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In this article, rigid origami is examined from the
perspective of rigidity theory. First- and second-order
rigidity are defined from local differential analysis of
the consistency constraint; while the static rigidity and
prestress stability are defined after finding the form of
internal force and load. We will show the hierarchical
relation among these local rigidities with examples
representing different levels. The development of
theory here follows the same path as the conventional
rigidity theory for bar-joint frameworks, but starts
with different high-order rotational constraints. We
also bring new interpretation to the internal force
and geometric error of constraints associated with
energy. Examining the different aspects of the rigidity
of origami might give a novel perspective for the
development of new folding patterns, or for the design
of origami structures where some rigidity is required.

1. Introduction
Rigid origami has been developed as a tool for
effectively transforming a two-dimensional material
into a three-dimensional structure, hence most of
the previous studies focus on the kinematics and
mechanical properties of foldable rigid origami. In
this article, we will consider a different viewpoint—
a rigid origami that is not foldable, among which
there is a hierarchical relation of different levels
of local rigidity. These local rigidity concepts are
similar to those used for classical bar-joint frameworks
in the structural rigidity theory, but there are also
some special features. The basic question of structural
rigidity is to ask when a series of length constraints
(bars) constrain a number of points (joints) to give a
‘stiff’ structure. Some preliminaries for this question
are provided in S1 of the electronic supplementary
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material. Considering the different aspects of the rigidity of rigid origami might give a novel
perspective for the development of new folding patterns, or for the design of origami structures
where some rigidity is required. For example, [1,2] analysed the mechanics of periodical
rigid origami structures with different levels of local rigidity, inspired from either topological
mechanics or Kagome antiferromagnets. We share the same flow in the kinematic analysis despite
their rigidity matrix and Hessian having different forms compared to ours.

The rigid origami model we consider in our series of articles is fairly general, which can
be described as rigid panels jointed by hinges without self-intersection, possibly leaving holes
(figure 1d) and handles (figure 1b). The relationship among the local rigidity concepts discussed
here, as well as examples of each level of rigidity, are presented in figure 1. The hierarchical
relation in figure 1a will be proved in §7. The concepts underlying the examples in figure 1b–f
will be presented in the rest of the paper. The 6 × 4 toroidal polyhedral surface shown in figure 1b
is first-order rigid (described in §3), i.e. there is no ‘infinitesimal’ motion. The toroidal polyhedral
surface is also statically rigid (described in §4), i.e. under any load applied, there would be a
set of internal forces generated to keep the rigid origami in equilibrium. Here, the form of load
is a pair of opposite torques applied on two panels incident to each inner crease. The example
in figure 1c is the simplest rigid origami to be prestress stable (described in §5) but not first-
order rigid. There is a one-dimensional first-order flex {ρ′

1, ρ′
2, ρ′

3} = a1{1, 1, 1}, a1 ∈ R. Although
this vertex would be ‘shaky’ along its first-order flex, this configuration will reach a strict local
minimum of a predefined potential energy function with a positive self-stress; therefore it will not
be able to deform greatly. The example in figure 1d has two-dimensional spaces of first-order flex
and self-stress, which is also examined to be prestress stable. It turns out that prestress stability
is a relatively strong class for common rigid origami structures that are not first-order rigid. The
next level is second-order rigidity (described in §6). There is no self-stress that could help the
rigid origami reach a local minimum of potential energy, and there is also no first-order flex that
can be extended to a second-order flex. Second-order rigidity will imply rigidity. The example in
figure 1e is rigid but not second-order rigid, which relies on a particular choice of sector angles.
The example in figure 1f is a degree-4 vertex with centre vertex A where the sum of sector angles
is less than 2π , and this vertex is rigid-foldable. Only some loads can be carried. Here, we show a
pair of opposite torques that act to change the configuration of this vertex. An interesting point is
for some special rigid origami, different levels of rigidity might be equivalent. Such extension of
local rigid-foldability is not easy to predict, which will be discussed in §8.

The inspiration for the levels of rigidity comes from classical studies on the statics,
prestress stability and second-order rigidity of bar-joint frameworks, e.g. [3–5]. We find a good
correspondence between rigid origami and a bar-joint framework. However, rigid origami has
some special features. First, because of our kinematic definitions, we do not need to consider the
Euclidean motion of a rigid origami in the folding angle description—the only trivial flex is 0,
which simplifies some conclusions. Second, in line with classical rigidity theory for a framework,
a rigid origami has its special form of the underlying graph and consistency constraint in the
folding angle description. For a bar-joint framework, the Jacobian and Hessian of consistency
constraints are linear and constant, while for a rigid origami they are in a totally different form
of higher order. As a consequence, the form of internal force and load are also different. Third,
the effect of self-intersection could not be revealed from the classic method of algebraic analysis
on the consistency constraints. The collision between panels might induce rigidity, but this is
not considered here—numeric methods are more likely to be efficient when dealing with self-
intersection, or even simulating large rotations of a foldable rigid origami. Here, we refer to
recent progress on detecting self-intersection [6] and simulating folding motion [7]. Fourth, a set of
folding angles might correspond to several stacking sequences (an example is in [8], fig. 2.3), and
different stacking sequences might also behave differently when considering the self-intersection
of panels, which we also do not consider in this paper. Fifth, when some folding angles are ±π ,
a flex is valid only when it induces angle change within [−π , π ]. Some examples on this topic
are provided in S3.6 of the electronic supplementary material. In this article, we will focus on the
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Figure 1. (a) The hierarchical relation among different levels of local rigidity for a rigid origami. The first-order rigidity is
equivalent to static rigidity, which implies prestress stability, which implies second-order rigidity, which implies rigidity, but
none of these relationships is reversible. Panels (b–f ) are examples corresponding to each region in (a)—vertices are shown
by capital letters, and folding angles by ρi . Panel (b) is a 6 × 4 toroidal polyhedral surface (a handle) that is first-order
(equivalently, statically) rigid. Panel (c) is a planar degree-3 vertex. Panel (d) is a non-planar degree-6 hole, both of which
are prestress stable but not first-order rigid. Panel (e) is a planar 3-vertex rigid origami that is rigid but not second-order rigid.
Panel (f ) is a rigid-foldable degree-4 vertex.M is a pair of opposite torques applied on two panels incident to an inner crease,
which is the form of load for rigid origami. Panel (b) is able to carry the load in this configuration, while (f ) cannot.

local algebraic analysis of rigid origami. The effect of self-intersection, stacking sequence and the
‘boundary effect’ when some folding angles are ±π are topics that require further work. In the
rest of this paper, we will require every folding angle to be in (−π , π ), but it does not mean the
conclusions drawn for local rigidity will always fail when some folding angles are ±π .

This paper considers rigidity to the second order. It is natural to ask ‘could this hierarchical
relation be extended to countable orders of rigidity and end at finite rigidity?’. However, there
seems to exist a limit for such local differential analysis. It turns out that there exists a bar-
joint framework that is third-order rigid and flexible [9], which implies the chain relation of
local rigidity may not be closed by rigidity, or we might need to modify the definition of local
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Figure 2. (a–c) The rotation and possible translation of local coordinate systems around a degree-5 vertex, a degree-5 hole and
a representative cycle on a 6 × 4 toroidal polyhedral surface. The local coordinate systems for Pj−1 and Pj are coloured red and
blue, respectively. The representative cycles for (b) and (c) are coloured green. Specifically, the consistency constraint of (a) is
around a vertex in the form of equation (2.1); the consistency constraint of (b) is around a hole in the form of equation (2.2); the
consistency constraint of (c) is around 24 vertices and 2 cycles in the form of equations (2.1) and (2.2). (Online version in colour.)

rigidity. Further, for a bar-joint framework, a sufficiently high order flexibility will be equivalent
to flexibility; or with extra conditions, they would be equivalent even if the order is not that high
[10]. There is a proposal for a revised definition of local rigidity [11], but a complete theory still
requires a certain amount of work.

