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Machine learning of phase transitions in nonlinear
polariton lattices
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Polaritonic lattices offer a unique testbed for studying nonlinear driven-dissipative physics.

They show qualitative changes of their steady state as a function of system parameters,

which resemble non-equilibrium phase transitions. Unlike their equilibrium counterparts,

these transitions cannot be characterised by conventional statistical physics methods. Here,

we study a lattice of square-arranged polariton condensates with nearest-neighbour coupling,

and simulate the polarisation (pseudospin) dynamics of the polariton lattice, observing

regions with distinct steady-state polarisation patterns. We classify these patterns using

machine learning methods and determine the boundaries separating different regions. First,

we use unsupervised data mining techniques to sketch the boundaries of phase transitions.

We then apply learning by confusion, a neural network-based method for learning labels in a

dataset, and extract the polaritonic phase diagram. Our work takes a step towards AI-enabled

studies of polaritonic systems.
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There is growing attention devoted to analysing physical
systems through machine learning (ML) techniques given
the ground-breaking advancements in artificial intelligence

strategies1,2. With prominent examples of generative modelling3,
recommendation systems4, natural language processing5, decision
processes and disease detection6, ML provides means to grasp
data features that can escape the eyes of a trained professional. It
has also initiated the effort in quantum ML to be performed by
quantum devices7,8. In the case of classification tasks, ML became
a useful tool to reveal phase transition boundaries in spin
systems9–15, topological models16–21, photonic condensates22,
and strongly correlated fermionic systems23–25. In quantum
chemistry it is used to predict properties of organic compounds
and perform high-throughput calculations26,27. In nanophotonics
ML techniques are widely used for inverse design28,29. Other
examples include detection of Wigner function negativity in
multimode quantum states30 and automatic learning of topolo-
gical photonic phase transitions31,32. In many cases ML gives
greater insight into non-equilibrium systems33,34 which are well
known to host numerous nontrivial solutions35. Notably, many
fundamental features in nature such as the complicated patterns
appearing on animal coats36 and proliferation of defects in the
Higgs field37 are linked to non-equilibrium analogues of phase
transitions. This question was investigated in optical systems,
specifically noting cooperative phenomena and self-organisation
during lasing38–40. The nature of such phase transitions was also
studied in non-reciprocal systems41 which describe systems with
gain and loss. Similar physics can be studied in condensed matter
systems, such as superfluids and Bose–Einstein condensates,
offering an experimentally friendly strategy to explore such pat-
tern formation and spontaneous self-organisation42 which can
benefit from ML techniques.

Semiconductor microcavities43 in the strong light–matter
coupling regime show increasing promise for studying novel
nonlinear low-dimensional optical phenomena. The normal
modes in this regime are exciton–polaritons44, quasiparticles
coherently composed of both excitonic resonances in embedded
quantum wells and trapped photonic cavity modes. They enjoy
the benefits of picosecond scale response times and high non-
linearity (particle interactions) coming from their photonic and
excitonic parts, respectively. To date, various nonlinear effects
were studied, showing polariton condensation (or lasing)45–47,
spin pattern formation48, solitons49, vortices50,51, quantum
correlations52, among many others44.

Perhaps the most exciting advancement are lattices of polariton
condensates which have emerged as a promising way to create
extended systems of trapped nonlinear light53. They can be rea-
lised using a variety of techniques such as lithographically pat-
terned inorganic54 and organic55 cavities which act on the
photonic mode, or using sculpted nonresonant lasers which act
on the exciton mode56. The latter case offers the interesting
option of creating either ballistic gain guided57,58 or optically
trapped59–61 polariton condensates through the repulsive inter-
actions between polaritons and photoexcited background exci-
tons. Today, polariton lattices have enabled the studies for
topological properties57,62–65, dispersionless bands66,67, as ana-
logue simulators of the XY-model68,69 and oscillatory networks70,
and as optimisers for NP-hard problems71–73.

With rapid improvements in the abovementioned techniques,
the coherence length of polariton condensate lattices now greatly
exceeds the typical unit cell size58,61,74 which gives hope to study
new and interesting phases of dissipative bosonic matter deter-
mined by the coherent flow of polaritons across the lattice sites.
Indeed, in contrast to lattices, spatially uniform condensates are
notoriously difficult to realise due to cavity disorder fragmenting
the polariton fluid. Nonetheless, this idealised scenario has

captured theoretical work in the recent years focused on dis-
sipative Kibble–Zurek mechanisms through proliferation of vor-
tices due to modulational instability75, spontaneous Turing
patterns in resonantly driven systems76, non-equilibrium
Berezinskii–Kosterlitz–Thouless phase transition in the optical
parametric oscillator77 and incoherent pumping78 regimes, and
the critical exponent universality at long times79. Formation of
polarisation domain walls through the condensation (phase
transition) quench80 and XY spin phases81 were reported in lat-
tice chains, and vortex street formation due to snaking instabil-
ities in both resonantly82 and nonresonantly83 driven polariton
fluids. It is therefore of interest to develop and apply ML stra-
tegies for these driven-dissipative systems to facilitate under-
standing on how different phases are separated in this zoo of
possibilities, especially in terms of the state-of-the-art condensate
lattices.

