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We obtain results that show that many of the SQ-universal 
groups are large.
© 2022 The Author(s). Published by Elsevier Inc. This is an 

open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

An (m, k)-special presentation is a group presentation in which the relators have length 
k ≥ 3 and whose star graph is the incidence graph of a generalized polygon, a generalized 
m-gon, where (necessarily) m ∈ {2, 3, 4, 6, 8} [27]. (Definitions will be given in Section 2.) 
This generalizes the concept of special presentations (from [37]) which corresponds to the 
case (m, k) = (3, 3), and so the star graph is a generalized triangle (or the incidence graph 
of a projective plane). Polygonal presentations (for pairs of natural numbers ν, k) were 
introduced in [60] (see also [61]) as a tool for constructing polyhedra with specified links. 
The concept was generalized in [27], where it was shown that a polyhedron (obtained by 
identifying edges of a set of k-gons) has ν vertices with links Γ0, . . . , Γν−1 if and only if 
the polyhedron corresponds to a polygonal presentation for ν, k over these links and that, 
given a concise (m, k)-special presentation with star graph Γ, there exists a polygonal 
presentation over Γ whose corresponding polyhedron has Γ as its link.

The (3, 3)-special presentations whose star graph is the smallest generalized triangle 
(the Heawood graph) were classified in [26]. It was shown in [37] that for any prime 
power q− 1 there is a (3, 3)-special presentation whose star graph is the incidence graph 
of the Desarguesian projective plane over the Galois field of order q− 1, and an example 
machine for their construction was provided. Polygonal presentations for k = 3, ν = 1
and where Γ is the smallest or second smallest generalized triangle (or generalized 3-
gon) were classified in [18,19] (where they are called triangle presentations). An example 
of a polygonal presentation for k = 3, ν = 1 that corresponds to a non-Desarguesian 
projective plane (the Hughes plane) was given in [54]. Polygonal presentations for k =
3, ν = 1 and where Γ is the smallest generalized quadrangle (or generalized 4-gon) were 
obtained in [42], and all such polygonal presentations were classified in [43,17] (subgroups 
of the groups acting on the corresponding polyhedron were studied in [44]). As noted 
in [27, page 924] these results therefore implicitly provide examples of (3, 3) and (4, 3)-
special presentations. Burger-Mozes groups [13–15] are groups that act properly and 
cocompactly on products of trees (see [16, Section 4] for a survey) and Burger-Mozes 
presentations furnish examples of (2, 4)-special presentations. Problem 1 of [27] asks if 
there are general methods for producing (m, k)-special presentations for m ∈ {4, 6, 8} and 
it remains an open problem as to whether there are any examples of such presentations 
for m ∈ {6, 8}.

SQ-universality (a measure of the complexity of an infinite group) of groups defined 
by special presentations was studied in [27], where the problem of when such groups are 
large (another such measure) was posed [27, Problem 2]. We generalize the concept of 
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(m, k)-special presentations to (m, k, ν)-special presentations by replacing the condition 

that the star graph is a generalized m-gon with the condition that it has ν ≥ 1 isomorphic 

components, each of which is a generalized m-gon. We give the first examples of (m, k, ν)-
special presentations with ν > 1 (that are not unions of (m, k)-special presentations), 
from which explicit examples of polygonal presentations for ν, k with ν > 1 can be readily 

obtained.
A cyclic presentation is a group presentation with an equal number of generators 

and relators that admits a particular cyclic symmetry and the corresponding group is a 

cyclically presented group ([40]). A (3, 3, 1)-special cyclic presentation, whose star graph 

is the Heawood graph was found in [26] and it was shown in [50, Theorem 3.5] and [38, 
Theorem 10] that (up to relabelling of generators) this is the only (3, 3, 1)-special cyclic 

presentation. A group presentation is concise if there is no redundancy amongst its 
relators. In this article we show that if a concise cyclic presentation is (m, k, ν)-special 
then m = 2 or 3; we classify the concise (3, k, ν)-special presentations in terms of perfect 
difference sets (in particular these only arise if the relators are positive or negative words), 
and we classify the concise (2, k, ν)-special presentations. Except in one unresolved case, 
we determine which of the groups defined by these presentations are SQ-universal.

We now describe the structure of this article. In Section 2 we give definitions, ter-
minology and background on group presentations, the star graph, special presentations, 
and polygonal presentations. In Section 3 we give examples of (m, k, ν)-special cyclic 

presentations, prove a theorem concerning the structure of the star graph of a cyclic pre-
sentation, and obtain corollaries that are needed for later results; in particular, we show 

that if Pn(w) is concise and (m, k, ν)-special, where ν > 1 and w is positive or negative 

then the corresponding group Gn(w) is large. In Section 4 we show that if Pn(w) is a 

concise cyclic presentation where w has length at least 3 then the girth of its star graph 

is at most 8 (with girth > 6 only attainable if w is a non-positive and non-negative word 

of length 3) and show that if such a presentation is (m, k, ν)-special then either m = 2, 
or m = 3 and w is a positive or negative word. In Section 5 we classify the concise 

(3, k, ν)-special cyclic presentations in terms of perfect difference sets, and in particular 
the (3, 3, ν)-special cyclic presentations, and we show that a group defined by a concise 

(3, k, ν)-special cyclic presentation is SQ-universal if and only if (k, ν) �= (3, 1) (and that 
there is precisely one such group that is not SQ-universal, which is just-infinite). In 

Section 6 we classify the concise (2, k, ν)-special cyclic presentations, and in particular 
the (2, 4, ν)-special presentations; we show that, with one possible exception, the corre-
sponding groups are SQ-universal, and we identify which of them define Burger-Mozes 
groups.

Many of the results from Sections 3, 5, 6 concerning cyclic presentations Pn(w) will 
be expressed in terms of multisets of differences of subscripts in length 2 cyclic subwords 
of w. For convenience we define these multisets here:
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A = {a | there is a cyclic subword xix
−1
i+a of w,with multiplicities},

B = {b | there is a cyclic subword x−1
i xi+b of w,with multiplicities},

Q+ = {q | there is a cyclic subword xixi+q of w,with multiplicities},
Q− = {q | there is a cyclic subword x−1

i+qx
−1
i of w,with multiplicities},

Q = Q+ ∪Q−,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(1)

where ∪ denotes multiset sum and the entries are taken mod n.

2. Preliminaries

2.1. Presentations of groups

A word w in generators x0, . . . , xn−1 is said to be positive (respectively negative) 
if all of the exponents of generators are positive (respectively negative). We shall say 
that w is cyclically alternating if it has no cyclic subword of the form (xixj)±1. A word 
w = w(x0, . . . , xn−1) is freely reduced if it does not contain a subword of the form xix

−1
i

or x−1
i xi; it is cyclically reduced if all cyclic permutations of it are freely reduced. If w

is a cyclically reduced, non-empty, word in a free group F (X) then the unique word 
v ∈ F (X) such that w = vt with t maximal is called the root of w. We shall write l(w)
to denote the length of w in F (X).

Following [10] given a group presentation P = 〈X | R〉, an element r ∈ R is said 
to be freely redundant if it is freely trivial or if there exists s ∈ R such that r and s
are distinct elements of the free group with basis X and either r is freely conjugate to 
s or to s−1. A presentation is said to be redundant if it contains a freely redundant 
relator and is concise otherwise ([21, page 8]). The deficiency of the presentation P is 
defined as def(P ) = |X| − |R| and the deficiency of a group G, def(G), is defined to 
be the maximum of the deficiencies of all finite presentations defining G. A group G is 
SQ-universal if every countable group embeds in a quotient of G and it is large if it has a 
finite index subgroup that has a non-abelian free homomorphic image; every large group 
is SQ-universal [52]. A group is just-infinite if it is infinite and every proper quotient is 
finite; in particular, just-infinite groups are not SQ-universal.

2.2. Cyclic presentations and cyclically presented groups

For a positive integer n, let Fn be the free group with basis X = {x0, . . . , xn−1} and 
let θ : Fn → Fn be the shift automorphism given by θ(xi) = xi+1 with subscripts taken 
modulo n. If w is a cyclically reduced word that represents an element in Fn then the 
presentation

Pn(w) = 〈x0, . . . , xn−1 | w, θ(w), . . . , θn−1(w)〉
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is called a cyclic presentation and the group Gn(w) it defines is a cyclically presented 
group. Without loss of generality we may assume that the generator x0 is a letter of w, 
and we make this assumption throughout this article. Then Pn(w) is said to be irreducible
if the greatest common divisor of n and the subscripts of the generators that appear in 
w are equal to 1 [25].

The shift automorphism θ of a cyclically presented group Gn(w) satisfies θn = 1 and 
the resulting Zn-action on Gn(w) determines the shift extension En(w) = Gn(w) �θ Zn, 
which admits a presentation of the form En(W ) = 〈x, t | tn,W (x, t)〉 where W = W (x, t)
is obtained by rewriting w in terms of the substitutions xi = tixt−i, 0 ≤ i < n (see, 
for example, [41, Theorem 4]). Thus there is a retraction ν0 : En(W ) → Zn given by 
ν0(t) = t, ν0(x) = t0 = 1 with kernel Gn(w). Moreover, as shown in [10, Section 2], there 
may be further retractions νf for certain values of f (0 ≤ f < n). Specifically, by [10, 
Theorem 2.3] the kernel of a retraction νf : En(W ) → Zn given by νf (t) = t, νf (x) = tf

is cyclically presented, generated by the elements yi = tixt−(i+f) (0 ≤ i < n).

