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Neural codes are reflected in complex neural activation patterns. Conventional
electroencephalography (EEG) decoding analyses summarize activations by
averaging/down-sampling signals within the analysis window. This diminishes
informative fine-grained patterns. While previous studies have proposed distinct
statistical features capable of capturing variability-dependent neural codes, it has been
suggested that the brain could use a combination of encoding protocols not reflected
in any one mathematical feature alone. To check, we combined 30 features using
state-of-the-art supervised and unsupervised feature selection procedures (n = 17).
Across three datasets, we compared decoding of visual object category between
these 17 sets of combined features, and between combined and individual features.
Object category could be robustly decoded using the combined features from all of
the 17 algorithms. However, the combination of features, which were equalized in
dimension to the individual features, were outperformed across most of the time points
by the multiscale feature of Wavelet coefficients. Moreover, the Wavelet coefficients also
explained the behavioral performance more accurately than the combined features.
These results suggest that a single but multiscale encoding protocol may capture the
EEG neural codes better than any combination of protocols. Our findings put new
constraints on the models of neural information encoding in EEG.

Keywords: neural encoding, multivariate pattern decoding, EEG, feature extraction, feature selection

INTRODUCTION

How is information about the world encoded by the human brain? Researchers have tried to answer
this question using variety of brain imaging techniques across all sensory modalities. In vision,
people have used invasive (Hung et al., 2005; Liu et al., 2009; Majima et al., 2014; Watrous et al.,
2015; Rupp et al., 2017; Miyakawa et al., 2018) and non-invasive (EEG and MEG; Simanova et al.,
2010; Carlson et al., 2013; Cichy et al., 2014; Kaneshiro et al., 2015; Contini et al., 2017) brain
imaging modalities to decode object category information from variety of features of the recorded
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neural activations. While majority of EEG and MEG decoding
studies still rely on the within-trial “mean” of activity (average
of activation level within the sliding analysis window) as the
main source of information (Grootswagers et al., 2017; Karimi-
Rouzbahani et al., 2017b), recent theoretical and experimental
studies have shown evidence that temporal variabilities of neural
activity (sample to sample changes in the level of activity)
form an additional channel of information encoding (Orbán
et al., 2016). For example, these temporal variabilities have
provided information about the “complexity,” “uncertainty,” and
the “variance” of the visual stimulus, which correlated with the
semantic category of the presented image (Hermundstad et al.,
2014; Orbán et al., 2016; Garrett et al., 2020). Specifically, object
categories which show a wider variability in their exemplars (e.g.,
houses) evoke more variable neural activation than categories
which have lower variability (e.g., faces; Garrett et al., 2020).
Accordingly, it is now clear that neural variabilities carry
significant amounts of information about different aspects of
sensory processing and may also play a major role in determining
behavior (Waschke et al., 2021).

Despite the richness of information in neural variabilities,
there is no consensus yet about how to quantify informative
neural variabilities. Specifically, neural variabilities have
been quantified using three classes of mathematical features:
variance-, frequency-, and information theory-based features,
each detecting specific, but potentially overlapping aspects of the
neural variabilities (Waschke et al., 2021). Accordingly, previous
studies have decoded object category information from EEG
using variance-based (Wong et al., 2006; Mazaheri and Jensen,
2008; Alimardani et al., 2018; Joshi et al., 2018), frequency-based
(Taghizadeh-Sarabi et al., 2015; Watrous et al., 2015; Jadidi et al.,
2016; Wang et al., 2018; Voloh et al., 2020) and information
theory-based (Richman and Moorman, 2000; Shourie et al.,
2014; Torabi et al., 2017; Ahmadi-Pajouh et al., 2018) features.
However, these previous studies remained silent about the
temporal dynamics of category encoding as they performed the
analyses (i.e., feature extraction and decoding) on the whole-trial
data to maximize the decoding accuracy. On the other hand,
time-resolved decoding analyses studied the temporal dynamics
of category information encoding (Kaneshiro et al., 2015;
Grootswagers et al., 2017; Karimi-Rouzbahani, 2018). However,
few time-resolved studies have extracted any features other than
the instantaneous activity at each time point, or the mean of
activity across a short sliding window (e.g., by down-sampling
the data), to incorporate the information contained in neural
variabilities (Majima et al., 2014; Karimi-Rouzbahani et al.,
2017a). Therefore, previous studies either did not focus on the
temporal dynamics of information processing or did not include
the contents of neural variabilities in time-resolved decoding.

Critically, as opposed to the Brain-Computer Interface (BCI)
community, where the goal of feature extraction is to maximize
the decoding accuracy, in cognitive neuroscience the goal is to
find better neural correlates for the behavioral effect under study
(Williams et al., 2007; Jacobs et al., 2009; Hebart and Baker,
2018; Woolgar et al., 2019; Karimi-Rouzbahani et al., 2021a,b).
Specifically, a given feature is arguably only informative if it
predicts behavior. Therefore, behavior is a key benchmark for

evaluating the information content of any features including
those which quantify neural variabilities. Interestingly, almost
none of the above-mentioned decoding studies focused on
evaluating the predictive power of their suggested informative
features about behavior. Therefore, it remains unclear if
the additional information they obtained from features of
neural variabilities was task-relevant or epiphenomenal to the
experimental conditions.

To overcome these issues, we proposed a new approach
using medium-sized (50 ms) sliding windows at each time step
(5 ms apart). The 50 ms time window makes a compromise
between concatenating the whole time window, which in theory
allows any feature to be used at the expense of temporal
resolution, and decoding in a time resolved fashion at each
time point separately, which might lose temporal patterns of
activity (Karimi-Rouzbahani et al., 2021b). Within each window,
we quantify multiple different mathematical features of the
continuous data. This allows us to be sensitive to any information
carried in local temporal variability in the EEG response,
while also maintaining reasonable temporal resolution in the
analysis. In a recent study, we extracted a large set of such
features and quantified the information contained in each using
multivariate classification (Karimi-Rouzbahani et al., 2021b). We
balanced the number of extracted values across features using
Principal Component Analysis (PCA). Across three datasets,
we found that that the incorporation of temporal patterns of
activity in decoding, through the extraction of spatiotemporal
“Wavelet coefficients” or even using the informative “original
magnitude data (i.e., no feature extraction),” provided higher
decoding performance than the more conventional average
of activity within each window (“mean”). Importantly, we
also observed that for our Active dataset where participants
categorized objects, the decoding results obtained from the same
two features (i.e., Wavelet coefficients and original magnitude
data) could predict/explain the participants’ reaction time in
categorization significantly better than the “mean” of activity in
each window (Wavelet outperformed original magnitude data).
We further observed that more effective decoding of the neural
codes, through the extraction of more informative features,
corresponded to better prediction of behavioral performance.
We concluded that the incorporation of temporal variabilities
in decoding can provide additional category information and
improved prediction of behavior compared to the conventional
“mean” of activity.

One critical open question, however, is whether we should
expect the brain to encode the information via each of these
features individually, or whether it may instead use combinations
of these features. In other words, while each of feature may
potentially capture a specific and limited aspect of the generated
neural codes, the brain may recruit multiple neural encoding
protocols at the same time point or in succession within
the same trial. Specifically, an encoding protocol might be
active only for a limited time window or for specific aspects
of the visual input (Gawne et al., 1996; Wark et al., 2009).
For example, it has been shown in auditory cortex that two
distinct encoding protocols (millisecond-order codes and phase
coding) are simultaneously informative (Kayser et al., 2009).
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Another study showed that spike rates on 5–10 ms timescales
carried complementary information to that in the phase of
firing relative to low-frequency (1–8 Hz) local field potentials
(LFPs) about which epoch of naturalistic movie was being shown
(Montemurro et al., 2008). These examples suggest that two
very distinct encoding protocols (rate vs. phase coding) might
be at work simultaneously to provide information about distinct
aspects of the same sensory input. Therefore, it might be the
case that multiple neural encoding protocols contribute to the
encoding of information. Alternatively, the brain may implement
one general multiscale encoding protocol [e.g., multiplexing
strategy which combines same-structure neural codes at different
time scales (Panzeri et al., 2010)], which allows different aspects
of information to be represented within a more flexible encoding
protocol. More specifically, the brain might implement a general
platform, which allows the representation of information at
different temporal and spatial scales. For example, in visual
stimulus processing, one study found that stimulus contrast
was represented by latency coding at a temporal precision of
∼10 ms, whereas stimulus orientation and its spatial frequency
were encoded at a coarser temporal precision (30 and 100 ms,
respectively; Victor, 2000). This multiplexed encoding protocol
has been suggested to provide several computational benefits
to fixed encoding protocol including enhancing the coding
capacity of the system (Schaefer et al., 2006; Kayser et al., 2009),
reducing the ambiguity inherent to single-scale codes (Schaefer
et al., 2006; Schroeder and Lakatos, 2009) and improving the
robustness of neural representations to environmental noise
(Kayser et al., 2009).

