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Abstract

We consider the One-Sided Matching problem, where n agents have preferences over n
items, and these preferences are induced by underlying cardinal valuation functions. The
goal is to match every agent to a single item so as to maximize the social welfare. Most
of the related literature, however, assumes that the values of the agents are not a priori
known, and only access to the ordinal preferences of the agents over the items is provided.
Consequently, this incomplete information leads to loss of efficiency, which is measured by
the notion of distortion. In this paper, we further assume that the agents can answer a
small number of queries, allowing us partial access to their values. We study the interplay
between elicited cardinal information (measured by the number of queries per agent) and
distortion for One-Sided Matching, as well as a wide range of well-studied related problems.
Qualitatively, our results show that with a limited number of queries, it is possible to obtain
significant improvements over the classic setting, where only access to ordinal information
is given.

1. Introduction

In the One-Sided Matching problem (often referred to as the house allocation problem), n
agents have preferences over a set of n items, and the goal is to find an allocation in which
every agent receives a single item, while maximizing some objective. Typically, as well as
in this paper, this objective is the (utilitarian) social welfare, i.e., the total utility of the
agents. Since its introduction by Hylland and Zeckhauser (1979), this has been one of the
most fundamental problems in the literature of economics (e.g., see Bogomolnaia & Moulin,
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2001; Svensson, 1999), and has also been extensively studied in computational social choice
(e.g., see Klaus et al., 2016).

The classic work on the problem (including Hylland and Zeckhauser’s seminal paper)
assumes that the preferences of the agents are captured by cardinal valuation functions,
assigning numerical values to the different items; these can be interpreted as their von
Neuman-Morgenstern utilities (Von Neumann & Morgenstern, 1947). From a more algo-
rithmic viewpoint, one can envision a weighted complete bipartite graph (with agents and
items forming the two sides of the partition), where the weights of the edges are given by
these values. Crucially, most of the related literature assumes that the designer only has
access to the preference rankings of the agents over the items (i.e., the ordinal preferences)
induced by the underlying values, but not to the values themselves.1 This is motivated by
the fact that it is fairly standard to ask the agents to simply order the items, while it is
arguably much more demanding to require them to specify exact numerical values for all
items.

This begs the following natural question: What is the effect of this limited information
on the goals of the algorithm designer? In 2006, Procaccia and Rosenschein defined the
notion of distortion to measure precisely this effect, when the goal is to maximize the
social welfare. Their original research agenda was put forward for settings in general social
choice (also referred to as voting), but has since then flourished to capture several different
scenarios, including One-Sided Matching (Anshelevich et al., 2021). For the latter problem,
Filos-Ratsikas et al. (2014), showed that the best possible distortion achieved by any ordinal
algorithm is Θ(

√
n), even using randomization, and even if the valuations are normalized.

For deterministic algorithms, we show that the corresponding bound is Θ(n2) (Theorem 1).

While the aforementioned bounds establish a stark impossibility when one has access
only to ordinal information, they do not rule out the prospect of good approximations when
it is possible to elicit some cardinal information. Indeed, the cognitive burden of eliciting
cardinal values in the literature has mostly been considered in the two extremes; either full
cardinal information or not at all. Conceivably though, if the agents are needed to come
up with only a few cardinal values, the elicitation process would not be very demanding,
while it could potentially have wondrous effects on the social welfare. This approach was
advocated recently by Amanatidis et al. (2021), who proposed to study the tradeoffs between
the number of cardinal value queries per agent and distortion. For the general social choice
setting of Procaccia and Rosenschein (2006), Amanatidis et al. (2021) actually showed that
with a limited number of such queries, one can significantly improve upon the existing
strong impossibilities (Boutilier et al., 2015; Caragiannis et al., 2017). Motivated by the
success of this approach for general social choice settings, we extend this research agenda
and aim to answer the following question for One-Sided Matching:

What are the best possible information-distortion tradeoffs in One-Sided Match-
ing? Can we achieve significant improvements over the case of only ordinal
preferences, by making only a few cardinal value queries per agent?

1. The pseudo-market mechanism of Hylland and Zeckhauser (1979) is a notable exception.

228



A Few Queries Go a Long Way: Information-Distortion Tradeoffs in Matching

1.1 Our Contribution

We consider the One-Sided Matching problem with the goal of maximizing the social welfare
under limited information. We adopt the standard assumption in the related literature
that the agents provide as input their ordinal preferences over the items, and that these
are induced by their cardinal valuation functions. Following the agenda put forward by
Amanatidis et al. (2021), we also assume implicit access to the numerical values of the
agents via value queries; we may ask for an agent i and an item j, and obtain the agent’s
value, vi(j), for that item.

We measure the performance of an algorithm by the standard notion of distortion, and
our goal is to explore the tradeoffs between distortion and the number of queries we need
per agent. As the two extremes, we note that if we use n queries per agent, we recover
the complete cardinal valuation profile and thus the distortion is 1, whereas if we use 0
queries, i.e., we use only the ordinal information, the best possible distortion is Θ(n2) (see
Theorem 1). The latter bound holds even if we consider valuation functions that satisfy
the unit-sum normalization, i.e., the sum of the values of each agent for all the items is 1.
As we mentioned earlier, even when allowing randomization, the best possible distortion is
still quite large (Θ(

√
n); Filos-Ratsikas et al., 2014) without employing any value queries.

In this work, we only consider deterministic algorithms, and leave the study of randomized
algorithms for future work.

We provide the following results:

• In Section 3, we present an algorithm parametrized by λ, which achieves distortion
O(n1/(λ+1)) by making O(λ log n) queries per agent. In particular, by setting λ = 1
and λ = O(log n) we achieve respectively

– distortion O(
√
n) using O(log n) queries per agent;

– constant distortion using O(log2 n) queries per agent.

The algorithm is inspired by a conceptually similar idea presented by Amanatidis
et al. (2021) for the social choice setting. In Section 6 we adapt our algorithm to
provide analogous information-distortion tradeoffs for a wide range of well-studied
optimization problems, including Two-Sided Matching, General Graph Matching and
the Clearing Kidney Exchanges.

• Next, still in Section 3, motivated by the analysis of the class of algorithms mentioned
above as well as our lower bounds in Section 4, we consider a class of instances (coined
k-well-structured instances) that captures the case where the agents (roughly) agree
on the ranking of the items. We present a simple algorithm achieving distortion
O(k · n1/k) by making only k queries per agent for these instances.

• In Section 4 we show a lower bound of Ω(n1/k/k) on the distortion of any algorithm
that makes k queries per agent. An immediate consequence of this bound is that it is
impossible to achieve constant distortion without asking almost log n queries! When k
is a constant, our aforementioned results on k-well-structured instances also establish
the tightness of our construction, since the proof uses instances of this type. Fur-
thermore, using a construction which exploits the same ordinal but different cardinal
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Figure 1: An overview of our results. Some of the distortion guarantees hold for k-well-
structured instances; this is indicated in brackets next to the bound. The upper
bounds that hold for unrestricted valuations also obviously hold for unit-sum
valuations. All of the lower bounds hold even for instances with the same ordinal
preferences for all agents.

information, we show that even under the stronger assumption of unit-sum normal-
ization, the distortion cannot be better than Ω

(
n1/(k+1)/k

)
with k queries per agent.

• In Section 5 we present our main algorithmic result for unit-sum valuations, namely
a novel algorithm which achieves distortion O(n2/3

√
log n) using only two queries per

agent.

Our results are summarized in Figure 1. We note that our upper bounds for unrestricted
valuations are robust to “errors” in the responses to the queries (albeit not stated this way
for the sake of simplicity). As long as the reported values are within a constant multiplicative
factor from the true values, qualitatively there is no change in any of our bounds.

Technical Overview

Our parametrized class of algorithms developed in Section 3 is based on the following idea.
First, every agent is queried for their favorite item. Then, for each agent, the algorithm
partitions the items into sets so that the value of the agent for all items in a set is lower-
bounded by a carefully defined quantity; these sets are constructed via a sequence of binary
search subroutines. Finally, the algorithm outputs a matching that maximizes the social
welfare, with respect to the “simulated” values obtained via this process.

A similar idea was proposed by Amanatidis et al. (2021) for the social choice setting. We
remark, however, that if one translates their result directly to our setting (by interpreting
matchings as alternatives and running their algorithm), it yields inconsequential distortion
bounds, as well as an exponential-time running time for the algorithm. To obtain meaningful
bounds, the key is to adopt the principle of their approach rather than the exact solution
proposed. As a matter of fact, in Section 6, we show that the same principle can be further
refined and applied to a plethora of other combinatorial optimization problems on graphs
with additive objectives. In particular, we show bounds of similar flavor for several well-
studied problems, such as:
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• Two-Sided (Perfect) Matching (i.e., a (perfect) matching on a bipartite graph with
agents on each side);

• General Graph Matching (i.e., a matching on a general graph with agents being the
vertices);

• General Resource Allocation (i.e., the allocation of m items to n agents under various
constraints);

• Max k-Sum Clustering (i.e., a generalization of matchings on graphs, see the paper of
Anshelevich & Sekar, 2016a);

• Clearing Kidney `-Exchanges (i.e., a cycle cover with restricted cycle length, see the
paper of Abraham et al., 2007).

With regard to our results for k-well-structured instances in Section 3, we note that we
obtain a notable improvement over the tradeoffs achieved by the aforementioned approach.
For instance, a distortion of O(

√
n) is achievable here using only two queries! To provide

some intuition, one can think of k-well-structured instances as capturing cases for which
there is a general agreement on the set of the “most valuable items”, although the agents
might rank the items in this set in different ways. For example, most researchers in Artificial
Intelligence would agree on the top 5 publication venues, although they might rank those 5
venues differently. The parameter k captures the different “levels” of agreement.

An interesting class of instances that are k-well-structured for every k is that of instances
where all the agents have the same ranking over all items. These instances are important
because intuitively, they highlight the challenge of social welfare maximization under ordinal
information. How is an algorithm in that case supposed to distinguish between pairs of high
and low value? Perhaps somewhat surprisingly, it turns out that such instances are more
amenable to handling via a smaller number of queries. In fact, the related literature has
been concerned in the past with this type of instances; e.g., Filos-Ratsikas et al. (2014) used
such instances in their lower bound constructions and referred to them as ordered instances.
Plaut and Roughgarden (2020) and Barman and Krishnamurthy (2020) also considered such
instances in the context of fair division of indivisible items. We also use such instances for
our lower bound constructions in Section 4; in that sense, we do not only provide improved
upper bounds for an interesting class of instances but we also show the tightness of the
analysis for our lower bound constructions.

We remark that the results of Sections 3 and 6 do not require any normalization as-
sumptions. For agents with unit-sum normalized valuations, in Section 5, we present an
algorithm which achieves a distortion of O(n2/3

√
log n) using only two queries per agent.

