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Abstract 

Analysis of the understudied parts of the phospho-

signalome using machine learning methods 

Borgthor Petursson 

 

In order to make decisions and respond appropriately to external stimuli, cells rely on an 

intricate signalling system. One of the most important and best studied components of 

this signalling system is the phospho-signalling network. Phosphorylation relays 

information through adding phosphoryl groups onto substrates such as lipids or proteins, 

which in turn leads to changes in substrate function. Crucial components of this system 

include kinases, which phosphorylate on the substrate molecule and phosphatases that 

remove the phosphoryl group from the substrate.  

To date, even though >100K phosphoproteins have been identified through high 

throughput experiments, the vast majority of phosphosites are of unknown function, while 

over a third of kinases have no known substrate (Needham et al., 2019). Furthermore, 

there is a large study bias in our current knowledge, demonstrated by a disproportionate 

number of interactions between highly cited kinases and substrates Invergo and Beltrao, 

2018. The vast understudied signalling space combined with this study bias make it 

difficult to understand the general principles underpinning cell signalling regulation and 

stresses the need to research the phosphoproteomic signalling system in an unbiased 

manner.  

In this thesis the central aim is to use data-driven and unbiased approaches to study the 

human phosphoproteomic signalling network. The first chapter describes a project where 

I co-developed a machine learning model to predict signed kinase-kinase regulatory 

circuits based on kinase specificities and high throughput phosphoproteomics and 

transcriptomic data. The network was validated using independent high throughput data 

and used to identify novel kinase-kinase regulatory interactions. This project was done in 

collaboration with Brandon Invergo, a postdoc in Pedro Beltrao’s research group. 

https://www.zotero.org/google-docs/?jt1eh8
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In the second chapter I expand upon work done in the first chapter. I used various 

predictors such as: Co-expression, kinase specificities and different variables 

characterising kinase-substrate potential target phosphosites to predict kinase-substrate 

relationships and their signs. I then used independent experimental kinase-substrate 

predictions to validate the predictions and identify high confidence kinase-substrate 

relationships. I then combined the kinase-substrate predictions with the kinase-kinase 

regulatory circuits to identify condition-specific signalling networks. To enable easy use 

of my method and networks and analyses of phosphoproteomics data by non-expert 

users I also developed the SELPHI2 server, where the user can extract biological insight 

from their datasets. SELPHI2 presents a substantial improvement upon the SELPHI 

server, which was developed in 2015 by my supervisor, Evangelia Petsalaki. 

Thirdly, to study the architecture of human cell signalling networks at a whole-cell level 

and address the limited predictive power of the current models of cell signalling such as 

pathways found in KEGG (Kanehisa, 2019), Reactome (Jassal et al., 2020) and 

WikiPathways (Slenter et al., 2018), the third chapter aims to identify signalling modules 

from phosphoproteomic data. These data-extracted modules were found to have a 

greater predictive power for independent data sets in terms of number of significant 

enrichments. Furthermore, we sought to predict the probability of module co-membership 

from predictors such as membership within data-driven modules, co-phosphorylation and 

co-expression.  

In summary, the work presented here seeks to explore the understudied phospho-

signalling systems through system-wide prediction of kinase-substrate regulation and the 

identification of phospho-signalling modules through data-driven means.  

 

 

 

https://www.zotero.org/google-docs/?X9QRHi
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1 Introduction 

 

1.1 Principles of human cell signalling 

Cells need to be able to make appropriate decisions to respond to both environmental 

and internal stimuli. They achieve this through a cell signalling system that consists 

largely of complex networks of interacting proteins. An important property of this network 

is the specificity of its participating proteins such as receptors (Siddle et al., 2001) and 

other signalling proteins such as kinases and phosphatases in the way they target their 

substrates. This is in part due to signalling proteins making use of functional units called 

domain structures that allow them to recognize and bind to specific targets. Domains can 

be described as specifically folded parts of the protein often around 50-300 amino acids 

in length (Nair et al., 2019). An example of an important domain that plays a large part in 

the signalling system is the Src homology domain (SH2) that recognises phospho-

tyrosines and docks tightly to some of the proteins that contain a phosphorylated tyrosine 

residue (Pawson et al., 2001). Another example is the Src homology domains (SH3) that 

are often found with SH2 (Mayer, 2015) domains and allow for protein-protein interaction 

through the binding of short proline rich peptides (Ren et al., 1993).  

To activate cell signalling a stimulus is needed. These stimuli can be in the form of 

chemical, electrical, or mechanical signals. In cell biology these stimuli are often chemical 

in nature, i.e. in the form of a ligand. Such ligands can be proteins, lipids or sugar 

polymers which specifically bind to a receptor on the cell surface (Nair et al., 2019).  

Through ligand binding the receptor typically undergoes conformational changes leading 

to activation of cytoplasmic enzymatic activity in proteins such as kinases and other 

proteins that relay information throughout the cell by mechanisms such as post 

translational modification (PTM) of proteins and other molecules (Knorre et al., 2009). 

Subsequently PTM leads to changes in molecular structure and function of the target 

(Karve and Cheema, 2011), which in turn can lead to system wide changes in the cell. A 

https://www.zotero.org/google-docs/?BHt8EI
https://www.zotero.org/google-docs/?amACBS
https://www.zotero.org/google-docs/?P1kE6v
https://www.zotero.org/google-docs/?4nlS2W
https://www.zotero.org/google-docs/?QrbhGC
https://www.zotero.org/google-docs/?X8nsPW
https://www.zotero.org/google-docs/?v3LoSt
https://www.zotero.org/google-docs/?IClukU


  

2 
 

well-studied example of such cascade of cell signalling upon ligand binding a receptor is 

the Epidermal growth factor receptor (EGFR) pathway which regulates cell proliferation 

as well as differentiation and growth and has been known to lead to widespread changes 

in phospho-regulation in cells (Wee and Wang, 2017). 

1.2 Context specificity of cell signalling 

Signalling cascades are activated by external and internal stimuli leading to specific 

responses. However, signalling systems are highly context specific. For instance, the 

PI3K is known to cause cell growth in adverse conditions such as serum or growth factor 

removal (Eves Eva M. et al., 1998), while conferring no advantage in a more bountiful 

environment(Berenjeno et al., 2017; Madsen et al., 2019). In other words, different 

components of the systems are active depending on conditions. The signalling network 

is often thought of as being modular. That is, the network contains relatively highly 

interconnected components that interact with other parts of the network to a lesser extent 

with their own function that is insulated from other parts of the network. At the same time, 

the signalling system is highly interconnected with cross talks linking pathways (Vert and 

Chory, 2011). While this interconnectivity might seem contradictory to modular response 

to changes in its environment, the cell has mechanisms to improve the specificity and the 

fidelity of the signal transduction. This is achieved with mechanisms including 

compartmentalization either through translocation to specific locations within the cell 

(Rinaldi et al., 2018; Smith and Scott, 2002) and/or through the use of scaffold proteins 

which bind together two or more components in a pathway, such as a kinase and its 

substrate (Good et al., 2011), increasing their local concentration and improving the flow 

of information as a result. Other factors driving context specificity is the variance in protein 

abundance across tissues and cells (Akbani et al., 2014; Kim et al., 2014). Furthermore, 

signalling molecules, such as kinases, have been shown to have different activity levels 

across biological samples and experimental conditions (Ochoa et al., 2016). A direct 

consequence of this variation in protein abundance and function is the context specificity 

of cellular signalling, since signalling processes are dependent on their component 

molecules. Well-studied canonical pathways are likely to be broadly active as they have 

https://www.zotero.org/google-docs/?pMTTUg
https://www.zotero.org/google-docs/?SJhjMC
https://www.zotero.org/google-docs/?BkbPDf
https://www.zotero.org/google-docs/?kJU0MM
https://www.zotero.org/google-docs/?kJU0MM
https://www.zotero.org/google-docs/?2JRfG2
https://www.zotero.org/google-docs/?xpZL9B
https://www.zotero.org/google-docs/?zHQnu2
https://www.zotero.org/google-docs/?R74xxu
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been found by multiple experiments, whereas the architecture of active components of 

the signalling network can vary significantly between conditions, such between healthy 

and cancerous tissues (Marbach et al., 2016; Saez-Rodriguez et al., 2011). Many 

examples of single context-specific events in cell signalling have been found. For 

instance, PI3K activation is known to lead to different cellular responses such as during 

the insulin driven translocation of GLUT4 from the cytosol to the plasma membrane in 

3T3-L1 adipocytes (Tengholm and Meyer, 2002). This translocation does not take place 

when cells are stimulated with PDGF (Wiese et al., 1995), with the data suggesting that 

PIP3 concentration remains too low for GLUT4 translocation (Tengholm and Meyer, 

2002). Similarly the Notch pathway has been found to cross talk with other signalling 

pathways, such as JNK and NF-κB, in a context specific manner in Drosophila leading to 

the development of different biological systems such as immunity and precursor of 

sensory organs, demonstrating the important role context specificity plays in cellular 

responses to diverse conditions (Mishra et al., 2021). Often, the same signalling molecule 

leads to different outcomes in cells. Acetylcholine is a well-known example, where 

acetylcholine, which binds to similar receptors on the surface of different cell types, is 

known to lead to different outcomes in different cell types. For instance, in the salivary 

gland, where acetylcholine binding leads to secretion and in the heart where the binding 

is interpreted as a signal to reduce rate and force of contraction (Alberts et al., 2002).  

1.3 Phospho-signalling 

One of the more important and best studied parts of cell signalling is PTM through 

transient phosphorylation of target proteins or other molecules such as lipids. These 

modifications are carried out by ‘writer’ proteins, called kinases, which catalyse the 

covalent addition of a phosphoryl group, ‘readers’ which include phosphorylation-specific 

binding domains such as SH2 domain that, for example, modulate signal transduction 

and ‘eraser’ proteins, phosphatases that remove the phosphoryl group from the protein. 

Phosphorylation of proteins occurs through the addition of ATP’s terminal phosphate 

group onto the polar group of amino acids most commonly as serine/threonine and 

https://www.zotero.org/google-docs/?RTrWPq
https://www.zotero.org/google-docs/?0RUkQc
https://www.zotero.org/google-docs/?m3lDqr
https://www.zotero.org/google-docs/?9ANKrK
https://www.zotero.org/google-docs/?9ANKrK
https://www.zotero.org/google-docs/?Fcjv4v
https://www.zotero.org/google-docs/?OM6SQG
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tyrosine. Other phosphorylation events have been reported such as Histidine 

phosphorylation (Boyer et al., 1962), but its function remains unclear in mammalian cells.  

