
ar
X

iv
:2

00
4.

00
29

6v
1 

 [
m

at
h.

O
C

] 
 1

 A
pr

 2
02

0

Robust synchronization of heterogeneous robot swarms on the sphere

Johan Markdahl, Daniele Proverbio, and Jorge Goncalves

Abstract— Synchronization on the sphere is important to
certain control applications in swarm robotics. Of recent
interest is the Lohe model, which generalizes the Kuramoto
model from the circle to the sphere. The Lohe model is mainly
studied in mathematical physics as a toy model of quantum
synchronization. The model makes few assumptions, wherefore
it is well-suited to represent a swarm. Previous work on this
model has focused on the cases of complete and acyclic networks
or the homogeneous case where all oscillator frequencies are
equal. This paper concerns the case of heterogeneous oscillators
connected by a non-trivial network. We show that any undesired
equilibrium is exponentially unstable if the frequencies satisfy a
given bound. This property can also be interpreted as a robust-
ness result for small model perturbations of the homogeneous
case with zero frequencies. As such, the Lohe model is a good
choice for control applications in swarm robotics.

I. INTRODUCTION

Synchronization on nonlinear spaces is important to a num-

ber of robotics applications. Many such problem pose special

challanges due to the non-Euclidean topology of the state

space, which also make them particularly interesting from

a control theory perspective [1]–[3]. Consensus protocols

have been developed to achieve synchronization on general

manifolds [4], [5]. However, for particular manifolds, other

algorithms can outperform those protocols [6], [7]. This

includes the so-called Lohe model which is studied in

physics [8]–[15]. The Lohe model is a generalization of

the Kuramoto model of a multi-agent system of coupled

oscillators from the circle to the sphere. Compared to other

methods [4], the Lohe model is less demanding in terms

of computation and communication. As such, it is suitable

for robot swarms where each robot has limited resources

available for control. We have previously proved that the

Lohe model displays almost global synchronization [6], [7].

In this paper we show that this property is also robust under

small drift-like perturbations. Our main result amounts to a

condition on the model parameters under which undesired

equilibrium points remain exponentially unstable.

Roughly speaking, our result can be interpreted as robust-

ness of almost global synchronization. The homogeneous

Lohe model is a driftless system. It becomes a system with

drift (the heterogenous model) after a small perturbation term

is added to the dynamics. Almost global synchronization

becomes almost global practical synchronization [16] (up

to a technicality). The property of almost global sync is

important for two main reasons. First, in reduced rigid-body
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attitude synchronization, the guarantee of almost global sync

is clearly preferable to local sync. In particular, conditions

for local convergence to synchronization on S
n

requires all

initial states to belong to an open hemisphere [10], [17].

The probability of drawing such a configuration from a

uniform distribution of all configurations on pSnqN
goes

to zero exponentially as the number of agents N goes to

infinity. By contrast, almost global sync does not depend

on N . For almost global practical sync, we again find a

dependence on N in our result. Secondly, almost global

practical synchronization for all connected networks distin-

guishes the heterogenous Lohe model from the heterogenous

Kuramoto, model which is multistable. The fact that the

two models behave qualitatively different is intruiging and

motivates further study of the heterogenous Lohe model.

A. Literature review

The Kuramoto model is a popular model of collective be-

havior in multi-agent systems of weakly coupled oscillators

[18]–[20]. Recent years have seen a growing interest in high-

dimensional generalizations of the Kuramoto model, the most

popular of which is the Lohe model of synchronization on

S
n

[6]–[15], [21]. The study of this model in physics is

motivated by its relation to synchronization of quantum bits

[8], [9], but it also appears in control systems designed

to achieve reduced rigid-body attitude synchronization, i.e.,

to coordinate the pointing orientations of robots [6], [22],

[23], in bio-inspired models of source-seeking and learning

[12], [24], and in machine learning applications [13]. There

are several variations of the model, including second-order

dynamics [25], [26] and discrete-time maps [27]. A limitation

in our current understanding of the Lohe model is the

restriction to combinations of complete or acyclic networks

[11], [14], [15], [23], [26], homogeneous frequencies [6],

[10], [21], [25], and local behavior [10], [11], [25], [26], [28].

