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Abstract 

 

Background 

Glycemic traits - such as hyperinsulinemia, hyperglycemia, and type-2 diabetes - have been 

associated with higher colorectal cancer risk in observational studies; however, causality of 

these associations is uncertain. We used Mendelian randomization (MR) to estimate the 

causal effects of fasting insulin, 2-hour glucose, fasting glucose, glycated hemoglobin 

(HbA1c), and type-2 diabetes with colorectal cancer. 

 

Methods 

Genome-wide association study summary data were used to identify genetic variants 

associated with circulating levels of fasting insulin (n=34), 2-hour glucose (n=13), fasting 

glucose (n=70), HbA1c (n=221), and type-2 diabetes (n=268). Using two-sample MR, we 

examined these variants in relation to colorectal cancer risk (48,214 cases and 64,159 

controls). 

 

Results 

In inverse-variance models, higher fasting insulin levels increased colorectal cancer risk 

(odds ratio [OR] per 1-standard deviation [SD]=1.65, 95% CI = 1.15-2.36). We found no 

evidence of any effect of 2-hour glucose (OR per 1-SD=1.02, 95% CI = 0.86-1.21) or fasting 

glucose (OR per 1-SD=1.04, 95% CI = 0.88-1.23) concentrations on colorectal cancer risk. 

Genetic liability to type-2 diabetes (OR per 1-unit increase in log odds=1.04, 95% CI = 1.01-

1.07) and higher HbA1c levels (OR per 1-SD=1.09, 95% CI = 1.00-1.19) increased colorectal 

cancer risk, although these findings may have been biased by pleiotropy. Higher HbA1c 
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concentrations increased rectal cancer risk in men (OR per 1-SD=1.21, 95% CI = 1.05-1.40), 

but not in women. 

 

Conclusions 

Our results support a causal effect of higher fasting insulin, but not glucose traits or type-2 

diabetes, on increased colorectal cancer risk. This suggests that pharmacological or lifestyle 

interventions that lower circulating insulin levels may be beneficial in preventing colorectal 

tumorigenesis. 
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Introduction 

Obesity is an established risk factor for colorectal cancer development1-3 and is 

invariably characterized by dysregulated metabolism, such as insulin resistance, 

hyperinsulinemia, hyperglycemia, and type-2 diabetes4. Extensive epidemiological research 

has shown that patients with type-2 diabetes are at higher colorectal cancer risk than those 

without diabetes5,6. However, recent findings from two relatively small Mendelian 

randomization (MR) studies (both including fewer than 7,000 colorectal cancer cases) did not 

support a causal relationship between genetic liability to type-2 diabetes and colorectal 

cancer7,8. Prior epidemiologic studies examining how pre-diagnostic concentrations of fasting 

glucose, glucose tolerance (the measurement of circulating glucose levels 2 hours after an 

oral glucose challenge) and glycated hemoglobin (HbA1c) relate to colorectal cancer risk 

have reported conflicting results9-15. Numerous epidemiological studies have examined the 

associations between circulating levels of insulin and colorectal cancer risk, with positive 

associations generally found in studies that measured circulating levels of C-peptide (a 

marker of insulin secretion)16-18, but inconsistent results reported in studies that directly 

measured insulin levels19-24. Possible explanations for the conflicting results to date include 

the use of non-fasting blood samples in some studies; differences in laboratory assays used; 

and the vulnerability of prior investigations to the inherent biases of observational studies, 

such as residual confounding and reverse causality. 

MR uses germline genetic variants as instrumental variables to allow causal effects of 

an exposure and outcome relationship to be estimated. Due to the random assortment of 

alleles during meiosis and germline genetic variants being fixed at conception, MR analyses 

are less susceptible to conventional confounding and reverse causality. To date, a large-scale 

MR study examining the associations between multiple glycemic traits and colorectal cancer 

has not been reported. 
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We used two-sample MR to examine potential causal effects of glycemic traits on 

colorectal cancer risk. This involved combining genetic variants robustly associated with 

circulating concentrations of fasting insulin, 2-hour glucose, fasting glucose and HbA1c, and 

type-2 diabetes in genome-wide association studies (GWAS), and then assessing the 

association of these variants with colorectal cancer risk in a large consortium including up to 

48,214 colorectal cancer cases and 64,159 controls25. 

 

Methods 

Genetic determinants of glycemic traits 

Genetic instrumental variables comprised SNPs identified as being robustly associated with 

each glycemic trait (at P-value<5 x 10-8) from the largest GWAS of that trait to date26-29. For 

circulating concentrations of 2-hour glucose, fasting glucose, and fasting insulin, the MAGIC 

consortium GWAS included 63,396, 200,622, and 151,013 participants, respectively28. Each 

glycemic trait was regressed with BMI, study-specific covariates, and principal 

components28. For HbA1c, the GWAS conducted by the Neale lab included 361,194 UK 

Biobank participants27 and used least-squares linear models with sex and the first 10 principal 

components from the UK Biobank sample QC file as covariates. For type-2 diabetes, the 

GWAS included 74,124 type-2 diabetes cases and 824,006 controls without type 2 diabetes26. 

