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Abstract

Purpose

To evaluate the predictive ability of a deep learning-based algorithm to determine long-term

best-corrected distance visual acuity (BCVA) outcomes in neovascular age-related macular

degeneration (nARMD) patients using baseline swept-source optical coherence tomogra-

phy (SS-OCT) and OCT-angiography (OCT-A) data.

Methods

In this phase IV, retrospective, proof of concept, single center study, SS-OCT data from 17

previously treated nARMD eyes was used to assess retinal layer thicknesses, as well as

quantify intraretinal fluid (IRF), subretinal fluid (SRF), and serous pigment epithelium

detachments (PEDs) using a novel deep learning-based, macular fluid segmentation algo-

rithm. Baseline OCT and OCT-A morphological features and fluid measurements were cor-

related using the Pearson correlation coefficient (PCC) to changes in BCVA from baseline

to week 52.

Results

Total retinal fluid (IRF, SRF and PED) volume at baseline had the strongest correlation to

improvement in BCVA at month 12 (PCC = 0.652, p = 0.005). Fluid was subsequently sub-

categorized into IRF, SRF and PED, with PED volume having the next highest correlation

(PCC = 0.648, p = 0.005) to BCVA improvement. Average total retinal thickness in isolation

demonstrated poor correlation (PCC = 0.334, p = 0.189). When two features, mean choroi-

dal neovascular membranes (CNVM) size and total fluid volume, were combined and corre-

lated with visual outcomes, the highest correlation increased to PCC = 0.695 (p = 0.002).
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Conclusions

In isolation, total fluid volume most closely correlates with change in BCVA values between

baseline and week 52. In combination with complimentary information from OCT-A, an

improvement in the linear correlation score was observed. Average total retinal thickness

provided a lower correlation, and thus provides a lower predictive outcome than alternative

metrics assessed. Clinically, a machine-learning approach to analyzing fluid metrics in com-

bination with lesion size may provide an advantage in personalizing therapy and predicting

BCVA outcomes at week 52.

Introduction

Age-related macular degeneration (ARMD) remains the leading cause of blindness worldwide,

with the prevalence expected to rise to 288 million by 2040 [1]. The mainstay of treatment for

neovascular ARMD (nARMD) remains anti-vascular endothelial growth factor (VEGF) intra-

vitreal injections due to the high efficacy and tolerable safety profile demonstrated in clinical

trials [2, 3]. A recent meta-analysis found an overall increase of 7.37 letters in best corrected

visual acuity (BCVA) at 1-year following intravitreal aflibercept treatment [4]. BCVA remains

the most robust prognostic consideration in nARMD treatment trials [5]. Optical coherence

tomography (OCT) imaging has allowed for anatomical assessment and correlation to treat-

ment progression [6]. However, measurements used in initial pivotal clinical trials, such as

central subfield thickness (CST), have recently demonstrated poor correlation to BCVA out-

comes [7]. Fluid analysis of intraretinal cystoid fluid (IRF), subretinal fluid (SRF) and pig-

ment-epithelial detachments (PED) have demonstrated promise in predicting functional

deficits in nARMD, but currently lack consistent correlative results [8]. With patient demand

increasing for accurate predictions in treatment outcomes, more diverse imaging biomarkers

are crucial for providing accurate prognostic information.

Optical coherence tomography angiography (OCT-A) has revealed further retinal anatomi-

cal and vascular structures to track nARMD progression [9]. Our 2021 proof of concept CAN-

ADA trial demonstrated significantly improved choroidal neovascularization membrane

(CNVM) size identification for nARMD treatment monitoring through OCT-A [10]. How-

ever, fluid volume metrics and delineation of unique fluid characterization required extensive

manual segmentation and demonstrated poor acquisition of real-time values [10]. It was

hypothesized that artificial intelligence (AI) would improve image segmentation, ultimately

providing better personalized therapy.

Machine learning has bridged the gap in OCT imaging interpretation of biomarkers and

nARMD disease monitoring. Rohm et al. in 2018 found that deep learning networks showed

good visual predictions at 3-months following anti-VEGF treatment for nARMD [11]. Schlegl

et al. in 2018 found deep learning networks in OCT imaging analysis led to excellent accuracy

in retinal fluid type detection and segmentation for a variety of exudative disease processes

[12]. Schmidt-Erfurth et al. in 2018 concluded that machine learning analysis of OCT images

correlated with horizontal extension of IRF to final BCVA [13]. The Protocol T team also dem-

onstrated automated segmentation of fluid on OCT imaging in diabetic macular edema

patients through deep learning algorithms and concluded that SRF was associated with poor

pre-treatment vision and positive anti-VEGF response [14].