Phosphorylation is widespread and is integral to many cell processes such as cell division 

(Doerr, 2008), localization of proteins and DNA repair (Canovas and Nebreda, 2021). Up 

to 75% of proteins in the human proteome have known phosphosites and are therefore 

potentially regulated by phosphorylation (Vlastaridis et al., 2017). Currently, more than 

500 protein kinases are known that are divided into seven families of typical kinases and 

seven atypical kinases (Fabbro et al., 2015). The majority of known protein kinases are 

serine/threonine kinases (Manning et al., 2002) which is reflected by the fact that most 

known phosphosites are on serine or threonine residues with only 39,281 of 239,573 (16 

%) human phosphosites listed in PhosphoSitePlus being tyrosine residues (Hornbeck et 

al., 2015). Fewer human phosphatases have been found (>200) (Damle and Köhn, 2019), 

which are divided into six families (Sacco et al., 2012). Due to the importance of cell 

signalling in critical processes such as cell division and others, disturbances in the system 

often cause diseases such as such as diabetes or cancers (Yaffe, 2019) with 37 kinase 

inhibitors being FDA approved for cancer treatment and with about 150 other kinase-

targeting drugs under clinical trial in 2018 (Bhullar et al., 2018) and G protein-coupled 

receptors also being a common drug target in cancers (Lappano and Maggiolini, 2011). 

Indeed, mutations in kinases are often drivers of cancers and cancer development 

(Torkamani et al., 2009). This stresses the need to understand the components of the 

phosphorylation network and how they propagate signals throughout the network.  

 

 

 

 

https://www.zotero.org/google-docs/?fY942s
https://www.zotero.org/google-docs/?nsN0Ra
https://www.zotero.org/google-docs/?xkYrGJ
https://www.zotero.org/google-docs/?t8Kkts
https://www.zotero.org/google-docs/?t8Kkts
https://www.zotero.org/google-docs/?t8Kkts
https://www.zotero.org/google-docs/?CianRD
https://www.zotero.org/google-docs/?fKKkoa
https://www.zotero.org/google-docs/?gmEKvr
https://www.zotero.org/google-docs/?gmEKvr
https://www.zotero.org/google-docs/?veQFkd
https://www.zotero.org/google-docs/?bbcX5q
https://www.zotero.org/google-docs/?AMQiwg
https://www.zotero.org/google-docs/?WJf6cm
https://www.zotero.org/google-docs/?N3BCBl
https://www.zotero.org/google-docs/?2aENul
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Figure 1.1: Principles of phospho-signalling. Phospho-signalling is often characterized 

as a system of writers (kinases) that add phosphoryl group on target substrates, readers 

(SH2 domains) which recognizes and binds phosphorylated tyrosine and erasers 

(Phosphatases) which remove the phosphoryl group. Making the PTM reversible. 

1.4 Current models on cell signalling 

The state of the art knowledge of the cell’s signalling system has been curated and 

organized into different databases such as SIGNOR (Licata et al., 2020), Reactome 

(Jassal et al., 2020), KEGG (Kanehisa, 2019), OmniPath (Türei et al., 2016), 

PhosphositePlus (Hornbeck et al., 2015) and WikiPathways (Slenter et al., 2018). Some 

of these databases, such as KEGG, Reactome and WikiPathways organize the protein 

interaction networks further into modules or organizational units within the network that 

lead to a certain product, cell state or other molecular output. By organizing the network 

into a set of modules one has a powerful tool that could in theory be used to explain which 

parts of the signalling network are active or inactive, in a given context. These gene sets 

are commonly used to analyse high throughput data and compare different phenotypes 

such as normal to diseased tissues or different tissues with regards to active biological 

processes (Zhu and Stephens, 2018). Due to their importance, around 70 methods had 

been proposed to conduct these enrichment analyses in 2019 (Nguyen et al., 2019). One 

of the more common methods to calculate the overrepresentation is the Fisher’s exact 

test (Fisher, 1935). Another common method of enrichment is the Gene Set Enrichment 

Analysis (GSEA), which was originally developed to analyse microarray data 

(Subramanian et al., 2005). These tests are limited in a way that does not account for the 
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different sizes of the pathways or the different number of pathway annotations for each 

individual gene. These pitfalls have been addressed with methods such as SetRank, 

which discards sets that are only significant because of their overlap with other gene sets 

(Simillion et al., 2017). Another method is Annotation Enrichment Analysis which aims to 

account for set size and number of sets assigned to each gene (Glass and Girvan, 2014). 

Another issue with gene set enrichment or pathway enrichment is lack of objectivity 

(Domingo-Fernández et al., 2018); in other words it is very hard to validate the resulting 

gene sets unless a certain target pathway is expected to be identified. Organisms are 

highly complex, and most results can be supported by some references (Nguyen et al., 

2019). Furthermore, different pathway databases organize the cell’s processes into 

different sets leading to different results depending on the pathway database (Domingo-

Fernández et al., 2018; Mubeen et al., 2019). To counter this problem, integrated 

pathways have been developed such as the Pathway Commons (Rodchenkov et al., 

2020), MSigDB (Liberzon et al., 2011) and ConsensusPathDB (Herwig et al., 2016) and 

Compath (Domingo-Fernández et al., 2018).  

These databases have fallen short when it comes to explaining the various 

phosphoproteomic data sets and experiments (Köksal et al., 2018; Olsen et al., 2006). At 

the same time, these models have been successfully used to capture differences in 

expression levels across samples (Subramanian et al., 2005). These results are 

surprising as RNA expression profiles correlate poorly with protein abundance (Gry et al., 

2009). A recent analysis showed that rather than capturing pathways, the differential 

expression analyses might be capturing transcription factor modules as differential 

expression studies did a better job at capturing TF modules than pathways (Szalai and 

Saez-Rodriguez, 2020). This fact is generally masked, due to the fact that there is a high 

overlap between TF modules and pathways. 

Other databases such as OmniPath (Türei et al., 2016), PhosphoSitePlus (Hornbeck et 

al., 2015) and SIGNOR (Licata et al., 2020) provide the user with information on kinase-

substrate interactions, lists of regulatory sites and phosphosites and causal relationships 

between proteins. These causal networks provide an invaluable tool to generate 

predictive and explanatory models. Furthermore, they could be used as a prior network 

for future discoveries (Hill et al., 2016). However, these databases give limited view on 
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the phospho-signalling network due to literature bias and as a result, overreliance on 

these databases might hinder novel discoveries.   

 

 

Figure 1.2: Coherence between established pathway databases. Overlaps of equivalent 

pathways across three pathway databases. Note the low overlap indicating the non-

objective nature of pathway assignment. Adapted from Domingo-Fernández and 

colleagues (Domingo-Fernández et al., 2018) 

1.5 The dark phosphoproteome 

As with other signalling systems, the activity of kinases is context specific which leads to 

variation in pathway activity across different conditions. This makes this crucial part of the 

cell machinery inherently elusive and difficult to study. While there are over 100,000 

known phosphosites listed in PhosphoSitePlus, only 5% have a known upstream kinase 

(Needham et al., 2019). Furthermore 90% of the phosphosites with known upstream 
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kinases have been assigned to around 20% of the kinases with around 150 kinases left 

without any known downstream substrates (Lappano and Maggiolini, 2011). This large 

number of phosphosites without a kinase could partially be explained due to non-

functional phosphosites that accumulate on proteins throughout evolutionary time (Landry 

et al., 2009). We have, however, reasons to believe that a large portion of the 

phosphoproteome is understudied. One seminal study showed that EGF stimulation lead, 

within minutes, to changes in 14% of the measured phosphosites (Olsen et al., 2006) 

many of which are not part of the canonical EGFR pathway, indicating that the network is 

more intricate than pathway databases such as KEGG indicate (Kanehisa, 2019). Indeed, 

other studies of kinase and phosphatase perturbation data have shown that perturbation 

leads to system-wide changes in phosphorylation (Bodenmiller et al., 2010) that are not 

necessarily captured by current knowledge of signalling. Furthermore, the number of 

substrates assigned to kinases does not correlate with disease relevance according to 

pathogenic human mutation prevalence and mouse model phenotypes (Needham et al., 

2019). These findings indicate that there is a strong bias in the literature and curated 

databases, where a small portion of the already well-studied part of the phosphoproteome 

tends to be scrutinized to a greater extent at the expense of the other less studied part of 

the proteome (Edwards et al., 2011). In fact, most curated kinase-substrate interactions 

are between highly cited kinases and substrates (Invergo and Beltrao, 2018). Unbiased, 

high throughput protein-protein interactome studies seem to support this study bias 

hypothesis as various studies have suggested kinase interaction networks where edges 

are distributed more evenly across proteins than what the literature suggests (Invergo et 

al., 2020). 

The sheer scale of the phosphoproteome and the context-specific and transient nature of 

these processes make the systematic study of the phosphoproteome a challenge. The 

illumination of the dark phosphoproteome will rely heavily on computational and statistical 

methods to identify kinase-substrate relationships and phospho-signalling modules to 

prioritize for further experimental validation. To date, many computational methods have 

been proposed to prioritize kinase-substrate relationships for further analysis by assigning 

a probability score to potential interactions (Ayati et al., 2018; Horn et al., 2014; Petsalaki 

et al., 2009). Similarly, methods have been developed to assign functionality scores to 
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phosphosites to identify sites that might be promising for future functional analysis (Miao 

et al., 2018; Ochoa et al., 2020; Xiao et al., 2016). These efforts in tandem with continued 

experimental validation and exploration will be crucial in the effort to map the phospho-

interactome and the functional role of the dark phosphoproteome. With increased 

understanding comes practical application of the knowledge gathered, through 

development of drugs for new targets and understanding of complex processes such as 

chronic diseases.    

1.6 Modularity of biological systems 

Biological systems are often considered to be structured in a modular fashion (Hartwell 

et al., 1999). This modularity is observed at many different levels: Proteins, cells, 

organisms and ecosystems (Lorenz et al., 2011). Modularity has also been observed in 

transcriptomics (Singh et al., 2008), protein-protein interaction networks (Barabási and 

Oltvai, 2004) and metabolic networks (Spirin et al., 2006). As a result of ubiquity, 

modularity has been defined differently across different biological fields. Evolutionary 

biologists might define a module as a conserved sequence, geneticists as co-expressed 

or co-regulated genes while a network biologist might be defined as a highly 

interconnected component of a protein interaction network that is less connected to other 

parts of the networks (Lorenz et al., 2011). 

