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     INTRODUCTION 

 Despite reported reductions in malaria transmission inten-
sity in several African regions, 1–  8  malaria remains one of the 
most important public health problems in sub-Saharan Africa 
with an estimated 863,000 deaths annually. 9  Widespread use 
of insecticide-treated nets (ITNs), 1–  3,  5,  6  effective vector con-
trol, 1,  3,  6  increased urbanization, 10  and treatment of uncompli-
cated falciparum malaria with artemisinin-based combination 
therapies (ACT) 1,  2,  7  have all been assumed to contribute to the 
reported reductions in malaria incidence, although in some 
areas these reductions were observed before control mea-
sures were scaled up. 8  This widespread decline in the burden 
of malaria has resulted in optimism that malaria can be elimi-
nated in parts of Africa where malaria is currently endemic. 11  
However, reports of reductions in malaria transmission mostly 
originate from areas that have been involved in intensive and 
effective malaria control programs 1–  5  and sustained implemen-
tation of health care, with some valuable findings from less 
well-controlled settings. 6–  8  It is uncertain if trends of declining 
transmission intensity are evident across Africa 8  or whether 
they are apparent in areas where political instability and eco-
nomic arrest have hindered effective control and surveillance 
of infectious diseases. 12,  13  Conflict and human insecurity pose 
considerable challenges by causing a breakdown in health 
delivery systems and a loss of human and financial resources 
for health programs. 13–  15  In those areas, malaria control is likely 
to have been less efficiently implemented and maintained and, 
as a result, malaria transmission intensity may have remained 
unaltered, or malaria may have re-emerged in areas where it 
was previously under control. 15,  16  

 In this study, we determined the current level of malaria 
transmission intensity in the Apac district in northern Uganda, 
a remote region that was previously described as holoendemic 
for malaria. 17–  19  Northern Uganda has been involved in conflict 
since the early 1980s with the Lord’s Resistance Army as the 
main rebel group that continues to be a threat to the region 
up to the present day. This conflict hindered economic devel-

opment in northern Uganda and resulted in a lower access to 
healthcare compared with other regions in Uganda. 20  The area 
of Apac was affected by political unrest in the early 1990s. 21  
Although health facilities remained functioning throughout 
the conflict, serious supply shortages affected the quality of 
care. 

 The aim of this study was to determine the current preva-
lence of  Plasmodium falciparum  parasite carriage by micros-
copy and polymerase chain reaction (PCR) and to use 
age-dependent antibody responses to  P. falciparum  circum-
sporozoite (CSP) antigen and blood-stage antigens apical 
membrane antigen-1 (AMA-1) and merozoite surface pro-
tein-1 19  (MSP-1 19 ) to look for evidence of recent changes in 
transmission intensity. 22–  24  

   METHODS 

 The study was conducted in Apac Sub-County, a rural dis-
trict in Northern Uganda located between Kwania Lake and 
the Victoria Nile (latitude 1.985; longitude 32.535). Apac 
District covers an area of 6,684 square kilometers and ranges 
in altitude between 1,350 and 1,500 meters above sea level. The 
rainfall pattern is bimodal with a dry season from November 
to February and two short rainy seasons from April to May 
and from September to October. According to surveys con-
ducted in 2001–2002, this area experiences perennial holoen-
demic malaria 17  with parasite prevalence rates of 70–90% in 
children < 10 years of age. 17–  19  The entomological inoculation 
rate was estimated at > 1,500 infective bites per person per year 
and the major vector responsible for transmission is  Anopheles 
funestus . 17   Plasmodium falciparum  is the dominant parasite 
species,  Plasmodium malariae  being responsible for ~3% of the 
infections and  Plasmodium ovale  was previously not observed. 19  
Ethical approval was obtained from the ethical review commit-
tee of the London School of Hygiene and Tropical Medicine 
(no. 5539), the ethical committee of the Medical Biotech 
Laboratory, and the national ethical committee of Uganda. 

  Data collection.   Subjects were recruited in October 2009 in 
four parishes. Sampling was done in Apac District Hospital, 
two health facilities in the parishes of Abedi and Akere, and a 
primary school in the parish of Atopi. Before the sampling days, 
community meetings were organized to explain the purpose 
of the study and to invite people to attend sampling points. 
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At the health facilities and the hospital, all individuals attend-
ing the facilities for clinical care, antenatal visits, or who came 
specifically to benefit from the screening offered by this study 
were selected for enrollment together with accompanying 
family members or guardians. This approach was previously 
shown to provide an estimate of malaria-specific antibody 
prevalence that is comparable to that obtained through 
community surveys. 22  Before sampling at the school in Atopi, a 
community meeting was organized and parents were informed 
of the survey through the school’s pupils. All inhabitants of 
Atopi who attended the sampling point, including pupils and 
their parents or guardians, were eligible for enrollment and 
people were sequentially enrolled until the sample size was 
reached. We aimed to recruit 200–300 individuals per parish of 
whom half were < 15 years of age. This sample size was based on 
a previous study where this number of participants was found 
to be sufficient for a reliable determination of transmission 
intensity by serological markers of malaria exposure. 23  To 
ensure a balanced representation of all age groups, essential 
for determining the age-dependent seroconversion rates 
(SCRs), 25  seven age categories were defined per parish (1–2 
years,  N  = 45; 3–5 years,  N  = 45; 6–10 years,  N  = 40; 11–15 years, 
 N  = 40; 16–25 years,  N  = 40; 26–55 years,  N  = 40; and > 30 
years,  N  = 50) and questionnaires were printed in pre-defined 
quantities in different colors for each age group. Questionnaires 
contained clinical information, demographic data, information 
on the use of antimalarial drugs, and protective antimosquito 
measures. As soon as the sample size for an age category was 
reached, no further individuals were enrolled for this category 
but enrollment continued for other age categories. 

 Written informed consent or, in case of illiteracy, consent 
by thumb print, was obtained from each participant ≥ 15 years 
of age and from parents or guardians of younger individu-
als. Each individual enrolled in the study underwent a clinical 
examination, during which axillary temperature was measured 
twice using a digital thermometer and the higher of the two 
values was recorded. A single blood sample was obtained by 
finger prick (~0.3 mL) for thick and thin blood films, for fil-
ter paper blood collection (Whatman 3 mm, Maidstone, UK) 
and for Rapid Diagnostic Tests (RDT; Paracheck Orchid 
Biomedical Systems, Goa, India) for malaria. This RDT has an 
estimated detection rate of 97.5% for parasite densities > 2,000 
parasites/μL and 54.4% for parasite densities of 200/μL. 26  Filter 
papers were air-dried and stored in plastic bags with silica des-
iccant gel type III (Sigma, Dorset, UK), stored at −20°C in the 
field, transported at room temperature, and again stored at 
−20°C in the laboratory until further processing. Thick blood 
films were Giemsa-stained in the field and read after comple-
tion of the study. Clinical diagnosis was based on the result 
of the RDT; RDT-positive individuals with (reported) fever 
were treated with artemether-lumefantrine (Lonart; Bliss Gvs 
Pharma Ltd., India) according to national guidelines. The first 
dose was given under supervision; the remaining five doses 
were given to the participant/guardian for treatment at home. 

