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Abstract

We study a scalar, first-order delay differential equation (DDE) with instantaneous and state-dependent
delayed feedback, which itself may be delayed. The state dependence introduces nonlinearity into an oth-
erwise linear system. We investigate the ensuing nonlinear dynamics with the case of instantaneous state
dependence as our starting point. We present the bifurcation diagram in the parameter plane of the two
feedback strengths showing how periodic orbits bifurcate from a curve of Hopf bifurcations and disap-
pear along a curve where both period and amplitude grow beyond bound as the orbits become saw-tooth
shaped. We then ‘switch on’ the delay within the state-dependent feedback term, reflected by a parameter
b > 0. Our main conclusion is that the new parameter b has an immediate effect: as soon as b > 0 the
bifurcation diagram for b = 0 changes qualitatively and, specifically, the nature of the limiting saw-tooth
shaped periodic orbits changes. Moreover, we show — numerically and through center manifold analysis
— that a degeneracy at b = 1/3 of an equilibrium with a double real eigenvalue zero leads to a further
qualitative change and acts as an organizing center for the bifurcation diagram.

Our results demonstrate that state dependence in delayed feedback terms may give rise to new dy-
namics and, moreover, that the observed dynamics may change significantly when the state-dependent
feedback depends on past states of the system. This is expected to have implications for models arising
in different application contexts, such as models of human balancing and conceptual climate models of
delayed action oscillator type.

1 Introduction

A classic scenario for the potentially destabilizing effects of delays is the interplay between two feedback loops,
where one is (effectively) instantaneous while the other is subject to considerable delay. Specific examples
arise in numerous application areas, including balancing and control [45], hematopoiesis [5], machining [16],
laser dynamics [20, 25] and climate modeling [7, 21, 26], and they are described mathematically by delay
differential equations (DDEs). We consider here the case of a scalar first-order DDE, which gives rise to the
general form

u′(t) = αu(t) + βu(t− τ) (1)
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at the linear level; note that we may fix the nonzero delay at τ = 1 without loss of generality by choosing
τ > 0 as the unit of time. This linear DDE was first studied by Hayes [12] and is now used as a starting
point and motivation in textbooks on DDEs such as Verduyn Lunel and Hale [10] as well as Smith [44]; see
also Breda, Maset and Vermiglio [3].

Equation (1) can be considered as a model for balancing with feedback control in the limit of low inertia
(or large friction) [45]. Here u′ = αu with α > 0 is the uncontrolled unstable system, where u measures the
deviation from the upright, and the term βu(t− τ) with β < 0 is the stabilizing balancing force acting with a
reaction delay [45]. Similarly, conceptual models of delayed action oscillator type for the formation of global
climate phenomena, such as the El Niño Southern Oscillation (ENSO) [48, 7] and the Atlantic Meridional
Overturning Oscillation (AMOC) [7, 40] are known to feature near-instantaneous positive feedback as well
as delayed negative feedback (arising from global energy transport across oceans). Such DDE models arising
in applications generally also feature nonlinear terms, but their linearizations may take the form of (1). In
other words, the linear stability diagram in the (α, β)-plane of system (1), which will be discussed below in
Sec. 2.1, is the starting point of the bifurcation analysis of related nonlinear DDEs.

We consider a version of (1) with state-dependent delay given by

u′(t) = αu(t) + βu(t− a− ηu(t− b)). (2)

Here the delay τ = a + ηu(t − b) depends linearly on the state u with strength η. We are interested in
system (2) with a nonzero delay a > 0 in the presence of state dependence, that is, η > 0. Rescaling u and
time t allows us to set a = η = 1 without loss of generality, yielding the state-dependent DDE

u′(t) = αu(t) + βu(t− 1− u(t− b)) (3)

as our central object of study, where α, β and b are the bifurcation parameters, and we restrict ourselves to
the physically relevant parameter range α+ β < 0.

Of particular interest from a purely mathematical as well as from an application point of view is the
fact that the state dependence of the delay introduces nonlinearity. This means that the system (3) may
feature dynamics beyond its non-state-dependent cousin, Eq. (1). It has been shown [4, 13, 14, 36] that
state dependence alone is capable of generating a wealth of dynamical phenomena, including resonant and
multi-frequency behavior, in a scalar DDE with two or more state-dependent feedback terms. The special
case of system (3) with b = 0 was introduced by Mallet-Paret and Nussbaum. In [37] they investigated the
existence and saw-tooth shaped form of the slowly oscillating periodic solutions of a singularly perturbed
version of (2) with α� 0, β � 0 and b = 0, and used the same equation as an illustrative example of more
general problems in [33, 34, 35] (see also [24, 15]). Moreover, Magpantay and Humphries [32] considered
the system (3) with b = 0 and provided sufficient conditions for the existence of periodic solutions, thus,
identifying regions in the (α, β)-plane where they may be found.

The novel aspect of the system (3) is the parameter b, which is included so that the delay may depend not
only on the current state u(t) but instead on the state u(t− b) some given time b ≥ 0 ago. This is motivated
by the observation in [22] that a delayed state dependent feedback term arises in the modeling of ENSO when
one takes into account the vertical heat transport in the ocean relating the thermocline depth to the sea-
surface temperature. Apart from [8, 22], there has been very little consideration to date of delay differential
equation models with state-in-the-past dependent delays. In particular, the dynamics and bifurcations of the
specific system (3) have not previously been studied for b > 0. We mention here that Kennedy [23] showed
for a more general class of delayed state-dependent but negative feedback that the eventual dynamics are
essentially two-dimensional. This result applies to Eq. (3) for the case α < 0 and β < 0 of negative feedback;
thus extending to b > 0 earlier results by Krisztin and Arino [29] on instantaneous state dependence.

Our goal here is to present the bifurcation analysis of system (3), which we achieve by determining its
bifurcation diagram in the (α, β)-plane for different values of the delay b of the state-dependent feedback.
To this end, we combine analytical techniques and state-of-the-art numerical continuation for DDEs with
state-dependence, which have both become available quite recently.

The classic theory of DDEs with constant delays can be found in textbooks, such as [6, 10, 44, 45].
The general framework for treating DDEs as dynamical systems is to consider the current history segment
ut : [−τmax, 0]→ R, defined by ut(s) = u(t+ s) as the state of the dynamical system with an extension rule;
for system (3) it takes the form

u′(t) = f(ut), with f(φ) = αφ(0) + βφ(−1− φ(−b)), (4)

2



where f : C([−τmax, 0],R)→ R and C0 = C([−τmax, 0],R) denotes the space of continuous functions.
For functionals f that are differentiable at least k times on C0 the DDE u′(t) = f(ut) generates a k-times

differentiable (continuous-time) dynamical system or flow given by the solution map Φt : u0 7→ ut. However,
this does not apply to DDEs with state dependency. The functional f in (4) is not differentiable on C0 due
to the presence of the composition term; in fact, f is not even locally Lipschitz continuous. As a result, even
if we assume that u stays bounded away from −1 and +∞ such that the delay 1+u(t− b) of system (3) stays
in a finite interval [τmin, τmax] with 0 < τmin < τmax <∞, the flow does not possess the regularity properties
one would expect given that all terms of the right-hand side of (4) are nested linear functions. Rather,
functionals f of state-dependent DDEs satisfy a weaker condition [11], sometimes called mild differentiability
[11, 42, 43]. With the help of this concept, DDEs of type (4) were proven in [51] to be C1-regular (that
is, once differentiable) dynamical systems on the phase space (manifold) of compatible initial conditions
C1

comp = {u ∈ C1 : u′(0) = f(u)}. This implies basic results, such as the principle of linearization along
trajectories and the existence of C1 local center-unstable manifolds [39, 46]. In fact, in [42] it is shown that
periodic orbits and their bifurcations are given by roots of finite-dimensional algebraic systems of equations
that have Ck smooth coefficients. Furthermore, center manifold expansions and normal forms at equilibria
can still be computed, and their predictions concerning families of periodic orbits branching off from the
equilibrium still hold [4, 43].

Similarly, continuation tools for DDEs with constant delays have been available for some time, as imple-
mented in the program knut [50] and the MATLAB package DDE-BIFTOOL [41], the latter of which we use in
this work. Their capabilities include the continuation of steady states, periodic orbits and their codimension-
one bifurcations; see [49, 27] for background information. The present version of DDE-BIFTOOL [41] is able
to compute center manifold expansions of bifurcations of steady states of codimension up to two [2]. Impor-
tantly for this work, the formulation of the DDE in the package DDE-BIFTOOL allows for state-dependent
delays, so that the same suite of capabilities is available for state-dependent DDEs [41, 27].