While biological networks such as the signalling network are often assumed to be 

modular, this is in no way to be certain, due to the large undiscovered regions of the 

phospho-regulatory networks. Indeed, various experimental results indicate that the 

human protein-protein interaction is less modular than is often thought and the literature 

indicates (Luck et al., 2020; Rolland et al., 2014). Furthermore, computational analyses 

have found that modular networks do not yield the best results or the greatest functional 

efficiency (Bullinaria, 2007; Kashtan et al., 2009) and smooth fitness models have not 

been able to capture the benefits of modularity in networks (Orr, 2000). Nevertheless, 

there seems to be a consensus that biological systems are indeed modular. Some have 

argued that modularity improves fitness as modularity enhances robustness (Kitano, 

2004), that is the ability of the system to maintain functionality in the face of perturbation, 

as it insulates the system from localized perturbations. Another argument for modularity 
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is increased evolvability as it allows for experimentation in one component in the system, 

while maintaining function in other parts of the system (Wagner and Altenberg, 1996). 

Furthermore, organisms can gain new functions by combining existing modules (Lorenz 

et al., 2011). These abilities of modular networks make the organism more adaptable and 

able to respond to environmental changes. Yet another hypothesis, is a more 

spontaneous emergence in networks through natural growth mechanisms such as 

duplication and diversification (Solé and Valverde, 2008). Other, more direct, benefits of 

modularity evolution have also been considered: cells from exotic environments might 

bring different DNA into another environment and the cells already inhabiting the 

environment might accommodate the DNA into their genome and benefit from the trait it 

has to offer. Thus, modularity can arise from horizontal gene transfer (Rainey and Cooper, 

2004), which has been shown to have played a large role in E.coli transcriptional 

regulation: Most of E.coli’s transcription factors has evolved by horizontal gene transfer 

rather than by duplication of genes (Price et al., 2008).  

While theoretical and computational experiments support modularity, empirical studies 

have also yielded results supporting the modularity hypothesis. Viruses have been found 

to be divided into separate evolutionary and structural modules (Ferron et al., 2005). 

Empirical analyses have found that biological networks also exhibit modularity. For 

instance, it was found that metabolic networks are scale free modular and that networks 

contained hierarchical modules with clustering coefficients being independent of network 

size (Barabási and Oltvai, 2004) though these results might stem from the inherent study 

bias in the databases. Furthermore, it was found that bacteria found in more varied 

environments had more modular metabolic networks (Parter et al., 2007), demonstrating 

the evolutionary benefits of modularity. Empirical studies also show that protein-protein 

interaction networks also exhibit modularity with protein complexes being statistically 

significantly likely to contain functional modules (Spirin and Mirny, 2003), and with 

evidence that protein modules are encoded on the genome level (von Mering et al., 2003).  

1.7 Modularity of signalling networks 

As a biological system, signalling networks are often seen as modular systems divided 

into functional subunits (Hartwell et al., 1999). Indeed, databases such as KEGG 
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(Kanehisa, 2019), Reactome (Jassal et al., 2020) and WikiPathways (Slenter et al., 2018) 

are organized into such modules or pathways including pathways dedicated to signalling. 

We know, however, that the picture is more complex, due to the high incidence of pathway 

cross-talks (Vert and Chory, 2011). Other factors, such as the prevalence of undiscovered 

edges in the signalling networks and context specificity, where there are differences in 

pathway activities across conditions add to the complexity (Saez-Rodriguez et al., 2011). 

Olsen et al. found, for instance, that signal travels far and wide throughout the signalling 

network in a relatively short time frame with around 14% of the measured phosphosites 

being modulated by the stimuli (Olsen et al., 2006). And pathways as laid out in the 

databases have been found to have a poor explanative performance when mass 

spectrometry data is analysed. Many studies analysing changes in phosphorylation of 

peptides in large scale phosphoproteomic data have been unable to explain changes with 

canonical pathways. For instance, a recent study found that the EGFR pathway as 

defined by various databases performed poorly at explaining the changes in 

phosphorylation levels (Köksal et al., 2018). In fact, only about 5% of the significantly 

altered phosphopeptides were found in the canonical pathway and most of the proteins 

listed as members of the reference pathway were not found to be altered, while EGFR 

pathway reconstruction, made from literature interaction network fitted to the data, fared 

better. Similar results have been found when other pathways have been analysed. For 

instance, Humphrey and colleagues found that in a large scale data extracted from insulin 

treated mice, less than 10% of the regulated phosphosites were found in the insulin 

pathway (Humphrey et al., 2015).  

These experimental results, coupled with the fact that the signalling network appears to 

be more interconnected than the literature indicates, might paint a picture of a system 

that is too interconnected and complex to be considered modular. However, findings 

drawn from forward genetics and cell predictability support the modularity hypothesis 

(Atay and Skotheim, 2014). For instance, Whi5 has been found to be a robust predictor 

of cell division in yeast, more so than cell size or time after division (Doncic et al., 2011) 

and CDK2 has been found to be similarly informative in mammalian cells (Johnson, 

2014). This indicates that cell decision can be inferred from a single gene product and is 

therefore highly predictable, which supports the view that cellular systems are organized 
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in modular fashion where a single stimulus leads to predictable output. Another example 

would be the conservation of the MAPK kinase module from yeast to human (Widmann 

et al., 1999) demonstrating that functional units are conserved throughout evolution. 

Furthermore, cells can be divided into classes such as tissue of origin based on data such 

as expression profiles (Jaitin et al., 2014). One way to reconcile this apparent 

contradiction between high interconnectivity of networks and cross talks between 

pathways and modularity is that many interactions are non-functional (Atay and Skotheim, 

2014). Furthermore, due to the context specificity of signalling protein activities (Ochoa 

et al., 2016) not all of them will be active at the same time. 

It has been found that the feedforward system regulating Far1, which prompts the cell to 

re-enter the cell cycle is insulated from the cell cycle in S. cerevisiae (Doncic and 

Skotheim, 2013). This modularity is achieved by the switch-like activity of B-type cyclin-

Cdk, a protein that degrades Far1 in cell cycle arrest, providing evidence of modularity 

through switch-like behaviour of proteins and provides an example of how modularity can 

be achieved.  

 

1.8 Towards data-driven for biological module identification 

The strong arguments for a modular architecture of cell signalling combined with the 

limitations of the current pathway models stresses the need for the identification of less 

biased data-driven modules. To date, many approaches and methodologies have been 

suggested to reconstruct the set of pathways present under a given condition or in a given 

organism.  

An established method to reconstruct biological modules or pathways present in an 

organism is to generate pathways from its genome by utilizing data available in databases 

such as GO terms or protein sequences. Examples of such methods are MinPath (Ye 

and Doak, 2009) and Pathologic (Karp et al., 2016) that reconstruct a set of pathways 

present in an organism from a set of genes present in an organism. While useful for 

conservative estimation of pathways that are present, these methods do not contribute to 

the discovery of new pathways.  
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1.8.1 Identification of context specific signalling subnetworks 

A step towards a more data-driven method is using high throughput phosphoproteomics 

data to capture biological subnetworks that are active in a given context, which is an 

already established field. For instance, Temporal Pathway Synthesizer (TPS) has been 

used to extract active components of the signalling network from time series data (Köksal 

et al., 2018). And data-driven models have been used to identify active components of 

the signalling network in cancers by using perturbation data or static data (Ayati et al., 

2021; Saez-Rodriguez et al., 2011; Zhu and Stephens, 2018). As an example of a 

developed application that can be used to analyse signalling data, PHOTON applied 

mapping onto the interaction network to find active pathways and functional proteins 

(Rudolph et al., 2016). Such methods do have the limitation of relying on literature-based 

networks such as IntAct (Orchard et al., 2014) or BioGRiD (Oughtred et al., 2019). Given 

the large scale of the underexplored phosphoproteome this overreliance on the literature 

network can be problematic if a more complete picture of phosphoregulation is to be 

achieved. 

1.8.2 Data-driven co-expression modules 

The complexity, context specificity and the size of the unknown space within the signalling 

network stress the need to use statistical methods to identify modules from high 

throughput dataset without a prior literature defined network. Methods have already been 

developed to capture transcriptomics modules (Zhou and Altman, 2018). Methods such 

as the principal component analysis to cluster cell types (žurauskienė and Yau, 2016), 

weighted gene correlation networks (Langfelder and Horvath, 2008) and independent 

component analysis have been used to reduce the dimensionality of gene expression 

data by dividing genes into modules of co-regulated and co-expressed genes.  

Many of these studies have been conducted on mRNA data sets. It has been, however, 

established that mRNA levels have a notoriously low correlation with corresponding 

protein levels with mRNA levels explaining around 40% of the variation (Gry et al., 2009; 

Koussounadis et al., 2015). This can be attributed to many factors, including biological 

regulation that occur between RNA transcription and protein translation. One analysis 
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showed, however, that significantly differentially expressed mRNA molecules correlate 

better with their corresponding proteins (Koussounadis et al., 2015). Nevertheless, in 

order to capture cell signalling on a protein level, large scale proteomics data sets, such 

as those from mass spectrometry, need to be included to gather a more holistic picture 

of the biological system.  

1.8.3 Limitations of mass spectrometry data 

In comparison to RNAseq data, phosphoproteomics data can be challenging to analyse 

due to data sparsity and the stochastic nature of the peptide sampling by the mass 

spectrometer. Various methods have been proposed to deal with data sparsity in mass 

spectrometry data but no consensus or standardization has been reached (Lazar et al., 

2016; Webb-Robertson et al., 2015; Wei et al., 2018). There are few issues to consider 

which make missingness non-random. For instance, despite their importance in 

signalling, proteins found within the membrane are less likely to be identified by mass 

spectrometry (Schey et al., 2013) as well as peptides that are close to the detection level, 

skewing the peptide quantification distribution towards more abundant peptides (Lazar et 

al., 2016). 

Apart from biological issues with the mass spectrometer, there are technical limitations 

when it comes to peptide and protein identification. The most common protein 

quantification approaches include bottom-up methods where proteins are digested by 

enzymes before being introduced to the mass spectrometer. The bottom-up approach 

has several problems related to the fact that they do not sequence the whole proteome 

but identify short peptides and map them onto databases, which might introduce errors 

due to amino acids having similar or the same mass (Timp and Timp, 2020). Additionally, 

the choice of digestive enzyme is known to impact protein identification (Dau et al., 2020). 

Furthermore, due to the number of spectra needed to identify peptides, up to 75% of 

collected spectra are not mapped to a peptide (Griss et al., 2016). Yet another problem 

arises when a PTM is assigned to a peptide as in many cases more than one site is likely 

modifiable on each peptide, leading to statistical assignment of phosphosites (Timp and 

Timp, 2020). Top-down mass spectrometry does not require digestion before 

measurements and is therefore useful in single protein analysis and the capture of 
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isoforms and PTMs. However, while it does identify full sequences it is less sensitive than 

bottom up and has a lower coverage and throughput (Catherman et al., 2014) limiting its 

utility in proteome wide studies. As a result, mass spectrometry data, while capturing tens 

of thousands of phosphosites cannot be expected to give the full picture of the cell’s 

proteome. 