2. Consistency constraint on folding angles
In this section we will briefly recap some basic definitions in rigid origami and the consistency
constraint on folding angles. The detailed mathematical version is given in [8, Chapter 2], where
we provide two roadmaps for the definitions of related concepts: from origami to rigid origami;
and from realizations of an underlying graph.

As graphically introduced in figure 2, rigid origami refers to a panel-hinge structure in our
series of articles, where finitely many rigid polygonal panels are jointed by line segments (hinges)
on their boundaries. We allow contact of different parts of a rigid origami but do not allow
crossing, i.e. self-intersection. A panel can only rotate around its adjacent hinges. A rigid origami
can have the topology of a sphere with some holes or handles. Line segments on the boundary of
panels are called creases. The endpoints of creases are called vertices. A vertex or crease not on the
boundary of a rigid origami is called an inner.

Given a rigid origami, we say the angles between adjacent creases on panels are sector angles.
The range of a sector angle is (0, 2π ). A folding angle at a crease is the difference between π and
the dihedral angle measured from a given orientation (a non-orientable rigid origami can always
be divided into countable orientable rigid origami that abut along some of their boundaries). The
range of a folding angle is [−π , π ]. The collections of sector angles and folding angles are written
as α and ρ.

Notably, there might be multiple stacking sequences of panels corresponding to the same
folding angle ρ. It means that two rigid origami with the same sector and folding angles
occupying the same set in R

3 could have different configurations. Therefore, an order function λ is
introduced to describe the stacking sequence. The order function λ must satisfy several conditions
to prevent self-intersection. Given the sector angles of a rigid origami and lengths of creases of
representative cycles (explained below), (ρ, λ) can fully describe a configuration of a rigid origami.

Roughly speaking, the distance between two points on a rigid origami is the infimum of
lengths of polylines on this rigid origami joining these two points. We say a rigid origami is
flexible, foldable or rigid-foldable, or there is a flex at (ρ, λ) if there is a continuous family of distance-
preserving maps from each time t ∈ [0, 1] to a rigidly folded state (ρt, λt) where (ρ0, λ0) = (ρ, λ).
Otherwise, (ρ, λ) is rigid.
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Next, we will clarify the constraint on the folding angles ρ. The order function λ is only
valid when there is contact between panels and could be examined later. The consistency
constraint on folding angles is the collection of consistency condition on each inner vertex and any
representative cycles of each hole and handle, which is derived from the rotation and translation
of local coordinate systems on each panel near a vertex, a hole and a handle (figure 2). This is the
sufficient and necessary condition for a set of folding angles to be an element of the configuration
space if allowing the self-intersection of panels.

Remark 2.1. A representative cycle refers to a homology class in the first homology group, and the
number of cycles is called the first Betti number [12]. Homology itself was developed as a way
to analyse and classify manifolds according to their cycles—closed loops that can be drawn on
a given manifold but cannot be continuously deformed into each other. Informally, cycles that
can be continuously transformed into each other belong to the same homology class of the first
homology group. The first Betti number is also the maximum number of cuts that can be made
without dividing a surface into two separate pieces. For example, the first Betti number of a sphere
and a disc is 0; of a cylindrical surface it is 1; and of a torus it is 2.

The local coordinate systems are built in the following way when deriving the consistency
constraint. (a) Around a vertex surrounded by n panels (figure 2a), a local coordinate system is built
on each panel j (j ∈ [1, n]), whose origin Oj is on the centre vertex, x-axis is on an inner crease,
pointing outside the origin, and z-axis is normal to the panel. The direction of all z-axes of local
coordinate systems are consistent with the orientation of the paper and hence consistent with the
definition of the sign of folding angles. Specifically, the transformation between local coordinate
systems of panel j − 1 and panel j is a rotation αj along zj−1, and a rotation ρj along xj. After a
series of rotations, the coordinate system returns to the one built on panel n. The matrix form of
transformation is given in equation (2.1). (b) Around a cycle surrounded by n panels (figure 2b,c),
we build the local coordinate systems similarly. Each origin Oj is on a vertex of this cycle, the
x-axis is on an inner crease, pointing outside each origin, and the z-axis is normal to the panel.
The transformation between local coordinate systems of panel j − 1 and panel j is a translation
[lj cos γj; lj sin γj; 0] measured in the coordinate system built on panel j − 1, followed by a rotation
βj along zj−1, and a rotation ρj along xj. βj and γj can be linearly expressed by the sector angles α.
The matrix form is given in equation (2.2).

At every inner vertex vi (1 ≤ i ≤ Nv , figure 2a)

R(ρ) =

�

deg(vi)∏
j=1

⎡
⎢⎣cos αj − sin αj 0

sin αj cos αj 0
0 0 1

⎤
⎥⎦

⎡
⎢⎣1 0 0

0 cos ρj − sin ρj
0 sin ρj cos ρj

⎤
⎥⎦ = I, (2.1)

where Nv is the number of inner vertices, deg(vi) is the number of creases (degree) incident to vi,

αj is between axes xj−1 and xj (2 ≤ j ≤ deg(vi)), α1 is between axes xdeg(vi) and x1.
�∏

means that
in this product of sequence, every new term multiplies from the right-hand side. I is the Identity
matrix. Only three of the nine equations are independent, which are in different columns and
rows.

At every cycle with boundary ci (1 ≤ i ≤ Nc, figure 2b,c)

T(ρ) =

�

deg(ci)∏
j=1

⎡
⎢⎢⎢⎣

cos βj − sin βj 0 lj cos γj
sin βj cos βj 0 lj sin γj

0 0 1 0
0 0 0 1

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

1 0 0 0
0 cos ρj − sin ρj 0
0 sin ρj cos ρj 0
0 0 0 1

⎤
⎥⎥⎥⎦ = I, (2.2)

where Nc is the number of cycles, deg(ci) is the number of creases (degree) incident to ci, βj is
between axes xj−1 and xj (2 ≤ j ≤ deg(ci)), β1 is between axes xdeg(ci) and x1× [lj cos γj, lj sin γj, 0]

(1 ≤ j ≤ deg(ci)) is the position of Oj measured in the local coordinate system for panel j − 1.
�∏

means that in this product of sequence, every new term multiplies from the right-hand side. I is
the Identity matrix. Only six of the sixteen equations are independent. Three of them are in the
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top left 3 × 3 rotation matrix; the other three are the elements from row 1 to row 3 in column 4. If
the inner creases are concurrent, a cycle will degenerate to a vertex.

If there are Nv inner vertices and Nc cycles, the number of independent consistency constraints
will be 3Nv + 6Nc. It will simplify further algebraic analysis if we consider the independent
components of the consistency constraint. The choice of the particular independent components
below will be explained in §3.