With these analytical and numerical tools to hand, the starting point for our study of system (3) is the
case b = 0 of instantaneous state dependence. We extend this earlier work by presenting the bounding curves
of the regions of existence of periodic orbits that bifurcate from a Hopf bifurcation and then quickly become
saw-tooth shaped. The existence of this type of periodic orbits indicates a definite time-scale separation along
the orbit despite the absence of small or large parameters. This observation has been a motivation behind the
interest in state-dependent delays from the mathematical perspective, and results on existence, regularity and
monotonicity properties of such saw-tooth shaped periodic orbits can be found in [33, 34, 35, 37]. We show
how the periodic orbits of system (3) reach different limits, associated with different slopes of their saw-tooth
limiting shape, as their period and amplitude go to infinity. These limits correspond to singularities when
the state-dependent delay becomes advanced, or equivalently, when the periodic orbit attains its minimum
value at a certain threshold value. The respective loci of these singularities are boundary curves of the region
of existence of periodic orbits in the (α, β)-plane for b = 0.

We next show how the bifurcation diagram in the (α, β)-plane changes when b is increased from 0. Our
main conclusion is that b > 0 immediately influences the large-period periodic behavior of the saw-tooth
orbits for b = 0 and, hence, the entire bifurcation diagram. We identify as an organizing center for this type
of dynamics a point we refer to as DZ that corresponds to an infinitely degenerate case of an equilibrium
with a double real eigenvalue zero. We determine a finite-order expansion of the two-dimensional local center
manifold to analyze the dynamics near the special point DZ. Symbolic algebra drivers for the expansion of
center manifolds in DDEs with state-dependent discrete delays and the resulting expressions up to order 5
near DZ are provided as supplementary material. Even though the smoothness of local center manifolds in
DDEs with state-dependent delays is not completely settled [28], on the two-dimensional center manifold the
Poincaré-Bendixson theorem ensures that knowledge about periodic orbits is sufficient to capture all of the
dynamics locally near DZ as a function of all three parameters α, β and b of system (3).

This paper is organized as follows. Section 2 is dedicated to the bifurcation analysis of the (α, β)-plane
for b = 0. Here, our starting point in Sec. 2.1 is the linear stability analysis of Eq. (1), which is followed in
Sec. 2.2 by the presentation of the bifurcation diagram of the nonlinear system (3); the latter features the
emergence of saw-tooth periodic orbits at the Hopf-bifurcation curve, whose limiting behavior is discussed
in Sec. 2.3. How the bifurcation diagram in the (α, β)-plane changes for b > 0 is the subject of Sec. 3; it
involves the continuation of periodic orbits up to large periods to determine how they bifurcate. Section 4
presents the center manifold analysis of the degenerate equilibrium. In Section 5, we conclude and point out

3



some directions for future research. Appendix A provides technical details regarding the computation of the
expansions of the ODE on the center manifold near the point DZ, and Appendix B points out that a general
implementation and the specific symbolic output is available as supplementary material.

2 Bifurcation analysis of instantaneous state-dependency, b = 0

We first consider the classical situation that the state-dependent term is not delayed itself, that is, b = 0 in
Eq. (3). The starting point is the linear stability analysis of the equilibrium u ≡ 0 of Eq. (1), which is indeed
also valid for b > 0. We then consider nonlinear stability, that is, the bifurcation diagram of system (3) for
b = 0 in the (α, β)-plane. This involves the study of periodic orbits bifurcating from a Hopf bifurcation and
their disappearance along curves where their period goes to infinity.

2.1 Linear stability analysis

The linearization of Eq. (3) about the equilibrium u ≡ 0 was first studied in [12] and is now a standard
example in DDE textbooks [3, 10, 44, 45]. It is given by

x′(t) = αx(t) + βx(t− 1), (5)

does not depend on the delay b of the state-dependent term and is indeed Eq. (1) with τ = 1. The charac-
teristic equation of Eq. (5) for the eigenvalues of u ≡ 0 is

λ− α− βe−λ = 0. (6)

It follows immediately that there is a real eigenvalue λ = 0 along the line β = −α in the (α, β)-plane, which
we denote Z. Moreover, there may be complex conjugate pairs λ, λ of eigenvalues with zero real part, and
this happens along infinitely many curves in parameter space, which we refer to as Hn where n = 0, 1, 2, . . .;
see, for example, [44, 3] where more details can be found. Along the curve H = H0 given by

H =
{

(α, β) = (θ cot θ,−θ csc θ), where θ ∈ [0, π)
}

(7)

the equilibrium u ≡ 0 loses its stability. The curve H starts on the curve Z at the point (α, β) = (1,−1) for
θ = 0, crosses the β-axis of the (α, β)-plane at β = −π/2 and approaches the diagonal as both α and β go to
−∞ as θ → π. At the point (α, β) = (1,−1) the equilibrium u ≡ 0 has a double real zero eigenvalue (λ = 0
is a double root), and hence we refer to this point as DZ.

These curves and the stability region are shown in Fig. 1(a). The equilibrium u ≡ 0 of the linear system (1)
is exponentially stable in the shaded stability region in the (α, β)-plane, which is bounded by the curves Z
and H; this region is open to the left and its tip is the point DZ. This type of stability region is common in
dynamical systems with delay. Note that the lower boundary curve H of the stability region of the equilibrium
is due to the nonzero delay, and it is of particular interest when studying delay-induced oscillatory instability
in engineering [45] and science [48].

The additional curves Hn along which one finds further pairs of complex conjugate eigenvalues with zero
real parts have the same form as H in (7), except that θ ∈ (nπ, (n + 1)π) for n > 0. We do not consider
them here because none of the curves Hn form part of the stability boundary. They are interleaved in the
(α, β)-plane, with no intersections with one another, and all lie outside the part of the (α, β)-plane shown in
Fig. 1(a); see, for example, [3, 44] for illustrations of the curves Hn.

2.2 Nonlinear stability and bifurcating periodic orbits

In the presence of nonlinearity, global stability is no longer guaranteed and the linearization (1) only provides
the information that the equilibrium is locally stable in its stability region. For system (3), where the
nonlinearity is generated by the state dependence, it has been shown in [32] that the equilibrium u ≡ 0 is
globally asymptotically stable in the cone |β|+ α < 0 bounded to the right by the lines Z and α = β — but
not in the whole linear stability region due to a co-existence of the stable equilibrium with a stable periodic
orbit.
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Figure 1: Bifurcation diagram of system (3) with b = 0 in the (α, β)-plane. Panel (a) shows the stability
diagram of the equilibrium u ≡ 0 with the curves Z (black) of a simple zero eigenvalue and H of a pair of
complex conjugate eigenvalues with zero real part, which meet at the DZ (green diamond) of double zero
eigenvalues and bound the region where (3) is linearly stable (shaded); also shown for reference is the line
α = β (black dotted). The associated Hopf bifurcation of (3) along the curve H has a generalized Hopf
bifurcation point GH (brown square), where its criticality changes from supercritical (blue) to subcritical
(cyan). Panel (b) is an enlargement that also shows a curve of folds of periodic orbits F (red), a curve M
(black dashed) of periodic orbits with a point that attains the minimum value −1, which has a corner at
MF (magenta circle) where there is a fold periodic orbit with minimum value −1. The blue shaded regions
indicate the (co)existence of periodic orbits, and the blue crosses mark the locations of the periodic orbits
shown in Fig. 2.

We now review these results and then present the bifurcation diagram in the (α, β)-plane of the nonlinear
system (3), including regions of (co)existence of stable and unstable periodic solutions. First of all, the
stability boundaries Z and H become bifurcation curves. Namely, along the curve Z there is an infinitely
degenerate transcritical bifurcation. This bifurcation is degenerate because for α = −β system (3) has a
one-parameter family of equilibria, x ≡ xeq with arbitrary xeq. Below the line α = β one finds additional
interesting dynamics. As was already mentioned, along the curve H one encounters a Hopf bifurcation. DDE-
BIFTOOL [41] computes the coefficient of the third-order expansion for Hopf bifurcations, which allows one
to determine the first Lyapunov coefficient and, therefore, the criticality of the Hopf bifurcation along H. As
shown in Fig. 1(a) and in the enlargement in Fig. 1(b), the criticality changes at a generalized Hopf bifurcation
point GH located at (αGH , βGH) ≈ (−0.63,−1.99). In between the points GH and DZ the Hopf bifurcation
along H is subcritical and the unstable periodic orbit that bifurcates coexists with the stable equilibrium
u ≡ 0 in the region above the curve H; in this case the equilibrium cannot be globally asymptotically stable.
Otherwise, for α < αGH , the Hopf bifurcation along H is supercritical and a stable periodic orbit bifurcates,
which coexists with the unstable equilibrium u ≡ 0 in the region below H.