In this paper, we use ML to classify phases of spinor
exciton–polariton condensate lattices. We focus on recent
experimental findings demonstrating highly nontrivial polarisa-
tion behaviour between optically trapped condensates resulting in
both spontaneous and random pattern formation of the con-
densate polarisation (polariton pseudospin orientation)60,84, a so-
called spin-bifurcation regime. We have chosen this system since
it offers a relatively simple experimental method to verify our
findings through full Stokes polarimetry measurements on the
emitted cavity light which carries information on the polariton
pseudospin (or spin for short). We use ML to distinguish
polarisation patterns across our lattice. This provides an efficient
method to map out non-equilibrium phase boundaries. We
sketch out the clustering of our multidimensional data and, using
learning by confusion13, we refine the boundaries between dif-
ferent phases. Our results are applicable to other observables
across different driven-dissipative oscillatory systems such as
coupled laser arrays and photonic condensates.

Results
Model. We consider a square lattice of optical cavities typically
represented by coupled micropillars [see the sketch in Fig. 1a].
We consider the regime where the ground state mode of each
pillar becomes macroscopically occupied by the polariton con-
densate. Each condensate is described by a coherent spinor wave
function Ψn ¼ ðψnþ;ψn�ÞT for the nth lattice site. The two spinor
components ψ± correspond explicitly to the circular polarisation
of the cavity light σ±. The whole lattice is incoherently pumped by
off-resonant linearly polarised light at high energy such that no
phase or polarisation information is transferred from the laser
source into the condensates. Such a system can be modelled using
a set of coupled generalised spinor Gross–Pitaevskii equations44,

i
dΨn

dt
¼ i
2

WtðtÞ � ηSn
� �

Ψn �
1
2
ðϵþ iγÞσ̂xΨn

þ 1
2
ð�αSn þ αSznσ̂zÞΨn � ð1� iΛÞ J

2
∑
hnmi

Ψm;
ð1Þ

where we have introduced the condensate pseudospin to describe
the polarisation (magnetisation) of the lattice,

Sn ¼ ðSxn; Syn; SznÞT ¼ 1
2
Ψy

nσ̂Ψn: ð2Þ

Here σ̂ ¼ ðσ̂x; σ̂y; σ̂zÞ is the standard Pauli vector, and the mag-
nitude of the spin for nth condensate is Sn= (∣ψn+∣2+ ∣ψn−∣2)/2.
The factor 1/2 is conventional. When presenting pseudospin
patterns for the lattice we use normalised intensities at each site
defined as sn= Sn/Sn. The parameters in the first line of Eq. (1)
include: Wt(t) describing the time-dependent incoherent pump
rate (gain) with subtracted linear losses (i.e., we have absorbed the
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conventional linear polariton loss parameter Γ, corresponding to the
cavity photon escape rate, into our net gain parameterW); η being a
gain clamping (saturation) parameter describing isotropic nonlinear
losses; ϵ and γ being energy and linewidth (losses) splitting between
the linearly polarised modes ψx;y ¼ ðψþ ±ψ�Þ=

ffiffiffi
2

p
. Physically, the

complex valued linear polarisation splitting appears due to cavity
strain85, leading to non-Hermitian coupling between circular
polarisation components and defining the effective spin properties.
The first term in the second line of Eq. (1) describes the nonlinear
shift of polariton energy due to polariton–polariton interactions for
the same spin (α1) and opposite spin (α2) components. Specifically,
in the circular polarisation basis we use the combinations
α= α1− α2 and �α ¼ α1 þ α2. Finally, the last term in Eq. (1)
describes the Josephson type coupling between lattice sites, J, and Λ
is an energy dampening parameter according to the
Landau–Khalatnikov approach86. The sum is to be taken over
nearest lattice neighbours.