Within each contributing study, all variants were tested for the association with type-2 

diabetes using regression models, with and without adjustment for BMI, and additional 

adjustment study-specific covariates, and principal components. Participants were of 

European ancestry, approximately 55% were women, and had a mean age >50 years. From 

the genome-wide significant variants identified in these GWAS for each glycemic trait, we 

excluded correlated SNPs based on a linkage disequilibrium (LD) level of R2<0.01 using 

genotype data from European individuals from phase 3 (version 5) enrolled in the 1000 
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genomes project as a reference panel. The proportion of variance explained by the genetic 

instruments for the glycemic traits ranged from 0.6% to 5.7% (Table 1). We also estimated 

the F-statistic, a formal test of whether the proportion of variance explained is sufficiently 

high for a trait given the sample size used. In our study, the estimated F-statistic values were 

>516 for all genetic instruments. Summary information on the genetic instruments, and the 

effect estimates for each individual SNP with concentrations of fasting insulin (n=34 SNPs), 

2-hour glucose (n=13 SNPs), fasting glucose (n=70 SNPs), and HbA1c (n=221 SNPs), and 

type-2 diabetes (n=268 SNPs), are presented in Table 1, and Supplementary Tables 1and 2.  

 

Data on colorectal cancer 

Summary data for associations of the glycemic traits with colorectal cancer were obtained 

from a GWAS of 112,373 participants (48,214 colorectal cancer cases and 64,159 controls). 

For HbA1c, summary data were sourced from a smaller colorectal cancer GWAS of 85,638 

participants (42,886 colorectal cancer cases and 42,752 controls) that excluded UK Biobank 

to avoid sample overlap. The GWAS data were from a meta-analysis that combined the 

ColoRectal Transdisciplinary Study (CORECT), the Colon Cancer Family Registry (CCFR) 

and studies within the Genetics and Epidemiology of Colorectal Cancer (GECCO) 

consortium30. Imputation was performed using the Haplotype Reference Consortium (HRC) 

r1.1 reference panel. Logistic regression models were adjusted for age, sex and study or 

genotyping project–specific covariates, including principal components (of all genetic 

variants that surpassed quality control filtering) to adjust for population structure25. 

Participants were of European ancestry, approximately 55% were women, and had a mean 

age >50 years. All participants provided written informed consent, and each study was 

approved by the relevant research ethics committee or institutional review board. The effect 

estimates for associations of each individual glycemic trait related SNP with colorectal cancer 
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from the GECCO/CORECT/CCFR meta-analysis are presented in Supplementary Table 1. 

For sensitivity analyses, summary-level data for the associations for glycemic trait related 

variants with colorectal cancer were also obtained from a FinnGen consortium GWAS of 

2,435 colorectal cancer cases and 147,282 non-cancer cases31. 

 

Statistical power 

Post-hoc statistical power was calculated using an online tool at 

http://cnsgenomics.com/shiny/mRnd/50. We had sufficient statistical power (>80%) to detect 

relatively small causal effect estimates (minimum expected ORs per 1-SD ranging from 1.09 

to 1.24 for glycemic traits in relation to colorectal cancer risk (Supplementary Table 3). 

 

Statistical analysis 

Two-sample random-effects inverse variance weighted methods were implemented. Odds 

ratios (OR) were scaled to a 1-standard deviation (SD) increase in log of fasting insulin 

(mean ~57; SD ~42 pmol/mol), 2-hour glucose (mean ~5; SD ~0.6 mmol/l), fasting glucose 

(mean ~6; SD ~1.6 mmol/l), and HbA1c (mean ~36; SD ~6.7 mmol/mol) concentrations; and 

a 1-unit increase in log odds of type-2 diabetes. False discovery rate correction was computed 

(q-value; statistical significance level <0.05) for the primary analyses – sexes combined 

inverse variance weighted models for colorectal cancer - using the Benjamini–Hochberg 

method32. Heterogeneity by sex and anatomical subsite (colon, proximal colon, distal colon, 

and rectum) was assessed by calculating χ2 statistics. Cochran’s Q statistics quantified 

heterogeneity across individual SNPs. Sensitivity analyses were conducted to assess and 

correct for the presence of horizontal pleiotropy (i.e., genetic variants influencing colorectal 

cancer via an alternate biological pathway, independent of the glycemic exposure of interest). 

To evaluate the extent to which directional pleiotropy (non-balanced horizontal pleiotropy in 

http://cnsgenomics.com/shiny/mRnd/
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the MR risk estimates) may have affected the causal estimates, we used MR-Egger 

regression33. We also computed ORs using the complementary weighted median method that 

can provide valid MR estimates under the presence of pleiotropy when up to 50% of the 

included instruments are invalid34. The presence of pleiotropy was also assessed using the 

MR pleiotropy residual sum and outlier test (MR-PRESSO), in which outlying SNPs are 

excluded from the instruments and the effect estimates are reassessed35.  