The algorithm is adaptive, and uses the second query differently, depending on the maxi-
mum value that it sees after querying all agents at the first position. While this result is
not tight based on our lower bound of Ω(n1/3) for this case, we consider it as one of the
highlights of this work. In particular, it shows that sublinear distortion is possible even
with a deterministic algorithm using a constant number of queries per agent.
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1.2 Related Work

The One-Sided Matching problem in the context of agents with preferences over items was
firstly introduced by Hylland and Zeckhauser (1979). The classic literature in economics
(e.g., see Bogomolnaia & Moulin, 2001; Svensson, 1999 and references therein) was mostly
concerned with axiomatic properties, and has proposed several solutions and impossibilities;
see the surveys of Sönmez and Ünver (2011) and Abdulkadiroglu and Sönmez (2013) for
more information.

The effects of limited information on the social welfare objective were studied most no-
tably in the work of Filos-Ratsikas et al. (2014) mentioned earlier. Further, a line of work
Anshelevich & Sekar, 2016a, 2016b; Anshelevich & Zhu, 2017; Abramowitz & Anshelevich,
2018 studied related settings on graphs, and showed distortion bounds for matching prob-
lems and their generalizations. A crucial difference from our work is that they consider
symmetric weights on the edges of the graph, which corresponds to cases where agents
are paired with other agents (e.g., matching or clustering) and the value of an agent i for
another agent j is the same as the value of j for i. In contrast, in the graph problems that
we consider, the weights are assumed to be asymmetric; the weight of an edge is given by
the sum of weights of incident vertices.2 This makes the results markedly different. An-
other important distinction is that most of the aforementioned works operate in the setting
where the edge weights satisfy the triangle inequality, whereas we impose no such restric-
tion. Caragiannis et al. (2016) study one-side matching settings in metric spaces, and thus
their work also falls into this category, but is quite distinct as they focus on cost objectives
rather than welfare.

For general social choice settings (i.e., voting), the distortion of ordinal algorithms has
been studied in a long list of papers, e.g., see (Procaccia & Rosenschein, 2006; Anshelevich
& Postl, 2017; Anshelevich et al., 2018; Boutilier et al., 2015; Caragiannis et al., 2017;
Benade et al., 2017; Caragiannis et al., 2018; Fain et al., 2019; Filos-Ratsikas & Miltersen,
2014; Goel et al., 2017; Munagala & Wang, 2019; Feldman et al., 2016; Gkatzelis et al.,
2020; Caragiannis et al., 2022). Most of the related work considers the standard case where
only ordinal information is given, with a few notable exceptions (Abramowitz et al., 2019;
Benade et al., 2017; Bhaskar et al., 2018; Filos-Ratsikas et al., 2020; Filos-Ratsikas &
Voudouris, 2021; Anshelevich et al., 2022). In this context, there is also a line of work
that considers the effects of limited ordinal information on the distortion, e.g., see (Fain
et al., 2019; Kempe, 2020; Gross, Anshelevich, & Xia, 2017). For the one-sided matching
problem, a related approach was taken recently by Hosseini et al. (2021), who consider
approximations to ordinal objectives via next-best queries, i.e., queries which reveal the
next best option of an agent, compared to the previous query.

The approach of enhancing the expressiveness of algorithms by equipping them with
cardinal queries that we adopt in this paper was first suggested by Amanatidis et al. (2021).
It should be noted that this is in nature quite different from another related recent approach
proposed by Mandal et al. (2019, 2020), which considers the communication complexity of
voting algorithms. In that setting, the algorithm must elicit a limited number of bits of

2. Anshelevich et al. (2013) refer to this setting as “Asymmetric Edge-Labeled Graphs” as opposed to
“Symmetric Edge-Labeled Graphs”, which is the setting of Anshelevich and Sekar (2016a) and the other
works mentioned above.
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information from the agents and it is not assumed that the ordinal preferences are already
known. Moreover, the agents are allowed within that number of bits to communicate partial
information about all of their different values.

Finally, we remark that outside social choice settings, the interplay between information
and efficiency has been studied in the context of the stochastic matching problem (e.g., see
(Blum et al., 2020; Chen et al., 2009) and references therein). In that setting, there is a
(possibly) weighted stochastic graph, where edges exist with probabilities drawn from some
underlying distribution. The existence of a potential edge revealed if it is queried or probed,
and the goal is to find the probing strategy that results in a maximum-weight matching.
Some works compare against the omniscient optimum (Blum et al., 2020; Behnezhad et al.,
2019, 2020; Goel & Tripathi, 2012; Costello et al., 2012)while others seek for the best
polynomial-time approximation to the optimal probing strategy (Chen et al., 2009; Adam-
czyk et al., 2015; Bansal et al., 2012; Baveja et al., 2018), with some of these works also
focusing their attention to the query-commit variant, where once an edge is probed, it has
to be included in the output matching (Chen et al., 2009; Adamczyk et al., 2015; Bansal
et al., 2012; Baveja et al., 2018; Goel & Tripathi, 2012; Costello et al., 2012). All of these
settings are markedly different from ours, since (a) they assume an underlying probability
distribution on the edges of the graph, (b) they do not have access to the ordinal prefer-
ences as they do not typically operate in social choice scenarios, (c) they mainly consider
randomized algorithms, and (d) similarly to the works mentioned earlier in this section,
they mainly use edge costs, effectively symmetric agent valuations.

2. Model Definition

We consider the One-Sided Matching problem, where there is a set of agents N and a set of
items A, such that |N | = |A| = n. Each agent i ∈ N has a valuation function vi : A→ R≥0

indicating the agent’s value for each item; that is vi(j) is the value of agent i ∈ N for item
j ∈ A. The valuation functions we consider are either unrestricted, in which case the values
for the items can be any non-negative real numbers, or unit-sum, in which case the sum
of values of each agent i for all items is 1:

∑
j∈A vi(j) = 1. We denote by v = (vi)i∈N

the (cardinal) valuation profile of the agents. Let Y = (yi)i∈N be a matching according to
which each agent i ∈ N is matched to exactly one item yi ∈ A, such that yi 6= yi′ for every
i 6= i′. Given a profile v, the social welfare of Y , SW(Y |v), is the total value of the agents
for the items they are matched to according to Y :

SW(Y |v) =
∑
i∈N

vi(yi) .

By M we denote the set of all perfect matchings on our instance. Our goal is to compute
a matching X(v) = (xi)i∈N with maximum social welfare, i.e.,

X(v) ∈ arg max
Y ∈M

SW(Y |v) .

In case the valuation functions of the agents are known, then computing X(v) can
be done efficiently, e.g., via the Hungarian method (Kuhn, 1956). However, our setting
is a bit more restrictive. The exact valuation functions of the agents are their private
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information, and they can instead report orderings over the items, which are consistent
with their valuations. In particular, every agent i reports a ranking of the items �i such
that a �i b if and only if vi(a) ≥ vi(b) for all a, b ∈ A. Given a valuation profile v, we denote
by �v = (�i)i∈N the ordinal profile induced by v; observe that different valuation profiles
may induce the same ordinal profile. On top of the ordinal preferences of the agents, we
can obtain partial access to the valuation profile, by making a number of value queries per
agent. In particular, a value query takes as input an agent i ∈ N and an item j ∈ A, and
returns the value vi(j) of agent i for item j. This leads us to the following definition of a
deterministic algorithm in our setting.

Definition 1. A matching algorithm Ak takes as input an ordinal profile (�)i∈N , makes
k ≤ n value queries per agent and, using (�)i∈N as well as the answers to the queries, it
computes a matching Ak(�) ∈M. If k = 0, A is an ordinal algorithm, whereas if k = n, A
is a cardinal algorithm.

As already mentioned, we can efficiently compute the optimal matching using a cardinal
algorithm. However, if an algorithm is allowed to make a limited number k < n of queries
per agent, the computed matching might not be optimal. The question then is how well does
such an algorithm approximate the optimal social welfare of any matching. Approximation
here is captured by the notion of distortion.

Definition 2. The distortion dist(Ak) of an algorithm Ak is the worst-case ratio (over all
possible valuation profiles v) between the social welfare of an optimal matching X(v) and
the social welfare of the matching computed by Ak:

dist(Ak) = sup
v

SW(X(v)|v)

SW(Ak(�v)|v)
.

Example 1. At this point we introduce an instance with 8 agents and 8 items which will
serve as our running example for illustrating how our algorithms work (see Examples 2, 3
and 4). The following table summarizes the underlying valuation profile v = (vi)i∈N :

j1 j2 j3 j4 j5 j6 j7 j8

i1 10 8 7 6 5 4 3 2
i2 12 8 9 5 7 2 2 0
i3 18 5 9 2 3 3 4 1
i4 8 7 6 5 5 5 5 4
i5 24 5 6 1 2 3 4 0
i6 20 7 6 3 3 4 2 0
i7 9 7 8 4 5 4 5 3
i8 15 10 10 2 2 3 2 1

Of course, the initial input to the algorithm is the ordinal profile �v = (�i)i∈N correspond-
ing to v. For instance, �1 is determined by the ordered tuple (j1, j2, j3, j4, j5, j6, j7, j8),
whereas �5 is determined by (j1, j3, j2, j7, j6, j5, j4, j8). Note that all agents agree on which
item is the best, which set contains the second and third best items, and so on. As we will
see later (in Example 3), this is an example of a 3-well-structured instance. An optimal
matching here is {(i1, j4), (i2, j5), (i3, j3), (i4, j8), (i5, j1), (i6, j6), (i7, j7), (i8, j2)} with social
welfare 69.
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2.1 Warm-Up: Ordinal Algorithms

Before we proceed with our more technical results on tradeoffs between information and
distortion, we consider the case of ordinal algorithms. When the valuation functions of the
agents are unrestricted, the distortion of any ordinal algorithm is unbounded. To see this,
consider any instance that contains two agents who agree on which the most valuable item
is. Since only one of them can be matched to this item, it might be the case that the other
agent has an arbitrarily large value for it, leading to unbounded distortion. Even for the
more restrictive case of unit-sum valuations, however, the distortion of ordinal algorithms
can be quite large.

Theorem 1. The distortion of the best ordinal matching algorithm is Θ(n2).

Proof. For the upper bound, consider any algorithm that outputs a matching so that some
agent is matched to her top-ranked item. As the valuations are unit-sum, this agent must
have value at least 1/n for this item, and thus the social welfare of the matching computed
by the algorithm is in turn also at least 1/n. Since the value of every agent for any item
is at most 1, the maximum possible social welfare is upper-bounded by n, and thus the
distortion of the algorithm is at most n2.

For the lower bound, we assume that n is even; our instance can be easily adjusted for
odd n. We consider an instance with set of items A = {a, b1, . . . , bn/2, c1, . . . , cn/2−1}. The
ordinal profile is such that, for i ∈ {1, . . . , n/2}, agents i and i+n/2 have the same ordinal
preference �i, defined as

a �i bi �i b1 �i . . . �i bi−1 �i bi+1 �i . . . �i bn/2 �i c1 �i . . . �i cn/2−1 .

