = −uL +H(auR − bxR + ciL − dν − θ),

ṡL =
H(uL − θ)(1− sL)

τ
− sL

τi
,

ẋL = ϵαxH(sL − θs)(1− xL)− ϵβxxL.

(5.14)
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Figure 5.6. Time histories of tactile rivalry model. Population firing time responses at
∆I = 2 dB for 90 s simulation. (A) Net inputs to the left (top panel) and right (bottom units
of the first stage. (B) Noise with parameters σ = 0.3 and θ = 0.05 which is added to the first
stage inputs. (C) Firing activities of the first stage units to the inputs in panel A and noise in
panel B. D Sum of firing activities of the first stage units, which will be the inhibitory input to
the both units of second stage. E Firing activities of the second stage units to the inputs in panel
D. Perceptual alternation between SIM and AM percepts are seen as transition occurs between
DOWN and UP states in panel D. Other parameters are g = 1.2, τν = 0.9 s

Simplified tactile rivalry model - Bifurcation analysis

Bifurcation analysis of the simplified model of tactile rivalry with respect to intensity
difference ∆I is shown in Figure 5.5. The adapting recurrent model in the first stage
makes inhibitory connections with strength d to the model encoding the percepts in the
second stage (Figure 5.5A). As seen in (Figure 5.2) unit ν has a region of bistability where
ν can be either zero or one (when input D lies between two fold bifurcation points). As
this unit inhibits uL and uR with strength d, this will modify the excitatory net inputs
to uL and uR units and thus shift the branch of periodic orbits to the right and and to
the left (when ν = 1, second stage receives less level of excitation aeffective = a− dν, see
Figure 5.7E). This results in bistability between SIM and AM dynamical states shown
in the the bifurcation diagram of the whole model (Figure 5.5B). Time histories of this
model responses are shown in Figure 5.5C. Population activities are simulated for 50 s at
∆I = 0.5. Top panel shows the noise realization with parameters σ = 0.79 and θ = 0.98.
Perceptual switches between SIM (blue) and AM (red) are seen as ν transition occurs
from zero to one or vice versa.
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5.3. Results

In this section, I go through a qualitative description of the model presented in subsec-
tion 5.2.3, which shows that activity matches perceptual interpretations and alternations
observed in tactile rivalry experiment. Later in this section, I will look at the depen-
dence of mean dominance durations on stimulus parameter, and variability of perceptual
durations.

5.3.1. Time history simulations of full tactile rivalry model

We first discuss the output from individual simulations of the model and illustrate how the
model’s firing rate variables can encode the competing percepts and perceptual alterna-
tions. The bifurcation analysis for the simplified model (Figure 5.1D) has been investigated
in subsubsection 5.2.4, which further explains how the vibrotactile model is designed to
encode percepts and generates perceptual alternations.

A time simulation over 90 s of the full tactile rivalry model is shown in Figure 5.6. The
units in the first stage are excited by the contra-lateral stimulus and inhibited by the ipsi-
lateral stimulus. Thus, the net inputs to the left and right units of the first stage will be
the contra-lateral stimuli minus ipsi-lateral stimuli. These inputs are antiphse pulses with
amplitude equal to ∆I = 2 dB as shown in Figure 5.6A. Noise is added to these inputs
with parameters σ = 0.3 and θ = 0.05 (Figure 5.6B). Firing activities of these units in
first stage in response to the stimuli and noise are shown in Figure 5.6C. In the absent of
noise, these adapting recurrent units could oscillate between the UP and DOWN states
regularly. However, as seen these oscillations are now driven by both the adaptation and
the noise process. Figure 5.6D shows sum of firing activities of the first stage, which is
received as an inhibitory input to the both units of second stage. Firing activities of the
second stage units to these inputs are shown in Figure 5.6E. Units of the second stage
encode the SIM percept (both units fully respond to the high and low intensity pulses in
the inputs) when there is low levels of inhibitions from the first stage. When the level
of inhibition crosses a threshold, the units in the second stage encode AM percept (both
units only fully respond to the high intensity pulses in the inputs). Perceptual alternation
between the SIM and AM percepts are seen as transitions between DOWN and UP states
occur in the inhibitory inputs (Figure 5.6D&E).