Figure 2 shows time series of a stable and of an unstable periodic orbit, namely those that exist at the
two crosses in the (α, β)-plane of Fig. 1(b), where the existence of periodic orbits is indicated by additional
shading. Figure 2 shows not only the time series of u(t) but also that of the delayed variable u(t− 1− u(t)).
Observe that this type of oscillation follows closely the straight line u(t) ∼ k1t with a positive slope k1 up
to a large value of u, before a quite sharp transition back to u ≈ −1. The latter is accompanied by a spike
and then reset of u(t − 1 − u(t)), where the delay 1 + u(t) almost vanishes when u ≈ −1. The difference
between the stable periodic orbit in panel (a) and the unstable periodic orbit in panel (b) of Fig. 2 lies in
the subsequent slope of u(t− 1− u(t)) after the spike.

Going beyond the results in [32], we now perform a continuation of the stable periodic orbit bifurcating
from H. It shows that, as α is increased for fixed β, the unstable periodic orbit disappears along the half-line
given by α = 0 with β < −1. Similarly, as β is increased for fixed α, the unstable periodic orbit bifurcating
from H disappears along the line segment given by β = −1 with 0 < α < 1. Together these two curves form
the locus M along which the respective periodic orbit has a point that attains the minimum value −1. As is
discussed in the next section, the stable and unstable periodic orbits, which already appear to be quite close
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Figure 2: Periodic solutions of system (3) for b = 0 shown as time series of u(t) and of u(t − 1 − u(t));
panel (a) shows the stable periodic orbit for α = −0.1 and β = −1.7, and panel (b) the unstable orbit for
α = 0.3 and β = −1.1. These parameter values are denoted by blue crosses in Fig. 1.

to a saw-tooth shape in Fig. 2, reach different limiting shapes as these two branches of M are approached,
which implies that the locus M is a boundary for the existence of the respective periodic orbit.

We remark that the limiting periodic orbits close to M are reminiscent of the saw-tooth periodic orbits
studied by Mallet-Paret and Nussbaum [37]. To be more specific, those authors proved rigorously the existence
of slowly oscillating periodic orbits with saw-tooth shape of the state-dependent delay differential equation
εu′(t) = −u(t)− ku(t− 1− u(t)) when ε is sufficiently small. We note that Eq. (3) for b = 0 can be brought
into this form by setting α = −1/ε and β = −k/ε, subject to the restriction α < 0 and β < 0. This apparent
connection motivates us to study in Sec. 2.3 the scaling behavior of periodic orbits near M in more detail,
that is for both α = 0 and β ≤ −1 as well as β = −1 and 0 ≤ α < 1. A rigorous analysis in the spirit of
Mallet-Paret and Nussbaum [37] is beyond the scope of our work here, but could present an interesting and
challenging topic for future research.

The boundary of the region with periodic orbits also contains the curve F of fold periodic orbits, which
emerges from the generalized Hopf bifurcation point GH (as predicted by its normal form [30]). Continuation
of F shows that this curve ends at the point labeled MF at (αMF , βMF ) ≈ (0,−1), which is the corner point
of the locus M. In the triangular region bounded by the curves H, F and M in Fig. 1(b) the stable periodic
orbit coexists with the stable equilibrium u ≡ 0, as well as the unstable periodic orbit; the two periodic orbits
bifurcate and disappear as this region is exited through the fold curve F. We remark that the curve F, but
not the curve M, was found previously in [32].

2.3 Two different saw-tooth limits and the locus M

We now consider the limits of the stable and unstable periodic orbits in Fig. 2 as either α increases to 0 for
fixed β < −1, or β increases to −1 for fixed 0 ≤ α < 1, respectively. To this end, we perform one-parameter
continuation of these periodic orbits in the respective parameter, starting at the Hopf bifurcation curve H,
until either a large period T is reached or the minimum of periodic orbit comes very close to the value −1 (so
that the state-dependent delay becomes zero). These and related quantities are monitored, which allows us
to characterize the nature of the respective limiting process. In particular, we confirm in this way the nature
of the locus M in Fig. 1(b).

2.3.1 Limit of the stable periodic orbit as α increases to 0

Figure 3 shows the ten periodic orbits of system (3) for b = 0 and β = −1.1 down to β = −2.0 (see the legend)
for which T = 5 · 102 has been reached as α approaches 0 from below. Panel (a) shows the respective time
profiles with a small offset in a waterfall plot; here both t and u have been scaled by T and the profiles have
been synchronized so that their fast segments are at the (rescaled) time instance t/T = 0.5. This illustrates
that for all values of β asymptotically, as α increases towards 0, the same limiting saw-tooth shape is reached,
consisting of linear solution segments with slope 1 that are periodically reset to negative values. Note that
the time interval during which the switch occurs is small. This limiting behavior is illustrated further in
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Figure 3: Periodic orbits of system (3) for b = 0 as α increases to 0 for different fixed values of β < −1 as
shown. Panel (a) shows their asymptotic profiles in a waterfall plot synchronized to their fast segments, and
panel (b) shows them in the (u(t), u(t− 1− u(t)))-plane with enlargements near the highlighted two corners;
all panels are scaled by the period T , the periodic orbits have been continued in to T = 5 · 102, and the
arrows in panel (b) indicate the time-scale separation along the orbit.

Fig. 3(b), where these periodic orbits are shown in projection onto the (u(t − 1 − u(t))/T, u(t)/T )-plane.
All ten periodic orbits practically coincide in this representation and effectively follow one and the same
(rescaled) isosceles right triangle, where gray arrows indicate the time-scale separation during the different
stages of the saw tooth orbit. The orbit mainly consists of a linearly increasing segment with slope 1 of u(t)
from 0 to 1, while u(t−1−u(t)) is practically −1 (close to zero when rescaled by the period). This is followed
by the fast reset to negative values of u(t) when u(t) is close to its maximum value, which is approximately
given by (1 + β)/α and accompanied by u(t − 1 − u(t)) changing its sign; see the upper inset of Fig. 3(b).
During the reset there is a fast segment where u(t) first decreases linearly with respect to u(t − 1 − u(t))
all the way to 0, while u(t − 1 − u(t)) increases to its (rescaled) maximum 1. In particular, u(t − 1 − u(t))
catches up with u(t) and its dynamics is the fastest when it is close to its maximum value. During this very
fast stage, u(t − 1 − u(t)) catches up with u(t) for the second time, while u(t) is still practically 0 and the
cycle repeats.

While all ten periodic orbits in Fig. 3(b) are extremely close to each other, small differences between the
periodic orbits can be distinguished when one enlarges the turns near the corners. The two inset panels show
that these turns are sharper the smaller β is, which is because we show periodic orbits with a constant period.
Namely, T ∼ (1 + β)/α meaning that 1 + β is inversely proportional to the distance of α to zero (that is, to
the locus M), which determines the interval of reset and, hence, the sharpness of the turns.

Figure 4 provides additional information about the periodic orbits for fixed β, which are born at the Hopf
bifurcation curve H and eventually approach the saw-tooth limit along the vertical part of the locus M as
α is varied. More specifically, shown are the continuations of the ten periodic orbits for the fixed values of
β < −1 from Fig. 3. They are represented in Fig. 4 on a doubly-logarithmic scale by the period in panel (a),
by the u-minimum (shifted up by 1) along the profile in panel (b), and by the amplitude in panel (c), shown
as functions of α. For β = −1.1 down to β = −1.7, the periodic orbit is born along the subcritical part of
the curve H; hence, α initially decreases until the fold point on the curve F is reached and α, which is now
negative, increases as the curve M is approached; compare with Fig. 1. Note that the periodic orbit is stable
past the fold, as are the periodic orbits for β = −1.8 down to β = −2 that bifurcate from the supercritical
part of the Hopf bifurcation curve H in the direction of increasing (and also negative) α. As α increases
to 0 and the curve M is approached, period and amplitude of any of these stable periodic orbits grow with
decreasing distance of α from 0; at the same time the minimum along the periodic orbit approaches −1.
Notice in Fig. 4(a)–(c) that all these curves have the same slope when α is negative and sufficiently close to
0. Panel (d) illustrates that T scales as |1+β|/α as α approaches 0, shown as the rescaled period T ·α/|1+β|
versus α/|1 + β| on a linear scale. This scaling also holds for the amplitude, due to the linear relationship
between period and amplitude shown in panels (a) and (c) as α increases to 0.
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Figure 4: Continuation of eventually stable periodic orbits of system (3) for b = 0 in α for different fixed
values of β < −1; compare with Fig. 3. Illustrated on a logarithmic scale for α are the asymptotic behavior
of the period in panel (a), the minimum in panel (b), the amplitude in panel (c), and the rescaled period
T · α/(1 + β) in panel (d); circles indicate Hopf bifurcations and triangles fold points.