For each vertex ⎡
⎢⎣ ∗ ∗ A2

A3 ∗ ∗
∗ A1 ∗

⎤
⎥⎦ = R(ρ). (2.3)

For each cycle ⎡
⎢⎢⎢⎣

∗ ∗ A2 A4
A3 ∗ ∗ A5
∗ A1 ∗ A6
0 0 0 1

⎤
⎥⎥⎥⎦ = T(ρ). (2.4)

Here ∗ means elements that are not important for further discussion. A is a vector with length
3Nv + 6Nc assembled from three components for each vertex and six components for each cycle.

If ρ is a solution of consistency constraint, A(ρ) = 0. However, the converse is not necessarily
true: if A(ρ) = 0, ρ might not be a solution of the consistency constraint, because equations (2.3)
and (2.4) could give rotation matrices whose determinant is 1 but formed by 0 and ±1 apart from
the Identity. In other words, the solution space of the independent components of the consistency
constraint A(ρ) = 0 is larger than the solution space of the consistency constraint. However, these
solutions can be easily removed by examination. The first- and second-order derivative of the
independent consistency constraint will be used in the analysis of first-order rigidity, prestress
stability and second-order rigidity in §§3, 5 and 6.

3. First-order rigidity
Given a rigid origami, it is natural to consider possible ‘infinitesimal motion’ allowed by the
independent consistency constraint, which leads to the concept of first-order rigidity. The first-
order rigidity and first-order flex are defined below. Infinitesimal or first-order motion analysis is
also widely applied in all kinds of kinematic analysis.

Definition 3.1. A rigid origami (ρ, λ) is first-order rigid if the only solution of dA/dρ · ρ′ = 0 with
respect to ρ′ is 0; equivalently, the rank of rigidity matrix dA/dρ equals the number of inner creases
Nρ . Otherwise, this rigid origami is first-order rigid-foldable. A non-zero ρ′ is called a first-order flex,
which forms a linear space of dimension Nρ − rank(dA/dρ).

We will show how to derive the rigidity matrix dA/dρ for a large rigid origami after writing
dA/dρ for its restriction on a vertex or a cycle.

(a) Rigidity matrix for a vertex or cycle
Consider the first-order derivative of equations (2.3) and (2.4).

∂

∂ρj

⎡
⎢⎣ ∗ ∗ A2

A3 ∗ ∗
∗ A1 ∗

⎤
⎥⎦ =

⎡
⎢⎣ 0 −x3j x2j

x3j 0 −x1j
−x2j x1j 0

⎤
⎥⎦ , (3.1)
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where xj = [x1j; x2j; x3j] is the direction (column) vector of the inner crease ρj measured in a global
coordinate system, pointing away from this vertex.

∂

∂ρj

⎡
⎢⎢⎢⎣

∗ ∗ A2 A4
A3 ∗ ∗ A5
∗ A1 ∗ A6
0 0 0 1

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

0 −x3j x2j
x3j 0 −x1j Oj × xj

−x2j x1j 0
0 0 0 1

⎤
⎥⎥⎥⎦ , (3.2)

where xj = [x1j; x2j; x3j] is the direction (column) vector of the inner crease ρj measured in a global
coordinate system, pointing away from this cycle. Oj is the position of vertex on the cycle incident
to ρj measured in the global coordinate system (figure 2). × means the cross product of two
vectors. The derivation is provided in S2 of the electronic supplementary material. This result
has previously been presented in [18,19].

The reason for choosing the particular components when defining the independent
consistency constraint A(ρ) = 0 is to ensure that we capture independent non-zero values in
equations (3.1) and (3.2) to describe the ‘speed’ of a dynamic system.

The matrix form of rigidity matrix for a degree-n vertex or a cycle could therefore be written
as

dA
dρ vertex

=
[

x1 x2 · · · xn

]
(3.3)

and
dA
dρ cycle

=
[

x1 x2 · · · xn

O1 × x1 O2 × x2 · · · On × xn

]
. (3.4)

The rigidity matrix dA/dρ for each vertex or cycle can also be explained from analytical
mechanics. First, around each degree-n vertex, the virtual rotation from panel n to panel j induced
by a perturbation on folding angles δρ is x1δρ1 + x2δρ2 + · · · + xjδρj. After returning to panel n,
the relative virtual rotation should be 0, therefore,

n∑
1

xjδρj = 0. (3.5)

Around each degree-n cycle, equation (3.5) still holds. Fix panel n to exclude Euclidean motion,
the virtual displacement from origin of the global coordinate system 0 to the xy-plane of local
coordinate system built on panel j induced by a perturbation on folding angles δρ is O1 × x1δρ1 +
O2 × x2δρ2 + · · · + Oj × xjδρj. For panel n, this virtual displacement should be 0, hence around
each cycle we have

n∑
1

(Oj × xj)δρj = 0. (3.6)

(b) Measure of deformation about a vertex or cycle
Given a rigid origami (ρ, λ), it is instructive to consider the form of the deformations that we are
not allowing if there is a perturbation on folding angles δρ. A measure of deformation called first-
order error ε(ρ) could be derived from the first-order estimation of the independent consistency
constraint A(ρ + δρ)

ε(ρ) = dA
dρ

δρ. (3.7)

For a degree-n vertex ⎡
⎢⎣A1

A2
A3

⎤
⎥⎦ =

⎡
⎢⎣ε1

ε2
ε3

⎤
⎥⎦ + O(δρ2) =

n∑
1

xjδρj + O(δρ2). (3.8)

Here, the first-order error is the components about the global x, y and z axes of the rotation from
the local coordinate system built on panel n to itself, as a circuit is taken around the vertex with
folding angles ρ + δρ.
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For a degree-n cycle

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

A1
A2
A3
A4
A5
A6

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

ε1
ε2
ε3
ε4
ε5
ε6

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

+ O(δρ2) =

⎡
⎢⎢⎢⎢⎣

n∑
1

xjδρj

n∑
1

Oj × xjδρj

⎤
⎥⎥⎥⎥⎦ + O(δρ2). (3.9)

The first-order error is the rotation described above, and the change of signed distance from origin
of the global coordinate system 0 to the xy-plane of local coordinate system built on panel n, as a
circuit, is taken around the boundary of the cycle with folding angles ρ + δρ.

For a vertex, a graphical representation of first-order errors ε1, ε2, ε3 is provided in figure 3.
The consistency constraint is illustrated by a closed torus. When there is a cut, the constraint is
released, and the first-order errors are shown by the rotation of cross-section of the torus. Suppose
n = 1, a first-order error ε would be a rotation δρ1 along direction x1; in figure 3b(i) and figure 3c(ii),
we could see that a positive first-order error when δρ1 > 0 is compatible with a positive folding
angle if considering the cut as rotation of panels around an inner crease.

(c) Rigidity matrix for a large rigid origami
Now we consider assembling the derivative for each vertex or cycle in equations (3.3) and (3.4)
to a large rigid origami. In view of the programming, information about the crease pattern could
be stored in a incidence matrix D describing the relationship between inner creases and vertices
with a labelling of them. If vertex i is incident to inner crease j and the direction vector goes out
from i, Dij = 1; if the direction goes towards i, Dij = −1, otherwise Dij = 0. D is a sparse matrix. An
example is provided in S3.1 of the electronic supplementary material.

4. Static rigidity
We will now consider the behaviour of a rigid origami when load is applied. First, we will
introduce a restricted set of external applied loads and internal forces that are work-conjugate to
the kinematic quantities mentioned in the previous section, before pointing out how these might
be related to more general sets of forces.