The system of equations (1) was found to describe successfully
experiments on trapped polariton condensates60,85,87. To study
the condensates polarisation patterns, the incoherent pump is
increased slowly and linearly in time until the target value W is
reached at the time tf,

WtðtÞ ¼ W Θ½tf � t� t
tf
þ Θ½t � tf �

 !
; ð3Þ

where Θ[t] is a Heaviside step function. Starting from noisy
background (stochastic initial conditions), the polaritons will

condense (i.e., Sn > 0 solution forms) when a critical threshold
pump power Wcond is reached. The condensation threshold is
determined by the condition Sn= 0 and when a single eigenvalue
of Eq. (1) goes from having a negative imaginary part to positive
imaginary part with increasing pump power Wt. This crossover
takes place at Wcond=− (γ+ ZΛJ), where Z= 4 is the number of
nearest neighbours, and belongs to a linearly polarised solution
written Sn ¼ �Sxn (because γ increases the gain for vertically
polarised polaritons). We will throughout the paper refer to this
linear polarisation regime as the XY phase in our ML analysis
which refers to the fact that the pseudospin is lying on the
equatorial plane of the Poincaré sphere. In the terms of amplitude
oscillator models, the condensation point is also a bifurcation
point marking the departure of the condensate (the oscillator)
from the stable Sn= 0 solution. We note that Wcond < 0, which
may seem counter intuitive from the perspective of “negative
power”, but arises naturally since our parameter W describes the
difference between pump gain and linear cavity losses.

When we further increase the pump power, the system
becomes spontaneously circularly polarised at a second critical
power value Wbif even though the gain and saturation are spin
isotropic and Eq. (1) does not favour one sz spin projection over
the other85. This phenomenon was labelled as a spin bifurcation.
It allows for observation of spontaneous magnetic ordering
between interacting condensates60, and can give rise to
topologically protected elementary excitations64. Spin bifurcation
can be demonstrated in the simplest case of a single condensate
(i.e., J= 0). Using the polariton pseudospin parametrised on the

(a)

)c()b(

J
J

WW

Fig. 1 Lattice of coupled polariton condensates. a Sketch of a square-arranged polariton lattice based on coupled micropillars. J denotes the tunnelling
between sites and W corresponds to the gain coming from the incoherent pump. b, c State space flow diagrams showing the evolution of the single
condensate for several different initial conditions (here ϕ and θ are polar and azimuthal angles that parametrise pseudospin direction). We reveal the
change from a single dominant fixed point attractor sz= 0 into two attractors of broken symmetry between spin-up and spin-down polaritons sz≠ 0.
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Poincaré sphere by the polar and azimuthal angles θ and ϕ, we
can express it as s ¼ ðsin θ cosϕ; sin θ sin ϕ; cos θÞT. Solving the
generalised Gross–Pitaevskii equation numerically for W= 0 and
W= 5/3, and random initial conditions, we observe how the
phase space flow transforms from one dominant fixed point
attractor into two fixed point attractors just by increasing the
pump [Fig. 1b, c]. This corresponds to spontaneous symmetry
breaking for the sz spin projection, known as the polariton spin
bifurcation85. The unit of time t is taken in units of ϵ−1 and we
used γ= 0.2, η= α1= 0.083, α2=−0.1α1, and Λ= 0.25 similar
to previous studies where the model was fitted to experimental
observations85.

In order to determine the spin bifurcation pump power Wbif

we need to consider the stationary solutions of Eq. (1) where each
node has the same particle population Sn= Sn+1 and same
magnitude spin polarisation jSznj ¼ jSznþ1j. It can be shown that
solutions which satisfy the above requirements and minimise the
bifurcation threshold are of the form84

Ψn ¼
Ψnþ1; if Szn ¼ Sznþ1;

�σ̂xΨnþ1; if Szn ¼ �Sznþ1:

�
ð4Þ

These trivial solutions characterise ferromagnetic and antiferro-
magnetic states where two condensates are spin parallel with zero
phase slip between them or spin antiparallel with a π phase slip
between them respectively. The bifurcation threshold is dictated
by the parameters of the system and possible spin arrangement
between nearest neighbours,

Wbif ¼ Wcond þ η
ðϵ� Z"#JÞ2 þ ðγþ Z"#ΛÞ2

αðϵ� Z"#JÞ
: ð5Þ

Here, Z↑↑ and Z↑↓ are the number of nearest-neighbour
ferromagnetic and antiferromagnetic bonds for a condensate in
the lattice (equal for all nodes). In general, Eq. (5) states that a
stationary polarisation pattern of certain parallel and antiparallel
nearest-neighbour spins may arise when Wt is increased to Wbif.
However, it is not known beforehand what determines the exact
outcome of Eq. (1) starting from some initial state vector. For
example, Z↑↑= Z↑↓= 2 patterns have many different possible
configurations for a given lattice size which all have the
same bifurcation point Wbif. We also do not know the stability
of these steady-state solutions and what other solutions might
exist. Apart from ferromagnetic and antiferromagnetic bonding
configurations between nearest-neighbour condensates one can
expect more complex states to appear which can be categorised
broadly as stationary, cyclic, and chaotic with condensate patterns
of varying spin and magnitude. Our goal is to use ML to
characterise and cluster these patterns.