Consider any ordinal algorithm which, given as input this profile, outputs a matching Y =
(yi)i∈N . We define a valuation profile v which is consistent with the ordinal profile, and the
value of agent i ∈ {1, . . . , n} depends on the structure of Y . For convenience, let si denote
the second favorite item of agent i, i.e., si = bi if i ≤ n/2 and si = bi−n/2 if i > n/2.

• If yi = a, then agent i has value 1/n for all items;

• If yi = si, then agent i has value 1 for a and 0 for every other item;

• Otherwise, agent i has value 1/2 for a, 1/2 for si and 0 for every other item.

Since only one agent can be matched to a, and everyone else will be matched to an item of
value 0, the social welfare of Y computed by the algorithm is SW(Y |v) = 1/n. However,
observe that there exists a matching X with social welfare SW(X|v) ≈ n/4. In particular,
we can go through the agents and match each agent i ∈ {1, . . . , n} to si if she is not already
matched to si or to a in Y . This way we will end up with a matching where at least n/2−1
agents will have value 1/2 each for the corresponding items. Our claim about the social
welfare follows. Therefore, the distortion of any ordinal algorithm is Ω(n2).

3. Distortion Guarantees for Unconstrained Valuations

Here we present λ-ThresholdStepFunction (λ-TSF), an algorithm that works for any
valuation functions. At a high level, for each agent, we do the following. We first query
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Algorithm 1: λ-ThresholdStepFunction (λ-TSF)

Let α` := n−`/(λ+1) for ` ∈ {0, ..., λ}.
for every agent i ∈ N do

Query the value v∗i of i for her top-ranked item j∗i
Let Qi,0 := {j∗i }
Set ṽi(j

∗
i ) := α0 · v∗i = v∗i

for every ` ∈ {1, ..., λ} do
Using binary search, compute Qi,` := {j ∈ A : vi(j) ∈ [α` · v∗i , α`−1 · v∗i )}
Set ṽi(j) := α` · v∗i for every j ∈ Qi,`

Let Qi :=
⋃λ
`=0Qi,`

Set ṽi(j) := 0 for every j ∈ A \Qi
return a matching Y ∈ arg maxZ∈M SW(Z|ṽ).

the agent’s value for her highest ranked item. Then, we partition the items into λ+ 1 sets,
so that the agent’s value for all the items in a set is lower-bounded by a carefully selected
quantity related to the agent’s top value. Based on this partition, we then define a new
simulated valuation function for the agent, where the value of an item is equal to the lower
bound that corresponds to the set the item belongs to. Finally, we compute a maximum
weight matching with respect to the simulated valuation functions. See Algorithm 1.

For each i and `, in order to find i’s least preferred item that she values at least α` · v∗i ,
we run a standard binary search on �i. It is known that each such binary search requires
1 + log2 n queries.

Example 2. Suppose that we run 2-TSF on the instance introduced in Example 1. Since
n = 8 here, we have α0 = 1, α1 = 1/2, and α2 = 1/4. For each agent i, the algorithm
constructs the simulated valuation function ṽi. We will go through this in detail for agent
i1. The algorithm first asks agent i1 about her favorite item j1, and sets ṽ1(j1) = 10.
Then, the algorithms finds the last item (with respect to �1) for which i1 has value at
least ṽ1(j1)/α1 = 5 using binary search on the array (j1, j2, j3, j4, j5, j6, j7, j8). The exact
sequence of queries depends on the specific implementation of binary search, e.g., assuming
that binary search considers the left median in arrays of even length, the algorithm will
ask about j4, j6, and j5, in that order, and decide that j5 is the item in question. The
simulated value of every item after j1 up to and including j5 is then set to ṽ1(j1)/α1 = 5.
Next, the algorithm finds the last item after j5 (with respect to �1) for which i1 has value
at least ṽ1(j1)/α2 = 2.5 using binary search on (j6, j7, j8). Assuming the same binary search
variant as before, the algorithm will ask about j7 and j8, and decide that j7 is the item
in question. The simulated value of every item after j5 up to and including j7 is then
set to ṽ1(j1)/α2 = 2.5. For all remaining items (here just for j8), the simulated value is
set to 0. Note that for instances this small, we end up asking about most items and that
we do not use many of these answers for defining ṽ1. Although this seems wasteful, as n
grows, the fraction of the values the algorithm learns becomes very small and the answers
it ignores would make no difference for our analysis asymptotically. The table summarizes
the simulated valuation profile ṽ = (ṽi)i∈N :
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j1 j2 j3 j4 j5 j6 j7 j8

i1 10 5 5 5 5 2.5 2.5 0
i2 12 6 6 5 6 0 0 0
i3 18 4.5 9 0 0 0 0 0
i4 8 4 4 4 4 4 4 4
i5 24 0 6 0 0 0 0 0
i6 20 5 5 0 0 0 0 0
i7 9 4.5 4.5 2.25 4.5 2.25 4.5 2.25
i8 15 7.5 7.5 0 0 0 0 0

An optimal matching with respect to ṽ, is {(i1, j4), (i2, j5), (i3, j3), (i4, j6), (i5, j1), (i6, j8),
(i7, j7), (i8, j2)} with simulated social welfare 60. The actual social welfare of this matching
with respect to v is 66; thus, it is suboptimal but still approximates the maximum social
welfare very well.

The next theorem follows (asymptotically) from the more general Theorem 9, which is
stated in Section 6 and applies to a number of well-known graph problems. To aid the
reader, we also include a self-contained, cleaner proof of Theorem 2 which applies only to
One-Sided Matching and gives a slightly better bound.

Theorem 2. λ-TSF makes 1 + λ + λ log n queries per agent and achieves a distortion of
2n1/(λ+1).

Proof. Consider an arbitrary valuation profile v. Let X = X(v) be an optimal matching,
and Y be the solution returned by λ-TSF; recall that Y maximizes the social welfare ac-
cording to the simulated valuation functions ṽi. Let S be the set of agents i such that
xi ∈ Qi, and S = N \ S. Then, the optimal social welfare can be written as

SW(X|v) =
∑
i∈N

vi(xi) =
∑
i∈S

vi(xi) +
∑
i∈S

vi(xi).

We will bound the two terms separately. We begin with the first one:∑
i∈S

vi(xi) < αλ
∑
i∈S

v∗i ≤ αλ · n ·max
i∈N

v∗i ≤ αλ · n · SW(Y |ṽ) ≤ αλ · n · SW(Y |v).

The first inequality follows directly by the definition of Qi. The second inequality follows
since S ⊆ N . The third inequality follows since Y maximizes the social welfare according
to the profile v and the algorithm has queried all agents for their most-preferred items.
Finally, the last inequality follows since the simulated values of an agents are lower bounds
on her true ones.

For the second term, let S` be the restriction of S on agents for whom xi ∈ Qi,`,
` ∈ {0, ..., λ}. Then,

∑
i∈S

vi(xi) =

λ∑
`=0

∑
i∈S`

vi(xi) .

237



Amanatidis, Birmpas, Filos-Ratsikas & Voudouris

Now, let us assume that λ > 0; we will deal with the simpler case where λ = 0 later.
By definition, for any ` ∈ {1, . . . , λ} and any j ∈ Qi,`, we have that vi(j) ≤ α`−1 · v∗i =
α`−1

α`
· α` · v∗i = ṽi(j)/α1. Also, for Qi,0 = {j∗i }, we have vi(j

∗
i ) = ṽi(j

∗
i ) ≤ ṽi(j∗i )/α1. Hence,

∑
i∈S

vi(xi) ≤ α−1
1

λ∑
`=0

∑
i∈S`

ṽi(xi) ≤ α−1
1

∑
i∈N

ṽi(xi) ≤ α−1
1 SW(Y |ṽ) ≤ α−1

1 SW(Y |v) .

The second inequality follows by considering all agents. The third inequality follows from
the optimality of Y with respect to the simulated valuation functions. Finally, the last
inequality follows follows since the simulated values of an agents are lower bounds on her
true ones.

Now we can put everything together:

SW(X|v) ≤
(
αλ · n+ α−1

1

)
SW(Y |v) = 2n1/(λ+1) · SW(Y |v) , (1)

and this settles the bound on the distortion when λ > 0.
When λ = 0, we clearly have that∑

i∈S
vi(xi) ≤

∑
i∈S

ṽi(xi) ≤ SW(Y |v) .

Then, the analog of (1) is

SW(X|v) ≤ (αλ · n+ 1) SW(Y |v) = 2n1/(λ+1) · SW(Y |v) .

This concludes the proof.

By appropriately setting the value of λ, we obtain several tradeoffs between the distortion
and the number of queries per agent. In particular, we have the following statement.

Corollary 1. We can achieve

• distortion O(n) by making one query per agent;

• distortion O(n1/k) for any constant integer k by making O(log n) queries per agent;

• distortion O(1) by making O(log2 n) queries per agent.

3.1 Well-Structured Instances

We now consider instances in which the agents exhibit quite similar ordinal preferences.
For any positive integer k, we define the class of k-well-structured (k-WS) instances. Let
ε ∈ (0, 1] be a constant (e.g., ε = 1/2). In a k-WS instance, the set of items can be
partitioned into k + 1 sets A1, . . . , Ak, Ak+1 such that

|A1| = 1 and |A`| =
⌈
ε · n(`−1)/k

⌉
for all ` ∈ {2, . . . , k} ,

and every agent i has the ordinal preference

〈A1〉i �i 〈A2〉i �i . . . �i 〈Ak〉i �i 〈Ak+1〉i ,
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Algorithm 2: k-FixedMaxMatching (k-FMM)

for every ` ∈ {1, . . . , k} do
Query the value ui(`) of each agent i for her least-preferred item in A`

for every agent i ∈ N do
Define the simulated valuation function ṽi:

• ṽi(j) := ui(`) for every j ∈ A`, ` ∈ {1, . . . , k}

• ṽi(j) := 0 for every j ∈ Ak+1

return a matching Y ∈ arg maxZ SW(Z|ṽ)

where 〈A`〉i denotes some ordering of the items in set A` which depends on agent i; that is,
different agents may order the items in A` differently. Observe that an instance in which
all agents have the same ranking over the items is a k-WS instance for every k. We will
use such instances in our lower bounds in the next section. For simplicity, since all our
statements are asymptotic, we drop the ceiling notation as is we only dealt with instances
where ε · n(`−1)/k is integral for all `.

For the class of k-WS instances, we present a quite simple algorithm, which we call
k-FixedMaxMatching (k-FMM); see Algorithm 2. This algorithm achieves a distortion
of O(k · n1/k) by making k queries per agent.

Example 3. First, observe that the instance introduced in Example 1 is a 3-well-structured
instance with ε = 1, A1 = {j1}, A2 = {j2, j3}, A3 = {j4, j5, j6, j7}, and A4 = {j8} (verifying
the set sizes is just a matter of simple calculations). That is, everyone agrees that j1 is the
best item, that j2 and j3 are the second and third best items, but not necessarily in that
order, and so on.

