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Abstract   

The interactive processes of shallow water flow, sediment transport, and morphological 

evolution constitute a hierarchy of multi-physical problems of significant interests in a 

spectrum of engineering and science areas. To date, modelling shallow water 

hydro-sediment-morphodynamic (SHSM) processes is subject to multiple sources of 

uncertainty arising from input data and incomplete understanding of the underlying physics. 

A stochastic SHSM model with multiple uncertainties has yet to be developed as most SHSM 

models still concern deterministic problems and only one has been recently extended to a 

stochastic setting, but is restricted to a single source of uncertainty. Here we first present a 

new probabilistic SHSM model incorporating multiple uncertainties within the stochastic 

Galerkin framework using a multidimensional tensor product of Haar wavelet expansion to 

capture local, nonlinear variations in joint probability distributions and an 

operator-splitting-based method to ensure the modelling system remain hyperbolic. Then, we 

verify the proposed model via benchmark probabilistic numerical tests with joint 

uncertainties introduced in initial and boundary conditions, matching established experiments 

of flow-sediment-bed evolutions driven by a sudden dam break and by a landslide dam 

failure and large-scale rapid flow-sediment-bed evolution in response to flash flood. The 

present work facilitates a promising modelling framework for quantifying multiple 

uncertainties in practical shallow water hydro-sediment-morphodynamic modelling 

applications.  

Keywords: multiple joint uncertainties; shallow water hydro-sediment-morphodynamic 

model; Haar wavelets; operator-splitting; stochastic Galerkin method  
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1. Introduction 

Shallow water-sediment flows play key roles in driving mass transport and 

morphological evolution on Earth. Over the last two decades, shallow water 

hydro-sediment-morphodynamic (SHSM) models and their variants have seen widespread 

applications in a series of physical and engineering problems involving interactive processes 

of shallow water flow, sediment transport and morphological evolution [1], including general 

fluvial sediment-laden flows [2-7] and geophysical mass flows such as debris flows, 

landslides, and turbidity currents [8-15]. In principle, SHSM model equations are constructed 

according to fundamental mass and momentum conservation laws, and include a system of 

nonlinear hyperbolic equations. Therefore, a set of SHSM model equations falls into the 

category of partial differential equations (PDEs). As is common with all PDEs, SHSM model 

equations inevitably contain a high level of uncertainty, due to our incomplete knowledge of 

the underlying physics and/or inevitable error in physical input parameters. For example, the 

modelling system can propagate multiple uncertainties arising from initial and boundary 

conditions, such as measurement errors in inflow discharge and topographical elevation, 

selection of friction coefficient like the Manning roughness parameter, choice of empirical 

parameters used in sediment transport estimation [16]. Although these uncertainties strongly 

affect the reliability of model predictions, their impacts are almost neglected by existing 

SHSM models that mainly concern deterministic problems. Therefore, to evaluate the impact 

of these uncertainties and subsequently to provide more reliable predictions for practical 

problems, it is therefore imperative to conduct studies of uncertainty quantification in SHSM 

equations with multiple sources of uncertainty, which however remain rare.  
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In the broad field of PDEs, uncertainty quantification methods mainly include statistic 

methods such as Monte-Carlo simulations and their variants, stochastic collocation and 

stochastic Galerkin methods. Monte-Carlo sampling often incurs excessively computational 

overheads because it usually requires thousands of deterministic model runs [17-19]. 

Comparatively, stochastic collocation and stochastic Galerkin methods offer good alternatives 

to statistic methods by substantially reducing or eliminating the need for repetitive sampling 

[20]. Both methods are able to capture the spatial-temporal evolution of probabilistic 

distributions of any physical variable, with each probabilistic distribution approximated by a 

proper basis expansion to represent random space. In general, polynomial chaos or 

generalized polynomial chaos (gPC) expansions are often selected as basis functions because 

they can represent the most common probabilistic distributions. Stochastic collocation 

method is a nonintrusive method, which repeatedly samples a deterministic model with 

different input values, and then use the numerical outputs to construct a stochastic solution 

based on certain interpolation and quadrature rules [21, 22]. The advantage of stochastic 

collocation is clear as it requires only repetitive executions of existing deterministic solvers. 

Unlike nonintrusive methods, stochastic Galerkin method involves a Galerkin projection in 

stochastic space to yield a series of deterministic equations, which are subsequently solved in 

a single model run to obtain the stochastic moments of the solution of the original uncertain 

problem. Consequently, the stochastic Galerkin method is relatively more difficult to 

implement, primarily due to the fact that the equations for the expansion coefficients are 

almost always coupled. Hence, new codes need to be developed to deal with such a larger and 

coupled system of equations. However, to achieve almost the same level of accuracy, all the 
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existing collocation methods require solutions of much larger number of equations than those 

of Galerkin methods, especially for higher dimensional random spaces when multiple joint 

uncertainties are considered. Furthermore, the aliasing errors in stochastic collocation can be 

significant, especially, again, for higher dimensional random spaces [23]. Overall, these 

observations collectively demonstrate that the stochastic Galerkin method is attractive, 

offering the most accurate solutions using the relatively a smaller number of equations in 

multi-dimensional random spaces.  

Existing SG methods along with gPC have been widely used in many physical and 

engineering problems, such as diffusion [24], gas dynamics [25, 26], disperse two-phase flow 

[27], shallow water hydrodynamics [28, 29], and shallow water-sediment flows [16], where 

spectral convergence was obtained when the underlying solution was sufficiently smooth. 

However, when applied to nonlinear hyperbolic systems of conservation laws with multiple 

joint uncertainties, such as shallow water hydrodynamic models and SHSM models, the 

gPC-SG approach faces a major challenge of handling discontinuities in multi-dimensional 

random spaces [30]. Taking the SHSM models as an example, to achieve well-balanced 

property, preserve depth positivity at wet-dry fronts and integrate stable friction term, 

robustness measures that typically involve local and nonlinear operations on topography and 

flow variables [4] are necessarily required. However, these measures inevitably introduce 

additional stochastic discretisation errors and give rise to local and nonlinear variations in 

probability distributions [30, 31], which are poorly represented by the conventional gPC basis 

functions. Therefore, spurious undershoots in a polynomial approximation can result in 

negative water depths that will cause the model to crash [30]. The shortcomings of gPC basis 
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functions have inspired the development of alternative approaches to capture local, nonlinear 

variations in any probability distribution. Le Maître et al. [32] first used Haar wavelets, which 

are multiscale, recursively nested and overlapping basis functions, to provide a localised, 

piecewise-constant decomposition of any probability distribution. This approach was later 

generalized using multiwavelets to provide a piecewise-polynomial representation [33]. 