2.3. Star graph

Let P = 〈X | R〉 be a group presentation such that every relator r ∈ R is a cyclically 
reduced word in the generators. Let R̃ denote the symmetrized closure of R, that is, the 
set of all cyclic permutations of elements in R∪R−1. The star graph of P is the undirected 
vertex-labelled graph Γ where the vertex set is in one-one correspondence with X ∪X−1

and vertices are labelled by the corresponding element of X ∪X−1 and where there is 
an edge joining vertices labelled x and y for each distinct word xy−1u in R̃ [47, page 61]. 
Such words occur in pairs, that is xy−1u ∈ R̃ implies that yx−1u−1 ∈ R̃. These pairs 
are called inverse pairs and the two edges corresponding to them are identified in Γ. It 
follows that replacing any relator of a presentation by its root, or removing a redundant 
relator from a presentation, leaves the star graph unchanged. We refer to vertices in X
as positive vertices and vertices in X−1 as negative vertices.

We now set out our graph theoretic terminology. We allow graphs to have loops and 
to have more than one edge joining a pair of vertices. Given a graph Γ we write V (Γ)
to denote its vertex set. If Γ is bipartite with vertex partition V (Γ) = V1 ∪ V2 where 
each edge connects a vertex in V1 to a vertex in V2 then V1, V2 are called the parts of 
V (Γ). The neighbours of a vertex v, denoted by NΓ(v) is the set of all vertices that are 
adjacent to v in Γ. A graph Γ is r-regular if |NΓ(v)| = r for all v ∈ V (Γ) and it is regular
if it is r-regular for some r.

A path of length l in Γ is a sequence of vertices (u = u0, u1, . . . , ul = v) with edges 
ui − ui+1 for each 0 ≤ i < l; it is a closed path if u = v. The path is reduced if the edge 
ui+1 − ui+2 is not equal to the edge ui+1 − ui (0 ≤ i < l − 1). The distance dΓ(u, v)
between vertices u, v of Γ is l ≥ 0 if there is a path of length l from u to v, but no shorter 
path, and dΓ(u, v) = ∞ if there is no path from u to v. The girth, girth(Γ) of a graph Γ
is the length of a reduced closed path of minimal length, if Γ contains a reduced closed 
path, and girth(Γ) = ∞ otherwise. The diameter, diam(Γ) of a graph Γ is the greatest 
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distance between any pair of vertices of the graph (which may be infinite). If Γ is a graph 
with finite girth then girth(Γ) ≤ 2diam(Γ) + 1.

2.4. Special presentations

The concept of (m, k)-special presentations was introduced in [27], generalizing the 
concept of special presentations, introduced in [37] (which corresponds to the case m =
k = 3). We extend this to define (m, k, ν)-special presentations, which reduces to (m, k)-
special in the case ν = 1.

Definition 2.1. Let m ≥ 2, k ≥ 3, ν ≥ 1. A finite group presentation P = 〈X | R〉 is said 
to be (m, k, ν)-special if the following conditions hold:

(a) the star graph Γ of P has ν isomorphic components, each of which is a connected, 
bipartite graph of diameter m and girth 2m in which each vertex has degree at 
least 3;

(b) each relator r ∈ R has length k;
(c) if m = 2 then k ≥ 4.

Note that the presentations considered in [27] are concise; however, our definition of 
(m, k, ν)-special (as with the definition of special in [37]) does not require the presentation 
to be concise. Note also that if a presentation is (m, k, ν)-special then it has at least 3 
generators and the relators are cyclically reduced (for otherwise the star graph contains 
loops, so is not bipartite). We reiterate and expand on some remarks from [27] concerning 
(m, k, ν)-special presentations and their star graphs.

Remark 2.2. Let P be an (m, k, ν)-special presentation with star graph Γ.

1. By [59, Lemma 1.3.6] condition (a) is equivalent to Γ having ν isomorphic compo-
nents, each of which is the incidence graph of a generalized m-gon and thus, by [29], 
m ∈ {2, 3, 4, 6, 8}. The incidence graph Λ of a generalized 2-gon is a complete bipar-
tite graph ([59, page 11], [45, Section A.1]) so if, in addition, Λ is k-regular, then it 
is the complete bipartite graph Kk,k. The incidence graph of a generalized 3-gon (or 
projective plane) of order q − 1 (for some q ≥ 3) is bipartite, q-regular, each part 
has q2 − q + 1 vertices and any two vertices from the same part have exactly one 
common neighbour (see, for example, [8, page 373], [45, Section A.1]). Moreover, if Λ
is a bipartite graph of girth greater than 2, in which every vertex has degree at least 
3 and every pair of vertices from the same part have exactly one common neighbour 
then Λ has girth 6 and diameter 3. As described in [57], given a perfect difference 
set of order q, it is possible to construct a projective plane of order q− 1. (A set of k
integers d1, . . . , dk is called a perfect difference set (of order k) if among the k(k− 1)
differences di−dj (i �= j) each of the residues 1, 2, . . . , (k2−k) mod k2−k+1 occurs 
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exactly once. For instance {1, 2, 4} and {0, 1, 3, 9} are perfect difference sets; further 
examples can be found in [58, Section 7].)

2. Since each vertex of Γ has degree > 1 each generator and its inverse is a piece and 
since girth(Γ) > 2 there are no pieces of length 2 (see, for example, [53, Section 5]) 
and therefore P satisfies the small cancellation condition C(3) [47, Chapter V].

3. By [36], if a presentation satisfies C(3) then the T (q) condition is equivalent to the 
statement that its star graph does not contain any reduced closed path of length l
where 3 ≤ l < q. Therefore the (m, k, ν)-special presentation P satisfies the small 
cancellation condition C(k) − T (2m).

As in [27, Proof of Theorem 2], every group defined by an (m, k, ν)-special presentation 
with 1/m + 2/k < 1 is non-elementary hyperbolic (by [32, Corollary 4.1], [22,26]), and 
hence SQ-universal (by [23, Théorème 3.5], [51, Theorem 1]). We shall refer to the cases 
1/m + 2/k = 1 (that is, the cases (m, k) = (3, 3) and (m, k) = (2, 4)) as the Euclidean
cases. It was shown in [27, Theorem 2] that groups defined by concise (3, 3, 1)-special 
presentations are just-infinite (and hence not SQ-universal) and that, by [22], groups 
defined by concise (2, 4, 1)-special presentations contain a non-abelian free subgroup and 
that there are examples (from [56,55]) of (2, 4, 1)-special presentations defining both 
SQ-universal and non-SQ-universal groups.

Since the direct product of two free groups Fn×Fn (n ≥ 2) contains a finitely generated 
subgroup that has undecidable membership problem [49] (or see [47, IV, Theorem 4.3]), 
groups that contain F2 × F2 as a subgroup are of interest as they fail to satisfy certain 
properties, such as subgroup separability [48] and coherence [34]. Moreover, as hyperbolic 
groups cannot contain Z × Z (i.e. F1 × F1) as a subgroup, and F2 × F2 contains a 
wealth of Z × Z subgroups, groups that contain an F2 × F2 subgroup are considered 
in [7] to “strongly fail” to be hyperbolic. Groups defined by C(3) − T (6) presentations 
do not contain the subgroup F2 × F2 ([6, Theorem 9.3.1]) so if a group defined by 
an (m, k, ν)-special presentation contains F2 × F2 then (m, k) = (2, 4). Groups defined 
by (2, 4, ν)-special presentations, such as Burger-Mozes presentations, can contain this 
subgroup however.

If v is the root of a cyclically reduced word w and l(u) ≥ 2, w = vp then the star 
graph Γ of Pn(w) is equal to the star graph of Pn(v), and if v has length 2 then the 
vertices of Γ have degree at most 2, so Pn(w) is (m, pk, ν)-special if and only if Pn(v) is 
(m, k, ν)-special. Thus, in classifying (m, k, ν)-special cyclic presentations Pn(w) we can 
assume that w is not a proper power.

2.5. Polygonal presentations

In [60,27] λ-polygonal presentations were defined, and a process for obtaining a cor-
responding 2-complex K from such a presentation was given; we refer the reader to [27]
for the precise definition. In that article, a polyhedron is defined to be a closed, con-
nected 2-complex K obtained by identifying edges of a given set of k-gons (k ≥ 3); if 
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the 2-complex K obtained from a λ-polygonal presentation K is a polyhedron, we say 
that K corresponds to K. Lemma 1 of [27] constructs a λ-polygonal presentation, and 
a polyhedron that corresponds to it, from any concise (m, k)-special presentation. This 
can be readily extended to deal with (m, k, ν)-special presentations, as in Lemma 2.3, 
below. (The hypothesis that the presentation does not decompose as the disjoint union of 
two non-trivial sub-presentations ensures that the set of tuples K also does not properly 
decompose in such a manner, and so the resulting 2-complex K is connected.)

Lemma 2.3 (Compare [27, Lemma 1]). Let P = 〈X | R〉 be an (m, k, ν)-special presenta-
tion that does not decompose as the disjoint union of two non-trivial sub-presentations, 
and suppose that Γ0, . . . , Γν−1 are the components of the star graph Γ of P . Then there is 
a λ-polygonal presentation K over Γ0, . . . , Γν−1 with corresponding polyhedron K having 
ν vertices v0, . . . , vν−1 such that the link of vi is Γi (0 ≤ i < ν).

Let P, K be as in Lemma 2.3, let K̃ be the universal cover of K, and let G be the 
group defined by P . Then, as explained in [61,27], the following hold. The group G is the 
fundamental group of K, so G acts cocompactly on K̃. When equipped with the metric 
introduced in [1, page 165], K̃ is a complete metric space of non-positive curvature in the 
sense of [33], and it is a hyperbolic building if 1/m +2/k < 1 and a Euclidean building if 
(m, k) = (2, 4) or (3, 3) [30,2,4]. Hence G is non-hyperbolic if and only if (m, k) = (3, 3)
or (2, 4) by [30, page 119], [12].