The GWAS used for the fasting insulin genetic instrument adjusted for BMI, 

however, conditioning on BMI (a heritable covariable) may introduce bias if BMI is a 

collider in the pathway between the genetic instrument of fasting insulin and/or the genetic 

instrument to colorectal cancer relationships. Therefore, we conducted a sensitivity analysis 

excluding variants related to BMI at the P-value<5 x 10-8 (n=9) level (identified by searching 

http://www.phenoscanner.medschl.cam.ac.uk/, date checked May 2021). For type-2 diabetes, 

the genetic instrument included GWAS estimates unadjusted for BMI, but to assess the 

possible influence of collider bias on our MR estimates, we conducted a sensitivity analysis 

using BMI-adjusted GWAS summary estimates in the genetic instrument. Finally, in a 

sensitivity analysis, separate MR analyses were also conducted using data from the FinnGen 

consortium and estimates were combined with those from our main analyses 

(GECCO/CORECT/CCFR) using fixed-effects meta-analysis. 

All statistical tests were two-sided. Thresholds for nominal significance (for the 

secondary and sensitivity analyses) were set at a p-value of <0.05. All statistical analyses 

were performed using the MendelianRandomization R package36. 

 

Results  

Effect of fasting insulin and colorectal cancer 

http://www.phenoscanner.medschl.cam.ac.uk/
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Higher fasting insulin levels increased colorectal cancer risk (OR per 1-SD, 1.65, 95% CI = 

1.15-2.36; q-value=0.035). Evidence of effect heterogeneity by SNP was found (Cochran's Q 

P-value=1.6 x 10-7), but little evidence of directional pleiotropy was detected (MR-Egger 

intercept P-value=0.78). Positive effect estimates were also found in the weighted median, 

MR-Egger and MR-PRESSO models (Table 2). There was little evidence of heterogeneity by 

sex in the inverse variance weighted models (Pheterogeneity=0.9), although evidence of 

pleiotropy was detected for women in the weighted median and MR-Egger models. Similar 

effect estimates were also found for all colorectal cancer subsites (Pheterogeneity for colon vs. 

rectal cancer=0.98; Pheterogeneity for proximal colon vs. distal colon cancer=0.98) (Table 2). In 

the sensitivity analysis that excluded genetic variants associated with BMI (n=9 SNPs 

removed), similar strength positive effect estimates were found (Supplementary Table 4). 

Scatter plots (with colored lines representing the slopes of the different regression analyses) 

for the fasting insulin, plus other glycemic traits, and colorectal cancer association are 

presented in Supplementary Figure 1. A similar association without evidence of 

heterogeneity (I2=0%) was found for fasting insulin with colorectal cancer when estimates 

using data from GECCO/CORECT/CCFR and FinnGen were pooled (OR per 1-SD = 1.68, 

95% CI = 1.12-2.23) (Supplementary Table 5). 

 

Effects of 2-hour glucose, fasting glucose and HbA1c on colorectal cancer 

We found no evidence of any effects of 2-hour glucose (OR per 1-SD increase= 1.02, 95% CI 

= 0.86-1.21; q-value=0.81) or fasting glucose (OR per 1-SD increase = 1.04, 95% CI = 0.88-

1.23; q-value=0.81) on colorectal cancer in the inverse variance weighted models. Similar 

null effect estimates were found for men and women (Pheterogeneity >0.2), across anatomical 

subsites (Pheterogeneity for colon vs. rectal cancer >0.2; Pheterogeneity for proximal colon vs. distal 
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colon cancer >0.3), and for the weighted median, MR-Egger and MR-PRESSO models 

(Table 2).  

In the inverse variance weighted model, a positive effect was found for HbA1c 

concentration with colorectal cancer risk (OR per 1-SD increase = 1.09, 95% CI = 1.00-1.19; 

q-value=0.08), with similar effects in men and women (Pheterogeneity =1) (Table 2). However, 

evidence of effect heterogeneity (Cochran's Q P-value=2.8 x 10-21) and directional pleiotropy 

was detected (MR-Egger intercept P-value=0.04), with no evidence of causal effects found in 

the weighted median, MR-Egger and MR-PRESSO models. Little evidence of heterogeneity 

was observed across anatomical subsites (Pheterogeneity for colon vs. rectal cancer = 0.14; 

Pheterogeneity for proximal colon vs. distal colon cancer = 0.83). A positive effect of HbA1c on 

rectal cancer was found (OR per 1-SD increase = 1.19, 95% CI = 1.06-1.33), but this effect 

was attenuated towards the null in the weighted median and MR-Egger models. For men, 

however, a positive effect was found for HbA1c concentration and rectal cancer (OR per 1-

SD = 1.21, 95% CI = 1.05-1,40) with evidence of effect heterogeneity (Cochran's Q P-

value=5.9 x 10-4), but little evidence of directional pleiotropy (MR-Egger intercept P-

value=0.77). Similar effect estimates were observed for rectal cancer in men in the weighted 

median, MR-Egger and MR-PRESSO models (Table 2).  

