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ABSTRACT 

In this work we highlight enantioselective optical gradient forces acting on Rayleigh-seized chiral particles present in 3D 

structured (non-paraxial) optical vortex tweezing systems.  One discriminatory force originates from the circular 

polarization of the light and is similar to previous chiral optical gradient trapping forces. Much more remarkable is the 

other which is independent of the input beam’s polarization state - even occurring for unpolarized light – and is not present 

in 2D structured light nor propagating plane waves. This latter chiral sorting mechanism allows for the enantioselective 

trapping of chiral particles into distinct rings in the transverse plane through conservative radial forces.  

Keywords: optical trapping, structured light, chirality, optical forces, optical manipulation, optical vortex, nano-optics, 

nanophotonics 

 

1. INTRODUCTION 

Light conveys energy and momentum, and this is the basis for optical manipulation of matter1. Absorption and non-forward 

scattering of photons leads to a transfer of momentum and a radiation pressure force pushing particles in the direction of 

propagation. In classical theory this non-conservative force is often termed the scattering force. An alternative optical 

manipulation technique involves the forward Rayleigh scattering of photons, where the scattered photon is identical to the 

input one and as such no energy or momentum is transferred to the particle. In this case the particle experiences a 

conservative optical force which attracts it to regions of high optical intensity: this is known as the gradient force. Both the 

scattering force and gradient force are utilized in optical manipulation techniques, but it is the latter which proves most 

useful in general optical trapping schemes utilizing optical tweezers2.  

The dominant optical source in optical tweezers has long been an unstructured paraxial beam, a fundamental Gaussian 

mode for example. However, with the revolution in structured light sparked by the now renowned work carried out on 

optical vortices (also referred to as twisted light) in Leiden in 19923, optical tweezers using twisted light has seen much 

activity 4–6. The predominant reason for this is that they can transfer their orbital angular momentum (OAM) and induce 

mechanical motion of trapped particles. This transfer of OAM to cause rotational motion is completely distinct from the 

gradient trapping force itself; optical angular momentum is conserved in the gradient force. We refer7 to unstructured light 

as being homogenous in all spatial dimensions, the ubiquitous plane wave being a perfect example; 2D structured light is 

inhomogeneous (e.g. amplitude, phase, polarization) in the transverse (x,y) plane but homogenous along the direction of 

propagation z, its electromagnetic fields are purely transverse; 3D structured light is inhomogeneous in all directions and 

possesses significant longitudinal electromagnetic field components alongside the transverse components.  

A distinct subdiscipline of optical trapping and tweezing of particles is the use of chiral light to trap chiral particles 

differentially depending on their material handedness. The basis of the principle is that a right-handed enantiomer will 

experience a different optical force than the left-handed form for a given input optical handedness, which in an initially 

racemic mixture would over time form a concentration gradient between the enantiomeric pair. The potential of sorting 

enantiomers using an all-optical method would have a profound impact on the drug and pharmaceutical industries, and as 

such there has been a substantial number of studies looking at enantioselective trapping schemes. These have 

predominantly involved using an unstructured laser source8–11  and/or plasmonic enhancement systems12–24, though there 
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have been a handful of studies employing structured light20,25–29. Optical vortices are inherently chiral, their OAM per 

photon is  where   is known as the topological charge. The sign of   designates what direction the helical 

wavefront twists: for  0   it is left-handed, while 0  is right-handed. This chirality of the wavefront in optical vortices 

is analogous to the well-known optical chirality of circularly polarized light (CPL), where the quantity often referred to as 

the helicity   1 = + corresponds to left-handed CPL and  1 = −  right-handed CPL, and the spin angular momentum 

(SAM) of CPL is given by   . The chirality of optical vortices has witnessed a profusion of research activity, with the 

field recently surveyed 30. The question addressed in this paper is whether the OAM, both its sign (handedness) and 

magnitude, can influence the optical gradient trapping force when applied to Rayleigh-sized chiral particles under tight 

focusing. 