   Parasite detection by microscopy and PCR.   Microscopic 
slides were examined for the presence of parasites in 100 
high-power fields by two experienced microscopists; the 
average parasite density of the two readings was recorded 
and a third microscopist consulted in case of disagreement. 
Asexual parasites were counted against 200 white blood cells 
and converted to parasites/μL by assuming a density of 8,000 
white blood cells/μL blood. We explored the value of PCR for 

parasite detection in a single parish, Abedi. DNA was extracted 
from all filter paper blood spots from Abedi, using the chelex 
method 27  and tested for the presence of  P. falciparum ,  P. vivax , 
 P. malariae , and  P. ovale  in the nested PCR approach originally 
described by Snounou and others 28  and Padley and others. 29  
Samples that were negative by PCR were rescreened by PCR 
using as a template DNA extracted using QIAamp DNA Mini 
Kit (QIAGEN, Hilden, Germany). 

   Enzyme-linked immunosorbant assay (ELISA).   Anti-
bodies were eluted from filter paper blood spots and assayed by 
ELISA, as described in the online protocol by Corran and oth-
ers .  30  Briefly, a 3.5-mm circle was cut from the spot and placed 
into 300 μL of phosphate buffered saline with 0.5% Tween 20 
(PBS-T) and 0.05% sodium azide, approximately equivalent 
to a 1/200 serum dilution. Immunoglobulin G (IgG) antibod-
ies against circumsporozoite protein (CSP), apical membrane 
antigen (AMA-1), and merozoite surface protein 1 (MSP-1 19 ) 
were detected by ELISA using standard methodology. 22,  25,  30  
Recombinant MSP-1 19  (Wellcome genotype), AMA-1 (3D7 
genotype), and a synthetic peptide CSP (NANP4) were coated 
onto ELISA plates overnight at 4°C at a concentration of 
0.5 mg/mL, respectively. Plates were washed using PBS plus 
0.05% Tween 20 (PBS/T) and blocked with 1% (w/v) skimmed 
milk powder (Marvel, UK) in PBS/T. Samples were added in 
duplicate to each plate at a serum dilution of 1:200 for CSP, 
1:2000 for AMA-1, and 1:750 for MSP-1 19  in 1% bovine serum 
albumin (BSA) in PBS/T. 22  A positive control of pooled hyper-
immune serum collected from adults resident in a malaria-
endemic area was included in duplicates on each plate to allow 
standardization of day-to-day and plate-to-plate variation; 
serum from malaria-naive Europeans was included in each 
assay as negative controls. After overnight incubation at 4°C 
the plates were washed and horseradish peroxidase-conjugated 
rabbit anti-human IgG (Dako Ltd., High Wycombe, United 
Kingdom) (1/5,000 in PBS/T) was added to all wells. All plates 
were developed using OPD/H 2 O 2  substrate solution and reac-
tions were stopped with 2 M H 2 SO 4 . Plates were read immedi-
ately at 492 nm and optical density (OD) values recorded. 

   Data analysis.   All data were double entered and validated 
in Microsoft Access (Redmond, WA); inconsistencies were 
verified against the original questionnaire. Data were imported 
into Stata 11.0 (Stata Statistical Software, StataCorp, College 
Station, TX) for statistical analysis. Fever was defined as a 
temperature ≥ 37.5°C; submicroscopic parasitemia was defined 
as parasitemia by PCR in the absence of microscopically 
confirmed parasite carriage. Parasite density was presented as 
geometric mean in microscopically positive parasite carriers 
only with the 25th and 75th percentile (interquartile range, 
IQR). Duplicate OD results in ELISA assays were averaged 
and normalized against the positive control sample on each 
plate. A cut-off above which samples were deemed antibody 
positive was defined using a mixture model as previously 
described. 22,  30  Briefly, the distribution of normalized OD 
values was fitted as the sum of two Gaussian distributions 
(a narrow distribution of seronegatives and a broader 
distribution of seropositives) using maximum likelihood 
methods. The mean OD of the Gaussian corresponding to the 
seronegative population plus three standard deviations was 
used as the cut-off for seropositivity. 22  The seroconversion 
rate (SCR or λ) was estimated by fitting a simple reversible 
catalytic model to the measured seroprevalence, stratified into 
yearly age groups, using maximum likelihood methods. For 
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these models only individuals’ ≥ 1 year of age were included 
to avoid the effect of maternally derived antibodies in infants. 
Evidence for temporal changes in SCR was explored by fitting 
models in which the SCR is allowed to change at a single 
time point. 23,  24  The significance of the change was identified 
using likelihood ratio tests against models with no change, 
and profile likelihoods were plotted to determine confidence 
intervals (CIs) for the estimated time of the change. 23  The titer 
of the antibody response was estimated by using the formula 
dilution/(maximum OD/[OD test serum-minimum OD] − 1), 
where the maximum OD was the maximum value of the 
standard curve and the minimum OD the lowest value of the 
negative control. The titer was used as an indicator of antibody 
density in the analyses. Categorical variables were analyzed 
using the χ 2  test or χ 2  test for trend. Student’s  t  test, analysis 
of variance, or non-parametric equivalents were used when 
comparing continuous variables. Logistic and linear regression 
models were used to adjust binary and continuous variables 
for potential confounding. Titer was log 10  transformed for 
analysis and the exponentiated regression coefficients with 
95% CI were presented. 

    RESULTS 

  Parasite carriage by microscopy and PCR.   A total of 
883 individuals were enrolled from four parishes (202–251 
individuals per parish) with overall parasite prevalence 
by microscopy of 37.5% (219/851). Only  P. falciparum  was 
detected by microscopy. Fever was significantly more common 
among participants recruited at health facilities or the hospital 
compared with those recruited at school (odds ratio [OR] = 
1.54; 95% CI = 1.03–2.31,  P  = 0.04); parasite prevalence by 
microscopy was not significantly different (OR = 0.77; 95% 
CI = 0.55–1.06,  P  = 0.11). Parasite prevalence by microscopy 
( P  < 0.001) and parasite density ( P  < 0.001) decreased with 
age ( Table 1 ). There was no statistically significant difference 
in the prevalence or density of parasites between parishes 
after adjusting for age ( P  = 0.15). There was a strong positive 

association between parasite prevalence by RDT and 
microscopy ( P  < 0.0001). Nevertheless, 19.6% (65/331) of 
individuals that were parasite positive by RDT were negative by 
microscopy; 52.3% (34/65) of these reported antimalarial drug 
use in the previous 2 weeks, possibly indicating HRP-2 antigen 
persistence after a successfully treated infection. 25  Samples that 
were positive by microscopy but negative by RDT ( N  = 50) 
were characterized by a low parasite density, geometric mean 
density 238 parasites/μL (IQR = 80–600), significantly lower 
than that in RDT-positive parasite carriers ( P  < 0.001). 