Next, we continue to present our numerical results. Specifically,
we describe: (1) the numerical procedure of generating the dataset
of polariton polarisation patterns; (2) details of the data analysis
and visualisation; (3) mapping of coarse-grained phase bound-
aries and qualitative description of the zoo of phases; (4)
introduce unsupervised ML methods; (5) and present the phase
diagram of the polariton lattice spin phases.

Numerical simulations. We consider an 8 × 8 polariton lattice
and numerically solve generalised Gross–Pitaevskii equations (see
details in the “Numerical modelling” subsection in “Methods”).

In Fig. 2 we show an example of four simulations of the full
lattice polarisation. In Fig. 2a, c, e, g we plot normalised sznðtÞ spin
components for all sites as a function of time. In Fig. 2b, d, h, f we
plot final polarisation patterns measured at tf, where colour bars
encode the magnitude of the spin component sznðtf Þ. The four
examples shown in Fig. 2 are picked from a set of 100 unique

simulations with random gain W and coupling strength J to
illustrate the plethora of phases appearing in our system.
Specifically, Fig. 2a, c, e, g correspond to W= {0.77, 0.005, 0.69,
0.12} and J= {0.13, 0.48, 0.24, 0.48}, respectively. To model
experimental conditions, we also use stochastic initial conditions.

The resulting dynamics can correspond to both stationary
[Fig. 2b, d, h] and nonstationary patterns [Fig. 2f]. The latter
emerge due to the interplay of drive, decay and nonlinearity in the
system. Our goal is to find stationary states with distinct
polarisation pattern formation that can be seen as phases of
matter for polaritons, which we refer as polaritonic phases in the
following. We observe that various polaritonic phases can emerge
as analogues of spin phases, albeit in the driven-dissipative
setting. For instance, in Fig. 2b we observe a spin pattern that
resembles antiferromagnetic ordering with [Z↑↑, Z↑↓= (0, 4)].

Having observed qualitatively different behaviour for polarisa-
tion of the nonlinear polaritonic lattice, we may ask a question:
how do we classify and draw boundaries between different
polaritonic spin phases? Unlike the thermodynamic equilibrium
case, in the driven-dissipative case we do not have an established
theory of phase transitions81. We therefore take a data-driven
approach, and use ML for unsupervised clustering of polaritonic
phases.

Data visualisation. The prepared dataset of polarisation patterns
contains {Sn} lists with 192 entries for each point on the equally
spaced grid fJj;Wkgj;k. We set tf= 3000 in Eq. (3) such that all

other timescales are surpassed. While the full dynamics is
obtained by numerical propagation of Eq. (1), in practice we only
retain data at the last timesteps at T ¼ ftf þ iδtg10

i¼0
with δt= 1.

Next, we perform pre-processing on the raw data to ensure only
relevant configurations are studied. For this, we discard nonsta-
tionary data points where the variance (difference) between spin
patterns in the time series T is greater than some sensibly chosen
tolerance, and concentrate only on stationary states. For con-
venience, we also filter out redundant configurations differing
only through trivial symmetry operations in the sign of szn (for
example, the two types of lattices in an antiferromagnetic
arrangement). This is done by performing a rotation, which
corresponds to changing the signs of syn and szn pseudospin
components in cases where szn have the same magnitude.

We then proceed by analysing the high-dimensional data. The
starting point corresponds to data visualisation through dimen-
sionality reduction. We employ two methods corresponding to
the t-distributed stochastic neighbour embedding (t-SNE)88 and
principal component analysis (PCA). These techniques allow for
plotting datasets in a low-dimensional feature space (two or three
dimensions).

Performing PCA for the dataset we can potentially identify the
most important features of the condensate spin lattice. Namely,
PCA converts data points into a set of sequential orthogonal
components and maximises the magnitude of the sample
variance. This can be used as an additional pre-processing step
before t-SNE analysis (choosing most relevant features), or for
two- and three-dimensional visualisation. For the specific
problem we consider, however, PCA did not prove useful for
the visualisation of the polaritonic dataset. Complex polarisation
patterns cannot be easily distinguished by the dominant
principal component (e.g. total magnetisation Mz ¼ ∑nS

z
n). This

prompts us to use t-distributed stochastic neighbour embedding
instead.