The equilibrium analysis starts from the principle of virtual work. A virtual displacement for
rigid origami is exactly an arbitrarily small first-order flex ρ′ at a rigidly folded state (ρ, λ). We
define a load l so that the external virtual work done by the load δWe, for any ρ′, is given by

δWe = lρ′. (4.1)

Thus the form of the load must be a set of equal and opposite torques applied to the panels on each
side of each inner crease, such that positive external virtual work is done by a positive change in
folding angle at the crease (remembering that a valley fold corresponds with the positive direction
of folding angle).

Consider also the internal forces that may exist within the rigid panels. We define the internal
forces ω such that the internal work done δWi, for any first-order error ε(ρ′), is given by

δWi = ωε(ρ′) = ω
dA
dρ

ρ′. (4.2)

Thus the form of the internal force should be an internal torque around each inner vertex, and
an internal torque and force around each cycle. For a vertex, a graphical representation of the
internal force ω is provided in figure 4.
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split along x-axis split along y-axis

x

y

z

e1 > 0

e2 > 0

e3 > 0

(i) (ii)

(a)

(b)

(c)

(d)

Figure 3. An illustration of the first-order errorε in a global coordinate systemaround a vertex. Here,we use a cut torus to show
the unit first-order error of the constraint around a vertex in an elastic view, andwe point out these first-order errors correspond
with unit rotation around hinges that are parallel to the direction of axes. Note that there is a fundamental difficulty in showing
this deformation, as it is ameasure of what rigid origami cannot do, so a cut has to be introduced to allow the deformation to be
shown, andwhere the cut is introducedmaymake a big difference to the appearance. (a) We attach a torus to the paper around
the vertex. (b) We first consider a deformation ε1 distributed evenly around the torus, so that there is a constant ‘curvature’
around the x-axis (which in placesmanifests as a twist). The torus is then not able to close, so we show the deformed torus with
a cut along the (i) x-axis, or (ii) y-axis. Although the images look very different, the underlying deformation is the same in each
case. (c,d) We similarly show the deformation ε2 and ε3. Only for (b)(i) and (c)(ii) would a first-order error be compatible with
the rotation of a hinge, in x- and y-directions, respectively. The internal forces that are work-conjugate with these first-order
errors are shown in figure 4.
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 split along x-axis  split along y-axis 

M1 > 0

M1

M2

M3

M3

M2

M1

M2 > 0

M3 > 0

x

y
z

(i) (ii)

(a)

(b)

(c)

(d)

Figure 4. The internal forces (here, torques) {M1,M2,M3} that are work-conjugate to the first-order errors {ε1, ε2, ε3}
distributed around a torus embedded in a paper, as introduced in figure 3. In each case, the internal force is only shown where
there is a cut. Only in (b)(i) and (c)(ii) can these internal forces be directly applied by a pair of opposite torques at a hinge (along
the x- and y-axes, respectively). The deformations shown in figure 3 are not, in general, elastic responses to the forces shown
here, although in fact theywould correspond to the elastic response of a cut torus that had equal bending and torsional stiffness.

The sufficient and necessary condition for equilibrium is δWi = δWe, hence we have

ω
dA
dρ

= l. (4.3)

For rigid origami, where the error ε(ρ′) is zero,

δWe = lρ′ = δWi = 0. (4.4)

For zero load, the self-stress ωs satisfies

ωs
dA
dρ

= 0. (4.5)
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Table 1. A comparison of the statics of bar-joint framework and rigid origami. In rigid origami, we consider that a ‘body’ is an
inner crease with only 1 freedom and the constraint is on each ‘linkage’ of the rigid origami, specifically, each vertex or cycle.

bar-joint framework rigid origami

body joint inner crease
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

number of freedoms of a body 3 1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

constraints on freedoms bars vertices and cycles
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

form of the internal force force/length torque and force
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

form of the external load forces equal and opposite torques
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Physically, the internal forces could be interpreted as the resistance to deformation around each
vertex or cycle, and can be revealed only by cutting through the rigid panels.

Remark 4.1. In rigidity theory, ω is usually referred to as a stress, but we will not use that
notation here because of the potential for confusion with the related but different use of the term
stress in mechanics. However, we will still use the term self-stress for ωs; a set of internal forces in
equilibrium with zero applied load.

Table 1 shows the correspondence between a bar-joint framework and the model for rigid
origami considered here. From equation (4.3) and the structure of rigidity matrix dA/dρ, the
statement of equilibrium for an inner crease incident to a vertex is that the projection of internal
forces on the crease must be equal to the load applied. Consider a vertex; an internal force is a
torque {M1, M2, M3} with three components in a global coordinate system. For each inner crease
j (1 ≤ j ≤ Nρ ) with direction vector pj,[

M1 M2 M3

]
pj = lj. (4.6)

For an inner crease incident to a cycle, forces also contribute to the equilibrium. For a cycle, the
internal force {M1, M2, M3, F1, F2, F3} has six components of torque and force, which satisfies[

M1 M2 M3

]
pj +

[
F1 F2 F3

]
(Oj × pj) = lj, (4.7)

which shows that the torque equilibrium is actually([
M1 M2 M3

]
+

[
F1 F2 F3

]
× Oj

)
pj = lj. (4.8)

Now that we have clarified the form of the internal forces and load, we can consider static
rigidity and its relation to first-order rigidity:

Definition 4.2. A rigid origami can resolve a load l if there is an internal force satisfying equation
(4.3). A rigid origami is statically rigid if it can resolve every load. A rigid origami is independent if
there is only zero self-stress. A rigid origami is isostatic if first-order rigid and independent.

Theorem 4.3. For a rigid origami (ρ, λ) with Nv inner vertices, Nc cycles and Nρ inner creases, the
following statements are equivalent:

(1) (ρ, λ) is first-order rigid.
(2) (ρ, λ) is statically rigid.
(3) The dimension of the self-stress space at (ρ, λ) is 3Nv + 6Nc − Nρ .

Proof. For the rigidity matrix dA/dρ, a zero nullspace is equivalent to a full image. The rank of
its left nullspace when the nullspace is zero is 3Nv + 6Nc − Nρ . �

Examples showing the calculation of internal forces and states of self-stress are given in S3.2
of the electronic supplementary material.
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Remark 4.4. We want to comment on the behaviour of a rigid origami under a general load,
which might include a set of self-equilibrating forces and torques applied anywhere. We conclude
that there would be a unique decomposition of a general load to the form of load discussed in
this chapter, i.e. opposite torques applied on adjacent panels around each inner crease. The rest
of a general load could always be carried by a rigid origami. A possible way to examine this
is to replace the rigid origami by a corresponding double-coning bar-joint framework. Such a
framework is generated by replacing the boundary of each panel by a series of bars and joints,
then adding two out-of-plane vertices on different sides of the panel, and joining each of the two
vertices to each vertex on the panel with a bar.

Remark 4.5. From Dehn’s result [13] on Cauchy’s rigidity theory [14], a strictly convex
polyhedral surface is first-order rigid. [15,16] conducted generic rigidity analysis for a block and
hole polyhedral framework, generated by adding and removing bars to become blocks and holes
on a triangulated spherical bar-joint framework. A block and hole polyhedral framework could
be realized as a rigid origami. Despite using different models, the rigidity results should be in
parallel.