 

Effects of type-2 diabetes and colorectal cancer 

In the inverse variance weighted model, a weak positive effect was found between genetic 

liability to type-2 diabetes and colorectal cancer (OR per 1-unit increase in log odds = 1.04, 

95% CI = 1.01-1.07; q-value=0.05), with similar magnitude of effects by sex (Pheterogeneity 

=0.14) and anatomical subsites (Pheterogeneity for colon vs. rectal cancer=0.71; Pheterogeneity for 

proximal colon cancer vs. distal colon cancer=0.73) (Table 2). However, no evidence of 

causal effects were detected in the weighted median (OR = 1.00, 95% CI = 0.96-1.04) or 
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MR-Egger models (OR = 0.97, 95% CI = 0.90-1.04), with evidence of effect heterogeneity 

(Cochran's Q P-value=1.9 x 10-16) and directional pleiotropy detected (MR-Egger intercept P-

value=0.04). A similar pattern of results to the inverse variance weighted model was found 

when the MR-PRESSO test detected outlier SNPs were excluded from the models (Table 2), 

and when type-2 diabetes GWAS summary estimates adjusted for BMI were used in the 

genetic instrument (Supplementary Table 6).  

 

Discussion 

We conducted the largest and most comprehensive study to date on the effects of multiple 

glycemic traits with colorectal cancer risk. We found that higher circulating fasting insulin 

levels increased colorectal cancer risk, with minimal evidence of heterogeneity by sex or 

anatomical subsite found. There was no evidence of effects of 2-hour glucose and fasting 

glucose on colorectal cancer risk. Genetic liability to type-2 diabetes and higher HbA1c 

concentration also appeared to increase colorectal cancer risk, but horizontal pleiotropy may 

have influenced these findings. Higher HbA1c concentrations increased rectal cancer risk in 

men.  

A large number of experimental and observational epidemiological studies have 

examined the insulin and colorectal cancer relationship. Experimental studies have 

demonstrated that insulin, through binding to its cognate receptor or the insulin-like growth 

factor receptor, activates the PI3K–AKT–mTOR and RAS–MAPK pathways, which in turn 

can lead to downstream cellular proliferation and protein synthesis in tumor cells37,38. Rat 

models have demonstrated that insulin can induce proliferation of colorectal epithelial cells 

and the development of aberrant crypt foci, the primary neoplastic lesions in colorectal 

development39. In colonic tumor cells, the expression of the insulin receptor protein is 

elevated, particularly isoform A that exerts mitogenic effects40,41.  
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This experimental evidence is supported by results from epidemiological studies that 

have examined the association between pre-diagnostic C-peptide concentrations and 

colorectal cancer risk17. Two U.S. based prospective studies from the early 2000s reported 

positive associations between circulating C-peptide levels and colorectal cancer risk16-18. 

More recently, a meta-analysis of 8 prospective studies reported a pooled OR of 1.39 (95% 

CI: 1.04-1.87) for the comparison of the highest versus lowest C-peptide level groups16. Prior 

prospective studies that assessed the association between circulating fasting insulin levels and 

colorectal cancer have yielded inconsistent results, with positive associations found in some 

studies that were attenuated after statistical adjustment for other colorectal cancer risk 

factors19-21, and null results found in two studies that did not measure insulin levels in fasting 

blood samples22,23. The use of non-fasting biospecimens, differences in laboratory assays, and 

the vulnerability of observational epidemiological studies to confounding or reverse causality 

limit causal inference of the fasting insulin and colorectal cancer association. In our MR 

analyses, we found a positive effect of fasting insulin on colorectal cancer, with consistent 

effect estimates in men and women, according to anatomical subsite, and for all of the 

sensitivity analyses that assessed horizontal pleiotropy. This result, taken together with 

experimental data showing mitogenic and anti-apoptotic effects of insulin37,38, provides 

supportive evidence of a positive causal relationship between fasting insulin concentrations 

and colorectal cancer. 

We found inconclusive evidence of causal effects of glucose on colorectal cancer. For 

2-hour glucose and fasting glucose, our findings suggesting no evidence of an association are 

consistent with some42,43 but not other12,14,44 prior prospective observational studies. For 

HbA1c concentrations, we found a positive effect with colorectal cancer, but our sensitivity 

analyses indicated that alternate biological pathways (i.e., horizontal pleiotropy) may have 

influenced this result. However, for rectal cancer, particularly for men, a positive effect was 
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found that was robust to all the sensitivity analyses we used to assess the influence of 

horizontal pleiotropy. It is unclear why a robust positive causal effect was found for rectal 

cancer and for men only. Growing evidence indicates that the clinical features, genetic 

architecture, and risk factor profiles may differ for tumors across different anatomical 

locations in the colorectum45-47.  There is also emerging data that there are risk factor 

differences in men compared with women45,47. However, we also cannot rule out the 

possibility that the HbA1c effect found for rectal cancer in men only is a chance finding. 