To see if EEG activations reflect the neural codes using several
encoding protocols simultaneously, we created combinations
from the large set of distinct mathematical features in our
previous study (Karimi-Rouzbahani et al., 2021b). We asked
whether their combination recovers more of the underlying
neural code, leading to additional object category information
and increased accuracy in predicting behavior, compared to
the best performing individual feature from the previous study
(i.e., Wavelet). Specifically, we used the same three datasets,
extracted the same features from neural activity, selected
the most informative features at each sliding time window
and evaluated their information about object categories. We
also evaluated how well each combined feature set explained
behavioral recognition performance. Our prediction was that
as targeted combinations of informative features provide more
flexibility in detecting subtle differences, which might be ignored
when using each individual feature, we should see both a
higher decoding accuracy and predictive power for behavior
compared to when using individual features. However, our
results show that, the most informative individual feature (the
Wavelet transform) outperformed all of the feature combinations
(combined using 17 different feature selection algorithms).
Similarly, Wavelet coefficients outperformed all combinations of
features in predicting behavioral performance. Therefore, while
the relationship between neuron-level encoding of information
and EEG signals remains to be investigated in the future,
these results provide evidence for a general multiscale encoding
protocol (i.e., captured by Wavelet coefficients) rather than

a combination of several protocols for category encoding
in the EEG data.

MATERIALS AND METHODS

As this study uses the same set of datasets and features used
in our previous study, we only briefly explain the datasets
and the features. The readers are referred to our previous
manuscript (Karimi-Rouzbahani et al., 2021b) as well as the
original manuscripts (cited below) for more detailed explanation
of the datasets and features. The datasets used in this study and
the code are available online at https://osf.io/wbvpn/. The EEG
and behavioral data are available in Matlab “.mat” format and the
code in Matlab “.m” format.

All the open-source scripts used in this study for
feature extraction were compared/validated against other
implementations of identical algorithms in simulations and
used only if they produced identical results. All open-source
scripts of similar algorithms produced identical results in our
validations. To validate the scripts, we used 1,000 random
(normally distributed with unit variance and zero mean) time
series each including 1,000 samples.

Overview of Datasets
We selected three highly varied previously published EEG
datasets (Table 1) for this study to be able to evaluate the
generalizability of our results and conclusions. Specifically,
the datasets differed in a wide range of aspects including
the recording set-up (e.g., amplifier, number of electrodes,
preprocessing steps, etc.), properties of the image-set (e.g.,
number of categories and exemplars within each category,
colorfulness of images, etc.), paradigm and task (e.g., presentation
length, order and the participants’ task). The EEG datasets were
collected while the participants were presented with images of
objects, animals, face, etc. Participants’ task in Dataset 1 was
irrelevant to the identity of the presented objects; they reported
if the color of fixation changed from the first stimulus to the
second in pairs of stimuli. Participants’ task for Dataset 2 was
to respond/withhold response to indicate if the presented object
belonged to the category (e.g., animal) cued at the beginning
of the block. Participants had no explicit active task except for
keeping fixation on the center of the screen for Dataset 3. To
obtain relatively high signal to noise ratios for the analyses,
each unique stimulus was presented to the participants 3, 6,
and 12 times in datasets 1–3, respectively. The three datasets
previously successfully provided object category information
using multivariate decoding methods. For more details about the
datasets see the original manuscripts cited in Table 1.

Preprocessing
The datasets were collected at a sampling rate of 1,000 Hz.
Each dataset consisted of data from 10 participants. Each object
category in each dataset included 12 exemplars. For datasets 1 and
2, only the trials with correct responses were used in the analyses
(dataset 3 had no task). To make the three datasets as consistent
as possible, we pre-processed them differently from their original
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TABLE 1 | Details of the three datasets used in the study.

Dataset # and type of
electrodes

Band-
pass

filtering

Notch
filtering

#
object

categories

# stimulus
repetition

Stimulus
presentation

time

Stimulus
size

(periphery)

Task Participants’
accuracy

Participants’
Age (median)

Participants’
gender

1 Karimi-
Rouzbahani

et al.,
2017a

31 (Passive-
10–20 system)

0.03–
200 Hz

50 Hz 4 3 50 ms 2◦–13.5◦

(0.7◦–8.8◦)
Color

matching
(passive)

%94.68 22.1 Seven male
Three female

2 Karimi-
Rouzbahani
et al., 2019

31 (Passive-
10–20 system)

0.03–
200 Hz

50 Hz 4 6 900 ms 8◦ × 8◦ (0) Object
category
detection
(active)

%94.65 26.4 Six male
Four female

3 Kaneshiro
et al., 2015

128 (Passive
high-density
HCGSN 128)

0.03–50 Hz No 6 12 500 ms 7.0◦ × 6.5◦

(0)
No task
(fixation)

N/A 30.5 Seven male
Three female

manuscripts. We performed notch-filtering on datasets 1 and 2 at
50 Hz. Datasets 1 and 2 were also band-pass-filtered in the range
from 0.03 to 200 Hz. The band-pass filtering range of dataset 3
was 0.03–50 Hz, as we did not have access to the raw data to
increase the upper bound to 200 Hz. Despite potential muscle
artifacts in higher frequency bands of EEG (e.g., >30 Hz; da
Silva, 2013; Muthukumaraswamy, 2013), the upper limit of the
frequency band was selected liberally (200 Hz) to avoid missing
any potential information which might be contained in high-
frequency components (gamma band) of the signals (Watrous
et al., 2015). As sporadic artefacts (including muscle activity,
eye and movement artifacts) do not generally consistently differ
across conditions (here categories), they will only minimally
affect multivariate decoding analyses (Grootswagers et al., 2017;
Karimi-Rouzbahani et al., 2021c). For the same reason, we did
not remove the artifacts. We used finite-impulse-response filters
with 12 dB roll-off per octave for band-pass filtering of datasets
1 and 2. The filtering was applied on the data before they were
epoched relative to the trial onset times. Data were epoched from
200 ms before to 1,000 ms after the stimulus onset to cover most
of the range of event-related neural activations. The average pre-
stimulus (−200 to 0 ms relative to the stimulus onset) signal
amplitude was removed from each trial of the data. For more
information about each dataset see the references cited in Table 1.

Features
We briefly explain the 26 mathematically distinct features used
in this study below. Note that 4 of the features, which were event-
related potentials, were excluded from this study as they could not
be defined across time. For more details about their algorithms,
their plausibility and possible neural underpinnings please see
Karimi-Rouzbahani et al. (2021b). Each feature was calculated
for each EEG electrode and each participant separately. The
following features were extracted after the raw data was filtered,
epoched and baselined as explained. Each of the features was
extracted from the 50 samples contained in 50 ms sliding time
windows at a step size of 5 ms along each trial. The sampling rate
of the data remained at 1,000 Hz and the features were extracted
from the 1,000-Hz data but only calculated every 5 ms to decrease
the computational load. Note that the width of the sliding
analysis window needs special attention as it involves a trade-off

between noise and potential information (about conditions and
behavior) in EEG signals. Specifically, very short windows may
lose potentially informative longer patterns, whereas very long
windows might lose shorter patterns as they might be dominated
by slow fluctuations. In the original work (Karimi-Rouzbahani
et al., 2021b) we tested window widths between 5 and 100 ms and
found 50 ms to be the most informative range for decoding, so
that is the value we use here.