5. Prestress stability
In this section, we consider rigid origami that are not first-order rigid but are rigid, and we
elucidate how the stability of these structures is changed when prestress is added. To do that,
we will describe an energy function U that gives the potential energy stored in the paper. In fact,
for our purposes the energy function can be fairly general in its form, but it can also be given in
a quite physical way. We will see that the first differential of U with respect to the folding angles
naturally gives a state of self-stress for the paper, and the second differential naturally leads to the
stiffness and hence stability.

(a) Energy, stiffness and stability
Definition 5.1. The potential energy U stored in a rigid origami only depends on the error of

independent consistency constraint around the Nv inner vertices and Nc cycles, A ∈ R
3Nv+6Nc , and

satisfies

U(0) = 0, U(A) > 0 if A �= 0. (5.1)

We require U to have continuous second-order derivative, so that we can define the matrix B as

B = d2U

dA2 , Bil = ∂2U
∂Ai ∂Al

. (5.2)

The size of B is (3Nv + 6Nc) × (3Nv + 6Nc), which is assumed to be positive-definite. (Note that
we are using i and l as subscripts corresponding to error components; later j and k will be used as
subscripts for folding angles.)

Remark 5.2. We could consider a less general energy function than that given in equation (5.2),
where the energy is the sum of the energy stored around each inner vertex or cycle, in which case
the matrix B will be block-diagonal, with one block per inner vertex or cycle. Or we might wish
to consider that the energy stored by each misfit error Ai is independent, so that B is diagonal.
For a particularly simple choice, we could define E = ∑ 1

2 giA2
i , so that B would be diagonal and

constant, with Bii = gi. All of these choices might impact the physical behaviour of the system
under load but will not affect the definition of prestress stiffness below.

Next, we will consider the equilibrium of a rigid origami from an energy viewpoint and judge
whether it is stable. In general, suppose the rigid origami is in a conservative force field with
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potential V(ρ), then the total energy could be written as

E = U + V. (5.3)

The partial derivative of E with respect to a folding angle ρj is (1 ≤ i ≤ 3Nv + 6Nc, 1 ≤ j ≤ Nρ )

∂E
∂ρj

= ∂U
∂Ai

∂Ai

∂ρj
+ ∂V

∂ρj
, (5.4)

which can be written in a more compact form,

dE
dρ

= dU
dA

dA
dρ

+ dV
dρ

. (5.5)

The equilibrium condition is then
dU
dA

dA
dρ

+ dV
dρ

= 0. (5.6)

Since

l = −dV
dρ

, (5.7)

the above condition is exactly equation (4.3), which shows that the first-order derivative of the
energy function U is an internal force ω. When dV/dρ = 0, the first-order derivative of U is a
self-stress.

To consider stability of the equilibrium, we have to consider the second differential, the
Hessian of energy, (1 ≤ i, l ≤ 3Nv + 6Nc, 1 ≤ j, k ≤ Nρ )

∂2E
∂ρk∂ρj

= ∂2U
∂Al∂Ai

∂Al

∂ρk

∂Ai

∂ρj
+ ∂U

∂Ai

∂2Ai

∂ρk∂ρj
+ ∂2V

∂ρk∂ρj
, (5.8)

which can be written in a compact form,

d2E
dρ2 = dA

dρ

T d2U

dA2
dA
dρ

+ dU
dA

d2A
dρ2 − dl

dρ
. (5.9)

The condition for stability is that the total energy at a rigidly folded state reaches a strict local
minimum, and a sufficient condition is the second-order differential of the total energy is positive-
definite. The second-order derivative d2A/dρ2 is also called the Hessian of the independent
consistency constraint A(ρ), an order 3 tensor with size (3Nv + 6Nc) × Nρ × Nρ , which could be
written in an explicit form as provided in next subsection.

If there is a perturbation of folding angle δρ around a rigidly folded state (ρ, λ), the increase of
total potential energy in the second order will be

δE = 1
2
δρT d2E

dρ2 δρ, (5.10)

and the restoring force will be

F = −∂δE
∂δρ

= −d2E
dρ2 δρ. (5.11)

The above derivation shows how d2E/dρ2 works as the stiffness of the rigid origami system.
However, if δE = 0 for a perturbation δρ, for this direction we might need higher-order
information of energy to determine the stability.

In this section, we will discuss the prestress stability first, assuming there is no load
(dV/dρ = 0).

Definition 5.3. A rigid origami (ρ, λ) with Nv inner vertices, Nρ inner creases and Nc cycles is
prestress stable if there is a positive-definite matrix B with size (3Nv + 6Nc) × (3Nv + 6Nc) and a
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vector ωs ∈ R
3Nv+6Nc such that

ωs
dA
dρ

= 0 (5.12)

and

K = dA
dρ

T
B

dA
dρ

+ ωs
d2A
dρ2 (5.13)

is positive-definite.

Physically, B is the local elasticity matrix, which is the Hessian of the predefined energy function.
K is the tangent stiffness matrix or total stiffness matrix. ωs · d2A/dρ2 is called the stress matrix. We
say this self-stress ωs stabilizes a rigid origami if it leads to a positive-definite stiffness K.

(b) Hessian for a vertex or cycle
We will show how to derive the Hessian d2A/dρ2 for a large rigid origami followed by writing
d2A/dρ2 for its restriction on a degree-n vertex or cycle. Consider the second-order derivative of
equations (2.3) and (2.4).

When 1 ≤ k ≤ j ≤ n,

∂2

∂ρk∂ρj

⎡
⎢⎣A1

A2
A3

⎤
⎥⎦ =

⎡
⎢⎣x2kx3j

x3kx1j
x1kx2j

⎤
⎥⎦ , (5.14)

where xj = [x1j; x2j; x3j] is the direction vector of the inner crease ρj measured in a global coordinate
system, pointing away from this vertex.

∂2

∂ρk∂ρj

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

A1
A2
A3
A4
A5
A6

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎣

x2kx3j
x3kx1j
x1kx2j

xk × (Oj × xj)

⎤
⎥⎥⎥⎦ , (5.15)

where xj = [x1j; x2j; x3j] is the direction vector of the inner crease ρj measured in a global coordinate
system, pointing away from this cycle. Oj is the position of vertex on the cycle incident to
ρj measured in the global coordinate system (figure 2). When 1 ≤ j < k ≤ n, swap k and j. The
derivation is provided in S2 of the electronic supplementary material.

(c) Hessian for a large rigid origami
Now we consider assembling the second-order derivative for each vertex or cycle in equations
(5.14) and (5.15) to a large rigid origami. The Hessian d2A/dρ2 is an order 3 tensor with size
(3Nv + 6Nc) × Nρ × Nρ , which is the collection of sparse matrices d2Ai/dρ2. The size of each of
them is Nρ × Nρ .

Consider the incidence matrix for vertices Dvertex; row i(1 ≤ i ≤ Nv) corresponds with three
components [A3i−2; A3i−1; A3i]. For folding angle ρj where the direction vector is pj in a global
coordinate system, if Dij = 1, xj = pj, otherwise if Dij = −1, xj = −pj, then by applying equation

(5.14) we could obtain 3Nv matrices d2Ai/dρ2 for every vertex.
Next consider the incidence matrix for cycles Dcycle; row i(1 ≤ i ≤ Nc) corresponds with six

components [A3Nv+6i−5; A3Nv+6i−4; A3Nv+6i−3; A3Nv+6i−2; A3Nv+6i−1; A3Nv+6i]. For folding angle ρj,
if Dij = 1, xj = pj, otherwise if Dij = −1, xj = −pj, then by applying equation (5.15) we could obtain

6Nc matrices d2Ai/dρ2 for every cycle.
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(d) Reducing the calculation
From definition 5.3, if a rigid origami is first-order rigid-foldable and there is no prestress applied,
it is not stable. Hence, for a given configuration, an important question is to find the space of
self-stress to stabilize a rigid origami. The next proposition provides a simpler way to judge the
prestress stability.

