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Abstract

Our contribution is to show the equivalence of the order-up-to replenishment policy with damped
trend forecasting (OUT-DT) to the proportional OUT (POUT) policy via an eigenvalue (zero-pole)
analysis. We also investigate whether the OUT-DT policy has an always increasing in the lead time
Bullwhip effect using the eigenvalues ordering approach of Gaalman, Disney and Wang (2018).
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1. Introduction

We study the dynamic behaviour of the order-up-to (OUT) policy when the damped trend (DT)
forecasting method predicts the lead-time demand. In particular, we investigate the Bullwhip and
NSAmp generated by the system. Bullwhip is defined as the ratio of the variance replenishment
orders, ot , to the variance the demand, dt . NSAmp is the ratio of the variance of the net stock levels
nst to the variance of the demand:

Bullwhip =
V[ot ]

V[dt ]
and NSAmp =

V[nst ]

V[dt ]
. (1)

Here V[·] is the variance operator. Li, Disney and Gaalman (2014) show the Bullwhip effect can
be avoided by using unconventional DT forecasting parameters within the OUT-DT policy. This
analysis was extended by Li and Disney (2018) where the inventory implications of the OUT-DT
policy were explored. By investigating the relationship between stability and invertibility, Li and
Disney (2018) showed stable DT parameter sets produce invertible forecasts, justifying the use
of unconventional DT parameter values. Li and Disney (2018) also characterized the frequency
response of the inventory levels maintained by the OUT-DT policy, finding good inventory control
when parameter values were selected from within a Bullwhip Avoidance (BA ) region.
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In this paper, we study the eigenvalues (the poles and zeros) of the OUT-DT policy and show
they are equivalent to the eigenvalues of the so-called proportional order-up-to (POUT) policy,
Chen and Disney (2007). The POUT policy is well known to avoid the Bullwhip effect and is able
to effectively balance the trade-off between inventory and capacity costs. If the two system have
the same eigenvalues, they will have the same dynamic response to demand, Nise (2004). This is
an interesting and practically useful insight. It means, we can incorporate the POUT policy into
an enterprise resource planning system without creating user defined functions in the production
planning module. Instead, we can get the same dynamic response by manipulating the forecasting
parameters in the forecasting module. Potentially, this offers an easier implementation route for the
POUT policy. We also investigate whether the Bullwhip effect is increasing in the lead time when
ARIMA(1,1,2) demand is present. DT provides the optimal forecasting of this demand process.

As the OUT-DT and POUT policies operate on a discrete time basis, we use the z-transform in
our study. The use of transform techniques to study forecasting problems has a long history (Brown
1963; Wikner 2006). We review the concepts of stability and invertibility of the DT method, (Jury
1974). We obtain expressions for the variance of the orders and the inventory (Tsypkin 1964)
under i.i.d. demand. Finally, we conduct an eigenvalue (zero-pole) analysis to determine how the
Bullwhip effect is influenced by the lead time under non-stationary ARIMA(1,1,2) demand.

2. Literature review

The DT forecasting method, often attributed to Gardner and McKenzie (1985), is an exponential
smoothing based forecasting method based on three steps. The first step produces an exponential
smoothing forecast of the level of the demand. The second step produces an exponential smoothing
forecast of the rate of change in the demand, the trend. The third step produces a future projection.
The projection could be linear, but it need not be. It could be damped, where the future projections
flatten out to a constant level. The future projection could also exhibit linear or exponential growth
(or decline) depending on the demand and the damping parameter selected. The future projections
could also oscillate. DT is a generalisation of Holt’s method, Roberts (1982).

DT outperformed many forecasting methods in the M3 competition (Makridakis and Hibon
2000). Only a few methods requiring additional effort and cost are able to consistently produce
forecasts with better accuracy than DT. However, the improvements are small, and in most cases,
not statistically significant (Makridakis and Hibon 2000). Using the monthly industry series from
the M3 competition data, Petropoulos et al. (2019) explored the implications of various forecast-
ing methods on both order and inventory variance in the OUT policy and confirmed DT’s robust
inventory performance.

DT is known to produce minimum mean squared error (MMSE) forecasts of demand k-periods
ahead for the ARIMA(1,1,2) demand process, Roberts (1982). However, in principle, DT can be
used to forecast any demand process. Just as exponential smoothing is optimal for IMA(0,1,1)
demand processes but can be used (rightly or wrongly) to forecast other demand processes. Dejon-
ckheere et al. (2003) found, for all lead times and all possible demand processes, the OUT policy
with exponential smoothing forecasts always created the Bullwhip effect. Li et al. (2014) showed
the OUT policy with Holt’s forecasts also created Bullwhip for all lead times and all demand pro-
cesses, but DT does not always create Bullwhip. Gaalman (2006) considers the closely related
stationary ARMA(2,2) demand process where it was possible to obtain order and inventory vari-
ance expressions. Gaalman et al. (2018) present a novel method to determine whether the Bullwhip
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Tally demand, generate forecasts, observe 
inventory, place order at the end of period, t

Time

Demand satisfied from 
inventory during period t

Receive order placed T  +1 periods ago sometime during period t 

Period t-1 Period t+1 Period t+2

p

Figure 1: Sequence of event in the OUT policy.

generated by OUT policy reacting the ARMA(p,q) demand process is increasing in the lead-time
effect or not. It was shown to depend upon the order of the eigenvalues. We will adapt this approach
for the ARIMA(1,1,2) demand process.