1.8.4 Use of proteomics data to derive modules  

Despite these challenges, the derivation of purely data-driven models to analyse 

biological samples is quite common in the biological literature (Hoogendijk et al., 2019; 

Seyfried et al., 2017). Some results have shown that, interestingly, modules derived from 

proteomics do not necessarily overlap perfectly. For instance an analysis on 129 samples 

from cortical tissues from 50 individuals with or without Alzheimer’s disease conducted 

by Seyfried et al found that, while some modules were shared across the RNAseq and 

proteomics modules many were not (Seyfried et al., 2017). This suggests that these 

different types of data might yield different results and complement each other. Similarly, 

Hoogendijk and colleagues used modules derived from transcriptomic and proteomic data 

to capture myeloid differentiation and the development of neutrophil programming 

(Hoogendijk et al., 2019) using the clustering weighted correlation networks built from the 

correlation between the RNA and proteomic profiles of their samples. Recently, a purely 

proteomics-based data-driven module to characterize germ cell maturation in crustacean 

Gammarus fossarum (Degli Esposti et al., 2019).  

To my knowledge, modules derived from phosphoproteomic data have not been used to 

explain independent data sets in the same way pathways are often used for example for 

pathway enrichment. As previously discussed, a large portion of the phosphoproteome 

has not been accounted for in the literature (Needham et al., 2019) and similarly, a large 

fraction of the protein interactome remains to be discovered. Recently, there has been an 

explosion in publicly available phosphoproteomics data sets. It is therefore feasible to use 

said data both to generate a set of modules of phosphorylated modules and evaluate 

them on independent datasets. Similar work has been done on transcriptomics data, 

where generated modules of genes outperformed genes when faced with a sample 

classification task when the number of samples is small. This is based on the assumption 
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that phosphorylation can be used to identify functional modules. Earlier studies have 

found that phosphosites are more likely to be functionally linked than would be expected 

at random (Li et al., 2017). Furthermore, co-phosphorylation has been used to identify 

kinase-substrate relationships (Ayati et al., 2018; Invergo et al., 2020; Petsalaki et al., 

2015) either by itself or in concert with other predictive features. These results indicate 

that it is possible to use data-driven phospho-signalling modules to capture and explain 

phosphoproteomic data and thus limit our reliance on limited and biased databases.   

1.9 Machine learning to address biological problems 

Machine learning uses data to generate models of the system in question. In doing so, it 

differs from other statistical methods because it does not make any stringent assumption 

about the data, like statistical models do, but instead learns from experience by interacting 

with the data (Xu and Jackson, 2019). Therefore, machine learning can be useful when 

patterns need to be derived from complex data sets. Machine learning has been used to 

identify complex patterns in biological data for predictive modelling. This greatly increases 

the capability for exploratory research and the identification of novel drug targets 

(Vamathevan et al., 2019) and the predictions of protein interactions (Invergo et al., 2020; 

Wang et al., 2019) for instance.  

Machine learning is often divided into two groups: Supervised and unsupervised. 

Supervised machine learning usually entails training models by fitting data to previously 

defined groups and then using that trained model to make predictions for other 

independent data sets (Tarca et al., 2007). Supervised methods have been used, for 

instance, in the case of kinase-substrate relationship and other protein-protein interaction 

predictions (Horn et al., 2014a; Wang et al., 2020, 2019). On the other hand unsupervised 

methods base their classification on the data and do not rely on previously defined 

positive and negative sets (Tarca et al., 2007), such as the various clustering methods 

that have been successfully employed to divide data sets into categories. For instance, 

unsupervised methods have been employed to classify cancer categories based on high 

throughput data sets such as microarrays (Perou et al., 1999). More recently breast 

cancer samples were clustered into molecular types based on the STRING (Szklarczyk 
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https://www.zotero.org/google-docs/?igrQXV
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https://www.zotero.org/google-docs/?2VWJjT
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et al., 2021)  protein-protein interaction network and mutational patterns (Rohani and 

Eslahchi, 2020).  

The recent explosion in biological omics data sets has given rise to the need for more 

sophisticated methods to analyse and integrate the different data sets. Biological data is 

intrinsically challenging for statistical methods due to its high dimensionality or the number 

of independent variables, and low number of samples (Xu and Jackson, 2019). 

Furthermore, the low number of samples only aggravates the challenges brought about 

by the high dimensionality, such as over-fitting and multiple hypotheses testing. In 

addition, biological data can be sparse and noisy which complicates its usage. Particularly 

when various different omics data sets are integrated, which in theory should give the 

best, most holistic picture of the system under scrutiny (Zitnik et al., 2019), the  “curse of 

dimensionality” arises due to the proliferation of data unrelated to the question (Altman 

and Krzywinski, 2018). 

While machine learning has been proven to be useful in making predictions, various 

hurdles are still present. In the case of supervised learning, prior knowledge can introduce 

bias in the discovery process since there is a known bias in the current biological 

literature. Furthermore the “black box” nature of the models makes interpretation of the 

resulting models difficult, if not downright impossible (Xu and Jackson, 2019). 

Furthermore, as touched upon earlier, high dimensionality introduces the potential of 

overfitting since the flexibility of the equations increases as the size of the training set 

grows. Even dimension-reducing methods such as PCA are sensitive to the curse of 

dimensionality (Altman and Krzywinski, 2018). This problem is not fully erased even with 

more sophisticated algorithms and greater sample sizes. Therefore, it is important to be 

aware of this problem when a large number of predictions are made for exploratory 

purposes and false positives tend to accumulate. 
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1.10 Machine learning and statistical methods for data-

driven inference of signalling systems 

1.10.1 Use of machine learning to identify signalling circuits 

As discussed above a large fraction of the phospho-signalling network is under-studied 

and unexplored. It therefore stands to reason that relatively unbiased data-driven 

methods are crucial in the exploration of the understudied space. Phosphoproteomic data 

has been utilized to predict signalling circuits. For instance, Rudolf et al. used diffusion to 

capture pathways by using high throughput data mapped on a literature network (Rudolph 

et al., 2016). A more data-driven example, modular response analysis (MRA) 

(Kholodenko et al., 2002) has been used to reconstruct an active network from steady 

state data. MRA, however, is slow and can be difficult to implement on a proteome wide 

scale. Similarly, methods such as dynamic Bayesian networks (DBN) have been used to 

construct pathway networks from time series data (Hill et al., 2012) which faces the same 

problem of scaling. Another commonly used method is to discretize the data and construct 

the active pathways as logic models even to discover new pathway interactions (Saez‐

Rodriguez et al., 2009). In this thesis, I present a more integrated method to predict signed 

kinase signalling circuits based on kinase specificity models, phospho- co-regulation, co-

expression and functionality of phosphosites (Invergo et al., 2020).  

1.10.2 Computational modelling of kinase specificities 

Prediction of kinase-substrate relationships constitutes a well-established field and an 

important part of the exploration of the dark phosphoproteome (Ayati et al., 2018; Horn et 

al., 2014; Wang et al., 2020). Kinases are known to target specific motifs surrounding the 

target phosphosites (Ubersax and Ferrell Jr, 2007) and as a result the modelling of kinase 

specificities has been used extensively for the computational prediction of kinase-

substrates.  

One of the more common methods to predict kinase-substrates is the Position Weight 

matrix (Stormo et al., 1982) which is a model for its respective kinase recognition site. 

Using the PWM one can quantify whether a potential substrate is significantly more similar 

to the position weight matrix than the background, and thus more likely to be recognised 
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by the relevant kinase. Generally, the matrix is constructed for a given kinase from known 

substrates found in the literature or they could be derived from experimentally predicted 

substrates.  

PWMs are usually constructed by defining a window surrounding the phospho-acceptor 

site. For each position within the given window the frequency of each amino acid at each 

position is calculated. In many cases pseudo counts are added to each index in the matrix 

as some amino acids can be expected to appear zero times at any given position, while 

not having a zero probability of appearing at the same position. 

One of the most apparent limitations of these models is the likely erroneous assumption 

of independence between positions. Another drawback is that the position weight matrix 

does not take any structural information into account. Some methods have been 

proposed to address these problems such as hidden Markov models to solve the 

independence problem (Huang et al., 2005) and machine learning methods such as 

sequence Bayesian networks (Patrick et al., 2017) have been utilized to detect more 

complex patterns underlying kinase specificities as well. 

1.10.3 Computational prediction of kinase-substrates 

Most kinase-substrate prediction methods base their predictions on known kinase-

substrates. The shortcoming of this method is over reliance on known substrates which 

might limit the novelty of the predictions. Furthermore, some predictions are 

complemented by biological network databases such as STRING (Szklarczyk et al., 

2021), which similarly are over-reliant on the biological literature. There are methods base 

their prediction, at least partially, on high throughput phosphoproteomic data such as 

CoPhosK (Ayati et al., 2019) but they are limited to phosphosites captured by LC/MS 

studies.  

To date, various methods have been developed. Below are several examples of kinase-

substrate relationship prediction methods. The following list includes several examples: 

NetworKIN and NetPhorest (Horn et al., 2014): A popular and widely used kinase-

substrate prediction algorithm. NetworKIN utilized cellular context (distances within the 

STRING network) and kinase specificity, while NetPhorest uses phylogenetic algorithm 

to classify phosphosites in terms of kinase binding motifs. 
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https://www.zotero.org/google-docs/?5zEUQc
https://www.zotero.org/google-docs/?VXXlqc
https://www.zotero.org/google-docs/?ux4Ekc


  

20 
 

Group-based Prediction System (GPS) (Wang et al., 2020): The GPS algorithm has 

been developed and maintained for the last decade. It is similar to other methods in that 

GPS based its prediction on the similarity between motifs surrounding potential 

phosphosites. GPS uses BLOSUM62 (Henikoff and Henikoff, 1992) to calculate the 

similarity between phosphosites and their surrounding peptides and then clusters the 

peptides, reasoning that phosphosites clustering together are likely to be phosphorylated 

by the same kinase. 

LinkPhinder (Nováček et al., 2020): This method uses peptides surrounding 

phosphosites to construct a knowledge graph where the consensus motifs of kinase 

families are used to construct the graph and then link prediction is used to construct new 

links or kinase-substrate relationships within the network. 

Scansite (Obenauer et al., 2003): Scans for motifs within proteins that are likely to be 

phosphorylated by a kinase. It then uses the position weight matrix PWM of around 60 

kinases to score the phosphosite. 