Wavelet basis functions and their variants have been successfully applied to intrusive models 

of the Euler equations [34], the Buckley-Leverett equation for groundwater flow [35], and the 

shallow water hydrodynamic equations [30]. Another challenge of applying gPC-SG 

approximation to nonlinear hyperbolic systems is loss of hyperbolicity. This phenomenon 

occurs because the resulting system of expansion coefficients is not necessarily hyperbolic as 

its Jacobian matrices may generate complex eigenvalues. Recently, to ensure the system 

remain well-behaved, an operator-splitting-based method is proposed for the Euler equations 

for gas dynamics [36], and a well-balanced version developed for the shallow water 

hydrodynamic equations without bed friction [37] and then extended for the SHSM model 

[16]. The main idea behind this method is to split the underlying hyperbolic system into a 

linear hyperbolic system and linear or nonlinear scalar equations with variable coefficients 

and source terms, for which the gPC-SG method obtains hyperbolic discretization. With the 

gPC-SG method applied to each of the subproblems, the resulting system of the equations for 

expansion coefficients is guaranteed hyperbolic. However, these aforementioned 

operator-splitting-based stochastic models were limited to a single source of uncertainty.  

By taking advantage of the Haar wavelet basis function and an operator-splitting-based 

method, we present a new stochastic Galerkin model of the one-dimensional (1D) SHSM 
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equations with multiple joint uncertainties. Specifically, we extend the recent 

operator-splitting-based stochastic Galerkin SHSM model proposed by Li et al. [16] from a 

single source of uncertainty to multiple sources of uncertainty, using the Haar wavelet basis 

function to replace the gPC basis function. Probabilistic laboratory-scale tests with multiple 

sources of uncertainty are designed to verify the resulting stochastic model for 

flow-sediment-bed evolution driven by a sudden dam break [38] and by a landslide dam 

failure [39]. A probabilistic large-scale test is also conducted, devised to match the rapid 

flow-sediment-bed evolution in response to flash flood, which was observed in an ephemeral 

river Nahal Yatir, Israel [40].  

  

2. Representation of uncertainty  

2.1. Parameterisation of uncertain inputs  

An important step before conducting numerical simulations of stochastic systems, 

regardless the form of numerical methods, is to properly identify the random variables so that 

the input uncertainty is accurately modelled. In terms of shallow water-sediment flows, the 

input uncertainties usually include initial and boundary conditions, such as measurement 

errors in topography and inflow discharge, choice of friction coefficient, selection of 

empirical parameters used in sediment transport estimation. To quantify these uncertainties, 

each input is parameterized by a finite number of independent random variables. Given D  

mutually independent and identically distributed uncertain inputs, each input is assigned to an 

uncertainty dimension [ 1,1]d   , forming a D - dimensional uncertainty space, i.e., 
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1( , , ) D

D   R . This uncertainty space is introduced into any physical variable 

( , , )Α x t  , which can be expanded as follows  

0

ˆ( , , )= ( , ) ( )


 k k

k

K

A x t A x t                         (2.1) 

where 
1( , , )Dk kk =  is a multi-index with 1 Dk k k = , and 

dk  is the index of the 

univariate basis function ( )
dk d

 in the d
 uncertainty dimension for 1 d D .  Âk

, 

the set of stochastic modes, and  ( )k   indicates a set of basis functions spanning the D - 

dimensional uncertainty space  .  

 

2.2. Haar wavelet expansion  

In general, any basis function can be used to span the uncertainty space. However, under 

multiple uncertainties, robustness and stability cannot be guaranteed with a global polynomial 

basis, as demonstrated in Shaw et al. [30]. In this study, multidimensional Haar wavelet basis 

functions are selected to provide a localised, piecewise-constant decomposition spanning the 

space of multiple uncertainty dimensions. Haar wavelet basis functions have already been 

adopted for hyperbolic conservation laws without source terms [32, 34] and hydrodynamic 

models with friction [30], in favour of their reliable capture of probability distributions 

functions with discontinuities. Such distributions arise at points where the flow is highly 

nonlinear [30, 31], and are particularly expected at uncertain wet-dry fronts where there is a 

high probability of zero depth and low probabilities of positive depths. The construction of 

the Haar wavelet basis functions is first presented for a single uncertainty dimension, and 

then extended into multiple uncertainty dimensions. 
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Haar wavelets are multiscale, recursively nested and overlapping basis functions that are 

constructed by recursive, two-way subdivision of the uncertainty space, up to a maximum 

refinement level L  determined by the user. For a single source of uncertainty (i.e., D  = 1) 

and assuming a maximum refinement level L , the one-dimensional uncertainty space is 

spanned by 2L  basis functions that are organised recursively into a tree structure. A 

probability distribution defined on the uncertainty space can be represented by assembling all 

basis functions to form a piecewise-constant approximation composed of all the 

locally-constant stochastic elements. At the root of tree is the so-called father function ( )   

1 if 1 1
( )

0 otherwise


 

  
 


                          (2.2) 

At each refinement level 0, , 1m L  , a series of Haar wavelet basis functions 

( ) ( )m

j   is defined, where j  is the position of the wavelet in the uncertainty space at 

refinement level m . The Haar wavelet basis functions ( ) ( )m

j   are defined as  

( ) 2( ) 2 (2 ( 1) 2 1)m m m

j j                           (2.3) 

where 0, , 1m L   and 0, ,2 1mj  . Eq. (2.3) is a translation and dilation of the 

so-called mother function ( )  , which is given by 

1 if 1 0

( ) 1 if 0 1

0 otherwise



  

  


   



                        (2.4) 

The basis functions  
{0, , 2 1}

( ) Lk k


 
  can be therefore defined by setting the father 

function ( )   as the zeroth basis function 0( )  and the Haar wavelet functions given by 

Eq. (2.3) as the subsequent basis functions with index k   0, 
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( )

( ) if 0
( )

( ) if 0mk

j

k

k

 


 


  


                          (2.5) 

When the basis function index k   0, it can be determined through one-to-one mapping with 

a refinement level m  and position j  

( , ) 2mk m j j                         \\      (2.6) 

which can be inverted to determine m  and j  from k , i.e., 
2Int[log ( )]m k  and 

2mj k  . A set of univariate basis functions  ( )k   is an orthogonal system, i.e.,  

( ) ( ) 2j l jld                           (2.7) 

Here jl  is the Kronecker symbol. Equipped with these notations, any random variable can 

be expressed as  

2 1

0

ˆ( , , )= ( , ) ( )

L

k k

k

A x t A x t




                         (2.8) 