3. The order-up-to policy

The OUT replenishment policy is frequently applied in industry, especially in high volume
settings (Cannella et al. 2017; Li and Disney 2017). We follow the assumptions and notation used
in Li et al. (2014) except now we consider a general lead-time: Tp ∈N0, rather than Tp = 1. In each
period t, the manufacturer receives the replenishment order placed Tp+1 periods ago, and satisfies
demand dt from its finished goods inventory, or net stock, nst . The manufacturer sets production
targets/replenishment orders ot via

ot = d̂t,t+Tp+1 +ns⋆−nst +
Tp

∑
i=1

(
d̂t,t+i −ot−i

)
. (2)

Here, d̂t,t+Tp+1 is a forecast of demand, made at time t in the period t +Tp + 1. That is, d̂t,t+Tp+1

is a forecast of demand in the period after the lead time. ∑
Tp
i=1 ot−i is the work-in-progress. The

time-varying target work-in-progress, ∑
Tp
i=1 d̂t,i+t , is the sum of the demand forecasts made at time

t for the periods from t + 1 to t +Tp. The target net stock (ns⋆) is a safety stock used to ensure a
strategic level of inventory availability; ns∗ =

√
V[nst ]F−1 [p]. Here F−1[p] is the inverse of the

cumulative inventory distribution evaluated at the target availability p (Hosoda and Disney 2009).
If per unit, per period inventory holding (h) and backlog costs (b) exist and p = b/(b+ h), ns⋆

minimizes inventory costs, Churchman et al. (1957). The inventory balance equation,

nst = nst−1 −dt +ot−Tp−1, (3)

completes the OUT policy specification. Note, the sequence of events delay, the “−1” in the time
index of the orders in (3). This is why Tp = 0 refers to a unit lead time as, following (Zipkin 2000,
p404), the risk period includes the sequence of events delay. The sequence of events within each
time period is illustrated in Figure 1. First, the order placed Tp+1 periods ago is received sometime
during the period; demand is also satisfied during the period. Demand is tallied, future forecasts
determined, and replenishment orders are generated and placed at the end of the period.

In order to preserve linearity of the system and to allow for a tractable analysis, the following
assumptions are made: Negative demand quantities indicate that customers are free to return prod-
ucts to suppliers (this can become negligible when the mean demand is sufficiently larger than the
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standard deviation of demand). Negative orders indicate that finished goods are disassembled into
raw material (this can become negligible when the mean orders is sufficiently larger than the stan-
dard deviation of the orders). There are no capacity constraints in the system, and unmet demand
is backlogged. We refer readers to Disney et al. (2021) for more discussion on these factors.

Boute et al. (2022) provide the following transfer function for the orders in the OUT policy,

O(z)
ε(z)

=
D(z)
ε(z)

(
1+

Tp

∑
k=1

D̂k(z)
ε(z)

(
1− 1

z

))
, (4)

where D(z)/ε(z) is the transfer function of the demand generation process and D̂k(z)/ε(z) is the
transfer function of the k-periods ahead forecast. These will be defined in later sections. A general
form of the the net stock transfer function, NS(z)/ε(z), is given by

NS (z)
ε(z)

=
z

z−1

(
z−Tp−1 O(z)

ε(z)
− D(z)

ε(z)

)
. (5)

Here, z/(z− 1) is the z-transform of the integration operator and z−Tp−1 is the z-transform of the
delay operator. By convention, lower case letters are used for variables in the time domain and
equivalent upper case letters for the corresponding variables in the frequency domain.