           The prevalence of infections was also determined by PCR 
in the parish of Abedi, where 241 DNA samples were ana-
lyzed for the presence of different malaria species. Parasites 
were detected by PCR in 107 samples after Chelex extraction; 
the QIAamp DNA Mini Kit (QIAGEN) was used to extract 
DNA from 131 samples that were negative after Chelex 
extraction and yielded another 32 PCR-positive samples, giv-
ing parasite prevalence by PCR of 57.7% (139/241). The vast 
majority of infections detected by PCR were  P. falciparum  
mono-infection (87.8%, 122/139), whereas 8.6% (12/139) of the 
infections were with  P. ovale , either as mono-infection ( N  = 6) 
or as co-infection with  P. falciparum  ( N  = 5) or as co-infection 
with  P. falciparum  and  P. malariae  ( N  = 1). Five mixed infec-
tions with  P. falciparum  and  P. malariae  were detected (3.6% 
of all infections, 5/139).  Plasmodium vivax  was not detected 
in any of the 241 samples analyzed by PCR. Individuals with 
non-falciparum malaria species detected by PCR, either as 
mono- or mixed-infection with  P. falciparum , were on average 
younger than those with  P. falciparum  mono-infection by PCR 
( P  = 0.035). Overall, 35.1% (52/148) of the samples negative by 
microscopy were positive by PCR; four samples were positive 
by microscopy but negative by PCR.  Plasmodium falciparum  
parasite prevalence by PCR was highest in children < 15 years 
of age and showed an overall negative association with age 
( Figure 1 ,  P  < 0.001). The proportion of infections that was 
below the microscopic threshold for detection increased from 
16.4% to 19.3% in children < 15 years of age to 48.7–53.1% in 
older age groups ( Figure 1 ,  P  < 0.001). 

 Table 1 
  Characteristics of enrolled individuals *   

Abedi Akere Apac town Atopi

 N 251 217 213 202

Age, median (IQR) 15 (5.3–25) 13 (4.3–29) 19 (5.5–32) 13 (5.6–30)
Fever, % (n/ N ) < 5 years 30.0 (18/60) 27.1 (16/59) 46.9 (23/49) 14.3 (6/42)

5–14 years 12.9 (8/62) 17.7 (9/51) 36.6 (15/41) 9.1 (6/66)
≥ 15 years 6.5 (8/124) 3.9 (4/102) 9.5 (11/116) 3.4 (3/88)

Parasite prevalence by RDT, % (n/ N ) < 5 years 56.7 (34/60) 73.3 (44/60) 71.4 (35/49) 81.0 (34/42)
5–14 years 59.4 (38/64) 44.2 (23/52) 51.2 (21/41) 64.2 (43/67)
> 15 years 16.8 (21/125) 17.3 (18/104) 14.1 (17/121) 15.4 (14/91)

 P. falciparum  parasite prevalence by 
microscopy, % (n/ N )

< 5 years 54.4 (31/57) 50.9 (29/57) 59.6 (28/47) 63.4 (26/41)

5–14 years 59.7 (37/62) 42.0 (21/50) 51.3 (20/39) 65.7 (44/67)
≥ 15 years 20.2 (25/124) 22.0 (22/100) 11.3 (12/106) 23.3 (21/90)

 P. falciparum  parasite density, 
GM (IQR)

< 5 years 6,063 (480–77,880) 2,844 (400–32,640) 8,102 (1,380–43,720) 2,874 (520–11,120)

5–15 years 753 (120–3,320) 1,235 (440–2,120) 1,404 (460–3,740) 918 (310–2,740)
≥ 15 years 215 (80–520) 453 (80–1,520) 232 (60–540) 456 (160–800)

 P. falciparum  parasite prevalence by 
PCR, % (n/ N )

< 5 years 66.7 (38/57) ND ND ND

5–14 years 69.4 (43/62) ND ND ND
≥ 15 years 42.62 (52/122) ND ND ND

  *   IQR = interquartile range; RDT = rapid diagnostic test; GM = geometric mean; ND = not done; PCR = polymerase chain reaction.  
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    Fever and parasite carriage in children by microscopy and 
PCR.   Fever, defined as a temperature ≥ 37.5°C, was detected 
in 24.4% (42/172) of children < 10 years of age without 
microscopically detectable parasites, compared with 33.6% 
(85/253) of children of the same age group with parasites 
( P  = 0.04). The prevalence of fever in submicroscopic parasite 
carriers was not different from that of non-infected individuals 
( P  = 0.23). The proportion of febrile children increased with 
increasing parasite densities ( Figure 2 ) but there was no 
statistically significant increase in fever prevalence until 
densities exceeded 10,000 parasites/μL. The 45.5% (13/33) of 
children with 10,000–49,999 parasites/μL had a current fever 
(temperature ≥ 37.5°C), which was significantly higher than 
that of children without parasites (OR = 2.58; 95% CI = 1.20–
5.56,  P  = 0.016). For children with parasite densities ≥ 50.000 

parasites/μL, the prevalence of fever was 65.9% (29/44), OR = 
5.98 (95% CI = 2.93–12.21,  P  < 0.001). The association between 
parasite density and fever prevalence did not improve when 
fever was defined as a temperature ≥ 38.0°C and/or if children 
who reported using antipyretics were excluded. 