Additional well-powered studies are needed to examine the sex-specific relationship between 

different markers of metabolic dysregulation, including hyperglycemia, and risk of colorectal 

cancer at different anatomical regions. 

 Type-2 diabetes has been consistently associated with higher risk of developing 

colorectal cancer in prospective cohort studies, with a large umbrella review reporting a 

pooled relative risk of 1.27 (95% CI: 1.21-1.34) for the diabetes versus non-diabetes 

comparison5,6. The results from the current study, and those from two smaller MR studies7,8, 

are generally unsupportive of a causal relationship between genetic liability to type-2 diabetes 

and colorectal cancer. Bias from reverse causality or residual confounding in the 

observational studies is a possible explanation for the divergent findings with the MR 

estimates. However, comparing results from these different study designs is challenging as 

we examined the genetic liability to type-2 diabetes, rather than the disease itself. In contrast, 

observational studies, have included participants with or without an actual type-2 diabetes 

diagnosis. Collectively, our MR results suggest that elevated levels of insulin – a 

characteristic of pre-diabetes and uncontrolled diabetes - rather than glucose, may be driving 

the positive association found between type-2 diabetes and colorectal cancer risk reported in 

observational studies. In support of this hypothesis, a recent Nurses’ Health Study and Health 

Professionals Follow-up Study analysis found that the positive association between type-2 
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diabetes and colorectal cancer diminished over time as circulating insulin levels lowered48. 

Additional studies are required to further examine which specific aspects of the 

pathophysiology of type-2 diabetes may promote colorectal cancer development. 

 Our study has several notable strengths. This was the largest MR study to date to 

estimate the causal effects of glycemic traits on colorectal cancer risk. We conducted multiple 

sensitivity analyses to examine the possible influence of pleiotropy in biasing our results. 

Crucially, the positive effects found for fasting insulin and colorectal cancer were generally 

robust according to these various sensitivity analyses. Several limitations of our study should 

be noted. First, our use of summary-level data precluded analyses according to subgroups of 

other colorectal cancer risk factors (e.g., BMI, physical inactivity) and examination of 

possible non-linear effects. In addition, the GWAS used to identify the fasting insulin genetic 

instruments was adjusted for BMI which may have introduced collider bias into our MR 

estimates. However, we found similar results when we excluded variants associated with 

BMI from the fasting insulin genetic instrument. Further, similar MR estimates were found 

for the type-2 diabetes and colorectal cancer association using BMI unadjusted and adjusted 

GWAS estimates for type-2 diabetes, suggesting that collider bias had minimal influence on 

this relationship. In addition, results from a recent empirical study suggest that the use of 

covariate adjusted GWAS summary estimates should not markedly influence downstream 

MR effect estimates49. Finally, we acknowledge that the null effect estimates we observed in 

some of our analyses may have been a consequence of inadequate statistical power. However, 

our post-hoc power calculation found that we had sufficient power (>80%) to detect 

relatively small causal effect estimates (minimum expected ORs per 1-SD ranging from 1.09-

1.16 for 2-hour glucose, fasting glucose, HbA1c, and type-2 diabetes with colorectal 

cancer)50. 
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In conclusion, our results support a causal effect of higher fasting insulin, but not 

glucose traits and genetic liability to type-2 diabetes, on colorectal cancer risk. These results 

suggest that high circulating insulin levels, rather than high glucose levels, may be the main 

driver of the positive associations found between type-2 diabetes and colorectal cancer in 

observational studies. The findings suggest that pharmacological or lifestyle interventions 

that lower circulating insulin levels may be beneficial in preventing colorectal tumorigenesis.  
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Tables 

Table 1. Summary of the glycemic trait instrument variables used in the current studya 

Glycemic trait No. of SNPs Variance explained, % 

Fasting insulin29 34 0.6 

2-hour glucose29 13 2.4 

Fasting glucose29 70 1.4 

Glycated hemoglobin (HbA1c)27 221 5.7 

Type-2 diabetes26 268 2.0 
a SNP=single nucleotide polymorphism 
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Table 2. Mendelian randomization estimates for glycemic traits and risk of colorectal cancer 

Glycemic trait 
IVW random effects 

Pheterogeneity
a Weighted median MR-Egger MR-Egger intercept MR-PRESSO 

OR (95% CI) OR (95% CI) OR (95% CI) Pb OR (95% CI) SNPs excluded 

Fasting insulinc 
       

Colorectal cancer 
       

All 1.65 (1.15-2.36) 1.60 x 10-7 1.48 (1.01-2.16) 1.39 (0.43-4.57) 0.78 1.52 (1.11-2.10) rs11727676 

Men 1.72 (1.05-2.80) 5.70 x 10-7 1.72 (1.05-2.80) 2.32 (0.47-11.02) 0.7 1.55 (1.00-2.39) rs11727676 