Suppose now that we run 3-FMM on this instance. For each agent i, the algorithm
constructs the simulated valuation function ṽi by querying about i’s least favorite item
(with respect to �i) in each of A1, A2, and A3. The answers to these queries then become
the simulated values for all the items within each set, while all the items in A4 have simulated
value 0. For instance, the algorithm queries i1 about j1, j3, and j7 and the simulated values
are ṽ1(j1) = 10, ṽ1(j2) = ṽ1(j3) = 7, ṽ1(j4) = ṽ1(j5) = ṽ1(j6) = ṽ1(j7) = 3, and ṽ1(j8) = 0.
The following table summarizes the simulated valuation profile ṽ = (ṽi)i∈N :

j1 j2 j3 j4 j5 j6 j7 j8

i1 10 7 7 3 3 3 3 0
i2 12 8 8 2 2 2 2 0
i3 18 5 5 2 2 2 2 0
i4 8 6 6 5 5 5 5 0
i5 24 5 5 1 1 1 1 0
i6 20 6 6 2 2 2 2 0
i7 9 7 7 4 4 4 4 0
i8 15 10 10 2 2 2 2 0
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An optimal matching with respect to ṽ, is {(i1, j4), (i2, j2), (i3, j6), (i4, j7), (i5, j1), (i6, j8),
(i7, j5), (i8, j3)} with simulated social welfare 56. The social welfare of this matching with
respect to the true valuation profile v is 61.

Theorem 3. For the class of k-well-structured instances with k ≥ 1, k-FMM makes k
queries per agent and achieves a distortion of O(k · n1/k).

Proof. Consider an arbitrary k-WS instance with valuation profile v. For ` ∈ {1, . . . , k},
denote by S` the set of |A`| = n(`−1)/k agents with the highest values for the last item in A`
(breaking ties arbitrarily). Since there exists a matching of the items in A` to the agents of
S`, the algorithm maximizes the simulated welfare, and vi(j) ≥ ṽi(j) for every agent i and
item j, the social welfare of the matching Y computed by the algorithm is

SW(Y |v) ≥
∑
i∈S`

ui(`)

≥ n(`−1)/k ·min
i∈S`

ui(`) ,

for every ` ∈ {1, . . . , k}. Observe that since A1 consists of just one item, the inequality for
` = 1 can be simplified to

SW(Y |v) ≥ max
i
ui(1) .

Now, let X be an optimal matching, and denote by xj the agent matched to item j ∈ A.
Then,

SW(X|v) =

k+1∑
`=1

∑
j∈A`

vxj (j) =
∑
j∈A1

vxj (j) +

k+1∑
`=2

∑
j∈A`

vxj (j)

≤ max
i
ui(1) +

k+1∑
`=2

∑
j∈A`

uxj (`− 1) ,

where the inequality follows since A1 consists of just one item, and the values of the agents
for every item in A` are at most their values for the last item in A`−1 (since all items in
A`−1 are ranked higher than the items in A`). Let us focus on the right-most term of the
above expression. We have

k+1∑
`=2

∑
j∈A`

uxj (`− 1) =
k+1∑
`=2

∑
j∈A`

∑
xj∈S`−1

uxj (`− 1) +
k+1∑
`=2

∑
j∈A`

∑
xj 6∈S`−1

uxj (`− 1) .

By the definition of S`−1, for every agent i 6∈ S`−1, it holds that uxj (`−1) ≤ mini∈S`−1
ui(`−

1), and thus

k+1∑
`=2

∑
j∈A`

uxj (`− 1) ≤
k+1∑
`=2

∑
j∈A`

∑
xj∈S`−1

uxj (`− 1) +

k+1∑
`=2

∑
j∈A`

∑
xj 6∈S`−1

min
i∈S`−1

ui(`− 1) .

Observe that the internal double sum of the first term can sum over at most all agents in
S`−1, while the internal double sum of the second term can sum over at most |A`| agents.
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Using the fact that |Ak+1| ≤ n and the lower bounds for the social welfare of the matching
computed by the algorithm, we obtain

k+1∑
`=2

∑
j∈A`

uxj (`− 1) ≤
k+1∑
`=2

∑
i∈S`−1

ui(`− 1) +
k+1∑
`=2

|A`| min
i∈S`−1

ui(`− 1)

=
k+1∑
`=2

∑
i∈S`−1

ui(`− 1) +
k∑
`=2

n(`−1)/k · min
i∈S`−1

ui(`− 1) + |Ak+1|min
i∈Sk

ui(k)

≤
k∑
`=1

∑
i∈S`

ui(`) + n1/k
k−1∑
`=1

n(`−1)/k ·min
i∈S`

ui(`) + n ·min
i∈Sk

ui(k)

≤ (k + k · n1/k) · SW(Y |v) .

Putting everything together, we obtain the theorem.

We conclude our discussion on k-WS instances with a lower bound Ω(n1/k) on the
distortion of the (k − 1)-TSF algorithm; here, the value of the parameter λ is chosen to be
k − 1 because of the structure of k-WS instances. Combined together with the O(k log n)
queries that it requires to operate, we have that when k is sub-logarithmic, the k-FMM
algorithm presented above matches the distortion of (k− 1)-TSF on k-WS instances, using
a factor of log n less queries per agent.

Theorem 4. For every constant k ≥ 1, there exists a k-well-structured instance such that
the distortion of (k − 1)-TSF when given this instance as input is Ω(n1/k).

Proof. Consider an instance in which all agents have the same ordinal preference over the
items, which can be easily seen to be a k-WS instance for every k ≥ 1. Let us now define
the cardinal values which are revealed when the (k − 1)-TSF algorithm queries the agents:

• α`−1 = n−(`−1)/k for queries about items in A`, ` ≤ k;

• 0 for queries about items in Ak+1.

Because the rankings of the agents for the items and the revealed information due to the
queries of the algorithm are the same among the agents, the algorithm will define the same
simulated valuation function for all agents. In particular, based on the revealed values,
we have that Qi,`−1 = A` for every ` ∈ {1, . . . , k}. By considering a valuation profile v
according to which an agent that is matched to an item in set A` has value α`−1 for it, we
have that the social welfare of the matching Y computed by the algorithm is

SW(Y |v) =
k∑
`=1

|A`| · α`−1 = 1 + ε
k∑
`=2

n(`−1)/k · n−(`−1)/k = 1 + ε · (k − 1) ≤ k .

Now, observe that when binary search is restricted to run over only the items in the set A`,
` ∈ {2, . . . , k + 1}, it does not query all the items in A`; in particular, because of the way
binary search operates, the value of the first |A`|/2 items therein will never be revealed.
Hence, even if the algorithm matches the agents to items for which they have not been
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queried for, there must exist a matching X such that for every ` ∈ {2, . . . , k + 1} the first
|A`|/2 items of A` are matched to agents different than the ones chosen by the algorithm,
who have not been queried for their values. By setting the real values of the agents for these
items to be α`−2, and observing that |Ak+1| = ξn for some constant ξ ∈ (0, 1), we have

SW(X|v) ≥
k+1∑
`=2

|A`|
2
· α`−2

=
ε

2

k∑
`=2

n(`−1)/k · n−(`−2)/k +
ξ

2
· n · n−(k−1)/k

≥ min{ε, ξ}
2

· k · n1/k.

Hence, the distortion is Ω(n1/k).

4. Lower Bounds

In this section we show unconditional lower bounds for algorithms for One-Sided Matching
which are allowed to make at most k ≥ 1 queries per agent. We present a generic matching
instance which can be fine-tuned to yield lower bounds for both unrestricted and unit-sum
valuation functions. Let V denote any of these two classes of valuation functions.

Let δV(k) ≤ 1/k be a function of k, and ε ∈ (0, 1/2) be some constant. We want to
define an instance in which the n items are partitioned into k + 2 sets A1, ..., Ak+1, B =
A \

(⋃
`∈[k+1]A`

)
such that

|A1| = 1 and |A`| = ε · n(`−1)δV (k) for every ` ∈ {2, . . . , k + 1}.

Note that because we have restricted the possible values of δV(k) to be at most 1/k and have
chosen ε < 1/2, these sets of items can be defined; in particular, |Ak+1| ≤ εn. We assume
that n is large enough so that n > 2

∑k+1
`=1 |A`| and that is such that the cardinalities are

indeed integers; the latter is only assumed to simplify the notation. We use 〈T 〉 to denote
some fixed arbitrary ranking of the elements of set T (which is common for all agents).
Given that, we define the ordinal preference of every agent i ∈ N to be

〈A1〉 �i 〈A2〉 �i ... �i 〈Ak〉 �i 〈Ak+1〉 �i 〈B〉.

We reveal the following information, depending on the queries of the algorithm:

• For every ` ∈ {1, . . . , k+ 1}, any query for some item in A` reveals a value of |A`|−1 ·
n−δV (k);

• Every query for some item in B reveals a value of 0.

Observe that for δV(k) = 1/k, we have actually defined a k-well-structured instance in which
all agents have the same ordinal preference. As we will see below, this choice of δV in fact
yields the best lower bound if V is the class of unrestricted valuations. However, when V is
the class of unit-sum valuations, we will have to choose δV differently.
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Next, we define two types of conditional valuation functions that an agent i may have,
depending on the behavior of the algorithm. These functions have to be consistent to the
information that is revealed by the queries of the algorithm. Let ξ ∈ (0, 1] be some constant.

(T1) If there exists r ∈ {1, . . . , k+ 1}, such that i is not queried for any item in Ar and she
does not get an item from Ar either, then i’s values are

• at least ξ · |Ar−1|−1 · n−δV (k) for each item in Ar if r ≥ 2;

• at least ξ for the item in A1 if r = 1;

• |A`|−1 · n−δV (k) for every item in A`, for ` ∈ {1, . . . , k + 1} \ {r};

• 0 for every item in B.

(T2) If i is queried for some item in k different sets out of A1, . . . , Ak+1, then her values are

• |A`|−1 · n−δV (k) for every item in A`, for ` ∈ {1, . . . , k + 1};

• at most |Ak+1|−1 · n−δV (k) for every item in B.

Observe that the conditions specified in (T1) and (T2) capture all possible cases about the
queries of the algorithm and the possible assignments of the items to the agents.

Theorem 5. Let V be the class of unrestricted or unit-sum valuation functions. If there
exists a function δV(k) ≤ 1/k such that it is possible to define valuation functions in V of
types (T1) and (T2), the distortion of any matching algorithm which makes k queries per
agent is Ω

(
1
k · n

δV (k)
)
.

Proof. Observe that if the values of the agents for all items in a set A` are consistent to the
revealed values, then the total value for all items in set A` is equal to |A`| · |A`|−1 ·n−δV (k) =
n−δV (k). Since there are valuation functions of types (T1) and (T2), we can indeed define
a valuation profile v so that the value of every agent for the item she is matched to by
the algorithm is exactly the value she would reveal if she was queried for it. So, the items
of every set A`, ` ∈ {1, . . . , k + 1}, contribute exactly n−δV (k) to the social welfare of the
matching Y computed by the algorithm, while the items in B contribute 0. Hence,

SW(Y |v) = (k + 1) · n−δV (k).

