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The emergence of additive manufacture (AM) for
metallic material enables components of near arbitrary
complexity to be produced. This has potential to
disrupt traditional engineering approaches. However,
metallic AM components exhibit greater levels
of variation in their geometric and mechanical
properties compared to standard components, which
is not yet well understood. This uncertainty poses
a fundamental barrier to potential users of the
material, since extensive post-manufacture testing
is currently required to ensure safety standards
are met. Taking an interdisciplinary approach that
combines probabilistic mechanics and uncertainty
quantification, we demonstrate that intrinsic variation
in AM steel can be well described by a generative
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statistical model that enables the quality of a design to be predicted before manufacture.
Specifically, the geometric variation in the material can be described by an anisotropic
spatial random field with oscillatory covariance structure, and the mechanical behaviour by a
stochastic anisotropic elasto-plastic material model. The fitted generative model is validated on
a held-out experimental dataset and our results underscore the need to combine both statistical
and physics-based modelling in the characterization of new AM steel products.

1. Introduction
Additive manufacturing (AM) technologies developed for metallic material present a rich vein
of opportunities in engineering [1], for example building fuel nozzles within jet engines [2],
air conditioning unit components and brackets within passenger compartments of airliners [3].
The automotive, medical and aerospace industries are anticipated to account for 84% of the
AM market by 2025 [4]. Of the emerging technologies for metallic AM, a prime candidate for
producing large-scale components is wire and arc additive manufacturing (WAAM), which is
part of the wider field of directed energy deposition (DED). This approach uses robotic arms
and arc welding tools, as shown in figure 1a, in such a way that the final object is formed
entirely from deposited weld material. WAAM allows for relatively high deposition rates (approx.
4 kg h−1), good structural integrity, and can be used to produce virtually unlimited part sizes [7],
as evidenced by the pedestrian bridge built by Dutch startup MX3D (figure 1b). WAAM is cheaper
than other metal AM processes, due to the use of standard off-the-shelf equipment, mature
technology, and low-cost wire feedstock [8], making it well-suited to cost-sensitive applications,
such as in the construction industry.

The finite precision of WAAM, combined with the complex thermal deformations that occur
during welding [9], means that the as-manufactured material properties of WAAM can be
considered to be uncertain/stochastic. This is apparent both in the geometry of the material,
which is heterogeneous with a banding structure clearly visible (figure 1c), and in the anisotropic
physical properties of the material, as shown in this paper (figure 6). The absence of an accurate
material characterization for WAAM precludes the use of standard techniques to search for an
optimal, resource-efficient design [10], since the performance of a component is intrinsically
stochastic and has yet to be accurately quantified. Moreover, the intrinsic variation in components
produced by WAAM currently requires that extensive post-manufacture testing is performed,
which limits the potential of this material. For example, the aforementioned pedestrian bridge
was subject to months of extensive testing by a subset of the authors [5].

The present paper removes the current barriers to manufacturing with WAAM, by reporting
the first statistical characterization of this novel material. Specifically, we develop a generative
statistical model that enables ensemble-based predictions of the performance of a stainless steel
WAAM component before it is manufactured.

Our inter-disciplinary approach is a synthesis of probabilistic mechanics [11], introducing
random variables into traditional finite element descriptions of mechanical behaviour, and
uncertainty quantification [12], where formal statistical inference techniques are used to derive
suitable distributions for the random variables involved. Probabilistic mechanical models are
usually posited or elicited [13,14], as opposed to being formally trained on a dataset; a key
innovation of our work is to use state-of-the-art methods from uncertainty quantification to train
a probabilistic mechanical model. Such a data-centric approach is essential, since changes to a
printing protocol have the potential to change the nature of variation in material properties,
requiring a new statistical characterization to be produced. The power to train probabilistic
mechanical models from data is therefore an essential prerequisite to unlocking the full potential
of WAAM, removing the main barrier between design and manufacturing with this material.

Previous attempts to characterize the performance of AM material have typically aimed
at explaining bulk properties (mechanical strength, fatigue strength, etc). These studies have
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(a) (b) (c)

Figure 1. (a) The three-dimensional printing protocol developed by MX3D uses a weld head attached to a robotic arm (image
by Joris Laarman, www.jorislaarman.com). (b) Pedestrian bridge manufactured using three-dimensional-printed steel [5]. (c)
Close-up of the geometric variation on the surface of the material [6]. (Online version in colour.)

generally used factorial experimental design based on standard error regression and analysis of
variance (or ANOVA) [15–19]. In parallel, extreme value theory has been deployed to analyse
the effects of porosity [20–22]. At the level of individual components, it is necessary to take
spatial dependence into account and for this, Gaussian random fields are most often used
[23–25]. Surface roughness has received attention [26], with several papers investigating the use
of compensation to allow creation of accurate shapes in the face of construction and discretization
errors, though current approaches focus on two-dimensional sections [27–29]. Control charts for
online surface quality control during the AM process have been developed [30,31]. Beyond AM,
the field of data-centric engineering has seen explosive growth [32], and there is now an impetus
to move away from traditional deterministic modelling approaches by, instead, creating models
and methodologies which combine traditional modelling of engineering materials and structures
with data science [33]. The role of machine learning in computational mechanics was reviewed by
Oishi & Yagawa [34]; references therein describe how data-centric approaches have been
developed for hyper-elastic materials, and extended to plasticity and other nonlinear or rate-
dependent mechanics [35], including crystal plasticity, which is particularly relevant to AM with
metallic material. An important distinction between previous work on AM and the present
work is that our model is both generative and independent of any particular design, meaning
that limited training data on one type of component may be sufficient to enable predictions for
performance of another, as yet unseen component.