Proposition 5.4. Some statements concerning the positive (semi)-definiteness of the stiffness matrix for
a first-order rigid-foldable rigid origami:

(1) The matrix [(dA/dρ)T · B · dA/dρ] is positive semi-definite. Both of its nullspace and roots of
quadratic form are the nullspace of dA/dρ.

(2) A rigid origami (ρ, λ) is prestress stable if, and only if, there exists a self-stress ωs ∈ R
3Nv+6Nc

such that ωs · d2A/dρ2 is positive-definite when restricted to the nullspace of dA/dρ.
(3) A rigid origami (ρ, λ) is prestress stable if, and only if, there exists a self-stress ωs ∈ R

3Nv+6Nc

such that all the eigenvalues of [ρ′]T · ωs · d2A/dρ2 · [ρ′] are positive, where [ρ′] is a basis of the
space of first-order flex.

[ρ′] =
[
ρ′

1 ρ′
2 · · · ρ′

Nρ−rank(dA/dρ)

]
. (5.16)

Proof. Statement (1): For any perturbation of folding angles δρ, consider the quadratic form; if
δρ is not a first-order flex, since B is assumed to be positive-definite, δρT · (dA/dρ)T · B · dA/dρ ·
δρ > 0, therefore [(dA/dρ)T · B · dA/dρ] is positive semi-definite, and the roots of quadratic form
of [(dA/dρ)T · B · dA/dρ] are contained in the nullspace of dA/dρ. Since the nullspace of dA/dρ is
also contained in the roots of quadratic form of [(dA/dρ)T · B · dA/dρ], the statement holds. Then
consider the linear form. For any δρ, if (dA/dρ)T · B · dA/dρ · δρ = 0, δρT · (dA/dρ)T · B · dA/dρ ·
δρ = 0, therefore the linear nullspace is contained in the roots of quadratic form. If δρ is in the
roots of quadratic form, it is a first-order flex, therefore being an element of the linear nullspace,
hence the statement holds.

Statement (2): Necessity: if a rigid origami is prestress stable, the quadratic form of a first-
order flex should be greater than 0; hence ωs · d2A/dρ2 is positive-definite when restricted to the
nullspace of dA/dρ.

Sufficiency: We will show that, if there exists a self-stress ωs such that ωs · d2A/dρ2 is
positive-definite when restricted to the nullspace of dA/dρ, by choosing a sufficiently large k,
K = (dA/dρ)T · B · dA/dρ + kωs · d2A/dρ2 would be positive-definite.

For any perturbation of folding angles δρ, if δρ is a first-order flex, for any k > 0, δρTKδρ > 0.
If δρ is not a first-order flex, suppose ||δρ|| = 1. Since this set is compact, there exists ε > 0
s.t. δρT · (dA/dρ)T · B · dA/dρ · ρ ≥ ε and we know δρT · ωs · d2A/dρ2 · δρ ≥ −||ωs · d2A/dρ2||,
then we can choose 0 < k < ε/||ωs · d2A/dρ2|| s.t. δρTKδρ > 0. Furthermore, consider ||δρ|| �= 1;
choosing the same k, δρTKδρ/||δρ||2 > 0.

Statement (3): Since a first-order flex ρ′ could be written as

ρ′ = [ρ′]a =
[
ρ′

1 ρ′
2 · · · ρ′

Nρ−rank(dA/dρ)

]
⎡
⎢⎢⎢⎢⎣

a1
a2
...

aNρ−rank(dA/dρ)

⎤
⎥⎥⎥⎥⎦ , (5.17)

this statement will hold from statement (2). �

Calculation of specific examples that are prestress stable but not first-order rigid are provided
in S3.3 of the electronic supplementary material. There is a general result for a rigid and planar
single-vertex, which refers to a rigid origami with only one inner vertex and no cycles. The proof
is given in S4 of the electronic supplementary material.

Proposition 5.5. A rigid planar single-vertex is prestress stable.
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Furthermore, any triangulated convex polyhedral surface (possibly with some properly placed
holes) is prestress stable [17]. This is drawn from the analysis of a ‘spider tensegrity’ and would
be applicable to rigid origami.

(e) Considering external load
When there is a load l(ρ) applied on a rigid origami, the above theory on stability could be
modified as below.

Definition 5.6. A rigid origami (ρ, λ) with Nv inner vertices, Nρ inner creases and Nc cycles is
stable under load l(ρ) if there is a positive-definite matrix B with size (3Nv + 6Nc) × (3Nv + 6Nc)
and a vector ω ∈ R

3Nv+6Nc such that

ω
dA
dρ

= l (5.18)

and

K = dA
dρ

T
B

dA
dρ

+ ω
d2A
dρ2 − dl

dρ
(5.19)

is positive-definite.

Proposition 5.7. A rigid origami (ρ, λ) is stable under load l(ρ) if, and only if, there exists a stress
ω ∈ R

3Nv+6Nc such that ω · d2A/dρ2 is positive-definite when restricted to the nullspace of dA/dρ.
Equivalently, a rigid origami is stable if, and only if, there exists a stress ω ∈ R

3Nv+6Nc such that all the
eigenvalues of [ρ′]T · ω · d2A/dρ2 · [ρ′] are positive. Here [ρ′] is a basis of the space of first-order flex in
equation (5.16).

Proof. From statement (2) of proposition 5.4, (ρ, λ) is stable if, and only if, there exists a stress
ω ∈ R

3Nv+6Nc such that ω · d2A/dρ2 − dl/dρ is positive-definite when restricted to the nullspace
of dA/dρ. Since a first-order flex ρ′ is orthogonal to l, the quadratic form ρ′ · dl/dρ · ρ = 0. �

Remark 5.8. In equation (5.19), the first term (dA/dρ)T · B · dA/dρ could be interpreted as the
material part of the stiffness matrix, which only relates to how the potential energy stored in a
rigid origami is defined, and is assumed to be semi positive-definite with nullspace as the space
of first-order flex. The second term ω · d2A/dρ2 shows how a load could possibly enhance or
reduce the stiffness. Furthermore, the third term −dl/dρ will change the restoring force but has
no effect on the stability.

An example showing how load would affect the stability is also given in S3.3 of the electronic
supplementary material.

6. Second-order rigidity
In this section, we will discuss the second-order rigidity and show its link with prestress stability.
For a rigid origami (ρ, λ), a first-order flex ρ′ is obtained by differentiating the independent
consistency constraint A(ρ) = 0. Similarly, a second-order flex (ρ′, ρ′′) satisfies the condition from
differentiating the consistency constraint twice.