Mean, Variance, Skewness, and Kurtosis
These are the standard 1st to 4th moments of EEG time series. To
calculate these features, we simply calculated the mean, variance,
skewness and variance of EEG signals over the samples within each
sliding analysis window within each trial (50 samples). Please note
that this differs from averaging over trials, which is sometimes
used to increase signal to noise ratio (Hebart and Baker,
2018). “Mean” of activity is by far the most common feature
of EEG signal used in time-resolved decoding (Grootswagers
et al., 2017). Specifically, in time-resolved decoding, generally
the samples within each sliding time window are averaged
and used as the input for the classification algorithm. People
sometimes perform down-sampling of EEG time series, which
either performs simple averaging or retains the selected samples
every few samples. Variance (Wong et al., 2006), Skewness
(Mazaheri and Jensen, 2008), and Kurtosis (Pouryazdian and
Erfanian, 2009; Alimardani et al., 2018) have shown success
in providing information about different conditions of visually
evoked potentials.

Median
We also calculated signal’s median as it is less affected by
spurious values compared to the signal mean providing less noisy
representations of the neural processes.

While the moment features above provide valuable
information about the content of EEG evoked potentials,
many distinct time series could lead to similar moment features.
In order to be sensitive to this potentially informative differences
nonlinear features can be used which, roughly speaking, are
sensitive to nonlinear and complex patterns in time series. Below
we define the most common nonlinear features of EEG time
series analysis, which we used in this study.
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Lempel-Ziv Complexity
We calculated the Lempel-Ziv (LZ) complexity as an index of
signal complexity. This measure counts the number of unique
sub-sequences within the analysis window (50 time samples),
after turning the time samples into a binary sequence. To generate
the binary sequence, we used the signal median, within the
same analysis window, as the threshold. Accordingly, the LZ
complexity of a time series grows with the length of the signal
and its irregularity over time. See Lempel and Ziv (1976) for more
details. This measure has previously provided information about
neural responses in primary visual cortices (Szczepański et al.,
2003). We used the script by Quang Thai1 implemented based on
“exhaustive complexity” which is considered to provide the lower
limit of the complexity as explained by Lempel and Ziv (1976).

Higuchi and Katz Fractal Dimensions
Fractal is an indexing technique which provides statistical
information determining the complexity of how data are
organized within time series. Accordingly, higher fractal values,
suggest more complexity and vice versa. In this study, we
calculated the complexity of the signals using two methods of
Higuchi and Katz, as used previously for categorizing object
categories (Torabi et al., 2017; Ahmadi-Pajouh et al., 2018;
Namazi et al., 2018). We used the implementations by Jesús
Monge Álvarez2 after verifying it against other implementations.

Hurst Exponent
This measure quantifies the long-term “memory” in a time
series. Basically, it calculates the degree of dependence among
consecutive samples of time series and functions similarly to the
autocorrelation function (Racine, 2011; Torabi et al., 2017). Hurst
values between 0.5 and 1 suggest consecutive appearance of high
signal values on large time scales while values between 0 and 0.5
suggest frequent switching between high and low signal values.
Values around 0.5 suggest no specific patterns among samples
of a time series.

Sample and Approximate Entropy
Entropy measures the level of perturbation in time series. As the
precise calculation of entropy needs large sample sizes and is also
noise-sensitive, we calculated it using two of the most common
approaches: sample entropy and approximate entropy. Sample
entropy is not as sensitive to the sample size and simpler to
implement compared to approximate entropy. Sample entropy,
however, does not take into account self-similar patterns in the
time series (Richman and Moorman, 2000). We used an open-
source code3 for calculating approximate entropy.

Autocorrelation
This index quantifies the self-similarity of a time series at specific
time lags. Accordingly, if a time series has a repeating pattern

1https://www.mathworks.com/matlabcentral/fileexchange/38211-calc_lz_
complexity
2https://ww2.mathworks.cn/matlabcentral/fileexchange/50290-higuchi-and-
katz-fractal-dimension-measures
3https://www.mathworks.com/matlabcentral/fileexchange/32427-fast-
approximate-entropy

at the rate of F hertz, an autocorrelation measure with a lag of
1/F will provide a value of 1. However, it would return −1 at
the lag of 1/2F. It would provide values between −1 and 1 for
other lags. More complex signals would provide values close to
0. A previous study has been able to decode neural information
about motor imagery using the autocorrelation function from
EEG signals (Wairagkar et al., 2016).

Hjorth Complexity and Mobility
These parameters measure the variation in the signals’
characteristics. The complexity measure calculates the variation
in a signal’s dominant frequency, and the mobility measures
the width of the signal’s power spectrum [how widely the
frequencies are scattered in the power spectrum of the signal
(Joshi et al., 2018)].

Mean, Median, and Average Frequency
These measures calculate the central frequency of the signal in
different ways. Mean frequency is the average of all frequency
components available in a signal. Median frequency is the median
normalized frequency of the power spectrum of the signal and
the average frequency is the number of times the signal time
series crosses zero. They have shown information about visual
categories in previous studies (Jadidi et al., 2016; Iranmanesh and
Rodriguez-Villegas, 2017; Joshi et al., 2018).

Spectral Edge Frequency (95%)
Spectral edge frequency (SEF) indicates the high frequency below
which x percent of the signal’s power spectrum exists. X was set
to 95% in this study. Therefore, SEF reflects the upper-bound of
frequency in the power spectrum.

Signal Power, Power, and Phase at Median
Frequency
Power spectrum density (PSD) represents the intensity or the
distribution of the signal power into its constituent frequency
components. Signal power was used as a feature here as in
previous studies (Majima et al., 2014; Rupp et al., 2017), where
it showed associations between aspects of visual perception and
power in certain frequency bands. Signal power is the frequency-
domain representation of temporal neural variability (Waschke
et al., 2021). We also extracted signal power and phase at median
frequency which have previously shown to be informative about
object categories (Jadidi et al., 2016; Rupp et al., 2017).

For the following features we had more than one value per trial
and sliding time window. We extracted all these features but later
down-sampled the values to one per trial using the (first) PCA
procedure explained below (Figure 1) before using them in the
feature combination procedure.

Cross-Correlation
This refers to the inter-electrode correlation of EEG time series.
It simply quantifies the similarity of activations between pairs
of EEG electrodes. Therefore, for each electrode, we had e-
1 cross-correlation values with e referring to the number of
electrodes. This measure has been shown to contain information
about visual object categories before (Majima et al., 2014;
Karimi-Rouzbahani et al., 2017a).
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FIGURE 1 | Decoding pipeline. From left to right: successive stages shown for a sample dataset comprising 100 trials of data from two categories recorded using a
31-electrode EEG amplifier. (1) Features are extracted from each trial and time window of the data. The features can be single- or multi-valued resulting in different
number of values per trial and analysis time window. (2) We split the trials into training and testing sets and use the training sets in PCA and training the classifiers
throughout the pipeline. (3) We used a PCA-based dimension reduction to reduce the number of values of only the multi-valued features to one equalizing them with
single-valued features. (4) We used a second PCA to project all values of each feature to one dimension to be able to feed to the feature selection (FS) algorithms. (5)
We selected the five most informative features using the FS algorithms. (6) We combined these features using concatenation of the selected features in their original
size received from stage 4. (7) We reduced the dimension of the concatenated feature set to equalize it with the single-valued individual features from the previous
study so that they could be compared. (8) We decoded/classified all pair-wise categories using the final dataset in each fold. This figure shows the procedure for a
single cross-validation fold at one time point and was repeated for all the folds and time points. To avoid circularity, PCA was only ever applied on the training set and
the parameters (mean and eigen vectors) used to derive the principal component of both the training and testing sets. The green arrows indicate example selected
feature sets sent for combination.