4. The proportional order-up-to (POUT) policy under i.i.d. demand.

The POUT policy is the optimal linear replenishment rule for minimising the weighted sum of
order and inventory variance and is an appropriate benchmark for this study. The POUT policy
(Boute et al. 2009) is defined as

ot = d̂t,t+Tp+1 +
1
Ti

(
ns⋆−nst +

Tp

∑
i=1

(
d̂t,t+i −ot−i

))
. (6)

Ti is a proportional feedback controller with which we can tune the dynamic behaviour of the OUT
policy. When an i.i.d. demand is present, MMSE forecasts of future demands are given by

∀i, d̂t,t+i = d̂t,t+1 = µd. (7)

Eqs (6) and (3) can be converted into a block diagram (omitted to save space in this short paper).
The block diagram can be rearranged to yield the following z-transform of the POUT policy,

O(z)
ε (z)

∣∣∣∣
POUT

=

1
Ti

z

z− Ti−1
Ti

(8)

which is a zero-pole form.
The transfer function of the net stock levels maintained by the POUT policy can be written as

NS (z)
ε (z)

∣∣∣∣
POUT

=
∑

Tp−1
i=0 zi + zTpTi

zTp−1(Ti −1)− zTpTi
. (9)
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4.1. Stability of the POUT policy.
Stability is concerned with a system’s response to a bounded system input. If the system pro-

duces a bounded output, the system is considered to be stable. If the system’s response diverges
exponentially, or oscillate with ever increasing amplitude, the system is unstable. For stability, the
eigenvalues (zeros and poles) of the POUT policy must lie within the unit circle. Eq. (8) shows the
POUT policy has one real zero at λ θ

1 = 0 and one real pole at λ
φ

1 = (Ti −1)/Ti. The pole is inside
the unit circle in the complex plane if Ti > 0.5, indicating the stability criteria, Disney (2008).

4.2. Variance ratio analysis of the POUT policy under i.i.d. demand
For a linear system reacting to an i.i.d. input εt , the long-run variance of the system’s output xt ,

can be calculated via Tsypkin’s Relation, Disney and Towill (2003).

V[System output, xt ]

V[White noise input, εt ]
=

∞

∑
t=0

(x̃t)
2 (10)

where x̃t is the response of the system when demand is given by the impulse (Dirac delta) function;
i.e. εt = 1 if t = 0, εt = 0 otherwise. Consider first the Bullwhip ratio. The relevant system output
is the orders ot , those impulse response õt can be obtained by taking the inverse z-transform of (8),

õt = Z−1

[
1
Ti

z

z− Ti−1
Ti

]
=

1
Ti

(
Ti −1

Ti

)t

. (11)

Using (11) in (10) and yields the Bullwhip ratio for the POUT policy under i.i.d. demand:

Bullwhip =
V[ot ]

V[dt ]
=

∞

∑
t=0

(
1
Ti

(
Ti −1

Ti

)t)2

=
1

2Ti −1
. (12)

Note, Bullwhip = 1 when Ti = 1, is decreasing convex in Ti and Bullwhip = 0 when Ti → ∞. The
NSAmp ratio can be obtained by first taking the inverse z-transform of (9) to yield,

ñst = Z−1

[
=

∑
Tp−1
i=0 zi + zTpTi

zTp−1(Ti −1)− zTpTi

]
=

−1 if t ≤ Tp,

−
(

Ti−1
Ti

)t−Tp
if t > Tp.

(13)

Using (13) in (10) provides NSAmp for the POUT policy under i.i.d. demand:

NSAmp =
V[nst ]

V[dt ]
=

Tp

∑
t=0

(−1)2 +
∞

∑
t=Tp+1

(
−
(

Ti −1
Ti

)t−Tp
)2

= 1+Tp +
(Ti −1)2

2Ti −1
. (14)

NSAmp is convex in Ti, with an asymptote to infinity when Ti ↓ 0.5, and is increasing in Ti when
Ti > 1; a minimum of NSAmp = 1+Tp at Ti = 1, The POUT policy represents the gold standard in
linear replenishment rules for balancing inventory and capacity costs, Boute et al. (2022). The aim
of the next section is to see if the OUT-DT policy can match, or better, this performance.
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5. Damped trend forecasting

We now turn our attention to the DT forecasting mechanism. Gardner and McKenzie (1985)
provide the following recurrence form of the DT forecasting method:

ât = αdt +(1−α)
(
ât−1 + γ b̂t−1

)
, (15)

b̂t = β (ât − ât−1)+(1−β )γ b̂t−1, (16)

d̂t,t+k = ât +ϕ [k] b̂t . (17)

Here, d̂t,t+k is the forecast of the demand k periods ahead, dt+k, made at time t. d̂t,t+k is the sum of
a level, ât , and a trend, b̂t , component and

ϕ [k] =
k

∑
i=1

γ
i =

γ
(
1− γk)
1− γ

. (18)

{α,β ,γ} are the DT forecasting parameters. α is a smoothing constant applied to the level ât , β is
a smoothing constant applied to the trend b̂t , and γ shapes the forecasts as they are projected into
the future. The trend is damped for 0 < γ < 1, although γ can take on other values. If γ = 0, there is
no trend and the forecasting system acts as exponential smoothing would react. If γ = 1, the model
is equivalent to Holt’s method. When γ > 1, the forecasts exhibit exponential growth.