While AI models have postulated promise in OCT fluid segmentation and have demon-

strated predictive value in anti-VEGF treatment outcomes, there are currently no trials
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demonstrating machine learning with swept-source OCT images in concordance with OCT-A

analysis for nARMD patients. Therefore, our study was conducted as a follow-up, phase IV,

proof-of-concept trial to evaluate a novel deep learning algorithm to determine BCVA out-

comes in nARMD patients using both OCT and OCT-A imaging.

Methods

Study design

Patients who previously completed the CANADA study were enrolled in this phase IV, retro-

spective, open-label proof-of-concept study. Analysis, as part of this study, began in July 2020

and ended in December 2020. The selection of participants for the CANADA study has been

previously reported [10]. Twenty-three patients (25 eyes) completed the CANADA study and

were enrolled into this study. No additional recruitment was performed as part of this study.

This study was approved by the Institutional Review Board of Advarra and followed the tenets

of the Declaration of Helsinki. Written informed consent was obtained from all participants

and was in accordance with current ICH/GCP guidelines, section 4.8.10.

Inclusion and exclusion criteria

The key inclusion criteria were: (1)� 25 years of age; (2) diagnosis of nARMD; (3) treatment

naïve and (4) previously enrolled in the CANADA study. Exclusion criteria included patients

with uncontrolled systemic hypertension or thromboembolic events (stroke, transient ische-

mic attack, myocardial infarction) within 6 months from baseline, ocular conditions affecting

visual acuity besides nARMD (i.e. amblyopia, ischemic optic neuropathy, clinical significant

diabetic macular edema, severe non-proliferative diabetic retinopathy, glaucoma, retinal

detachment, retinal dystrophies, other retinal degenerations), ocular or periocular infection or

active intraocular inflammation, hypersensitivity to aflibercept or any ingredient in the formu-

lation, previous ocular surgery (including cataract extraction or YAG capsulotomy) within 3

months from baseline, planned ocular surgery throughout the study or previous treatments of

laser photocoagulation or intravitreal anti-VEGF or steroid treatments. Pregnant women,

nursing women, or patients unwilling to provide informed consent were also excluded.

Visits and treatment

Participants were not treated as part of the ONTARIO study; however, participants were

enrolled from the CANADA study where they were treated with initial 3 monthly injections

(loading phase) of intravitreal aflibercept 2 mg at baseline, month 1 and month 2, then every

other month for a total of 12 months (52 weeks).

Imaging

As part of the CANADA study, all patients underwent SS-OCT-A testing using the Topcon

Triton Swept Source OCT (Tokyo, Japan) to identify CST and lesion size at baseline [10]. The

SS-OCT-A system has a scanning speed of 100,000 A-scans per second and utilizes a wave-

length-sweeping laser, with a central wavelength of 1,050 nm wavelength and a sweeping

range of approximately 100 nm [15]. The OCT-A B-scans were manually segmented into 6

slabs: vitreous, superficial, outer retina (OR), full macula, deep and choriocapillaris (CC).

CNVM lesion size measurements were manually performed (SS and AP) and utilized the OR

and CC slabs of 6 mm x 6mm OCT-A scans. OCT-A scans with a signal to noise ratio of<7

were excluded from the study.
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Baseline 7 mm x 7 mm 3D macula volume scans containing 512 A-scans and 256 B-scans

were segmented using a prototype version of the Orion software (Voxeleron LLC, San Fran-

cisco, USA). This performs layer segmentation as a pre-processing step to fluid segmentation

that uses a deep learning-based algorithm. Performance of the fluid segmentation has previ-

ously been validated relative to two expert graders (SS and JO) [10].

Deep learning algorithm

A deep learning-based algorithm was implemented to segment fluid regions within each OCT-

volume. As reported previously, the method takes each OCT B-scan as input, and a segmenta-

tion mask is generated automatically using Orion software (San Francisco, CA, USA) [16, 17].