Wavelet Coefficients
Considering the time- and frequency-dependent nature of ERPs,
Wavelet transform seems to be a very reasonable choice as it
provides a time-frequency representation of signal components.
It determines the primary frequency components and their
temporal position in time series. The transformation passes
the signal time series through digital filters (Guo et al., 2009),
each of which adjusted to extract a specific frequency (scale)
at a specific time. This filtering procedure is repeated for
several rounds (levels) filtering low- (approximations) and high-
frequency (details) components of the signal to provide more
fine-grained information about the constituent components of
the signal. This can lead to coefficients which can potentially
discriminate signals evoked by different conditions. Following
up on a previous study (Taghizadeh-Sarabi et al., 2015), and to

make the number of Wavelet features comparable in number to
signal samples, we used detail coefficients at five levels D1,. . .,D5
as well as the approximate coefficients at level 5, A5. This led
to 57 features in the 50 ms sliding time windows. We used
the “Symlet2” basis function for our Wavelet transformations as
implemented in Matlab. The multistage, variable-sized filtering
procedure implemented in Wavelet coefficients, make them ideal
for detecting multiscale patterns of neural activity, which has
been suggested to be produced by the brain for information
encoding (Panzeri et al., 2010).

Hilbert Amplitude and Phase
This transformation is a mapping function that takes a function
x(t) of a real variable, and using convolution with the function,
1/πt, produces another function of a real variable H(u) (t).
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This technique provides amplitude and phase information of the
signal in the transformed space allowing us to tease them apart
and evaluate their information content about visual categories
(Wang et al., 2018).

Original Magnitude Data (Samples)
We also used the post-stimulus signal samples (i.e., 50 samples
in each sliding analysis window) to decode object category
information without any feature extraction. This allowed
us to compare the information content of the extracted
features with the original signal samples to see if the former
provided any extra information. Note that, this is different
from averaging/down-sampling of magnitude data within the
analysis windows conventionally used in multivariate decoding
(Karimi-Rouzbahani et al., 2017a).

Feature Selection Algorithms
We set out to test whether neural information about object
categories might be captured by combinations of the above
features, better than by any one feature individually. For this,
we combined the 26 extracted features using Feature Selection
Library (FSLib, version 6.2.1; Roffo, 2016). Feature selection
(FS), which refers to selecting a subset of features from a
larger set, is generally used (for example, in machine learning)
to reduce the dimensionality of the data by removing the
less informative features from the dataset. FS algorithms can
be categorized as supervised or unsupervised (Dash and Liu,
1997). The supervised methods receive, as input, the labels of
trials for each condition (i.e., object categories here), and try
to maximize the distance between conditions. We used eight
different supervised FS algorithms. The unsupervised methods,
on the other hand, incorporate different criteria for FS such as
selecting features that provide maximum distance (i.e., unfol)
or minimum correlation (i.e., cfs). The FSLib implements 19
different feature selection algorithms. As it is not yet known how
the brain might recruit different encoding protocols or a potential
combination of them, we used all the FS algorithms available by
the FSLib to combine the features in this study, except two (rfe-
SVM and L0) which we were not able to implement. Although
there are other feature selection algorithms in the literature,
we believe that using these 17 methods, we capture a decent
range of different approaches. We set the number of selected
features to 5, which was chosen to balance between including
too many features, which could obscure interpretability, and
including too few, which risks missing informative but lower-
ranked features. Below we briefly explain the eight supervised
and nine unsupervised feature selection algorithms. Readers are
referred to the original manuscripts for more detail about each
feature selection method as reviewed (Roffo, 2016).

Among supervised algorithms, Relief is a randomized and
iterative algorithm that evaluates the quality of the features
based on how well their values discriminate data samples from
opposing conditions. This algorithm can be sensitive when
used on small data samples. Fisher evaluates the information
of features as the ratio of inter-class to intra-class distances.
Mutual Information (mutinffs) measures the association between
the data samples (observations) within each feature and their

class labels. Max-Relevance, Min-Redundancy (mrmr) method,
which is an extension of the mutual information method, is
designed to follow two basic rules when selecting the features:
to select the features which are mutually far away from each
other while still having “high” correlation to the classification
labels. As opposed to the above methods, which rank and
select the features according to their specific criteria, the Infinite
latent (ILFS) method, selects the most informative features based
on the importance of their neighboring features in a graph-
based algorithm. It is a supervised probabilistic approach that
models the features “relevancy” in a generative process and
derives the graph of features which allows the evaluation of
each feature based on its neighbors. Similarly, the method of
Eigenvector Centrality (ECFS), generates a graph of features
with features as nodes and evaluates the importance of each
node through an indicator of centrality, i.e., eigen vector
centrality. The ranking of central nodes determines the most
informative features. LASSO algorithm works based on error
minimization in predicting the class labels using the features as
regression variables. The algorithm penalizes the coefficients of
the regression variables while setting the less relevant to zero
to follow the minimal sum constraint. The selected features are
those which have non-zero coefficients in this process. Concave
Minimization (fsv) uses a linear programming technique to inject
the feature selection process into the training of a support
vector machine (SVM).

Among unsupervised FS algorithms, Infinite FS (InfFS), is
similar to the graph-based supervised methods in which each
feature is a node in a graph. Here, however, a path on a graph is a
subset of features and the importance of each feature is measured
by evaluating all possible paths on the graph as feature subsets in a
cross-validation procedure. Laplacian Score (laplacian), evaluates
the information content of each feature by its ability of locality
preserving. To model the local geometry of the features space, this
method generates a graph based on nearest neighbor and selects
the features which respect this graph structure. Dependence
Guided (dgufs) method evaluates the relationship between the
original data, cluster labels and selected features. This algorithm
tries to achieve two goals: to increase the dependence on the
original data, and to maximize the dependence of the selected
features on cluster labels. Adaptive Structure Learning (fsasl),
which learns the structure of the data and FS at the same
time is based on linear regression. Ordinal Locality (ufsol)
is a clustering-based method which achieves distance-based
clustering by preserving the relative neighborhood proximities.
Multi-Cluster (mcfs) method is based on manifold learning
and L1-regularized models for subset selection. This method
selects the features such that the multi-cluster structure of
the data can be best preserved. As opposed to most of the
unsupervised methods which try to select the features which
preserve the structure of the data, e.g., manifold learning, L2,1-
norm Regularized (UDFS) method assumes that the class label of
data can be predicted using a linear classifier and incorporates
discriminative analysis and L2,1-norm minimization into a joint
framework for feature selection. Local Learning-Based (llcfs)
method is designed to work with high-dimensional manifold
data. This method associates weights to features which are
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incorporated into the regularization procedure to evaluate their
relevance for the clustering. The weights are optimized iteratively
during clustering which leads to the selection of the most
informative features in an unsupervised fashion. Correlation-
Based (cfs) method simply ranks the features based on how
uncorrelated they are to the other features in the feature
set. Therefore, the selected features are those which are most
distinct from others.

Decoding Pipeline
The pipeline used in this study for feature extraction,
dimensionality reduction, feature selection, feature combination
and decoding had eight stages and is summarized in Figure 1.
Below we explain each stage of the pipeline for a simple sample
dataset with 100 trials collected using a 31-electrode EEG setup.
Our actual datasets, however, had varied number of trials and
electrodes as explained in Table 1. Note that the data from all
electrodes were included in the analysis and could have affected
the final decoding results equally.

Feature Extraction
We extracted the set of 26 above-mentioned features from the
dataset. This included features which provided one value for each
sliding time window per trial (single-valued) and more than one
value (multi-valued). For the sample dataset, this resulted in data
matrices with 100 rows (trials) and 31 columns (electrodes) for
the single-valued datasets and 31 × e columns for multi-valued
features, where e refers to the number of values extracted for each
trial and time window.

Cross Validation
After extracting the features, we split the data into 10 folds, used
9 folds for dimension reductions and training the classifiers and
the left-out fold for testing the classifiers. Therefore, we used a 10-
fold cross-validation procedure in which we trained the classifier
on 90% of the data and tested it on the left-out 10% of the data,
repeating the procedure 10 times until all trials from the pair of
categories participate once in the training and once in the testing
of the classifiers. The same trials were chosen for all features in
each cross-validation fold.