3. Star graphs of cyclic presentations

The following example shows that irreducible (m, k, ν)-special presentations are preva-
lent within the class of cyclic presentations.

Example 3.1.

(a) P7(x0x1x3) is (3, 3, 1)-special ([26, Example 3.3], [37, Example 6.3]); its star graph 
is the Heawood graph (the incidence graph of a projective plane of order 2). The 
corresponding triangle presentation appears in [18, Section 4], [19, Section 4] and the 
group G7(x0x1x3) also appears in [3, Section 3], and the proof of [27, Theorem 2]. In 
particular, it is known that G7(x0x1x3) is just-infinite (so is not SQ-universal) and 
non-hyperbolic – see [50, Example 3.8] for a discussion.

(b) P21(x0x1x5) is (3, 3, 3)-special; its star graph has 3 components, each of which is the 
Heawood graph – see Fig. 1. The group G21(x0x1x5) is large (by [28, Lemma 2.3]) 
and is not hyperbolic see [20, Corollary 2.10]. The free product of three copies of 
G7(x0x1x3) is the group G21(x0x3x9) and the shift extension of G21(x0x3x9) is 
isomorphic to the shift extension of G21(x0x1x5), so the structures of G7(x0x1x3)
and G21(x0x1x5) are related through this shift-extension. For example, in [20, 
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Fig. 1. The star graph of P21(x0x1x5) (the disjoint union of three Heawood graphs).

Corollary 2.10] the fact that G7(x0x1x3) is non-hyperbolic is used to prove that 
G21(x0x1x5) is non-hyperbolic.

(c) P13(x2
0x1x4) is (3, 4, 1)-special; its star graph is the (4, 6)-cage [62] (the incidence 

graph of a projective plane of order 3) – see Fig. 2.
(d) P4(x0x1x

−1
0 x−1

1 ) (defining F2 ×F2) is (2, 4, 1)-special; its star graph is the complete 
bipartite graph K4,4.

(e) The presentation P7(x2
0x1x

2
4x5x

2
1x2x

2
5x6x

2
2x3x

2
6x0x

2
3x4) is redundant (as applying θ4

to any relator produces a cyclic permutation of another relator) and (3, 21, 1)-special; 
its star graph is the Heawood graph.

We use Example 3.1(b) to give an example of a λ-polygonal presentation over a 
disconnected graph:

Example 3.2 (A polygonal presentation over the union of three copies of the Heawood 
graph). Let Γ be the graph in Fig. 1 and let U1 = {xi | 0 ≤ i < 21}, U2 = {x−1

i | 0 ≤
i < 21}, and λ : U1 → U2 be the bijection given by λ(xi) = x−1

i . Then the set

K = {(xi, xi+1, xi+5), (xi+1, xi+5, xi), (xi+5, xi, xi+1) | 0 ≤ i < 21}

(subscripts mod 21) is a λ-polygonal presentation over Γ.
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Fig. 2. The star graph of P13(x2
0x1x4) (the (4, 6)-cage).

Let δ denote the greatest common divisor of n and the subscripts of the generators 
that appear in w (recall that by our standing assumption x0 is involved in w). Then the 
cyclic presentation P = Pn(w(x0, xδ, . . . , x(n/δ−1)δ)) decomposes as the disjoint union 
of δ cyclic presentations R = Pn/δ(w(x0, x1, . . . , xn/δ−1)). Hence the star graph of P
decomposes as the disjoint union of δ copies of the star graph of R, and so P is (m, k, δν)-
special if and only if R is (m, k, ν)-special. Thus, it is often convenient to assume that 
Pn(w) is irreducible (i.e. that δ = 1).

The following theorem (compare [39, Lemma 2.3]) describes the components of the 
star graph of a concise cyclic presentation Pn(w). For an integer n ≥ 2 and subset 
A ⊆ {0, 1, . . . , n −1}, the circulant graph circn(A) is the graph with vertices v0, . . . , vn−1

and edges vi − vi+a for all 0 ≤ i < n, a ∈ A (subscripts mod n).

Theorem 3.3. Let Γ be the star graph of a concise cyclic presentation Pn(w) where w is 
cyclically reduced and is not a proper power, let A, B, Q be the multisets defined at (1), 
let dA = gcd(n, a (a ∈ A)), dB = gcd(n, b (b ∈ B)), and if w is not cyclically alternating 
let q0 ∈ Q and set d = gcd(n, a (a ∈ A), b (b ∈ B), q−q0 (q ∈ Q)). Then Γ is l(w)-regular 
and has vertices xi, x

−1
i (0 ≤ i < n) and edges xi − xi+a, x

−1
i − x−1

i+b, xi − x−1
i+q for all 

a ∈ A, b ∈ B, q ∈ Q, 0 ≤ i < n.

(a) If w is not cyclically alternating then Γ has d isomorphic connected components 
Γ0, . . . , Γd−1 where for 0 ≤ j < d the graph Γj is the induced labelled subgraph of Γ
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with vertex set V (Γj) = V (Γ+
j ) ∪ V (Γ−

j ) where Γ+
j and Γ−

j are the induced labelled 
subgraphs of Γ with vertex sets

V (Γ+
j ) = {xj+td | 0 ≤ t < n/d},

V (Γ−
j ) = {x−1

j+q0+td | 0 ≤ t < n/d}

(subscripts mod n). In particular |V (Γ+
j )| = |V (Γ−

j )| = n/d for all 0 ≤ j < d and 
the subscripts of the positive (respectively negative) vertices in any component are 
congruent mod d.

(b) If w is cyclically alternating then Γ has dA+dB connected components Γ+
0 , . . . , Γ

+
dA−1

and Γ−
0 , . . . , Γ

−
dB−1 which are, respectively, the induced labelled subgraphs of Γ with 

vertex sets

V (Γ+
j ) = {xj+tdA | 0 ≤ t < n/dA},

V (Γ−
j ) = {x−1

j+tdB
| 0 ≤ t < n/dB}

(subscripts mod n). Moreover each graph Γ+
j is isomorphic to the circulant graph 

circn/dA({a/dA (a ∈ A)}) and each graph Γ−
j is isomorphic to the circulant graph 

circn/dB({b/dB (b ∈ B)}).

Proof. Observe first that each positive vertex has the same degree and, since in the star 
graph of any finite presentation vertices corresponding to a generator and its inverse have 
the same degree (see [36, Section 2.3.3]), the graph Γ is regular. Moreover, the number 
of edges of the star graph of a concise presentation that has no proper power relators, 
and where the relators are cyclically reduced, is equal to the sum of the lengths of the 
relators, so the number of edges of Γ is equal to nl(w), and hence Γ is l(w)-regular.

Let Γ+, Γ− denote the induced subgraphs of Γ with positive and negative vertices, re-
spectively. Then Γ+ has vertices x0, . . . , xn−1 and edges xi−xi+a for each a ∈ A, 0 ≤ i <
n, so is the circulant graph circn(A). Therefore its connected components are the graphs 
Γ+

0 , . . . , Γ
+
dA−1, each of which is isomorphic to the circulant graph circn/dA({a/dA (a ∈

A)}) (see, for example, [9], [35, page 154]). Similarly Γ− is the circulant graph circn(B), 
and its connected components are the graphs Γ−

0 , . . . , Γ
−
dB−1, each of which is isomorphic 

to the circulant graph circn/dB({b/dB (b ∈ B)}). Thus part (b) is proved so consider 
part (a). Fix a j, 0 ≤ j < d and consider the graph Γj. Identifying the endpoints of 
the edges xj+td − x−1

j+q0+td (0 ≤ t < n/d) of Γj leaves the circulant graph Λj with 
vertices xj , xj+d, . . . , xj+n−d and edges xj+td − xj+td, xj+td − xj+td+a, xj+td − xj+td+b, 
xj+td − xj+((q−q0)/d+t)d for all a ∈ A, b ∈ B, q ∈ Q, 0 ≤ t < n/d (subscripts mod n). 
Setting ut = xj+td for each 0 ≤ t < n/d the graph Λj has vertices u0, . . . , un/d−1 and 
(multi-)edges ut − ut, ut − ut+a/d, ut − ut+b/d, ut − ut+(q−q0)/d (subscripts mod n/d), 
which is connected since gcd(n/d, a/d (a ∈ A), b/d (b ∈ B), (q − q0)/d (q ∈ Q)) = 1. 
Therefore Λj , and hence Γj , is connected, as required. �
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As an immediate corollary we have:

Corollary 3.4. Let Pn(w) be a concise cyclic presentation in which w is not a proper 
power. Then

(a) Pn(w) is (3, k, ν)-special if and only if k2 − k + 1 = n/ν and each component of its 
star graph is the incidence graph of a projective plane of order k − 1;

(b) Pn(w) is (2, k, ν)-special if and only if k = n/ν and each component of its star graph 
is the complete bipartite graph Kk,k.

Note that the ‘concise’ hypothesis cannot be removed from Corollary 3.4, as can be 
seen by Example 3.1(e). We also have the following:

Corollary 3.5. Suppose that Pn(w) is a concise (m, k, ν)-special cyclic presentation in 
which w is non-positive, non-negative, and not cyclically alternating, and is not a proper 
power. Then n/ν is even and, in particular, Pn(w) is not (3, k, ν)-special for any k ≥ 3, 
ν ≥ 1.