The deep learning architecture used for first the training, and subsequently the testing, was

that of U-Net, which is a version of the autoencoder that uses skip connections to better main-

tain detail across different scales [18, 19]. U-Net uses three encoding/decoding levels, and

learning was based on minimizing the model’s loss, where the loss function combines categori-

cal cross entropy (CCE) and a weighted Dice similarity coefficient (DSC) (Fig 1).

Statistical analysis

All data are presented as either mean or mean ± SD. The BCVA was converted to the loga-

rithm of the minimum angle of resolution (logMAR) for statistical purposes. Counting fingers

vision was given a value of 1.85, and hand motions vision was given a value of 2.30 [20]. Statis-

tical analysis was performed within Matlab (Natwick, MA, USA) and Excel (Microsoft, Red-

mond, WA, USA). Pearson’s Correlation Coefficient (PCC) was used to quantify the

correlation between (i) BCVA and fluid volume and (ii) BCVA and CNVM lesion size. A P-

value of<0.05 was considered statistically significant. Pre-specified statistical analysis

included: (1) correlation between BCVA and fluid volume at baseline and (2) correlation

between BCVA and mean CNVM lesion size (mm2) at baseline.

Results

Patient characteristics

Fluid segmentation training. Twenty-three patients (25 eyes) completed the CANADA

study and were enrolled in this subsequent study. One patient was excluded based on image

quality and subsequent layer segmentation issues. Therefore, the final cohort consisted of 22

patients (24 eyes). The average age of the patients was 76 years (range 48–89 years). Fifteen of

the 22 treated patients were female and 7 of the 22 treated patients were male. Fifteen of the 24

Fig 1. Each (A) SS-OCT volume scan is first automatically segmented using Orion into 8 retinal interfaces. This

results in (B) 7 layers that can be encoded into image form and used as an additional channel in model creation, thus

encoding spatial information regarding the location of (C) fluid within the retina.

https://doi.org/10.1371/journal.pone.0262111.g001
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eyes were pseudophakic and 2 of 24 eyes were phakic at baseline and were pseudophakic at

week 52. For the entire cohort, the mean BCVA at baseline was 20/125 and improved to 20/80

by week 52 (p<0.001).

Twenty-two SS-OCT volumes of the macula, comprising 5,632 images from the 22

nARMD subjects in the final cohort, were used to quantify IRF, SRF and fluid in serous PEDs.

Assessment used 10-fold cross-validation, where each fold ensured no subject eye data was in

both the training and testing data. In each fold, the training set used data augmentation such

that one volume, comprising 256 B-scans, was replicated six times using random scaling, rota-

tions and shifting. Given these were large input volumes and a heterogeneous input data set,

the reported validation compared excellently to manual segmentations. Results showed strong

correlation in all fluid volumes between the algorithm and the manually labeled data [17].

Predictive analysis subgroup. OCT-A analysis was performed as part of the CANADA

study to determine the mean CNVM lesion size (μm2). Of the final cohort of 22 patients (24

eyes) used in the fluid segmentation, 17 patients (18 eyes) had OCT-A data due to data or seg-

mentation issues in 5 patients [10]. There were no serious adverse events throughout the course

of the study. The mean age in this subgroup was consistent with the full cohort at 79 years (±
7.02). The mean BCVA at baseline was 20/125 and increased to 20/80 by week 52 (p = 0.0141).

Fluid analysis

Total fluid volume at baseline and change in logMAR at month 12 relative to baseline had the

closest correlation (PCC = 0.652, p = 0.005) (Table 1). Fluid was subsequently sub-categorized

into IRF, SRF and PED, with PED volume having the next highest correlation (PCC = 0.648,

p = 0.005). Average total retinal thickness in isolation gave a lower correlation (PCC = 0.334,

p = 0.189), and mean CNVM size (um2) from 3 mm OCT-A scans was very low (PCC = 0.072,

p = 0.784). When two features were combined and correlated with visual outcomes, the best

correlation increased to PCC = 0.695 (p = 0.002) using mean CNVM size and total fluid vol-

ume (Table 2).

Bland-Altman plots were used to assess the differences in agreement. In looking at the lim-

its of agreement (LOA) in the Bland-Altman plots, we can evaluate the bias between the mean

differences. Fig 2 indicates narrow limits of agreement for both IRF and SRF. Fluid due to

PED, however, shows wide LOA.

Discussion

The use of AI to automate the analysis of ocular images and allow quantification of retinal bio-

markers has increased in popularity globally. Previous studies in nARMD have used spectral

Table 1. The top 10 correlating features to logMar change when ranked based on PCC.