Women 1.65 (1.14-2.39) 0.05 1.05 (0.66-1.70) 0.68 (0.21-2.16) 0.11 No outliers 
 

Colon cancer 
       

All 1.73 (1.16-2.59) 8.70 x 10-6 1.60 (1.04-2.46) 1.63 (0.44-6.05) 0.93 1.57 (1.12-2.23) rs11727676 

Men 1.57 (0.96-2.59) 0.003 1.22 (0.69-2.16) 1.80 (0.36-9.03) 0.86 1.39 (0.91-2.14) rs11727676 

Women 1.92 (1.21-3.06) 0.01 1.55 (0.88-2.75) 1.35 (0.30-6.17) 0.63 No outliers 
 

Proximal colon cancer 
       

All 1.77 (1.14-2.75) 0.005 2.05 (1.22-3.46) 1.55 (0.37-6.49) 0.85 1.62 (1.08-2.41) rs11727676 

Men 1.43 (0.81-2.56) 0.07 1.60 (0.78-3.29) 1.34 (0.20-9.03) 0.94 No outliers 
 

Women 2.23 (1.34-3.67) 0.16 2.23 (1.15-4.35) 1.77 (0.34-9.21) 0.77 No outliers 
 

Distal colon cancer 
       

All 1.79 (1.08-2.94) 1.50 x 10-4 2.03 (1.16-3.56) 2.10 (0.41-10.49) 0.84 1.62 (1.02-2.53) rs11727676 

Men 1.79 (1.02-3.10) 0.07 1.70 (0.83-3.42) 2.66 (0.44-16.28) 0.65 No outliers 
 

Women 1.79 (0.95-3.39) 0.01 1.77 (0.79-3.90) 1.46 (0.18-11.59) 0.84 No outliers 
 

Rectal cancer 
       

All 1.72 (1.14-2.56) 0.04 1.79 (1.07-3.00) 1.19 (0.32-4.39) 0.57 No outliers 
 

Men 2.08 (1.14-3.78) 0.003 2.16 (1.09-4.31) 2.66 (0.38-18.17) 0.79 2.34 (1.34-4.06) rs73013411 

Women 1.39 (0.81-2.39) 0.3 1.86 (0.87-3.94) 0.46 (0.08-2.56) 0.18 No outliers 
 

2-hour glucosec 
       

Colorectal cancer 
       

All 1.02 (0.86-1.21) 6.40 x 10-7 1.05 (0.92-1.20) 0.82 (0.52-1.28) 0.3 1.12 (0.99-1.27) rs1260326, 

rs117643180 
Men 0.97 (0.81-1.17) 9.90 x 10-4 1.06 (0.90-1.25) 0.75 (0.45-1.23) 0.26 1.02 (0.87-1.20) rs1260326 
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Women 1.06 (0.90-1.26) 0.01 1.07 (0.90-1.26) 0.90 (0.57-1.45) 0.47 No outliers 
 

Colon cancer 
       

All 1.00 (0.84-1.17) 3 x 10-4 1.02 (0.88-1.19) 0.79 (0.50-1.23) 0.28 1.03 (0.89-1.20) rs1260326 

Men 0.98 (0.84-1.15) 0.14 1.02 (0.84-1.25) 0.78 (0.50-1.22) 0.28 No outliers 
 

Women 1.02 (0.83-1.26) 0.003 0.99 (0.81-1.21) 0.81 (0.45-1.46) 0.41 No outliers 
 

Proximal colon cancer 
       

All 0.98 (0.85-1.12) 0.26 0.90 (0.75-1.06) 0.77 (0.54-1.11) 0.17 No outliers 
 

Men 0.95 (0.79-1.14) 0.69 0.94 (0.73-1.21) 0.90 (0.55-1.48) 0.84 No outliers 
 

Women 1.01 (0.84-1.22) 0.22 1.00 (0.79-1.27) 0.70 (0.43-1.16) 0.13 No outliers 
 

Distal colon cancer 
       

All 1.04 (0.84-1.30) 5.00 x 10-4 1.03 (0.85-1.25) 0.87 (0.47-1.58) 0.52 1.11 (0.93-1.31) rs1260326 

Men 1.04 (0.84-1.30) 0.09 0.96 (0.75-1.23) 0.79 (0.43-1.46) 0.34 No outliers 
 

Women 1.05 (0.77-1.42) 9.00 x 10-4 0.97 (0.73-1.28) 0.98 (0.40-2.36) 0.86 1.12 (0.84-1.48) rs1260326 

Rectal cancer 
       

All 1.05 (0.89-1.26) 0.02 1.06 (0.89-1.27) 0.84 (0.52-1.34) 0.29 No outliers 
 

Men 1.05 (0.84-1.32) 0.03 1.03 (0.81-1.30) 0.95 (0.50-1.82) 0.74 1.12 (0.91-1.35) rs1260326 