Li et al. (2014) derived the following transfer function of (17), the k-period ahead DT forecast,

D̂k (z) =
z2α (1+βϕ [k])− zα (γ(1−β )+βϕ [k])

z2 − z(1+ γ −α −αβγ)− γ(α −1)
. (19)

5.1. Invertibility and stability of damped trend forecasting
The concept of invertibility is concerned with the ability to identify the demand process struc-

ture from past demand observations. Invertibility is related to linear moving average (MA) models
or the MA part of auto-regressive integrated moving average (ARIMA) models (Box et al. 2008).
All exponential smoothing forecasting methods (of which DT is one) can be converted into an
equivalent ARIMA model. If the MA part in an ARIMA model can be expressed as an autore-
gressive (AR) model of infinite order, the model is deemed invertible and implies all relevant state
variables are directly observable (Box et al. 2008).

The stability region of DT has been previously studied by Li and Disney (2018) who showed
the stability region was the same as the invertibility region. Gardner and McKenzie (1985, p. 1239)
provided a stability region for DT, but it is only valid for 0 ≤ γ ≤ 1; they do however acknowledge
that stable parameters exist outside of their stated stability region. Hyndman et al. (2008, p. 412)
studied the stability of the state space representation of the ETS(A,Ad,N) model, which is equiva-
lent to DT after a suitable change in notation, and provided stability boundaries under the condition
that 0 < γ ≤ 1. Li et al. (2014, pp. 5–6) studied the stability of DT via Jury’s Inners approach (Jury
1974) and visualized the complete stability boundaries for all γ . For convenience we repeat them
here; when γ ̸= 0 the following relations must be satisfied for stability:

γ −1 < αγ < γ +1,
α(γ −1)< αβγ < (2−α)(γ +1).

}
(20)

6

Li, Q., Gaalman, G. and Disney, S.M., (2022), "On the Equivalence of the Proportional and Damped Trend Order-Up-To Policies: An Eigenvalue Analysis", 
22nd International Working Seminar on Production Economics, Innsbruck, AUSTRIA (Online), 16 pages.



0a =

1g

ga -=
1g

gb -=
1 1( , )g g

g ga b+ -= =

1( 0, )g

ga b -= =

1 1( , )g g

g ga b- -= =

( )

21 1 2

1
( , )g

gg g

g ga b + +-

-
= =

b+

b-

a+
1

1

a-

1 g

gb +=
2(1 )

1 2

g

ga +

+=

0 1g< <

0

( )( )1 2g a

agb
- -

=

( )( )1 2g a

agb
- -

=

Stability region

Traditional
[0,1] setting

Key

BA  region

( 0, )a b= = -¥

( 0, )a b= = ¥

minb

Figure 2: Characterisation of the DT parameter space when 0 < γ < 1. Source: Adapted from Li and Disney (2018).

When γ = 0, 0 < α < 2 is required for stability. Eq. (20) is equivalent to the result of Hyndman
et al. (2008) when 0 < γ ≤ 1 and we set their trend smoothing parameter equal to αβγ .

Eq. (20) offers a much wider range of values to the parameter set {α,β ,γ}, compared to the
traditional [0,1] interval suggested in the literature (see for example, Winters (1960) and Gardner
(1990)). Commercial software such as SAP and Forecast Pro® also selects α and β between 0 and
1 (SAP 2016; Stellwagen and Goodrich 2011), SAS/ETS® considers 0 < γ < 1, 0 < α < 2, and
0 < γβ < 4/α −2, (SAS 2018). We emphasize, these do not include {α,β}< 0 and are only part
of the complete stability region identified in (20) and characterised (when 0 < γ < 1) in Figure 2.

6. The OUT policy under i.i.d. demand with damped trend forecasting

To study Bullwhip and NSAmp behaviour of the OUT-DT policy, we will need the transfer
function of the replenishment orders and the net stock levels. The order transfer function (Li et al.
2014) is

O(z)
ε (z)

= 1+
α(z−1)(βζ (z−1)+(Tp +1)(z− (1−β )γ))

z2 + z(αβγ +α − γ −1)+(1−α)γ
, (21)

where ζ = Φ [Tp]+ϕ [Tp +1] and

Φ [Tp] =
Tp

∑
j=1

ϕ[ j] =
γ
(
γTp+1 −Tpγ +Tp − γ

)
(1− γ)2 . (22)
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The net stock transfer function can be found by substituting (21) into (5) and simplifying to yield,

NS (z)
D(z)

=
α (βζ (z−1)+(Tp +1)(z− (1−β )γ))

zTp (z2 + z(αβγ +α − γ −1)+(1−α)γ)
− z−Tp(z1+Tp −1)

z−1
. (23)

These transfer functions will be used to study the Bullwhip and NSAmp behaviour under i.i.d. de-
mand in §6.1; §6.2 considers the equivalence of the dynamic response of OUT-DT and POUT.