The paper is structured as follows: generative statistical models are constructed for the variable
geometry and material properties of WAAM steel, respectively, in §§2 and 3. These models
are validated in §4, where they are used to predict the behaviour of a yet-to-be-manufactured
component. Conclusions, and implications for design and manufacture with WAAM steel, are
contained in §5.

2. Statistical modelling of material geometry
The geometry of WAAM steel depends on factors that are not easily measured or controlled,
motivating the treatment of material geometry as a random variable whose statistical properties
can in principle be described. Statistical descriptions of rough material are well established
[36], but these are mainly concerned with descriptive and regression-based methods [37–39] as
opposed to formal generative modelling [40] (i.e. simulations of the random variable representing
the geometry). In order to produce a finite-element-based prediction of the performance of a
component before it is manufactured, a formal generative model for the upper u(1) and lower
u(2) surface of the component is essential. In particular we note that this approach differs from
traditional stochastic models of thin-walled structures [41,42] since the outer and inner face are
neither assumed to be perfectly correlated (variable radius only) nor perfectly anti-correlated
(variable thickness only).

www.jorislaarman.com
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Figure 2. A model for geometric variation was constructed on a manifold M, representing the notional centre of the
component to be printed. This model consists of a bivariate stochastic partial differential equation (SPDE), whose solution is
a vector field u(x) defined on x ∈M, with coordinates u(1)(x) and u(2)(x) encoding the distance of the inside and outside faces
from the manifold. (Online version in colour.)

A design for a WAAM steel component can be described by a two-dimensional manifold,
M⊂ R

3, representing the centre line of the component to be printed (figure 2). To build a
generative model that is not specific to a particular choice of M, we exploit the mathematical
connection between Gaussian processes and stochastic partial differential equations (SPDEs),
which decouple the statistical properties of the random field from the manifold M on which
it is defined. Letting u(1) and u(2) denote the distance to the inside and outside faces, respectively,
from M, we consider the SPDE[

L(11)(x) L(12)(x)
L(21)(x) L(22)(x)

][
u(1)(x) − m(1)

u(2)(x) − m(2)

]
=
[

Z(1)(x)
Z(2)(x)

]
, x ∈M, (2.1)

whose solution [u(1), u(2)] describes a stochastic realization of the design, where a class of
models can be prescribed by different choices of the differential operators L(ij) and the driving
noise Z(i), i, j ∈ {1, 2}. In general, both the differential operators and the driving noise can
depend on parameters, denoted φ, which must be specified. The scalars m(i) > 0 represent the
mean displacement of surface i ∈ {1, 2} from the manifold M. For a discrete set of locations
x1, . . . , xn ∈M, the random vector u of length 2n, whose entries are u(i)(xj), is Gaussian
distributed with

p(u|φ) = det
(

Qφ

2π

)1/2

exp
(

−1
2
||Q1/2

φ (u − m)||22
)

, (2.2)

where the precision matrix Qφ is determined by the choice of differential operators L(ij) and
the driving noise Z(i), i, j ∈ {1, 2}, while the mean vector m has entries m(i) in coordinates
corresponding to u(i), i ∈ {1, 2}. Here, we make explicit the parameters φ of (2.1) that must be
specified. Thus (2.2) represents a generative statistical model for the geometry of WAAM steel.
The challenge is to identify suitable choices for the differential operators L(ij), the driving noise
Z(i), and the parameters φ that are most likely to have generated the training dataset u, described
next.
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(a) (b)

Figure 3. Laser scan of a three-dimensional-printed steel sheet. (a) Photograph of the hand-held scanning equipment. (b)
Orthographic projection of (a portion of) the scanned sheet, denoted a panel. The notional thickness of the panel is 3.5 mm.
(Observe a slight curvature in the notionally flat panel introduced by the residual stress.) (Online version in colour.)

(a) Training dataset
To train our generative statistical model for WAAM steel, six notionally flat panels of approximate
size 300 × 300 mm and a notional thickness of 3.5 mm were produced, using the experimental
protocol described in appendix A(a), with one such panel displayed in figure 3. The actual
geometry of the panel was recorded to 0.1 mm precision using a laser scanner. These data were
stored as a point cloud, with x = x1e1 + x2e2 + x3e3 used to denote an arbitrary point from the
dataset as a point in R

3. Using the data, convenient basis vectors e1, e2, e3 can be determined,
with respect to which the coordinates x1, x2, x3 are defined. To achieve this principal components
of the point cloud dataset are computed, with the direction of least variation taken to be equal to
the through-thickness direction e1. To align the panel in the e2 and e3 directions, a Gabor filter
[43] is used to determine the direction of maximal alignment of the visible layer structure with
e2. The final basis vector e3 is necessarily a unit vector orthogonal to e1 and e2 and represents
the direction in which layers of steel are added. After centring the dataset, x1 can be interpreted
as the height of the surface of the panel, relative to the notional midpoint of the thickness,
at the coordinate (x2, x3) ∈ [0, 300]2. Thus the manifold M, representing a panel in the training
dataset, is M= {(0, x2, x3) : 0 ≤ x2, x3 ≤ 300}. A regular d × d grid over M, with d = 300, was used
to determine the locations xi, i = 1, . . . , n, n = d2, at which the training dataset u, appearing in (2.2),
was constructed.

In order to model only those aspects of the geometry that are structurally relevant, two
‘nuisance’ aspects of the dataset need to be removed: (i) curvature due to residual stress in the
panel, and (ii) weld splatter. The pre-processing steps taken to remove (i) and (ii) from the dataset
are described in appendix A(b(i)).