 

2. CONSERVATIVE CHIRALITY-SORTING FORCES 

 

Quantum electrodynamics31 (QED) is utilized to describe the light-matter interactions that correspond to the optical 

gradient forces acting on Rayleigh-sized particles in this paper. Truncated to the dipole approximation, the Power-Zineau-

Woolley multipolar interaction Hamiltonian describes the coupling between light and matter32: 

 

 ( ) ( ) ( ) ( ) ( )1

int 0 ξ ξξ ξ ξ ,i i i iH d m b − ⊥= − −R R  (1) 

 

where ( )ξi  and ( )ξim   are the electric and magnetic dipole operators, respectively; ( )ξid ⊥ R  and ( )ξib R   are the 

transverse (with respect to the Poynting vector) electric displacement field and magnetic field mode operators, respectively, 

acting on a particle ξ  at the location
ξR  ; Einstein summation of repeated tensor indices is assumed throughout, i.e.

i ia b = a b .  The first term in (1) is the electric dipole coupling (E1) and the second magnetic dipole coupling (M1). For 

input circularly-polarized Laguerre-Gaussian (LG) modes the electromagnetic free field expansion operators truncated to 

first-order in the paraxial parameter 
0kw  may be given by33,34 
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where 2 /k  =  is the wavenumber, V is a quantization volume, 2

, pA is a normalization constant for LG modes, 1 = 

, the positive sign designates left-handed CPL; the negative sign right-handed CPL, 
( ) ( ),

ˆ
p

a k


z  is the annihilation operator, 

( )exp i kz + is the phase,  is the topological charge, H.c. stands for Hermitian conjugate, and ( ), p
f r is the radial 

distribution function around the focal plane 
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where 
0w is the beam waist, the normalization constant is given by ( )2 ! !pC p p = +    and  pL  is the generalised 

Laguerre polynomial of order p. 

In (2) and (3), the terms that depend on x̂  and ŷ  are the transverse components of the fields while those that depend on 

ẑ  are the longitudinal components. 2D structured light possesses only the transverse components, whilst 3D structured 

light also has the longitudinal component. Furthermore, whilst the polarization state of 2D structured light is adequately 

described by 2D polarization theory, e.g. the four Stokes parameters,  due to the fact all three spatial components of the 

field vectors (2) and (3) generally play a role in 3D structured light, the theory of polarization has been extended to the 3D 

case described by nine polarization parameters 35,36. To generate significant longitudinal field components, a 2D structured 

(paraxial) laser source is tightly focused using a high numerical aperture (NA) lens, producing 3D structured light at the 

focal plane. In this work we describe light by its source 2D polarization state and make clear whether it is paraxial (2D 

structured) or non-paraxial via tight focusing (3D structured). 

The potential energy responsible for the optical gradient trapping force originates in forward Rayleigh scattering. In 

photonic terms, an input laser photon is annihilated at the particle and then an identical photon (same mode) is created at 

the same particle. This two photon interaction requires second-order perturbation theory to yield the leading order 

contribution to the potential energy1: 
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where the initial state of the system is given by ( ) ( )0 ξ ; , , ,I E n k p= : the particle is in the ground state and the 

radiation field consists of n photons in the mode ( ), , ,k p ; the final state of the system is identical to the initial; the 

virtual intermediate state is given by ( ) ( )( )ξ ; 1 , , ,R E n k p = − .  

Working strictly in the dipole regime the potential energy of a particle is then a sum of three distinct contributions: 

 

 E1E1 E1M1 M1M1.U U U U+ +  (6) 

 



Chiral effects dependent on material handedness originate in the E1M1 term and so from now on we neglect the pure 

E1E1 and M1M1 effects as they are independent of material chirality 37. 

 

3. 2D CIRCULARLY POLARIZED 3D LG MODE 

 

With the aid of the Feynman graphs in Figure 1 and using (1) with the fields (2) and (3) in (5) produces the following 

potential energy for a 2D circularly polarized 3D LG beam: 
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where we have dropped most dependencies for notational clarity, ( ). .c c i j stands for taking the complex conjugate 

and swapping the indices of the expression in brackets, 2 2

, pI n c k A V= is the beam intensity, ( ),r p
f f r =  , and the 

imaginary quantity referred to as the mixed electric-magnetic polarizability tensor (which has different signs for each 

chiral particle of an enantiomeric pair) is given explicitly as 
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where the transition dipole moments are defined as ( ) ( )0 0

0i i i im E m E 

 =  and 
0 0E E E = − .  

 

 

 

Figure 1: Topologically distinct Feynman diagrams for E1M1 forward Rayleigh scattering. 