For multiple sources of uncertainty (i.e., D  > 1), the uncertainty dimensions can be 

spanned by a D dimensional tensor product of the 1D basis functions with 2DL  stochastic 

modes, or by a D dimensional truncated basis with a substantially reduced number of 

stochastic modes. To reduce the computational cost, basis truncation is commonly 

recommended for hyperbolic conservation laws without source terms [32, 41, 42]. However, 

it is demonstrated in Ref [30] that such truncation cannot preserve robustness when applied to 

probabilistic hydrodynamic model under multiple sources of uncertainty. Therefore, the 

tensor product basis is adopted in the present study. Accordingly, by taking a tensor product 

of the 1D Haar wavelet basis functions, the D  dimensional tensor product basis is 

constructed as  , i.e.,  
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 
1 1{0, , 2 1}

( ) ( ), , ( )L D
Dk k D 

 
  k k

                  (2.9) 

It is easy to proof that a set of D variate basis functions  
{0, , 2 1}

( ) L D 
k k

  is also an 

orthogonal system, i.e.,  

( ) ( ) 2Dd    j l jl                          (2.10) 

Therefore, ( , , )A x t   can be written as  

{0, , 2 1}

ˆ( , , )= ( , ) ( )
L D

A x t A x t
 

 k k

k

                        (2.11) 

In general, the tensor product basis can easily transfer the robustness measures from the 

deterministic context into the D dimensional uncertainty space. Due to the locality of Haar 

wavelet functions, the uncertainty dimensions become decoupled from the physical 

dimensions. Therefore, it ensures that stochastic discretisation errors as governed solely by 

the choice of L , do not interfere with physical discretisation errors, which are solely 

determined by the deterministic formulation. Such decoupling means that nonlinear 

operations within the stochastic finite volume operators are calculated exactly over each 

locally constant stochastic element. It is also noted that under multiple sources of uncertainty, 

the number of basis functions required to span multidimensional random space can quickly 

grow, exponentially increasing computational and storage costs so that they spiral out of 

control – the so-called “curse-of-dimensionality” [20]. 

 

3. SHSM model with multiple sources of uncertainty   

3.1. Deterministic SHSM model 
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Li et al. [16] recently proposes a well-balanced, operator-splitting-based model of 

one-dimensional (1D) shallow water hydro-sediment-morphodynamic equations, which can 

be expressed in a standard, well-structured conservative form as follows  

I ( )
0

t x

 
 

 

U F U
                           (3.1) 

and 

II ( )
b f

t x

 
  

 

U F U
S S                        (3.2) 

in which 

s

q hu

h hc

    
   

 
   
      

U , 
I 2

hu

a

huc



 
 


 
  

F , 
II 2 2 2

0

0.5 ( 2 )

0

bhu g z a  

 
 

   
 
  

F       (3.3a, 3.3b, 3.3c) 

0

0

b
b

z
g

x


 
 


  

 
 
 

S , 

0

( )f N

E D

 
 


 
  

S U                        (3.3d, 3.3e) 

2

0
( ) ( )( )

( )
2 (1 )

s fb
gh E D uc

N
x p

   

  

  
   

 
U                  (3.3f) 

and  

1

bz E D

t p

 
 

 
                                (3.4) 

where U  represents the vector of conservative dependent variables; F  is the vector of flux 

variables; 
bS  is the vector of bed gradient terms; fS  is the vector of other terms including 

friction and effects from mass exchange with the bed; t  is time, x  is streamwise 

coordinate; g  is gravitational acceleration; h  is the depth of the water-sediment mixture, 
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bz  is the bed elevation above the fixed horizontal datum, 
bh z    is the free-surface 

elevation above the fixed horizontal datum; u  is the depth-averaged velocity of the 

water-sediment mixture in the streamwise ( x  ) direction; c  is the depth-averaged 

volumetric sediment concentration; q hu  is the discharge; 
sh hc  is the equivalent 

thickness of the sediment phase; 
s sq h u  is the sediment discharge; 

f  and 
s  are the 

pure densities of the water and sediment phases; (1 )s fc c      is the density of the 

water-sediment mixture; 0 (1 )s fp p      is the density of the bed material; p  is the 

bed sediment porosity, and thus 1 p  is the volumetric sediment concentration of the 

stationary bed; b  is the bottom shear stress for the water-sediment mixture; and E  and 

D  are the size-specific sediment entrainment and deposition fluxes.  

The first subsystem (3.1) is a linear hyperbolic system whose Jacobian has three distinct 

real eigenvalues 1, 2 a    and 
3 u  , where the parameter a  > 0 is chosen to satisfy the 

following sub-characteristic condition: 

a u gh u gh a                           (3.5) 

When the term fS  is not present on the right-hand side, the second system (3.2) is 

essentially a scalar Burgers equation for q  with variable coefficient and bed gradient term, 

given that   and 
sh  remain constant in time in Eq. (3.2). Furthermore, the value of a  is 

set larger than the characteristic speed related to the second equation of the second subsystem 

(3.2), such that  

 sup max( , 2 )a u gh u                     (3.6) 

Under this sub-characteristic condition, it is straightforward to check that each subsystem is 
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strictly hyperbolic. Therefore, after applying the Haar wavelet approximation and stochastic 

Galerkin projection, each resulting subsystem remains hyperbolic.  

Li et al. [16] has provided a detailed description of the model equations, the model 

closures and the numerical algorithm. Briefly, the model has been constructed according to 

continuum mechanics principles, and includes mass and momentum conservation equations 

for the water-sediment mixture and separate mass conservation equations for sediment and 

bed material. To close the governing equations, relationships must be introduced to determine 

shear stresses and sediment exchange fluxes. The bottom shear stress is determined by the 

Manning resistance relationship. Estimation of sediment exchange with the bed is one of the 

key components of computational models of shallow water-sediment flows. Here, we follow 

the conventional practice in fluvial hydraulics [1] to estimate the sediment exchange with the 

bed. In short, two distinct primary mechanisms promote sediment exchange between the flow 

and the bed: bed sediment entrainment due to turbulence and sediment deposition by 

gravitational action. Although all the empirical relationships presented above are not new at 

all in the general field of shallow water hydro-sediment-morphodynamics, empiricism and 

uncertainty are inevitably introduced due to the incomplete understanding of the underlying 

physics. The model closures are described in detail Text S1 in Supplementary materials. The 

governing equations are numerically solved using an adapted version of a well-balanced 

numerical algorithm presented in Qian et al. [4]. Briefly, as bed deformation is entirely 

determined by local entrainment and deposition fluxes under the non-capacity framework for 

sediment transport, Eq. (3.4) is separated from the remaining equations and can be readily 

solved. Within the framework of Slope LImiter Centred (SLIC) scheme [43], a surface 
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gradient method (SGM) is incorporated to achieve a well-balanced solution to the governing 

equations, so that the exact solution for stationary flows can be reproduced. An explicit finite 

volume discretization [43] along with a second-order Runge-Kutta (RK) method for the 

source terms is adopted where the discrete vector 
iU  and bed elevation 

,b iz  at a spatial 

node i  and a time level n  are presented as piecewise-constant fields over a uniform 1D 

mesh with spatial step of x .  