Dimensionality Reduction 1: Only for Multi-Valued
Features
The multi-valued features explained above resulted in more than
a single feature value per trial per sliding time window (e.g., cross-
correlation, wavelet, Hilbert amplitude, and phase and signal
samples). This could lead to the domination of the multi-valued
over single-valued features in feature selection and combination.
To avoid that, we used principle component analysis (PCA) to
reduce the number of values in the multi-valued features to one
per electrode per time window, which was the number of values
for all single-valued features. Specifically, the data matrix before
dimension reduction, had a dimension of n rows by e × f
columns where n, e, and f were the number of trials in the
dataset (consisting of all trials from all categories), the number of
electrodes and the number of values obtained from a given feature
(concatenated in columns), respectively. Therefore, the columns

of multi-valued features included both the spatial (electrodes) and
temporal (elements of each feature) patterns of activity from which
the information was obtained. This is different from single-valued
features where the columns of their data matrix only included
spatial patterns of activity. As f = 1 for the single-valued
features, for the multi-valued features, we only retained the e
most informative columns that corresponded to the e eigen values
with highest variance and removed the other columns using
PCA. Therefore, we reduced the dimension of the data matrix to
n × e which was the same for single- and multi-valued features
and used the resulting data matrix for decoding. This means
that, for the multi-valued features, in every analysis window, we
only retained the most informative value of the extracted feature
elements and electrodes (i.e., the one with the most variance in
PCA). Accordingly, multi-valued features had the advantage over
single-valued features as the former utilized both the spatial and
temporal patterns of activity in each sliding time window, while
the latter only had access to the spatial patterns.

Dimensionality Reduction 2: For Feature Selection
For feature selection, each feature should have a dimension of 1
to go into the FS algorithm. However, our features had as many
dimensions as the number of electrodes (i.e., e). Therefore, we
further reduced the dimension of each feature from e to 1 to
be able to feed them to the FS algorithms, compare them and
select the most informative features. This allowed us to know
the general amount of information that each feature rather than
each of its elements/dimensions (e.g., electrodes in single-valued
features) had about object categories. Please note that, however,
after finding the most informative features, we used the selected
features in their original size which was e (output of step 3
goes to stage 6).

Feature Selection
Feature selection was done using 17 distinct algorithms (above)
to find the five most informative features in every sliding time
window. This stage only provided indices of the selected features
for combination in the next stage. To avoid any circularity
(Pulini et al., 2019), we applied the FS algorithms only on the
training data (folds) and used the selected features in both
training and testing in each cross-validation run. Please note
that feature selection was performed in every analysis window
across the trial. In other words, different sets of five features could
be selected for each individual analysis window. This allowed
multiple features to contribute at each time point (multiple codes
to be in use at the same time) and for different features to be
selected at different time points (different codes used at different
points in the trial).

Feature Combination
We only concatenated the five selected features into a new data
matrix. At this stage, we received five feature data matrices which
had a dimension of n × e with n referring to the number of
trials and e referring to the number of values per trial, which
were 100 × 31 for the sample dataset explained in Figure 1.
The combination procedure led to a concatenated data matrix
of 100 × 155 (n × 5e).
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Dimensionality Reduction 3: Equalizing the
Dimensions of Combined and Individual Feature
Spaces
We used another round of PCA to simultaneously combine and
reduce the dimensionality of each data matrix (feature space) to
equalize it with the feature space of the individual features. This
made the combined and individual features directly comparable,
so that we could test whether a combination of the most
informative features could provide additional category-related
information, over and above the information decodable from
individual features. Had we not controlled for the dimension of
the data matrix, superior decoding for the combined features
could arise trivially (due to having more predictors). Note that,
whereas we knew the features which were selected on stage 5,
as a result of this PCA transformation, we did not know which
features contributed to the final decoding result. Therefore, in
the worst case scenario, the final feature set might have only
contained one of the five selected features. However, this seems
unlikely to be the case as generally all inputs contribute to the
distributions of the data in the PCA space. To avoid circularity
(Pulini et al., 2019), we again applied the PCA algorithms on the
training data (folds) only and used the training PCA parameters
(i.e., eigen values and means) for both training and testing (fold)
sets for dimension reduction, carrying this out in each cross-
validation run separately.

Multivariate Decoding
Finally we used time-resolved multivariate decoding to test
for information about object categories in the features and
combinations of features. We used linear discriminant analysis
(LDA) classifiers to measure the information content across
all possible pairs of conditions (i.e., object categories) in each
dataset. We repeated the decoding across all possible pairs
of categories within each dataset, which were 6, 6 and 15
pairs for datasets 1–3, which consisted of 4, 4 and 6 object
categories, respectively. Finally, we averaged the results across all
combinations and reported them as the average decoding for each
participant. We extracted the features from 50 ms sliding time
windows in steps of 5 ms across the time course of the trial (−200
to 1,000 ms relative to the stimulus onset time). Therefore, the
decoding results at each time point reflect the data for the 50 ms
window around the time point, from −25 to +24 ms relative
to the time point.

Decoding-Behavior Correlation
We evaluated the correlation between neural representations
of object categories and the reaction time of participants in
discriminating them. To that end, we generated a 10-dimensional
vector of neural decoding accuracies (averaged over all pairwise
category decoding accuracies obtained from each participant) at
every time point and a 10-dimensional vector which contained
the behavioral reaction times (averaged over all categories
obtained from each participant) for the same group of 10
participants. Then we correlated the two vectors at each time
point using Spearman’s rank-order correlation (Cichy et al., 2014;
Ritchie et al., 2015). This resulted in a single correlation value for
each time point for the group of 10 participants.

Parameters of Decoding Curves
To quantitatively evaluate the patterns of decoding curves
and decoding-behavior correlations, we extracted four distinct
parameters from the decoding curves and one parameter from
the correlation to behavior curves. All parameters were calculated
in the post-stimulus time span. The “average correlation to
behavior” was calculated by averaging the level of across-subject
correlation to behavior. The parameters of “average decoding”
and “maximum decoding” were calculated for each participant
simply by calculating the average and maximum of the decoding
curves. The “time of maximum decoding” and “time of first
above-chance decoding” were also calculated for each participant
relative to the time of the stimulus onset.

Statistical Analyses
Bayes Factor Analysis
First we asked whether we could decode object category
from the combined features returned by each of the 17 FS
methods. To determine the evidence for the null and the
alternative hypotheses, we used Bayes analyses as implemented
by Bart Krekelberg4 based on Rouder et al. (2012). We used
standard rules of thumb for interpreting levels of evidence
(Lee and Wagenmakers, 2005; Dienes, 2014): Bayes factors
of >10 and <1/10 were interpreted as strong evidence for the
alternative and null hypotheses, respectively, and >3 and <1/3
were interpreted as moderate evidence for the alternative
and null hypotheses, respectively. We considered the Bayes
factors which fell between 3 and 1/3 as suggesting insufficient
evidence either way.

To evaluate the evidence for the null and alternative
hypotheses of at-chance and above-chance decoding,
respectively, we compared the decoding accuracies obtained
from all participants in the post-stimulus onset time against
the decoding accuracies obtained from the same participants
averaged in the pre-stimulus onset time (−200 to 0 ms). We also
asked whether there was a difference between the decoding values
obtained from all possible pairs of FS methods. Accordingly,
we performed the Bayes factor unpaired t-test and calculated
the Bayes factor as the probability of the data under alternative
(i.e., difference; H1) relative to the null (i.e., no difference;
H0) hypothesis between all possible pairs of FS methods for
each dataset separately. The same procedure was used to
evaluate evidence for difference (i.e., alternative hypothesis)
or no difference (i.e., null hypothesis) in the maximum and
average decoding accuracies, the time of maximum and above-
chance decoding accuracies across FS methods for each dataset
separately. To evaluate the evidence for the null or alternative
hypotheses of lack of or the existence of difference between the
decoding accuracies obtained from FS algorithm and the Wavelet
feature, we calculated the Bayes factor between the distribution
of the two distributions of decoding accuracies on every time
point and for dataset separately.