5.3.2. Stimulus parameter dependence

Results from experiments with vibrotactile stimuli demonstrate that Levelt’s proposition
II holds in tactile domain (Darki and Rankin 2021). Increasing intensity difference, causes
the mean dominance of SIM percept to decrease and AM percept to increase. Mean
dominance duration for both the perceptual durations from the model and the experiment
(Experimental data from (Darki and Rankin 2021)) are plotted against intensity difference
(∆I) in Figure 5.7. The parameters of the noise (σ, θ), time constant of adaptation
(τa), and nonlinearity in the inputs of the first stage (D = f(∆I)) must be determined
using a genetic algorithm in order to minimise a cost function, and as a result the curves
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Figure 5.7. Levelt’s proposition II. (A) Experimental data are dashed curves and computational
data from the model are solid curves with data points at different values of intensity difference
∆I = 0.5, 1, 2, 4, 6 on the x-axis, error bars show standard error of the mean. Mean dominance
duration of the SIM percept (blue) increase as the intensity difference increase, while opposite
effect is observed for the AM percept (red). (B) Nonlinearity in the inputs of the first stage
(D = f(∆I)) are determined using a algorithm optimisation method. Dashed black curve is the
best fit for an offset and scaled sigmoid nonlinearity.

from the model simulations fit to the curves from the experimental data. To find the
nonlinear function f(∆I), I first estimated some points of it at the experimental conditions
(∆I = 0.5, 1, 2, 4, 6) using a genetic algorithm (f(0.5) = 2.16, f(1) = 2.3, f(2) = 2.6,
f(4) = 3.75, f(6) = 3.92 with θ = 0.05, σ = 0.3, τa = 5 s). Having these points, I showed
an offset and scaled sigmoid function like;

f(x) = f0 +
f1

1 + exp(−r(x− x0))
, (5.15)

with parameters: f0 = 1.25 (offset), f1 = 1.80 (scale), r = 1.57 (slope), x0 = 2.64

(threshold), fits best to these points.

5.3.3. Variability of perceptual durations

The distributions of normalized perceptual durations from the model and from the exper-
iment are shown in Figure 5.8A&B. These distributions were compared with the gamma
and log-normal distributions using a one-way Kolmogorov-Smirnov (KS) test. The null
hypothesis is that the test data are drawn from the standard distribution and a significant
result (p < .05) indicates that the test data are not drawn from the comparison distribu-
tion. The result of one-way KS tests shows that the results produced by simulation of the
tactile rivalry model best fit by a log-normal distribution, however, these results are not
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Figure 5.8. Statistics of dominance durations. (A) Model. Histogram of 379 durations from
model simulations at ∆I = 2 dB combined across perceptual type after normalising by the mean.
Solid and dashed curves show the estimated log-normal and gamma distribution, respectively. P-
values are from one-way KS test. (B) Experiment. Histogram of normalized perceptual durations
combined across participants and percept type after normalization by the mean, for experimental
conditions close to equidominance (∆I = 2 dB). (C) Scaling property. Coefficient of variation
(cv) and (D) skewness divided by coefficient of variation (γ1/cv) computed for distributions from
the model and the experiment at intensity difference ∆I = 2 dB.

comparable with gamma distribution (p(gamma) < .05).

To assess how well tactile rivalry model conforms to the scaling property, the statistical
characteristics are compared across the model and the experiments. A scaling property
obtains if the coefficient of variation cv and ratio of skewness and coefficient of variation
γ1/cv are constant. As Figure 5.8C&D shows coefficient of variation for the distribution
from the model is cv = .85, and the ratio of skewness and coefficient of variation is
γ1/cv = 2.17, which are comparable to the corresponding values from experiment (cv = .76,
γ1/cv = 2.79), see subsection 5.4.3.

5.4. Discussion

5.4.1. Summary

Here, a two-stage model of tactile rivalry is introduced that is able to produce perceptual
alternations and encodes two percepts observed in tactile rivalry experiments. Bifurcation
analysis was used to tune model parameters for the first stage to operate within bistable or
oscillatory regime. And the second stage model parameters are tuned to operate within a
range where direct transitions between SIM and AM are possible. Other model parameters
have been estimated through a genetic algorithm with a cost function to minimise the
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differences between the experimental and computational mean dominance curves with
respect to intensity difference. The powerful combination of bifurcation analysis to tune
certain features of the model, along with optimisation tools allows for the design of a
model that captures many features from the experiments of tactile rivalry.