Proof. Since w is not cyclically alternating, in the notation of Theorem 3.3, ν = d so n/ν
is an integer. Let a ∈ A (which is non-empty, since w is non-positive and non-negative) 
and let r = gcd(n/ν, a). Then x0 − xa − x2a − · · · − x((n/ν)/r−1)a − x0 is a closed path 
in the star graph Γ of Pn(w) of length (n/ν)/r, which is even, since each component of 
Γ is bipartite. Hence n/ν is even. If Pn(w) is (3, k, ν)-special for some k ≥ 3, ν ≥ 1 then 
by Corollary 3.4(a) n/ν = k2 − k + 1, which is odd, a contradiction. �
Corollary 3.6. Let Pn(w) be a concise cyclic presentation and let Δ be the number of 
components of the star graph of Pn(w) and let σ be the exponent sum of w. If either

(a) w is not cyclically alternating and Δ > 1 and (Δ, |σ|) �= (2, 2); or
(b) w is cyclically alternating and Δ > 2

then Gn(w) is large. In particular, if Pn(w) is (m, k, ν)-special where w is a positive or 
negative word and ν > 1, then Gn(w) is large.

Proof. The values of σ and Δ do not depend on whether or not w is cyclically reduced, 
so we may assume that it is. Moreover, if v is the root of w then if Gn(v) is large then 
so is Gn(w), and the star graph of Pn(w) is equal to that of Pn(v) so we may assume 
that w is not a proper power.

Suppose first that w is cyclically alternating. Then, in the notation of Theorem 3.3, 
dA > 1 or dB > 1. By adjoining the relators xix

−1
i+dA

(0 ≤ i < n) we see the group Gn(w)
maps onto the free group of rank dA, and adjoining the relators xix

−1
i+dB

(0 ≤ i < n) it 
maps onto the free group of rank dB, and hence Gn(w) is large.
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Suppose then that w is not cyclically alternating, so that (in the notation of Theo-
rem 3.3) Δ = d. By inverting and cyclically permuting w, if necessary, we may assume 
that the exponent sum σ ≥ 0 and the initial letter of w is x0. Now a ≡ 0, b ≡ 0, q ≡
q0 mod d for all a ∈ A, b ∈ B, q ∈ Q, so if xεi

i ux
εj
j is a cyclic subword of w, where u is 

cyclically alternating and εi, εj ∈ {±1} then i ≡ j mod d if εi = −εj , j ≡ i + q0 mod d

if εi = εj = 1, and j ≡ i − q0 mod d if εi = εj = −1. Therefore, by adjoining the relators 
xix

−1
i+d (0 ≤ i < n) the group Gn(w) maps onto Gd(w′), where w′ = x0xq0 . . . x(σ−1)q0 , 

which has shift extension E = Gd(w′) �Zd = 〈x, t | td, (xtq0)σ〉 ∼= Zd ∗Zσ. Thus E, and 
hence Gn(w), is large if σ �= 1 and (d, σ) �= (2, 2). �

Note that Corollary 3.6(a) cannot be directly extended to include the case (Δ, σ) =
(2, 2) since, for example, for even n the group Gn(x0x1) ∼= Z, and, similarly, part (b) 
cannot be directly extended to Δ = 2 since, for example, Gn(x0x

−1
1 ) ∼= Z. In the following 

example we give an infinite family of (2, k, 1)-special cyclic presentations that define large 
groups.

Example 3.7. Let w = x0x0+1x0+1+2 . . . x0+1+2+···+n−1, where n > 4 is odd and com-
posite. Then the star graph of Pn(w) is the complete bipartite graph Kn,n. Let d be a 
proper divisor of n. Adjoining the relators xix

−1
i+d (0 ≤ i < n) to Pn(w) shows that Gn(w)

maps onto Gd(w′), where w′ = (x0x0+1x0+1+2 . . . x0+1+2+···+d−1)n/d. Since either d ≥ 3
or d = 2 and n/d ≥ 3 the group Gd(w′) is large by [24].

4. Girth of the star graph of a cyclic presentation

In this section we prove:

Theorem A. Let Pn(w) be a concise cyclic presentation where w has length at least 3 
and is not a proper power. Then,

(a) if Pn(w) satisfies T (q) where q ≥ 7 then q ≤ 8 and w is a non-positive and non-
negative word of length 3;

(b) if w is a non-positive and non-negative word of length k = 3 then Pn(w) is not 
(m, k, ν)-special for any m ≥ 2, ν ≥ 1.

Hence, if Pn(w) is (m, k, ν)-special for some m ≥ 2, k ≥ 3, ν ≥ 1 then either m = 2 or 
(m = 3 and w is positive or negative).

The ‘concise’ hypothesis is necessary in Theorem A(a) since, for example, P =
P6(x0x1x3x4) is redundant and its star graph is a 12-cycle and so P satisfies T (12).

Lemma 4.1. Let Γ be the star graph of a concise cyclic presentation Pn(w) where w ∈ Fn

is cyclically reduced and is not a proper power. Then
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(a) if w contains non-overlapping cyclic subwords of the form xjx
ε
j+p, (xkx

ε
k+p)±1 (for 

some 0 ≤ j, k, p < n), where ε = ±1, then girth(Γ) ≤ 2;
(b) if w is a positive word of length 3 then girth(Γ) ≤ 6;
(c) if w contains a cyclic subword of the form xjxj+px

−1
j+p+qx

−1
j+p+q+r (for some 0 ≤

j, p, q, r < n) then girth(Γ) ≤ 6;
(d) if w contains a positive cyclic subword of length 4 then girth(Γ) ≤ 6;
(e) if w contains a cyclic subword of the form xjxj+pxj+p+qx

−1
j+p+q+r (for some 0 ≤

j, p, q, r < n) then girth(Γ) ≤ 6;
(f) if w contains non-overlapping cyclic subwords of the form xjx

−1
j+p and xkx

−1
k+q for 

some 0 ≤ j, k, p, q < n, then girth(Γ) ≤ 4.

Proof. (a) Here the edges of Γ include the distinct edges xi−x−ε
i+p, xi−x−ε

i+p (0 ≤ i < n) 
so Γ contains the reduced closed path x0 − x−ε

p − x0 of length 2.
(b) We may assume w = x0xpxp+q for some 0 ≤ p, q < n where p, q are not both 0 and 

p �≡ q, p + 2q �≡ 0, 2p + q �≡ 0 mod n (by part (a)). Then Γ contains the reduced 
closed path x0 − x−1

p − xp−q − x−1
−2q − x−p−2q − x−1

−p−q − x0 of length 6.
(c) By part (a) we may assume p + r �≡ 0 mod n. Then Γ contains the reduced closed 

path x0 − x−1
p − xp+r − xp+q+r − x−1

p+q − xq − x0 of length 6.
(d) We may assume w contains the cyclic subword x0xpxp+qxp+q+r for some 0 ≤ p, q, r <

n, where p �≡ q, q �≡ r, and p �≡ r mod n (by part (a)). Then Γ contains the reduced 
closed path x0 − x−1

p − xp−q − x−1
p−q+r − x−q+r − x−1

r − x0 of length 6.
(e) By part (a) we may assume p �≡ q mod n. Then Γ contains the reduced closed path 

x0 − x−1
p − xp−q − xp−q+r − x−1

p+r − xr − x0 of length 6.
(f) By part (a) we may assume p �≡ ±q mod n. Then Γ contains the reduced closed path 

x0 − xp − xp+q − xq − x0 of length 4. �
Corollary 4.2. Let Γ be the star graph of a concise cyclic presentation Pn(w) where w is 
cyclically reduced of length at least 3 and is not a proper power. Then girth(Γ) ≤ 8 and 
if w is cyclically alternating then girth(Γ) ≤ 4; moreover, if girth(Γ) > 6 then w is a 
non-positive, non-negative word of length 3.

Proof. We refer to parts (a)–(f) of Lemma 4.1. By replacing w by its inverse, if necessary, 
we may assume that w is non-negative. If w is cyclically alternating then girth(Γ) ≤ 4
by part (f). If l(w) = 3 and w is positive the result follows from part (b). If l(w) = 3 and 
w is non-positive and non-negative, w = x0xpx

−1
p+q, say, then x0 − x−1

p − x−1
−q − x−p−q −

x−p −x−1
0 −x−1

p+q −xq −x0 is a reduced closed path in Γ of length 8. Thus girth(Γ) ≤ 8.
Suppose l(w) = 4. If w is positive the result follows from part (d) so assume that w

is non-positive. By part (f) we may assume that w has exactly one cyclic subword of the 
form xjx

−1
j+p and therefore has a cyclic subword of the form of part (c) or (e), and the 

result follows.
Suppose then that l(w) ≥ 5. If w is positive then the result follows from part (d) so 

assume that w is non-positive. By part (f) we may assume that w has exactly one cyclic 
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subword of the form xjx
−1
j+p, but then w or its inverse has a cyclic subword of the form 

given in part (e). �
We note that girth 8 can be attained in Corollary 4.2; a presentation that demonstrates 

this is P18(x0x8x
−1
1 ). We now prove Theorem A.

Proof of Theorem A. (a) If Pn(w) satisfies T (q) with q ≥ 7 then every piece has length 
1 so Pn(w) satisfies C(l(w)), so it satisfies C(3), and hence the star graph Γ of Pn(w)
contains no reduced closed path of length l where 3 ≤ l < q. Moreover, since every piece 
has length 1 there is no reduced closed path of length 2 in Γ. Then by Corollary 4.2
q ≤ 8 and w is a non-positive and non-negative word of length 3.