By contrast, this paper concerns the global behavior of the

Lohe model with heterogeneous frequencies over non-trivial

networks. Previous work established almost global sync over

all connected networks for the homogeneous Lohe model

on the n-sphere for n ě 2 [6]. This paper generalizes the

results of [6] to the case of heterogeneous frequencies under

a condition on the model parameters.

The literature contains a result for the homogeneous

Lohe model under small homogenous and heterogeneous

perturbations [28]. However, it is limited to local existence

of asymptotically stable sets without further characterization.

This paper studies the effect of perturbations on a global

level and gives an explicit bound on a range of parameter

values that excludes the possibility of critical transitions from
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instability to stability. There is also a robust hybrid feedback

algorithm for global synchronization on the sphere [23], but

convergence results are limited to tree graphs. Furthermore,

there are many general results about small perturbations

in the control theory literature [29], including applications

to synchronization of heterogeneous agents [16]. Moreover,

exponentially stable systems are known to be robust in

general [29]. In terms of perturbation theory, the contribution

of this paper is to provide an explicit relation between

the parameters of the system that, if satisfied, guarantees

exponential instability of undesired equilibria.

II. PRELIMINARIES

The following notation is used in this paper. The inner

product of x, y P R
n

is denoted by xx, yy. Let } ¨ }2

denote the Euclidean norm of a vector or induced 2-norm

of a matrix. The n-sphere is S
n “ tx P R

n`1 | }x}2 “ 1u.

The tangent space of S
n

is TxS
n “ ty P R

n`1 | xy, xy “
0u » R

n
. The special orthogonal lie algebra is sopnq “

tS P R
n`tˆn`1 | S

J “ Su. The gradient in Euclidean space

is denoted ∇ : fpxq ÞÑ ∇fpxq P R
n`1

, the intrinsic

gradient map at a point x P S
n

is denoted grad : fpxq ÞÑ
grad fpxq P TxS

n
.

An undirected, simple graph is a pair G “ pV , Eq where

V Ă N is the node set and E Ă te Ă V | |e| “ 2u is the edge

set. The graph G encodes the communication topology of a

multi-agent system where each i P V corresponds to an agent

and each ti, ju P E indicates a bidirectional information flow

between agent i and agent j. Throughout the paper it is

assumed that G is connected. The set of neighbors of agent

i is Ni “ tj P V | ti, ju P Eu. Other objects associated with

agent i also carry i as a subindex, e.g., the state xi P S
n

,

the tangent space of S
n

at xi is TiS
n

:“ Txi
S

n
etc.

The exponential instability property of an equilibrium is

important for stability analysis. It appears in the the indirect

method of Lyapunov, the Hartman-Grobman theorem, and

the center manifold theorem [30]. In the proof of our main

result we use the center manifold theorem to show that expo-

nential instability, defined in terms of the spectral abscissa

of the linearization matrix, relates to a lack of Lyapunov

stability. For now, we just give a formal definition:

Definition 1: Let Apxq denote the linearization matrix of

a continuous-time, autonomous dynamical system around an

equilibrium x. The spectral abscissa of Apxq is

ηpxq “ max
αpxqPσpApxqq

Re αpxq,

where σp¨q denotes the spectrum of a matrix. The equilibrium

x is exponentially unstable if ηpxq ą 0.

A. The Lohe model

The heterogeneous Lohe model on networks is given by

9xi “ Ωixi ` pIn ´ xix
J
i q

ÿ

jPNi

kijxj , (1)

where Ωi P sopnq, xi P S
n

, and kij P p0, 8q, kij “ aji

are the coupling gains. The n-sphere is invariant under these

dynamics by Nagumo’s invariance theorem since the right-

hand side of (1) belongs to the tangent space TiS
n

[31]. For

n “ 1 we obtain the Kuramoto model on networks [20] after

a change from Cartesian to polar coordinates,

9θi “ ωi `
ÿ

jPNi

kij sinpθj ´ θiq, (2)

where cos θi “ xxi, e1y, ωi “ xe1, Ωie2y.

The homogeneous Lohe model on networks is obtained by

setting Ωi “ Ω and is equivalent to the case of Ωi “ 0 [7],

9zi “ pI ´ ziz
J
i q

ÿ

jPNi

kijzj . (3)

The model (3) is the gradient flow of the disagreement

function V : pSnqN Ñ r0, 8q which is given by

V :“ 1

2

ÿ

iPV

ÿ

jPNi

kij}zi ´ zj}2

2.