To verify the operator-splitting approach, we first undertake a deterministic numerical 

test concerning a dam break flow over a fixed bed, which is numerically designed by 

Chertock et al. [37]. The computational domain is [-1 m, 1 m], and the bed profile includes a 

hump centred at x   0 m, which is defined as 

0.125(cos(5 ) 1) 0.1 0.2 0.2
( )

0.1 otherwise
b

x x
z x

     
 


              (3.7) 

Following Chertock et al. [37], the gravitational constant g   1 and the initial water surface 

is set as 

0

1.0 0.0
( )

0.5 0.0
t

x
x

x
 


 


                          (3.8) 

At the upstream ( x   -1 m) and downstream ( x   1 m) boundaries, a non-reflecting 

transmissive condition [43] was imposed with the values of all the primitive variables at the 

outlet nodes set equal to those at internal nodes closest to the boundary. Fig. 1 displays the 

computed results of water surface (a) and discharge (b) at t   0.8 s using splitting and 

non-splitting methods, which show good agreements between the two numerical predictions. 

This test demonstrates that the operator-splitting approach results in a good shock capturing 
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scheme as compared with its non-splitting counterpart in the deterministic setting, enhancing 

the confidence for establishing the stochastic problem.  

 

Fig.1. Idealized dam break over a fixed bed: model predictions of water surface and 

discharge at t   0.8 s using operator-splitting (solid lines) and non-splitting methods 

(dashed lines).  

 

3.2. Stochastic Galerkin reformulation of the deterministic model 

Next, we conduct the stochastic Galerkin reformulation of the governing equation system. 

Stochastic Galerkin reUsing the Haar wavelet expansion, the vector of conserved variables in 

the nonlinear SHSM equations is approximated as follows 

{0, , 2 1}

ˆ( , , )= ( , ) ( )
L D

x t x t
 

 k k

k

U U                     (3.9) 

Substituting Eq. (3.9) into discretization of equation system Eq. (3.1) and Eq. (3.2) and bed 

deformation equation Eq. (3.4) and then conducting a stochastic Galerkin projection yields 

the following equations for the Haar wavelet expansion coefficients.  

* I I

, , 1 2 1 2
ˆ ˆ ( ) ( )n

i i i i

t

x
 


     
 

k k k kU U F F                 (3.10) 

† II II

, , 1 2 1 2 ,
ˆ ˆ ( ) ( ) ( )i i i i b i

t
t

x



 


       
 

k k k k kU U F F S             (3.11a) 



17 

 

1 †

, ,
ˆ ˆ ( )n RK

i i ft    k k kU U S                        (3.11b) 

1

, , , ,

( )
ˆ ˆ ( )

1

RK
n n

b i b i

E D
z z t

p
 

  


k k k
                     (3.12) 

where  is the so-called expectation operator, defined as the expected value over the 

uncertainty space; t  is the time step; x  is the spatial step; subscript i  denotes the 

spatial node index; superscript n  denotes the time step index; superscript * indicates the 

state after calculating the variables from Eq. (3.10), superscript †  denotes the state after Eq. 

(3.11a); I II

1 2

or

iF  and I II

1 2

or

iF  represent the inter-cell numerical fluxes, and they are evaluated 

using the well-balanced SGM version of the finite volume SLIC scheme, which is also 

capable of preserving stochastic steady static state [16]. The bed slope source term 
biS  is 

discretized with a centered difference scheme [4], which is well-balanced with flux gradients.  

The source term fS  is determined using the second-order RK method, while the bed 

deformation is updated by the discretization of Eq. (3.12) with sediment exchange estimated 

by the RK method. To solve the SHSM model with multiple uncertainties, an alternative 

method is to use stochastic collocation [22]: one can apply a deterministic scheme to each 

sample point in random space, solve them separately to obtain the solution ensemble, and 

then construct an approximation, e.g., a gPC approximation, to the stochastic solution in the 

random space. On the other hand, the stochastic Galerkin method is able to provide better 

accuracy per stochastic degree of freedom, and with suitably designed solver, is quite 

competitive with collocation and the costs can be lower for high dimensional random inputs.  
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As Haar wavelet basis functions are used, the expectation operator can be calculated by a 

compatible Haar wavelet quadrature rule. The 2DL  quadrature points 
p  are positioned at 

the centres of the locally constant stochastic elements: 

{1}
2

D
   p p


  , p P                     (3.13) 

where 2 2L D   , and {0,…,2 -1}L DP = , which is the index set of stochastic elements. 

The quadrature weight 2 2D DL   is the size of a stochastic element, and the quadrature 

rule is defined as  

[ 1,1]

1 1ˆ ( ) ( ) ( ) ( ) ( )
2 2




     k k k p k p

p PD

D D
A A A d A             (3.14) 

Eq. (3.14) can be universally used to evaluate the k th stochastic mode of any quantity 

( )A  . For example, the expectation of the numerical flux I  II 

1 2 ( )or

i kF   appearing in Eq. 

(3.10) and Eq. (3.11) can be calculated using the Haar wavelet quadrature rule  

I  II I  II

1 2 1 2 1 2 1 2

1
( ) ( ( ), ( )) ( )

2

or or L R

i i i iD
   



  k p p k p

p P

F F U U              (3.15) 

where 1 2

L

iU  and 1 2

R

iU  are the modified inter-cell variable vectors, which are designed to 

preserve well-balanced property. The resulting stochastic SHSM model automatically 

satisfies the well-balanced property as the expectations of the numerical fluxes and the bed 

source term are all evaluated by Haar wavelet quadrature rule. 

 

4. Numerical Tests 

Three probabilistic numerical tests are conducted to verify the present stochastic SHSM 
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model under multiple joint uncertainties. The first two are designed to match established 

laboratory-scale experiments concerning flow-sediment-bed evolutions driven by a sudden 

dam break (Test 1) [38] and a landslide dam failure (Test 2) [39]. Indeed, these two 

experiments have been previously devised to verify the predecessor of the present model [16], 

which was limited to a single source of uncertainty. The last test is a large-scale one 

concerning the rapid and intense flow-sediment-bed evolution due to flash flood, which was 

observed in ephemeral river Nahal Yatir, Israel (Test 3) [40]. 