(b) Suppose that w is a non-positive and non-negative word of length k = 3 and that 
Pn(w) is (m, k, ν)-special for some m ≥ 2, ν ≥ 1. Then, since k = 3 we have m �= 2, 
and by part (a) m ≤ 4. By Theorem 3.3, each component of Γ has 2n/ν vertices and is 
3-regular, and since it is the incidence graph of a generalized m-gon it has 14 vertices if 
m = 3 and 30 vertices if m = 4 (see [59, Corollary 1.5.5]). Therefore n/ν = 7 or 15, a 
contradiction to Corollary 3.5.

If Pn(w) is (m, k, ν)-special where m ≥ 4 then it satisfies T (8) so by part (a) w is 
a non-positive and non-negative word of length 3, in which case Pn(w) is not (m, k, ν)-
special by part (b). It remains to show that if Pn(w) is (3, k, ν)-special and k > 3 then w
is positive or negative. This follows from Corollary 4.2 when w is cyclically alternating 
and from Corollary 3.5 otherwise. �

We obtain our classifications of the concise (m, k, ν)-special cyclic presentations for 
m = 3 and m = 2 in Sections 5 and 6, respectively.

5. Classification of concise (3, k, ν)-special cyclic presentations

In this section, in Theorem B, we classify the concise (3, k, ν)-special cyclic presen-
tations in terms of perfect difference sets of order k. In Corollary 5.1 we consider the 
Euclidean case and list explicitly the (3, 3, ν)-special cyclic presentations. By Theorem A
we may assume that w is a positive or negative word and, by replacing it by its inverse, 
we may assume that it is positive.

Theorem B. Suppose that w is a positive word of length k ≥ 3 that is not a proper power, 
let Q be the multiset defined at (1) and suppose that the cyclic presentation Pn(w) is 
irreducible and concise. Then Pn(w) is (3, k, ν)-special if and only if

(a) n = νN , where N = k2 − k + 1; and
(b) Q is a perfect difference set; and
(c) q ≡ q′ mod ν, for all q, q′ ∈ Q.
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Proof. Let Q = {q1, . . . , qk}. Suppose first that Pn(w) is (3, k, ν)-special and let Γ de-
note the star graph of Pn(w). Condition (a) holds by Corollary 3.4 and (c) holds by 
Theorem 3.3.

Let Λ be the component of Γ that contains x−1
0 . By Theorem 3.3 the subscripts of 

the negative vertices in Λ are all congruent to zero mod ν. Since there are N negative 
vertices in this component, they are precisely the negative vertices whose subscripts are 
the elements of the set {0, ν, . . . , (N − 1)ν}. On the other hand, a vertex x−1

j is a vertex 
of Λ if and only if NΓ(x−1

0 ) ∩NΓ(x−1
j ) = {xu} for some vertex xu, say. Then j ≡ u + qt, 

0 ≡ u +qs mod n for some 1 ≤ s, t ≤ k, so j ≡ qt−qs mod n. That is, the subscripts of the 
negative vertices in Λ are precisely the elements of the set {(qt−qs) mod n | 1 ≤ s, t ≤ k}. 
Therefore,

{jν mod N | 0 ≤ j < N} = {(qt − qs) mod N | 1 ≤ s, t ≤ k}.

By (c) for all 1 ≤ i ≤ k we have gcd(ν, qi) = gcd(ν, q1, . . . , qk) which divides 
gcd(n, q1, . . . , qk) = 1, since Pn(w) is irreducible. Thus gcd(ν, qi) = 1 for all 1 ≤ i ≤ k. 
Then, again by (c), kqi ≡

∑k
ι=1 qι ≡ 0 mod ν, and since gcd(ν, qi) = 1 we have 

k ≡ 0 mod ν. Therefore gcd(N, ν) = gcd(k2 − k + 1, ν) = 1, and hence

{0, 1, . . . , N − 1} = {(qt − qs) mod N | 1 ≤ s, t ≤ k}.

Then, if qs ≡ qt mod N for some s �= t the set {(qt − qs) mod N | 1 ≤ s, t ≤ k, s �= t}, 
which has at most k2 − k elements, is equal to the set {(qt − qs) mod N | 1 ≤ s, t ≤ k}, 
which has N = k2 − k + 1 elements, a contradiction. Therefore qs ≡ qt mod N if and 
only if s = t so

{1, . . . , N − 1} = {(qt − qs) mod N | 1 ≤ s, t ≤ k, s �= t}

and hence {q1, . . . , qk} is a perfect difference set and so (b) holds.
For the converse, suppose that (a)–(c) hold and let Γ be the star graph of Pn(w). We 

must show that Γ has ν components, each of which is bipartite, has girth 6 and diameter 
3, and each vertex has degree at least 3.

Since w is positive the graph Γ is bipartite. Condition (b) implies that q1, . . . , qk are 
distinct mod N and hence are distinct mod n, so by Theorem 3.3 Γ is k-regular (and 
hence each vertex has degree at least 3) and has no reduced closed path of length 2. 
By Theorem 3.3 Γ has d = gcd(n, q1, . . . , qk) isomorphic components Γ0, . . . , Γd−1, each 
with 2n/d vertices. If we show that Γ0 has girth 6 and diameter 3 then each component 
has 2(k2 − k + 1) vertices, so 2n/d = 2(k2 − k + 1) so n/d = k2 − k + 1. But condition 
(a) implies that n/ν = k2 − k + 1 so d = ν, i.e. Γ has ν components.

We now show this. It suffices to show that |NΓ(u) ∩ NΓ(v)| = 1 whenever u, v are 
distinct vertices belonging to the same part of Γ0 (see Remark 2.2(1)). Let ε = ±1 and 
suppose xε

i , x
ε
j ∈ V (Γ0) (i �= j). Then
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NΓ(xε
i) = {x−ε

i+εqs
| 1 ≤ s ≤ k},

NΓ(xε
j) = {x−ε

j+εqt
| 1 ≤ t ≤ k},

so |NΓ(xε
i) ∩NΓ(xε

j)| = 1 if and only if i + εqs ≡ j+ εqt mod n for some unique pair qs, qt
(1 ≤ s, t ≤ k). By Theorem 3.3 i − j ≡ pν mod n for some 1 ≤ p < N . Now (a), (b), (c) 
imply that

{(qi − qj) mod n | 1 ≤ i, j ≤ k, i �= j} = {ν, 2ν, . . . , (N − 1)ν mod n}

so there exists a unique pair qs, qt ∈ {q1, . . . , qk} such that ε(qt − qs) ≡ pν mod n; 
i.e. ε(qt − qs) ≡ i − j mod n, or i + εqs ≡ j + εqt mod n, as required. �

We remark that, as shown in the proof, a consequence of conditions (a), (c) of The-
orem B is that ν divides k. Note that the ‘concise’ hypothesis cannot be removed from 
Theorem B; a presentation that demonstrates this is given in Example 3.1(e).

Corollary 5.1. Let w = x0xq1xq1+q2 where 0 ≤ q1, q2 < n and suppose that Pn(w) is 
irreducible. Then Pn(w) is (3, 3, ν)-special if and only if either:

(a) n = 7, ν = 1, and {q1, q2, (−q1 − q2) mod 7} = {1, 2, 4} or {3, 5, 6}; or
(b) n = 21, ν = 3, and {q1, q2, (−q1 − q2) mod 21} = {1, 4, 16}, {2, 8, 11}, {5, 17, 20}, 

or {10, 13, 19}.

Proof. If w is a proper power then w = x3
0 and the star graph Γ of Pn(w) consists of 

vertices xi, x
−1
i and edges xi − x−1

i (0 ≤ i < n). If Pn(w) is redundant then n = 3 and 
q1 ≡ q2 ≡ ±1 mod 3, so Γ consists of vertices xi, x

−1
i and edges xi − x−1

i+1 (0 ≤ i < 3). 
Therefore, in each case, Pn(w) is not (3, 3, ν)-special so we may assume that w is not a 
proper power and Pn(w) is concise.

By Theorem B the presentation Pn(w) is (3, 3, ν)-special if and only if n = 7ν, ν = 1
or 3, {q1, q2, −q1 − q2} is a perfect difference set and q1 ≡ q2 ≡ −(q1 + q2) mod ν. The 
only possibilities for q1, q2, −q1−q2 mod n such that gcd(n, q1, q2) = 1 (for irreducibility) 
are those in the statement. �

The isomorphisms in [28, Lemma 2.1] show that the presentations in Corollary 5.1 (a) 
each define the group G7(x0x1x3) while those in part (b) define the group G21(x0x1x5). 
These groups are discussed in Example 3.1.

Note that if Pn(w) is a concise (3, k, ν)-special cyclic presentation where ν > 1 then 
G is large by Corollary 3.6 and recall from Section 2.4 that a group defined by a (3, k, 1)-
special presentation is SQ-universal if and only if k �= 3. Thus there is precisely one 
cyclically presented group defined by a concise (3, k, ν)-special cyclic presentation that 
is not SQ-universal, namely G7(x0x1x3), which is just-infinite.
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6. Classification of concise (2, k, ν)-special cyclic presentations

In this section, we classify the concise (2, k, ν)-special cyclic presentations Pn(w): in 
Theorem C we do this for positive words w, in Theorem D we do this for cyclically 
alternating words w, and in Theorem E for words w that are non-positive, non-negative, 
and not cyclically alternating. In Corollaries 6.1, 6.2, 6.4 we consider the Euclidean 
case, and classify the (2, 4, ν)-special cyclic presentations. Except in one case (given in 
Corollary 6.4(b)(iii)) we show the groups defined by these (2, 4, ν)-special presentations 
are large; it follows that, with that one possible exception, groups defined by concise 
(2, k, ν)-special cyclic presentations are SQ-universal.