We use t-SNE as a tool for finding points in the parameter
space that share similar behaviour (see details in the “Visualisa-
tion” subsection in “Methods”). In the reduced space t-SNE
locates points in a way that similar patterns are placed together,
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while distinct patterns are shown by distant points (with high
probability). This property is useful for mapping the hypothetical
phase boundaries, where t-SNE offers a visualisation for clusters
of points with qualitatively similar behaviour. We note however
that t-SNE does not preserve the distance between points, and can
only help drawing qualitative conclusions.

In Fig. 3a we show the two-dimensional t-SNE data
visualisation for the dataset with sxn and szn components.
Specifically, we use the medium perplexity level of 100 and the
learning rate of 200. We note that the resulting t-SNE diagram
does not change qualitatively with the change of hyperpara-
meters, and similar results can be obtained in a broad range of
perplexities and learning rates. Each sample is represented by a
thin grey dot. Additionally, we check the polarisation patterns
(examples) from a sparse set of fJj;Wkgj;k values, shown as big

coloured dots in Fig. 3a. Qualitatively similar patterns are drawn
in the same colour. In Fig. 3b we present these examples of

polaritonic phases, forming the qualitative map and giving them
tentative names. Specifically, we identified: an XY phase where
sn= (−1, 0, 0)T; chequerboard antiferromagnetic patterns
corresponding to the two-dimensional antiferromagnet (AFM);
cluster AFM patterns with zero total z-magnetisation, and
configurations where two nearest neighbours are spin-aligned,
and two nearest neighbours are anti-aligned, [Z↑↑, Z↑↓= (2, 2)];
stripe phase with zero total z-magnetisation and [Z↑↑, Z↑↓= (3,
1)]; a ferromagnetic phase with uniform spin values of szn � ±1.
We find that configurations with [Z↑↑, Z↑↓= (1, 3)] (1P-3A) are
rare and generally unstable. Additionally, we observe patterns
with non-homogeneous polarisation distributions. We label them
as a hypothetical wave phase (similar patterns occupying high J
and low W region); a glassy phase with emergent domains of
reverted polarisation on the dominant background; a diagonal
stripe phase with continuous change of szn along the diagonals
(distinct from the horizontal/vertical stripe phase).

(a)

(c)

(e)

(g)

(b)

(d)

(f)

(h)

1.00.50.0-0.5-1.0
[a.u.]

Fig. 2 Polariton lattice dynamics. In the left column we show examples of dynamical trajectories sznðtÞ for an 8 × 8 lattice of condensates for different values
of J and W. Overlaid black lines correspond to different condensates in the lattice. In the right column we show the corresponding normalised
magnetisation sznðtf Þ at final time tf= 480. Depending onW and J distinct polarisation patterns appear with hints of the antiferromagnetic order (a, b), weak
circular polarisation (c, d), two spin-down and two spin-up neighbours (e, f), and the striped pattern (g, h). Note the strong non-convergent character of
the dynamics in (e).
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This zoo of discussed polaritonic phases serves us as a base
hypothesis. The question is: do we indeed label distinct driven-
dissipative phases defined by unique polarisation patterns in the
condensate lattice, or are these simply mixed and frozen patterns
between conventional FM and AFM configurations? Next, we test
the hypothesis using the unsupervised clustering and neural
network (NN)-based learning by confusion approaches.

Unsupervised learning. We now have a map of the polariton
condensate lattice phases. Our next step is to perform unsu-
pervised clustering. This procedure analyses the underlying data
structure of an unlabelled dataset. The goal is to provide labels for
data points, separating them into distinct groups. These groups
share similar properties, in our case being stable and stationary
spin patterns. We remind that each data point (associated with
specific J and W) corresponds to a high-dimensional vector v
describing raw polarisation components {sn} or compressed fea-
ture vectors {pi}.

In the polariton dataset analysis we use agglomerative and K-
means clustering from sklearn library (see details in the
“Clustering” subsection in “Methods”). The clustering algorithms
are applied to both the raw dataset and the pre-processed dataset
with a chosen number of principal components. Other possible
choices concern the selection of metric and distance types. To
choose a setting of high-performance, we develop a quality score,
where good choices consistently assign same labels to data points
in the three well known phases (XY, AFM and FM). We achieve
best result for {sn} data pre-processed with PCA and considering