Denote z :“ pziqN
i“1. Then

9z “ ´ grad V pzq “ ´pgradi V pzqqN
i“1, (4)

where grad and gradi denotes the gradient on the sphere

with respect to z and zi respectively. The gradient

gradi V pzq is calculated in [6] by taking the gradient with

respect to zi P R
n`1

, ∇iV “ ř

jPNi
kijzj , and applying an

orthogonal projection operator Pi : R
n`1 Ñ TiS

n
to it,

gradi V pzq “ Pi∇iV pzq “ pI ´ ziz
J
i q

ÿ

jPNi

kijzj .

The heterogeneous Lohe model (1) can be written as the

sum of a drift term and a gradient descent flow term,

9xi “ Ωixi ´ gradi V pxq, (5)

The drift term Ωixi cannot be written as the gradient of a

scalar field, since it would result in the Hessian Ωi being

skew-symmetric. This, in turn, would contradict Schwarz’s

theorem on the equality of mixed partial derivatives. For the

Kuramoto model (2) it is however possible to write this term

as the gradient of a potential function, see [32].

From a control theory perspective, the model (1) may be

taken to represent a system with input ui : R
n`1 Ñ TiS

n
,

9xi “ Ωixi ` ui,

where xi P S
n

, Ωi P sopnq, and the feedback law ui “
´ gradi V pxq results in (5). The drift term Ωixi is assumed

to be unknown, but small. As such, it can be interpreted as a

form of bias or model error. An observer-based feedback

may be able to estimate and cancel the drift term. Here

we assume that such a feedback, or some other advanced

algorithm (cf. [4], [33]), is not used due to a requirement

that robots in the swarm are relatively cheap in terms of

sensors, communication ability, and computational power.



B. Notions of synchronization

To explain the goal of this paper we need some formal

notions of synchronization for the Lohe model.

Definition 2 (Phase synchronization): The system (1) is

phase synchronized if }xi ´ xj}2 “ 0 for all ti, ju P E .

Note that if the system is phase synchronized then 9xi “
Ωixi whereby the system will break away from phase

synchronization unless Ωi “ Ω, i.e., unless the system is

homogeneous. Since this paper studies the heterogeneous

Lohe model we need a different notion of synchronization:

Definition 3 (Practical synchronization): The system (1)

is practically synchronized if all agents are contained in an

open convex cone with angle less than π{2.

For the homogeneous Kuramoto model there exists asymp-

totically stable equilibria that are not practically synchro-

nized, e.g., the q-twisted states

Sq “ tpθiqN
i“1 P r0, 2πqN | θi “ ϕ ` 2πq

N
, ϕ P r0, 2πqu.

By contrast, for the homogeneous Lohe model, the only

asymptotically stable equilibrium set is phase synchroniza-

tion [6]. In this paper we show that this results extends to the

heterogeneous model: for sufficiently small frequencies Ωi,

the only stable configurations is practical synchronization.

Finally, we give a definition of dispersed equilibria. For

this we also need the concept of an open hemisphere. The

intersection of S
n

and an open halfspace,

S
n X tx P R

n`1 | xx, yy ą 0u “ tx P S
n | xx, yy ą 0u,

is an open hemisphere for any y , 0.

Definition 4: An equilibrium pxiqN
i“1 is referred to as

dispersed if it there is no open hemisphere containing the

set tx1, . . . , xN u of all agents.

Note that a open hemispheres are the largest geodesically

convex subset of a sphere, i.e., there is a unique geodesic

between any pair of points in the set. As such, open

hemispheres are homotopic (topologically equivalent) to R
n

.

There are a number of result about synchronization of various

Lohe models on hemispheres [10], [17]. However, due to

this topological difference, the global analysis of dispersed

equilibria presents additional challanges [1].

III. MAIN RESULTS

Because the full proof of our main result is long, it is easy

to get lost in the details. We provide a brief proof sketch to

explain the main ideas. All the details are in the Appendix.

Theorem 5: Any dispersed equilibrium of the heteroge-

neous Lohe model (1) on S
n

is exponentially unstable if the

frequencies Ωi are small in the following sense

`

ÿ

iPV

}Ωi}2

2

˘
1

2 ă K
n`1

pn ´ 1 ´ cos π
N

qp1 ´ cos π
N

q, (6)

where K “ minti,juPE kij and n ě 2. The bound (6) is in

OpK{N
4q for n “ 2 and OpK{N

2q for n ě 3.