A fixed uniform mesh is adopted, and the spatial step is sufficiently fine to ensure mesh 

independence of the solution, i.e., essentially equivalent solutions are obtained with an even 

finer mesh. The spatial step x  is set to be 0.01 m for Tests 1 and 2, while it is 1 m for Test 

3. The Courant number Cr  is 0.4. Bed porosity p = 0.4 is adopted for all the tests. It is 

assumed any random variable d
 follows a uniform probability distribution. Furthermore, 

the mean solution ( )UE  is simply given by the zeroth-order coefficient 0Û  and the 

standard deviation by 2 2

1

ˆ( )
K




  k k

k

U U . Also, any physical variable U  can result in a 

total of 2DL  model realisations, each of which is calculated by Eq. (2.11) along with the 

corresponding quadrature point 
p  given by Eq. (3.13).  

 

4.1. Test 1: Flow-sediment-bed evolution due to instant dam break  

The first test concerns flow-sediment-bed evolution due to an abrupt and full dam break. 

In a glass-walled flume of dimensions 6 m length × 0.25 m width × 0.7 m height, a series of 

experiments were conducted [38]. During the experiments, the dam break was generated by 
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the rapid downward removal of a thin gate, which represented an idealized dam and was 

placed at the mid-section of the flume. Here, we consider one of the experiments, where the 

bed was initially horizontal and composed of non-cohesive sediment saturated with water, 

extending both sides of the gate. The initial water depth was 
0h 35 cm upstream of the dam, 

and the bed was dry downstream of the dam. The bed material comprised PVC pellets of 

diameter 3.92 mm and the density 1580 kg/m3. Numerical modelling was performed until the 

forward and backward propagating waves reached the downstream and upstream boundaries; 

thus, the boundary conditions were merely kept at the initial static state. 

This test is brought into a probabilistic setting by specifying joint uncertainties in the 

Manning roughness parameter n  and the modification coefficient   for calculating 

sediment transport rate at capacity regime 
bq  [see Eq. 7(b) in Li et al. [16]]. As large 

uncertainties are associated with the Manning roughness parameter and the modification 

coefficient [16], both parameters are therefore assumed to have 50% uncertainty following Li 

et al. [16]. The Manning roughness parameter has a mean value of n   0.026 m-1/3 s [44], 

and the mean value of modification   is calibrated to be 3.0 [3], respectively leading to 

1 1( ) 0.026 0.013n     (m-1/3 s), and 
2 2( ) 3.0 1.5    .  

This test example is first employed to examine the convergence of the proposed 

stochastic model under different refinement level L . With respect to the dam-break flow 

over an erodible bed, high-order convergence rate is not expected due to the existence of 

shock waves and wet-dry interfaces. To quantify the error of the predicted mean solution as 

compared with measured data, the non-dimensional discrepancy is defined based on the 

1L -norm 
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1 1

1

( )

( )

N

i i

i

N

i

i

abs f f

L f

f











                           (4.1) 

where the symbol f  represents a physical variable such as water surface elevation and bed 

deformation thickness; N  is the number of measured data; f  denotes the predicted mean 

solution, whereas f  represents the measured data. The obtained results are listed in Table 1 

along with their corresponding convergence rates. It reveals that increasing the refinement 

level results in a decay of 1L - norm values for the mean water surface elevation   and the 

mean bed deformation thickness bz . As can be seen from the convergence rates presented 

in Table 1, when the refinement level L   3, the convergence rate is around 1, indicating 

that a first-order accuracy is achieved in terms of the considered error norms. Henceforth, the 

present stochastic model is configured with refinement level L   3. Indeed, this is also the 

minimum levels of refinement per uncertainty dimension to reliably capture complex 

probability distributions as required by the Haar wavelet basis function [30]. 

 

Table 1 1L  norms and convergence rates of model predictions for Test 1 using different 

refinement level 

Refinement 

Level 

1( )L  -norm Convergence rate 
1( )bL z -norm Convergence rate 

t  0.25 s 

1 1.03×10-1 – 1.05×10-1 – 

2 6.26×10-2 0.71 6.24×10-2 0.75 

3 2.65×10-2 0.89 2.76×10-2 0.91 

4 1.32×10-2 0.96 1.33×10-2 0.94 

5 6.12×10-3 0.98 6.25×10-3 1.01 

 t  0.5 s 

1 1.15×10-1 – 9.82×10-2 – 

2 6.93×10-2 0.72 5.89×10-2 0.74 

3 2.82×10-2 0.91 2.72×10-2 0.93 
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4 1.29×10-2 0.95 1.26×10-2 0.94 

5 5.96×10-3 1.01 5.46×10-3 1.02 

 t  1.5 s 

1 1.12×10-1 – 9.87×10-2 – 

2 6.03×10-2 0.89 5.47×10-2 0.85 

3 2.97×10-2 0.95 2.73×10-2 0.93 

4 1.36×10-2 1.01 1.28×10-2 0.98 

5 6.23×10-3 1.02 5.75×10-3 1.03 

 

With two uncertainty dimensions ( D   2) and refinement level L   3, the present 

model results in 8×8= 64 stochastic modes and a probabilistic solution with 64 model 

realisations. Fig. 2 shows the probabilistic predictions of water surface and bed profiles under 

joint uncertainties in the Manning’s roughness parameter 
1( )n   and modification coefficient 

2( )  , along with corresponding measurements obtained from Spinewine [38]. As can be 

seen from Fig. 2, the measured data of both water surfaces and bed elevations almost lie 

within the range of the probabilistic predictions. By contrast, when the model is limited to a 

single source of uncertainty, some discrepancies can be identified between measured and 

predicted water level profiles irrespective of which uncertainty is considered [16]. In light of 

this point, the present model that incorporates multiple uncertainties is superior to its 

predecessor that is restricted to a single source of uncertainty. As shown in Fig. 2, the 

dam-break wave propagation speed as represented by water surface profiles is mainly 

affected by the Manning’s roughness parameter, whilst the bed deformation is jointly affected 

by the Manning roughness parameter and the modification coefficient. This finding is 

consistent with that from Li et al. [16].  
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Fig. 2. Sudden dam break over an erodible bed: measurements (solid circles) from Spinewine 

[38] and probabilistic predictions of water surface and bed profiles (dashed lines) obtained 

for joint random Manning roughness parameter 
1( )n   and modification coefficient 

2( )  .  