6.1. OUT-DT variance ratio analysis under i.i.d. demand
Although DT is the optimal forecast for ARIMA(1,1,2) demand, it is insightful to first inves-

tigate its performance under i.i.d. demand. Taking the inverse z-transform of (21), summing its
square in (10), and dividing by the demand variance, provides the following expression for the
Bullwhip ratio when i.i.d. demand is forecasted via the DT method:

V[ot ]

V[dt ]
=

2α2βζ (1+ γ(2−3β (1− γ)+ γ)+2Tp(1− γ)(1+(1−β )γ))+4α2β 2ζ 2(1− γ)+
2−2γ2 −2α3(βγ + γ +1)(βζ +Tp +1)(β (γ −ζ )− (1−β )γTp)+

α
(
4β
(
1− γ2

)
ζ + γ(βγ −β − γ +2)+4

(
1− γ2

)
Tp +3

)
+

α2γ2
(
3+β +2Tp(β −Tp +1)+2β 2(Tp +1)2

)
+

α2(γ(2(2−β )(Tp +1)−1)+2Tp(Tp +1))
(1− γ(1−α))((2−α)(γ +1)−αβγ)

. (24)

Li and Disney (2018) identified a region of the parametric plane where it is possible for the
OUT-DT to avoid creating Bullwhip for any lead-time. The region was specified by:

0 < γ < 1,(
αmin =

γ−1
γ

)
< α < 0,(

βmin =
−(Tp+1)(γ+1)(1−γ)2

(γ−γ3)Tp+γ2(2γ
Tp+1−γ−2)+γ

)
≤ β ≤

(
βmax =

γ−1
γ

)
.

 (25)

The lower bound, βmin in (25), is increasing in the lead-time. When (25) holds we say the parameter
set is a member of the Bullwhip Avoidance (BA ) area, {α,β ,γ} ∈BA . The area was found by Li
and Disney (2018) via a frequency response analysis that considered how the harmonic frequencies
in demand were amplified by the OUT-DT policy. Note, (25) does not guarantee Bullwhip < 1,
only that there exists a demand pattern that could have Bullwhip < 1. In this study, we are focusing
on the characterisations of Bullwhip and NSAmp within the BA region unider i.i.d. demand and
ARIMA(1,1,2) demand.

Studying the Bullwhip ratio of the OUT-DT policy (24), we found it has no stationary points
within the stability region and is always differentiable within the BA region. Thus, any local min-
ima and maxima must exist on the boundaries of the BA region. The same properties were found
in the NSAmp ratio. Taking each boundary into consideration, we find (note, ↑ means approach
from below, ↓ means approach from above, and → means tends to) a minimal Bullwhip of

Bullwhip =

(
2α2γ2 (γTp −1

)(
γTp+1 −1

)
+

α(γ −1)
(
γ
(
2(γ +1)γTp −3

)
−1
)
+(γ −1)γ −1

)
+1

(γ −1)2(1+(1−α)γ)
(26)
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Figure 3: Bullwhip and NSAmp in the OUT-DT policy when γ = 0.1.

exists when β ↑ βmax. (26) is a value between 0 and 1, ∀γ , α ∈ BA and Tp ∈ N0. It is also
interesting that Bullwhip → 1 when α ↑ 0. This suggests when capacity costs dominate, a small
negative α and/or a small negative β should be adopted due to its Bullwhip avoidance behaviour.

The NSAmp ratio maintained by the OUT-DT policy when reacting to i.i.d. demand is given by,

V[nst ]

V[dt ]
=1+Tp+ (27)(

(γ −1)2(−T 2
p
)
((β −1)γ +1)

(
γ
(
(α −1)γ2 −α −2αβγ + γ +1

)
−1
)
+

γ
(
α +β (γ +1)(γ −1)4 − γ3((γ −4)γ +5)+αγ

(
γ((γ −2)(γ −1)γ +2)+

2β 2γ2(γTp −1
)(

γTp+2 +1−2γ
)
+β (γ −1)2(γ(− γ +2(γ +1)γTp −4

)
+

1
)
−3
)
−4+5γ

)
−2(γ −1)Tp((β −1)γ +1)

(
γ
(
α −

(
(γ −2)γ2)+

αγ
(
β +(γ −1)γ +βγ

(
(γ +1)γTp −3

)
−1
)
−2
)
+1
)
+1
)

(γ −1)4((1−α)γ −1)(γ(αβ +α −2)+α −2)
.

A minimal NSAmp of 1 + Tp occurs when α ↑ 0. This means when i.i.d. demand is present,
NSAmp ≥ 1+Tp in the OUT-DT system for {α,β ,γ} ∈ BA . Further, when the inventory vari-
ance is minimized, Bullwhip = 1. We conclude, when inventory costs are significantly larger than
capacity costs, and i.i.d. demand is present, α = 0 is recommended. α = 0 will result in MMSE
forecasts of demand (i.e. all future forecasts equal the mean of the i.i.d. demand).