Feature 1 Pearson’s Correlation Coefficient p-value

Total Fluid 0.6521 0.0046

PED 0.6481 0.0049

SRF 0.4824 0.0499

6 mm average CST 0.3344 0.1895

Density map–central–% 6 mm 0.3241 0.2045

6 mm inferior CST 0.3174 0.2145

6 mm nasal 0.3122 0.2225

6 mm temporal 0.2820 0.2728

Density map–superior–% 6 mm 0.2522 0.3288

6 mm superior 0.2108 0.4168

https://doi.org/10.1371/journal.pone.0262111.t001
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domain OCT (SD-OCT) to quantify fluid and used this data to predict BCVA outcomes [13].

Our study is the first to use an automated approach to segment and quantify retinal fluid in

SS-OCT scans, using a novel deep learning algorithm, and combine these findings with manual

OCT-A segmentation to predict BCVA outcomes at month 12. This approach showed a close

correlation between total fluid volume and change in BCVA values between baseline and week

52, which was strengthened when combined with complimentary information from OCT-A.

Associating structural parameters derived from OCT data to functional outcomes has been

a mainstay of clinical OCT since the ground-breaking PrONTO study [21]. Developments first

in image processing techniques, and now based on deep learning, have advanced structural

metrics far beyond overall retinal thickness as used in the PrONTO study. In taking advantage

of such methods, we see different structure-function relationships that may be more relevant

to disease type and treatment plans. In a clinical setting, it is not feasible to manually define

such metrics, hence the relevance of automatic processing using AI-based methods, which

allows precise outcomes without the need for manual, laborious delineation (Fig 1).

Correlation in isolation provides no information about the differences in agreement and

thus additional plots need to be employed [22]. In this study, we used Bland-Altman plots to

assess the limits of agreement (LOA). A wide LOA, as seen with fluid due to PED, is inter-

preted to be related to the challenge in delineating PEDs containing mostly fluid and those

containing tissue. It is challenging for the grader to be consistent in their labelling, which

results in larger discrepancies in the data, as evidenced in this plot.

The use of swept-source scans has the potential to increase the precision and recall of our

automated algorithm as swept-source devices use a narrower wavelength of light and captures

100,000 A-scans per second, rather than ~68,000 A-scans that are captured by SD-OCT devices

[23]. The increase in scans frequency allows for quicker image acquisition and denser scan pat-

terns at wider fields of view than standard SD-OCT [24, 25]. This is clinically significant as it

can reduce motion in the data as well as patient imaging time, improving both the quality of the

data as well as the patient experience. SS-OCT and SS-OCT-A data provides extensive volumet-

ric information and the use of AI-coupled SS-OCT-A, has the potential to become the first-line

diagnostic tool in nARMD [26]. A further advantage of the SS-OCT devices is that the longer

wavelength of the light source allows for deeper penetration of the choroid, resolving choroidal

structures relevant to several sight-threatening diseases. Deep learning algorithms, that harness

SS-OCT’s ability to penetrate the choroid, have already been developed and can segment the

choroidal-scleral boundary to quantify choroidal volume [27, 28].

Due to its historical use in clinical trials, CST is currently used extensively for assessing

treatment response and determining the next treatment date [2, 29]. The discrepancy between

Table 2. The top 10 pairwise correlating features to logMar change when ranked based on PCC.

Feature 1 Feature 2 Pearson’s Correlation Coefficient p-value

CNVM Mean size (μm2)– 3 mm OCTA Total Fluid 0.6951 0.0099

PED IRF 0.6752 0.0141

CNVM Mean size (μm2)– 6 mm OCTA Total Fluid 0.6751 0.0141

CNVM Mean size (μm2)– 3 mm OCTA PED 0.6721 0.0149

Total Fluid SRF 0.6690 0.0157

Density map–inferior–% 6 mm PED 0.6669 0.0163

Density map–superior–% 6 mm Total Fluid 0.6659 0.0165

Total Fluid IRF 0.6634 0.0172

Density map–inferior–% 6 mm Total Fluid 0.6634 0.0172

Density map–central–% 6 mm PED 0.6606 0.0181

https://doi.org/10.1371/journal.pone.0262111.t002
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functional outcomes, measured using BCVA, and anatomical outcomes, measured using CST,

is well known in the field [7]. Table 1 demonstrates a similar trend as the average total retinal

thickness in isolation gave a lower correlation. Fluid volume is a more robust marker, as was

shown in previous reports, as well as in our analysis [8]. When the fluid was sub-categorized

into IRF, SRF and PED, the correlation was highest for PED, followed by SRF and IRF. When

two parameters were combined, total fluid and CNVM mean lesion size provided the strongest

correlation (PCC = 0.695, p = 0.002) to BCVA at month 12 (Table 2).