Hence, to show the desired bound on the distortion of the algorithm, it suffices to show that
there is always a matching with social welfare Ω(1).

This is clearly the case when there exists an agent who is not queried for the item in A1

and is not given this item, since her value for it in such a case can be set to be at least ξ
using a function of type (T1) for r = 1. Therefore, since this item can only be given to one
agent, in the following we assume that there is at most one agent who is not queried for it,
and if such an agent exists, she must be given the item.

Consider the set S2 of agents who are not queried for any item in A2 and also do not get
any item in A2. If |S2| ≥ |A2|, then by defining the valuation function of every agent in S2
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to be of type (T1) for r = 2, we can obtain a matching (in which exactly |A2| agents in S2

are given a different item from A2) with social welfare at least |A2| · ξ · |A1|−1 · n−δV (k) = ξ.
The latter follows by the fact that |At| · |At−1|−1 = nδV (k) for all t ≥ 2. Consequently, it
must be |S2| < |A2|. This further implies that there are at least n − 1 − 2|A2| agents who
are queried for some item in each of A1 and A2, and do not get any item in A1 ∪ A2. Let
L2 be the set of these agents.

Consider the set S3 ⊆ L2 of agents who are not queried for any item in A3 and also do
not get any item in A3. Like in the case of A3 and S3 above, if |S3| ≥ |A3|, then by defining
the valuation function of every agent in S3 to be of type (T1) for r = 3, we can obtain a
matching (in which |A3| of the agents in S3 are given a different item from A3) with social
welfare at least |A3| · ξ · |A2|−1 · n−δV (k) = ξ. So, it must be |S3| < |A3|, which implies that
there are |L2| − |A3| − |S3| ≥ |L2| − 2|A3| agents in L2 who are queried for some item in
each of A1, A2 and A3, and do not get any item in A1 ∪A2 ∪A3. Let L3 be the set of these
agents.

By induction, this process leads to the existence of the set Lk of agents who have been
queried for some item in each of A1, . . . , Ak, such that |Lk| ≥ n− 1− 2

∑k
`=1 |A`|. Since

n > 2
k+1∑
`=1

|A`| ⇒ n− 1− 2
k∑
`=1

|A`| − |Ak+1| ≥ |Ak+1| ,

there are |Ak+1| agents who have not been queried for any item in Ak+1 and do not get any
item in Ak+1. Thus, by setting their valuation functions to be of type (T1) for r = k + 1,
we can construct a matching with welfare at least ξ, completing the proof.

Theorem 5 is actually quite powerful and allows us to prove lower bounds for both
unrestricted and unit-sum valuation functions. In particular, it reduces the problem to
finding the largest possible δV(k) ≤ 1/k, such that valuation functions in V of types (T1)
and (T2) can be defined.

Theorem 6. For unconstrained valuation functions, the distortion of any matching algo-
rithm which makes k queries per agent is Ω

(
1
k · n

1/k
)
.

Proof. It is straightforward to observe that it is indeed possible to define unconstrained
valuation functions of types (T1) and (T2) for the function δ∞(k) = 1/k. In particular, the
valuation functions are such that

u1(j) =


n−(r−1)/k, if j ∈ Ar
n−`/k, if j ∈ A`, ` 6= r

0, if j ∈ B

and

u2(j) =

{
n−`/k, if j ∈ A`
0, if j ∈ B

where ` is a generic index, while r in the definition of u1 is an index that corresponds to
a set Ar such that i is not queried for any item in it and she does not get an item from it
either.

Hence, by Theorem 5, any matching algorithm has distortion Ω
(

1
k · n

1/k
)
.
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For unit-sum valuations, we have the following bound.

Theorem 7. Let ξ ∈ (0, 1) be a constant. For unit-sum valuation functions, the distortion
of any matching algorithm which makes k ≤ (1 − ξ)n1/(k+1) queries per agent is Ω

(
1
k ·

n1/(k+1)
)
.

Proof. Let ε ∈ (0, 1/2) be the constant used for defining the sets A1, . . . , Ak+1. We will
show that for δ1(k) = 1/(k + 1), the following two valuation functions satisfy the unit-sum
normalization and are of types (T1) and (T2), respectively. Then, the statement will follow
by Theorem 5 by substituting δ1(k). The functions are defined as

u1(j) =


1−k·n−1/(k+1)

εn(r−1)/(k+1) , if j ∈ Ar
ε−1n−`/(k+1), if j ∈ A`, ` 6= r

0, if j ∈ B

and

u2(j) =

{
ε−1n−`/(k+1), if j ∈ A`
1−(k+1)·n−1/(k+1)

|B| , if j ∈ B

where ` is a generic index, while r in the definition of u1 is an index that corresponds to
a set Ar such that i is not queried for any item in it and she does not get an item from it
either.

First, let us verify that both functions satisfy the unit-sum assumption. By the definition
of δ1(k), we have that |A`| = εn(`−1)/(k+1) for all ` ∈ {1, . . . , k + 1}. Therefore,

∑
j∈A

u1(j) = |Ar| ·
1− k · n−1/(k+1)

εn(r−1)/(k+1)
+

k+1∑
`=1

|A`| · ε−1n−`/(k+1) − |Ar| · ε−1n−r/(k+1)

= 1− k · n−1/(k+1) + k · n−1/(k+1) = 1,

and

∑
j∈A

u2(j) =
k+1∑
`=1

|A`| · ε−1n−`/(k+1) + |B| · 1− (k + 1) · n1/(k+1)

|B|

= (k + 1) · n−1/(k+1) + 1− (k + 1) · n1/(k+1) = 1.

Next, we will show that u1 is of type (T1). It suffices to show that the values satisfy the
corresponding conditions. We have

• For every item j ∈ Ar, if r ≥ 2:

u1(j) =
1− k · n−1/(k+1)

εn(r−1)/(k+1)
= ε−1

(
n−(r−1)/(k+1) − k · n−r/(k+1)

)
≥ ε−1 · ξ · n−(r−1)/(k+1) = ε−1 · ξ · n−(r−2)/(k+1) · n−1/(k+1)

= ξ · |Ar−1|−1 · n−δ1(k).
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• For the item j ∈ A1: u1(j) = ε−1
(
1− k · n−1/(k+1)

)
≥ ε−1ξ ≥ ξ.

• For every item j ∈ A`, ` 6= r:

u1(j) = ε−1n−`/(k+1) = ε−1n−(`−1)/(k+1) · n−1/(k+1) = |A`|−1 · n−δ1(k).

• For every item j ∈ B: u1(j) = 0.

Finally, we will show that u2 is of type (T2). Similarly to the above case, we have

• For every item j ∈ A`:

u2(j) = ε−1n−`/(k+1) = ε−1n−(`−1)/k · n−1/(k+1) = |A`|−1 · n−δ1(k).

• For every item j ∈ B:

u2(j) =
1− (k + 1) · n−1/(k+1)

|B|
=

1− (k + 1) · n−1/(k+1)

n−
∑k+1

`=1 n
(`−1)/(k+1)

≤ 1− (k + 1) · n−1/(k+1)

n− (k + 1)nk/(k+1)
= n−1 = ε · ε−1 · n−k/(k+1) · n−1/(k+1)

= ε · |Ak+1|−1 · n−δ1(k) ≤ |Ak+1|−1 · n−δ1(k) ,

where the first inequality follows by the fact that nx/(k+1) is increasing in x.

By appropriately setting the value of k in Theorems 6 and 7, we establish that it is
impossible to achieve constant distortion without an almost logarithmic number of queries.

Corollary 2. Any matching algorithm allowed to make at most

• a constant number k queries per agent has distortion Ω(n1/k) when the valuation
functions are unrestricted, and Ω(n1/(k+1)) when they are unit-sum;

• o
( logn

log logn

)
queries per agent has distortion ω(log log n).

5. Two Queries for Unit-Sum Valuations

In this section, we present the FirstPositionAdaptive algorithm (FPA), which makes at
most two queries per agent and achieves a distortion of O(n2/3

√
log n), when the valuation

functions are unit-sum. First, we query each agent for their most-preferred item. Then,
depending on whether the maximum revealed value by these queries is at least n−1/3, we
query the agents for items that are parts of “large enough” partial matchings. Otherwise,
we query everyone at a specific position, and define simulated values based on the answers to
these queries, ensuring that these values are lower bounds on the corresponding true values.
Clearly, the simulated valuation functions are not necessarily unit-sum. For the sake of the
presentation, we assume that n is a perfect cube, that is, n = α3 for some α ∈ N; it is
straightforward to extend our analysis to the case where this is not true. See Algorithm 3.
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Algorithm 3: FirstPositionAdaptive (FPA)

All agents are initially active.
for every agent i do

Query the value v∗i of i for her top item j∗i .

if maxi∈N v
∗
i ≥ n−1/3 then

for every ` ∈ [n] do

while there exists a partial matching Z of size |Z| ≥ n1/3/
√

log n, such that
an active agent i is matched to an item zi she ranks at position `′ ≤ ` do

for every agent i in Z do
Query the value of i for item zi
Make i inactive

return a matching Y that maximizes the revealed social welfare
else

for every agent i do

Query the value ui of i for the item she ranks at position n1/3 + 1

for every agent i do
Define the simulated valuation function ṽi:

• ṽi(ji
∗) := v∗i

• ṽi(j) := ui for every item j that i ranks at position ` ∈ {2, . . . , n1/3 + 1}

• ṽi(j) := 0 for every item j that i ranks at position ` ∈ {n1/3 + 2, . . . , n}

for every agent i such that ui <
1
2n
−1 do

Set ṽi(j) := 1
3n
−1/3 for the item j that i ranks at position ` ∈ {2, . . . , 1

4n
1/3}.

return a matching Y ∈ arg maxZ SW(Z|ṽ).

Example 4. Although our running example (see Example 1) is not a unit-sum instance,
it is easy to observe that the values of each agent over the items sum up to 45. So, by
dividing all values by 45, we do get a unit-sum instance. To avoid having fractional values
and be able to directly compare to the optimal social welfare from Example 1, we do not
normalize; instead, we appropriately adjust the algorithm instead.

Suppose now that we run FPA on this instance. For each agent i, the algorithm queries
and learns the value of i’s most favorite item (here of j1 for everyone). Then, depending
on whether the maximum such value is at least 45 · 8−1/3 = 22.5 (observe the use of the
sum of the values 45 here), the algorithm constructs different types of simulated valuation
functions. Since maxi∈N vi(j1) = 24 > 22.5 in our example, the algorithm uses matching-
based simulated valuation functions according to the first bullet in its description. The
second type of simulated valuation functions is close in spirit to the constructions of λ-TSF
and k-FMM, albeit more finely tuned.