five principal components. We identified the optimal distance
choice as the complete distance with the Manhattan metric.
Applying first the agglomerative clustering and labelling each data
point, associated to one cluster, by different colours, we plot the
resulting phase diagram in Fig. 4a. Comparison with the
qualitative map inferred from t-SNE [Fig. 3b] allows us to assess
the quality of clustering. We observe the phase boundaries in
certain parameter regions. In particular, between XY phase,
antiferromagnetic ordering and ferromagnetic ordering are
visible. At the same time, while we see that several qualitatively
different antiferromagnetic patterns appear at small J and high
pump W, the boundaries within are difficult to establish. Finally,
the region of 0.75 < J < 1.5 and −0.5 <W < 0.5 with diagonal
stripes and spin-glass patterns does cluster out, but contains
varying labels that correspond to those with antiferromagnetic
orderings. Performing K-means clustering, we observe qualita-
tively the same performance for K= 6, thus suggesting that some
of patterns previously identified in Fig. 3 cannot be categorised as
unique phases. To get more quantitative insight into the polariton
lattice physics, we apply NN-based methods and further test and
refine the phase boundaries.

Learning by confusion. While unsupervised learning methods
allow to screen datasets and mine qualitative results, typically
they are not suitable to determine phase boundaries. In contrast,
supervised learning has shown great potential in determining
phase boundaries using the power of NNs1,9. They assume that
the representative candidates for the phases are known, for

AFM

cluster AFM stripe phase

wave phase

glassy phasediagonal stripe phaseXY phase

FM
FM

diagonal stripe phase

stripe phase

cluster AFM

AFM

wave phase

glassy phaseXY phase

1P-3A

(a) (b) Compressed data representation 
using t-SNE

 
1.00.50.0-0.5-1.0

Qualitative map for polariton phases
[a.u.]

Fig. 3 Visualisation of tentative polariton phases. a Data visualisation of polarisation patterns using the dimensionality reduction method. Results are
obtained using the t-distributed stochastic neighbour embedding (t-SNE) approach on the raw dataset with {sn}. We observe qualitative clustering of
characteristic polarisation patterns, and label them by checking the lattice magnetisation for marked points (solid coloured dots). b Qualitative map of
polariton phases, shown by the corresponding coloured dots in the pump-tunnelling coordinates (central plot). The map is extracted from t-SNE data and
the performed pattern analysis. We provided typical instances of the lattice polarisation szn (insets) for each hypothetical phase, where the top colour bar is
the same for all lattices. The labels correspond to: AFM antiferromagnet (red dots), FM ferromagnet (yellow dots), 1P-3A one parallel three antiparallel
configuration (dark green dots), cluster AFM (green dots), stripe phase (blue dots), XY phase (purple dots). Wave, glassy and diagonal stripe phase are
also shown with rather self-explanatory patterns. The grey region (bottom left) corresponds to lattices where polaritons are not condensed (i.e., Sn= 0).
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instance, defined by zero and infinite temperature limits in clas-
sical spin systems. Typically, the datasets of spin patterns are
formed by Monte Carlo procedures, where each point in the
parameter space (temperature, interactions, etc.) is assigned to a
collection of similar patterns. Training the NN as a classifier then
allows for identifying the boundary between distinct collections
(or phases in the physical sense). In the absence of prior labelling
and multiple phases the direct application of supervised training
is infeasible. In the following, we use NN-based technique that
allows us to determine the phase boundaries without prior
knowledge of the phases (no phase labels are provided). This
corresponds to the learning by confusion (LbC) approach pro-
posed in ref. 13.

The main idea of LbC is in providing hypothetical labelling and
then using supervised training to identify regions where the
hypothesis is justified. For simplicity, we will discuss a one-
dimensional phase boundary determination, where one of the
parameters is fixed. A full phase diagram is then obtained by
consecutive line-by-line scanning (both J and W can be fixed and
scanned interchangeably). First, let us describe the details of the
LbC approach. For this, consider a system that shows a qualitative

different behaviour as a function of the parameter W. This
corresponds to two phases separated by the critical point located
at a certain (unknown) pump power Wcrit [see the sketch in
Fig. 5a, insets]. To infer the critical point we can train an NN
assigning hypothetical (fictitious) labels, where a candidate for the
critical point W0 is chosen on the interval from W1 to W2. All
points for W <W0 are considered to be in the first phase (labelled
as “yellow”), and points for W >W0 are in the second phase
(labelled as “blue”). This corresponds to our hypothesis that
needs to be tested for a set of candidate critical points. Note that
labelling is applied both to training and testing sets used in
variational NN optimisation. We start by setting the critical point
to be at the end of the interval, W0=W1. In this case all data

agglomerative clustering
(a)

(b)

I

II III IV V

VI

learning by confusion

Fig. 4 Polariton phase diagrams. a Polariton phases separated using the
agglomerative clustering. The diagram is built with the Manhattan metric,
complete distance, for sxn; s

y
n; s

z
n components and principal component

analysis with five principal components. b Polariton phase boundaries
obtained using a learning by confusion algorithm. We separated six distinct
regions (labelled by I–VI) in the pump vs tunnelling rate coordinates.
Comparing results with the qualitative map we confirm the presence of: I—
XY ordering, II—antiferromagnet (AFM) phase, III—clustered AFM, IV—
stripe ordering, V—ferromagnet (FM) phase, VI—diagonal stripe ordering.
The black region shows the range of parameters below the
condensation point.