2.3.2 Limit of the unstable periodic orbit as β increases to −1

We now consider the behavior of the unstable periodic orbit of system (3) for b = 0 as the horizontal segment
of the locus M is approached as β increases to −1 for different fixed values of α with 0 < α < 1. Figure 5
illustrates ten computed periodic orbits near M (as determined by either a high period or a small value of
β + 1) for α = 0 up to α = −0.9 (see the legend). As in the previous section, panel (a) shows the respective
time profiles, where both time and u(t) have been scaled by T and the fast segments are at the (rescaled)
time instance t/T = 0.5. When α = 0, which corresponds to the corner point (0,−1) of the locus M in
the (α, β)-plane, the slope is 1 as was the case in the previous section. However, in contrast to the limit
we considered in Sec. 2.3.1, the slope of the limiting saw-tooth shape along the horizontal part of M is now
1 − α and so depends on α, which is why no offset is required to distinguish these ten orbits in Fig. 5(a).
In particular, the limiting slope as β → −1 approaches zero as also α → 1, that is the end point DZ of the
locus M.

The projection onto the (u(t− 1− u(t))/T, u(t)/T )-plane in Fig. 5(b) shows that, owing to the different
slopes involved, the ten unstable periodic orbits do not coincide. We observe that, as α increases, the
maximum value along the respective periodic orbit decreases and scales as A ∼ (1 − α)T with period; as a
result, the curve of maxima in this projection is approximately given by (α(1−α), 1−α). Again, gray arrows
indicate the time-scale separation during the different stages of the saw tooth orbit. During the slow part,
u(t−1−u(t)) increases linearly with slope α(1−α) and we find the relationship (1+u(t))/(1−u(t−1−u(t))) ≈
α between the instantaneous and the delayed state. The fast reset to negative values of u(t) occurs during
a time interval of order 1 compared to the large period when u(t) is close to its maximum value; now u(t)
decreases linearly while u(t− 1− u(t)) increases fast, in such a way that it gives rise to the slope −1/(1−α)
in Fig. 5(b). Again, it is during the switch that u(t − 1 − u(t)) catches up with u(t). The dynamics of
u(t − 1 − u(t)) is the fastest when u(t − 1 − u(t)) reaches its maximum value. While u(t) is still small
u(t− 1− u(t)) catches up with u(t) for the second time and the cycle repeats.
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Figure 5: Periodic orbits of system (3) for b = 0 as β increases to −1 for different fixed values of 0 ≤ α < 1,
shown as in Fig. 3; here the periodic orbits for 0 ≤ α ≤ 0.2 have been continued to T = 5 · 102 and those for
0.3 ≤ α ≤ 0.9 to β = −1− 10−5.

Figure 6 shows the scaling behavior of period, minimum and amplitude of the ten unstable periodic orbits
as a function of β (offset by 1 again to enable a doubly logarithmic scale), when they are continued from
the Hopf bifurcation curve H as β increases toward −1. Note that all of these periodic orbits are unstable,
since they bifurcate from the unstable part of H in the direction of increasing β; compare with Fig. 1. As
panels (a)–(c) show, in the process, period and amplitude again grow beyond bound. However, this growth
depends on the value of α: the closer α is to 1, the slower period and amplitude increase as a function of the
distance of β from −1; similarly, the decrease of the minimum along the periodic orbit approaches −1 slower
the larger α is. This slowing growth with α is the reason why the periodic orbits shown in Fig. 5 could be
continued up to fixed T = 5 · 102 only for 0 ≤ α ≤ 0.2; those for 0.3 ≤ α ≤ 0.9 have been continued to fixed
β = −1− 10−5 instead. Fig. 4(d) shows that period and amplitude indeed scale as A ∼ (1−α)T in the limit
β → −1.

2.3.3 Limiting straight-line orbits

Having identified the scaling behavior of the periodic orbit approaching the locus M, we now examine
candidate solutions for the respective limits. Since both amplitude and period grow beyond bound as either
α increases to 0 for fixed β < −1, or β increases to −1 for fixed 0 ≤ α < 1, the length of the orbit segment
where the derivative is virtually indistinguishable from 1−α grows beyond bound as well. This suggests that
the periodic behavior ceases in the limit: at the locus M the dynamics is an unbounded, linearly increasing
segment u∗ connecting −1 and ∞, which we refer to as the limiting straight-line orbit.

It is advantageous to consider straight-line orbits for any b ≥ 0. Substituting the ansatz u∗(t) = k1t+ k2
into Eq. (3) implies

k1(1 + β(1− k1b)) = (k1t+ k2)(α+ β(1− k1)). (8)

Any nontrivial solution of Eq. (8) requires

β = β∗ = −1− αb
1− b

, and k1 = k∗ = 1 +
α

β
=

1− α
1− αb

.

Therefore, the straight-line orbit u∗(t) = k∗t + k2 of slope k∗ solves Eq. (3) if and only if β = β∗; here the
offset parameter k2 is arbitrary and can be set to zero without loss of generality. In order to ensure that along
u∗ the delay τ∗ = 1 − u∗(· − b) is well behaved, we require τ∗ ≥ 0 (positivity) and d

dtτ∗ ≥ 0 (monotonicity)
for all t, which means equivalently 0 ≤ α ≤ min{1, 1/b}.

In order to obtain a similar result for the specific limit α → 0 for fixed β ≤ −1, we define s = αt,
v(s) = αu(t) and recast Eq. (3) with respect to the rescaled variables as

α
d

ds
v(s) = αv(s) + βv(s− α− v(s− αb)). (9)

9



Figure 6: Continuation of unstable periodic orbits of system (3) for b = 0 in β for different fixed values of
α; compare with Fig. 5. Illustrated on a logarithmic scale for α are the asymptotic behavior of the period
in panel (a), the minimum in panel (b), the amplitude in panel (c), and the rescaled period T (1 − α) in
panel (d); circles indicate Hopf bifurcations.

Equation (3) is singularly perturbed. Setting α = 0, we obtain 0 = βv(s − v(s)), which is trivially satisfied
by the straight-line orbit v∗(t) = t of slope 1.

These two cases can be combined by defining the locus

L =

{
(α, β) ∈ R2

∣∣ α(β +
1− αb
1− b

)
= 0 with 0 ≤ α ≤ 1, β ≤ − 1

1− b

}
, (10)

of straight-line orbits in (α, β)-plane for any b. More specifically, for 0 ≤ b < 1 the locus L consists of two
parts: the line segment connecting the point DZ at (α, β) = (1,−1) with the point (α, β) = (0,− 1

1−b ), which
is a corner where L continues as the half-line given by α = 0 and β ≤ −1/(1 − b). In particular, the loci
L and M coincide for b = 0, which is consistent with our observation that then the respective straight-line
orbit reflects (at least part of) the limit object as the periodic orbit approaches the locus M = L.

3 Bifurcation analysis of DDE with delayed state dependence

We now study the effects of a delay b > 0 in the state-dependent delay term of Eq. (3). We do so by incre-
mentally increasing the parameter b from zero, thus, slowly ‘switching on’ the delay in the state-dependency
τ = 1+u(·−b), to determine how the bifurcation diagram in the (α, β)-plane changes in the process. Nonzero
b introduces additional complications for defining solutions, which we evade by requiring positivity of the
combined delay term τ , or equivalently u ≥ −1 uniformly, which is captured by the locus M. This restric-
tion is very natural in the context of control theory because it ensures causality and, therefore, the physical
relevance of solutions.