Netphos (Blom et al., 2004): Nethphos like other similar methods employs neural 

networks and uses experimentally validated S, T and Y sites for kinase specific 

predictions. These predictors are then used as an input for an ensemble of neural 

networks. Predictions are only available for 17 kinases. 

CoPhosK (Ayati et al., 2019): The algorithm uses naive Bayes model to make predictions 

for phosphosites found in mass spectrometry proteomics datasets based on kinase-

substrate co-phosphorylation associations. Unlike most other kinase-substrate prediction 

methods, this method does not base their prediction on kinase specificities. It was found 

that when incorporated with other static methods like KinomeXploreer (Horn et al., 2014), 

CoPhosK improved their performance. 

PhosphoPICK (Patrick et al., 2017): PhosphoPICK uses Bayesian networks to model the 

amino acid sequence surrounding the phosphosite. PhosphoPICK also incorporates the 

dimer and trimers surrounding the phospho acceptor sites into its model for prediction. 

Another Bayesian network is used to make predictions based on information on protein 

substrates and their availability during the various stages of the cell cycle. Furthermore 

other variables such as kinase specify models and protein-protein interaction networks 

(BioGRID (Oughtred et al., 2019), STRING (Szklarczyk et al., 2021)).  
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One of the main limitations of these methods are the accumulation of false positives and 

negatives. Due to the scale of the predicted space, as well as our limited knowledge of 

signalling, validation of novel kinase-substrates is difficult. It therefore becomes clear that 

independent evaluation is needed for the identification of novel kinase-substrate 

interactions.  

1.11 Experimental prediction of kinase-substrate 

relationships 

Several experimental methods have been proposed and developed to assign kinase to 

phosphosites experimentally both for single kinases and high throughput screens. A 

common method to validate a single substrate for a single kinase is to apply antibodies 

for the target phosphosite to measure phosphorylation level coupled with kinase inhibition 

(Nováček et al., 2020). Another low throughput method is K-Clasp which binds kinases 

to biotin tagged peptides that are incubated in a lysate in the presence of ATP-ArN3 

(Dedigama-Arachchige and Pflum, 2016). The problem with such low throughput methods 

is that they are not scalable to the evaluation of large numbers of predicted kinase-

substrate relationships. 

Various high throughput methods exist such as RNAi inhibition of kinases coupled with 

measurements of changes in phosphorylation relative to control state (Azorsa et al., 2010; 

Papageorgiou et al., 2015). The limitation of these methods is that it can be hard to 

discern if the decreases in phosphorylation are due to the inhibition of a kinase that 

specifically targets the impacted phosphosite or if changes in phosphorylation are due to 

the hampering of processes further upstream. Similarly, kinase inhibitors have been 

employed to predict and identify novel kinase-substrates. Problems with inhibitors include 

their promiscuity as well as problems with discerning indirect and direct effects. To get 

around some of these issues, few methods have been put forward. Hijazi and colleagues 

estimated the most likely upstream kinase by utilizing kinase inhibitor selectivity 

information (Hijazi et al., 2020) while others have correlated the inhibitor phosphorylation 

finger print with the inhibition fingerprint of well-known kinases (Watson et al., 2020).  

Other high throughput methods to directly link phosphosites with kinases have also been 

suggested. Sugiyama et al proposed a method where peptides extracted from lysed cells 

https://www.zotero.org/google-docs/?t9vuY0
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were introduced with alkaline phosphatase and then exposed to kinases. The resulting 

phosphorylation levels were then compared with control conditions (Sugiyama et al., 

2019). However, like computational studies this method accumulated a large number of 

unverifiable kinase-substrates and only captured the minority of known kinase-substrate 

relationships (4% in the case of Suggiyama et al.). This might partly be due to the in vitro 

conditions which might not capture conditions in living organisms. 

1.12 Conclusions 

A recurrent theme in the research of the signalling system is the fact that a large portion 

of the components in the signalling network, both kinases and phosphosites, remain 

under-studied. This has led to challenges when it comes to tasks such as interpretation 

of data sets due to insufficient representation of the data on known signalling networks. 

To this end many methods have been proposed as discussed in Chapter 1.10.3 to make 

computational predictions based on features such as kinase specificities (Nováček et al., 

2020; Wang et al., 2020). While such methods are useful in the exploration of the 

phosphoproteome, most methods have several limitations. Firstly, basing most of the 

predictions on established literature will not sufficiently address the issue of study bias as 

most predictions are based on biased models. High throughput data is therefore needed 

to aid in the generation of new hypotheses. Similarly, biased models, such as those 

arising from the aforementioned study bias have proven to be of limited value in the study 

of high throughput proteomics (Köksal et al., 2018; Olsen et al., 2006). Similarly, data-

driven methods are needed to derive more useful models. In light of this, the main aim of 

this thesis is to explore the less studied portion of the phospho-signalling system. My 

contributions are divided into the following chapters. 

Chapter 1 discusses the development of a method to predict kinase-kinase regulatory 

networks. This work was done in collaboration with Brandon Invergo a member of the 

Beltrao group at the EMBL-EBI and has been published (Invergo*, Petursson* et al., 

2020). Various predictors were employed to predict kinase-kinase regulatory 

relationships and their sign. The network was then used to identify potentially novel 

regulatory pathways by integrating the network with independent experimental data sets 

(Hijazi et al., 2020; Sugiyama et al., 2019).  
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Chapter 2 expands upon the work done in Chapter 1 where the modified predictors that 

were used in Chapter 1 as well as features characterizing the potential target 

phosphosites (Ochoa et al., 2020) are used to predict kinase-substrate relationships 

between 367 kinases and more than 80,000 phosphosites found on 8957 proteins, with 

more than 22 million predictions in all. Signed predictions are made for relationships 

where the target phosphosite is likely to be functional, comprising over 2 million 

predictions in all. 

The resulting kinase-substrate prediction set assigns higher probability to experimentally 

predicted kinase-substrate relationships compared to the background after known 

interactions have been removed from the set. Furthermore, the method makes high 

confidence predictions for proteins with fewer citations in the literature than the kinase-

substrates listed in PhosphoSitePlus (Hornbeck et al., 2015). Moreover, I find that the 

kinase-substrate predictions perform better than other established methods at discerning 

between known kinase-substrate relationships as well as experimentally. 

Chapter 3 discusses the move towards data-driven modules of phospho-regulation. I 

discuss the identification of these modules as well as the work done to assign biological 

function to the modules through enrichment studies as well as GWAS analysis to 

associate the modules with diseases. I then describe efforts to use the modules to capture 

known pathways with machine learning methods and compare it with the use of high 

throughput data, both RNA expression and phosphoproteomics, to do the same.  

The overarching theme of this thesis is to analyse the understudied portion of the 

phosphoproteome by making novel predictions for kinases and their substrates as well 

as the regulatory sign of these interactions. Furthermore, I present work on the 

development of data-driven modules that outperform established literature defined 

modules when it comes to the explanation of high throughput phosphoproteomics data.  
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2. Inference of kinase-kinase regulatory network 

 

Contributions 

The work presented here was done in collaboration with Brandon Invergo, a postdoc 

member of Pedro Beltrao’s group. Pedro Beltrao, Evangelia Petsalaki and Brandon 

Invergo conceived and supervised the project. Analysis was conducted by Brandon 

Invergo and me. Girolamo Giudice performed additional analysis on distances between 

pathways in the IntAct network. David Bradley did the work on specificity determining 

residues. Nosheen Akhtar and Petro Cutillas conceived the phosphoproteomic 

experiments that were carried out by Nosheen Akhtar and Maruan Hijazi. More 

specifically my contribution entailed part of the generation of position weight matrices-

based predictors with Brandon Invergo. I did the testing and making predictions by using 

different machine learning methods apart from the BART method, clustering the network 

and assessing the biological function of the resulting modules, Mapping the network onto 

phosphoproteomic perturbation data and identifying novel kinase-kinase signalling 

pathways. This work has already been published in Cell systems (Invergo et al., 2020). 

All work related to signed predictions was done by Brandon Invergo and are thus only 

mentioned here as a summary for completion but discussed in greater details in the paper. 

The code generated during this study is available at GitHub 

(https://github.com/evocellnet/kinase-activity-net/). 
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2.1 Introduction 

Phosphorylation in the most studied and most common post translational modification 

(PTM). PTMs, including protein phosphorylation, lead to changes in the substrate’s 

activity and function. This ability to change protein function allows information to flow 

through a network of kinase-substrate relationships where the cell response is partly 

determined by the phosphorylation state of all proteins. This in turn allows the cell to 

respond to external and internal stimuli and make appropriate decisions, such as when 

to divide, under any given condition. These processes are discussed in greater detail in 

the introduction (Chapters 1.1 -1.3). 

Kinases comprise a class of proteins that propagates the cell information flow by adding 

a phosphoryl group on the substrate protein. Therefore, regulation of kinases by other 

kinases forms an integral part of the phospho-regulation network. A large portion of 

kinase-kinase regulatory network is understudied with most known kinase-kinase 

interactions being between highly studied kinases (Invergo and Beltrao, 2018). This 

stresses the need for a less biased method to predict kinase-kinase interaction and their 

regulatory signs. Previously data-driven methods have been proposed (Hill et al., 2012; 

Kholodenko et al., 2002) but they face difficulties when applied kinome-wide (See 

Intorduction chapter 1.10.1). In this chapter, I describe a machine learning method to 

predict kinase-kinase regulatory relationships by integrating kinase specificity models, 

functional score and high throughput data sets such as tissue expression and mass 

spectrometry data sets.  
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2.2 Methods 

2.2.1 Data 

We retrieved list of 504 protein kinases, hereby referred to as the human kinome from the 

UniProt/Swiss-Prot Protein Knowledgebase, pkinfam (accessed 8 November 2017 

at https://www.uniprot.org/docs/pkinfam). Two publications provided us with 

phosphoproteomic data. One included phosphorylation levels of 213 phosphosites on 

100 kinases from MCF7 cells treated with 22 kinase inhibitors (Wilkes et al., 2015), while 

the second had quantifications for 1537 phosphosites on 193 kinases across 83 breast 

tumour samples (Mertins et al., 2016). RNA expression data from human tissues was 

acquired from the GTEx project (GTEx Consortium, 2013) as provided by Expression 

Atlas (E-MTAB-5214, timestamp 26 April 2018) (Papatheodorou et al., 2018) and from 

the Human Protein Atlas project (accessed from www.proteinatlas.org 1 December 2017) 

(Uhlén et al., 2015). Lists of kinase-substrate relationships, human phosphosites and 

kinase regulatory sites were retrieved from PhosphoSitePlus (accessed 1 May 2018) 

(Hornbeck et al., 2015). We downloaded frequencies of amino acids in the human 

proteome downloaded from the UniProt proteome database (UniProt Consortium, 2018). 