W-shape of learning by confusion

Input Layer R192

Hidden Layer R80

Output Layer R2

neural network  used in
 learning by confusion

(b)
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Fig. 5 Learning by confusion. a An example W-shape of the accuracy of
neural network training during learning by confusion. We fixed the
tunnelling rate J and varied the lattice gain parameter W, observing peak
accuracy in training when the hypothetical labelling coincided with the
genuine one. The insets show cartoons for possible types of labelling.
Circles show genuine labelling corresponding to two phases (yellow and
blue), with the true critical point placed in the middle. The hypothetical
labelling is shown by stars. b The structure of the neural network used in
learning by confusion. It contains three layers: input layer (64 × 3 neurons),
hidden dense layer (80 neurons) and output dense layer (2 outputs).

COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-021-00755-5 ARTICLE

COMMUNICATIONS PHYSICS |             (2022) 5:8 | https://doi.org/10.1038/s42005-021-00755-5 |www.nature.com/commsphys 7

www.nature.com/commsphys
www.nature.com/commsphys


points are assigned to the group “blue”. Next, we test the accuracy
of the trained network defined as the probability in which
predictions match the provided labels. We obtain 90% accuracy,
as test data also contains only examples with a single label. Same
situation holds at the other end of the interval, W0=W2.
However, the situation changes when W0 is placed between W1

and W2, and two labels are present. In this case, unless W0

corresponds to the true critical point Wcrit, we are training the
network to put qualitatively different data points (feature vectors)
in the same phase, leading to confusion and reduced accuracy.
The accuracy approaches unity when labelling is performed
correctly, meaning W0=Wcrit. This happens because the inner
structure of the lattice matches the markup. The overall
behaviour for the accuracy thus resembles a W-shape13 (not to
be associated with the parameter W), and is symmetric if Wcrit is
located in the middle of the [W1,W2] interval. In other words, the
point of phase transition corresponds to the point where the first
derivative of the described accuracy function changes sign from
plus to minus.

To perform LbC we construct a feed-forward NN with three
layers [see the NN structure in Fig. 5b]. The first input layer
consists of 192 neurons such that the raw data {sn} can be
analysed. The input leads to the fully-connected hidden layer that
consists of 80 neurons with sigmoid activation functions, and we
use L2 regularisation with the weight of l2= 0.001. The output
layer is also fully connected and has two outputs for learning the
effective probability to be in two phases. Here the ReLU (rectified
linear unit) activation functions are applied with l2= 0.001. The
example of W-shape accuracy plot obtained during the learning
stage for fixed J and varying W is shown in Fig. 5a.

We apply LbC to the polariton lattice data and refine (and test)
the boundaries of the phase diagram previously obtained from
unsupervised learning. We concentrate on the parameter intervals
where phase transition is potentially expected, and use LbC either
to find the critical point of a transition, or merge phases if no
W-shape dependence is observed. To train the NN we need use a
large sample of polarisation patterns. This is achieved by taking a
patch of parameters (working with the coarse-grained grid of J
and W) and generating multiple patterns by numerically solving
Eq. (1) for different initial conditions. The final phase diagram is
shown in Fig. 4b, which can be compared to the agglomerative
clustering results in Fig. 4a. At small J and W we reveal the region
of linearly polarised condensates sn= (−1, 0, 0)T which we refer
as the XY phase (labelled by I and coloured in yellow). We note
that this phase corresponds to the type of attractor shown in
Fig. 1b. As the pump gain increases, we approach three phases of
different mixtures of ferromagnetic and antiferromagnetic
ordering. We identify them in Fig. 4b as chequerboard AFM
(II), cluster AFM (III), and the stripe phase (IV). At high W and J
the system clearly enters the ferromagnetic phase (V). At low W
the LbC scans however revealed only two phase boundaries where
the W-shape emerges. We associate it to the diagonal stripe phase
(VI) in the −0.5 <W < 0.5, J > 0.6 region. At the same time, we
did not identify distinct cluster with the conjectured glassy and
wave phases sketched in Fig. 3b. We conclude that they likely
correspond to the transition between phases (crossover). For
instance, these are often observed in case of the finite-sized spin
systems and manifest as domain walls and domain structures. We
note that the performance of LbC procedure does not depend
significantly on the structure of the NN, as long as it has a high
expressivity. At the same time, the procedure is limited by the
non-convex optimisation procedure (and possible local minimum
trapping) as well as the fixed number of training samples that
coarse-grains phase boundaries.