(b) Methodology for model selection
A set of 12 candidate models (denoted A, B, . . . , L) of the form in (2.1) and (2.2) was constructed,
encoding combinations of geometric features that might be expected in WAAM steel, including
anisotropy, non-stationarity, degrees of smoothness and oscillatory behaviour. These 12 models
are defined by different choices for the differential operators L(ij) and the driving noise Z(i),
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with full details reserved for appendix A(b(ii)). To assess which combination of these geometric
features best describes WAAM steel, we first fitted each model to the training dataset and
then assessed goodness of fit in light of the complexity of each model. For training, maximum
likelihood was employed due to its relatively low computational cost (e.g. compared to cross
validation) and because it facilitates model selection under an Occam’s razor principle, via the
Akaike information criterion1 (AIC) [44]

AIC = 2 dim(φ̂) − 2 log p(u|φ̂), (2.3)

where φ̂ denotes the values of the parameters

φ̂ ∈ arg maxφ log p(u|φ), (2.4)

that maximize the likelihood of observing the training dataset. The AIC balances goodness of fit
with the complexity of the statistical model being fitted, with smaller AIC preferred. A difference
in AIC between two models (�AIC) of more than 10 implies that the model with the higher AIC
has relatively little support [45].

The data likelihood in (2.2) requires a computational cost of O(d6) to evaluate exactly, where
d describes the resolution of the d × d grid on which data were obtained, due to the need to
compute the determinant of the d2 × d2 precision matrix Qφ . This evidently becomes impractical
for all but the crudest resolutions d used to represent the dataset. To address this practical issue,
a Markov random field approximation [46] of the stochastic process is adopted, which permits a
sparse approximation to Qφ to be rapidly computed. The full details are contained in a separate
technical report [47], and are identical to the finite-element approach set out in Lindgren et al. [46]
which, in recent years, has become the standard approach to computation with spatially varying
Gaussian random fields.

To numerically approximate the maximizer φ̂ of the likelihood in (2.4), we exploit an iterative
numerical optimization method called ‘natural gradient ascent’ [48], that is

φ(i+1) = φ(i) + αF(φ(i))−1 ∂

∂φ
log p(u|φ(i)),

where φ(0) is an arbitrary initialization point, α > 0 is a user-specified ‘learning rate’ taken to be 1,
and F(φ) is the Fisher information matrix with (i, j)th entry

1
2

tr

(
Q−1

φ

∂Qφ

∂φi
Q−1

φ

∂Qφ

∂φj

)
.

The optimization algorithm terminates when the Euclidean norm of the natural gradient falls
below a specified threshold. The computation of F(φ) requires large dense matrices ∂Qφ/∂φi to be
computed [49], which is impractical given the high resolution of the dataset aimed at. Therefore, to
proceed, a surrogate likelihood p(ũ|φ) based on the subset ũ of the dataset consisting of the central
50 × 50 mm portion of each panel is constructed. This surrogate likelihood is maximized using
natural gradient ascent and the so-obtained value φ̃ is substituted back into the exact likelihood
when the AIC is computed. That is, φ̂ is replaced by φ̃ in (2.3). This procedure can alternatively be
motivated as a bespoke numerical optimization approach applied to the exact likelihood. Once
φ̃ has been found, further model-based computation can proceed with sparse precision matrices
(only). In particular, an ensemble of synthetic geometries can be readily simulated.

(c) Results
Figure 4a summarizes the model selection results, providing negative AIC values for each model
in turn. The results provide strong statistical evidence for the role of orthotropic covariance
structure (�AIC ≥ 2 × 104 when comparing orthotropic models against the corresponding

1The use of AIC over alternative information criteria is a moot point in this work, due to the overwhelming information
content in the dataset. That is to say, the use of alternative information criteria would not change our conclusion about the
‘best’ model.
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Figure 4. (a) Statistical model selection, based on the Akaike information criterion (AIC). (b) Examples of real and simulated
circular hollow sections are shown on the top row, whilst on the bottom row, a comparison of wall thickness distributions is
given. (Online version in colour.)

isotropic models; i.e. G versus A, H versus B, etc.), which is to be expected from the clearly
visible banding structure on the material as steel is sequentially deposited. There is no support
for spatially varying characteristic length scales perpendicular to the direction of the banding
(�AIC ≤ −2 × 105 when comparing the non-stationary models with spatially varying length
scales against the corresponding stationary models; e.g. D versus A). Additionally, the data
support smooth oscillatory driving noise (with globally constant periodicity) in the SPDE model
(�AIC ≥ 4 × 104 when comparing models with smooth oscillatory driving noise to those without
oscillations or driven by white noise; e.g. C versus A and B).

The model with the lowest AIC (i.e. model I) is selected and can be used to generate synthetic
geometries for general components, for example a circular hollow section (CHS) as shown
in figure 4b (top), where its surface can be compared to the surface of a corresponding real
component. These samples enable quantitative statistical predictions about geometric variation
in a WAAM steel CHS to be produced. As an illustration, the wall thickness of a CHS component
can be predicted from the ensemble of synthetic geometries; see figure 4b (bottom). The main
limitation of our SPDE model is that it implies a Gaussian distribution for the wall thickness,
whereas the real data displayed in figure 4b (bottom) is positively skewed. The reasons and
implications for this are discussed below in the context of stochastic FEM simulations of
the CHS.

3. Statistical modelling of material properties
To characterize the mechanical properties of WAAM steel independently from geometric
variation, a large WAAM steel plate was manufactured using the experimental protocol described
in appendix A(a), from which tensile coupons were cut and smoothed machined [50] at angles
θ = 0◦, 45◦ and 90◦, where θ is defined such that layers of steel were added in the 90◦ − θ direction
under the printing protocol. Two coupons for each orientation were tested according to the EN
ISO 6892-1 standard [51]. For each test, cross-sectional areas Ac of each coupon were measured,
while the testing machine measured the applied tensile load and a four-camera LaVision
digital image correlation (DIC) system calculated averaged surface strain from both sides of the
coupon.