Women 1.05 (0.86-1.30) 0.3 0.93 (0.71-1.21) 0.74 (0.43-1.27) 0.17 No outliers 
 

Fasting glucosec 
       

Colorectal cancer 
       

All 1.04 (0.88-1.23) 4.9 x 10-10 1.05 (0.89-1.25) 1.01 (0.75-1.36) 0.84 0.97 (0.84-1.12) rs1260326, 

rs174583 
Men 0.90 (0.71-1.14) 4.8 x 10-4 0.96 (0.72-1.30) 1.03 (0.68-1.57) 0.47 0.90 (0.76-1.07) rs1260326, 

rs174583 
Women 1.11 (0.92-1.34) 0.003 1.01 (0.80-1.28) 1.02 (0.73-1.42) 0.54 1.07 (0.90-1.27) rs174583 

Colon cancer 
       

All 0.96 (0.79-1.16) 1.40 x 10-7 0.90 (0.73-1.09) 0.95 (0.68-1.34) 0.96 0.93 (0.79-1.11) rs174583 

Men 0.90 (0.71-1.14) 4.80 x 10-4 0.97 (0.72-1.30) 1.03 (0.68-1.57) 0.47 0.90 (0.73-1.11) rs1260326, 

rs174583 
Women 1.22 (0.83-1.26) 0.02 0.87 (0.66-1.14) 0.89 (0.61-1.30) 0.37 0.99 (0.81-1.21) rs174583 

Proximal colon cancer 
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All 0.89 (0.73-1.06) 0.04 0.82 (0.64-1.06) 0.85 (0.61-1.19) 0.78 0.87 (0.73-1.04) rs174583 

Men 0.89 (0.68-1.16) 0.1 0.92 (0.63-1.36) 1.03 (0.64-1.65) 0.47 No outliers 
 

Women 0.88 (0.70-1.11) 0.45 0.71 (0.51-1.00) 0.72 (0.48-1.07) 0.22 No outliers 
 

Distal colon cancer 
       

All 1.05 (0.83-1.34) 6 x 10-7 0.99 (0.75-1.30) 0.97 (0.63-1.49) 0.67 0.98 (0.80-1.20) rs1260326, 

rs9348441, 

rs174583 
Men 0.94 (0.71-1.25) 0.01 0.99 (0.68-1.43) 0.98 (0.59-1.60) 0.86 0.90 (0.70-1.16) rs174583 

Women 1.19 (0.88-1.60) 0.003 0.97 (0.66-1.42) 0.94 (0.55-1.62) 0.32 1.13 (0.85-1.51) rs174583 

Rectal cancer 
       

All 1.17 (0.96-1.43) 0.01 1.12 (0.85-1.48) 1.03 (0.73-1.46) 0.38 1.14 (0.94-1.38) rs174583 

Men 1.11 (0.86-1.42) 0.06 1.17 (0.83-1.65) 1.05 (0.67-1.63) 0.77 No outliers 
 

Women 1.23 (0.96-1.60) 0.54 1.00 (0.67-1.49) 0.98 (0.63-1.54) 0.21 No outliers 
 

Glycated hemoglobin (HbA1c)c 
      

Colorectal cancer 
       

All 1.09 (1.00-1.19) 2.80 x 10-21 1.06 (0.95-1.17) 0.93 (0.78-1.11) 0.04 1.06 (0.99-1.14) rs9273363, 

rs174549, 

rs76895963, 

rs61927768, 

rs10784889, 

rs11065979 
Men 1.09 (0.98-1.21) 4.80 x 10-9 1.06 (0.92-1.23) 0.95 (0.77-1.18) 0.16 1.07 (0.97-1.17) rs3104369, 

rs76895963 
Women 1.09 (0.99-1.21) 1.60 x 10-6 1.03 (0.90-1.20) 0.91 (0.74-1.11) 0.04 1.07 (0.97-1.17) rs11065979 

Colon cancer 
       

All 1.06 (0.95-1.17) 8.00 x 10-17 1.05 (0.92-1.20) 0.94 (0.77-1.15) 0.2 1.03 (0.95-1.13) rs174549, 

rs61927768, 

rs10784889, 

rs11065979 
Men 1.08 (0.95-1.23) 5.60 x 10-9 1.03 (0.86-1.23) 0.95 (0.72-1.24) 0.28 1.08 (0.95-1.22) rs3104369, 

rs76895963 
Women 1.05 (0.94-1.17) 9.80 x 10-4 1.01 (0.84-1.20) 0.94 (0.75-1.18) 0.28 1.03 (0.93-1.15) rs11065979 
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Proximal colon cancer 
       

All 1.06 (0.95-1.19) 1.20 x 10-9 1.00 (0.85-1.17) 0.87 (0.69-1.10) 0.06 1.06 (0.95-1.17) rs10784889, 

rs11065979 
Men 1.10 (0.94-1.28) 2.40 x 10-4 1.06 (0.85-1.33) 0.94 (0.67-1.26) 0.19 1.08 (0.94-1.26) rs3104369 