We first consider in Section 3.1 the (α, β)-plane for small values of b up to b = 0.2. This shows how the
bifurcation diagram for b = 0 changes with b > 0; in particular, the loci M and L no longer coincide. We then
consider in Section 3.2 larger values of b up to b = 0.5 and show that this entails a qualitative change of the
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Figure 7: Bifurcation diagram of system (3) in the (α, β)-plane for (a) b = 0, (b) b = 0.01, (c1) b = 0.1
with enlargement (c2); and (d1) b = 0.2 with enlargement (d2). Shown are the curves Z (black) of simple
zero eigenvalue and H of Hopf bifurcations (blue when supercritical, cyan when subcritical) of u = 0, the
curve F (red) of fold bifurcation of periodic orbits, and the loci M (black dashed) and L (green dashed);
also shown are the points DZ (green diamond) of double zero eigenvalues, GH (brown square) of generalized
Hopf bifurcation, CP (purple triangle) of cusp bifurcation on F, and MF (magenta circle) of fold periodic
orbit with minimum value −1. The stability region of u = 0 is shaded gray, and blue shading indicates
(co)existence of periodic orbits.

codimension-two point DZ and, hence, of the entire bifurcation diagram in the (α, β)-plane. The associated
degeneracy of the point DZ is studied by means of a center manifold analysis in Section 4.

3.1 Bifurcation diagram for small b > 0

Figure 7 shows how the bifurcation diagram of system (3) in the relevant part of the (α, β)-plane near the
point DZ changes when b is increased up to b = 0.2. As the starting point, panel (a) shows the bifurcation
diagram for b = 0 from Fig. 1(b) over a slightly extended range; here the locus L given by Eq. (10) has
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also been added and labeled, showing that indeed L agrees with M in this case. When b is increased, the
curves Z, H and the point DZ are unaffected as they are determined by the linear stability analysis alone.
However, on the nonlinear level b does have an effect and the bifurcation diagram changes as soon as b is
increased from 0. As Fig. 7(b) for b = 0.01 shows, there are two qualitative changes. Firstly, the locus M
that bounds the region of periodic orbits (with positive state-dependent delay) has deviated from the locus
L along which one finds straight-line orbits; this is visible chiefly along their vertical sections, and M and
L are still very close together along their horizontal sections. While L is plotted readily from Eq. (10), the
locus M can be continued reliably as a periodic orbit in two parameters subject to the additional condition
that the minimum value along its profile equals −1. Secondly, the corner point MF of L = M in panel (a)
for b = 0 has split up in panel (b) for b = 0.01 into two points labeled MF, with the lower of the two now
being the end point of the curve F of fold bifurcations of periodic orbits that emerges from the generalized
Hopf bifurcation point GH; moreover, there is now a cusp point CP on the curve F, close to where it reaches
MF.

When b is increased further, these qualitative changes become more visible, as is shown in Fig. 7(c1)
for b = 0.1. The deviation of the locus M from the vertical part of L is now very pronounced, leading to
considerable shrinking of the region where one finds stable periodic orbits (that emerge from the supercritical
part of H). Since the points GH, CP and MF have also moved to lower values of β, the region with two
periodic orbits has become vanishingly small. The enlargement panel (c2) shows that the curve F, when
continued from GH, crosses M and has a cusp point CP before the curve F ends on M at the point MF.
Notice in Fig. 7(c1) that M is still very close to the still almost horizontal slanted segment of L. Nevertheless,
close to this segment of M we were able to detect fold bifurcations of periodic orbits that have both large
period and large amplitude. The continuation of such folds is very challenging numerically, but we were able
to find the fold curve F shown as a new feature of the bifurcation diagram for b > 0. The curve F emerges
from the upper point MF on the locus M and tracks the almost horizontal segment of M very closely. While
the continuation stops somewhat short of this point when b = 0.1, we suspect that F extends all the way to
the point DZ. This is confirmed in Fig. 7(d1) for the larger value b = 0.2, for which we were able to continue
the curve F all the way from MF to DZ. In spite of the fact that the respective fold bifurcations of periodic
orbits are practically impossible to identify and continue when b is very small, due to their extremely large
periods, we therefore conclude that this additional curve F exists for any b > 0. This numerical observation
is confirmed in Sec. 4 via a normal form analysis of the point DZ. Notice further in Fig. 7(d1) that the points
GH on the curve H and MF on the curve M have moved to small values of β outside the region of the
(α, β)-plane shown here. Otherwise, the bifurcation diagram for b = 0.2 appears to be qualitatively the same
as that for b = 0.1. However, this is not quite the case: as can be seen in the enlargement panel (d2), close
to the cusp bifurcation point CP, there are now two additional cusp points, also labeled CP, which are the
result of a transition through a swallowtail bifurcation (degenerate cusp bifurcation) [1, 9, 30]. Notice this
extra feature is on a very small scale in the (α, β)-plane and hardly changes the boundary of the region with
two periodic orbits.

An important feature of Fig. 7 is the deviation of the locus M from the locus L, and we proceed by
discussing the behavior of periodic orbits as M is approached for the case that b = 0.1. Here, similar to our
study for b = 0 in Sec. 2.3, we first consider the more vertical section of M, which is quite far from L, and
then the almost horizontal section of M, which is still very close to L.

3.1.1 Periodic orbits when approaching the more vertical part of M

Figure 8 shows the fate of nine distinct stable periodic orbits of system (3) for b = 0.1 as α approaches the
locus M for different fixed values of β ≤ −1.2. Panels (a) and (b) show the periodic orbits at the locus M as
profiles and in projection onto the (u(t), u(t− 1− u(t)))-plane, respectively, where all axes have again been
rescaled by T . Comparison with Fig. 3 for b = 0 shows that these orbits no longer have a very distinctive saw-
tooth shape: while they all feature an almost linearly increasing segment and a sharp corner when reaching
their respective minimum value, the periodic orbits are still quite far from the limiting straight-line orbit
and, hence, still clearly distinguishable. Moreover, we observe in Fig. 8(a) and (b) that decreasing β leads
to secondary oscillations along the periodic orbits after the switch to negative values; these oscillations are
more pronounced the smaller β. One-parameter continuation of these periodic orbits in α, from where they
are created at the Hopf bifurcation curve H all the way to the locus M, are shown in panels (c) and (d). As
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Figure 8: Periodic orbits of the system (3) for b = 0.1 as α approaches the locus M for the different fixed
values of β = −1.2 down to β = −2. Panel (a) shows their (rescaled) profiles at M synchronized to their
fast segments, and panel (b) shows them in the (u(t − 1 − u(t − b))/T, u(t)/T )-plane; compare with Fig. 3.
Panel (c) shows the continuations in α of the periodic orbits, represented by the period T , from the Hopf
bifurcation H (circles), possibly via fold points (triangles) to the locus M (squares); the same branches are
shown in panel (d) as a function of the amplitude A of the periodic orbits; compare with Fig. 4.

was the case for b = 0 in Fig. 4, there are fold points on some of the branches of periodic orbits in Fig. 8(c),
namely for β = −1.6 down to β = −1.9. More specifically, for β above the cusp point CP on the curve F
at β ≈ −1.57 there or no folds; in between CP and the point MF on the curve M at β ≈ −1.66 there are
two fold points; in between MF and the point GH on the Hopf bifurcation curve H at β ≈ −1.93 there is
one fold point; and for β below GH there are again no folds on the branch of periodic orbits; compare with
Fig. 7(c1) and (c2). Notice further that, as a result, the limiting periodic orbit on M in Fig. 8 is stable below
MF and unstable above MF. In either case, the period and the amplitude of the periodic orbit reaches a
finite limit, that is, they are bounded on M. This is owing to the fact that M and L no longer coincide and
illustrates comprehensively that the straight-line orbit is no longer a good approximation for the orbits along
this part of the locus M (with β < −1.1).