    Malaria-specific antibody responses.   Antibodies against 
CSP, AMA 1, and MSP-1 19  were measured in 825 individu-
als. The overall seroprevalence was 25.2% (95% CI = 22.2–
28.3) for CSP, 63.8% (95% CI = 60.4–67.0) for AMA-1, and 
44.2% (95% CI = 40.8–47.7) for MSP-1 19 . Seroprevalence 
generally increased with age ( P  < 0.001) for all the antigens 
( Figure 3 ) and this increase was most pronounced for AMA-1 
where antibody prevalence rapidly rose to 74.3% (95% CI = 
65.1–82.2) in children aged 5–10 years and 81.7% (95% CI = 
72.9–88.6%) in children aged 10–15 years, and gradually 
decreased with age in older age groups (OR = 0.92; 95% CI = 
0.96–0.99,  P  = 0.001). This decrease in older age groups may 
reflect a reduction in immune boosting by blood-stage infec-
tions in individuals with effective anti-parasite immunity. The 
age-seroprevalence curves did not indicate more than one 
force of infection over time; this was checked by allowing 
the SCR to differ at a single time point. For none of the anti-
gens did multiple SCRs improve the fit of the age-seropreva-
lence curves. The overall SCR rate (λ) was estimated at 0.025 
(95% CI = 0.019–0.033) for CSP, 0.260 (95% CI = 0.208–0.326) 
for AMA 1, and 0.056 (95% CI = 0.044–0.072) for MSP-1 19  
( Figure 3 ). Microscopically confirmed parasitemia was asso-
ciated with a higher odds of being AMA-1 seropositive for 
children 1–5 years of age (OR = 3.2, 95% CI = 1.54–6.61,  
P  = 0.002) but not for older individuals ( P  = 0.46), after adjust-
ment for age within the age strata (Table 2). A similar trend of 
a higher odds of being seropositive for parasitemic compared 
with non-parasitemic children < 5 years of age was seen for 
CSP (OR = 3.25; 95% CI = 0.67–15.8,  P  = 0.14) and MSP-1 19  
(OR = 1.62; 95% CI = 0.79–3.32,  P  = 0.19), although not sta-
tistically significant. The titer of AMA-1 antibodies was also 
higher in the presence of microscopically confirmed infec-
tions (1.92-fold increase; 95% CI = 1.38–2.66,  P  < 0.001, after 
adjustment for age). A similar association was observed for 
CSP antibody titer (1.25-fold increase; 95% CI = 1.00–1.57,  
P  = 0.05), whereas this trend was not significant for MSP-1 19  
(1.26-fold increase; 95% CI = 0.88–1.83,  P  = 0.20). The pres-
ence of submicroscopic infections did not significantly 
influence the prevalence of AMA-1 (OR = 1.45; 95% CI = 
0.32–6.60,  P  = 0.63), MSP-1 19  (OR = 0.37; 95% CI = 0.04–
3.17,  P  = 0.37), or CSP (OR = 2.47; 95% CI = 0.23–26.25, 
 P  = 0.45) antibody responses in children 1–5 years of age com-
pared with uninfected children of the same age. Similarly, 
antibody titer was not significantly elevated for AMA-1 
(1.08-fold increase; 95% CI = 0.54–2.15,  P  = 0.83), MSP-1 19  
(0.47-fold decrease; 95% CI = −0.17–0.76,  P  = 0.12), or CSP 
(0.11-fold decrease; 95% CI = −0.44–0.45,  P  = 0.64) in the 
presence of a submicroscopic infection in children < 5 years 
of age. These estimates will have been affected by small 
numbers, only 11 children < 5 years of age carried parasites 
at submicroscopic densities. 

     DISCUSSION 

 In this work, we describe the current malaria situation 
in Apac, northern Uganda.  Plasmodium falciparum  para-
site prevalence was high, ≥ 50% by microscopy in children 

 Figure 1.     Plasmodium falciparum  parasite carriage by micros-
copy and polymerase chain reaction (PCR). The prevalence of  P. fal-
ciparum  infection by microscopy (dashed bars) and PCR (black bars) 
is given for individuals < 2 years (microscopy,  N  = 87/PCR,  N  = 24), 
2–4 years ( N  = 122/ N  = 34), 5–9 years ( N  = 111/ N  = 33), 10–14 years 
( N  = 108/ N  = 28), 15–24 years ( N  = 155/ N  = 61), 25–34 years ( N  = 124/
 N  = 29), and ≥ 35 years ( N  = 144/ N  = 32). Error bars indicate the upper 
limit of the 95% confidence interval around the proportion. The dot-
ted line indicates the proportion of infections that is below the micro-
scopic threshold for detection.    

 Figure 2.    The occurrence of fever for different parasite densi-
ties in children < 10 years of age. The prevalence of fever (tempera-
ture ≥ 37.5°C) is given for children < 10 years of age with no parasites 
( N  = 172), with < 400 parasites/μL ( N  = 50), 400–1,500 parasites/μL 
( N  = 46), 1,500–5,000 parasites/μL, 5,000–15,000 parasites/μL ( N  = 39), 
15,000–80,000 parasites/μL ( N  = 35), and ≥ 80,000 parasites/μL 
( N  = 35). Error bars indicate the upper and lower limits of the 95% 
confidence interval around the proportion.    
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< 5 years of age, and infections with  P. malariae  and especially 
 P. ovale  were common. Parasite carriage often occurred asymp-
tomatically, at densities ranging from submicroscopic concen-
trations to densities > 5,000 parasites/μL. These parameters 
are consistent with continuing holoendemic malaria trans-
mission and, unsurprisingly, the age-dependent prevalence of 
malaria-specific antibodies did not indicate recent changes in 
transmission intensity. 

 In our surveys,  P. falciparum  parasite prevalence in chil-
dren 2–9 years of age was 58%. This was slightly lower than 
the previously reported parasite prevalence of 70–90% in the 
same age group living in neighboring parishes in Apac District 
in 1995–1999 17–  19,  31  but within the 50–100% range reported in 
world malaria maps. 32  When PCR was used for parasite detec-
tion, overall  P. falciparum  parasite prevalence was 55.2% in 
all age groups (37.5% by microscopy) and 69.3% in children 
2–9 years of age (57.3% by microscopy). The prevalence of 
submicroscopic parasite carriage is in perfect agreement 
with the recent meta-analysis by Okell and colleagues, 33  
who reported a median PCR parasite prevalence of 58.6 

(IQR = 51.4–74.0%) for areas where the microscopical para-
site prevalence is 25–50%. The relative proportion of parasite 
carriers that harbored parasites at submicroscopic densities 
increased with age 34 ; this is likely to be a reflection of acquired 
immunity that allows adults to control infections more 
effectively. However, even in the youngest age group a sub-
stantial proportion of infections were not detected by micros-
copy, as was previously shown in areas of intense 35  and low 
endemicity. 36  Microscopy will be sufficiently sensitive to detect 
clinically relevant parasite densities, although our data clearly 
indicate that not every episode of parasitemia with fever equals 
clinical malaria. 37,  38  One-quarter of children < 10 years of age 
presented with fever in the absence of parasites and the pro-
portion of febrile children did not change considerably until 
malaria parasite densities exceeded 10,000 parasites/μL. Our 
data were insufficient to define a pyrogenic threshold para-
site density or malaria-attributable fraction of fever episodes; 
only 77 children had a parasite density ≥ 10,000 parasites/μL. 
One could argue that a single blood film per individual is 
insufficient for calculating the pyrogenic threshold density or 

 Figure 3.    Age-seroprevalence plots for circumsporozoite protein (CSP), merozoite surface protein-1 19 , and apical membrane antigen-1. Dots 
indicate the observed antibody prevalence for different age groups, the solid line the best fit based on age as a continuous variable, the dotted line 
the upper and lower limit of the 95% confidence interval (CI). The serocoversion rate λ was estimated at 0.025 (95% CI = 0.019–0.033) for CSP, 
0.056 (95% CI = 0.044–0.072) for MSP-1 19 , and 0.260 (95% CI = 0.208–0.326) for AMA 1.    