 

Fig. 3 shows the spatial-temporal evolution of the standard deviations of water surface, 

bed elevation, flow velocity, and sediment concentration for joint random Manning’s 

roughness parameter 
1( )n   and modification coefficient 

2( )  . Table 2 summarizes the 

maximum values of the standard deviations of these physical variables. Correspondingly, 

their counterparts under a specific single source of uncertainty are also included. As seen 

from Table 2, all the physical variables under multiple uncertainties exhibit larger maximum 

values of standard deviations than those under a single uncertainty. Furthermore, by 

comparing Fig. 3 to the Fig. 4 in Li et al. [16], the standard deviations of the water surface 

( )   and sediment concentration ( )c  under multiple uncertainties are found to exhibit 
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different behaviours from those under a single uncertainty. Specifically, under the joint effect 

of random 
1( )n   and 

2( )  , ( )   presents a major peak near the front of dam-break 

wave, unlike its counterpart under a single uncertainty that peaks close to the ‘dam’ site and 

then gradually decreases in the stream-wise direction. Moreover, ( )c  under joint 

uncertainties develops a multi-peaked structure with one major peak placed approximately at 

the centre of the wave and several minor peaks located along the stream-wise direction. By 

contrast, ( )c  under a single uncertainty presents a double-peaked behaviour with one peak 

located at the wave front and the other approximately at the centre of wave.  

 

 

Fig. 3. Sudden dam-break: spatial-temporal evolutions of standard deviations of (a) water 

surface, (b) bed elevation, (c) flow velocity, and (d) sediment concentration for joint random 

Manning’s roughness parameter 1( )n   and modification coefficient 2( )  .  
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Table 2 Summary of maximum standard deviations of all the physical variables (Test 1) 

Results 

Multiple sources of uncertainty in  

1( )n   and 
2( )    

A single source of uncertainty [16]  

( )n   ( )   

( )   (m) 0.059 0.023 0.010 

( )bz  (m) 0.046 0.041 0.014 

( )u  (m/s) 0.547 0.462 0.108 

( )c  0.409 0.289 0.083 

 

4.2. Test 2: Flow-sediment-bed evolution due to landslide dam failure  

Next, we re-explore flow-sediment-bed evolution due to landslide dam failure, with 

probabilistic predictions compared with measured data from one of a series of flume 

experiments [39]. The experiments were carried out in a flume with dimensions 80 m length 

× 1.2 m width × 0.8 m height. The flume was made of glass with a fixed bed slope of 0.001, 

and the Manning’s bed roughness coefficient n  was approximately 0.012 m-1/3 s. The 

experimental setup is displayed in Fig. 4. Twelve automatic water-level probes measured the 

stage time histories at different locations along the centre line of the flume. Stations CS1 to 

CS5 are upstream of the dam, whereas stations CS 6 to CS 12 are downstream. In the 

experiments, with an inflow discharge released from the flume inlet, the water level upstream 

of the dam gradually increased, and once the flow overtopped the dam crest, the dam failure 

occurred through erosion. Subsequently, flow upstream of the dam quickly receded along 

with dam failure. By contrast, three stages were witnessed in downstream flow evolution: 

initial rising, subsequently gradual recession and final stabilization. Following Li et al. [16], 
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the case we revisited here (i.e., F- Case 11 considered in Cao et al. [39]) concerns a landslide 

dam with no initial breach, which is composed of non-cohesive uniform sediment of median 

diameter 0.8 mm and specific gravity 1.65. The initial upstream and downstream slopes of 

the dam were 1/2 and 1/3, and the initial static water depths immediately upstream and 

downstream of the dam were 0.054 m and 0.048m. The mean value of inlet flow discharge 

was 0.042 m3/s. Therefore, at the inlet boundary of numerical model, the water depth and 

velocity were determined by the method of characteristics as the flow discharge was specified. 

A 0.15 m-high weir was placed at the outlet of the flume and controlled the downstream 

water level to keep it remain at the initial depth. It was observed that a hydraulic drop 

occurred downstream of the weir during the course of the experiment, so the flow upstream 

of the weir was not affected by the outflow. Hence, a non-reflecting transmissive condition 

[43] was imposed at the downstream boundary (80 m).  

 

 

Fig. 4. Experimental setup for landslide dam failure [figure adapted from Cao et al. [39]]. 

 

Here, we investigate the impact of three joint uncertainties in the Manning’s roughness 
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parameter, the modification coefficient, and the inflow discharge, the last of which is also 

subject to a high level of uncertainty due to inevitable measurement error [45]. The steady 

inflow discharge is perturbed by 15% uncertainty, a suitable range for the modelling of fluvial 

flows [45]. Following Test 1, both the Manning roughness parameter and the modification 

coefficient are assumed to have 50% uncertainty. Therefore, 
1 1( ) 0.042 0.0063inq     

(m3/s), 
2 2( ) 0.012 0.006n     (m-1/3s), and 

3 3( ) 6.0 3.0    . With three uncertainties 

( D   3) and maximum refinement level L   3, the model prediction therefore comprises 

512 (= 8×8×8) stochastic modes and a solution of 512 model realisations.  

Fig. 5 shows the probabilistic stage time histories predicted by the stochastic SHSM 

model considering the joint effect of random inflow discharge 
1( )inq  , Manning roughness 

parameter 
2( )n  , and modification coefficient 

3( )  . Corresponding measurements 

obtained by Cao et al. [39] at four selected locations along the channel are included for 

comparison. Stations CS 1, CS 5, CS 8 and CS 12 are located 19 m, 40 m, 54 m and 73.5 m 

downstream of the inlet (Fig. 3). As seen from Fig. 5, all the measured data have been fully 

bounded by the probabilistic predictions, showing the satisfactory performance of the 

proposed new model.  
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Fig. 5. Landslide dam failure: measurements (open circles) for F-Case 11 from Cao et al. [39] 

and probabilistic predictions (dashed lines) of stage time histories at 4 gauge points along the 

flume for three joint uncertainties in inflow discharge 
1( )inq  , Manning roughness parameter 

2( )n  , and modification coefficient 
3( )  . 

 

The probabilistic predictions of water surface and bed profiles under random inflow 

discharge, Manning roughness parameter and modification coefficient, along with measured 

data for water surface [39], are displayed in Fig. 6. At t   410 s (Fig. 6a), the water just 

overtops the dam and begins to erode the toe. The output uncertainty in the water surface 

upstream of the dam is relatively larger than its downstream counterpart. Meanwhile, the 

output uncertainty in the bed elevation exhibits a slight increase at the toe of dam. At t   

430 s, the overtopping flow further erodes the downstream surface of the dam, with more 
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erosion observed at t   450 s. The uncertainties in the water surface and bed elevation 

exhibit appreciable increase across the whole field. With time going on, the dam failure 

process gradually decreases. By t   600 s, the output uncertainty in the water surface 

downstream of the dam has decreased a lot, while its upstream counterpart still persists with a 

significant magnitude.  