Using these measurements, for each experiment, the longitudinal stress σL at eight equally
spaced longitudinal strain values εL between 0% and 0.8% are recorded. Each experimental test is
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modelled using a Ramberg–Osgood model [52],

εL = σL

EL(θ )
+ K

(
σL

σ0(θ )

)n
, (3.1)

where EL(θ ) and σ0(θ ) are the unknown longitudinal elastic modulus and yield strengths,
respectively, for a coupon with layers oriented at an angle θ , n is an unknown (scalar) hardening
exponent and K is a constant. Here, K is taken equal to 0.002 and, as a consequence, the yield
strength σ0 corresponds to the 0.2% proof stress, which is widely used to define the yield of metals
in the literature [50].

Collectively, by testing coupons over a range of angles, the Ramberg–Osgood model can be
used to define a general anisotropic homogeneous, elasto-plastic constitutive law under plane
stress conditions over all angles θ . In this contribution, the elastic part of the deformation is
consider to be transversely isotropic, parameterized by E1, E2, G12 and ν12, respectively, the elastic
moduli perpendicular and parallel to the build direction, a shear modulus and a Poisson ratio.
For the plastic response, Hill’s quadratic yield surface [53] is considered which, under plane
stress assumptions, is uniquely parameterized by three parameters (F, G, N). Post-yield, a simple
isotropic hardening rule is defined by the single exponent, n. The mathematical connection
between the Ramberg–Osgood model and the two-dimensional elasto-plastic material parameters
used in the structural scale calculations are provided in the appendix.

(a) Bayesian inference and computation
To infer the distribution of material parameters a Bayesian approach is used, such that a
generative model is obtained. All nine unknown parameters are collected into a single vector

ξ = [E1, E2, G12, ν12, σy(0◦), σy(90◦), σy(45◦), n, σe].

The data are represented in a vector d ∈ R
48, which contains eight evenly spaced strain values for

each of the six experiments from 0.1% up to 0.8% strain at given recorded values of stress. The
mapping between parameter values and data is defined by the forward map G(ξ ) : R

9 → R
48, and

permits the definition of a stochastic model

d = G(ξ ) + e.

Here, e is a random vector that represents measurement error, whose components are
independent and Gaussian with ei ∼ N(0, s2

e d2
i ), whereby the noise-to-signal parameter se is to

be learned, providing a quantitative measurement of uncertainty in both the data and the model
(i.e. allowing for mis-specification). Weakly informative prior distributions (informed by [6]) are
taken for each of the material parameters, with mean values

E1 = 154.0 GPa, E2 = 148.0 GPa, G12 = 222.6 GPa and ν = 0.3,

for the elastic properties, and

σ0(0◦) = 0.36 GPa, σ0(90◦) = 0.325 GPa, σ0(45◦) = 0.405 GPa and n = 12.9

for the plastic parameters. The posterior is numerically approximated using a Markov chain
Monte Carlo (MCMC) method; in particular, an adaptive Metropolis–Hastings algorithm [54],
implemented as a customized model in PyMC3.2 To obtain convergence diagnostics, four
independent chains were run for 24 000 iterations; all parameters obtained R̂ values of less than
1.02, suggesting the Markov chain had converged. The first 1000 iterations (from each chain)
were discarded as burn-in to eliminate the bias imposed by the starting positions of the chains.
The results of the MCMC simulations are summarized in the main text, while marginal posterior
distributions of parameters (alongside their priors) are given in figure 5.

2See https://docs.pymc.io.

https://docs.pymc.io.
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(b) Inferred material properties
Figure 6 provides a summary of the outputs of the MCMC computations, and table 1 gives the
posterior mean values and marginal standard deviations for each parameter. Figure 6a displays
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posterior samples, showing the implied distribution over stress–strain curves in relation to the
training dataset (solid dots). The two polar plots in figure 6b,c show posterior samples (green and
red) as well as the maximum a posteriori estimate of longitudinal elastic modulus and proof stress
over the sweep of possible build angles θ . Isotropic behaviour would be observed as a quarter
circle (constant radius) for both properties. For both elastic and yield properties, the posterior
samples clearly show an anisotropic material response.

The elastic anisotropy is a consequence of both the strong texture of the material (preferential
alignment of the crystals), and the manifestation of strong single crystal elastic (and plastic)
anisotropy of Fe at the macroscale.

(i) Strong material texture of WAAM

During the build, cubic metals like stainless steel grow epitaxially with the 〈100〉 type directions
tracking the direction of the highest thermal gradient during deposition, i.e. the build direction
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(b) Pole figures of the examined surface, showing strong texture, with preferential alignment of the crystals, within WAAM
steel. (Online version in colour.)

Table 1. Posterior summary statistics for parameters of the Ramberg–Osgood model, (A 3).

parameter (units) mean s.d. 3–97% interval

E1 (GPa) 154 8.42 139–170
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

E2 (GPa) 151 8.72 136–168
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

G12 (GPa) 108 7.95 93–123
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ν12 0.286 0.02 0.249–0.323
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

σ0(0◦) (MPa) 343 22.3 311–387
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

σ0(90◦) (MPa) 376 28.1 337–433
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

σ0(45◦) (MPa) 429 27.7 391–482
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

n 12.3 1.90 8.78–15.96
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

se (%) 0.82 0.18 0.5–1.15
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[55]. This is supported by figure 7a which shows the inverted pole figure map of a specimen
surface overlayed with cubic unit cells representing each grain orientation [50]. Long and
columnar grains are observed, with a preferential orientation along the build axis. The strong
texture can also be observed in 〈100〉, 〈110〉 and 〈111〉 pole figures (figure 7b), obtained through
conducted electron backscatter diffraction analysis (or EBSD analysis). The contours denote the
intensity of specific crystal orientation distributions that were observed.