Experimental In vitro kinase-substrate predictions were downloaded from an earlier 

publication (Sugiyama et al., 2019). Another experimental kinase-substrate prediction set 

were acquired from Hijazi and colleague (Hijazi et al., 2020)  

2.2.2 Training sets for machine learning 

To acquire a high confidence training set for model generations we extracted a set of high 

confidence kinase-kinase regulatory relationships from the OmniPath (Turei et al., 2016) 

knowledge base (retrieved Jan 22, 2018). To make certain that the relationships used for 

training were of high quality we only retained interactions that were found in two or more 

databases. Altogether 825 interactions were included in the positive set. Negative training 

sets are harder to define as there is no way of establishing that a kinase-kinase 
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relationship does not occur in any condition. Nevertheless, by presuming that biological 

networks are generally sparse, we generated a negative set by randomly sampling sets 

of possible kinase-kinase regulatory relationships excluding those found in the positive 

set. When training for BART, working under the assumption that biological networks are 

sparse we generated a set of negatives that was 8 times as large as the positive set as 

increasing the size of the training set returned small improvements in performance while 

increasing memory usage. For the other machine learning methods, I used a balanced 

training set with equal number of positives and negatives. 

For signed predictions we yet again retrieved information from Omni Path. As before, we 

excluded interactions supported by fewer than two sources. The resulting training set 

consisted of 394 activating and 109 inhibitory relationships.  

2.2.3 Formulation of predictors 

2.2.3.1 Construction of kinase specificity models 

In order to model kinase specificity, we built position weight matrices. We retrieved 

information on kinase-substrate relationships and peptides surrounding the phosphosites 

(+/- 7 AA) from the PhosphoSitePlus database (Hornbeck et al., 2015).  

We constructed PWMs only from kinases with at least 10 known substrates. To minimize 

the effects of redundant substrates we used a weighing method previously described by 

Henikoff and Henikoff (Henikoff and Henikoff, 1994). The PWMs were constructed as 

follows: 

Given a set of substrate sequences: S = {S1,S2,…,Si,….Sn-1,Sn} with the residues of the 

ith substrate is represented as follows: Si = {Si1,Si2,…,Si14,Si15} We give weight to amino 

acid j in substrate sequence i in the following way: 

 

Where cj is the number of unique amino acids found at position j among the substrates S. 

Subsequently a weight is calculated for each substrate by adding the position specific 

residue weights together. 
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Lastly, each sequence weight is normalized by the sum of the other sequence weights. 

 

Subsequently, PWMs were constructed from these weights. In our case, the size of the 

matrix is 20 × 15 representing 20 amino acids and 15 positions surrounding the 

phosphosite. First a matrix r is constructed such that the entry raj contains weighted counts 

of the amino acid a at position j in the sequence. 

 

Since there is a non-zero probability of observing any amino acid at any given position, 

pseudo counts are introduced to change the expected probability of amino acids that do 

not occur at a given position in our samples of substrates from zero to a non-zero value. 

Our pseudo counts were estimated from amino acid frequencies in the proteome in a 

position specific manner (Henikoff and Henikoff, 1996). For each column represented as 

j we define the pseudo count Bj as follows: 

 

Where m is a tune-able parameter set at one in our case and cj is the number of unique 

amino acids at position j. Then for each entry in the PSSM the pseudo count for amino 

acid at a position j becomes: 

 

Where ƒa represents the proteome-wide frequency of amino acid a. This allows us to 

construct an empirical PSSM matrix p of probabilities of observing amino acid m at 

position j. 
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Then the PWM is derived by calculating the log2 ratio between entry p(a,j) and the 

frequency of a, ƒa 

  

2.2.3.2 PWM assignment to kinases based on family membership or 

specificity determining residue similarity 

We restricted PWM construction to only those kinases that had at least ten annotated 

substrates in PhosphoSitePlus (Hornbeck et al., 2015). This resulted in PWMs being 

constructed for 140 kinases. Furthermore, we assigned PWMs to kinases based on 

families. We built PWM for each family as using families as defined in the KinBase 

resource (Manning et al., 2002). As a result, family PWMs were assigned to 209 kinases 

that could not be assigned a PWM individually. Finally, PWMs were assigned to an 

additional 14 kinases based on the similarity of their specificity determining residues 

(SDR) (Bradley et al., 2021) with other kinases. In order to assign based on SDR, we 

systematically explored the association between SDR similarity and PWM similarity 

measured by Frobenius distance (Ellis and Kobe, 2011). For reference, we calculated the 

pairwise PWM distance by subsampling 25 kinase-substrates from the same kinase with 

25 being the median number of substrates per PWM. We found that the average distance 

was 1.0 with 1.10 being the 97.5th percentile. Therefore, PWM distance below 1.10 was 

determined as having the same site specificity. The SDR similarity yielding PWM 

distances of less than 1.10 in more than 50% of the cases was 0.8. As a result, kinases 

that had SDR similarity of 0.8 or higher with another kinase were assigned the PWM of 

the kinase with the greatest SDR similarity.  

2.2.3.3 Scoring of phosphosites with PWM 

We scored all known phosphosites found on the 504 kinases included in this study against 

all the PWMs (n = 363) built. The phosphosites were scored by fitting the +/- 7 amino acid 

residues surrounding the candidate phosphosites to the PWMs. The score, s, was 

calculated as follows: 

https://www.zotero.org/google-docs/?f7JPmu
https://www.zotero.org/google-docs/?vxI2Vr
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Finally, to make the scores equivalent across the different kinases, we min-max 

normalized the scores for each kinase. 

  

2.2.3.4 Functionality of phosphosites 

At the time of this work, the Beltrao group was preparing for publication an algorithm that 

provides predictions of functionality of phosphosites, which we also used in our study 

(Ochoa et al., 2020). The predictions were based on a wide variety of phosphosite specific 

features including structural, evolutionary and biochemical attributes. Since these 

predictions were done on a defined set of phosphosites based on an analysis on a set of 

high throughput experiments, some of the phosphosites available in the PhosphoSitePlus 

database were not represented. We log10-transformed the raw functional scores and min-

max normalized the values to arrive at functional scores valued between 0.0 and 1.0, with 

larger scores reflecting a higher predicted probability of a functional impact of 

phosphorylation of that site.  

2.2.3.5 Connection of PWMs to functional scores 

Kinases are often regulated by multiple phosphosites, generating potentially multiple 

scores per kinase. In our case, we assigned the top PWM score for any given kinase-

kinase pair. It is therefore possible that the PWM score assigned for a hypothetical kinase-

kinase relationship results from fitting a non-functional phosphosite to the upstream 

kinase’s PWM. Therefore, to predict the upstream kinase’s ability to phosphorylate 

functional sites on the target kinase we generated an independent predictor. The PSSM 

score, ŝ was calculated for each substrate phosphosite that had an assigned functional 

https://www.zotero.org/google-docs/?GrjLMu
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score. Subsequently, we ranked by the n sites by ŝ in descending order, producing a 

PWM score based ordered ranking of functional scores F = { F1, F2,…., Fi,…., Fn-1, Fn}. 

The discounted cumulative gain (DCG) (Järvelin and Kekäläinen, 2002) for the kinase-

kinase pair was then defined as: 

  

Sites assigned a higher PWM score, and therefore lower ranki, make a greater 

contribution to the DCG. As a result, the more functional the phosphosites with the highest 

PWM scores, the higher the DCG. 

In order to make the scores more comparable across the different kinase-kinase pairs, 

the DCG scores were min-max normalized. As a result, the normalized DCG was 

calculated as follows: 

 

Where DCGmax is the maximum DCG achievable by that substrate and DCGmin the 

minimum score. 

2.2.3.6 Co-expression and tissue specificity 

Tissue expression data from the Human Protein Atlas (Uhlén et al., 2015) and GTEx 

(GTEx Consortium, 2013) was used to calculate co-expression across kinases across 

different tissues. We used Spearman’s rank sum coefficient to quantify the association.  

We calculated the tissue specificity of each kinase or how widely expressed the kinase is 

across the different tissues by quantifying the skewness of its distribution of expression 

levels in the Protein Atlas expression database (in transcripts per million, or “TPM”) 

across the samples. The e1071 package for R was used to calculate the skewness 

(https://CRAN.R-project.org/package=e1071). 

2.2.3.7 Phospho-co-regulation 

We assessed the level of phospho-co-regulation of the kinase pairs by measuring the 

Spearman’s correlation between phosphorylation of known regulatory phosphosites in 

two data sets; one quantified levels of changes in phosphorylation across inhibitor 

https://www.zotero.org/google-docs/?70i8Fs
https://www.zotero.org/google-docs/?8PgHIK
https://www.zotero.org/google-docs/?RsM7Ao
https://cran.r-project.org/package=e1071
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conditions (Wilkes et al., 2015) and the other contained phosphoproteomic data from 

breast cancer patients (Mertins et al., 2016). Both data set consisted of a table of log2 

fold-changes for each quantified phosphosite. To ensure samples followed similar 

distribution, each data set was quantile normalized by condition or sample (Bolstad et al., 

2003).  

Within each data set, we calculated the correlation between fold-changes of the sites for 

each phosphosite pair found on the respective kinases across all conditions for samples 

which had five or more matching quantifications available. Conditions where either of the 

kinases was under inhibition were removed from the calculation. Spearman’s rho was 

used to calculate the correlation and a p-value estimated for the correlation by the 

asymptotic t approximation. The resulting p-values were log10 transformed; if the 

estimated p-value was 0, we set the final value to 6. Phosphosites are known to be non-

functional in many cases so co-phosphorylation does not necessarily indicate co-

regulation. For this reason, the log transformed p-value was then scaled by the functional 

scores of both sites by multiplying the log transformed p-value with the functional scores 

of the phosphosites involved. This ensured that only kinase-kinase pairs with highly 

correlated functional sites received high co-regulation scores. We then used the 

maximum co-regulation score to quantify co-regulation between the kinases. Finally, the 

co-regulation scores for all kinase pairs were min-max normalized.  