Priors for the Bayes analysis can be selected based on previous
work or can be estimated based on predetermined Cauchy
distribution according to common effect sizes. We opted to use

4https://klabhub.github.io/bayesFactor/
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default priors. This choice was motivated by the absence of
identical studies to ours available from which we could accurately
estimate priors and the awareness that publication biases in
any case will tend to exaggerate effect sizes. The priors for all
Bayes factor analyses were determined based on Jeffrey-Zellner-
Siow priors (Zellner and Siow, 1980; Jeffreys, 1998) which are
from the Cauchy distribution based on the effect size that is
initially calculated in the algorithm using t-test (Rouder et al.,
2012). The priors are data-driven and have been shown to be
invariant with respect to linear transformations of measurement
units (Rouder et al., 2012), which reduces the chance of being
biased toward the null or alternative hypotheses. We did not
perform correction for multiple comparisons when using Bayes
factors as they are much more conservative than frequentist
analysis in providing false claims with confidence (Gelman and
Tuerlinckx, 2000; Gelman et al., 2012). The reason for this is
that properly chosen priors [here using the data-driven approach
developed by Rouder et al. (2012)], reduce the chance of making
type I (false positive) errors (Gelman and Tuerlinckx, 2000;
Gelman et al., 2012).

Random Permutation Testing
To evaluate the significance of correlations between decoding
accuracies and behavioral reaction times, we calculated the
percentage of the actual correlations that were higher (if
positive) or lower (if negative) than a set of 1,000 randomly
generated correlations. These random correlations were obtained
by randomizing the order of participants’ data in the behavioral
reaction time vector (null distribution) on every time point,
for each feature separately. The correlation was considered
significant if surpassed 95% of the randomly generated
correlations in the null distribution in either positive or negative
directions (p < 0.05) and the p-values were corrected for multiple
comparisons across time using Matlab mafdr function, where
the algorithm fixes the rejection region and then estimates its
corresponding error rate resulting in increased accuracy and
power (Storey, 2002).

RESULTS

Do Different Ways of Combining
Individual Features Affect the Level and
Temporal Dynamics of Information
Decoding?
As an initial step, we evaluated the level of information which can
be obtained from the combination of features, each potentially
capturing different aspects of the neural codes. To be as confident
as possible, we used a large set of 17 distinct supervised and
unsupervised FS methods to select and combine the top 5 most
informative features at every time point in the time-resolved
decoding procedure. The information content of features were
determined based on either how much they could contribute
to discriminating the target object categories (supervised) or
some predefined criteria which could implicitly suggest more
separation between object categories (unsupervised). We split the

FS algorithms into three arbitrary groups for the sake of clearer
presentation of the results (Figure 2).

All FS algorithms for the three datasets showed strong
(BF > 10) evidence for difference from chance-level decoding at
some time points/windows after the stimulus onset (Figure 2).
This means that, any of the FS algorithms could combine
the features in a way that they could decode object category
information from brain signals. As expected from the difference
in their mathematical formulations, however, no pairs of FS
algorithms provided identical patterns of decoding in any of
the three datasets. Consistently across the three datasets there
was moderate (3 < BF < 10) or strong (BF > 10) evidence
for continuous above-chance decoding from around 80 ms post
stimulus onset for all FS algorithms. While the decoding showed
evidence for above-chance accuracy (BF > 3) up until 550 ms
(dataset 2) or even later than 800 ms (dataset 3) for the best FS
algorithms such as UDFS, lasso and ufsol, all curves converged
back to the chance-level earlier than 500 ms for dataset 1. This
difference may reflect the longer stimulus presentation time for
datasets 2 and 3 vs. dataset 1, which may have provided stronger
sensory input for neural processing of category information, as
we saw previously when evaluating individual features alone
(Karimi-Rouzbahani et al., 2021b).

In order to quantitatively compare the decoding curves for
the different FS algorithms, we extracted four different amplitude
and timing parameters from their decoding curves as in previous
studies (Isik et al., 2014): maximum and average decoding
accuracies (in the post-stimulus time window), time of maximum
decoding, and time of first above-chance decoding relative to
stimulus onset (Supplementary Figure 1). Results showed that
ILFS, relief and llcfs were the worst performing FS algorithms
with the lowest maximum and average decoding accuracy
(Supplementary Figures 1A,B; red boxes). UDFS, lasso and ufsol
were the best performing FS algorithms leading to the highest
maximum and average decoding accuracies (Supplementary
Figures 1A,B; black boxes). Dataset 2 tended to yield higher
decoding accuracies compared to the other datasets, which
might be attributed to the longer presentation time of the
stimuli and the active task of the participants (Roth et al., 2020;
Karimi-Rouzbahani et al., 2021a,c). UDFS, ufsol and relief were
among the earliest FS algorithms to reach their first above-
chance and maximum decoding accuracies (Supplementary
Figures 1C,D). However, there was not a consistent pattern of
temporal precedence for any FS algorithms across the datasets.

Which Individual Features Are Selected
by the Most Successful Algorithms?
The difference in the decoding patterns for different FS
algorithms suggest that they used different sets of features in
decoding. To see what features were selected by different FS
algorithms, and whether the informative individual features
were selected, we calculated the merit of each of the individual
features in each FS algorithm across the time course of the trial
(Supplementary Figure 2). Here, merit refers to the frequency
of a feature being selected by the FS algorithm for decoding. We
calculated the merit as the ratio of the number of times the feature
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FIGURE 2 | Time-resolved decoding of object categories from the three datasets using the 17 FS methods. We split the FS algorithms into three arbitrary groups
(rows) for each dataset for the sake of clearer presentation. Each column shows the results for one dataset. The top section in each of the nine panels shows the
decoding accuracies across time and the bottom panels show the Bayes factor evidence for decoding to be different (H1) or not different (H0) from chance-level.
The horizontal dashed lines refer to chance-level decoding, the vertical dashed lines indicates time of stimulus onset. Non-black colored filled circles in the Bayes
Factors show moderate (BF > 3) or strong (BF > 10) evidence for difference from chance-level decoding, black filled circles show moderate (BF > 3) or strong
(BF > 10) evidence for no difference from chance-level decoding and empty circles indicate insufficient evidence (1/3 < BF < 3) for either hypotheses.
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was among the top selected five features to the number of times
the decoding was performed on every time point (i.e., all possible
combination of category pairs).

Visual inspection of the results suggests that each FS algorithm
seemed to rely on consistent sets of features across the three
datasets, which are generally different between FS algorithms.
This reflects that different FS algorithms have different levels of
sensitivity and distinct selection criteria. Results also showed that
the merit of different features varied across the time course of
trials based on their information content about object categories
relative to other features (Supplementary Figure 2). Therefore,
the recruitment of features varied across the time course of
the trial: while some features were only temporarily selected
(e.g., Average and Mean frequency in the laplacian method from
∼200 to 600 post-stimulus onset), there were features which
were constantly used for decoding even before the stimulus
onset (e.g., Cros Cor in the fsasl method), although they did
not lead to any information decoding in the pre-stimulus time
span (Figure 2). This might again be explained by the different
levels of sensitivity and distinct selection criteria implemented
by different FS algorithms. Importantly, the FS algorithms that
provided the highest level of decoding (i.e., ufsol, lasso, and
UDFS) showed the highest merits for the features of Mean,
Median, Samples, and Wavelet which were among the most
informative features when evaluated individually across the three
datasets (Karimi-Rouzbahani et al., 2021b). On the other hand,
the FS algorithms that performed most poorly (ILFS, relief, and
llcfs) either used scattered sets of features (ILFS) or did not
use the informative features of Mean, Median, Samples and
Wavelet (llcfs and relief). Therefore, the FS algorithms that
used the informative individual features outperformed other FS
algorithms which did not.