(ii) Single crystal anisotropy

Austenitic steels exhibit strong single crystal anisotropy due to their face-centred cubic crystal
structure. This structure forms when a sufficient quantity of nickel (10%) is added to a 20%
chromium alloy. As a result, the elastic modulus along the build direction (90◦), and the
orthogonal direction (0◦) are approximately 155 GPa. At 45◦ to 〈100〉, the elastic modulus is much
higher, approximately 215 GPa, leading to a mean shear modulus G12 ∼ 108 GPa. This anisotropy
extends into full three-dimensional anisotropy, with the 〈111〉 being the stiffness direction [56].
Face-centred cubic Fe is also plastically anisotropic. The material exhibits the strongest directions
at 〈111〉 and 〈110〉 to the crystal directions. Both directions are near 45◦ to 〈100〉, supporting the
posterior estimates obtained with a mean proof stress for 45◦ coupons 429 MPa, while for 0◦ and
90◦ the lesser values of 343 MPa and 376 MPa, respectively, were obtained (table 1).

The inclusion of an unknown noise-to-signal parameter se in the likelihood helps to represent
uncertainty introduced not only by the fact that the experimental measurements are noisy, but
also because all models will, to some extent, be mis-specified. A posterior mean of se = 0.82% is
obtained, indicating a reasonable fit. It can be observed that se is most strongly correlated with
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proof stress values σ0(θ ), suggesting that the uncertainty in the model predictions is mostly driven
by the yield values.

4. Uncertainty propagation up the structural scales
The generative statistical models for geometric and mechanical variation in WAAM steel are
combined into a unified generative statistical model that treats these two sources of variation
as independent. However, it is a priori unclear whether these two sources of variation are
approximately independent or not, and the implication of this assumption will be discussed in
view of the results. To assess the predictive performance of this unified generative model, we
consider compressive cross-section testing of a CHS (figure 8). The axial compression of thin-
walled CHS is known to exhibit complicated stability behaviour [57]; this therefore provides
a realistic and challenging test for our generative model. In particular, no experimental data
from a CHS are used—all parameters are inferred from simpler tests at a lower structural
length scale.

(a) Stochastic finite-element model of circular hollow section
The statistical models described above are combined into a unified statistical model whose
instantiations can be realized in the finite-element software ABAQUS [58], in order that the
nominal design of a CHS can be endowed with realistic surface geometry and material properties
according to this unified statistical model.

A high-resolution finite-element model (FEM) of the CHS is constructed in ABAQUS [58],
using approximately 200 k quadratic, tetrahedral finite elements. The CHS has diameter 170 mm,
length 580 mm and notional thickness 3.5 mm. The output generates a load-displacement curve
as shown in figure 8c. Coupling the FEM to our unified generative model for geometric and
mechanical variation gives rise to a stochastic FEM model. As a baseline, an eigenvalue analysis
of the buckling perfect elastic system is also carried out.

To instantiate a sample from the unified statistical model, a notional CHS is first constructed
as a fine mesh in ABAQUS. From the set of nodal coordinates, nodes x(1)

i on the outer surface

and nodes x(2)
i on the inner surface of the CHS are identified. The SPDE description of the fitted

geometry model is used to generate a solution u(x(j)
i ) of the SPDE defined at each of the nodes x(j)

i .

The first component, u1(x(1)
i ), describes the amount that x(1)

i should be moved in the outward

normal direction n(x(1)
i ) to the nominal CHS, producing a displaced node y(1)

i . Similarly, the

second component, u2(x(2)
i ), describes the amount that x(2)

i should be moved in the inward normal
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direction −n(x(2)
i ) to a new node position y(2)

i , i.e.

y(1)
i = x(1)

i + u1(x(1)
i )n(x(1)

i ) and y(2)
i = x(1)

i − u2(x(2)
i )n(x(2)

i ).

In the ABAQUS input file, the original nodal coordinates x(j)
i are replaced with the deformed

coordinates y(j)
i generating a mesh of an imperfect CHS, with the original triangulation. Finally,

interior nodes in the fine mesh are re-positioned along the radial direction such that the interior
angles of the elements are approximately preserved.

In practice, to control the dimension of the Gauss–Markov approximation to the SPDE, an

intermediate step is included, wherein the SPDE is solved on a coarser mesh and the values uj(x
(j)
i )

of the solution on the fine mesh are obtained by interpolation from the coarser mesh. Interpolation
introduces a small amount of additional smoothing compared to the original solution of the
SPDE, but the resolution of the coarse mesh was taken to be 1 mm, which is expected to render
the impact of additional smoothing negligible at the level of the salient geometric variation of
WAAM steel.

ABAQUS provides a basic interface to define anisotropic elasto-plastic material models
defined by Hill’s criterion, as used in the material model above. Sampled random material
parameters, randomly drawn for the set of posterior samples generated in §3, can simply be
input into this FEM’s material model. In the experiment described, these are either constant
for the whole cylinder, or locally defined on a single element. For all computations, both
ends of the column are tied to a central reference point in their respective planes, and the
boundary conditions are applied to those reference points. The bottom of the column is defined
to be encastré (all degrees of freedom constrained to zero), whilst at the top of the cylinder
all degrees of freedom are constrained to zero, except the axial displacement (direction 3).
A quasi-static Riks analysis is used to solve the problem up to a compressive axial displacement
of 10 mm. From the solution outputs at each loading step, load-displacement curves can be
generated.