2.2.4 Training of model  

All the aforementioned predictors were combined and used to train a machine learning 

model. We also added a feature indicating if the upstream kinase was threonine or 

tyrosine. Many supervised learning methods have been proposed to solve classification 

problems. In our case the following methods were considered: 

a) Random forest (Tin Kam Ho, 1995): Briefly put, random forest constructs an 

ensemble of decision trees based on sub samples of the training set and averages 

over the results to improve accuracy and prevent over-fitting. I used the 

RandomForestClassifier() with 150 trees as implemented in scikit-learn 

(Pedregosa et al., 2011)  

https://www.zotero.org/google-docs/?brEFyf
https://www.zotero.org/google-docs/?gbZdpl
https://www.zotero.org/google-docs/?0c2HRH
https://www.zotero.org/google-docs/?0c2HRH
https://www.zotero.org/google-docs/?HjTKs1
https://www.zotero.org/google-docs/?gOZ9dl
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b) Support Vector machines (Cortes and Vapnik, 2004): Support vector machines 

map the examples provided by the training set onto a space to maximize the gap 

between the positives and negatives. The new data points are then mapped onto 

the same space and predicted to belong to either category depending on which 

site of the gap between negatives and positives they land. I used the svm.SVC() 

function as implemented by scikit-learn (Pedregosa et al., 2011). I used radial 

basis function kernel which uses non-linear division between groups.  

c) AdaBoost (Schapire and Singer, 1999): AdaBosst or Adaptive boosting is a meta 

estimator that fits a classifier to the initial data set and then fits additional classifiers 

to the same data set where weights are adjusted for incorrectly classified examples 

to focus more on difficult cases. I used the AdaBoostClassifier function 

implemented by scikit-learn with 150 estimators. Decision trees were used as base 

estimators for predictions.  

d) Neural networks (Rumelhart et al., 1986): In this project I used Multi-layer 

perceptron with 100 hidden layers. Here we used the scikit-learn implementation.  

e) Logistic regression (Cox, 1958): Briefly put logistic regression models the 

probability of a variable to belong to a certain class with logistic function. Here I 

used logistic regression as implemented by scikit-learn with the default 

parameters. 

f) Bayesian additive regression trees (Chipman et al., 2010): Briefly, BART uses the 

sum of trees method to assign probability. A series of decision trees are fit to the 

data for data classification. Each tree is constructed from binary decision nodes 

which make decisions based on one of the features. The leaf nodes of each tree 

contain values which contribute to the classification value. As BART is a sum-of-

trees model, these decision values are summed to produce a final value used for 

classification. The BART method uses a fixed number of trees, on which it places 

regularizing priors to ensure that each tree is a “weak learner” so that each tree 

only makes a small contribution to the final classification value. It does this by 

limiting the tree depth, shrinking terminal leaf nodes to the median, and adding 

noise to avoid over-fitting. Bayesian approaches such as Markov-Chain Monte 

https://www.zotero.org/google-docs/?Jph3JB
https://www.zotero.org/google-docs/?DsFnaL
https://www.zotero.org/google-docs/?VBkztU
https://www.zotero.org/google-docs/?x39YcZ
https://www.zotero.org/google-docs/?SCvYOD
https://www.zotero.org/google-docs/?ordrkP
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Carlo (MCMC) backfitting (Chipman et al., 2010) are used for parameter estimates 

in order to fit the trees to the data. 

Due to the random sampling of negatives, 100 different models were generated. The 

BART predictors were assessed with 20 runs of 3-fold cross validation while the other 

methods were assessed with 5-fold cross validtion. The AUC scores were used to 

quantify the predictive power of each predictor. The R package ROCR (Sing et al., 2005) 

was used to calculate AUC scores and draw ROC curves. The final probability score 

assigned to each kinase-kinase pair being the average of the 100 different models. In the 

end we selected BART, in part due its way of incorporating missingness into its 

predictions  

For figures 2.4 (pathway extraction) and 2.3 C (the ranking of known substrates), we built 

3 different models for each kinase. The models were trained with a reduced positive set 

where the kinase’s interactions had been removed and a random “negative” set. The 

mean posterior probability of the kinase’s relationships from these 3 models was used as 

the final prediction value. 

2.2.5 Prediction of signed regulatory relationships 

This part of the project was exclusively done by my collaborator Brandon Invergo. A more 

detailed description of the prediction process can be seen in that published paper (Invergo 

et al., 2020)  

We also predicted the sign of kinase-kinase regulatory relationships. The sign prediction 

can be divided into two steps. The first step of the signed prediction was the prediction of 

the sign of phosphosites, i.e. whether the phosphorylation of a specific site leads to 

inhibition or activation of the substrate. The second step predicts the sign of the kinase-

kinase relationship. The regulatory phosphosites information from PhosphositePlus was 

used to predict signs of phosphosites (Hornbeck et al., 2015).  

We used the following features for sign prediction: The position in percentage of the site 

relative to the start/end position of the protein kinase domain (i.e. between 0 and 1 for 

sites that fall within the domain); the position in percentages of the site along the protein’s 

sequence length; the domain (if any) in which the phosphosite lies, including, but not 

https://www.zotero.org/google-docs/?kRDunx
https://www.zotero.org/google-docs/?pbLGty
https://www.zotero.org/google-docs/?YpWUgP
https://www.zotero.org/google-docs/?YpWUgP
https://www.zotero.org/google-docs/?bXnZ5n
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limited to, protein kinase domains; the phosphosite residue (serine/threonine or tyrosine); 

whether or not the substrate is a tyrosine kinase; estimated secondary sequence disorder, 

as quantified by DISOPRED (Ward et al., 2004); and the -log10(p-value) of the site being 

in a phosphorylation hot-spot (Strumillo et al., 2019). 

To find an appropriate threshold to decide if a phosphosite had activating or inhibiting 

properties we used the Mathews correlation coefficient.  

Subsequently, we made predictions of the sign of the kinase-kinase regulatory 

relationships. In brief the functional score, the co-regulation score and DCG were 

modified to indicate the sign of the functional score for which we simply used the sign of 

the phosphosites. The signed functional score was then used in the signed DCG 

calculation. The signed co-regulation was calculated in a similar way except the 

Spearman’s rho coefficient was used instead of the log transformed p-values. The 

predictions were made using BART and the model evaluated in the same way as the 

kinase-kinase regulatory relationships prediction. 

2.2.6 Identification of functional modules in network 

Biological networks are often seen as being modular in structure. In order to see if the 

same property applied to our network, I set out to identify and divide our kinase-kinase 

network into clusters. In order to make the partition I considered three methods: Greedy 

clustering (Clauset et al., 2004) , Louvain (Blondel et al., 2008) clustering and the Markov 

(Van Dongen, 2000) cluster algorithm. All these methods were implemented in their 

respective R packages: igraph (Csárdi and Nepusz, 2006) (Greedy clustering and 

Louvain) and MCL (https://CRAN.R-project.org/package=MCL). 

Louvain clustering (Blondel et al., 2008): The algorithm is divided into two steps: first, 

each node is assigned to its own cluster. In the second step each node i is iteratively 

merged with its neighbors’ clusters and the change in the overall network’s modularity is 

assessed. The merge leading to the greatest improvement in modularity is identified 

followed by a merging node i to the cluster leading to greatest improvement in modularity. 

This process is repeated until a local maximum has been found. During the second step, 

a new network is generated from the identified clusters. The edge weights between the 

https://www.zotero.org/google-docs/?nO1M6a
https://www.zotero.org/google-docs/?flwddn
https://www.zotero.org/google-docs/?yNkR4I
https://www.zotero.org/google-docs/?STrm2R
https://www.zotero.org/google-docs/?7MFoPy
file:///E:/(Csárdi%20and%20Nepusz,%202006)
https://cran.r-project.org/package=MCL
https://www.zotero.org/google-docs/?4K2OvW
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nodes are computed by summing over the weights of the links that connect nodes across 

each cluster. The first step is then reapplied on the resulting network. These two steps 

are then repeated iteratively to improve the cluster assignments until no further 

improvement can be made. The modularity function that the algorithm optimises can be 

seen below: 

 

 

Where m is the sum of weights, Aij is the weight between node i and j and the function 

δ(u,v) is 1 if u=v, 0 otherwise. Ci is the cluster that node i belongs to, ki is the sum of the 

edges attached to node i.  

Greedy clustering (Clauset et al., 2004): Similar to Louvain method as a fast and greedy 

method is used to find a local modularity minimum. It starts in the same way as each node 

is its own cluster which are merged to maximize improvement in modularity. The merging 

is then repeated until only one community is left.  

Markov clustering (Van Dongen, 2000): The algorithm determines the probability of 

random walks through the adjacency matrix and from the random walks it constructs a 

weighted transition matrix. The transition matrix is then iteratively subjected to two 

operators, expansion and inflation. To transform one set of probabilities into another. 

Briefly, expansion corresponds to matrix squaring, while inflation corresponds to 

Hadamard power of a matrix which is followed by a scaling so that values in the matrix 

continue to represent probabilities. While expansion computes longer random walks, 

network inflation favours intra cluster walks (shorter distances). This iteration of inflation 

and expansion leads to graphs that are divided into different segments which are in turn 

interpreted as different clusters. 

2.2.7 Assessment of network modularity  

I set out to assess if the high confidence network was modular by comparing it to an 

empirical distribution of modularity values derived from a randomized network. I applied 

a cut-off of 0.5 to derive a high confidence network. The remaining edges were 

https://www.zotero.org/google-docs/?4qfECS
https://www.zotero.org/google-docs/?drsTGH
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subsequently min-max scaled so that the edges had assigned edge weights on the scale 

from 0 to 1. A thousand randomized networks were generated with the same degree 

distribution as the reference network. Randomization was done by using the 

sample_degseq() function in the igraph (Csárdi and Nepusz, 2006) package by employing 

the “vl'' method (Fabien Viger and Matthieu Latapy, 2005). At each randomization, I 

shuffled the edge weights of the reference network and assigned the shuffled probabilities 

to the randomized network’s edges as edge weights. I then clustered the resulting random 

network and the modularity score of the clustering assignment was calculated with 

modularity.igraph as implemented in igraph (Clauset et al., 2004; Csárdi and Nepusz, 

2006) (Equation in chapter 2.2.6). 

2.2.8 Pathway-annotation distances 

We retrieved the human protein interaction network from IntAct (version: Oct. 2018) 

(Orchard et al., 2014). Additionally, we added human phosphorylation events from 

SIGNOR, PhosphoSitePlus and OmniPath (Turei et al., 2016) as edges to the network, 

resulting in a network consisting of 17,089 nodes and 166,757 edges. For each pair of 

pathway annotations, we computed the mean of the length of all shortest paths between 

the proteins annotated for the pair. 

I subsequently divided the distances into two sets: Set of distances that are enriched in 

the same cluster (n=811) and a set of distances between pathways found enriched in two 

different clusters (n = 1019). Distances between pathways that shared kinases were 

excluded from the subsequent analysis which reduced our within-cluster set to 67. 

Wilcoxon rank sum test was used to determine if the difference between the two distance 

sets was significant. 