Are the Neural Codes Better Captured by
a Combinatorial Encoding Protocol or by
a General Multiscale Encoding Protocol?
The main question of this study was to see whether the
flexibility obtained by the combination of features provides
any additional information about object categories compared to
the best-performing individual features by detecting the neural
codes more completely. In other words, we wanted to test the
hypothesis that the brain uses a combination of different neural
encoding protocols simultaneously as opposed to using a general
multiscale encoding protocol (such as reflected in the Wavelet
transform). To test this hypothesis, we directly compared the
decoding accuracy obtained from the top performing individual
feature from the original study (Wavelet; Karimi-Rouzbahani
et al., 2021b), which is able to detect multiscale spatiotemporal
patterns of information, with the decoding accuracy obtained
from the top performing FS algorithm, which used a set of
combined features (ufsol; Figure 3). Results showed consistent
patterns across the three datasets with the Wavelet feature
outperforming the decoding accuracies obtained by the ufsol
FS algorithm across most time points. Maximum continuous
evidence for difference (BF > 10) occurred between 80 and 320,
75–180, and 85–325 ms for datasets 1–3, respectively. Therefore,

it seems that, at least for object categories, the coding scheme
in the brain is best captured by a general multiscale encoding
protocol (implemented here by the Wavelet coefficients), rather
than a combination of distinct encoding protocols (captured here
by different features).

Can a Combinatorial Encoding Protocol
Predict Behavioral Accuracy Better Than
a General Multiscale Encoding Protocol?
Our final hypothesis was that a combinatorial encoding protocol
might predict the behavioral performance more accurately than
a general multiscale encoding protocol as the former can
potentially detect more distinctly encoded neural codes from
brain activation. We could test this hypothesis only for Dataset
2 where the task was active and we had the participants’
reaction times (i.e., time to categorize objects) to work with.
We calculated the (Spearman’s rank) correlation between the
decoding accuracies and the behavioral reaction time across
participants, to see whether, at each time point, participants
with higher decoding values were those with the fastest reaction
times. We expected to observe negative correlations between
the decoding accuracies and the participants’ reaction times in
the post-stimulus span (Ritchie et al., 2015). Note that since
correlation normalizes the absolute level of the input variables,
the higher level of decoding for the individual (Wavelet) feature
vs. the combined features (ufsol; Figure 3) does not necessarily
predict a higher correlation for the individual feature of Wavelet.

Results showed significant negative correlations appearing
after the stimulus onset for most FS algorithms (except dgufs)
especially the laplacian algorithm which showed the most
negative peak (Figure 4A). This confirms that the distances
between object categories in neural representations have inverse
relationship to behavioral reaction times (Ritchie et al., 2015). We
previously observed that the individual features which provided
the highest decoding accuracies could also predict the behavior
most accurately (Karimi-Rouzbahani et al., 2021b). Therefore,
we asked if the FS algorithms which provided the highest levels
of decoding could also predict the behavior more accurately
than the less informative algorithms. The rationale behind this
hypothesis was that, more effective decoding of neural codes,
as measured by higher “average decoding” and “maximum
decoding” accuracies (Figure 2), should facilitate the prediction
of behavior by detecting subtle but overlooked behavior-related
neural codes. To test this hypothesis, we evaluated the correlation
between the parameters of “maximum decoding” and “average
decoding” accuracies (extracted from the decoding curve of
each feature in Figure 4A) and the “average correlation to
behavior” (calculated simply by averaging the correlation to
behavior in the post-stimulus time span for each FS algorithm
in Figure 4A). We also calculated the correlation between the
“time of maximum decoding” and “time of first above-chance
decoding” as control variables, which we did not expect to
correlate with behavior (as in Karimi-Rouzbahani et al., 2021b).
Results showed no significant correlations between any of the
four parameters of decoding curves and the level of prediction
of behavior (Figure 4B). Therefore, more efficient combinations
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FIGURE 3 | Comparison of decoding accuracies between the most informative individual feature [Wavelet; from Karimi-Rouzbahani et al. (2021b)] and combined
feature set (obtained using ufsol algorithm) from the three datasets and Bayesian evidence for a difference between them. Each column shows the results for one
dataset. Thick lines show the average decoding accuracy across participants (error bars show Standard Error across participants). Top section in each panel shows
the decoding accuracies across time and the bottom section shows the Bayes factor evidence for the difference between the decoding curves. The horizontal
dashed lines on the top panels refer to chance-level decoding. Red filled circles in the Bayes Factors show moderate (BF > 3) or strong (BF > 10) evidence for
difference between decoding curves, black filled circles show moderate (BF > 3) or strong (BF > 10) evidence for no difference and empty circles indicate insufficient
evidence (1/3 < BF < 3) for either hypotheses.

of features (as measured by higher decoding accuracies) did not
correspond to more accurate prediction of behavior.

To visually compare the behavioral prediction power of
the top-performing individual and combined features we
plotted their correlation-to-behavior results on the same figure
(Figure 4C). For this we selected Wavelet and laplacian FS,
based on them being the single feature and FS algorithm with
the largest negative peak. We used this, rather than selecting
based on average correlation with behavior because the temporal
position of the peak can also provide some temporal indication
about the timing of the decision, which if reasonable [e.g., after
200 ms post-stimulus and before the median reaction times of
participants: 1,146 ms (Karimi-Rouzbahani et al., 2019)], can be
more assuring about the existence of true correlation to behavior.
The combined features (laplacian) did not provide a negative
peak as large as the Wavelet feature, and tended to underperform
Wavelet throughout the time course (Figure 4C). Therefore,
in contradiction to our hypothesis, the combined features did
not provide additional prediction of behavior compared to the
individual feature of Wavelet.

DISCUSSION

Abstract models of feed-forward visual processing suggest that
visual sensory information enters the brain through retina,
reaches the lateral geniculate nucleus in thalamus and continues
to early visual cortices before moving forward (along the ventral
visual stream) to reach the anterior parts of the inferior temporal
cortices where semantic information (e.g., about the category
of the presented object) is extracted from the visual inputs
(DiCarlo et al., 2012). However, two outstanding questions
are how neurons along the way encode the information and
how this information is reflected in invasively (e.g., LFPs)
and non-invasively collected (e.g., EEG) neural data. While
in invasively recorded data, researchers have found significant

information about visual information in low-frequency power
of LFPs (Belitski et al., 2008) or phase-amplitude coupling of
electrocorticography (ECoG), there is no reason for these to
directly imprint on EEG. In fact, there is evidence that EEG
activations represent the information in a feature different [e.g.,
phase rather than the amplitude of slow (theta band) oscillations]
from the invasive neural data such as spiking activity (Ng et al.,
2013). Therefore, more detailed investigation of neural coding in
EEG seems necessary.

To gain a better understanding of EEG, previous studies
have extracted a wide variety of features of neural activations
to extract information about visual object categories. However,
they have generally used whole-trial analyses, which hide the
temporal dynamics of information processing, or time-resolved
decoding analyses, or considered the response at each time point
separately, ignoring potentially informative temporal features
of the time series data. To fill this gap, our previous study
extracted and compared a large set of features from EEG in time-
resolved analysis (Karimi-Rouzbahani et al., 2021b). However,
an outstanding question in the literature was whether the neural
code might be best captured by combinations of these features,
i.e., if the brain uses a combinatorial encoding protocol to
encode different aspects of the sensory input using distinct
encoding protocols on the same trial (Gawne et al., 1996;
Montemurro et al., 2008). Alternatively, previous invasive neural
recording studies have suggested a general multiscale encoding
procedure that allows the generation of all the information
within the same platform (Victor, 2000; Kayser et al., 2009;
Panzeri et al., 2010). To address this question we combined
a large set of distinct mathematical features (n = 26) of the
EEG time series data from three datasets, and combined them
using a large set of FS algorithms (n = 17), each having
different criteria for selection. We compared the performance
of different FS algorithms using multivariate decoding of
category information. Our results showed that, no matter
how we combined the informative features, their combined
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FIGURE 4 | Correlation between the decoding accuracies obtained using 17 FS algorithms and behavioral reaction time of Dataset 2. (A) Top section in each panel
shows the (Spearman’s) correlation coefficient obtained from correlating the decoding values and the reaction times for each feature separately. Thickened time
points on the curves indicate time points of positively or negatively significant (P < 0.05; corrected for multiple comparisons) correlations as evaluated by random
permutation of the variables in correlation. (B) Correlation between each of the amplitude and timing parameters of time-resolved decoding (i.e., maximum and
average decoding accuracy and time of first and maximum decoding) with the average time-resolved correlations calculated from panel (A) for the set of N = 17 FS
algorithms. The slant line shows the best linear fit to the distribution of the correlation data. (C) Correlation between the decoding accuracies obtained from the
feature which showed the highest maximum correlation from individual features (Wavelet) and from the combined features (laplacian).

decodable information about object categories, and their power
in predicting behavioral performance, was outperformed by the
most informative individual feature (i.e., Wavelet), which was
sensitive to multi-scale codes from the analysis time window and
across electrodes (i.e., spatiotemporal specificity).