 

To account for the randomly oriented nature of chiral particles in the liquid or gas phase the potential enery must be 

rotationally averaged. Using well known methods32 in which each particle is decoupled from the space-fixed frame into 

the laboratory frame we produce 
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The optical force F can be calculated from the energy shift via the well-known relation: Re U= − F . After a significant 

ammount of algebra we arrive at 
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The potential energy (9) is plotted in Fig. 2 with the direction of forces F  (10) overlaid for the parallel =  and 

antiparallel = −  cases. This enantioselective trapping mechanism is quite similar to that of circularly polarized plane 

waves or 2D structured light,  except in our system we have the spin-orbit-interactions (SOI) which occur in 3D fields38 

and these influence the helicity density distributions. For example, in the antiparallel case we produce an on-axis helicity 

density for 1= . The influence the radial index p has on the enantioselective force is highlighted in Figure 3.  

 



 

Figure 2: Individually normalized enantioselective potential energy (9) with forces overlaid (10) (arrows indiciate only direction). 

0w = and 0p = in all plots. 



 

Figure 3: Influence of radial index p : individually normalized enantioselective potential energy (9) with forces overlaid (10) (arrows 

indiciate only direction). 
0w = in all plots. 

 



4. 2D POLARIZED INDEPENDENT ENANTIOSELECTIVE FORCE 

The physics of the mechanism in the previous section is like predominantly all of the chiral enantioselective gradient force 

separation techniques to date which rely on the optical chirality of the 2D circular polarization state of the input beam. In 

this Section we outline the remarkable feature of 3D structured vortices in that they produce an enantioselective optical 

force that is independent of the 2D polarization state, i.e. even an input 2D unpolarized optical vortex which is tightly 

focused will produce an enantioselective gradient force in the focal plane. This is especially striking as the optical 

helicity/chirality of linearly polarized light has always been thought to be zero, let alone unpolarized light.  

Optical helicity density h  for propagating plane waves, 2D structured fields, and evanescent waves is proportional to the 

degree of 2D circular polarization of the input beam h  , being zero for linearly and randomly polarized inputs and 

taking on its maximum value for circular polarization. For linearly polarized and unpolarized plane waves there is no 

possibility for enantioselective gradient forces because 0 =  and thus their optical helicity 0h = . In comparison,  3D 

structured LG modes are known to possess a non-zero optical helicity density contribution for 2D linear polarizations 34,39 

and it has recently been shown that remarkably this contribution is in fact independent of 2D polarization, being non-zero 

for even unpolarized input light40. The rotationally averaged gradient trapping potential energy with an 2D unpolarized 3D 

LG input (i.e. the 2D polarization independent enantioselective trapping force) may be calculated by averaging (9) over 

the two orthogonal polarizations 1 =  and 1 = −  
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The gradient forces acting on a chiral particle stemming from this 2D polarization independent potential energy are 

calculated as 
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The potential energy (11) with the forces (12) overlaid  at the focal plane 0z =  are shown in Fig. 4. It is important to make 

clear that these 2D polarization independent enantioselective forces are identical for either a 2D linearly polarized or 2D 

unpolarized 3D optical vortex. What the graphs show is that for a given sign of , the right-handed and left-handed chiral 

particles in an enantiomeric mixture are subject to discriminatory radial trapping forces which act to separate them into 

distinct rings in the transverse plane. For example, in Fig. 4a the enantiomer with 0G   is pushed away from the beam 

axis and towards the blue (outer) ring, meanwhile in 4b it shows the 0G  is pushed towards the central spot and away 

from the outer ring.  The results are dependent on the sign of , and keeping everything else the same, for −  the graphs 

in Fig 4. are the same but with the signs reversed. For example, for − the 4a 0G   would look exactly like 4b.  

Crucially both (11) and (12) stem purely from the longitudinal fields of (2) and (3), which means that the 3D structure of 

the optical vortex is essential and tight focusing is a must if the magnitudes of (11) and (12) are to be large enough to be 

observed experimentally.  

 

 



 

Figure 4: Individually normalized 2D polarization independent enantioselective potential energy (11) with vector optical 

force (12). Otherwise as Fig. 2. 

 

 



 

Figure 5: Individually normalized 2D polarization independent enantioselective potential energy (11) with vector optical 

force (12).  Otherwise as Fig. 3. 

 



5. CONCLUSION  

Evidently for natural chiral particles (e.g. molecules) the magnitudes of the forces involved will be small due their small 

G alongside the fact there will be present the dominant chirality-independent trapping potential 
E1E1U  from (6), however 

they are considered experimentally distinguishable 41,42,1,10, though are yet to be observed.  Experimental realization of the 

fundamental mechanisms outlined here therefore have more potential in systems comprising of chiral nanoparticles or the 

use of plasmonic enhancement in nanophotonic setups 16,43,44. This work has provided further evidence of the significant 

potential of 3D structured light in light-matter interactions and nanophotonics. Explicitly, while enantiomer separation 

schemes utilizing the optical helicity of circularly polarized plane waves in gradient force mechanisms have been put 

forward8,10, unlike 3D optical vortices, linearly polarized and unpolarized propagating plane waves possess no longitudinal 

fields or optical helicity and so the 2D polarization independent discriminatory force (12) could never have been envisaged 

under the plane wave approximation, nor a 2D structured light field.  