6.1. The positive case

Theorem C. Let w be a positive word of length k that is not a proper power and let Q be 
the multiset defined at (1). Suppose also that the cyclic presentation Pn(w) is irreducible 
and concise and let Γ be the star graph of Pn(w). Then Pn(w) is (2, k, ν)-special if and 
only if either

(a) k ≥ 5 is odd, n = k, ν = 1, Q = {0, 1, 2, . . . , n − 1}, in which case Γ is the complete 
bipartite graph Kn,n; or

(b) k ≥ 4 is even, n = 2k, ν = 2, Q = {1, 3, . . . , n − 1}, in which case Γ is the disjoint 
union of two copies of Kn/2,n/2.

Proof. Suppose that Pn(w) is an irreducible and concise (2, k, ν)-special cyclic presen-
tation (so k ≥ 4). By Corollary 3.4 n = νk and the star graph Γ of Pn(w) has ν
components each of which is a complete bipartite graph Kk,k. Then by Theorem 3.3
q ≡ q′ mod ν for all q, q′ ∈ Q. Note that for two elements q, q′ of the multiset Q
we have q �≡ q′ mod n for otherwise Γ has a reduced closed path of length 2. Thus 
Q = {q0, ν + q0, 2ν + q0, . . . , (k − 1)ν + q0} for some q0 ∈ Q. Now gcd(q0, ν) divides 
gcd(n, q (q ∈ Q)) = 1 (since Pn(w) is irreducible) so gcd(q0, ν) = 1.

Summing the elements of Q gives k(kν − ν + 2q0)/2, so k(kν − ν + 2q0)/2 ≡ 0 mod 
νk. Hence k(kν − ν + 2q0) = 2νkt for some integer t, and so k = 2t + 1 − (2q0/ν) so 
ν divides 2q0. But gcd(ν, q0) = 1 so ν divides 2. Therefore ν ∈ {1, 2} and k is odd if 
and only if ν = 1. If ν = 1 then Q = {q0, 1 + q0, 2 + q0, . . . , (n − 1) + q0}, that is, 
Q = {0, 1, 2, . . . , n − 1}, and if ν = 2 then Q = {q0, 2 + q0, 4 + q0, . . . , 2(n/2 − 1) + q0}, 
that is, Q = {1, 3, . . . , n − 1}.

For the converse suppose that (a) or (b) hold and let Λ be a connected component 
of Γ. Then since no two distinct elements of {1, ν + 1, 2ν + 1, . . . , (k − 1)ν + 1} are 
congruent mod n Theorem 3.3 implies that the graph Λ is k-regular (so each vertex has 
degree ≥ 3) and contains no 2-cycles and Γ has ν components. When ν = 1 the set 
Q = {0, 1, . . . , n − 1} so every positive vertex is adjacent to every negative vertex and 
hence Γ is the complete bipartite graph Kn,n. Suppose then that ν = 2. Then k = n/2 and 
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Q = {1, 3, . . . , n − 1}. By Theorem 3.3 two positive vertices are in the same component 
if and only if their subscripts are of the same parity. Moreover, the set of neighbours 
of any even (respectively odd) positive vertex consists of all odd (respectively even) 
negative vertices and hence each component is the complete bipartite graph Kn/2,n/2, 
as required. �

Corollary 3.6 implies that the groups Gn(w) corresponding to part (b) are large while 
those in part (a) are SQ-universal (see Section 2.4); Example 3.7 gives examples of large 
groups Gn(w) that correspond to part (a). Restricting to the Euclidean case, we now 
classify the concise (2, 4, ν)-special cyclic presentations Pn(w), where w is positive. This 
classification will reveal that, up to isomorphism, such presentations define exactly three 
groups.

Corollary 6.1. Let P = Pn(x0xq1xq1+q2xq1+q2+q3) be irreducible and concise, where 0 ≤
q1, q2, q3 < n and let G be the group defined by P . Then P is (2, 4, ν)-special if and only 
if n = 8, ν = 2, q1 ∈ {1, 3, 5, 7} and one of the following holds:

(a) (q2 ≡ 3q1 and q3 ≡ 5q1 mod n) or (q2 ≡ 7q1 and q3 ≡ 5q1 mod n) in which case 
G ∼= G8(x0x1x4x1) which contains a subgroup isomorphic to F2 × F2;

(b) (q2 ≡ 5q1 and q3 ≡ 3q1 mod n) or (q2 ≡ 7q1 and q3 ≡ 3q1 mod n) in which case 
G ∼= G8(x0x1x6x1);

(c) (q2 ≡ 3q1 and q3 ≡ 7q1 mod n) or (q2 ≡ 5q1 and q3 ≡ 7q1 mod n) in which case 
G ∼= G8(x0x1x4x3).

Proof. Let q4 = −(q1 + q2 + q3) mod n. By Theorem C we have ν = 2, n = 8, 
{q1, q2, q3, q4} = {1, 3, 5, 7}. Since q1 ∈ {1, 3, 5, 7} it has a multiplicative inverse mod n, 
q−1
1 ∈ {1, 3, 5, 7}. Define Q2 = q−1

1 q2, Q3 = q−1
1 q3, Q4 = q−1

1 q4 mod n. This im-
plies that (Q2, Q3) = (3, 5), (3, 7), (5, 3), (5, 7), (7, 3), or (7, 5), and hence the stated 
values of q2, q3. Then by multiplying the subscripts of generators xi by q−1

1 the group 
G ∼= Gn(x0x1x1+Q2x1+Q2+Q3). In the cases (Q2, Q3) = (7, 5), (7, 3), (5, 7) the isomor-
phism to the stated group comes about by subtracting 1 from the subscripts of generators, 
multiplying them by 3 or 5 (mod 8), and cyclically permuting.

It remains to show that G = G8(x0x1x4x1) contains a subgroup isomorphic to F2×F2. 
A computation in GAP [31] shows that the subgroup of G generated by the set of elements

{x2
0, x

2
1, x

2
3, x2, x6, x4x

−1
0 , x−1

4 x−1
0 , x5x

−1
1 , x7x

−1
3 , x0x1x

−1
3 , x0x

−1
1 x−1

3 }

is of index 4 and has a presentation whose set of generators contains elements a, b, c, d
and whose set of relators contains the commutators [a, b], [b, c], [c, d], [d, a] and that the 
quotient obtained by killing all other generators has precisely these four generators and 
four relators, so defines F2 × F2. Therefore a, b, c, d generate a subgroup of G that is 
isomorphic to F2 × F2. �
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The groups in Corollary 6.1 are pairwise non-isomorphic, as can be readily seen by 
computing their abelianisations, and they are large by Corollary 3.6. We have been 
unable to determine if the groups in parts (b), (c) contain a subgroup isomorphic to 
F2 × F2.

6.2. The cyclically alternating case

Theorem D. Let w be a cyclically reduced, cyclically alternating word of (even) length 
k ≥ 4, let A, B be the multisets defined at (1) and suppose that Pn(w) is irreducible and 
concise. Then Pn(w) is (2, k, ν)-special if and only if n = 2k, ν = 2, and A, B are each 
sets of the form {±1, ±3, . . . , ±(k − 1)}.

Proof. Let Γ be the star graph of Pn(w) and let Γ+, Γ− be the induced subgraphs of 
Γ whose vertex sets are the positive and negative vertices of Γ, respectively, and let 
dA = gcd(n, a (a ∈ A)), dB = gcd(n, b (b ∈ B)).

Suppose first that the given conditions hold. Then ±1 ∈ A so dA = 1 and hence, by 
Theorem 3.3, Γ+ is the circulant graph circn(A), which is the complete bipartite graph 
Kn/2,n/2 with vertex partition {x0, x2, . . . , xn−2} ∪ {x1, x3, . . . , xn−1}. Similarly Γ− is 
the circulant graph circn(B), which is the complete bipartite graph Kn/2,n/2 with vertex 
partition {x−1

0 , x−1
2 , . . . , x−1

n−2} ∪ {x−1
1 , x−1

3 , . . . , x−1
n−1}. Thus Pn(w) is (2, n/2, 2)-special.

Suppose then that Pn(w) is (2, k, ν)-special. Since w is cyclically alternating of length 
k we have |A| = k/2. Then by Corollary 3.4 each component of Γ is the complete 
bipartite graph Kk,k. Then Theorem 3.3 implies dA = dB, and since Pn(w) is irreducible 
1 = gcd(n, a (a ∈ A), b (b ∈ B)) = gcd(dA, dB) so dA = dB = 1. Thus Γ has 2 components 
so ν = 2, and each of these components must therefore be the complete bipartite graph 
Kn/2,n/2, and hence k = n/2. If a ≡ ±a′ mod n for some a, a′ ∈ A then Γ contains 
a reduced closed path of length 2, contradicting the girth, so a �≡ ±a′ mod n for all 
a, a′ ∈ A, and similarly b �≡ ±b′ mod n for all b, b′ ∈ B. Since dA = 1 the set A contains 
an odd element, α, say. Suppose it also has an even element, a, say. Then the graph Γ+

contains a closed path x0−xα−x2α−· · ·−x(a−1)α−xaα−xa(α−1)−· · ·x2a−xa−x0 of 
length a + α, which is odd, a contradiction (since Γ is bipartite). Therefore all elements 
of A are odd, so A consists of k/2 odd integers such that if a ∈ A then n − a /∈ A, so is 
of the form {±1, ±3, . . . , ±(k − 1)}. Similarly, B is of the same form. �

Restricting to the Euclidean case, we now classify the concise (2, 4, ν)-special cyclic 
presentations Pn(w) where w is cyclically alternating.