Proof sketch: Let Apxq denote the linearization of (1) at a

dispersed equilibrium x P S
n

. The center manifold theorem

can be used to establish the instability of x when the spectral

abscissa of Apxq, i.e., the largest real part Re αpxq of all

eigenvalues, is positive [30]. The linearization matrix Apxq
is the sum of a skew-symmetric and a symmetric matrix,

Apxq “ diagpΩ1, . . . , ΩN q ` Bpxq,
where Bpxq, the linearization of the homogeneous Lohe

model (3), is given in [6]. We can interpret the matrix Apxq
as a the result of perturbing the matrix Bpxq.

Let βpxq “ max}v}
2

“1xv, Bpxqvy denote the spectral

abscissa of Bpxq. By matrix perturbation theory [34],

|βpxq ´ Re αpxq| ď }Apxq ´ Bpxq}2

“
`

ÿ

iPV

}Ωi}2

2

˘
1

2 . (7)

A lower bound for βpxq is given in [6]. Based on this

bound we derive the following inequality which holds at any

dispersed equilibrium x (see Definition 4),

βpxq ě K
n`1

pn ´ 1 ´ cos π
N

qp1 ´ cos π
N

q. (8)

Suppose that the assumption (6) of Theorem 5 holds, then

|βpxq ´ Re αpxq| ď
`

ÿ

iPV

}Ωi}2

2

˘
1

2

ă K
n`1

pn ´ 1 ´ cos π
N

qp1 ´ cos π
N

q
ď βpxq,

where we used (7), (8). From |βpxq ´ Re αpxq| ă βpxq
we get Re αpxq ą 0. It follows that the equilibrium x is

exponentially unstable. �

Remark 6: Theorem 5 can be interpreted as a robustness

result for a previous theorem on almost global synchroniza-

tion of the homogeneous Lohe model [6]. We know that

a set of perturbed equilibria that is close to the consensus

manifold remains asymptotically stable [28]. In this paper we

show that all other equilibria remain exponentially unstable

for all Ωi that satisfy (6). Compared to [6], the property

of almost global practical synchronization could not be

established for the heterogeneous Lohe model. The result

[6] utilize that analytic gradient descent flows have very

strong convergence properties [35]. These extend to some

multiplicative perturbations, but not to additive perturbations

like (5). In general, there exist cases where a set of expo-

nentially instable equilibria can be almost globally attractive

[36]. If the dynamics belong to a class of nice functions

(e.g., gradients flows of analytic functions on compact sets),

then such pathological behaviour is not possible. In our case,

the right-hand side of (1) is not a gradient descent flow.

In theory, it can not be ruled out that the behaviour of the

heterogeneous Lohe model (1) is pathological. However, it

is unlikely that (1) is a pathological case. Future work will

explore the convergence behavoir of the Lohe model (1) near

exponentially unstable equilibria.

IV. FUTURE WORK

We provide an instability result based on the center manifold

theorem for the heterogeneous Lohe model. The litera-

ture already contains local stability results for the desired



equilibria, i.e., practical synchronization for the perturbed

consensus manifold [28]. Taken together, local stability of

desired equilibria and local instability of undesired equilibria

should amount to almost global asymptotical stability of the

desired equilibria. However, some technical issues prevent

this conclusion. The main question is if there exists trajec-

tories that do not converge to equilibria, e.g., limit cycles in

the case of large Ωi, and how to account for them in the

stability analysis. Future work will bridge this gap in our

understanding and address the case of large perturbations.
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APPENDIX

A. The center manifold theorem

The indirect method of Lyapunov states that a nonlinear

system is unstable if the matrix that characterizes its lin-

earization has an eigenvalue with strictly positive real part

[29]. However, we must also account for the fact that (1)

evolves on S
n Ă R

n`1
. To this end, we use the center

manifold theorem. Extend the heterogeneous Lohe model

from S
n

to an open neighborhood of S
n

in R
n`1zt0u as

9vi “ Ωivi ` pIn ´ vi

}vi}
2

p vi

}vi}
2

qJq
ÿ

jPNi

kij
vj

}vj }
2

, (9)

where vip0q P R
n`1

. Note that }vi}2

2 is constant along

trajectories of the system since x 9vi, viy “ 0. Also note

that (9) and the linearization of (9) on pSnqN
equals the

linearization of the heterogeneous Lohe model (1).