 

ACKNOWLEDGEMENTS  

 

KAF thanks the Leverhulme Trust for funding him through a Leverhulme Early Career Fellowship ECF-2019-398.  

 

 

REFERENCES 

1. Andrews, D. L. & Bradshaw, D. S. Optical Nanomanipulation. (Morgan & Claypool Publishers, 2017). 

2. Jones, P. H., Maragò, O. M. & Volpe, G. Optical tweezers: Principles and applications. (Cambridge University Press, 2015). 

3. Allen, L., Beijersbergen, M. W., Spreeuw, R. J. C. & Woerdman, J. P. Orbital angular momentum of light and the transformation 

of Laguerre-Gaussian laser modes. Phys. Rev. A 45, 8185–8189 (1992). 

4. Padgett, M. J. & Bowman, R. Tweezers with a twist. Nat. Photonics 5, 343–348 (2011). 

5. Woerdemann, M., Alpmann, C., Esseling, M. & Denz, C. Advanced optical trapping by complex beam shaping. Laser Photonics 

Rev. 7, 839–854 (2013). 

6. Yang, Y., Ren, Y., Chen, M., Arita, Y. & Rosales-Guzmán, C. Optical trapping with structured light: a review. Adv. Photonics 3, 

034001 (2021). 

7. Forbes, A., de Oliveira, M. & Dennis, M. R. Structured light. Nat. Photonics 15, 253–262 (2021). 

8. Bradshaw, D. S. & Andrews, D. L. Chiral discrimination in optical trapping and manipulation. New J. Phys. 16, 103021 (2014). 

9. Bradshaw, D. S., Forbes, K. A., Leeder, J. M. & Andrews, D. L. Chirality in Optical Trapping and Optical Binding. Photonics 2, 

483–497 (2015). 

10. Cameron, R. P., Barnett, S. M. & Yao, A. M. Discriminatory optical force for chiral molecules. New J. Phys. 16, 013020 (2014). 

11. Canaguier-Durand, A., Hutchison, J. A., Genet, C. & Ebbesen, T. W. Mechanical separation of chiral dipoles by chiral light. New 

J. Phys. 15, 123037 (2013). 



12. Lin, Z.-H., Zhang, J. & Huang, J.-S. Plasmonic elliptical nanoholes for chiroptical analysis and enantioselective optical trapping. 

Nanoscale 13, 9185–9192 (2021). 

13. Shi, Y. et al. Chirality-assisted lateral momentum transfer for bidirectional enantioselective separation. Light Sci. Appl. 9, 1–12 

(2020). 

14. Ali, R., Pinheiro, F. A., Dutra, R. S., Rosa, F. S. & Neto, P. A. M. Enantioselective manipulation of single chiral nanoparticles 

using optical tweezers. Nanoscale 12, 5031–5037 (2020). 

15. Patti, F. et al. Chiral optical tweezers for optically active particles in the T-matrix formalism. Sci. Rep. 9, 1–10 (2019). 

16. Zhao, Y., Saleh, A. A. & Dionne, J. A. Enantioselective optical trapping of chiral nanoparticles with plasmonic tweezers. ACS 

Photonics 3, 304–309 (2016). 

17. Li, Y. et al. Enantioselective optical trapping of chiral nanoparticles using a transverse optical needle field with a transverse spin. 

Opt. Express 28, 27808–27822 (2020). 

18. Ding, K., Ng, J., Zhou, L. & Chan, C. T. Realization of optical pulling forces using chirality. Phys. Rev. A 89, 063825 (2014). 

19. Zheng, H., Chen, H., Ng, J. & Lin, Z. Optical gradient force in the absence of light intensity gradient. Phys. Rev. B 103, 035103 

(2021). 

20. Tkachenko, G. & Brasselet, E. Helicity-dependent three-dimensional optical trapping of chiral microparticles. Nat. Commun. 5, 

4491 (2014). 

21. Kravets, N., Aleksanyan, A., Chraïbi, H., Leng, J. & Brasselet, E. Optical Enantioseparation of Racemic Emulsions of Chiral 

Microparticles. Phys. Rev. Appl. 11, 044025 (2019). 