3.1.2 Periodic orbits when approaching the almost horizontal part of M

Figure 9 shows ten distinct unstable periodic orbits of system (3) for b = 0.1 as β approaches the locus M for
different fixed values of α ∈ [0, 0.9]. Panels (a) and (b) again show these periodic orbits at M (where they
have a minimum of −1) as profiles and in the (u(t − 1 − u(t))/T, u(t)/T )-plane, respectively. The periodic
orbits all feature an almost linearly increasing segment whose slope scales like 1−α, as well as sharp corners
at their minima — yet are clearly still quite far from being of saw-tooth shape; compare with Fig. 5. This is
in spite of the fact that the respective parts of the loci M and L are very close to each other in the (α, β)-
plane of Fig. 7(c1). Figure 8(c) shows the associated one-parameter continuations of these periodic orbits
in β, from where they are created at the Hopf bifurcation curve H to the locus M. Notice from Fig. 7(c1)
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Figure 9: Periodic orbits of system (3) for b = 0.1 as β approaches M for ten values of α = 0 up to α = 0.9.
Panels (a) and (b) show the periodic orbits at M as (rescaled) profiles and in the (u(t−1−u(t−b))/T, u(t)/T )-
plane, respectively; compare with Fig. 5. Panels (c) and (d) show their period T and amplitude A when
continued in β from H (circles), via fold points (triangles) to M (squares) and beyond (lighter curves) up to
T = 100. Panels (e) and (f) show the periodic orbits with T = 100 as profiles and in the (u(t − 1 − u(t −
b))/T, u(t)/T )-plane, respectively.

that there is a fold curve F above M, very close to its almost horizontal part; see also Fig. 7(d1). Hence,
the unstable periodic orbits, which bifurcate from the subcritical part of H, become stable just before M is
reached. Indeed, we found fold points very close to M on the branches for α = 0 up to α = 0.8 in Fig. 7(c1);
for α = 0.9, on the other hand, we do not show a fold point very close to M because its detection is no
longer reliable since the branch is practically vertical. Panel (d), showing the same branches as a function
of the amplitude A, provides evidence that the expected scaling behavior A ∼ T (1 − α) between amplitude
and period still applies, although both A and T only reach finite values at M.
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Figure 10: Bifurcation diagram of system (3) in the (α, β)-plane (a1) for b = 0.5, and (a2) an enlargement near
the point DZ; compare with Fig. 7. The inset panel (b) shows the branches of generalized Hopf bifurcation
points GH along the Hopf curve H in the (α, b)-plane; the brown square highlights the point GH for b = 0.5
shown in panels (a1) and (a2).

Each of the branches of (now stable) periodic orbits can actually be continued in β past the locus M, in
spite of the fact that the periodic orbits now contain a segment where the delay is positive; this is possible
because periodic orbits are continued as solutions of a boundary value problem. The lighter curves in Fig. 8(c)
and (d) are the continuations of the ten branches computed up to a period of T = 100. Notice that these
extended branches are practically vertical in panel (c), meaning that the parameter β hardly changes, which
is due to the very small distance between the loci M and L. The periodic orbits with T = 100 are shown
panels (e) and (f) as time series and in the (u(t − 1 − u(t))/T, u(t)/T )-plane, respectively; this shows that
they are much more saw-tooth shaped and, hence, closer to the locus L; compare with Fig. 5. We note here
that these solutions past M are not directly physically relevant, but nevertheless serve to build intuition
regarding the limiting shape of periodic orbits close to L.

3.2 Qualitative changes near DZ for larger values of b

We have observed in the previous section that the curve F and the loci M and L are very close together
near the point DZ. Moreover, we know from Eq. (10) that the slope b/(1− b) of L near DZ increases with
increasing b, while the curve H does not change. Therefore, the curves L and H exchange their relative
positions near DZ as b is decreased further. We now discuss and illustrate in Fig. 10 what this change
implies for the curves F and M and the bifurcation diagram in the (α, β)-plane more generally.

Panel (a1) of Fig. 10 shows the bifurcation diagram for b = 0.5, and panel (a2) is an enlargement near
the point DZ. There clearly has been a qualitative change of the bifurcation diagram. Both the loci L and
M now lie to the lower side of the curve H. Moreover, there is now a second point GH on H, where the
criticality of the Hopf bifurcation changes. Note that GH is now the end point of the fold bifurcation curve
F, rather than the point DZ; compare with Fig. 7(d1). Between GH and DZ the bifurcating periodic orbit
is stable and disappears (for decreasing β) at the locus M; see Fig. 10(a2). Notice the considerable region
with two periodic orbits in panel (a1), bounded by the subcritical part of H and the fold bifurcation curve
F. The inset panel (b) shows the α-values of both generalized Hopf bifurcation points GH against b. The
branch that emerges from b = 0 is the point GH we discussed previously; it moves towards larger and larger
negative values for α along the Hopf bifurcation curve H as b increases, and it is outside the shown parameter
range already for b = 0.2. However, there is a second branch, which emerges from α = 1, that is, from the
point DZ, at b = 1/3; its instance for b = 0.5 is highlighted by a square.

4 Behavior near the point DZ

Our numerical investigation clearly shows that there is a change in the nature of the degenerate transcritical
bifurcation at DZ when b = 1/3, and that this is the reason for the qualitative change of the bifurcation
diagram illustrated in Fig. 10(a1) and (a2). This motivates a center manifold analysis of the codimension-two
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point DZ here. The double-zero singularity at the linear level has already been identified in [52], where its
consequences are studied for the case of a DDE with constant delay and a non-smooth instantaneous term
of the form

a−1u̇(t) = (1− |u(t)|)u(t)− u(t− 1). (11)

The analysis of this system in [52] established that a family of periodic orbits emerges from u = 0 at DZ, with
period going to infinity while the amplitude decreases to zero; only the parameter a was varied, and the non-
smoothness of (11) precluded expansion and truncation. In our case, the semiflow also lacks smoothness due
to state dependence, but we may still apply expansion techniques near DZ. Furthermore, our nonlinearity is
infinitely degenerate, leading to a line of equilibria in DZ. Our goal is to identify and unfold the codimension-
three point of the DDE (3) at (α, β, b) = (1,−1, 1/3), which we refer to as DZGH. To this end, we write
system (3) as

f : C → R
u 7→ αu(0) + βu(−1− u(−b))

with the arbitrarily often mildly differentiable right-hand side given by f ; see [11, 42, 43] for the definition of
mild differentiability. We use the convention that Ck = Ck([−τmax, 0;R) is the space of k times continuously
differentiable functions on [−τmax, 0]. The equilibrium u = 0 of the (3) is degenerate for α = 1 and β = −1.
More precisely, along Z we have α = −β and Eq. (3) has a one-parameter family of equilibria, x(t) = xeq
with arbitrary xeq. Consequently, the linearization

x′(t) = αLxt with L : C → R (12)

x 7→ x(0)− x(−1)

of Eq. (3) about x = 0 (for arbitrary α and β = −α) has a first trivial eigenvalue 0 with eigenfunction
x1(t) = 1. In what follows, we restrict attention to the degenerate case α = 1, where the characteristic
function χ(λ) = λ−(1−exp(−λ)) in x = 0 has a double root 0; in other words, the linear operator associated
with the linear DDE (12),

A : C1 → C0

x 7→ x′ with domain D(A) = {x ∈ C1 : x′(0) = Lx}, (13)

has an eigenvalue 0 with algebraic multiplicity 2 at the point DZ. The curve H of Hopf bifurcations given in
Eq. (7) emerges from (α, β) = (1,−1) and has the expansion

α = 1− ω2

3
+O(ω4) and β = −1− ω2

6
+O(ω4)

for small frequency ω.
We now shift DZ to the origin of the parameter plane and align the loci H and Z locally with the

coordinate axes. This is achieved by introducing parameters (p, q) that are related to (α, β) via[
α
β

]
=

[
1
−1

]
+

[
1/3 1/2
−1/6 1/2

] [
p
q

]
, (14)

such that (p, q) are small near the degenerate point DZ. The coordinates xc on the center manifold are in
R2, and map into the space C1 via the graph h(xx; p, q) = Bxc + O(2), where O(2) denotes second order
terms in xc and (p, q). Thus, we expect that the dynamics near DZ is governed by a two-dimensional ODE
on this center manifold. The linear transformation

xc =

[
1 1/3
0 1

]
yc (15)

transforms the ODE on the center manifold into a second-order differential equation such that ẏc,1 = yc,2 for
expansions at all orders j. As a result we obtain the following.
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Figure 11: Illustration of the truncated dynamics on the center manifold near DZ when the parameter p is
small and negative (−1� p < 0). Panels (a) and (c) show the slow manifold v = y/(q+ 2y), which is a small
perturbation of the line of equilibria at p = 0 and the fixed point at (0, 0). Panel (b) shows the level curves
of the potential V in (19) for the case q = 0 and b = 1/3, where the truncated system (18) is conservative.

Lemma 1 To second order, the resulting ODE for y = yc,1 on the center manifold of the point DZ is

ÿ = py + qẏ + 2yẏ + (2/3− 2b)ẏ2 +O(3). (16)

The derivation and terms up to order five are provided in Appendix A and the supplementary material with
this paper. In particular, for expansions up to all orders the right-hand side is zero when p = ẏ = 0, meaning
that the line of equilibria (the y-axis where ẏ = 0) at p = 0 is always present (it is stable for y < −q and
unstable for y > −q).