5.4.2. Physiological basis of tactile rivalry model

The somatosensory cortex consists of several neighbouring, functionally distinct areas
whose interconnections are complex and only partially understood. S1 and S2 are two
major areas of the somatosensory cortex. The most anterior (forward) of S1’s four strips
is known as area 3a, the most posterior (rear) strip is known as area 2, areas 3b and 1
lay in between (Figure 1.6). The model at the first stage receives contra-lateral excitation
and ipsi-lateral inhibition, assumed to be tactile nerve fibre responses to the right and
left hand stimuli. Neural populations in the first stage could be located somewhere in
somatosensory pathway between the brainstem nuclei (where the right and left afferent
fibres cross over) and area 3b of primary somatosensory cortex (see Figure 1.5).

In the model, neural populations in the first stage make inter- and intra-hemispheric
inhibitory connections with the neural populations in the second stage. Several studies
have reported evidence for interhemispheric interactions in anterior parietal cortex during
bimanual stimulation in humans (Krubitzer and Kaas 1990; Reed et al. 2011). In area 3b
of monkeys, interhemispheric interactions have been described as primarily suppressive,
in that simultaneous tactile stimulation of both hands suppresses neural activity in area
3b measured on one side through optical imaging (Tommerdahl et al. 2006).

Neurons in area 3b of primary somatosensory cortex have been characterized using linear
spatial receptive fields with spatially separated excitatory and inhibitory regions (Delhaye
et al. 2011). In addition to inhibitory component flanking the excitatory one, receptive
fields tend to also comprise an inhibitory component co-localized with the excitatory field
but delayed by 20 to 30ms (Gardner and Costanzo 1980; DiCarlo and Johnson 2000).
This receptive field structure results in an initial excitatory drive that is followed by an
inhibitory one, rendering the neuron less excitable for a period of time (Delhaye et al.
2011). Considering these facts, the existence of intra-cortical fast excitation and delayed
inhibition in the model (a delay of 5ms is considered in the model, which is comparable
to the delays observed in area 3b) can account for these excitatory and lagged inhibitory
components of receptive fields which suggest the neural populations at the second stage
are probably located within area 3b of the primary somatosensory cortex. Neurons in
areas 1 and 2 (higher processing areas within S1), in contrast to their counterparts in area
3b, tend to have larger and more complex receptive fields and also exhibit more complex
feature selectivity (Iwamura and Tanaka 1978; Bensmaia et al. 2008).

5.4.3. Stochastic influences on perceptual switching

In neural competition models, noise and adaptation processes are two possible switching
mechanisms that describe the alternating behaviours (Moreno-Bote et al. 2007; Chholak
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et al. 2020). In consideration of the experimental constraints on the statistics of alterna-
tions (mean of the dominance durations and their coefficient of variation and correlations
between successive durations), the models must operate within a balance between the noise
and adaptation strength (Shpiro et al. 2009). In several competition models, alternations
are possible over large regions of parameter space, but the experimental constraints are
satisfied in only a restricted domain, the region of relevance. In order to produce the
statistical characteristics consistent with bistable perception experiments, precise tuning
of the system’s parameters is necessary (Shpiro et al. 2009).

Choice of stochastic process to reproduce stochastic characteristics of perceptual rivalry
including the scaling property and the short-tailed skewness of reversal time distributions
has recently been under investigation (Cao et al. 2014). It has also been shown that a
generalized Ehrenfest stochastic process can reproduce both the scaling property and the
short-tailed skewness of reversal time distributions (Cao et al. 2016). In this study, I
used Ornstein-Uhlenbeck process, and the results produced by simulation of the tactile
rivalry model best fit by a log-normal distribution, but not with a gamma distribution.
On the other hand, the coefficient of variation and the ratio of skewness and coefficient of
variation for the distribution from the model are comparable to the corresponding values
from experiment. Other choices of the stochastic process can lead to different results than
what was observed here. Further investigation of the stochastic processes in the model
should also look at correlations between successive durations.

5.4.4. Future work, Levelt’s proposition IV

In this study, I only investigated Levelt’s proposition II, which consider the relation be-
tween dominant perceptual durations and asymmetric variation of intensity difference.
Further experimental work needs to be done to prove Levelt’s proposition IV also extents
to tactile rivalry. Once I have the experimental results, I can improve the model to also
produce consistent results with Levelt’s proposition IV.