22. Fang, L. & Wang, J. Optical Trapping Separation of Chiral Nanoparticles by Subwavelength Slot Waveguides. Phys. Rev. Lett. 

127, 233902 (2021). 

23. Chen, H., Liang, C., Liu, S. & Lin, Z. Chirality sorting using two-wave-interference–induced lateral optical force. Phys. Rev. A 

93, 053833 (2016). 

24. Hayat, A., Mueller, J. P. B. & Capasso, F. Lateral chirality-sorting optical forces. Proc. Natl. Acad. Sci. 112, 13190–13194 

(2015). 

25. Zhang, H. et al. Optical trapping two types of particles using a focused vortex beam. Optik 166, 138–146 (2018). 

26. Li, M., Yan, S., Zhang, Y., Zhang, P. & Yao, B. Enantioselective optical trapping of chiral nanoparticles by tightly focused 

vector beams. JOSA B 36, 2099–2105 (2019). 

27. Carretero, L., Acebal, P. & Blaya, S. Chiral Rayleigh particles discrimination in dynamic dual optical traps. J. Quant. Spectrosc. 

Radiat. Transf. 201, 209–215 (2017). 



28. Lu, W., Chen, H., Guo, S., Liu, S. & Lin, Z. Selectively transporting small chiral particles with circularly polarized Airy beams. 

Opt. Lett. 43, 2086–2089 (2018). 

29. Li, M., Yan, S., Zhang, Y., Chen, X. & Yao, B. Optical separation and discrimination of chiral particles by vector beams with 

orbital angular momentum. Nanoscale Adv. (2021) doi:10.1039/D1NA00530H. 

30. Forbes, K. A. & Andrews, D. L. Orbital angular momentum of twisted light: chirality and optical activity. J. Phys. Photonics 3, 

022007 (2021). 

31. Andrews, D. L., Bradshaw, D. S., Forbes, K. A. & Salam, A. Quantum electrodynamics in modern optics and photonics: tutorial. 

JOSA B 37, 1153–1172 (2020). 

32. Craig, D. P. & Thirunamachandran, T. Molecular Quantum Electrodynamics: An Introduction to Radiation-Molecule 

Interactions. (Courier Corporation, 1998). 

33. Forbes, K. A., Green, D. & Jones, G. A. Relevance of longitudinal fields of paraxial optical vortices. J. Opt. 23, 075401 (2021). 

34. Forbes, K. A. & Jones, G. A. Measures of helicity and chirality of optical vortex beams. J. Opt. 23, 115401 (2021). 

35. Sheppard, C. J. Jones and Stokes parameters for polarization in three dimensions. Phys. Rev. A 90, 023809 (2014). 

36. Alonso, M. A. Geometric descriptions for the polarization for nonparaxial optical fields: a tutorial. ArXiv Prepr. ArXiv200802720 

(2020). 

37. Andrews, D. L. Quantum formulation for nanoscale optical and material chirality: Symmetry issues, space and time parity, and 

observables. J. Opt. 20, 033003 (2018). 

38. Bliokh, K. Y., Rodríguez-Fortuño, F. J., Nori, F. & Zayats, A. V. Spin–orbit interactions of light. Nat. Photonics 9, 796–808 

(2015). 

39. Woźniak, P., Leon, I. D., Höflich, K., Leuchs, G. & Banzer, P. Interaction of light carrying orbital angular momentum with a 

chiral dipolar scatterer. Optica 6, 961–965 (2019). 

40. Forbes, K. A. Optical helicity of unpolarized light. Phys. Rev. A 105, 023524 (2022). 

41. Bradshaw, D. S. & Andrews, D. L. Laser optical separation of chiral molecules. Opt. Lett. 40, 677–680 (2015). 

42. Bradshaw, D. S. & Andrews, D. L. Electromagnetic trapping of chiral molecules: orientational effects of the irradiating beam. 

JOSA B 32, B25–B31 (2015). 

43. Goerlitzer, E. S., Puri, A. S., Moses, J. J., Poulikakos, L. V. & Vogel, N. The Beginner’s Guide to Chiral Plasmonics: Mostly 

Harmless Theory and the Design of Large-Area Substrates. Adv. Opt. Mater. 2100378 (2021). 

44. Warning, L. A. et al. Nanophotonic Approaches for Chirality Sensing. ACS Nano 15, 15538–15566 (2021). 

 