4.1 Qualitative analysis of the truncated ODE on the center manifold

The nonlinear part of the right-hand side of (3) takes the form

f(p,q)(u) = (p/6− q/2)u(0) + (p/6 + q)u(−1− u(−b))

in the transformed parameters p and q. The two-dimensional local center manifold of (3) near DZ of the
semiflow on the manifold

{u ∈ C1 : u′(0) = u(0)− u(−1) + f(p,q)(u)},

which is known to exist for p ≈ 0 (α ≈ 1), p ≈ 0 (β ≈ −1) and u ≈ 0, is a graph over the basis functions
B1(θ) = 1 and B2(θ) = θ [47]. As [14, 43] laid out, all formal expansion coefficients of this center manifold
h : R2×R2 7→ C are well defined to arbitrary order. Appendix A gives details of the resulting linear systems
of algebraic equations; we also show there that higher-order derivatives of the mildly differentiable right-hand
side f(p,q) are always applied to C∞ history segments (which are prior expansion terms of the center manifold
and, therefore, solutions to linear ODEs).

Dynamics near a slow manifold for −1� p < 0. For p = 0, one may apply the analysis by Liebscher in [31].
A family of arcs in the half-plane {ẏ < 0} connects each point (y1, 0) on the part {y > −q, ẏ = 0} of the line
of equilibria with one point (y2, 0) on {y < −q, ẏ = 0}. Since for p = 0 the system is degenerate (having a
line of equilibria), it is singularly perturbed for p 6= 0 (in particular, for p < 0). Speeding up time by a factor
of −p clarifies the slow-fast structure in the second-order truncation

y′ = v, (−p)v′ = −y + qv + 2yv − (2/3− 2b)pv2, (17)

where v = y′ and v′ denote the derivatives of y with respect to the new time.
In the (y, v) coordinates of the center manifold the slow manifold is v = y/(q + 2y), and this is shown

in Fig. 11. The center manifold is transversally stable for y < −q/2 and unstable for y > −q/2. The line
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y = −q/2 is a first-order pole of the manifold for q 6= 0 and a singular point for q = 0. For q = 0 the slow
manifold has a singular branch y = 0, intersecting the regular slow manifold v = 1/2 at (y, v) = (0, 1/2).
Moreover, for b = 1/3 the truncated system (18) is conservative and the equilibrium (0, 0) is a center; see
Fig. 11(b). When q 6= 0 then the equilibrium (0, 0) lies on the stable slow manifold for q < 0 and on the
unstable slow manifold for q > 0; see panels (a) and (c). The dynamics along the slow manifold, given by
y′ = y/(q + 2y), leads to monotone increasing y outside of the intervals [0,−q/2] for q < 0 and [−q/2, 0] for
q > 0, respectively, (where y is decreasing).

Conserved quantity for q = 0 and b = 1/3. The Hopf bifurcation is located at q = 0 and p < 0. The second-
order truncated ODE (16) has a degeneracy if b = 1/3 and q = 0. For these parameters, the second-order
truncated rescaled ODE (17) reads

y′ = v, (−p)v′ = −y + 2yv (18)

and has the conserved quantity

V (y, v) = − log(pv − p/2)− 2v − 2y2/p, (19)

which has a center at (y; v) = (0; 0) for p < 0. Thus, the Hopf bifurcation is subcritical for b < 1/3,
supercritical for b > 1/3 and infinitely degenerate in the truncated system for b = 1/3 and q = 0. Figure 11(b)
shows the contours of the quantity V .

4.2 Numerical bifurcation diagrams of center manifold expansion up to order
five

The second-order expansion (16) does not unfold the degeneracy of the Hopf bifurcation at b = 1/3, indicated
by the conserved quantity (19), but higher order terms in the center manifold expansion (16) do. We find
that the fifth-order expansion results in a surface F of folds (saddle-node bifurcations) of periodic orbits
that appear from a curve GH of generalized Hopf bifurcations. This is illustrated in Fig. 12 in different
ways. Panel (a) shows the two-parameter bifurcation diagram in the (p, q)-plane (of the rescaled parameters)
for b = 1/3 of the fifth-order expansion of the ODE on the center manifold; here the curves H of Hopf
bifurcations and F of fold periodic orbits meet at the point DZGH at (p, q) = (0, 0) on the curve Z of
zero-eigenvalue equilibria. The fold periodic orbits along F (of the fifth-order expanded and truncated ODE
on the (y, y′)-plane) are shown in Fig. 12(b) in (p, y, y′)-space, which illustrates how they shrink to a point
as p → 0 and the point DZGH is approached; note that q varies accordingly along the curve F, but is not
shown in this illustration.

The unfolding of the point DZGH by the fifth-order ODE on the center manifold in (b, p, q)-space is
shown in Fig. 12(c). It illustrates how the curve GH of generalized Hopf bifurcations emerges from DZGH
at (b, p, q) = (1/3, 0, 0); together with the part of the curve Z with b < 1/3, the curve GH forms the boundary
of the surface F of fold periodic orbits. Figure 12(d) shows for comparison the same surfaces and curves of
the full DDE (3) in (b, α, β)-space near the point DZGH at (b, α, β) = (1/3, 1,−1). Clearly, the fifth-order
ODE on the center manifold captures the local behavior near the point DZGH that is observed in the DDE.
In particular, the asymptotics of the folds or periodic orbits on Z can be captured with a truncation of the
ODE at a suitable order; hence, terms of the ODE on the center manifold that are beyond all orders, as
analyzed by [36], do not play a role for the fold of periodic orbits.

5 Conclusions and outlook

We investigated the interplay of instantaneous and delayed feedback in a scalar, first-order DDE; here, the
delayed feedback term depends linearly on the state, but the state itself may enter the delay term in a delayed
way. The system is linear in the absence of state dependence, and we studied the effects of the nonlinearity
induced by state depencence of the delay on the bifurcation diagram in the two-parameter plane of the
instantaneous feedback strength α and delayed feedback strength β. The system exhibits periodic solutions
that are generated via Hopf bifurcations, and we showed that they cease to exist (become unphysical) when
the state-dependent delay becomes advanced, or equivalently, when the periodic orbit attains its minimum
value at a certain threshold value (here rescaled to −1).
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Figure 12: Bifurcation diagrams near the point DZGH. Panel (a) is the two-parameter bifurcation diagram
in the (p, q)-plane of the fifth-order expansion on the center manifold for b = 1/3; shown are the curves Z of
zero-eigenvalue equilibria, H of Hopf bifurcations and F of fold periodic orbits, which intersect at the point
DZGH. Panel (b) shows the family of fold periodic orbits along F in the (y, y′)-plane as a function of the
parameter p (with q varying accordingly, but not shown). The three-parameter bifurcation diagram near
DZGH of the fifth-order expansion in (b, p, q)-space near (1/3, 0, 0) is shown in panel (c), and that of the
full DDE (3) in (b, α, β)-space near (1/3, 1,−1) is shown in panel (d); both consist of the surfaces Z, H and
F, and the curves DZ and GH that meet at the point DZGH.

We showed that, when the state dependency is instantaneous, the latter occurs along a well-defined
curve M in the (α, β)-plane, approaching which the periodic orbits develop a distinct saw-tooth shape. This
allowed us to present a complete bifurcation diagram, with curves Z of zero-eigenvalue equilibria, H of Hopf
bifurcation, F of folds of periodic orbits and M of limiting saw-tooth periodic orbits bounding the existence
and stability regions of the basic equilibrium and of the bifurcating periodic solutions. Further important
features of this bifurcation diagram are a generalized Hopf bifurcation point GH where the Hopf bifurcation
curve changes criticality and a point DZ where the basic equilibrium has a double eigenvalue zero.

The case of instantaneous state dependence formed the basis for our investigation of the dynamics that
arise when the state-dependent feedback term is itself subject to a delay b. We found that instantaneous state
dependence is special in the sense that ‘switching on’ this additional delay by considering b > 0 immediately
changes the bifurcation diagram in the (α, β)-plane. To show how this happens, we employed advanced
numerical continuation techniques for DDEs to find the respective two-parameter bifurcation diagram for
fixed values of b. In particular, we found that the curve M where periodic orbits become unphysical changes
rapidly with the additional delay b and, moreover, gives rise to a further curve F of folds of periodic orbits, as
well as a pair of points MF where the two curves F end on the curve M. Furthermore, the bifurcation diagram
in the (α, β)-plane changes qualitatively at b = 1/3, where the point DZ has an additional degeneracy that
gives rise to second generalized Hopf point GH on the curve H. A center manifold analysis, by means of
computing the expansion of the ODE on the center manifold up to order five, confirmed this result.