Corollary 6.2. Let P = Pn(x0x
−1
a1

xa1+b1x
−1
a1+b1+a2

) be an irreducible and concise cyclic 
presentation, where 0 ≤ a1, b1, a2 < n and let G be the group defined by P . Then P is 
(2, 4, ν)-special if and only if n = 8, ν = 2 and one of the following holds:
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(a) (a2 ≡ 5a1, b1 ≡ 3a1 mod n) or (a2 ≡ 5a1, b1 ≡ 7a1 mod n), in which case G ∼=
G8(x0x1x4x1);

(b) (a2 ≡ 3a1, b1 ≡ 5a1 mod n) or (a2 ≡ 3a1, b1 ≡ 7a1 mod n), in which case G ∼=
G8(x0x1x6x1);

(c) (a2 ≡ 3a1, b1 ≡ a1 mod n) or (a2 ≡ 3a1, b1 ≡ 3a1 mod n), in which case G ∼=
G8(x0x1x4x3).

Proof. If w = x0x
−1
a1

xa1+b1x
−1
a1+b1+a2

is a proper power then w = (x0x
−1
a1

)2, in which 
case each vertex of the star graph of Pn(w) has degree 2, so Pn(w) is not (2, 4, ν)-
special. Hence we may assume that w is not a proper power. Let b2 = −(a1 + b1 +
a2) mod n. By Theorem D the presentation Pn(w) is (2, 4, ν)-special if and only if 
ν = 2, n = 8, a1, a2, b1, b2 are odd, and a1 �≡ ±a2, b1 �≡ ±b2 mod 8. Since a1 ∈
{1, 3, 5, 7} it has a multiplicative inverse mod n, a−1

1 ∈ {1, 3, 5, 7}. Define B1 = a−1
1 b1, 

A2 = a−1
1 a2, B2 = a−1

1 b2 mod n. By multiplying the subscripts of generators xi by 
a−1
1 the group G ∼= Gn(x0x

−1
1 x1+B1x

−1
1+B1+A2

). Further B1, A2, B2 ∈ {1, 3, 5, 7} and 
A2 �≡ ±1, B1 �≡ ±B2 and 1 + B1 + A2 + B2 ≡ 0 mod n. This implies (A2, B1) =
(3, 1), (3, 3), (3, 5), (3, 7), (5, 3), or (5, 7), and hence the stated values of a2, b1. In parts (a), 
(b) isomorphisms G8(x0x

−1
1 x6x

−1
1 ) ∼= G8(x0x1x6x1), G8(x0x

−1
1 x0x

−1
3 ) ∼= G8(x0x1x0x3), 

G8(x0x
−1
1 x4x

−1
1 ) ∼= G8(x0x1x4x1), and G8(x0x

−1
1 x0x

−1
5 ) ∼= G8(x0x1x0x5) are obtained 

by replacing each odd numbered generator by its inverse. Then we have G8(x0x1x6x1) ∼=
G8(x0x1x0x3) and G8(x0x1x4x1) ∼= G8(x0x1x0x5) as in Corollary 6.1. In part (c) the 
isomorphism G8(x0x

−1
1 x2x

−1
5 ) ∼= G8(x0x

−1
1 x4x

−1
7 ) is obtained by inverting the relators 

and negating the subscripts. Then G8(x0x
−1
1 x2x

−1
5 ) ∼= G8(x0x1x6x5) is obtained by 

inverting the odd numbered generators and interchanging x2 and x6 and interchanging 
x3 and x7 and then G8(x0x1x6x5) ∼= G8(x0x1x4x3) as in the proof of Corollary 6.1. �

Note that the groups appearing in Corollary 6.2 are the same as those in Corollary 6.1, 
in particular they are large and G8(x0x1x4x1) contains a subgroup isomorphic to F2 ×
F2. We now show that all the groups defined by the (2, k, ν)-special presentations in 
Theorem D are large.

Corollary 6.3. Let Pn(w) be a concise and irreducible (2, k, ν)-special cyclic presentation 
where w is a cyclically alternating word of length at least 4. Then the cyclically presented 
group Gn(w) defined by Pn(w) is large.

Proof. Let w = x0x
−1
a1

xa1+b1x
−1
a1+b1+a2

. . . x∑k/2−1
i=1 (ai+bi)

x−1∑k/2−1
i=1 (ai+bi)+ak/2

and let 

bk/2 = − 
∑k/2−1

i=1 (ai + bi) − ak/2 mod n. Then the shift extension E = Gn(w) �θ Zn

has a presentation E = 〈x, t | t2k,
∏k/2

i=1(xtaix−1tbi)〉 where each ai, bi is odd, so E maps 
onto the generalized triangle group T = 〈x, t | x7, t2, (xtx−1t)k/2〉 which, by [5, Theorem 
B], is large if k/2 ≥ 3. Thus we may assume k = 4, in which case G is one of the groups 
in Corollary 6.2, which are large by Corollary 3.6. �
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6.3. The non-positive, non-negative, and not cyclically alternating case

Theorem E. Let w be a cyclically reduced word of length k ≥ 4 that is non-positive, 
non-negative, not cyclically alternating and not a proper power and let A, B, Q, Q+, Q−

be the multisets defined at (1) and suppose that Pn(w) is irreducible and concise. Then 
Pn(w) is (2, k, ν)-special if and only if the following hold:

(a) n = νk, and k is divisible by 4;
(b) A, B are each sets of the form {±ν, ±3ν, . . . , ±(k/2 − 1)ν};
(c) Q+ ∩Q− = ∅ and Q = {q0, q0 + 2ν, . . . , q0 + (k − 2)ν} where gcd(q0, ν) = 1.

Proof. Suppose first that Pn(w) is (2, k, ν)-special. Then by Corollary 3.4 n = kν and 
each component of the star graph Γ of Pn(w) is the complete bipartite graph Kk,k.

In the notation of Theorem 3.3, Γ has ν isomorphic components Γj (0 ≤ j < ν) 
where, in particular, Γ0 is the complete bipartite graph Kk,k with vertex set V (Γ0) =
V (Γ+

0 ) ∪ V (Γ−
0 ) where Γ+

0 and Γ−
0 are the induced labelled subgraphs of Γ with vertex 

sets

V (Γ+
0 ) = {x0, xν , . . . , x(k−1)ν},

V (Γ−
0 ) = {x−1

q0 , x−1
q0+ν , . . . , x

−1
q0+(k−1)ν}

for some q0 ∈ Q. Suppose for contradiction that ν, n − ν /∈ A. Then for each 0 ≤
i < n, vertices xi, xi+ν are not joined by an edge. Therefore the vertices of V (Γ+

0 )
all belong to the same part of Γ0, and hence no two positive vertices of Γ are joined 
by an edge, and so A = ∅, a contradiction, since w is non-positive and non-negative. 
Therefore ν or n − ν ∈ A and, similarly, ν or n − ν ∈ B. Thus Γ0 contains closed paths 
x0−xν −· · ·−x(k−1)ν −x0 and x−1

q0 −x−1
q0+ν −· · ·−x−1

q0+(k−1)ν −x−1
q0 of length k which is 

even since Γ0 is bipartite. Therefore the vertices xν , x3ν , . . . , x(k−1)ν are precisely those 
positive vertices of Γ0 that belong to a different part of Γ0 to x0 (and so are neighbours 
of x0) and the vertices x−1

q0+ν , x
−1
q0+3ν , . . . , x

−1
q0+(k−1)ν are precisely those negative vertices 

of Γ0 that belong to a different part of Γ0 to x−1
q0 (and so are neighbours of x−1

q0 ) and 
hence A, B ⊂ {ν, 3ν, . . . , (k − 1)ν}. Moreover, for each odd t either tν or (k − t)ν ∈ A
(resp. B), and precisely one of tν or (k − t)ν ∈ A (resp. B), for otherwise Γ0 contains 
a reduced closed path of length 2, a contradiction. Therefore A, B are each sets of the 
form {±ν, ±3ν, . . . , ±(k/2 −1)ν}, and as these have k/4 elements, k is divisible by 4 and 
(a), (b) are proved.

Since x−1
q0 and x−1

q0+ν belong in different parts of Γ0, and (since q0 ∈ Q) x0 and x−1
q0

belong in different parts, the negative neighbours of x0 are {x−1
q0 , x−1

q0+2ν , . . . , x
−1
q0+(k−2)ν}

so Q = {q0, q0 + 2ν, . . . , q0 + (k − 2)ν}. Also Q+ ∩ Q− = ∅, for otherwise Γ0 contains a 
reduced closed path of length 2, a contradiction. Finally, gcd(q0, ν) divides gcd(n, a (a ∈
A), b (b ∈ B), q (q ∈ Q)) = 1, since Pn(w) is irreducible, so gcd(q0, ν) = 1, and (c) is 
proved.
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Now suppose that the conditions in the statement hold. By Corollary 3.4(b) we 
must show that the star graph Γ of Pn(w) consists of ν connected components, each 
of which is a complete bipartite graph Kk,k. By Theorem 3.3 the graph Γ has ν isomor-
phic components. Consider the component Γ0 whose vertex set is {x0, xν , . . . , x(k−1)ν} ∪
{x−1

q0 , x−1
q0+2ν , . . . , x

−1
q0+(k−2)ν}. The set of neighbours of xjν (0 ≤ j < k) is NΓ(xjν) =

{
{xν , x3ν , . . . , x(k−1)ν} ∪ {x−1

q0 , x−1
q0+2ν , . . . , x

−1
q0+(k−2)ν} if j is even,

{x0, x2ν , . . . , x(k−2)ν} ∪ {x−1
q0+ν , x

−1
q0+3ν , . . . , x

−1
q0+(k−1)ν} if j is odd,

and so Γ0 is bipartite with vertex partition

{x0, x2ν , . . . , x(k−2)ν , x
−1
q0+ν , x

−1
q0+3ν , . . . , x

−1
q0+(k−1)ν}

∪̇{xν , x3ν , . . . , x(k−1)ν , x
−1
q0 , x−1

q0+2ν , . . . , x
−1
q0+(k−2)ν}.