For all values of ` from 1 to 8, we want to find partial matchings Z1, Z2, . . ., each of size
at least 2 (since 81/3/

√
log 8 ≈ 1.15), which use active agents who rank their matched items
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at the `th position or better. For ` = 1, there is no matching of size 2 with two agents
that rank their item first, as all agents agree on the best item, and thus only of them can
be matched to it. For ` = 2, a possible matching where everyone considers their item to
be at least second best is {(i1, j2), (i2, j1), (i3, j3)}. Agents i1, i2, i3 become inactive, but
there are still feasible matchings on the active agents. A possible second such matching is
{(i4, j1), (i5, j3), (i6, j2)}. Now, agents i4, i5, i6 become inactive, and it is easy to see that
{(i7, j1), (i8, j2)} is a third feasible matching. Since there are no more active agents, the
algorithm does not look for any matchings for the remaining values of `. The matchings
found so far are used to make a second query to the agents about the corresponding items,
possibly asking again about j1, as is the case for i2, i4 and i7. Unlike λ-TSF and k-FMM,
this part of the algorithm does not try to approximate any values, but rather uses the
revealed values along with zeros. The table summarizes the partially revealed valuation
profile ṽ = (ṽi)i∈N :

j1 j2 j3 j4 j5 j6 j7 j8

i1 10 8 0 0 0 0 0 0
i2 12 0 0 0 0 0 0 0
i3 18 0 9 0 0 0 0 0
i4 8 0 0 0 0 0 0 0
i5 24 0 6 0 0 0 0 0
i6 20 7 0 0 0 0 0 0
i7 9 0 0 0 0 0 0 0
i8 15 10 0 0 0 0 0 0

An optimal matching with respect to this ṽ, is {(i1, j4), (i2, j5), (i3, j3), (i4, j6), (i5, j1), (i6, j7),
(i7, j8), (i8, j2)} with simulated social welfare 43. The social welfare of this matching with
respect to the true valuation profile v is 66.

The distortion of the algorithm is bounded in the following theorem.

Theorem 8. For unit-sum valuation functions, the distortion of FPA is O(n2/3
√

log n).

Proof. Let v be a valuation profile. Denote by Y the output of the algorithm when given as
input the ordinal profile �v, and by X = (xi)i∈N an optimal matching for v. We consider
two main cases, depending on the value maxi∈N v

∗
i that the algorithm learns with the first

query.

Case 1: maxi∈N v
∗
i ≥ n−1/3. The algorithm makes a second query to an agent i for some

item j only if the pair (i, j) is part of a partial matching of size at least n1/3/
√

log n, involving
only active agents, i.e., agents who have not been included in such a partial matching in
any previous step. Let Z1, . . . , Zλ be all the partial matchings considered throughout the
execution of the algorithm. By definition, each such partial matching contains at least
n1/3/

√
log n agents and an agent is contained in at most one of these matchings. Thus, it

holds that λ ≤ n2/3
√

log n.
We partition the agents into two sets. The set H contains each agent i who was queried

a second time about some item zi she ranks at least as high as the item xi she receives in
the optimal matching X. Some agents in H are possibly queried twice for their best item.
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The set L contains every agent i who was queried for an item she ranks lower than xi or
was queried only once. We can write the social welfare of X as

SW(X|v) =
∑
i∈H

vi(xi) +
∑
i∈L

vi(xi) .

We will bound each term on the right-hand side separately. For the first term, we have:

∑
i∈H

vi(xi) ≤
∑
i∈H

vi(zi) ≤
λ∑
t=1

∑
i∈Zt

vi(zi) ≤ λmax
t

∑
i∈Zt

vi(zi) < n2/3
√

log n · SW(Y |v) .

The first inequality holds because zi <i xi for every i ∈ H. The second inequality holds
because the agents in H are queried only if they are included in one of the partial matchings
Z1, . . . , Zλ. The last inequality follows from the bound on λ established above, and the fact
that maxt

∑
i∈Zt vi(zi) is trivially upper bounded by the social welfare of Y .

To bound the second term, let Y (`) be the restriction of Y containing only the agents
i ∈ L for whom xi is at position `. Observe that all agents in Y (`) must be active at the end
of the iteration for `. So, it holds that |Y (`)| < n1/3/

√
log n, or else the algorithm would

have queried (at least some of) the agents in Y (`) for items they value at least as much as
xi before the end of this iteration, contradicting their membership in L. Thus, we get that

∑
i∈L

vi(xi) =

n∑
`=1

∑
i∈Y (`)

vi(xi) <

n∑
`=1

n1/3

√
log n

1

`
<

n1/3

√
log n

2 log n = 2n1/3
√

log n ,

where the first inequality follows from the unit-sum normalization; in particular, any agent’s
value for an item at position ` is at most 1/`. The second inequality is a simple bound on
the harmonic numbers:

∑n
i=1 i

−1 < 2 log2 n, for n ≥ 2.
Further, since maxi∈N v

∗
i ≥ n−1/3, we have that SW(Y |v) ≥ n−1/3. Thus,∑
i∈L

vi(xi) ≤ 2n2/3
√

log n · SW(Y |v) .

Putting everything together, the distortion of the algorithm in this case is upper bounded
by 2n2/3

√
log n.

Case 2: maxi∈N v
∗
i < n−1/3. We partition the set of agents into two sets, depending on

whether their value for the item they rank at position n1/3+1 is at most 1
2n
−1. In particular,

let R = {i ∈ N : ui <
1
2n
−1}. We can write the optimal social welfare of X as

SW(X|v) =
∑
i∈R

vi(xi) +
∑
i∈N\R

vi(xi) .

We will bound each term separately. For the first term, since maxi∈N v
∗
i < n−1/3, we clearly

have that ∑
i∈R

vi(xi) ≤ max
i∈N

v∗i |R| ≤ n−1/3|R| .
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Consider an arbitrary agent i ∈ R and denote by ji,` the item she ranks at position `;
hence, j∗i = ji,1. We will first show that vi

(
ji, 1

4
n1/3

)
≥ 1

3 · n
−1/3 = ṽi

(
ji, 1

4
n1/3

)
. Since

ui = vi
(
ji,n1/3+1

)
< 1

2n
−1, we have that

n∑
`=n1/3+1

vi(ji,`) ≤ (n− n1/3 − 1)ui <
1

2
,

and thus, by the unit-sum normalization assumption, we also have that

n1/3∑
`=1

vi(ji,`) ≥
1

2
.

Since vi(ji,`) ≤ vi(ji,1) < n−1/3 for every ` ∈
{

1, . . . , 1
4n

1/3 − 1
}

and vi
(
ji, 1

4
n1/3

)
≥ vi(ji,`)

for every ` ∈
{

1
4n

1/3, . . . , n1/3
}

, we obtain

vi
(
ji, 1

4
n1/3

)
≥

1
2 −

(
1
4n

1/3 − 1
)
n−1/3

3
4n

1/3
≥ 1

3
n−1/3 = ṽi

(
ji, 1

4
n1/3

)
.

where the second inequality is a matter of simple calculations. So, all the agents in R have
value at least 1

3n
−1/3 for the items they rank at positions up to 1

4n
1/3. This implies that

the simulated valuation functions, defined by the algorithm, are lower bounds to the real
valuation functions.

By Hall’s Theorem (Hall, 1935), it is easy to see that there exists a matching of size
min

{
|R|, 1

4n
1/3
}

where each agent in R is matched to an item she ranks at the first 1
4n

1/3

positions. Moreover, Y maximizes the social welfare according to the simulated valuation
functions. Hence,

SW(Y |v) ≥ SW(Y |ṽ) ≥ 1

3
n−1/3 min

{
|R|, 1

4
n1/3

}
.

If |R| < 1
4n

1/3, then SW(Y |v) ≥ 1
3 |R|n

−1/3, and thus∑
i∈R

vi(xi) ≤ 3 · SW(Y |v) .

Otherwise, SW(Y |v) ≥ 1/12, and since |R| ≤ n, we obtain∑
i∈R

vi(xi) ≤ 12n2/3 · SW(Y |v) .

For the second term, we further partition N \R into two sets depending on the position
of the xis. In particular, H is the set of agents i ∈ N \ R who rank xi at some position
` ≤ n1/3, and L is the set of remaining agents i ∈ (N \R)\H (who rank xi at some position
` > n1/3). Hence, ∑

i∈N\R

vi(xi) =
∑
i∈H

vi(xi) +
∑
i∈L

vi(xi) .
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First consider the agents in H. Since maxi∈N v
∗
i < n−1/3,∑

i∈H
vi(xi) ≤ max

i∈N
v∗i |H| < n−1/3|H| .

Consider any agent i ∈ H and any item j that i ranks at some position ` ≤ n1/3. Since ui
is the value of i for the item she ranks at position n1/3 + 1, we clearly have that vi(j) ≥
ui = ṽi(j) ≥ 1

2n
−1. Note that there exists a partial matching of size |H| according to

which all agents of H are matched to items they rank at the first n1/3 positions; e.g., the
restriction of X on H. Since Y maximizes the social welfare for the simulated valuation
functions, we get

SW(Y |v) ≥ SW(Y |ṽ) ≥ 1

2
n−1|H| ,

which immediately implies that∑
i∈H

vi(xi) ≤ 2n2/3 · SW(Y |v) .

Finally, consider the agents in L, and distinguish the following two cases depending on the
size of L.

• |L| ≤ n1/3. Since there are at least n1/3 different items within the first n1/3 positions
of each agent in L, by Hall’s Theorem, there exists a matching Y ′ according to which
all agents in L receive such an item, i.e., every i ∈ L has (simulated) value at least
ui for the item she gets in Y ′. Combining this with the optimality of Y for the simu-
lated valuation functions and the fact that the latter lower bound the real valuation
functions, we have

SW(Y |v) ≥ SW(Y |ṽ) ≥ SW(Y ′|ṽ) ≥
∑
i∈L

ui ≥
∑
i∈L

vi(xi) ,

where the last inequality follows by the definition of L.

• |L| > n1/3. Denote by SL the |SL| = n1/3 agents with the highest values ui among
all the agents in L. We may repeat the above argument for SL instead of L to get
SW(Y |v) ≥

∑
i∈SL ui. Then,

SW(Y |v) ≥ n1/3 min
i∈SL

ui ≥ n1/3 max
i∈L\SL

ui .

On the other hand, we have∑
i∈L

vi(xi) ≤
∑
i∈SL

ui + (|L| − |SL|) max
i∈L\SL

ui

≤
∑
i∈SL

ui + n max
i∈L\SL

ui

≤ (1 + n2/3) · SW(Y |v).