Definition 6.1. For a rigid origami (ρ, λ) with Nv inner vertices, Nρ inner creases and Nc cycles,
a second-order flex (ρ′, ρ′′) ∈ (RNρ , RNρ ) satisfies (1 ≤ i ≤ 3Nv + 6Nc, 1 ≤ j, k ≤ Nρ )

∂Ai

∂ρj
ρ′

j = 0

and
∂2Ai

∂ρj∂ρk
ρ′

jρ
′
k + ∂Ai

∂ρj
ρ′′

j = 0.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(6.1)
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If written in a compact form,

dA
dρ

ρ′ = 0

and ρ′T d2A
dρ2 ρ′ + dA

dρ
ρ′′ = 0.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(6.2)

A second-order flex with ρ′ = 0 is called trivial, or otherwise non-trivial. If there is only trivial
second-order flex, this rigid origami is second-order rigid, or otherwise second-order rigid-foldable.

Proposition 6.2. Some statements concerning the second-order rigidity and prestress stability:

(1) If (ρ′, ρ′′) is a second-order flex and ρ′
0 is a first-order flex, (ρ′, ρ′′ + ρ′

0) is also a second-order
flex.

(2) A first-order flex ρ′ can be extended to a second-order flex ρ′′ if, and only if, for all self-stress ωs,
ρ′T[ωs · d2A/dρ2] ρ′ = 0.

(3) A rigid origami is second-order rigid if, and only if, for any first-order flex ρ′ there is a self-stress
ωs(ρ′) s.t., ρ′T[ωs · d2A/dρ2] ρ′ > 0.

(4) A rigid origami is second-order rigid if, and only if, the intersection of roots of quadratic form
of all [ρ′]T · ωi · d2A/dρ2 · [ρ′] is 0. Here {ωi} is a basis of self-stress (1 ≤ i ≤ 3Nv + 6Nc −
rank(dA/dρ)).

(5) A rigid origami is prestress stable if second-order rigid and rank(dA/dρ) = Nρ − 1 or
rank(dA/dρ) = 3Nv + 6Nc − 1.

Proof.

Statement (1): This can be verified directly from definition 6.1.
Statement (2): A first-order flex can be extended to a second-order flex if, and only if,
there exists a solution for the linear system below

dA
dρ

ρ′′ = −ρ′T d2A
dρ2 ρ′, (6.3)

i.e. that the vector (ρ′T · d2A/dρ2 · ρ′) lies in the column space of the matrix dA/dρ. Any
self-stress ωs lies in the left nullspace (the orthogonal complement of the column space)
of dA/dρ, and hence ωs(ρ′T · d2A/dρ2 · ρ′) = 0. The order of the first two terms in the
expression can be swapped without affecting the outcome, and hence the statement is
proved.
Statement (3): We know from the inverse negative of statement (2) that a rigid origami
is second-order rigid if, and only if, for any first order-flex ρ′ there is a self-stress ωs(ρ′)
such that ρ′T[ωs · d2A/dρ2] ρ′ �= 0. Either this quadratic form is positive, or it can be made
positive by replacing ωs with −ωs.
Statement (4): If a first-order flex ρ′ = [ρ′]a can be extended to a second-order flex,
a should be a quadratic root for every [ρ′]T · ωi · d2A/dρ2 · [ρ′] such that aT[ρ′]T · ωi ·
d2A/dρ2 · [ρ′]a = 0, which leads to this statement.
Statement (5): From statement (3), for any first-order flex ρ′ there is a self-stress ωs(ρ′)
such that ρ′T[ωs · d2A/dρ2] ρ′ > 0. If rank(dA/dρ) = Nρ − 1, the dimension of the space
of first-order flex is 1 and the nullspace of dA/dρ is cρ′

1, c ∈ R. The self-stress ωs(ρ′
1) will

stabilize this rigid origami since ρ′T[ωs(ρ′
1) · d2A/dρ2] ρ′ = c2ρ′T

1 [ωs(ρ′
1) · d2A/dρ2] ρ′

1 > 0.
Next, if the dimension of the space of self-stress is 1, denote this basis vector as ω1. If
this rigid origami is not prestress stable, there will exist a first-order flex ρ′ such that
for all choices of c, cρ′T[ω1 · d2A/dρ2] ρ′ ≤ 0. First, ρ′T[ω1 · d2A/dρ2] ρ′ �= 0 since the rigid
origami is second-order rigid. Second, by choosing c = ±1, cρ′T[ω1 · d2A/dρ2] ρ′ could be
greater than 0. These lead to a contradiction. �
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Remark 6.3. Prestress stability requires a single self-stress ω such that the quadratic form is
positive for every first-order flex, while the second-order rigidity requires a ‘suitable’ self-stress
ω(ρ′) for every first-order flex such that the quadratic form is positive. Physically, such a ω(ρ′)
‘blocks’ a possible second-order flex for a given first-order flex.

Remark 6.4. For a planar rigid origami, after defining a reciprocal diagram, the first- and
second-order rigid-foldability could be graphically explained as the existence, and the zero-area
property, of the reciprocal diagram [18–20].

An attempt to find a rigid origami that is second-order rigid but not prestress stable is provided
in S3.4 of the electronic supplementary material. Similar to a single-vertex in proposition 5.5, a
single-hole means a rigid origami with only one cycle and no inner vertices. Here, we conjecture
that (regular means the rigidity matrix has maximum rank):

Conjecture 6.5. A rigid but not regular single-hole is prestress stable.

7. Relation among different levels of rigidity
In this section, we will prove the relation among the rigidity discussed in the above sections and
which is illustrated in figure 1.

Theorem 7.1. The relation among first-order or static rigidity, prestress stability and second-order
rigidity.

(1) A rigid origami is prestress stable if first-order rigid or statically rigid.
(2) A rigid origami is second-order rigid if prestress stable.
(3) A rigid origami is rigid if second-order rigid.

Proof.

Statement (1): Set ωs = 0; the total stiffness K = (dA/dρ)T · B · dA/dρ is now positive-
definite.
Statement (2): If a rigid origami is prestress stable, for any first-order flex ρ′ there is a
uniform ωs such that ρ′T[ωs · d2A/dρ2] ρ′ > 0. From statement (3) of proposition 6.2, this
rigid origami is second-order rigid.
Statement (3): We need to prove that for rigid origami, a continuous flex implies
a second-order flex. This could be done by transferring the consistency constraint
A(ρ) = 0 to a polynomial system A(t) = 0 with the normalized folding angle description
t = tan (ρ/2), and we claim that the definitions on local rigidity are equivalent for these
two expressions (details are provided in S5 of the electronic supplementary material).
It turns out that a continuous flex is equivalent to an analytical flex in the normalized
folding angle description [8, §4]. Denote an analytical flex for a foldable rigid origami
starting from (t, λ) by γ : [0, 1] � s → {t}. This flex could be parametrized by a single s

γ = t +
∞∑

n=1

an

n!
sn, A(γ ) ≡ 0, (7.1)

where not all an = 0.

If a1 �= 0, as we know that

dA
ds

|s=0 = 0,
d2A
ds2 |s=0 = 0 (7.2)

then (a1, a2) would be a second-order flex satisfying equation (5.10).
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If a1 = 0, then as γ �= 0, there must be some first non-zero term ak. Then, as we know that

diA
dsi

|s=0 = 0, 1 ≤ i ≤ 2k, (7.3)

hence ak would be a first-order flex, and (ak, 2a2k/
(2k

k
)
) would be a second-order flex satisfying

equation (5.10). Here,
(2k

k
)

is the binomial coefficient. �

Note that none of the statements in theorem 7.1 are reversible. In S3.3 and S3.4 of the electronic
supplementary material, we show examples that are prestress stable but not first-order rigid. In
S3.5 of the electronic supplementary material, we show an example that is rigid but not second-
order rigid.