Further, for each 0 ≤ j < k the sets NΓ(x−1
q0+(j+1)ν) and NΓ(xjν) are equal so Γ0 is a 

complete bipartite graph, as required. �
Note that with A, B, Q+, Q− as defined at (1)∑

a∈A
a +

∑
b∈B

b +
∑

q∈Q+

q −
∑

q∈Q−

q ≡ 0 mod n. (2)

Recall (from Section 2.4) that if k > 4 then any group defined by a concise (2, k, ν)-
special presentation is SQ-universal. Restricting to the Euclidean case, we now classify 
the concise (2, 4, ν)-special cyclic presentations Pn(w) where w is non-positive, non-
negative, and not cyclically alternating. By cyclically permuting and taking the inverse 
of w, if necessary, we may assume that either w = x0x

−1
p x−1

q xr or w = x0x
−1
p xqxr for 

some 0 ≤ p, q, r < n.

Corollary 6.4.

(a) Let P = Pn(x0x
−1
p x−1

q xr) be irreducible and concise and let G be the group defined 
by P . Then P is (2, 4, ν)-special if and only if n = 4ν, and (p, q, r) = (ν, −s, ν − s)
or (3ν, −s, 3ν−s) (mod n) where gcd(s, ν) = 1, in which case G contains a subgroup 
isomorphic to F2 × F2 and admits an epimorphism onto the free group of rank ν so 
is large if ν > 1. Moreover, if ν = 1 then one of the following holds:

(i) G ∼= G4(x0x
−1
1 x−1

0 x1) ∼= F2 × F2; or
(ii) G ∼= G4(x0x

−2
1 x2) which has F5 × F5 as an index 16 subgroup;

(iii) G ∼= G4(x0x
−1
1 x−1

2 x3) which has F3 × F5 as an index 8 subgroup.

(b) Let P = Pn(x0x
−1
p xqxr) be irreducible and let G be the group defined by P . Then P

is (2, 4, ν)-special if and only if ν = 1, n = 4, and one of the following holds:
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(i) (p, q, r) ∈ {(1, 0, 1), (3, 0, 3)}, in which case G ∼= G4(x0x
−1
1 x0x1) and the (index 

16) derived subgroup G′ ∼= F5 × F5;
(ii) (p, q, r) ∈ {(1, 0, 3), (3, 0, 1)}, in which case G ∼= G4(x0x

−1
1 x0x3) and G has 

F5 × F5 as an index 16 subgroup;
(iii) (p, q, r) ∈ {(1, 2, 0), (3, 2, 0), (1, 2, 2), (3, 2, 2)}, in which case G ∼= G4(x2

0x
−1
1 x2).

Proof. (a) With the notation (1) we have A = {p}, B = {r − q}, Q+ = {−r}, Q− =
{p − q}. Then by Theorem E the presentation P is (2, k, ν)-special if and only if n = 4ν, 
p = r − q ∈ {ν, 3ν}, {p − q, −p − q} = {s + ν, s + 3ν} for some gcd(s, ν) = 1. That is, 
(p, q, r) = (ν, −s, ν − s), (3ν, −s, 3ν − s), (ν, 2ν − s, 3ν − s), (3ν, 2ν − s, ν − s). Replacing 
s by 2ν + s in the last two cases transforms them to the first cases. If ν = 1 then 
±(p, q, r) = (1, 0, 1), (1, 1, 2), (1, 2, 3), (1, 3, 0) (mod n) and G is isomorphic to one of 
the stated groups. A computation in GAP reveals the subgroups claimed. Suppose then 
that ν > 1. Then G maps onto Gν(x0x

−1
p x−1

q xr), which is free of rank ν, so G is large. 
Moreover, the shift extension of G is the group E = 〈x, t | t4ν , xtνx−1t−(ν+s)x−1tνxts−ν〉
(by replacing s by −s, if necessary). Therefore G is the kernel the epimorphism φ0 : E →
〈t | t8〉 given by φ0(t) = t, φ0(x) = 1. On the other hand, the kernel of the epimorphism 
φ−s : E → 〈t | t8〉 given by φ−s(t) = t, φ−s(x) = t−s is the cyclically presented group 
G4ν(y0y

−1
ν y−1

0 yν), where yi = tixt−i+s, which is isomorphic to the free product of ν
copies of G4(y0y

−1
1 y−1

0 y1) ∼= F2 × F2. In particular, the subgroup of ker(φ−s) generated 
by y0, yν , y2ν , y3ν is the group

H = 〈y0, yν , y2ν , y3ν | y0y
−1
ν y−1

0 yν , yνy
−1
2ν y

−1
ν y2ν , y2νy

−1
3ν y−1

2ν y3ν , y3νy
−1
0 y−1

3ν y0〉
= 〈y0, y2μ | 〉 × 〈yν , y3μ | 〉 ∼= F2 × F2.

Therefore the subgroup K of H generated by yn0 , y
n
ν , y

n
2ν , y

n
3ν is isomorphic to F2 × F2, 

and since φ0(yni ) = 1, K is a subgroup of ker(φ0) = G, as required.
(b) By Theorem E P is (2, k, ν)-special if and only if n = 4ν, A = {p}, B = {q − p}, 

Q− = ∅, Q+ = {r − q, −r} = {s + ν, s + 3ν}, for some 0 ≤ s < n and gcd(s, ν) = 1, and 
A ∪ B ⊂ {ν, 3ν}, so p ≡ q − p or p ≡ −(q − p) mod n.

Suppose p ≡ −(q − p) mod n; then (2) implies 2s ≡ 0 mod n so s ≡ 0 or 
2ν mod n, and then gcd(s, ν) = 1 implies ν = 1, so n = 4 and s ≡ 0 or 
s ≡ 2 mod 4. Then (mod 4) p ∈ {1, 3}, {r − q, −r} = {1, 3}, which has solutions 
(p, q, r) = (1, 0, 1), (1, 0, 3), (3, 0, 1), (3, 0, 3), as in parts (i), (ii). Computations in GAP 
reveal the F5×F5 subgroups. Suppose p ≡ q−p mod n; then (2) implies 2(s +ν) ≡ 0 mod n

so s ≡ ν or 3ν mod n, and then gcd(s, ν) = 1 implies that ν = 1, so n = 4 and s ≡ 1 or 
s ≡ 3 mod 4. Then (mod 4) p = q − p ∈ {1, 3} and {r− q, −r} = {0, 2}, the solutions of 
which are (p, q, r) = (1, 2, 2), (1, 2, 0), (3, 2, 2), (3, 2, 0), in which case G ∼= G4(x2

0x
−1
1 x2), 

as in part (iii). �
The argument in the proof above for the existence of the F2 × F2 subgroup in the 

groups arising in part (a) has its origins in [11, Example 3(b)]. We have been unable to 
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determine if the group G4(x2
0x

−1
1 x2) (from Corollary 6.4(b)(iii)) is SQ-universal or if it 

contains a subgroup isomorphic to F2 × F2.
We now determine which groups from Corollaries 6.1, 6.2, 6.4 are Burger-Mozes 

groups, as defined in [46], whose notation 2 × 2.j we use. Since these groups have defi-
ciency at least zero, if they are Burger-Mozes groups then they have degree (4,4), by [56, 
Proposition 4.26]; the Burger-Mozes groups of degree (4,4) are classified in the Table 
in [46]. First consider the groups in Corollaries 6.1, 6.2. A comparison of abelianisations 
of these groups with those of [46] shows that the only possible pair of isomorphic groups 
is G8(x0x1x4x3) and the group 2 × 2.38, but these can be distinguished by comparing 
abelianisations of index 2 subgroups. We now turn to the groups in Corollary 6.4. Con-
sider first the case ν > 1, so G is a group from part (a). If ν > 3 then G maps onto the 
free group of rank 4 so Gab maps onto Z4, but the only group from the Table in [46]
whose abelianisation maps onto Z4 is the group 2 × 2.41 ∼= F2 × F2, which does not 
map onto the free group of rank 4. When ν = 3, a computation in GAP shows that the 
abelianisation Gab is distinct from the abelianisations of the groups in [46]. When ν = 2, 
a comparison of abelianisations shows that if G is isomorphic to a group H from the 
Table in [46] then H is the group 2 × 2.32; but then G can be distinguished from H by 
comparing abelianisations of index 2 subgroups. The groups in parts (a)(ii) and (b)(iii) 
can be distinguished from the groups in the Table in [46] by considering their abelian-
isations, or the abelianisations of their index 2 subgroups. The groups in parts (a)(i), 
(a)(iii), (b)(i), (b)(ii) are the Burger-Mozes groups 2 ×2.41 ∼= F2 ×F2, 2 ×2.51, 2 ×2.12, 
2 ×2.36, respectively. Thus, if a Burger-Mozes group is defined by a (2, 4, ν)-special cyclic 
presentation, then it is one of these four groups.

The results of Sections 5, 6.1, 6.2 and Corollary 6.4 show that there are at most two 
groups defined by concise (m, k, ν)-special cyclic presentations that are not SQ-universal, 
namely G7(x0x1x3) (which is just-infinite so is not SQ-universal) and G4(x2

0x
−1
1 x2)

(which remains unresolved).
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