The center manifold theorem states that the unstable

manifold at an equilibrium v of (9) is tangent to the unstable

subspace of the linearization of (9) [30]. Let x P pSnqN Ă
R

Npn`1q
be an exponentially unstable equilibrium of the

Lohe mode (1), then x is also an exponentially unstable

equilibrium of (9). Part of the unstable manifold of (9) at

x is tangent to TxpSnqN
. Note that this part of the unstable

manifold belongs to pSnqN
. To see this, follow a trajectory

on the unstable manifold that satisfies limtÑ´8 vptq “ x.

Then }viptq}2 “ }xi}2 “ 1 or else we contradict x 9vi, viy “
0. As such, the equilibrium x of the Lohe model (1), i.e.,

the restriction of (9) to pSnqN
, is not Lyapunov stable.



B. The linearized system

Recall that the Lohe model (1) is the sum of a drift term

and a gradient descent term, i.e., 9xi “ Ωixi ´ gradi V . The

map from a system to its linearization is itself linear, so we

can linearize the two terms separetly. Note that 9yi “ Ωiyi

is linear. The linearization of the gradient descent flow 9zi “
´ gradi V is given in [6].

The linearization of 9zi “ ´ gradi V is given by the Npn`
1q ˆ Npn ` 1q block matrix Bpzq “ rBijs where each pn `
1q ˆ pn ` 1q block is

Bij “
#

´ ř

jPNi
kijxzj , ziypIn ´ ziz

J
i q if j “ i,

kijpIn ´ ziz
J
i qpIn ´ zjz

J
j q otherwise.

(10)

The linearization of (1) is hence characterized by a block

matrix Apxq “ rAijs where the blocks are given by

Aij “
#

Ωi ` Bii if j “ i,

Bij otherwise.
(11)

Equation (11) allows us to see the linearization matrix

Apxq as a perturbation of the matrix Bpxq,

Apxq “ diagpΩ1, . . . , ΩN q ` Bpxq, (12)

where we assume that } diagpΩ1, . . . , ΩN q}2 is small. To

analyze the stability of Apxq, we first find a specific lower

bound on the largest eigenvalue (the spectral abscissa) of

Bpxq. Then we use matrix perturbation theory in the case

of small }Ωi}2 to bound the spectral abscissa of Apxq
below by a small positive number. The equilibrium x is then

exponentially unstable by the direct method of Lyapunov.

C. Eigenvalues of the symmetric matrix

The spectral abscissa βpxq :“ max}v}
2

“1xv, Bpxqvy of

Bpxq given by (10) is bounded below as

βpxq ě max
}w}

2
“1

1

N
xw,

ÿ

iPV

ÿ

jPV

Bijwy

ě 1

Npn`1q
ÿ

iPV

ÿ

jPV

tr Bij ě 1

Npn`1q
ÿ

iPV

ÿ

jPNi

tr Bij

“ 2

Npn`1q
ÿ

ti,juPE

kijp´nxxj , xiy ` n ´ 1 ` xxj , xiy2q,

where we have chosen v “ 1

N
rwJ

, . . . , w
Js for any w P

R
n`1

such that }w}2 “ 1 whereby }v}2 “ 1. This expres-

sion is strictly positive for all n ě 2 and all pziqN
i“1 < C.

For future reference we define the lower bound of βpxq as

a function

f : x ÞÑ 2

Npn`1q
ÿ

ti,juPE

kijpn ´ 1 ´ xxj , xiyqp1 ´ xxj , xiyq,

i.e., βpxq ě fpxq holds. Let θij denote the angle between

agent i and j, i.e., cos θij “ xxj , xiy. Then we can write

f : x ÞÑ 2

Npn`1q
ÿ

ti,juPE

kijpn ´ 1 ´ cos θijqp1 ´ cos θijq.

D. Optimization of bound

Note that f depends on x. To remove this dependence, we

minimize f over all dispersed equilibria. For an equilibrium

to be regarded as dispersed, by Definition 4 we require that

the set tx1, . . . , xN u is not contained in an open hemisphere

of S
n

. The minimization must be done both with respect to

the graph G and the configuration x “ pxiqN
i“1.