In the study we made the first steps towards mapping spin
phases in polaritonic lattices. Exploiting a data-driven approach,

we concentrated on clustering of polarisation patterns, and did
not dive into the physics of identified phases. The next steps can
include studying the identified diagonal stripe phase, highlighting
the differences with respect to the horizontal/vertical stripe phase
and other phases, and studies of crossover to the FM phase. There
are also potential ways to enhance the clustering. One route may
be the analysis of data in the latent feature space obtained by
variational autoencoders. Finally, learning by confusion approach
can be further improved if deep NNs or more complex
convolutional NNs are used.

Conclusions
We have studied polarisation patterns that emerge as steady states
in nonlinear polaritonic lattices. For different values of pump gain
and lattice tunnelling rates, we see qualitatively distinct patterns
that correspond to polariton phases with mixtures of ferromag-
netic and antiferromagnetic bonding of chequerboard, stripe,
diagonal and cluster types. Using data analysis and machine
learning techniques we classified these patterns and identified
their phase boundaries. First, a qualitative phase map is developed
using the t-distributed stochastic neighbour embedding as a
data visualisation tool. Next, unsupervised learning based on
agglomerative clustering was used to sketch the phase diagram of
polariton phases as a function tunnelling rate and pump gain.
Finally, a neural network-based learning by confusion approach
was used to mark and refine the boundaries between polariton
phases. The work describes a path for studying phase transitions
in nonlinear optical systems, and highlights the use of data-driven
approaches in polaritonic systems.

Methods
Numerical modelling. To describe the dynamics of polaritonic lattices we solve Eq.
(1) for a square geometry with 8 × 8 sites with periodic boundary conditions. These
are chosen to suppress the boundary effects, where close to thermodynamic limit
physics can be studied. One can also consider soft-open boundary conditions, or
damped boundary conditions, where dissipation grows as you get closer to the
boundary. In the simulations, we vary two easily tunable experimental parameters
Wt and J in the relevant range to generate a dataset of possible polarisation patterns
accessible in experiment. The target nonresonant pump power W can be readily
tuned in time and the Josephson coupling strength J can be tuned by changing the
overlap between adjacent lattice sites at the lithography stage (micropillars), or by
tuning the lattice potential optically.

Visualisation. We analyse the dataset using the open source Python library
sklearn. We perform t-SNE with adjustable hyperparameters being the per-
plexity and the learning rate. Perplexity corresponds to the averaged number of
accounted nearest neighbours (data points) which affect the learning process, and
generally sets the statistical certainty in separating two points. Learning rate is
responsible for the rate at which we update the positions, determining the step size
in minimisation of loss function. The hyperparameters can be tuned to balance the
capture of local and global details in the dataset. A good choice of hyperparameters
can be additionally tested by confirming the effective clustering of known polari-
tonic phases with ferromagnetic and antiferromagnetic patterns (for instance, by
labelling known configurations and checking their positions on the t-SNE
diagram).

Clustering. We use K-means and agglomerative clustering approaches2. Both
methods generally search for the mean values for K clusters, and adjust those
means such that the chosen distance between the means and data points is
minimised. K-means clustering requires defining the number of clusters K in
advance. In contrast, the agglomerative clustering belongs to hierarchical methods.
At first, all data points are assigned to distinct clusters (labelled from 1 up to the
cardinality of the data point v). Next, using the pre-defined distance metric for two
data points v and w from different cluster, the difference between clusters is
evaluated. The cluster with a difference being below the threshold value are merged
iteratively. The distance corresponds to four distinct types: complete, single,
average and Ward’s. The complete distance type relies on the maximum distance
between two data points in different clusters. The single distance type uses the
minimum distance between two points from different clusters. The average dis-
tance type relies on the average distance between all of points from two clusters
that are compared. The Ward distance type relies on the sum of squared distances
to the centre of the cluster. The popular distance metrics are: (1) Euclidean distance
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d(v, w)≔ ∥v−w∥ as L2 norm of the difference of two vectors; (2) cosine distance
d(v, w)≔ v ⋅w/(∥v∥∥w∥); (3) Manhattan L1 distance d(v,w)≔∑i∣vi− wi∣; among
others.

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request.

Code availability
The code for the analysis is available from the corresponding author upon reasonable
request.
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