Note, when β ↑ βmax and α ↓ αmin and γ ↓ 0, the Bullwhip effect is a global minimum, but

9

Li, Q., Gaalman, G. and Disney, S.M., (2022), "On the Equivalence of the Proportional and Damped Trend Order-Up-To Policies: An Eigenvalue Analysis", 
22nd International Working Seminar on Production Economics, Innsbruck, AUSTRIA (Online), 16 pages.



0.5 1

1.5234568

8 6 4 2 0

10.0

9.8

9.6

9.4

9.2

9.0

(a) w = 0.1

1.5

2

3

4

6

8

11

5

8 6 4 2 0

10.0

9.8

9.6

9.4

9.2

9.0

(b) w = 0.5

2

3

4

5

6

7

8

10

14

8 6 4 2 0

10.0

9.8

9.6

9.4

9.2

9.0

(c) w = 0.9

Figure 4: Contour plots for the weighted convex sum of the order and inventory variances, wV[ns] + (1−w)V[o],
maintained by the OUT-DT policy when γ = 0.1 and Tp = 1.
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Figure 5: The impulse response of inventory and order in the OUT-DT system, Tp = 0.

NSAmp → ∞. In other words, the order variance can be reduced to zero for i.i.d. demand at the cost
of increased inventory variance, indicating that a trade-off exists, just as it did in the POUT policy.
When the business objective is to reduce both inventory and capacity costs, a γ close to 0 and a
small negative β are recommended as it guarantees the elimination of the Bullwhip effect; we then
only need to optimize α based on the balance between inventory and capacity costs.

Figure 3 illustrates examples of Bullwhip and NSAmp values in contour plots for various lead
times. When β ↓ βmin and α ↓ αmin, both Bullwhip and NSAmp ratios increase dramatically. Fur-
thermore, the Bullwhip value is rather insensitive to the lead time, similar to the Bullwhip be-
haviour in the POUT policy, while NSAmp is significantly influenced by the lead time. These
imply, in the long lead-time cases, β ↓ βmin and α ↓ αmin need to be avoided; the top right half of
the BA plane is always superior–see Figure 4, where different weights w are placed on the order
and inventory variances.

6.2. Comparison between the OUT-DT policy and the proportional OUT policy
Figure 5a shows the inventory and order impulse responses for γ ↓ 0, β ↑ βmax, and αmin <

α < 0. They are quite different from the impulse responses from the conventional [0,1] parameter
region as shown in Figure 5b. Our recommendation produces a smoothed, damped, and exponen-
tial increasing (or decreasing) impulse response, rather than an under-damped oscillatory response.
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These are desirable properties dynamic properties which further strengthens our argument for se-
lecting parameters from the BA region. Bullwhip and NSAmp ratios are also noted in Figure 4.

That the OUT-DT policy is capable of eliminating Bullwhip effect without using a proportional
controller in the inventory position feedback loop is astonishing. Visually, the character of the
impulse response in Figure 5a is similar to the POUT policies impulse response that we introduced
in §4 (Dejonckheere et al. 2003; Gaalman and Disney 2009) and the closely related automatic
pipeline inventory and order based production control system (Disney and Towill 2003). These
facts motivate us to investigate the similarity between the OUT-DT policy and the POUT policy.
In this section, we compare the poles and zeros of POUT and OUT-DT and show when they are
equivalent. To avoid lengthy equations, we assume {α,β ,γ} are selected from the BA region
where β ↑ βmax = (γ −1)/γ .

Writing OUT-DT order transfer function, (21), in pole-zero form to match (8) gives

O(z)
ε (z)

=

αγ−αγ
Tp+2−γ+1
1−γ

(
z− γ(αγ−αγ

Tp+1−γ+1)
αγ−αγ

Tp+2−γ+1

)
z− (1−α)γ

. (28)

When α = (Ti(γ −1)+1)/(Tiγ), we may re-write (28) into the following form

O(z)
ε (z)

=

1−(1−Ti)γ
Tp+1−Tiγ

Tp+2

Ti(1−γ)

(
z− γ(1−(1−Ti)γ

Tp−Tiγ
Tp+1)

1−(1−Ti)γ
Tp+1−Tiγ

Tp+2

)
z− Ti−1

Ti

. (29)