Therefore, the distortion of the algorithm is at most 16n2/3 + 1 in case 2. Together with
case 1, we obtain the desired bound of O(n2/3

√
log n).
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6. A General Framework for λ-TSF

In this section we generalize λ-TSF, our algorithm from Section 3, to work for a much
broader class of problems, where we are given the ordinal preferences of the agents and
access via queries to their cardinal values. We begin with the following general full informa-
tion problem of maximizing an additive objective over a family of combinatorial structures
defined on a weighted graph:

Max-on-Graphs: Given a (directed or undirected) weighted graph G = (U,E,w) and a
concise description of the set F ⊆ 2E of feasible solutions, find a solution

S ∈ arg max
T∈F

∑
e∈T

w(e).

Note that One-Sided Matching is a special case; G is the complete bipartite graph on N
and A, the weight of an edge {i, j} is vi(j), and F contains the perfect matchings of G.

What we are really interested in is the social choice analog of Max-on-Graphs where the
weights (defined in terms of the valuation functions of the agents) are not given! Instead,
we know the ordinal preferences of each agent/node for other nodes (corresponding to items
or other agents).

Ordinal-Max-on-Graphs: Here U = N ∪ A, where N is the set of agents and A is the
(possibly empty) set of items; when A 6= ∅, we assume that G is a bipartite graph with
independent sets N,A. Although G = (U,E) is given without the weights, it is assumed
that for every i ∈ N there exists a (private) valuation function vi : U → R≥0, so that

w(e) =


vi(j), if i ∈ N, j ∈ A and e = {i, j} (Bipartite agent–item case)

vi(j) + vj(i), if i, j ∈ N and e = {i, j} (Undirected case)

vi(j), if i, j ∈ N and e = (i, j) (Directed case) .

(2)

We are also given the ordinal profile �v= (�i)i∈N induced by v = (vi)i∈N and a con-
cise description of the set F ⊆ 2E of feasible solutions. The goal is again to find S ∈
arg maxT∈F

∑
e∈T w(e).

It is straightforward to extend the notion of distortion (Definition 2) for Ordinal-Max-
on-Graphs; assume that X(v) is an optimal feasible solution, Ak(�v) is the feasible solution
returned by the algorithm, and take the supremum over all instances of a certain size n.

Notice that for Ordinal-Max-on-Graphs to make sense, F should be independent of w.
For example, if only sets of weight exactly B are feasible, then it is impossible to find even
one feasible set without the exact cardinal information in our disposal. Still, it is clear that
the above algorithmic problem is very general and captures a huge number of maximization
problems on graphs. Of course, not all such problems have a natural interpretation where
the vertices are agents with preferences. Before we state the main result of this section, we
give several examples that have been studied in the computational social choice literature.

General Graph Matching : Given an undirected weighted graph G = (U,E,w), find a
matching of maximum weight, i.e., F contains the matchings of G. In its social choice
analog, U = N and w(·) is defined according to the second branch of (2). A special case of
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this problem in which G = (U1∪U2, E, w) is a bipartite graph, is the celebrated Two-Sided
Matching problem (Gale & Shapley, 1962; Roth & Sotomayor, 1992).

Two-sided Perfect Matching : A variant of Two-Sided Matching, where |U1| = |U2| and
only perfect matchings are feasible.

Max k-Sum Clustering : Given an undirected weighted graph G = (U,E,w), where |U |
is a multiple of k, partition U into k equal-sized clusters in order to maximize the weight of
the edges inside the clusters. That is, F contains, for each partition of U into k equal-sized
clusters, the set of edges that do not cross clusters. This problem generalizes Two-Sided
Perfect Matching; see (Anshelevich & Sekar, 2016a). In its social choice analog, U = N and
the weights are defined according to the second branch of (2).

General Resource Allocation : Given a bipartite weighted graph G = (U1 ∪ U2, E, w),
assign each node of U2 to (only) one neighboring node in U1 so that the total value of the
corresponding edges is maximized. There may be additional combinatorial constraints on
this assignment, e.g., no more than βi nodes of U2 may be assigned to node i ∈ U1. That
is, F contains the sets of edges that define the partitions of U2 into |U1| parts that also
satisfy the additional constraints. This problem generalizes One-Sided Matching. In its
social choice analog, U1 = N , U2 = A and w(·) is defined according to the first branch of
(2).

Clearing Kidney `-Exchanges: Given a directed weighted graph G = (U,E,w), find a
collection of vertex-disjoint cycles of length at most ` so that their total weight is maximized;
see (Abraham et al., 2007). Here, F contains the edge set of any such collection of short
cycles. In its social choice analog, U = N and w(·) is defined according to the third branch
of (2).

We use a variant of λ-TSF, (λ,A)-TSF, that takes as an additional input an approxima-
tion algorithm A for the problem at hand. There are two main differences from λ-TSF. The
simpler one is about the last step; instead of computing a maximum matching, A is used to
compute an (approximately) optimal solution with respect to the simulated valuation func-
tions. The other difference is more subtle. Now we do not want to ask each agent i for her
top element of U , but rather for her top element j∗i that induces an edge included in some
feasible solution. That is, j∗i must be such that there exist T ∈ F for which {i, j∗i } ∈ T (or
(i, j∗i ) ∈ T in the directed case) and any other element with this property is less preferred
by i. It is not always trivial to find this element for each agent, but often it can be done
in polynomial time; see Corollary 3 for such examples. See Algorithm 4 for a description of
(λ,A)-TSF in pseudocode.

Note that the step of finding the j∗i s is not given explicitly as it has to be adjusted for
the particular problem at hand. As a concrete non-trivial example, consider the perfect
matching variant of General Graph Matching, where we only care about perfect matchings.
In this case, we can check whether an edge {i, j} belongs to a perfect matching by removing
both i and j and then running the blossom algorithm of Edmonds (1965) on the remaining
graph (with all weights set to 1). So, by repeatedly using this subroutine for an agent
i starting from her top element and going down her preference list, we can find j∗i in
polynomial time and then make a query for it.
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Algorithm 4: (λ,A)-ThresholdStepFunction ((λ,A)-TSF)

// We assume that when A 6= ∅ (i.e., when there are “items”), vi(j) = 0 for all i ∈ A, j ∈ N .

Let α` := r−`/(λ+1) for ` ∈ {0, . . . , λ}, where r = maxT∈F |T |
for every agent i ∈ N do

Find i’s favorite j∗i ∈ U that defines an edge contained in some feasible solution
Query the value v∗i of i for j∗i
Let Qi,0 := {j∗i }
Set ṽi(j

∗
i ) := α0 · v∗i = v∗i

for every ` ∈ {1, ..., λ} do
Using binary search, compute the set
Qi,` := {j ∈ A : vi(j) ∈ [α` · v∗i , α`−1 · v∗i )}

Set ṽi(j) := α` · v∗i for every j ∈ Qi,`
Let Qi :=

⋃λ
`=0Qi,`

Set ṽi(j) := 0 for every j ∈ A \Qi
return A(G̃), where G̃ = (U,E, w̃)

For the following theorem, we assume that the optimization problem Π is a special
case of Max-on-Graphs with maxT∈F |T | = r. The parameter r allows for a more refined
statement; while for the general Max-on-Graphs r may be Θ(|U |2), in most cases it is only
O(|U |). We further assume that we can efficiently check whether an edge e belongs to a
feasible solution. If not, the distortion guarantee of the theorem is still true, but there is
no guarantee about the running time of (λ,A)-TSF.

Theorem 9. Suppose Π is as described above. If A is a (polynomial-time) ρ-approximation
algorithm for Π in the full information setting, then (λ,A)-TSF asks 1 +λ+λ log r queries

and achieves distortion at most 3ρ r
1

λ+1 for the social choice analog of Π (in polynomial
time).

Proof. Let X ⊆ E be an optimal solution according to the valuation functions vi, and Z
be the solution returned by (λ,A)-TSF. Also, let Y be an optimal solution with respect to
the simulated valuation functions.

In order to unify the notation for the three definitions of edge weights in (1), we write
e = 〈i, j〉 to mean

(i) e = {i, j} with i ∈ N, j ∈ A when A 6= ∅;

(ii) e = {i, j} when A = ∅ and G is undirected;

(iii) e = (i, j) when A = ∅ and G is directed.

Using this notation we can define Xi = {j ∈ U : 〈i, j〉 ∈ X}, for i ∈ N , and write the
optimum as ∑

e∈X
w(e) =

∑
〈i,j〉∈X

vi(j) =
∑
i∈N

∑
j∈Xi\Qi

vi(j) +
∑
i∈N

∑
j∈Xi∩Qi

vi(j) .
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We will bound the two terms separately. We begin with the first one:∑
i∈N

∑
j∈Xi\Qi

vi(j) < αλ
∑
i∈N

∑
j∈Xi\Qi

v∗i ≤ αλ
∑
〈i,j〉∈X

v∗i ≤ 2rαλ max
k∈N

v∗k ≤ 2rαλρ
∑
e∈Z

w(e) .

The first inequality follows directly by the definition of Qi. The second inequality follows by
extending the scope of the summation to include all (possibly unordered) pairs in X. For
the third inequality, it suffices to notice that we simultaneously upper bound the number
of terms in the summation by 2|X| ≤ 2r and each v∗i by their maximum. Finally, the last
inequality follows by the fact that the optimal value with the simulated valuation functions
is at least maxk∈N v

∗
k and, thus, the solution Z returned by the algorithm achieves at least

a ρ-approximation of that.

For the second term we have

∑
i∈N

∑
j∈Xi∩Qi

vi(j) =
∑
i∈N

k∑
`=0

∑
j∈Xi∩Qi,`

vi(j) .

Now, let us assume that λ > 0; we will deal with the simpler case where λ = 0 later.
By definition, for any ` ∈ {1, . . . , λ} and any j ∈ Qi,`, we have that vi(j) ≤ α`−1 · v∗i =
α`−1

α`
· α` · v∗i = ṽi(j)/α1. Also, for Qi,0 = {j∗i }, we have vi(j

∗
i ) = ṽi(j

∗
i ) ≤ ṽi(j∗i )/α1. Hence,

∑
i∈N

∑
j∈Xi∩Qi

vi(j) ≤ α−1
1

∑
i∈N

∑
j∈Xi∩Qi

ṽi(j) = α−1
1

∑
i∈N

∑
j∈Xi∩Qi

ṽi(j) + α−1
1

∑
i∈N

∑
j∈Xi\Qi

0

= α−1
1

∑
〈i,j〉∈X

ṽi(j) = α−1
1

∑
e∈X

w̃(e) ≤ α−1
1

∑
e∈Y

w̃(e) ≤ α−1
1 ρ

∑
e∈Z

w̃(e)

≤ α−1
1 ρ

∑
e∈Z

w(e) . (3)

The second inequality follows from the optimality of Y with respect to the simulated val-
uation functions. The third inequality follows directly from the approximation guarantee
of A: Z attains a ρ approximation of the value achieved by Y . Finally, the last inequality
follows from the fact that ṽi(j) ≤ vi(j) for every i, j, and thus w̃(e) ≤ w(e) for all e ∈ E.