 

 

Fig. 6. Landslide dam failure: measured water surface (open circles) for F-Case 11 from Cao 

et al. [39] and probabilistic predictions of water surface, and bed profiles (dashed lines) along 

a channel for three joint uncertainties in inflow discharge 1( )inq  , Manning roughness 

parameter 2( )n  , and modification coefficient 3( )  . 

 

Fig. 7 shows the spatial-temporal evolution of the standard deviations of water surface, 
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bed elevation, flow velocity and sediment concentration under three joint uncertainties in 

inflow discharge 
1( )inq  , Manning roughness parameter 

2( )n  , and modification coefficient 

3( )  . Table 3 list the maximum standard deviations of these physical variables, with their 

counterparts under single source of uncertainty included. Similar to Test 1, the maximum 

values of standard deviations of all the physical variables under multiple uncertainties are 

appreciably higher than those under a certain single source of uncertainty irrespective of 

which uncertainty is considered. Before the water flow overtops the dam, the standard 

deviations of water surface ( )   and flow velocity ( )u  only increase upstream of the 

dam site due to the joint effect of random inflow discharge and Manning roughness parameter. 

Meanwhile, the standard deviations of the bed elevation ( )bz  and sediment concentration 

( )c  remain zero. After the water flows over the dam crest and triggers the dam breach, the 

standard deviations of all the physical variables accumulate rapidly with time and extend 

further toward the outlet. Subsequently, as the dam failure process decreases, the standard 

deviations exhibit a gradual shrink.  
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Fig. 7. Landslide dam failure: spatial-temporal evolutions of standard deviations of (a) water 

surface, (b) bed elevation, (c) flow velocity and (d) sediment concentration for three joint 

uncertainties in inflow discharge 
1( )inq  , Manning roughness parameter 

2( )n  , and 

modification coefficient 
3( )  . 

 

Table 3 Summary of maximum standard deviations of all the physical variables (Test 2) 

Results 

Multiple sources of uncertainty in  

1( )inq  , 
2( )n   and 

3( )  .  

A single source of uncertainty [16] 

( )inq   ( )n   ( )   

( )   (m) 0.194 0.148 0.068 0.005 

( )bz  (m) 0.302 0.261 0.118 0.002 

( )u  (m/s) 1.844 1.315 0.924 0.124 

( )c  0.497 0.455 0.423 0.065 

 

4.3. Test 3: Flow-sediment-bed evolution due to flash flood 
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Here, we examine a large-scale test concerning flow-sediment-bed evolution induced by 

flash flood [40], as opposed to the above laboratory-scale cases. In the 1990-1991 flood 

season, the rapid flow-sediment-bed evolutions in an ephemeral river Nahal Yatir in Israel 

were observed during five flash floods [40], with recorded maximum transport rate and unit 

flow discharge being respectively 7.05 kg/m/s and 1.43 m2/s. The observation time varied 

from about 10 minutes to 90 minutes for each flood, which only covered part of the total 

duration of the hydrograph. In general, the typical total duration of a flash flood hydrograph, 

including both rising and recession phases, should range from some tens of minutes to a few 

hours. Given the limited information on these flash flood events [40], it is assumed that the 

flash flood hydrograph was triangular and symmetrical in shape, featuring a rising and 

recession phase of half an hour respectively. Also, the peak flow discharge pq  (= 1.5 m2/s) 

was presumed to be a bit higher than the recorded maximum flow discharge (1.43 m2/s), as 

field observation might miss the real peak flow discharge due to measurement error [46]. 

Moreover, an initial dry bed with a uniform slope of 0.009 is considered. The bed materials 

comprised non-cohesive uniform sediment of median diameter 6 mm and specific gravity 

1.65. The mean value of Manning’s roughness parameter is 0.025 m-1/3s. The computational 

reach is set to be long enough to ensure that the forward wave does not reach the downstream 

boundary within the time of computation, thus the downstream boundary condition is not 

needed. At the inlet boundary of numerical model, the water depth and velocity were 

determined by the method of characteristics as the inflow hydrograph was specified.  

This large-scale test is extended into a probabilistic setting to investigate the 

flow-sediment-bed response to two joint uncertainties, which are associated with an error 
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range for the inflow discharge and a range of choices for the Manning’s roughness parameter. 

The unsteady inflow discharge 
1( )inq   has a 15% uncertainty, so that 

1( )inq  1.5 ± 0.225 

m2/s. The Manning’s roughness parameter is perturbed by 50% uncertainty, leading to 

2( )n  = 0.025 ± 0.0125 m-1/3s. Therefore, the probabilistic model is constructed with two 

uncertainty dimensions ( D   2) and maximum refinement level L   3, resulting in 64 (= 8

×8) stochastic modes and corresponding 64 model realisations.  

Fig. 8 displays the probabilistic predictions of sediment transport rate against Shields 

parameter   considering the joint effect of two uncertainties in inflow discharge and 

Manning’s roughness parameter. Corresponding observed data are also included for 

comparison. As seen from Fig. 8, the computed transport rates fully bound all the measured 

data. Given the range of sediment transport rates of 10-1~10 kg/m/s, the corresponding range 

of Shields parameter   is about 10-1~4×10-1. In principle, this observation is rather 

consistent with the field data observed from Nahal Yatir [40].  
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Fig. 8. Flash flood: measurements (open circles) and probabilistic predictions (dashed lines) 

of sediment transport rate against shields parameter at selected cross-sections for two joint 

uncertainties in inflow discharge 
1( )inq   and Manning roughness parameter 

2( )n  .  

 

Fig. 9 shows the probabilistic flow discharge and sediment transport rate time histories at 

four cross-sections for joint uncertainties in inflow discharge and Manning’s roughness 

parameter, and Fig. 10 presents the probabilistic predictions of stage and bed elevation time 

histories. In general, the peak flow discharges at the cross-sections exhibit appreciably higher 

values than those at the inlet boundary. This is mainly due to the contribution of the sediment 

obtained from the rapid bed scour near the inlet boundary, as shown in Fig. 10 (a and b). In 

particular, the bed scour near the inlet can reach as high as about 0.7 m within 60 mins at 
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x   5 m under a high inflow discharge and a large Manning’s roughness parameter. 

Correspondingly, the sediment transport rate experiences a rapid increase in a very short 

distance. Specifically, the peak value of sediment transport rate can increase from 5 kg/m/s at 

x   10 m (Fig. 9 b1) to about 22 kg/m/s at x   100 m (Fig. 9 b2). Furthermore, such a high 

sediment transport rate can be sustained for a rather long distance in the downstream 

direction (Figs. 9 b3 and b4). Also, flow with such a high sediment load only causes marginal 

erosion in the downstream (Figs. 10 c and d). When the inflow discharge gradually decreases 

to zero (i.e., t   30 min), the flow discharge, sediment transport rate and stage also reduce. 