There was also lack of experimental work that investigate the effects of other features
of the stimuli such as presentation rate (PR) and tone durations (TD). However, the
bifurcation analysis with periodic forcing framework that presented here can be used to
predict how the experimental result may be affected by the variation of these stimulus
parameters.

The model presented here works with the simple tactile rivalry stimuli which was presented
on two locations on both hands. This model can be further developed to look at more
complex stimuli such as tactile motion quartet which is presented at four locations on the
skin.

5.4.5. Conclusion

Earlier experimental work showed that perceptual rivalry extends to the tactile domain and
common characteristics of multistable phenomenon also persist with vibrotactile stimuli.
This study presents a mathematical model for tactile rivalry based on physiological facts
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of somatosensory processing. By accurately tuning the parameters, this model produces
the general characteristics of perceptual rivalry including Levelt’s proposition, short-tailed
skewness of reversal time distributions and the scaling property. As I discussed, putative
neural populations of the first stage could be located early in the somatosensory pathway
at brainstem nuclei, and the neural populations of the second stage could be located within
area 3b of the primary somatosensory cortex.
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Our brain receives only a restricted amount of information about the world around us
which are often fragmentary, conflicting or even ambiguous. In such conditions, our per-
ceptual system cannot produce a stable unambiguous percept, especially if the sensory
information is equally compatible with different perceptual interpretations. With no ad-
ditional cues are available to allow perception to converge to a unique interpretation,
perception alternates spontaneously every few seconds between two (bistable) or more
(multistable) interpretations of the same sensory input.

Multistable perception can help us understand the intrinsic neural processes that generate
a unified and coherent experience of the world. For decades, the neural mechanisms of
perceptual rivalry, and where the ambiguity resolve in sensory processing hierarchy have
been under intense investigation. Two explanatory approaches argue if multistable percep-
tion arises from interactions between low-level (sensory) or high-level (cognitive) processes.
Experimental studies together with powerful tools such as mathematical modelling and
bifurcation analysis have been utilized to describe the neural dynamics and structures for
this phenomenon. However, a theory explaining all empirical findings is still missing to
date.

6.1. Mathematical analysis of binocular rivalry models

Most theoretical and empirical studies have investigated visual multistability. However,
there are striking similarities with comparable phenomena in other sensory domains (e.g.
auditory streaming and tactile multistability). Thus the same or similar mechanisms
involved in visual multistable perception might also have a role in other sensory domains.
Considering this fact, I have started my analysis with models of binocular rivalry (see
Chapter 2 for analysis of Adaptation-LC model and Chapter 3 for analysis of the Wilson
model).

Earlier work with models of bistable perception has identified parameter ranges with
winner-take-all dynamics (WTA), rivalry oscillations (RIV) and simultaneous activity
(SIM) (Shpiro et al. 2009; Seely and Chow 2011). Analysis of the Wilson model with fixed
inputs showed that the transition from rivalry alternation to the WTA regime is much
more complicated than previously thought, and includes complex dynamical behaviours
such as MMOs and LAWTA oscillations which was not reported before.
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6.2. Perceptual rivalry with periodic stimuli

Several competition models have been proposed to describe binocular rivalry with periodic
stimuli, however, interpretation of results from these models are based on a specific set
of parameters. Using numerical continuation, I introduced a method to assess whether
the existing models of binocular rivalry are valid or not in a specific parameter regime
and, more generally, to find the parameter regions where these models work. This re-
search provides a framework for either assessing binocular rivalry models for consistency
with empirical results, or for better understanding neural dynamics and the mechanisms
necessary to implement a minimal binocular rivalry model.

Using this framework with the Wilson model in Chapter 3, the results show that periodic
forcing with high frequency (e.g. 18 Hz, known as flicker) modulates the three main types
of behaviours that occur with fixed inputs by the forcing frequency (WTA-Mod, RIV-
Mod, SIM-Mod). However, the dynamical behaviour will be different with low frequency
periodic forcing (around 1.5Hz, so-called swap), and in addition to WTA-Mod and SIM-
Mod, cycle skipping and multi-cycle skipping behaviour exist which can lead to chaotic
dynamics. Results of this analysis provides a deeper explanation of how the Wilson model
produces slow alternations with the F&S (but not Swap only stimulus).