Each term in f is positive, wherefore removing a link from

G leads to a decrease in f . It follows that the graph which

minimizes f is a tree. By definition of z being dispersed,

tx1, . . . , xN u is not contained in a hemisphere. There must

hence be a tuple P “ pi1, . . . , ikq for some k ď N such that
řk

j“1
θijij`1

ě π. Note that f decreases with increasing

θij . Hence, for any index i < P , it is suboptimal to not set

θik “ 0, where k is any neighbor of i. There is no loss of

optimality in assuming that P “ p1, . . . , Nq, i.e., G is a path.

The choice of agent placements that minimize f solves

min f “ 2

Npn`1q
ÿ

iPV

kijpn ´ 1 ´ cos θi,i`1qp1 ´ cos θi,i`1q
ÿ

iPV

θi,i`1 “ π,

where addition of indices is modulo N . The inequality in

the constraint has been replaced by an equality since µ

decreases with increasing θij , i.e., it is suboptimal to chose

pxiqN
i“1 such that

ř

iPV
θi,i`1 ą π. The coupling gains kij

complicate the next step of the analysis wherefore we let

K :“ minti,juPE kij and replace the problem by

min gpxq :“ 2K
Npn`1q

ÿ

iPV

pn ´ 1 ´ cos θi,i`1qp1 ´ cos θi,i`1q

cpxq :“
ÿ

iPV

θi,i`1 ´ π “ 0, (NP)

where βpxq ě gpxq with equality if kij “ K .

E. Solution to optimization problem for large N

To solve the nonlinear programming problem (NP), we use

the Lagrange conditions for optimality [37]. There is only

one constraint cpxq “ 0, the gradient of which is non-zero.

The optimal solution hence satisfies

∇gpxq ` λcpxq “ ∇gpxq ` λ1 “ 0, (13)

where λ is a Lagrange multiplier and 1 “ r1, . . . , 1sJ. It

follows that

sin θi,i`1pn ´ 2 cos θi,i`1q “ ´ Npn`1q
2a

λ, (14)

where λ ď 0 is required for θi,i`1 P r0, πs to exist.

Both factors in the left-hand side of (14) increase on

r0, π{2s and decrease on rπ{2, πs. As such, the curve of

sin θi,i`1pn ´ 2 cos θi,i`1q can intersect a constant at most

twice on r0, πs. Moreover, one of the solutions is larger than

π{2. However, since
ř

iPV θi,i`1 “ π, at most one θi,i`1 is

larger than π{2. There are hence only two solutions to (13):

either θi,i`1 “ π{N for all i P V or θj,j`1 “ ϕ ą π{2,

θi,i`1 “ pπ ´ ϕq{pN ´ 1q, for all i P Vztju (this is one

solution up to permutations of t1, . . . , Nu).



Consider the case where θi,i`1 “ π{N . Then the objective

function value is

g1 :“ 2K
n`1

pn ´ 1 ´ cos π
N

qp1 ´ cos π
N

q.

In the case when θj,j`1 “ ϕ, then the objective function

value is

g2 :“ 2KpN´1q
Npn`1q pn ´ 1 ´ cos π´ϕ

N´1
qp1 ´ cos π´ϕ

N´1
q`

2K
Npn`1q pn ´ 1 ´ cos ϕqp1 ´ cos ϕq

The value g1 belongs to OpK{N
2q since 1 ´ cos π{N P

Op1{N
2q if n ě 3 (or OpK{N

4q if n “ 2) whereas g2

belongs to OpK{Nq due to the second term being bounded

below by 2Kpn ´ 1q{pNpn ` 1qq. As such, g1 is optimal for

sufficiently large N . Note that θi,i`1 “ π{N ă 1 for N ě 5

and

g1 ď 2K
n`1

pn ´ 1q 1

2

π
2

N
2 ă 2K

n`1
pn ´ 1q 1

N
ă g2

due to π
2 ď 2N . Hence θi,i`1 “ π{N is optimal for N ě 5.

F. Three special cases

Consider the remaining cases of N P t2, 3, 4u. If N “ 2,

then

g1 “ 2K
n`1

pn ´ 1q,
g2 “ K

n`1
pn ´ 1 ` cos ϕqp1 ` cos ϕq`

K
n`1

pn ´ 1 ´ cos ϕqp1 ´ cos ϕq
“ g1 ` 2K

n`1
cos

2
ϕ.