Accordingly, the output uncertainties in the flow discharge, sediment transport and stage 

exhibit rapid increase along with the increase of inflow discharge and then gradually convert 

to zero as the inflow discharge reduces to zero. By contrast, the output uncertainty in the bed 

elevation only develops near the inlet boundary where rapid bed scour occurs. These finding 

are further confirmed by Fig. 11, where the spatial-temporal evolutions of standard deviations 

of water surface ( )  , bed elevation ( )bz , flow velocity ( )u  and sediment 

concentration ( )c  are presented. Specifically, during the first rising phase of inflow 

hydrograph (i.e., t   30 min), the standard deviations of all these physical variables, except 

the bed elevation, increase rapidly with time and extend further downstream. By contrast, 

( )bz  only accumulate in the area close to the inlet boundary. Subsequently, ( )  , ( )u  

and ( )c  experience a gradual shrink during the second recession phase of inflow 

hydrograph (i.e., t   30 min), whereas ( )bz  exhibit a slight increase near the inlet 

boundary and then remain almost unchanged as no further erosion occurs.  
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Fig. 9. Flash flood: probabilistic predictions of (a1-a4) discharge (black dashed lines) and 

(b1-b4) sediment transport rate (blue dashed lines) time histories at four cross-sections for 

two joint uncertainties in inflow discharge 1( )inq   and Manning roughness parameter 

2( )n  .  
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Fig. 10. Flash flood: probabilistic predictions of stage (black dashed lines) and bed elevation 

(blue dashed lines) time histories at four cross-sections for two joint uncertainties in inflow 

discharge 
1( )inq   and Manning roughness parameter 

2( )n  .  
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Fig. 11. Flash flood: spatial-temporal evolutions of standard deviations of (a) water surface, 

(b) bed elevation, (c) flow velocity and (d) sediment concentration for two joint uncertainties 

in inflow discharge 
1( )inq   and Manning roughness parameter 

2( )n  . 

 

5. Conclusions  

A new stochastic Galerkin SHSM model using Haar wavelet basis functions and an 

operator-splitting-based method is proposed for quantifying multiple joint uncertainties in 

modelling shallow water-sediment flows over erodible beds. With joint uncertainties 

introduced in initial and boundary conditions, a series of benchmark numerical tests are 

extended to probabilistic settings to verify the model for laboratory-scale flow-sediment-bed 

evolutions driven by a sudden dam break and by a landslide dam failure and large-scale rapid 

flow-sediment-bed evolution triggered by a flash flood. The model not only reasonably 

captures highly nonlinear flow-sediment-bed evolutions under multiple joint uncertainties, 
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but also yields possible realisation and standard deviation of the solutions.  

The present work features an advance on modelling probabilistic shallow water-sediment 

flows over erodible beds. Extensions to two spatial dimensions and non-uniform sediments 

are essential for wider applications to natural flows. The excessive computational overheads 

due to “curse-of-dimensionality” when more uncertainty dimensions are considered can be 

alleviated by implementation of unstructured grids, parallel architecture and adaptive 

local-time-step techniques. These topics are reserved for future study.  
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List of figure captions  

Fig.1. Idealized dam break over a fixed bed: model predictions of water surface and 

discharge at t   0.8 s using operator-splitting (solid lines) and non-splitting methods 

(dashed lines).  

 

Fig. 2. Sudden dam break over an erodible bed: measurements (solid circles) from Spinewine 

[38] and probabilistic predictions of water surface and bed profiles (dashed lines) obtained 

for joint random Manning roughness parameter 
1( )n   and modification coefficient 

2( )  .  

 

Fig. 3. Sudden dam-break: Spatial-temporal evolutions of standard deviations of (a) water 

surface, (b) bed elevation, (c) flow velocity, and (d) sediment concentration for joint random 

Manning’s roughness parameter 
1( )n   and modification coefficient 

2( )  .  

 

Fig. 4. Experimental setup for landslide dam failure [figure adapted from Cao et al. [39]]. 

 

Fig. 5. Landslide dam failure: measurements (open circles) for F-Case 11 from Cao et al. [39] 

and probabilistic predictions (dashed lines) of stage time histories at 4 gauge points along the 

flume for three joint uncertainties in inflow discharge 
1( )inq  , Manning roughness parameter 

2( )n  , and modification coefficient 
3( )  . 

 

Fig. 6. Landslide dam failure: measured water surface (open circles) for F-Case 11 from Cao 

et al. [39] and probabilistic predictions of water surface, and bed profiles (dashed lines) along 

a channel for three joint uncertainties in inflow discharge 1( )inq  , Manning roughness 

parameter 2( )n  , and modification coefficient 3( )  . 
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Fig. 7. Landslide dam failure: spatial-temporal evolutions of standard deviations of (a) water 

surface, (b) bed elevation, (c) flow velocity and (d) sediment concentration for three joint 

uncertainties in inflow discharge 
1( )inq  , Manning roughness parameter 

2( )n  , and 

modification coefficient 
3( )  . 

 

Fig. 8. Flash flood: measurements (open circles) and probabilistic predictions (dashed lines) 

of sediment transport rate against shields parameter at selected cross-sections for two joint 

uncertainties in inflow discharge 
1( )inq   and Manning roughness parameter 

2( )n  .  

 

Fig. 9. Flash flood: probabilistic predictions of (a1-a4) discharge (black dashed lines) and 

(b1-b4) sediment transport rate (blue dashed lines) time histories at four cross-sections for 

two joint uncertainties in inflow discharge 
1( )inq   and Manning roughness parameter 

2( )n  .  

 

Fig. 10. Flash flood: probabilistic predictions of stage (black dashed lines) and bed elevation 

(blue dashed lines) time histories at four cross-sections for two joint uncertainties in inflow 

discharge 
1( )inq   and Manning roughness parameter 

2( )n  .  

 

Fig. 11. Flash flood: spatial-temporal evolutions of standard deviations of (a) water surface, 

(b) bed elevation, (c) flow velocity and (d) sediment concentration for two joint uncertainties 

in inflow discharge 1( )inq   and Manning roughness parameter 2( )n  . 
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Table 1 1L  norms and convergence rates of model predictions for Test 1 using different 

refinement level 

Table 2 Summary of maximum standard deviations of all the physical variables (Test 1) 

Table 3 Summary of maximum standard deviations of all the physical variables (Test 2) 

 