The results presented here for this prototypical example are expected to be of interest more widely,
beyond their significance for the theory of state-dependent DDEs. They further elucidate the capacity of
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state dependency alone to give rise to nonlinear dynamics in any model under consideration, irrespective of
other sources of nonlinearity. Furthermore, the results suggest that instantaneous state dependence may be
special mathematically: as we have shown, the observed dynamics may change significantly when there is
even a small delay in the state-dependent feedback term. Additional qualitative changes may occur when
this additional delay becomes larger, as we showed with the transition through the degenerate point DZGH
at b = 1/3; the study of further qualitative changes of the bifurcation diagram in the (α, β)-plane with
increasing b is the subject of ongoing research.

An interesting direction for future research is the in-depth analysis of periodic orbits as the delay becomes
advanced. We observe that, for b > 0, secondary oscillations develop along the linearly increasing segment
of the periodic as the locus M is approached. On the other hand, we find numerically that the parameter
region for which we observe eventually two-dimensional dynamics extends from near DZ far into the (α, β)-
plane, as is suggested by the Poincaré-Bendixson-type result of Kennedy [23]. More specifically, the Floquet
spectrum of the continued periodic orbits consists of two real Floquet multipliers with all others virtually
indistinguishable from zero.

Overall, our findings may serve as a ‘health warning’ to modelers who are faced with systems where
state-dependency arises; concrete examples are DDE models for human balancing [18, 19], for machining
and milling [17], for laser systems [38], as well as conceptual climate models of delayed action oscillator type
[22]. At the same time, our work demonstrates that state-dependent DDEs, including those with delay inside
the state dependence, can be investigated effectively with advanced continuation tools, as implemented in
the package DDE-BIFTOOL, in combination with analytical approaches including normal form analysis. In
other words, researchers need not shy away from DDE models of this form when they arise in an application
context, thus, allowing for the full investigation of the effects of different types of delayed feedback loops on
observable behavior. Indeed, there will be quite a number of DDEs that can be studied in this spirit, and
we hope that the work presented here will serve as a motivation to other researchers. This includes further
work on saw-tooth shaped or other types of limits of periodic orbits, where numerical investigations may well
stimulate further analysis, including into the effects of small additional delays in the state-dependent term.
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A Linear systems for the expansion coefficients of the center man-
ifold

We provide here technical details of how to compute expansions of the ODE on the center manifold near the
point DZ, given in Lemma 1, up to any order. The basis B of the subspace corresponding to the double
eigenvalue 0 of the linear operator A, given in (13), is a row vector of length 2 of the form

B : [−τmax, 0]→ R1×2

θ 7→ B(θ) = [1, θ].

Thus, B maps from R2 into C = C0. The spectral projection of an arbitrary function u ∈ C onto spanB is
given via the functional

B† : C → R2

u 7→
[
2/3
2

]
u(0) +

∫ 0

−1

[
2s+ 4/3
−2

]
u(s)ds.

Thus, BB† : C → spanB ⊂ C is the spectral projection in C. The spectral projection of the operator A
corresponding to the right-hand side of the linearized DDE (12) with α = 1 (see (13)) onto the basis B is

J0 = B†AB =

[
0 1
0 0

]
∈ R2×2.

As [14, 43] laid out, all formal expansion coefficients of the center manifold h : R2×R2 → C are well defined
to arbitrary order. Let us express the graph h in its expansion coefficients (where we use ; for separating
entries of column vectors)

h(xc; p; q)(θ) = Bxc +

m∑
j=2

hj(θ)(xc; p; q)
j + o(|(xc; p; q)|m+1)

with the unknown symmetric multilinear coefficients hj : [−τmax, 0] 7→ R1×4j . We take into account the
dependence of h on the parameters p and q, expanding h in these parameters, too. The resulting ODE on
the center manifold has the form

ẋc = J0xc +

m∑
j=2

Ajc(xc; p; q)
j + o(|(xc; p; q)|m), (20)
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where the Ajc ∈ R2×4j are also unknown symmetric multilinear coefficients. The unknown coefficients Ajc and
hj(θ) are determined by comparing coefficients at order j ≥ 2 for the expansion of the invariance equation
for h, (21) and (22) below, and an orthogonality condition ((23) below), given by

∂xch((xc; p; q), θ)ẋc = ∂θh((xc; p; q), θ), (21)

∂θh((xc; p; q), 0) = fp,q(h((xc; p; q), ·)), (22)

B†hj(θ)(xc; p; q)
j = 0. (23)

The center manifold, extended by the parameters p and q, is four-dimensional, with two trivial equations
ṗ = 0 and q̇ = 0, such that we may extend J0 as

J0,e = diag(J0, 0, 0) ∈ R4×4.

Thus, the unknowns at order j are hj(θ)ek1 · · · ekj ∈ R and Ajcek1 · · · ekj ∈ R2, where e` (` = 1, . . . , 4) are the
unit vectors in R4 and (k1, . . . , kj) is a non-decreasing element of J = {1, . . . , 4}j (k1 ≤ k2 ≤ k3 ≤ k4).

The matrix J0 is upper triangular. Thus, putting the non-decreasing elements of {1, . . . , 4}j into lexico-
graphic order, system (21)–(23) generates a sequence of 3-dimensional linear systems of equations for each
element κ = (k1, . . . , kj) of J and the corresponding pair of unknowns hjκ(θ) = hj(θ)ek1 · · · ekj ∈ R and
Ajc,κ = Ajcek1 · · · ekj ∈ R2.

Using the expansion of h and f , equation (21) results in a linear ODE of the form for each order j and
coefficient κ

hjκ(θ)′ = Λκ · hjκ(θ) +B(θ)Ac,κ + rh,κ(θ), (24)

where Λκ =
∑
`∈κ λ` is the sum of eigenvalues of J0,e corresponding to index set κ (thus, Λκ = 0 for all κ

in our case). The inhomogeneity rh,κ(θ) comes from previously determined lower-order terms h` with ` < j

and elements hjκ′ , where κ′ < κ in the lexicographic order.
Equation (22) and its expansion provides a scalar equation for each order j and coefficient κ, involving

the unknowns hjκ(0) and Ajc,κ. Its coefficients in our concrete example are −L[θ 7→ 1] = 0 for hjκ(0) and

B′(0)−L[θ 7→
∫ θ
0
B(s)ds = (−1, 3/2) for Ajc,κ. The terms involving higher-order derivatives of f(p,q) all depend

on previously computed lower order terms h`(θ) (` < j) only. Since f(p,q) is only mildly differentiable, their

evaluation requires differentiation of h`(θ) with respect to θ. However, since the h` are all solutions of linear
ODEs of the form (24), the arguments of f(p,q) are in C∞, making the expansion of f(p,q)(h((xc; p; q), ·))
possible to arbitrary order.

The remaining equations are enforced by the orthogonality condition (23) on hjκ(θ). This is in contrast
to the approach taken in [30] and [2], where the coefficients Ajc are forced to be in an a-priori known normal
form for a range of standard bifurcations. Since there is no well-known normal form established for the
degenerate point DZGH, we keep the terms hj(θ)(xc; p; q)

j orthogonal to the linear spectral projection B†.

In our concrete example, the coefficients for hjκ(0) are B†[θ 7→ 1] = (1; 0), and, for Ajc,κ, B†[θ 7→
∫ θ
0
B(s)ds] =

(0,−1/36; 1,−1/3), such that the overall coefficient matrix for the unknowns (hjκ(0);Ajc,κ) at all orders j > 1
and for all index sets κ is the invertible matrix

M =

0 −1 3/2
1 0 −1/36
0 1 −1/3

 .

The complete manifold coefficient θ 7→ hjκ(θ) can then be obtained by solving (24) from the initial condition
hjκ(0) with the known coefficients Ac,κ an the inhomogeneity rh,κ(θ) from lower-order terms.

B Contents of supplementary material

The file available at http://auckland.figshare.com/articles/online_resource/hkrs_sdDDE_cmf_supplement_
zip/16735474 provides general Matlab and Octave (sympy) compatible symbolic algebra drivers for the ex-
pansion of center manifolds in DDEs with state-dependent discrete delays. It implements the expansion
described in Appendix A and demonstrates it up to truncation order 5 for the specific example of the point
DZGH of (3). The symbolic expressions that are generated as output can be converted to right-hand sides
for use in numerical bifurcation analysis packages.
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