If N “ 3, then

g1 “ K
n`1

pn ´ 3

2
q,

g2 “ 4K
3pn`1q pn ´ 1 ´ sin ϕ

2
qp1 ´ sin ϕ

2
q`

2K
3pn`1q pn ´ 1 ´ cos ϕqp1 ´ cos ϕq

“ K
n`1

rnp2 ´ 2

3
p2 sin ϕ

2
` cos ϕqq

´ 2p1 ´ 1

3
p1 ´ cos ϕ ` cos

2
ϕqqs

ą K
n`1

pn ´ 4

3
q ą g1,

where we omitted a few steps. Finally, if N “ 4, then

g1 “ 2K
n`1

pn ´ 1 ´ 1?
2

qp1 ´ 1?
2

q
“ K

n`1
pp2 ´

?
2qn ´ 1q,

g2 “ 3K
2pn`1q pn ´ 1 ´ cos π´ϕ

3
qp1 ´ cos π´ϕ

3
q`

K
2pn`1q pn ´ 1 ´ cos ϕqp1 ´ cos ϕq

“ K
n`1

rp2 ´ 5

4
cos ϕ ´ 3

?
3

4
sin ϕqn´

p 3

2
sin

2 π´ϕ
3

` 1

2
sin

2
ϕqs

ą K
n`1

pp2 ´ 3
?

3

4
qn ´ 1

2
p3 sin

2 π´ϕ
3

` sin
2

ϕqq
ą K

n`1
pp2 ´ 3

?
3

4
qn ´ 7

8
q ą g1,

where we have omitted a few steps and
?

2 ą 3
?

3{4 can

be verified by numerical calculation.

G. Matrix perturbation theory

We have a lower bound for the spectral abscissa of the lin-

earization of the homogeneous Lohe model at any dispersed

equilibria. It remains to relate this result to the inhomoge-

neous Lohe model. This is done via the characterization

(12) of the linearization of the inhomogenous model as a

perturbation of the homogeneous model.

A Hermitian matrix X equals its conjugate transpose, i.e.,

X
˚ “ X. Given an Hermitian matrix X and an arbitrary

matrix Y, the following result from matrix perturbation

theory relates the spectrum of X ` Y to the spectrum of

X and Y:

Theorem 7 (Kahan [34]): Let X P C
nˆn

be a Hermitian

matrix with eigenvalues χ1 ď . . . ď χn and Y P C
nˆn

be

an arbitrary matrix. Let σj with Re σ1 ď . . . ď Re σn denote

the eigenvalues of X ` Y. Then

p
n

ÿ

j“1

pχj ´ Re σjq2q 1

2 ď 1

2
}Y ` Y

˚}2`

p 1

4
}Y ´ Y

˚}2

2 ´
n

ÿ

j“1

pIm σjq2q 1

2 .

Note that for the case we are interested in, Y P sopnq,

i.e., Y
J “ ´Y. The inequality in Theorem 7 allows several

simplifications for Y P sopnq, including

|χn ´ Re σn| ď }Y}2.

Note that a sharper inequality could be obtainable if we knew

more about χj and σj . However, we are satisfied with this

rather elegant bound.

The spectral abscissa βpxq of the linearization matrix

Bpxq of the homogeneous Lohe model given by (10) satisfies

βpxq ě 2K
n`1

pn ´ 1 ´ cos π
N

qp1 ´ cos π
N

q. (15)

The linearization matrix Apxq of the heterogenous Lohe

model is separated from Bpxq by

Apxq ´ Bpxq “ diagpΩ1, . . . , ΩN q.
Let Re αpxq denote the spectral abscissa of Apxq. By the

matrix perturbation result, Theorem 7, we have

|βpxq ´ Re αpxq| ď } diagpΩ1, . . . , ΩN q}2. (16)

Note that } diagpΩ1, . . . , ΩN q}2 “ p
ř

jPV }Ωj}2

2q
1

2 . By the

assumption of Theorem 5,

p
ÿ

jPV

}Ωj}2

2q 1

2 ă 2K
n`1

pn ´ 1 ´ cos π
N

qp1 ´ cos π
N

q. (17)

Combine (15)–(17) to find |βpxq ´ Re αpxq| ă βpxq, which

implies Re αpxq ą 0. Since αpxq is an eigenvalue of

the linearization matrix Apxq of the heterogeneous Lohe

model at any dispersed equilibrium x, it follows that the

heterogeneous Lohe model is exponentially unstable at x.
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