8. From local rigid-foldability to rigid-foldability
When studying the hierarchical relation described in theorem 7.1, it turns out that for some rigid
origami, different levels of rigidity might be equivalent. In particular, a first-order flex which will
not lead to crossing of panels might be extended to a continuous flex.

Proposition 8.1. Extension of local rigid-foldability for some special rigid origami. Recall that a rigid
origami is regular if the rigidity matrix has maximum rank.

(1) A regular rigid origami is rigid-foldable (allowing self-intersection) if first-order rigid-foldable.
(2) A single-vertex is rigid-foldable (allowing self-intersection) if not prestress stable.
(3) A planar quadrilateral mesh where each vertex is flat-foldable is at least second-order rigid-foldable.

Proof. Statement (1): Suppose there are Nv inner vertices, Nc cycles and Nρ inner creases. From
the Implicit Function Theorem [21], §8.5, at a neighbourhood of ρ, the folding angle space would
be a manifold with dimension Nρ − rank(dA/dρ) = Nρ − 3Nv − 6Nc > 0, hence there would be a
continuous flex starting from (ρ, λ).

Statement (2): For a non-planar single-vertex, it is regular, hence either first-order rigid or
rigid-foldable. For a planar single-vertex, from proposition 5.5, if not prestress stable it would
be rigid-foldable.

Statement (3): If each vertex of a planar quadrilateral mesh is flat-foldable, the relations among
the tangent of half of all the folding angles, shown in the consistency constraint, are linear, even
though this quadrilateral mesh might not be rigid-foldable [22]. Consider the normalized folding
angle description; the consistency constraint A(t) = 0 could be rewritten as a linear system A′(t) =
0 among t, hence the Hessian d2A′/dt2 is zero. Since a planar quadrilateral mesh is also first-order
rigid-foldable, it cannot be prestress stable or second-order rigid. �

A rigid but not second-order rigid example for statement (3) of proposition 8.1 is provided in
S3.5 of the electronic supplementary material, but the stress matrix ωs · d2A/dρ2 is not zero. An
explanation is that although A(t) = 0 is essentially a linear system with the special choice of sector
angles such that every vertex is flat-foldable, it would be in the form of a complicated polynomial
system consisting the square of linear relations, hence ωs · d2A/dρ2 is not zero. Furthermore, not
every first-order flex can be extended to a second-order flex in this example when choosing the
consistency constraint to be A(ρ) = 0. We claim that the conclusion on local rigidity should be
invariant to the choice of form of consistency constraint.

Proposition 8.1 opens a promising topic for a rigid origami; that is, to explore the level of local
rigidity and find whether some of these levels are in fact equivalent.

As stated in the introduction, when some folding angles are ±π , a first-order flex calculated
from the independent consistency constraint A(ρ) = 0 is extendable to a flex only when this first-
order flex induces angle change within [−π , π ]. Examples on this topic are provided in S3.6 of the
electronic supplementary material.
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9. Numerical methods for rigidity analysis
In this section, we will consider how to analyse the local rigidity for a rigid origami using
numerical methods when the size of dA/dρ is large. Several important questions are as follows:

(1) How do we determine the first-order rigidity of a rigid origami, or find the space of
first-order flex and self-stress?

(2) Will a given self-stress stabilize a rigid origami?
(3) How do we find the space of self-stress that can stabilize a rigid origami?
(4) Can a first-order flex be extended to a second-order flex?
(5) How do we find the space of first-order flex that can be extended to a second-order flex?

For question (1), if we know the position of each vertex, the direction vector of each inner
crease can be calculated directly, and the rigidity matrix dA/dρ in a global coordinate system can
be obtained by assigning entries for a sparse matrix. The next step is applying the singular value
decomposition to dA/dρ to find the information of rank, nullspace and left nullspace [23,24].

Question (2) is the forward problem of determining prestress stability. The Hessian d2A/dρ2

of a rigid origami can also be obtained by assigning entries for a sparse matrix if the position of
each vertex is known. With the information of the nullspace of dA/dρ calculated in (1), we need to
know the positive definiteness of [ρ′]T · ωs · d2A/dρ2 · [ρ′] from statement (3) of proposition 5.4,
which is symmetric. The eigenvalues and eigenvectors for a real, sparse and symmetric matrix
could be found, for instance, by the modified Lanczos algorithm [25,26].

Question (3) is the inverse problem of determining prestress stability. The space of self-stress
that can stabilize a rigid origami turns out to be an elliptic set. Suppose the basis of self-stress
is ωi

s (1 ≤ i ≤ 3Nv + 6Nc − rank(dA/dρ)), which is calculated in (1). Now the problem becomes
one of whether there is a linear combination of these 3Nv + 6Nc − rank(dA/dρ) real, sparse and
symmetric matrices [ρ′]T · ωi

s · d2A/dρ2 · [ρ′] that is positive-definite. This is a problem in semi-
definite programming that has been well-studied [27]. We could set this problem as

minimize dTc

s.t.
∑

ci[ρ
′]Tωi

s
d2A
dρ2 [ρ′] positive-definite,

where d ∈ R
n is a given vector that converges the solution set of c to be elliptic. Note that even if a

stabilizing self-stress ωs is found, the proof of existence of k is not constructive in proposition 5.4.
Other techniques need to be applied to determine how small k has to be.

Question (4) is the forward problem of determining second-order rigidity. From statement (2)
in proposition 6.2, the problem is to consider whether the given first-order flex ρ’ is in the roots
of quadratic form of every ωi

s · d2A/dρ2, which is calculated in (3). If not, ρ′ could be extended to
a second-order flex.

Question (5) is the inverse problem of determining second-order rigidity. The space of first-
order flex that can be extended to a second-order flex is also an elliptic system. From statement
(4) in proposition 6.2, we need to find the common root of the quadratic form for each [ρ′]T ·
ωi

s · d2A/dρ2 · [ρ′], where {ωi
s} is a basis of self-stress (1 ≤ i ≤ 3Nv + 6Nc − rank(dA/dρ)). Since

each [ρ′]T · ωi
s · d2A/dρ2 · [ρ′] is real and symmetric, we could write its eigenvalues as sj and its

orthonormal vectors as vj, (1 ≤ j ≤ Nρ − rank(dA/dρ)). If a is a root of the quadratic form,

a =
Nρ−rank(dA/dρ)∑

1

cjvj

and
Nρ−rank(dA/dρ)∑

1

c2
j sj = 0.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(9.1)
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That is to say, the square of coefficients c2 when a = ∑
cjvj should be orthogonal to the eigenvalues

s. The next step is to find the intersection of such 3Nv + 6Nc − rank(dA/dρ) solution space of
quadratic form for each basis vector of self-stress. For a large rigid origami, the computation
would be expensive.

10. Conclusion
We have shown that rigid origami can be advantageously analysed from a rigidity point of view.
This is an inversion of the usual focus on folding. Rather than considering when a paper can
be folded, we have examined various ways in which the design of an origami might prevent
folding. This article is a strong complement to classic rigidity theory with the rigid origami model,
where new forms of constraint, internal force and geometric error are elucidated. We think this
perspective will prove to be of further use in the development of novel folding patterns, or indeed
in the design of structures formed from origami where some rigidity is required.
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