Both (8) and (29) are first-order systems with a single pole at z = (Ti − 1)/Ti and have a geomet-
rically decreasing impulse response when Ti > 1. When γ = 0, the order transfer function of the
OUT-DT policy has a zero at z = 0. Although γ cannot be 0 if we wish to select the DT parameters
from the BA region, the zeros of the order transfer functions in OUT-DT and POUT policies can
be very close to each other if γ ↓ 0 (as when γ > 0, the BA region exists). Therefore, by letting
α = (Ti(γ −1)+1)/(Tiγ), β ↑ βmax and γ ↓ 0, the order transfer function in both the OUT-DT and
POUT policies will have, for all intents and purposes, identical poles and zeros. If the poles and
zeros are identical, the order transfer functions are identical, both systems respond to demand in
exactly the same way, and their order and inventory responses will be identical. Figure 6 provides
an example of the system impulse response when Tp = 3. Figure 6 confirms the order and inventory
impulse responses in the OUT-DT system approximate the POUT’s system responses. Note, we
could have set γ closer to zero in Figure 6 and this would have resulted in impulse responses that
were indistinguishable from each other. However, we elected to use γ = 0.01 to demonstrate how
small the discrepancy is.

7. The OUT policy under ARIMA(1,1,2) demand with damped trend forecasting

Gardner and McKenzie (1985) show that the DT is the optimal forecasting method for predict-
ing ARIMA(1,1,2) demand. In the section we explore the ARIMA(1,1,2) demand process further
as it will allow us to understand the Bullwhip-lead time behaviour of the DT-OUT policy in §7.2.

11

Li, Q., Gaalman, G. and Disney, S.M., (2022), "On the Equivalence of the Proportional and Damped Trend Order-Up-To Policies: An Eigenvalue Analysis", 
22nd International Working Seminar on Production Economics, Innsbruck, AUSTRIA (Online), 16 pages.



-0.01

0

0.01

0.02

0.03

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

P
O

U
T 

O
rd

er
s

O
U

T-
D

T 
O

rd
er

s

P
O

U
T 

In
ve

n
to

ry

O
U

T-
D

T 
In

ve
n

to
ry

O
rd

er
 D

el
ta

In
ve

n
to

ry
 D

el
ta

Time

OUT-DT: NSAmp = 5.19  Bullwhip = 0.15
POUT: NSAmp = 5.29  Bullwhip = 0.14
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7.1. Eigenvalue analysis of ARIMA(1,1,2) demand
The ARIMA(1,1,2) demand process is given by,

dt = dt−1 +φ1(dt−1 −dt−2)−θ1εt−1 −θ2εt−2 + εt . (30)

Gardner and McKenzie (1985) also show the damped trend forecast produces a MMSE forecast of
ARIMA(1,1,2) demand when

θ1 = 1+ γ −α −αβγ,

θ2 = γ(α −1),
φ1 = γ.

 (31)

Given a set of ARIMA(1,1,2) parameters, perhaps identified from a real time series, we can solve
the simultaneous equations in (31) for the damped trend parameters:

α = θ2+φ1
φ1

,

β =
φ 2

1−θ2−θ1φ1
θ2φ1+φ 2

1
,

γ = φ1.

 (32)

Later, we will exploit the eigenvalues of the ARIMA(1,1,2) demand process to make some Bull-
whip predictions. The eigenvalues can be identified from the z-transform transfer function of the
ARIMA(1,1,2) demand process,

DARIMA(1,1,2)(z)
ε(z)

=
z2 − zθ1 −θ2

z2 − z(1+φ1)+φ1
. (33)

Eq. (33) has the following eigenvalues:

λ
θ
1 =

1
2

(
θ1 −

√
θ 2

1 +4θ2

)
, λ

θ
2 =

1
2

(
θ1 +

√
θ 2

1 +4θ2

)
, λ

φ

1 = φ1, and λ
φ

2 = 1. (34)
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Here, λ θ

{1,2} are the zeros, the roots of the numerator of (33) w.r.t. z; λ
φ

{1,2} are the poles, the

roots of the denominator of (33) w.r.t. z. Note, the largest pole, λ
φ

2 = 1, implying the system is
non-stationary. The impulse response, while it does not escape to infinity or oscillate with ever
increasing amplitude, it does not return to zero. Rather it has an off-set, implying the demand has
infinite variance, see (10).

7.2. Bullwhip-lead time behaviour of the OUT-DT policy under ARIMA(1,1,2) demand
The ARIMA(1,1,2) demand process is non-stationary and as such the demand and order vari-

ances are infinite; the Bullwhip ratio does not exist. However, Gaalman et al. (2018) and Gaalman
et al. (2019) have investigated how the Bullwhip produced by the OUT policy is affected by the
lead time and their study contains two important innovations that allow us to gain some insight
into Bullwhip behaviour, despite the non-stationary nature of demand. First, they show how one
may use the difference between the order variance and the demand variance to determine whether a
Bullwhip effect is present or not under non-stationary demand. As the difference between the two
infinite variances is finite, the positivity of this difference can indicate whether a Bullwhip effect is
present or not. That is, they show Bullwhip effect is present if V(ot)−V(dt)> 0. They also reveal
that if the demand impulse was always positive, ∀i, d̃t+i > 0, the Bullwhip effect produced by the
OUT policy increases in the lead time. The positivity of the demand impulse was determined by
the order and location of the eigenvalues (poles and zeros) of the demand process.