As discussed in (Brascamp et al. 2013; Li et al. 2017), the Wilson model is only capable of
generating slow perceptual alternations with the F&S stimulus, and it fails to do so with
blank intervals inserted before each swap, so-called Blank & Swap (B&S) (van Boxtel
et al. 2008; Denison and Silver 2012). This reported limitation of the Wilson model could
simply be avoided if the parameters had been set in a way that the model operated in a
specific regime. These results cast a new light on binocular rivalry with periodic forcing
and it is now clear that these two limitations of the Wilson model could be fixed by tuning
model parameters.

Our approach for studying perceptual bistability with periodic stimuli is applicable for
a range of other stimuli including auditory streaming (Rankin et al. 2015), motion illu-
sions (Vattikuti et al. 2016) and haptic bistability (Carter et al. 2013).

6.3. Tactile rivalry experiments

Earlier studies with tactile stimuli have identified bistability in somatosensation; however
the range of spatial and temporal stimulation parameters capable of inducing bistable
tactile perception which provides context for comparison across modalities have not been
studied so far. In Chapter 4, a simple tactile stimulus is introduced which investigates the
effect of varying intensity difference asymmetrically on perceptual durations. The results
show that Levelt’s proposition II (LVII) and other characteristics of sensory bistability that
generalise in vision and auditory sensation extend to the tactile modality. This could be
extended to look at other features, e.g., vibration frequency, temporal cues, presentation
rate, etc. The dynamics of perceptual bistability are characterised by very similar proper-
ties across a wide range of qualitatively different paradigms. This suggests that perceptual
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switching may be triggered by some common source across different modalities.

6.4. Tactile rivalry modelling

To the best of my knowledge, there are no models for tactile rivalry. Computational models
of perceptual ambiguity have helped significantly with our understanding of other types
of bistability. With understanding mechanisms from mathematical analysis of binocular
rivalry models, and the tools developed for bifurcation analysis with periodic stimuli, I
could present the first model of tactile rivalry. The model presented is able to produce
perceptual alternations between two types of perception observed in the experiments with
tactile stimuli, and is also compatible with the physiological evidence and structure of
somatosensation. By accurately tuning the model parameters through combination of
bifurcation analysis and optimisation tools, this model produces the general characteristics
of perceptual rivalry including Levelt’s proposition, short-tailed skewness of reversal time
distributions and scaling property. As discussed in subsection 5.4.2, neural populations
associated with the first stage are possibly located early in the somatosensory pathway at
brainstem nuclei, and the neural populations associated with the second stage are possibly
located within area 3b of the primary somatosensory cortex.

6.5. Suggesting future work

The deterministic and stochastic factors can both influence the timing of perceptual de-
cisions, as the gradual accumulation of sensory evidence (deterministic) is modulated by
sensory and/or internal noise (stochastic) (Cao et al. 2016). Astonishingly, the distribu-
tion of reversal times maintains a characteristic, gamma-like shape, even though mean
reversal times vary widely between observers, displays, and input levels. Moreover, the
distribution in question is considerably more variable (wider) and less skewed (shorter-
tailed) than typical choice-time distributions) (Cao et al. 2016; Shpiro et al. 2009). The
constancy of distribution shape constitutes a scaling property, as it implies that higher
moments scale as appropriate powers of the mean. Despite a long tradition of perceptual
competition research there are still questions about the neuro-computational basis and
the underlying mechanisms of this phenomenon.

Mathematical models of these phenomena focus on the neural processing of sensory in-
formation, the dependence of average switching times on stimulus parameters and the
statistical distribution of times between switches. In neuronal competition models, noise
and adaptation processes are two possible switching mechanisms that describe the alter-
nating behaviours. In consideration of the experimental constraints on the statistics of
the alternations (mean of the dominance durations and their coefficient of variation and
correlations between successive durations), the models must operate within a balance be-
tween the noise and adaptation strength (Shpiro et al. 2009). It has also been shown that
a generalized Ehrenfest stochastic process can reproduce both the scaling property and
the short-tailed skewness of reversal time distributions (Cao et al. 2016). However, there
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is currently no presented modelling approach that can assess the role of stochasticity in
deterministic dynamical systems models for perceptual competition.

Noise plays an important role in perceptual competition, and this is often considered
in models (Li et al. 2017). The introduction of noise to timescale-separated dynamical
systems (like competition models) can introduce dynamics that are not present in the
deterministic case, especially local to bifurcations (Berglund and Gentz 2008). In my
earlier study, I found exotic dynamics including relaxation oscillations and mixed mode
oscillations in a deterministic model of rivalry (Darki and Rankin 2021). Interactions
between noise and the dynamics may modify the exotic dynamics in the deterministic
model in an interesting way and could either expand the parameter regions where these
states persist or wash out the complex dynamics.