(b) Axial compression test results
The stochastic FEM produces load-displacement curves representing predictions for how a CHS
deforms under an axial compression test. The results are summarized (in blue) in figure 8c.
Figure 8a depicts two such realizations of the CHS (at the same compressive displacement,
� = 4.0 mm). Note that, due to the random geometric imperfections, post-buckled ‘dimples’
(not observed before loading) develop in different positions for each realization sampled. To
assess the quality of these statistical predictions, two physical tests of CHS were carried out [5]
and the experimental samples are depicted in figure 8b. The distribution of load-displacement
curves is roughly consistent with these two experimental tests. Since our generative model has
been trained only on limited data from flat panels and coupons, with no training data on CHS
used, these ball-park results are highly encouraging in the context of predicting the behaviour
of components that are yet to be manufactured. Moreover, the predicted deformed geometry in
figure 8a is characteristically similar to that observed in the experiments (figure 8b), with the clear
development of dimples at positions of localized plastic buckling.

The main differences in the distribution of simulated outputs compared with the experiments
is seen in (i) the initial stiffness and (ii) transition to failure. For the simulation, the load-
displacement response shows a sharp change in stiffness at the onset of plastic failure. In the
experiment, this transition is more gradual, typical of a buckling response with a more significant
geometric imperfection [57]. This is made apparent when the experimental curves are compared
to the fundamental path and buckling bifurcation points calculated for the perfect elastic system,
as shown by the dashed black line and circle in figure 8c.

Importantly, our generative model focuses on local geometric variation (only) in WAAM, while
larger imperfections introduced during manufacture of the CHS are not modelled. To account for
their effect, additional data on such macro-scale imperfections would be required. However, as a
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preliminary test to determine the importance of macro-scale imperfections, we apply the standard
engineering approach of adding a geometric imperfection in the form of the eigenmode associated
with the smallest computed eigenvalue of a ‘perfect’ elastic CHS. Guided by preliminary
measurements in Gardner et al. [5], a maximum imperfection amplitude of 2 mm is added to
the initial CHS geometry and the resulting load-displacement response is shown as the red curve
in figure 8c. The inclusion of a such an imperfection provides a pronounced de-stiffening effect
due to a localized buckling response, with better agreement at higher compressive displacements
(� = 6–8 mm) compared to the generative model. Finally, we highlight that our generative model
does not attempt to capture uncertainties introduced by the experimental test itself, such as
the uncertainties associated with true experimental boundary constraints and uniformity of
loading.

5. Conclusion: implications for design with three-dimensional-printed steel
Approximate predictions for the performance of a hypothetical component are a prerequisite
for efficient and low-cost design using WAAM. Our results demonstrate that relatively small
amounts of training data, gathered from tests at centimeter scales, can be exploited to
train a generative statistical model for AM steel, in turn enabling approximate predictions
of performance at higher structural length scales to be produced. Regarding safety-critical
certification, however, experimental testing at higher length scales remains imperative, since
predictive uncertainties at these length scales are still substantial (as evidenced by the predictive
uncertainty in figure 8c).

This study paves the way for future research exploiting stochastic simulation to identify
which aspects of performance at higher length scales are most uncertain, and to target more
expensive, large-scale tests in such a way that these remaining sources of uncertainty can be
minimized. Our generative model will be well-suited to this task, enabling the quantification
of (and distinguishing between) both epistemic uncertainty, due to the limited training data, and
aleatoric uncertainty, due to variation inherent to the printing protocol. Stochastic computational
pipelines are set to play a key role in minimizing the cost of certification of new structures
into service, given that even minor changes to printing protocols have the potential to change
the nature of variation in material properties on all structural scales, introducing additional
uncertainty that will need to be quantified.
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Appendix A

(a) Experimental protocol
For building the components that comprise the training dataset, wire of 1.0 mm diameter was
used while the employed welding speed and wire feed rate were 15–30 mm s−1 and 4–8 m min−1,



15

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A477:20210444

..........................................................

upper face lower face
6 mm

4 mm

2 mm

0 mm

2 mm

0 mm

–2 mm

–4 mm

upper face
detrended

lower face
detrended

6 mm

4 mm

2 mm

0 mm

2 mm

0 mm

–2 mm

–4 mm

Figure9. Digital removal of residual stress. The top rowdisplays unprocessedupper and lower surfaceheights aroundanotional
flat plane in R

3, for one panel in the dataset. Residual stress in the panel manifests itself as global curvature and is most
pronounced in the corner regions. The bottom row displays the same data after a quadratic trend was removed.

respectively. The employed shield gas was 98% AR and 2% CO2 at a flow rate of 10–20 l min−1,
the current and arc voltage of the deposition process were 100–140 A and 18–21 V, respectively,
while the deposition rate was between 0.5 and 2.0 kg h−1.

(b) Statistical modelling of material geometry
This appendix first describes how the data are pre-processed, then presents the 12 statistical
models that were considered.

(i) Data pre-processing

In order to model only those aspects of the geometry that are structurally relevant, two ‘nuisance’
aspects of the dataset need to be removed: (i) curvature due to residual stress in the panel, and (ii)
weld splatter.

The first issue arises because each panel was cut from a larger sheet of material. Consequently,
the residual stresses due to cooling of the material in the larger sheet are taken out of equilibrium
when the panel is removed. This causes the panel to be non-flat at equilibrium on the macro
scale, and manifests itself as a slight global curvature in the e1 direction of the panel. As our focus
was not on residual stress, a statistical pre-processing technique is used to detrend each panel
dataset. A quadratic surface (x1, x2, x3) �→ (s(x2, x3), x2, x3) is fitted to the full collection of points
in the laser scan dataset, and the fitted linear and quadratic terms s(x2, x3) are then subtracted
from every point; (x1, x2, x3) �→ (x1 − s(x2, x3), x2, x3); see figure 9. Although a quadratic fit leaves
some remaining global curvature in the dataset, it is considered to have negligible impact on the
subsequent analyses that we report.