For a second-order demand transfer function there are six possible eigenvalue orderings, see
Figure 7. Then, within each ordering, a further three sub-cases were present depending on how
many poles are positive or negative. Assume, from (34), the larger pole λ

φ

2 =↑ 1 (i.e. φ is very
slightly smaller than unity) to ensure stability. This implies that cases C, D, and E cannot exist
when we have ARIMA(1,1,2) demand, as those cases have a zero above the largest pole.

Let BA |γ↓0 denote the BA area defined by a small γ , i.e. γ ↓ 0, the BA area where the
DT-OUT policy mimics the POUT policy. In the BA |γ↓0 area, the smaller pole lies at λ

φ

1 =↓ 0.
That is, the smaller pole is positive, implying that the BA |γ↓0 region contains only the sub-cases
A1, B1, and F1 which have two positive poles, see Gaalman et al. (2019).

Case A1 exists if the largest zero λ θ
2 is less than λ

φ

1 =↓ 0, which is equivalent to

θ1 < 0∧θ
2
1 +4θ2 ≥ 0∧θ2 < 0, (35)
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where ∧ is the logical and operator. When case A1 exists, Gaalman et al. (2019) shows the demand
impulse, d̃t+1 > 0 and the Bullwhip always increases in the lead time. In the BA |γ↓0 region, the
θ1 < 0 constraint is equivalent to β ≤ (1−α + γ)/(αγ). As the smallest β = (γ −1)/γ is always
greater than (1−α + γ)/(αγ), case A1 cannot exist in the BA |γ↓0 area.

Case B1 exists if the largest zero λ θ
2 is greater than λ

φ

1 =↓ 0 and the smallest zero λ θ
1 is less

than λ
φ

1 =↓ 0. This is equivalent to θ2 > 0. When case B1 exists, Gaalman et al. (2018) show that
the demand impulse, d̃t+1 > 0 and the Bullwhip always increases in the lead time. The constraint
that θ2 > 0 is equivalent to γ(α −1)> 0. This is not possible in the BA |γ↓0 region as α < 0 and
γ > 0.

Case F1 exists if the smallest zero λ θ
1 is greater than λ

φ

1 =↓ 0, which is equivalent to

θ1 > 0∧θ
2
1 +4θ2 ≥ 0∧θ2 < 0, (36)

where ∧ is the logical and operator. Case F1 exists in the BA |γ↓0 region as it is the logical
complement of case A1 and B1. Gaalman et al. (2018) show the demand impulse has two essential
characters. Case F1a: If d̃1 < 0 then the demand impulse is initially negative (i.e. d̃small t < 0)
and Bullwhip does not increase in the lead time. However, when t becomes sufficiently large the
demand impulse response turns, and remains, positive after one change of sign (i.e. d̃large t > 0) and
Bullwhip increases in the lead time. Case F1b: The demand impulse is positive if d̃1 > 0, which is
equivalent to β <−1/γ . In this sub-case, Bullwhip is always increasing in the lead time.

8. Concluding remarks

By showing the invertibility and the stability regions of the DT forecasting mechanism were
identical, we have offered theoretical support for exploring the performance of the OUT-DT policy
over a wider range of parameter values than is usually recommended. While other evaluations of
the utility of DT forecasts have chosen the parameter values from the [0, 1] interval, our work
shows that if unconventional {α,β ,γ} values are selected Bullwhip can be avoided without unduly
increasing NSAmp, and these results hold for all lead-times.

We have shown that the OUT-DT policy has nearly identical poles and zeros as the POUT pol-
icy. The POUT policy, with its proportional feedback controller has long been known to avoid
the Bullwhip effect, while maintaining reasonable inventory control. The OUT-DT policy has
no such proportional feedback controller; yet despite this, it is able to perform–for all practical
purposes–identically to the POUT policy. This provides a new implementation route for the Bull-
whip reduction strategies. With only a change in the forecasting software one can obtain a smooth
production rate without the need to make changes to an MRP system’s planning book. This has
practically important managerial implications as it allows the change to be easily implemented in
only the forecasting module of popular ERP systems.

DT is optimal for the non-stationary ARIMA(1,1,2) demand process; as a result the demand
and order variances are infinite. However, we were able to adopt the eigenvalue ordering approach
of Gaalman et al. (2018) to investigate how the Bullwhip effect was influenced by the lead time.
Within the BA |γ↓0 area we found that the Bullwhip effect could be either a) initial decreasing,
and then increasing in the lead time, or b) always increasing in the lead time. Near the point of
minimum Bullwhip, Bullwhip was found to be initially decreasing, and then increasing in the lead
time.
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