 Table 2 
      Antibody prevalence and density in relation to parasite carriage by microscopy *   

CSP AMA-1 MSP-1 19 

Prevalence, % (n/ N ) Titer, median (IQR) Prevalence, % (n/ N ) Titer, median (IQR) Prevalence, % (n/ N ) Titer, median (IQR)

1–5 years Parasite-negative 2.5 (2/79) 31.1 (13.2–52.4) † 25.0 (20/80) ‡ 194.5 (66.2–766.9) ‡ 19.2 (15/78) 42.6 (11.4–119.5)
Parasite carrier 7.8 (8/103) 37.9 (21.4–61.5) † 44.7 (46/103) ‡ 552.7 (167.9–1,429.3) ‡ 29.0 (29/100) 63.9 (16.8–195.2)

5–14 years Parasite-negative 22.7 (20/88) 71.2 (45.4–111.8) 78.3 (72/92) 1,215.9 (800.0–1,719.8) 31.5 (29/92) 55.3 (23.4–202.7)
Parasite carrier 21.4 (25/117) 60.5 (28.9–97.4) 78.2 (93/119) 1,391.3 (880.7–1,804.1) 27.1 (32/118) 64.0 (25.5–167.1)

≥ 15 years Parasite-negative 36.4 (112/308) 93.0 (51.3–147.2) 67.7 (216/319) 1,063.6 (608.1–1561.2) 62.3 (198/318) 248.2 (94.1–478.8)
Parasite carrier 34.7 (25/72) 79.6 (49.3–152.9) 76.3 (58/76) 1,297.7 (769.6–1686.6) 56.2 (41/73) 190.5 (70.3–427.9)

  *   Median titer includes all individuals, also seronegatives. The prevalence or (log 10 -adjusted) titer were compared between parasite-positive and parasite-negative individuals by microscopy; these 
analyses were done for different age categories and adjusting for age within that category.  

  †    P  = 0.05.  
  ‡    P  < 0.01.  
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malaria-attributable fraction, because the density of periph-
eral parasitemia within a single individual can fluctuate widely 
between times of the day and between days. 39  

 The prevalence and density of antibody responses was 
influenced by microscopically detectable parasite densities. 40,  41  
This was only apparent in children < 5 years of age and sug-
gests that immune responses are less stable in this age group, 
fluctuating with concurrent infections. 42  In older age groups 
immune responses were not influenced by concurrent para-
sitemia. Contrary to previous studies, we did not find evidence 
for a boosting of immune responses by submicroscopic para-
site carriage. 43,  44  We observed few submicroscopic infections in 
children 1–5 years of age ( N  = 11), which will have affected our 
power to detect such an immune-boosting effect. These find-
ings confirm previous indications that parasitization status can 
be an important consideration in longitudinal assessments of 
the protective role of immune responses. 41,  45  

 Age-seroprevalence plots can reveal recent reductions in 
transmission intensity when the age-seroprevalence curve 
shows an improved fit to the data when more than one SCR 
rate is assumed for specific time periods. 23,  24  We did not find 
any evidence for more than one force of infection and there-
fore have no reason to conclude a reduction in transmission 
intensity since the last surveys in the area. 17  The used meth-
ods may not have picked up a steady, gradual decline in trans-
mission intensity, 25  but this was not suggested by our findings 
in relation to previous surveys. Our approach of convenient 
sampling at health facilities and a school where surround-
ing villagers were mobilized for screening has some draw-
backs. Although it was previously shown that this approach 
is valid in obtaining an estimate of antimalarial antibody 
prevalence, 23  it may have resulted in an overestimation of 
parasite carriage because of a selection of symptomatic or 
overly exposed individuals. Although this implies that some 
caution is required in extrapolating the results to the gen-
eral population, we feel that the asymptomatic nature of the 
vast majority of infections makes it likely that our estimates 
are informative for the general population. The observation 
of persisting intense transmission are in agreement with a 
recent review that concluded that reductions in transmis-
sion intensity are not evident in all African settings 8  and that 
transmission intensity may have remained unchanged or even 
increased in northwestern Uganda 46  and neighboring coun-
tries in East and Central Africa. 47–  49  The failure to reduce the 
burden of malaria could reflect sub-optimal implementation 
of malaria control measures. Even in areas of intense malaria 
transmission intensity, considerable gains can be achieved by 
vector control and effective antimalarial treatment, as was 
illustrated by successful malaria control on Bioko island. 50  
Malaria control efforts in Apac were not reliably monitored 
in the last decade and affected by political unrest in preced-
ing years. The ACTs were officially available in Apac from 
the year 2006, but especially the smaller health facilities were 
affected by supply shortages that affected their implementa-
tion 51 ; recently, malaria initiatives in Apac have been intensi-
fied. Indoor residual spraying (IRS) with DDT was banned in 
Apac in 2008 by a court injunction launched by organic fam-
ers, 52  but IRS with pyrethroids (Fendona, BASF, Midrand, 
South Africa) started again in May 2010 (i.e., after the current 
survey was completed). Community-wide distribution of long 
lasting ITNs took place in early 2009, reaching the majority 
of households. Our study illustrates that these control efforts 

are still profoundly needed in areas in Africa where transmis-
sion remains intense and malaria control continues to be a 
tremendous challenge. 

 Received September 8, 2010. Accepted for publication December 15, 
2010. 

     Acknowledgments:   We are grateful to the Apac district’s inhabitants 
for their participation to the study; we also thank Martin Ogwal of the 
Apac District Health Office for sharing details on malaria control pro-
grams in the study area.  

  Financial support: This study was supported by the FIGHTMAL 
project, receiving funding from the European Community’s Seventh 
Framework Programme [FP7/2007-2013] under grant agreement 
PIAP-GA-2008-218164.  