Women 1.03 (0.90-1.18) 0.01 1.04 (0.84-1.30) 0.83 (0.63-1.09) 0.06 No outliers 
 

Distal colon cancer 
       

All 1.08 (0.96-1.22) 1.90 x 10-10 0.96 (0.82-1.14) 1.07 (0.83-1.36) 0.9 1.07 (0.96-1.19) rs7766070, 

rs174549, 

rs61927768, 

rs11065979 
Men 1.07 (0.92-1.26) 3.80 x 10-7 1.02 (0.81-1.29) 0.99 (0.72-1.40) 0.61 1.06 (0.90-1.24) rs3104369 

Women 1.09 (0.94-1.26) 0.01 1.06 (0.84-1.32) 1.13 (0.83-1.53) 0.79 1.08 (0.94-1.25) rs11065979 

Rectal cancer 
       

All 1.19 (1.06-1.33) 1.60 x 10-6 1.07 (0.95-1.30) 1.03 (0.82-1.30) 0.16 1.14 (1.03-1.27) rs9273363, 

rs61927768, 

rs11065979 
Men 1.21 (1.05-1.40) 5.90 x 10-4 1.37 (1.11-1.70) 1.26 (0.94-1.69) 0.77 No outliers 

 

Women 1.16 (0.99-1.35) 0.01 0.95 (0.75-1.22) 0.78 (0.57-1.06) 0.004 1.14 (0.98-1.32) rs3130453 

Type-2 diabetesd 
       

Colorectal cancer 
       

All 1.04 (1.01-1.07) 1.90 x 10-16 1.00 (0.96-1.04) 0.97 (0.90-1.04) 0.04 1.04 (1.01-1.07) rs1260326, 

rs9379084, 

rs7756992, 

rs76895963 
Men 1.02 (0.98-1.06) 1.30 x 10-6 1.00 (0.94-1.05) 0.96 (0.88-1.05) 0.15 1.02 (0.99-1.06) rs76895963, 

rs2736177 
Women 1.06 (1.02-1.09) 4.00 x 10-6 0.99 (0.94-1.05) 0.98 (0.90-1.07) 0.06 1.07 (1.03-1.11) rs7756992 

Colon cancer 
       

All 1.03 (1.00-1.07) 3.30 x 10-10 0.98 (0.94-1.03) 0.97 (0.90-1.05) 0.08 1.04 (1.01-1.08) rs7756992, 

rs1561927 
Men 1.01 (0.97-1.06) 0.002 0.98 (0.91-1.05) 0.93 (0.85-1.03) 0.08 1.02 (0.98-1.07) rs76895963 

Women 1.05 (1.01-1.09) 1.20 x 10-4 1.01 (0.94-1.07) 1.01 (0.91-1.12) 0.34 1.06 (1.02-1.11) rs7756992 
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Proximal colon cancer 
       

All 1.03 (0.99-1.07) 4.20 x 10-5 0.97 (0.92-1.03) 0.96 (0.88-1.05) 0.1 1.03 (0.99-1.06) rs6518681 

Men 1.01 (0.96-1.06) 0.47 1.02 (0.94-1.11) 0.93 (0.83-1.04) 0.12 No outliers 
 

Women 1.05 (1.00-1.11) 0.002 1.00 (0.91-1.08) 1.00 (0.89-1.13) 0.31 No outliers 
 

Distal colon cancer 
       

All 1.04 (1.00-1.08) 1.25 x 10-7 1.04 (0.98-1.11) 0.98 (0.89-1.08) 0.19 1.05 (1.01-1.09) rs7756992, 

rs2736177, 

rs10811647 
Men 1.02 (0.97-1.08) 0.002 0.95 (0.88-1.04) 0.95 (0.84-1.07) 0.21 No outliers 

 

Women 1.06 (1.01-1.13) 1.70 x 10-4 1.02 (0.92-1.12) 1.03 (0.90-1.17) 0.56 No outliers 
 

Rectal cancer 
       

All 1.04 (1.00-1.08) 2.90 x 10-7 1.00 (0.93-1.07) 0.97 (0.88-1.07) 0.11 1.04 (1.00-1.08) rs149717632 

Men 1.03 (0.97-1.08) 0.001 1.03 (0.94-1.13) 0.98 (0.87-1.11) 0.41 1.02 (0.97-1.08) rs149717632 

Women 1.06 (1.00-1.12) 0.004 0.99 (0.90-1.08) 0.96 (0.84-1.09) 0.1 No outliers 
 

a Cochran’s Q statistics (two-sided) quantified heterogeneity across individual SNPs.. IVW=inverse-variance-weighted; OR=odds ratio; 

CI=confidence interval; SNP=single nucleotide polymorphism. 

bMR-Egger intercept test (two-sided P-value).  

c ORs scaled to 1-standard deviation increase in log of genetically-predicted 2-hour glucose, fasting glucose, glycated hemoglobin (HbA1c), and 

fasting insulin levels. 

d ORs scaled to 1-unit increase in log odds of genetic liability to type-2 diabetes. 