The main question of this study was whether the brain
recruits and combines a number of different protocols to
encode different aspects of cognitive processes involved in
object category recognition ranging from sensory information
to behavioral response. For example, the brain may use one
encoding protocol for the encoding of feed-forward visual

information processing, e.g., theta-band power, which would
later in the trial be dominated by alpha/beta-band feedback
information flow involved in semantic object categorization
(Bastos et al., 2015). The brain may also use different encoding
protocols to process different aspects of the same stimulus [e.g.,
contrast or the orientation of visual stimulus (Gawne et al.,
1996)]. Alternatively, the brain may implement a single but
multiscale protocol [e.g., multiplexing strategy which combines
the codes at different time scales (Panzeri et al., 2010)] which
allows different aspects of information to be represented within
the same encoding protocol. Our results provide support for
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the latter by showing that spatiotemporally sensitive features,
which can detect patterns across multiple scales (e.g., Wavelet
coefficients) best capture variance in the EEG responses evoked
by different categories of visual objects. Therefore, rather than a
combinatorial and switching encoding protocol, the brain may
instead encode object category information through a single but
multiscale encoding protocol.

This study does not provide the first evidence showing that
temporal patterns of activity provide information about different
aspects of visual sensory input. The richness of information in the
temporal patterns of activity has been previously observed in light
encoding (Gollisch and Meister, 2008), co-occurrences of visual
edges (Eckhorn et al., 1988), orientations in primary visual cortex
(Celebrini et al., 1993) as well as object category information in
the temporal cortex (Majima et al., 2014). While we do not claim
that this EEG study provides direct evidence about processing
of information at the level of single neurons, our findings are
consistent with the above invasively-recorded neural data and
provide evidence for information content in neural variability of
EEG data. Our study also aligns with the recent move toward
incorporating within- and across-trial temporal variability in
the decoding of information from neural time series such as
MEG (Vidaurre et al., 2019), EEG (Majima et al., 2014), invasive
electrophysiological (Orbán et al., 2016) and even fMRI (Garrett
et al., 2020) data. On the other hand, this current study contrasts
with the conventional time-resolved decoding analyses which
merely consider amplitude at each time point (Grootswagers
et al., 2017), overlooking informative multi-scale temporal codes.

The field of Brain-Computer Interface (BCI) has already
achieved great success in decoding visually evoked information
from EEG representations in the past two decades, mainly
through the use of rigorous supervised learning algorithms
[e.g., Voltage Topographies (Tzovara et al., 2012), Independent
Component Analysis (Stewart et al., 2014), Common Spatial
Patterns (Murphy et al., 2011), and Convolutional Neural
Networks (Seeliger et al., 2018)] or by combining multiple
features (Chan et al., 2011; Wang et al., 2012; Qin et al.,
2016; Torabi et al., 2017). However, the predictive power
of a feature about behavior might not be as important for
BCI where the goal is to maximize the accuracy of the
commands sent to a computer or an actuator. In contrast,
one of the most critical questions in cognitive neuroscience to
understand whether the neural signatures that we observe are
meaningful in bringing about behavior, as opposed to being
epiphenomenal to our experimental setup (e.g., Williams et al.,
2007; Jacobs et al., 2009; Ritchie et al., 2015; Hebart and
Baker, 2018; Woolgar et al., 2019; Karimi-Rouzbahani et al.,
2021a,b). To address this point, we evaluated whether our
extracted features and their combinations were behaviorally
relevant, by correlating our decoding patterns with the behavioral
object recognition performance (reaction times in Dataset
2). Moreover, to directly compare the information content
of the combined feature sets with the individual features,
we equalized the dimensions of the data matrix for the FS
algorithm to that obtained for individual features. This avoided
artefactualy improving behavioral predictive power with higher
dimensionality. Contrary to what we predicted, however, we

observed that even the laplacian FS algorithm, which provided
the best peak prediction for the behavioral performance, was
outperformed by the individual Wavelet feature at most time
points. Therefore, the multiscale feature of Wavelet not only
provides the most decodable information, but seems to most
closely reflect the neural processes involved in generating
participant behavior.

One unique property of our decoding pipeline, which we
believe led to the enhanced information encoding for the Wavelet
feature relative to other individual features (Karimi-Rouzbahani
et al., 2021b), is the incorporation of spatiotemporal codes in
decoding in each 50 ms analysis window. The neural code can
be represented in either time (across the analysis time window),
space (across electrodes in EEG) or a combination of both
(Panzeri et al., 2010). Specifically, most of the previous studies
have evaluated the neural codes in either time, being limited by
the nature of their invasive recording modality (Houweling and
Brecht, 2008; Benucci et al., 2009), or space by averaging/down-
sampling of data within the analysis window. However, our
spatiotemporal concatenation of EEG activity across both time
and electrodes (i.e., performed at the first PCA stage for
individual features and at the third PCA stage for the combined
features in Figure 1), allows the neural codes to be detected
from both spatially and temporally informative patterns. The
50 ms time window chosen here makes a compromise between
concatenating and decoding the whole time window in one shot,
which loses the temporal resolution, and time-resolved decoding
at each time point, which ignores temporal patterns of activity
(Karimi-Rouzbahani et al., 2021b).

While this study provided insights about how neural codes
might be detected from EEG activations, there remain two
main limitations in understanding the nature of neural codes in
EEG. First, physiological evidence is limited about how neurons
produce, often such complicated codes, even in studies where
the mathematical features of this study were first introduced.
There are theories and mathematical justifications to explain
why these complicated codes are helpful (Schaefer et al., 2006;
Kayser et al., 2009; Schroeder and Lakatos, 2009, etc.) but not
on how neurons produce them. Second, it seems unlikely that
the distinctly-defined mathematical features necessarily extract
distinct attributes/neural codes. In fact, many of the extracted
features overlap: some of them are slightly different ways of
quantifying similar characteristics of the neural activity (e.g.,
variance vs. power, which both quantify the strength of variability
of the signal). Therefore, there are not necessarily distinct neural
underpinnings for each feature.

There are several future directions for this research. First, as
the encoding protocols for different cognitive processes might be
different from object category processing (Panzeri et al., 2010),
the generalization of our results to other domains of cognitive
neuroscience needs to be evaluated. Second, previous results
(Panzeri et al., 2010) suggest that different aspects of information
(e.g., category processing, decision making and motor response)
may be encoded using different encoding protocols. Our data did
not allow us to tease those aspects apart, which is interesting area
for future investigation. Third, following previous suggestions
that even different aspects of visual information (e.g., color,
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variations, and task) might also be encoded using different
encoding protocols (Gawne et al., 1996), the number of selected
features might need to be varied from one dataset to another.
Ideally, we would only keep the informative features above a
certain threshold. Here, we chose an arbitrary threshold of 5
included, but it would be interesting to explore the impact of this
parameter in the future.

The large-scale EEG analysis of this study aligns with the
recent shift to cross-dataset meta-analyses for different human
cognitive abilities such as working memory (Adam et al., 2020)
and sustained attention (Langner and Eickhoff, 2013). Such
studies lead to more generalizable conclusions and provide
deeper insights into the human cognition. Here, across three very
different datasets we showed that, the brain seems to implement a
temporally and spatially flexible and multiscale encoding strategy
rather than a combinatorial or switching encoding strategy, at
least in object category processing.
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