It would be of interest to see how these complex dynamics (MMOs & LAWTA) will interact
with noise. Further analysis is needed to check whether these dynamical regimes persist
or are modified in the presence of noise.
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A. Appendix1

Table A.1. Two-way repeated measure ANOVA of proportion of both percept types (AM,
SIM) with respect to intensity difference (∆I) and percept type. Analysis shows a significant
effect of ∆I:percept on the proportion
Source dfnum dfden F p ges p[GG]

Percept 1 41 0.09 .76 .001
∆I 4 164 0.91 .46 .01
∆I:Percept 4 164 201.85 < .001 .71 < .001
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Table A.2. One-way repeated measure ANOVA of proportion of SIM perception with respect
to intensity difference (∆I). Analysis shows a significant effect of the intensity difference on the
proportion
Source dfnum dfden F p ges p[GG]

∆I 4 164 114.01 < .001 .07 < .001

Table A.3. Pairwise ttest, with Bonferoni corrected p-values, on the proportion of SIM perception
with respect to intensity difference (∆I)

∆I = 0.5 ∆I = 1 ∆I = 2 ∆I = 4

∆I = 1 .23 - - -
∆I = 2 .001 .45 - -
∆I = 4 < .001 < .001 < .001 -
∆I = 6 < .001 < .001 < .001 .06

Table A.4. One-way repeated measure ANOVA of proportion of AM perception with respect
to intensity difference (∆I). Analysis shows a significant effect of the intensity difference on the
proportion
Source dfnum dfden F p ges p[GG]

∆I 4 164 146.10 < .001 .07

Table A.5. Pairwise ttest, with Bonferoni corrected p-values, on the proportions of AM perception
with respect to intensity difference (∆I)

∆I = 0.5 ∆I = 1 ∆I = 2 ∆I = 4

∆I = 1 .08 - - -
∆I = 2 .01 1.00 - -
∆I = 4 < .001 < .001 < .001 -
∆I = 6 < .001 < .001 < .001 < .001

Table A.6. One-way repeated measure ANOVA of frequency of both percept types (AM, SIM)
with respect to intensity difference (∆I). Analysis shows a significant effect of ∆I on the frequency
Source dfnum dfden F p ges p[GG]

∆I 4 176 15.98 < .001 .12 < .001

Table A.7. Pairwise ttest, with Bonferoni corrected p-values, on the frequency of both percept
types (AM, SIM) with respect to intensity difference (∆I)

∆I = 0.5 ∆I = 1 ∆I = 2 ∆I = 4

∆I = 1 1.00 - - -
∆I = 2 < .001 .02 - -
∆I = 4 1.00 1.00 .003 -
∆I = 6 .82 .82 < .001 1.00

Table A.8. One-way repeated measure ANOVA of the first five phase with respect to phase number.
Analysis shows there is no significant effect of phase number on the duration of phases
Source dfnum dfden F p ges p[GG]

phase 4 420 .71 .59 .005 .58
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Figure A.1. Levelt’s proposition II (A) The distribution of dominance durations at each trial
with different experimental conditions (45 observation per experimental condition). (B) Mean
dominance duration, (C) proportion of dominance for each percept type, (D) alternation rate, as
a function of intensity difference (∆I)
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Figure A.2. (A) Histograms of perceptual phases for SIM (blue) and AM (red) percepts for each
experimental condition. (B) Histograms of normalized perceptual phases. For normalization all
samples of each histogram in panel (A) divided by its mean. (C) Normalized phase durations
combined across the two percepts for each experimental condition. Solid and dashed curves show
the estimated log-normal and gamma distribution respectively. (D) Coefficient of variation (cv)
and skewness divided by coefficient of variation (γ1/cv) for histograms in panel (C) with different
experimental conditions (∆I = 0.5, 1, 2, 4, 6 dB)
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Figure A.3. Comparing the first five perceptual phases. As the result of one-way ANOVA analysis
shows (Table 8), there is no significant difference between means of consecutive phase durations.
Durations were averaged across all the trials in which participants had experienced five or more
successive phases (N = 106)
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