  Authors’ addresses: Carla Proietti, Eleanor M. Riley, Chris Drakeley, 
and Teun Bousema, London School of Hygiene and Tropical Medicine, 
Department of Immunology and Infection, Faculty of Infectious and 
Tropical Diseases, London, UK, E-mails:  carla.proietti@lshtm.ac.uk , 
 eleanor.riley@lshtm.ac.uk ,  chris.drakeley@lshtm.ac.uk , and  teun
.bousema@lshtm.ac.uk . Davide D. Pettinato and Andrea Crisanti, 
Imperial College London, Division of Cell and Molecular Biology, 
London, UK, E-mails:  davidepettinato@googlemail.com  and  crisanti@
unipg.it . Bernard N. Kanoi, Edward Ntege, and Thomas G. Egwang, 
Medical Biotech Laboratories, Kampala, Uganda, E-mails:  bnkanoi@
gmail.com ,  edwardsdoc@yahoo.com , and  director.mbl@gmail.com .  

  REFERENCES 

   1.      Barnes   KI  ,   Durrheim   DN  ,   Little   F  ,   Jackson   A  ,   Mehta   U  ,   Allen   E  , 
  Dlamini   SS  ,   Tsoka   J  ,   Bredenkamp   B  ,   Mthembu   DJ  ,   White   NJ  , 
  Sharp   BL   ,  2005 .  Effect of artemether-lumefantrine policy and 
improved vector control on malaria burden in KwaZulu-Natal, 
South Africa .  PLoS Med   2:   e330 .  

   2.      Bhattarai   A  ,   Ali   AS  ,   Kachur   SP  ,   Martensson   A  ,   Abbas   AK  ,   Khatib  
 R  ,   Al Mafazy   AW  ,   Ramsan   M  ,   Rotllant   G  ,   Gerstenmaier   JF  , 
  Molteni   F  ,   Abdulla   S  ,   Montgomery   SM  ,   Kaneko   A  ,   Bjorkman  
 A   ,  2007 .  Impact of artemisinin-based combination therapy and 
insecticide-treated nets on malaria burden in Zanzibar .  PLoS 
Med   4:   e309 .  

   3.      Kleinschmidt   I  ,   Schwabe   C  ,   Benavente   L  ,   Torrez   M  ,   Ridl   FC  , 
  Segura   JL  ,   Ehmer   P  ,   Nchama   GN   ,  2009 .  Marked increase in 
child survival after four years of intensive malaria control .  Am 
J Trop Med Hyg   80:   882 – 888 .  

   4.      O’Meara   WP  ,   Bejon   P  ,   Mwangi   TW  ,   Okiro   EA  ,   Peshu   N  ,   Snow   RW  , 
  Newton   CR  ,   Marsh   K   ,  2008 .  Effect of a fall in malaria transmis-
sion on morbidity and mortality in Kilifi, Kenya .  Lancet   372:  
 1555 – 1562 .  

   5.      Ceesay   SJ  ,   Casals-Pascual   C  ,   Erskine   J  ,   Anya   SE  ,   Duah   NO  , 
  Fulford   AJ  ,   Sesay   SS  ,   Abubakar   I  ,   Dunyo   S  ,   Sey   O  ,   Palmer   A  , 
  Fofana   M  ,   Corrah   T  ,   Bojang   KA  ,   Whittle   HC  ,   Greenwood   BM  , 
  Conway   DJ   ,  2008 .  Changes in malaria indices between 1999 and 
2007 in The Gambia: a retrospective analysis .  Lancet   372:  
 1545 – 1554 .  

   6.      Graves   PM  ,   Osgood   DE  ,   Thomson   MC  ,   Sereke   K  ,   Araia   A  ,   Zerom  
 M  ,   Ceccato   P  ,   Bell   M  ,   Del Corral   J  ,   Ghebreselassie   S  ,   Brantly  
 EP  ,   Ghebremeskel   T   ,  2008 .  Effectiveness of malaria control 
during changing climate conditions in Eritrea, 1998–2003 .  Trop 
Med Int Health   13:   218 – 228 .  

   7.      Barnes   KI  ,   Chanda   P  ,   Ab Barnabas   G   ,  2009 .  Impact of the large-
scale deployment of artemether/lumefantrine on the malaria 
disease burden in Africa: case studies of South Africa, Zambia 
and Ethiopia .  Malar J   8    (Suppl 1)  :  S8 .  

   8.      O’Meara   WP  ,   Mangeni   JN  ,   Steketee   R  ,   Greenwood   B   ,  2010 . 
 Changes in the burden of malaria in sub-Saharan Africa .  Lancet 
Infect Dis   10:   545 – 555 .  

   9.     World Health Organization  ,  2009 .  World Malaria Report 2009. 
Geneva ,  Switzerland :  WHO .  

  10.      Hay   SI  ,   Guerra   CA  ,   Tatem   AJ  ,   Atkinson   PM  ,   Snow   RW   ,  2005 . 
 Urbanization, malaria transmission and disease burden in 
Africa .  Nat Rev Microbiol   3:   81 – 90 .  

  11.      Roberts   L   ,  2010 .  Shrinking the malaria map from the outside in . 
 Science   328:   849 – 851 .  



836 PROIETTI AND OTHERS

  12.      Coghlan   B  ,   Brennan   RJ  ,   Ngoy   P  ,   Dofara   D  ,   Otto   B  ,   Clements   M  , 
  Stewart   T   ,  2006 .  Mortality in the Democratic Republic of 
Congo: a nationwide survey .  Lancet   367:   44 – 51 .  

  13.      Salama   P  ,   Spiegel   P  ,   Talley   L  ,   Waldman   R   ,  2004 .  Lessons learned 
from complex emergencies over past decade .  Lancet   364:  
 1801 – 1813 .  

  14.      Hawkes   M  ,   Katsuva   JP  ,   Masumbuko   CK   ,  2009 .  Use and limita-
tions of malaria rapid diagnostic testing by community health 
workers in war-torn Democratic Republic of Congo .  Malar J   8:  
 308 .  

  15.      Gayer   M  ,   Legros   D  ,   Formenty   P  ,   Connolly   MA   ,  2007 .  Conflict and 
emerging infectious diseases .  Emerg Infect Dis   13:   1625 – 1631 .  

  16.     World Health Organization  ,  2005 .  Malaria control in complex 
emergencies .  An Inter-Agency Field Handbook .  Geneva , 
 Switzerland : WHO.  

  17.      Okello   PE  ,   Van Bortel   W  ,   Byaruhanga   AM  ,   Correwyn   A  ,   Roelants  
 P  ,   Talisuna   A  ,   D’Alessandro   U  ,   Coosemans   M   ,  2006 .  Variation 
in malaria transmission intensity in seven sites throughout 
Uganda .  Am J Trop Med Hyg   75:   219 – 225 .  