The second issue occurs due to splattering of molten steel on lower layers during the
application of subsequent layers of material, and manifests itself as small beads of steel affixed to
the surface of the panel. Splatter is assumed to have negligible effect on engineering performance
of the material. Accordingly, to circumvent the need to specify a generative statistical model for
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between the top and middle rows, i.e. the splatter pattern that is being removed.

splatter, the dataset was digitally processed to remove instances of splatter. This was achieved by
noting that geometric variation due to splatter is characterized by higher-frequency information,
due to the localized nature of the splatter, such that it can be removed using a truncation
of the Fourier transform. Let gi,j = (gi, gj) denote the (i, j)th element of a uniform d × d grid

over the region [0, 300]2 of the e2-e3 plane and let H(1) and H(2) denote matrices whose (i, j)th
elements represent, respectively, the actual height of the front and rear faces of the panel,
based on the (quadratic detrended) laser scan dataset, at gi,j ∈ [0, 300]2. The entries of H(1)

and H(2) are computed by interpolating nearest neighbour data from the point cloud. A 1 mm
resolution is used when discretizing the dataset, to capture the salient geometric variation in
the material whilst controlling subsequent computational cost. Let Ĥ =F(H) denote the two-
dimensional Fourier transform of a matrix H. Our pre-processing step, denoted Ĥ �→ T (Ĥ), sets
to zero those entries of Ĥ corresponding to high-frequency modes ω = (ωi, ωj) with i or j larger
than Imax. Application of the inverse fast Fourier transform leads to a matrix F−1(T Ĥ) which
approximates the height of the face of the panel with splatter removed. The overall procedure
H �→ (F−1 ◦ T ◦ F)(H) is applied to both H(1) and H(2), leading to matrices that are denoted H̃(1)

and H̃(2). Here, Imax is manually selected to provide a good compromise between removal of
splatter and avoidance of smoothing of the relevant variation in the dataset (figure 10).

(ii) Candidate models

To capture the salient features of the dataset a selection of candidate models is constructed,
each model based on a Gaussian process and characterized by its precision matrix Qφ . To this
end, we exploited the relationship between Gaussian processes and SPDEs [46]. In particular,
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we considered a coupled system of SPDEs [59,60] of the form in (2.1), together with Neumann
boundary conditions on the boundary of M, where L(ij) are differential operators to be specified
and Z(i) are independent stochastic processes driving the system of SPDEs, also to be specified.
The parameter φ represents any degrees of freedom that must be specified, either in the operators
L(r,s) or in the noise process Z(r). The candidate models are now described.

Isotropic stationary modelL(ij) (used in modelsA,B,C)

Our simplest model has the form

L(ij)u(j)(x) = (η(ij) − �)(τ (ij)u(j)(x)),

where � denotes the Laplacian on M. Here, η(ij), τ (ij) > 0, (η(ij))−1/2 can be viewed as a length-scale
parameter for u(j) and (τ (ij))−1 can be viewed as a scale parameter controlling the magnitude of the
values of u(j). It is assumed that η(12) = η(21), τ (12) = τ (21), η(11) = η(22) and τ (11) = τ (22), reflecting
the hypothesis that the statistical properties of the front and rear faces are expected to be similar.
There are thus 4 d.f. in the differential operators L(ij) to be estimated: φ = {τ (11), τ (12), η(11), η(12)}.

The role of the Laplacian, as a second-order differential operator, reflects the hypothesis that
the surface is somewhat rough, typically having first derivatives that are mean square integrable
and no higher derivatives when the driving noise Z(i) is standard white noise. (Models with
additional smoothness are considered in the sequel.)

Anisotropic stationary modelL(ij) (used in modelsG,H,I)

The WAAM process introduces clear banding, which indicates that an isotropic model may be
inappropriate to describe the geometric variation in the material. The simplest non-isotropic
model considered is the orthotropic stochastic process model, which takes the form

L(ij)u(j)(x) = (η(ij) − ∇ · H(ij)∇)(τ (ij)u(j)(x)),

for a diagonal positive definite matrix H(ij) to be specified. The model is again driven by a
standard white noise process Z(i) and H(ij) = H for a fixed matrix H = diag(h1, h2, h3) for all
ij ∈ {1, 2}, reflecting the assumption that the statistical properties of the front and the rear surface
are considered to be identical. Furthermore, h1 and h2 are assumed to be equal, to reflect the fact
that a general component will have no preferred orientation in the e1-e2 plane, but the e3 direction
is distinguished as the direction in which the layers are added.

Non-stationary modelL(ij) (used in modelsD,E,F,J,K,L)

To allow for the possibility that the statistical properties of the material geometry are non-
stationary, the introduction of spatially dependent coefficients η(ij), τ (ij) into the differential
operator is also considered. The isotropic model, for example, becomes

L(ij)u(j)(x) = (η(ij)(x) − �)(τ (ij)(x)u(j)(x)),

and the anisotropic model is similarly modified. It is not clear how one can usefully parametrize
functions η(ij)(·) and τ (ij)(·) in general, since any parametrization will be specific to the coordinate
system of M in which the data are defined. However, recognizing that the e3 direction is
distinguished as the direction perpendicular to the weld bands, it is possible to consider
functions of the form x �→ η(ij)(x3) and τ (ij)(x3) only, and still retain the ability to generalize across
different manifolds, representing different components that could be produced. For this paper,
we considered a representation of these functions of the form

η(ij)(x3) = cη

⎛
⎝1 +

4∑
k=1

1∑
l=0

γ
η

k,l sin
(

2πk
100

x3 + lπ
4

)⎞⎠ ,

and similarly for τ (ij). Thus we must estimate in addition the parameters cη, cτ , γ
η

k,l and γ τ
k,l, k ∈

{1, 2, 3, 4}, l ∈ {0, 1}.
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White noise model Z (i) (used in modelsA,D,G,J)

Here, each Z(r) is an independent standard white noise process on M (i.e. a generalized random
field).