Qualitative features of OCT-A scans, including medusa form, sea-fan form, pruned vascular

tree pattern, tangled network pattern and vascular loop, can be assessed without the need for

Fig 2. The manual versus automated reported total areas for each fluid type across all volumes on the left for IRF (A),

SRF (C) and PED (E); and their corresponding Bland-Altman plots on the right for IRF (B), SRF (D) and PED (F). The

correlation scores are 0.992, 0.986 and 0.820 for IRF, SRF and PED, respectively. For the Bland-Altman plots, the

manual values are denoted with subscript ‘M’ and the automated values with ‘A’. Narrow limits of agreement are

shown for IRF and SRF, but are larger for PED, as is addressed in the discussion.

https://doi.org/10.1371/journal.pone.0262111.g002
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adjuvant software [30, 31]. A larger sample size would assist in identifying the association of

various CNVM patterns on OCT-A and their prognostic value using an AI-based approach.

Quantitative measures, including total vascular area (TVA), the total area (TA) and the vascu-

lar density (VD), require add-on algorithms or time-consuming manual measurements [32,

33]. Manual measurements, such as those employed by Jia et al., involved quantification of

blood flow within a CNV by multiplying the number of pixels and the pixel size after using the

split-spectrum amplitude-decorrelation angiography (SSADA) algorithm to improve the sig-

nal-to-noise ratio [33]. Whereas Taibouni et al developed an automated segmentation algo-

rithm that reduced noise and enhanced vessels by Frangi filtering [32]. Currently, an

embedded, quantitative algorithm does not exist in OCT-A devices, which makes it difficult to

perform these measurements in a routine clinical practice. However, based on the results of

this study, it is imperative to perform these measurements as they increase the predictive out-

come when correlated with OCT features (Fig 3). The addition of mean lesion size, using

Fig 3. (A) SS-OCT volume scan of 87-year-old female patient with type I CNV, SRF and epiretinal membrane (ERM);

(B) fluid segmentation using a convolutional neural network (CNN) highlights SRF in blue; (C) corresponding OCT-A

scan depicting segmented CNVM from outer retina (OR) slab; (D) density flow highlighting areas of increased flow;

(E) corresponding flow B-scan from single horizontal B-scan through center of CNVM.

https://doi.org/10.1371/journal.pone.0262111.g003
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OCT-A, may have increased the correlation with BCVA at month 12 because OCT-A provides

information on the activation of the lesion [34]. In future studies, a larger number of OCT-A

parameters should be analyzed to provide a wholistic ranking of features that increase predict-

ability of long-term visual outcomes.

Several OCT and OCT-A biomarkers have been linked to visual outcomes in nARMD,

including, but not limited to, branching patterns, total number of branch points, junction den-

sity, hyperreflective foci [35–38]. In this study, we have analyzed a sub-set of these biomarkers,

but others should be studied to expand the list of features that are predictive of long-term

visual outcomes. In our study, PED volume and IRF were predictive of visual function, how-

ever the presence or persistence of a PED may still allow a patient to achieve a relatively fair

visual acuity [39]. The predictive outcomes of specific fluid types (i.e. IRF, SRF or PED) may

also vary depending on the patients included in the study. A limitation of this study was the

number of patients included. To have a more robust fluid analysis, not only does the total

number of patients need to be higher, but each of the fluid subtypes being evaluated needs to

have a similar number of scans analyzed. Increasing the number of timepoints can also provide

further information as to which biomarkers are predictive early or later in treatment. Eventu-

ally a potential “retinal calculator” could be created that allows multiple parameters can be

considered at one time.

This study demonstrates the clinical implementation of a novel, deep learning-based algo-

rithm and the importance of including OCT-A quantitative parameters to existing fluid analy-

sis algorithms to increase the predictive power. Delineating lesion size on OCT-A scans either

requires time-intensive manual segmentation or additional automated software, however the

inclusion of OCT-A-related parameters may be key to accurately predicting long-term visual

outcomes.
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