  18.      Apio   B  ,   Nalunkuma   A  ,   Okello   D  ,   Riley   E  ,   Egwang   TG   ,  2000 . 
 Human IgG subclass antibodies to the 19 kilodalton carboxy 
terminal fragment of  Plasmodium falciparum  merozoite sur-
face protein 1 (MSP1(19)) and predominance of the MAD20 
allelic type of MSP1 in Uganda .  East Afr Med J   77:   189 – 193 .  

  19.      Egwang   TG  ,   Apio   B  ,   Riley   E  ,   Okello   D   ,  2000 .   Plasmodium falci-
parum  malariometric indices in Apac district, northern Uganda . 
 East Afr Med J   77:   413 – 416 .  

  20.      Accorsi   S  ,   Fabiani   M  ,   Lukwiya   M  ,   Ravera   M  ,   Costanzi   A  ,   Ojom   L  , 
  Paze   E  ,   Manenti   F  ,   Anguzu   P  ,   Dente   MG  ,   Declich   S   ,  2001 . 
 Impact of insecurity, the AIDS epidemic, and poverty on popu-
lation health: disease patterns and trends in northern Uganda . 
 Am J Trop Med Hyg   64:   214 – 221 .  

  21.     World Health Organization  ,  2004 .  Disaster update: report 
15110 .  Available at :  http://www.who.int/disasters/repo/15110
.pdf . Accessed  July   15 ,  2009 .     

  22.      Drakeley   CJ  ,   Corran   PH  ,   Coleman   PG  ,   Tongren   JE  ,   McDonald  
 SL  ,   Carneiro   I  ,   Malima   R  ,   Lusingu   J  ,   Manjurano   A  ,   Nkya   WM  , 
  Lemnge   MM  ,   Cox   J  ,   Reyburn   H  ,   Riley   EM   ,  2005 .  Estimating 
medium- and long-term trends in malaria transmission by using 
serological markers of malaria exposure .  Proc Natl Acad Sci 
USA   102:   5108 – 5113 .  

  23.      Stewart   L  ,   Gosling   R  ,   Griffin   J  ,   Gesase   S  ,   Campo   J  ,   Hashim   R  , 
  Masika   P  ,   Mosha   J  ,   Bousema   T  ,   Shekalaghe   S  ,   Cook   J  ,   Corran   P  , 
  Ghani   A  ,   Riley   EM  ,   Drakeley   C   ,  2009 .  Rapid assessment of 
malaria transmission using age-specific sero-conversion rates . 
 PLoS ONE   4:   e6083 .  

  24.      Cook   J  ,   Reid   H  ,   Iavro   J  ,   Kuwahata   M  ,   Taleo   G  ,   Clements   A  , 
  McCarthy   J  ,   Vallely   A  ,   Drakeley   C   ,  2010 .  Using serological 
measures to monitor changes in malaria transmission in 
Vanuatu .  Malar J   9:   169 .  

  25.      Corran   P  ,   Coleman   P  ,   Riley   E  ,   Drakeley   C   ,  2007 .  Serology: a robust 
indicator of malaria transmission intensity?   Trends Parasitol   23:  
 575 – 582 .  

  26.     World Health Organization  ,  2008 .  Malaria Rapid Diagnostic Test 
Performance. Results of WHO product testing of malaria 
RDTs ,  Round 1. doi:10.2471/TDR.09.978-924-1598071 .  

  27.      Plowe   CV  ,   Djimde   A  ,   Bouare   M  ,   Doumbo   O  ,   Wellems   TE   ,  1995 . 
 Pyrimethamine and proguanil resistance-conferring mutations 
in  Plasmodium falciparum  dihydrofolate reductase: polymerase 
chain reaction methods for surveillance in Africa .  Am J Trop 
Med Hyg   52:   565 – 568 .  

  28.      Snounou   G  ,   Viriyakosol   S  ,   Zhu   XP  ,   Jarra   W  ,   Pinheiro   L  ,   do Rosario  
 VE  ,   Thaithong   S  ,   Brown   KN   ,  1993 .  High sensitivity of detection 
of human malaria parasites by the use of nested polymerase 
chain reaction .  Mol Biochem Parasitol   61:   315 – 320 .  

  29.      Padley   D  ,   Moody   AH  ,   Chiodini   PL  ,   Saldanha   J   ,  2003 .  Use of a 
rapid, single-round, multiplex PCR to detect malarial parasites 
and identify the species present .  Ann Trop Med Parasitol   97:  
 131 – 137 .  

  30.      Corran   PH  ,   Cook   J  ,   Lynch   C  ,   Leendertse   H  ,   Manjurano   A  ,   Griffin  
 J  ,   Cox   J  ,   Abeku   T  ,   Bousema   T  ,   Ghani   AC  ,   Drakeley   C  ,   Riley   E   , 
 2008 .  Dried blood spots as a source of anti-malarial antibodies 
for epidemiological studies .  Malar J   7:   195 .  

  31.      Talisuna   AO  ,   Langi   P  ,   Mutabingwa   TK  ,   Van Marck   E  ,   Speybroeck  
 N  ,   Egwang   TG  ,   Watkins   WW  ,   Hastings   IM  ,   D’Alessandro   U   , 

 2003 .  Intensity of transmission and spread of gene mutations 
linked to chloroquine and sulphadoxine-pyrimethamine resis-
tance in falciparum malaria .  Int J Parasitol   33:   1051 – 1058 .  

  32.     Malaria Atlas Project  .  Available at :  http://www.map.ox.ac.uk/ . 
Accessed  July   13 ,  2009 .        

  33.      Okell   LC  ,   Ghani   AC  ,   Lyons   E  ,   Drakeley   CJ   ,  2009 .  Submicroscopic 
infection in  Plasmodium falciparum -endemic populations: 
a systematic review and meta-analysis .  J Infect Dis   200:  
 1509 – 1517 .  

  34.      Steenkeste   N  ,   Rogers   WO  ,   Okell   L  ,   Jeanne   I  ,   Incardona   S  ,   Duval  
 L  ,   Chy   S  ,   Hewitt   S  ,   Chou   M  ,   Socheat   D  ,   Babin   FX  ,   Ariey   F  , 
  Rogier   C   ,  2010 .  Sub-microscopic malaria cases and mixed 
malaria infection in a remote area of high malaria endemicity in 
Rattanakiri province, Cambodia: implication for malaria elimi-
nation .  Malar J   9:   108 .  