Smoother noise model Z (i) (used in modelsB,E,H,K)

Replacing the driving noise process Z(r) by a smoother process leads to a smoother model for
geometric variation in the material. The smoother model that we considered for the driving noise
Z(r) takes the form

(η(r) − ∇ · H∇)Z(r)(x) = W(r)(x), (A 1)

where W(r) is a standard white noise process on M and this SPDE is equipped with Neumann
boundary conditions on the boundary of M. In the isotropic case, we take H = I, otherwise
we take H = diag(h1, h1, h3) as previously described. The use of smoother noise introduces an
additional parameter η(r) > 0 to be estimated. Note that, by substituting equation (A 1) into
equation (2.1), these smoother models can be viewed as a fourth-order SPDE driven by white
noise [46].

Smooth oscillatory noise model Z (i) (used in modelsC,F,I,L)

Finally, the smoother model is extended to include in addition an oscillatory component. This is
achieved [46] by replacing equation (A1) with

(ηeiπϑ − ∇ · H∇)[Z(1)(x) + iZ(2)(x)] = W(1)(x) + iW(2)(x), (A 2)

where again W(r) is a standard white noise process on M and this SPDE is equipped with
Neumann boundary conditions on the boundary of M. The real and imaginary parts, Z(1) and
Z(2), of equation (A 2) can be shown to be independent and can be used as the driving noise
processes in the SPDE. In the isotropic case, we take H = I, otherwise we take H = diag(h1, h1, h3)
as previously described. The use of a smooth oscillatory model introduces the two parameters
η > 0 and ϑ ∈ [0, 1) to be estimated.

(iii) Negating of boundary effects

Neumann conditions on the boundary of M are known to introduce artefacts; essentially
boundary regions are associated with higher variance [61]. This is undesirable, since there is no
specific reason to expect the boundary of M to be more variable compared to the interior of M.
It has, however, been shown that the influence of boundary conditions vanishes exponentially
quickly in the distance from the boundary [62]. To avoid such artefacts, in this paper, we work
with panel data from the central region [25, 275]2 of the domain [0, 300]2 only and, in our
experiments with the CHS, we extend the cylindrical manifold by 20 mm on either end.

(c) Plane-stress elasto-plastic model
Consider a coupon which occupies the domain Ω ∈ R

3, with global coordinate system (x, y, z) ∈
R

3, alongside a local coordinate system (x1, x2, x3) ∈ R
3. Here, the local coordinate x1 is parallel to

the layering at an angle θ to the global x axis, x2 is the build direction and x3 ≡ z is normal to the
plane of the coupon.

For each experiment with a layer orientation θ to the horizontal axis x, the experiments provide
longitudinal stress values σL ≡ σy at given values of longitudinal strains εL ≡ εy. The connection
from this experimental data to global material parameters/properties is a two-stage process.
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Each experiment is modelled using a one-dimensional Ramberg–Osgood model,

εL = σL

EL(θ )
+ K

(
σL

σ0(θ )

)n
. (A 3)

This model is defined by three parameters EL(θ ), σ0(θ ) and n, where K is taken to be the fixed
constant 0.02. In modelling the overall material, since the z dimension is relatively thin, plane-
stress assumptions are imposed. In this section, the connection is set out between the independent
Ramberg–Osgood parameters to 8 global material parameters, which are made up of 4 elastic
material parameters E1, E2, G12 and ν12, three independent stress factors F, G and N which define
the onset of yield and a single (θ independent) hardening parameter, n.

The transversely anisotropic elastic properties of the material are defined uniquely by four
parameters E1, E2, G12 and ν12. The connection between local stresses and strains are defined by
the compliance or stiffness matrices, given by

S =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1
E1

−ν12

E2
0

−ν12

E2

1
E2

0

0 0
1

2G12

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

and C = S−1, (A 4)

respectively. Our controlled data from the experiments are measure values of stress in the
longitudinal direction σy ≡ σL at known longitudinal strain values εy ≡ εL. For the experimental
set-up, the applied values of σx and τxy are both zero. The resulting global strains, in global
coordinates, can be calculated by rotating local coordinate properties by the layer orientation θ ,
so that ⎡

⎢⎣ εx

εy

γxy

⎤
⎥⎦= T−1ST

⎡
⎢⎣ 0

σy

0

⎤
⎥⎦ where T =

⎡
⎢⎣ c2 s2 2sc

s2 c2 −2sc
−sc sc c

⎤
⎥⎦ , (A 5)

where c = cos(θ ) and s = sin(θ ). From this relationship, it follows that the elastic stiffness matrix

in global coordinates is Ĉ = Ŝ
−1

, whereby the longitudinal stiffness (the stiffness connecting
longitudinal strains and stresses) is given by the entry Ĉ22 = EL. This relationship provides a
direct-mapping between material parameters E1, E2, G12 and ν12 and the observed/controlled
parameters θ and EL. In general, the inverse of this map is ill-posed. However, in our setting
data from experiments at multiple angles are available, enabling all parameters to in principle be
identified.

The anisotropic yield response of the material is modelled with a classical Hill’s potential
function [53], which is defined by the yield surface as a functional of the local stress tensor σ

such that

f (σ ) =
√

Fσ 2
22 + Gσ 2

11 + H(σ11 − σ22)2 + 2Nτ 2
12, where σ = σ0(θ )T

⎡
⎢⎣0

1
0

⎤
⎥⎦ .

The onset of yield is the scalar value σ0(θ ) at which f (σ ) = 1. Under plane stress assumptions the
connection between the yield strength of 0◦, 90◦ and 45◦ coupons and the coefficients F, G, H and
N are as follows:

F = 1
2

1
σy(90◦)2 , H = F, G = 1

σy(0◦)2 − F and N = 2
σy(45◦)2 − 1

2
(F + G). (A 6)

For the hardening exponent n in the Ramberg–Osgood model, a single value across all
experiments is inferred.
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