Now we can put everything together:∑
e∈X

w(e) ≤
(
2rαλρ+ α−1

1 ρ
)∑
e∈Z

w(e) = 3ρr
1

λ+1

∑
e∈Z

w(e) , (4)

and this settles the bound on the distortion of (λ,A)-TSF when λ > 0.

When λ = 0, we can repeat the derivation of (3) but without the factor of α−1
1 , as this

is only needed for the simulated value of items in Qi,` for ` > 0 and now these sets are
empty. So,

∑
i∈N

∑
j∈Xi∩Qivi(j) ≤ ρ

∑
e∈Z w(e) and then the analog of (4) is∑

e∈X
w(e) ≤ (2rα0ρ+ ρ)

∑
e∈Z

w(e) ≤ 3ρr
1

0+1

∑
e∈Z

w(e) .
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About the running time, it is easy to see that all steps, except running A(G̃) and finding
j∗i for each i ∈ N , can be done in polynomial time (in particular O(|U | log2 |U |)). Let t(|U |)
be the time needed to check whether an edge can be extended to a feasible solution. Then,
finding all the j∗i s can be done in timeO(|U |2t(|U |)), as we need to perform the check for
at most |U | − 1 elements per i ∈ N . Hence, if both the feasibility check and A run in
polynomial time, then (λ,A)-TSF runs in polynomial time as well.

For the problems defined above, we can get the following.

Corollary 3. By choosing A appropriately, (λ,A)-TSF asks at most 1+λ+λ log |U | queries
and achieves distortion at most

• 3
( |U |

2

) 1
λ+1 in polynomial time for One-Sided Matching (thus qualitatively retrieving

Theorem 2), Two-Sided Matching, General Graph Matching, and Two-Sided Perfect
Matching,

• 3|U2|
1

λ+1 for General Resource Allocation;

• 3|U |
2

λ+1 for Max k-Sum Clustering;

• (3` − 3 + ε)|U |
1

λ+1 for clearing kidney `-exchanges in polynomial time, for any fixed
` ∈ N and any constant ε ∈ (0, 1).

Proof. We begin with One-Sided Matching, Two-Sided Matching, and General Graph Match-
ing. First notice that the size of any matching is at most |U |/2 and thus r ≤ |U |/2. Then,
by using an exact algorithm A for computing maximum weight matchings, such as the blos-

som algorithm (Edmonds, 1965), Theorem 9 directly implies distortion at most 3(|U |/2)
1

λ+1 .
Regarding the running time, observe that any edge is already a feasible solution, and thus
j∗i is indeed i’s most preferred alternative. Since the blossom algorithm runs in polynomial
time, we get that (λ,A)-TSF runs in polynomial time as well.

For Two-Sided Perfect Matching the argument is as above but one needs to argue about
efficiently checking whether a given edge extends to a feasible solution. This, however, is
already discussed right after the description of (λ,A)-TSF.

For General Resource Allocation, we only need to see that an assignment is fully de-
termined by exactly |U2| edges matching the items to the agents. That is, r = |U2|. Since
we do not deal with the running time in this case, we may assume an algorithm A that
solves the full-information problem optimally. Then, Theorem 9 implies distortion at most

3|U2|
1

λ+1 . It should be noted here that, depending on the additional constraints imposed by
F , the computation of an assignment may vary from easy (e.g., no constraints) to strongly
NP-hard (e.g., the items assigned to each agent should form an independent set in a given
graph H on U2).

For Max k-Sum Clustering, again we do not deal with the running time. Thus, it suffices
to use |U |2 as a straightforward upper bound for r and the distortion bound follows.

Finally, for clearing kidney `-exchanges, notice that the number of edges defining a
collection of disjoint cycles can be at most |U | and thus r ≤ |U |. Fix a constant ε > 0. We
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can use the polynomial-time (`− 1 + δ)-approximation algorithm of Biró et al. (2009) with
δ = ε/3. Thus, Theorem 9 implies distortion at most

3(`− 1 + ε/3)|U |
1

λ+1 = (3`− 3 + ε)|U |
1

λ+1 .

Note that the problem is NP-hard, even when k = 3 (Abraham et al., 2007). Regarding
the running time, we can efficiently check whether an edge (i, j) is in a feasible solution,
as it is equivalent to checking whether (i, j) belongs to a cycle of length at most `. For
instance, we may find a shortest (j, i)-path in the unweighted version of G; (i, j) is in a
feasible solution if and only if the length of this shortest path is at most `− 1. Since A also
runs in polynomial time, we get that (λ,A)-TSF runs in polynomial time as well.

7. Conclusion and Open Problems

Our work is the first to study the interplay between elicited information and distortion in
One-Sided Matching, as well as more general graph problems, in the context of social choice
theory. We have shown several tradeoffs, both in term of possible distortion guarantees, and
inapproximability bounds. Our results suggest that using only a small number of queries
per agent can lead to significant improvements on the distortion.

As future directions, first it would be very interesting to see if we can come up with
algorithms that match the lower bounds of Theorem 6. We managed to do that for the class
of k-well-structured instances, but whether it is possible to achieve that for any instance
remains to be seen. Perhaps a slightly less ambitious open problem would be to design an
algorithm that outperforms the two-queries algorithm presented in Section 5 in terms of
the achievable tradeoffs, for agents with unit-sum valuation functions. Another interesting
avenue would be to consider randomized algorithms, either in the selection of the matching,
or the process of querying the agents, and see if we can obtain significant improvements.
Going beyond One-Sided Matching, one could study more general programs, such as those
discussed in Section 6 and design tailor-made algorithms with improved tradeoffs between
the distortion and the number of queries per agent. Finally, it would be interesting to
study a related setting, in which the aim is to achieve the best possible tradeoffs between
the distortion and the total number of queries, where algorithms could perhaps ask fewer
queries for agents that are “easier to please”, leaving more queries for the remaining agents.

Acknowledgments

G. Amanatidis has been partially supported by the NWO Veni project VI.Veni.192.153.
G. Birmpas has been supported by the ERC Advanced Grant 788893 AMDROMA “Algo-
rithmic and Mechanism Design Research in Online Markets”, and the MIUR PRIN project
ALGADIMAR “Algorithms, Games, and Digital Markets”.

References

Abdulkadiroglu, A., & Sönmez, T. (2013). Matching markets: Theory and practice. Ad-
vances in Economics and Econometrics, 1, 3–47.

257



Amanatidis, Birmpas, Filos-Ratsikas & Voudouris

Abraham, D. J., Blum, A., & Sandholm, T. (2007). Clearing algorithms for barter ex-
change markets: Enabling nationwide kidney exchanges. In Proceedings of the 8th
ACM conference on Electronic commerce (EC), pp. 295–304.

Abramowitz, B., & Anshelevich, E. (2018). Utilitarians without utilities: Maximizing social
welfare for graph problems using only ordinal preferences. In Proceedings of the 32nd
AAAI Conference on Artificial Intelligence (AAAI), pp. 894–901.

Abramowitz, B., Anshelevich, E., & Zhu, W. (2019). Awareness of voter passion greatly im-
proves the distortion of metric social choice. In Proceedings of the The 15th Conference
on Web and Internet Economics (WINE), pp. 3–16.

Adamczyk, M., Grandoni, F., & Mukherjee, J. (2015). Improved approximation algorithms
for stochastic matching. In Proceedings of the 23rd Annual European Symposium on
Algorithms (ESA), pp. 1–12.

Amanatidis, G., Birmpas, G., Filos-Ratsikas, A., & Voudouris, A. A. (2021). Peeking behind
the ordinal curtain: Improving distortion via cardinal queries. Artificial Intelligence,
296, 103488.

Anshelevich, E., Bhardwaj, O., Elkind, E., Postl, J., & Skowron, P. (2018). Approximating
optimal social choice under metric preferences. Artificial Intelligence, 264, 27–51.

Anshelevich, E., Das, S., & Naamad, Y. (2013). Anarchy, stability, and utopia: creating
better matchings. Autonomous Agents and Multi-Agent Systems, 26 (1), 120–140.

Anshelevich, E., Filos-Ratsikas, A., Shah, N., & Voudouris, A. A. (2021). Distortion in
social choice problems: The first 15 years and beyond. In Proceedings of the 30th
International Joint Conference on Artificial Intelligence (IJCAI), pp. 4294–4301.

Anshelevich, E., Filos-Ratsikas, A., & Voudouris, A. A. (2022). The distortion of distributed
metric social choice. Artificial Intelligence, 308, 103713.

Anshelevich, E., & Postl, J. (2017). Randomized social choice functions under metric pref-
erences. Journal of Artificial Intelligence Research, 58, 797–827.

Anshelevich, E., & Sekar, S. (2016a). Blind, greedy, and random: Algorithms for match-
ing and clustering using only ordinal information. In Proceedings of the 30th AAAI
Conference on Artificial Intelligence (AAAI), pp. 390–396.

Anshelevich, E., & Sekar, S. (2016b). Truthful mechanisms for matching and clustering in
an ordinal world. In Proceedings of the 12th International Conference on Web and
Internet Economics (WINE), pp. 265–278.

Anshelevich, E., & Zhu, W. (2017). Tradeoffs between information and ordinal approxima-
tion for bipartite matching. In Proceedings of the 10th International Symposium on
Algorithmic Game Theory (SAGT), pp. 267–279.

Bansal, N., Gupta, A., Li, J., Mestre, J., Nagarajan, V., & Rudra, A. (2012). When lp is the
cure for your matching woes: Improved bounds for stochastic matchings. Algorithmica,
63 (4), 733–762.

Barman, S., & Krishnamurthy, S. K. (2020). Approximation algorithms for maximin fair
division. ACM Transactions on Economics and Computation (TEAC), 8 (1), 1–28.

258



A Few Queries Go a Long Way: Information-Distortion Tradeoffs in Matching

Baveja, A., Chavan, A., Nikiforov, A., Srinivasan, A., & Xu, P. (2018). Improved bounds
in stochastic matching and optimization. Algorithmica, 80 (11), 3225–3252.

Behnezhad, S., Derakhshan, M., & Hajiaghayi, M. (2020). Stochastic matching with few
queries: (1 − ε) approximation. In Proceedings of the 52nd Annual ACM SIGACT
Symposium on Theory of Computing (STOC), pp. 1111–1124.

Behnezhad, S., Farhadi, A., Hajiaghayi, M., & Reyhani, N. (2019). Stochastic matching with
few queries: new algorithms and tools. In Proceedings of the 30th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pp. 2855–2874.

Benade, G., Nath, S., Procaccia, A. D., & Shah, N. (2017). Preference elicitation for par-
ticipatory budgeting. In Proceedings of the 31st AAAI Conference on Artificial Intel-
ligence (AAAI), pp. 376–382.

Bhaskar, U., Dani, V., & Ghosh, A. (2018). Truthful and near-optimal mechanisms for
welfare maximization in multi-winner elections. In Proceedings of the 32nd AAAI
Conference on Artificial Intelligence (AAAI), pp. 925–932.
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