  35.      Ouedraogo   AL  ,   Schneider   P  ,   de Kruijf   M  ,   Nebie   I  ,   Verhave   JP  , 
  Cuzin-Ouattara   N  ,   Sauerwein   RW   ,  2007 .  Age-dependent distri-
bution of  Plasmodium falciparum  gametocytes quantified by 
Pfs25 real-time QT-NASBA in a cross-sectional study in 
Burkina Faso .  Am J Trop Med Hyg   76:   626 – 630 .  

  36.      Shekalaghe   SA  ,   Bousema   JT  ,   Kunei   KK  ,   Lushino   P  ,   Masokoto   A  , 
  Wolters   LR  ,   Mwakalinga   S  ,   Mosha   FW  ,   Sauerwein   RW  , 
  Drakeley   CJ   ,  2007 .  Submicroscopic  Plasmodium falciparum  
gametocyte carriage is common in an area of low and sea sonal 
transmission in Tanzania .  Trop Med Int Health   12:   547 – 553 .  

  37.      Schellenberg   JR  ,   Smith   T  ,   Alonso   PL  ,   Hayes   RJ   ,  1994 .  What is 
clinical malaria? Finding case definitions for field research in 
highly endemic areas .  Parasitol Today   10:   439 – 442 .  

  38.      Koram   KA  ,   Molyneux   ME   ,  2007 .  When is “malaria” malaria? The 
different burdens of malaria infection, malaria disease, and 
malaria-like illnesses .  Am J Trop Med Hyg   77:   1 – 5 .  

  39.      Delley   V  ,   Bouvier   P  ,   Breslow   N  ,   Doumbo   O  ,   Sagara   I  ,   Diakite   M  , 
  Mauris   A  ,   Dolo   A  ,   Rougemont   A   ,  2000 .  What does a single 
determination of malaria parasite density mean? A longitudi-
nal survey in Mali .  Trop Med Int Health   5:   404 – 412 .  

  40.      Kinyanjui   SM  ,   Mwangi   T  ,   Bull   PC  ,   Newbold   CI  ,   Marsh   K   ,  2004 . 
 Protection against clinical malaria by heterologous immuno-
globulin G antibodies against malaria-infected erythrocyte 
variant surface antigens requires interaction with asymptom-
atic infections .  J Infect Dis   190:   1527 – 1533 .  

  41.      Bull   PC  ,   Lowe   BS  ,   Kaleli   N  ,   Njuga   F  ,   Kortok   M  ,   Ross   A  ,   Ndungu  
 F  ,   Snow   RW  ,   Marsh   K   ,  2002 .   Plasmodium falciparum  infections 
are associated with agglutinating antibodies to parasite-infected 
erythrocyte surface antigens among healthy Kenyan children .  
J Infect Dis   185:   1688 – 1691 .  

  42.      Akpogheneta   OJ  ,   Duah   NO  ,   Tetteh   KK  ,   Dunyo   S  ,   Lanar   DE  , 
  Pinder   M  ,   Conway   DJ   ,  2008 .  Duration of naturally acquired 
antibody responses to blood-stage  Plasmodium falciparum  is 
age dependent and antigen specific .  Infect Immun   76:  
 1748 – 1755 .  

  43.      Giha   HA  ,   Nasr   A  ,   Iriemenam   NC  ,   Balogun   HA  ,   Arnot   D  , 
  Theander   TG  ,   Troye-Blomberg   M  ,   Berzins   K  ,   ElGhazali   G   , 
 2010 .  Age-dependent association between IgG2 and IgG3 sub-
classes to Pf332-C231 antigen and protection from malaria, and 
induction of protective antibodies by sub-patent malaria infec-
tions, in Daraweesh .  Vaccine   28:   1732 – 1739 .  

  44.      Shekalaghe   S  ,   Alifrangis   M  ,   Mwanziva   C  ,   Enevold   A  ,   Mwakalinga  
 S  ,   Mkali   H  ,   Kavishe   R  ,   Manjurano   A  ,   Sauerwein   R  ,   Drakeley   C  , 
  Bousema   T   ,  2009 .  Low density parasitaemia, red blood cell 
polymorphisms and  Plasmodium falciparum  specific immune 
responses in a low endemic area in northern Tanzania .  BMC 
Infect Dis   9:   69 .  

  45.      Kinyanjui   SM  ,   Bejon   P  ,   Osier   FH  ,   Bull   PC  ,   Marsh   K   ,  2009 .  What 
you see is not what you get: implications of the brevity of 
antibody responses to malaria antigens and transmission het-
erogeneity in longitudinal studies of malaria immunity .  Malar 
J   8:   242 .  

  46.      Ndyomugyenyi   R  ,   Magnussen   P   ,  2004 .  Trends in malaria-attribut-
able morbidity and mortality among young children admitted 
to Ugandan hospitals, for the period 1990–2001 .  Ann Trop Med 
Parasitol   98:   315 – 327 .  

  47.      Mabiala-Babela   JR  ,   Samba-Louaka   C  ,   Mouko   A  ,   Senga   P   ,  2003 . 
 Morbidity in a pediatric department (University Hospital of 
Brazzaville): 12 years later (1989–2001) .  Arch Pediatr   10:  
 650 – 652 .  



837INTENSE MALARIA TRANSMISSION IN NORTHERN UGANDA

  48.      Himeidan   YE  ,   Hamid   EE  ,   Thalib   L  ,   Elbashir   MI  ,   Adam   I   ,  2007 . 
 Climatic variables and transmission of falciparum malaria 
in New Halfa, eastern Sudan .  East Mediterr Health J   13:   17 – 24 .  

  49.      Okiro   EA  ,   Alegana   VA  ,   Noor   AM  ,   Mutheu   JJ  ,   Juma   E  ,   Snow   RW   , 
 2009 .  Malaria pediatric hospitalization between 1999 and 2008 
across Kenya .  BMC Med   7:   75 .  

  50.      Kleinschmidt   I  ,   Torrez   M  ,   Schwabe   C  ,   Benavente   L  ,   Seocharan   I  , 
  Jituboh   D  ,   Nseng   G  ,   Sharp   B   ,  2007 .  Factors influencing the 

effectiveness of malaria control in Bioko Island, equatorial 
Guinea .  Am J Trop Med Hyg   76:   1027 – 1032 .  

  51.      Zurovac   D  ,   Tibenderana   JK  ,   Nankabirwa   J  ,   Ssekitooleko   J  ,   Njogu  
 JN  ,   Rwakimari   JB  ,   Meek   S  ,   Talisuna   A  ,   Snow   RW   ,  2008 .  Malaria 
case-management under artemether-lumefantrine treatment 
policy in Uganda .  Malar J   7:   181 .  

  52.      Lewis   K   ,  2008 .  DDT stalemate stymies malaria control initiative . 
 CMAJ   179:   999 – 1000 .      