2.2.9 Kinase inhibitor experiments 

We generated phosphoproteomic data to test the network’s predictions. The data 

generation was carried out as described previously by Wilkes et al. (Wilkes et al., 2015). 

Briefly, the Kasumi-1 cell line was grown in RPMI medium supplemented with 10% FBS, 

and was treated with 1µM trametinib or GDC-0941 for 1 h. The cells were lysed in a urea-

based lysis buffer. Subsequently trypsin digestion was applied and phosphopeptides 

https://www.zotero.org/google-docs/?wfin4F
https://www.zotero.org/google-docs/?wmfgxB
https://www.zotero.org/google-docs/?E2rhcE
https://www.zotero.org/google-docs/?E2rhcE
https://www.zotero.org/google-docs/?bpfDkh
https://www.zotero.org/google-docs/?AAfaCc
https://www.zotero.org/google-docs/?0FIPH8
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were enriched using TiO2 chromatography and analysed in a LS-MS/MS system 

consisting of an Ultimate 3000 ultra-high pressure chromatograph connected to a Q-

Exactive Plus mass spectrometer. The Mascot (Cutillas and Vanhaesebroeck, 2007; 

Perkins et al., 1999) search engine and Pescal (Cutillas and Vanhaesebroeck, 2007) 

were used for data analysis as described by Wilkes and colleagues (Wilkes et al., 2015). 

2.2.10 Support of kinase-kinase predictions with independent 

experimental kinase-substrate predictions 

To see if our predictions could be supported by independent experimental predictions of 

kinase-substrates I downloaded a list of kinase-substrate predictions from two recent 

publications (Hijazi et al., 2020; Sugiyama et al., 2019). The two studies were conducted 

in a different manner. Briefly, Sugiyama and colleagues de-phosphorylated HeLa cells 

lysate with alkaline phosphatase while spiked phosphatase was inactivated by heat. The 

lysate was then reacted with recombinant protein kinases (n= 354). The other study 

conducted by Hijazi and colleagues grew three cell lines (MCF7, NTERA2 and HL60) 

which were incubated with 61 different kinase inhibitors. This way, Hijazi et al. were able 

to make kinase-substrate predictions for 103 kinases by analysing the impact of inhibition 

on phosphorylation levels on phosphosites.  

I considered any kinase-kinase relationships that were predicted by either experiment to 

be experimentally supported. Wilcoxon’s rank sum test was used to establish if the 

probabilities of experimentally supported edges were significantly higher than those for 

the rest of the unsupported edges.  

2.2.11 Identification of phosphosites that are impacted upon 

kinase inhibition 

By analysing phosphoproteomic data derived from Kasumi-1 cells exposed to the kinase 

inhibitors trametinib (MEKi) and GDC-0941 (PI3Ki), I identified phosphosites that were 

down-regulated by either inhibitor. For this analysis I considered any peptide, including 

multi-phosphorylated peptides. The data set was log2 transformed and quantile 

normalized to ensure similar distribution across samples. I identified down-regulated 

https://www.zotero.org/google-docs/?Ldhpw2
https://www.zotero.org/google-docs/?Ldhpw2
https://www.zotero.org/google-docs/?v23Hn6
https://www.zotero.org/google-docs/?N24hNu
https://www.zotero.org/google-docs/?h5NhGf
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phosphosite in each condition with the ebayes() function to fit linear model to the data to 

estimate modified t-statistics as implemented in the limma R package limma 

(reproducibility-optimized statistical testing) (3.40.6) (Ritchie et al., 2015). The log2 ratio 

threshold of less than -1 and false discovery rate of lower than 0.1 was used to identify 

the down-regulated phosphosites. P-values were adjusted with the Benjamini–Hochberg 

method (Benjamini and Hochberg, 1995). 

2.2.12 Identification of novel kinase-kinase regulatory circuits 

To see if any novel signalling pathways could be identified from the kinase perturbation 

data, we looked for the shortest path from the kinases perturbed by trametinib (MAP2K1 

and MAP2K2) and GDC-0941 (PI3K) to phosphosites that are down-regulated by their 

inhibition. PI3K is a lipid kinase and as a result it was not included in our network of protein 

kinases. I added edges between PI3K and kinases regulated by two PI3K kinases: 

hsa:5290 (PIK3CA) and hsa:5291 (PIK3CB) or their direct substrate, 

Phosphatidylinositol-3,4,5-trisphosphate, in the KEGG database (accessed 16. October, 

2019)(Kanehisa, 2019) . As a result, edges from PI3K to PRKCD (e.g. hsa:04750),PRKCI 

(e.g. hsa:04910), PRKCZ (e.g. hsa:04910), SRC (e.g. hsa:04926), AKT1 (e.g. 

hsa:04151), AKT2 (e.g. hsa:04151), ILK (e.g. hsa:04510), MTOR (e.g. 

hsa:04150/hsa04910), PDPK1 (e.g. hsa:04150), PDPK2 (e.g. hsa:04068), ITK (e.g. 

hsa:04062) and PTK2 (e.g. hsa:04062) were added to the network. 

To link phosphosites to our kinase-kinase interaction network, I added known kinase-

substrate relationships from PhosphoSitePlus (Hornbeck et al., 2015) to the network as 

well as interactions predicted by both in cell lines (Hijazi et al., 2020) and in vitro 

(Sugiyama et al., 2019) experiments that were considered to be of high enough 

confidence. Phosphosites that are known substrates of the perturbed kinases were 

excluded from this analysis. Substrates of kinases manually linked to PI3K were 

discarded as well. We applied a probability threshold of 0.5 to select high confidence 

edges. I used the function all_shortest_paths() as implemented by the igraph R package 

to identify the shortest directed paths from the impacted phosphosites to the perturbed 

kinases. I set the parameters as follows: The parameter mode = “out” and the edge 

https://www.zotero.org/google-docs/?Swwyal
https://www.zotero.org/google-docs/?i7pMm1
https://www.zotero.org/google-docs/?KrHe8R
https://www.genome.jp/kegg-bin/show_pathway?hsa04910+5291
https://www.zotero.org/google-docs/?aSKWPj
https://www.zotero.org/google-docs/?hNI8gZ
https://www.zotero.org/google-docs/?aFJNo7
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weights were set by subtracting the min-max scaled edge probabilities from one. An 

interaction was deemed novel if it was supported by either cell line or in vitro experiment.  

2.3 Results  

2.3.1 Regulatory relationships can be identified by similar 
phosphorylation patterns at functional phosphosites and kinase 
co-expression 

The use of high throughput features rests upon the assumption that kinases that are 

active or inhibited in the same set of tissues and conditions are more likely to be part of 

the same pathway and therefore more likely to interact in a regulatory manner. 

Phosphorylation forms an important part of kinase regulation and therefore we calculated 

the phospho-co-regulation by correlating co-phosphorylation and weighing it with 

phosphosite functional score. Co-phosphorylation was calculated using two large-scale 

phosphoproteomic experiments (Mertins et al., 2016; Wilkes et al., 2015).  

Overall, known regulatory relationships found in the OmniPath database (Turei et al., 

2016) tended to have higher co-regulation scores than the background of unannotated 

pairs. This held true in both phosphoproteomic experiments, kinase-kinase regulatory 

pairs tended to have higher co-regulation scores than pairs with without representation in 

Omni Path (one-sided Wilcoxon rank sum test, W= 2.8 × 107 , p < 1 × 10-6 (Mertins et al., 

2016), W = 9.3 × 105 , p < 1 × 10-6 (Wilkes et al., 2015)) (Figures 2.1 D & E). 

Co-expression was also considered as a predictor and for this reason, two RNA-seq data 

sets (GTEx Consortium, 2013, Uhlén et al., 2015) were tested to see if co-expression was 

an indicator of co-regulation between kinases. In general, co-expression discriminated 

between known regulatory relationships and the background of unannotated relationships 

indicating its value as a predictive feature (one-sided Wilcoxon rank sum test, W= 1.3 × 

108, p < 1 × 10-6 (GTEx Consortium, 2013), W = 1.3 × 108, p < 1 × 10-6 (Uhlén et al., 2015)) 

(Figure 2.1 A & B). Similarly, when tissue specificity is analysed, the absolute difference 

between tissue specificities between the kinase forming each pair pairs with regulatory 

relationships tend to have more similar expression profiles than those with no annotated 

https://www.zotero.org/google-docs/?P6PToQ
https://www.zotero.org/google-docs/?xyJ6ln
https://www.zotero.org/google-docs/?xyJ6ln
https://www.zotero.org/google-docs/?X3PoaA
https://www.zotero.org/google-docs/?X3PoaA
https://www.zotero.org/google-docs/?GEngct
https://www.zotero.org/google-docs/?XXAFxY
https://www.zotero.org/google-docs/?NMGN7P
https://www.zotero.org/google-docs/?j8CmgI
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relationship (one-sided Wilcoxon rank sum test, W = 8.9 × 107, p < 1 × 10−6) (Figure 2.1 

C) 

 

 

Figure 2.1 Overview over the associative predictors used in this project. We can see that 

known relationships tend to have a higher co-expression assigned to them (A & B). While 

the specificity profile of kinases known to regulate each other are more similar compared 

to the rest. Similarly, a higher co-regulation scores are assigned to kinases known to have 

a regulatory relationship (D & E). Figure modified from Invergo & Petursson et al. (Invergo 

et al., 2020). 

2.3.2 Linking sequence specificity to phosphosite functional 

impact identifies direct regulation of protein kinase activity 

Kinases are known to target specific substrates based on the amino acid sequence 

surrounding the acceptor phosphosites. By modelling this specificity with a position weight 

scoring matrix (PWM), we can score a kinase’s potential for directly phosphorylating a 

putative substrate phosphosite. However, high PWM score does not necessarily indicate 

regulation as the best scoring phosphosite might not be functional. To link PWM scores 

with phosphosite functionality, we employed the discounted cumulative gain (DCG) which 
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is often used for information retrieval (Järvelin and Kekäläinen, 2002), where the PWM 

scores was used as a phosphosite “search function” and the functional score as a 

“relevance metric” for the substrate phosphosites.  

Only 140 kinases had a sufficient number of known substrate sites to build high quality 

PWMs. It has previously been shown that kinases belonging to the same family tend to 

have similar specificity profiles, partly due to similar specificity determining residues 

(SDR) (Bradley and Beltrao, 2018; Bradley et al., 2021). Therefore, we set out to 

investigate this property to assign PWM to kinases based on family and SDRs. We 

investigated what level of residue similarity was necessary to make accurate PWM 

assignments. We found SDR similarity of 0.8 (based on the BLOSUM62 amino-acid 

substitution matrix) is needed to make assignments that perform significantly better than 

a randomly assigned PWM (Figure 2.2 A). Nevertheless, this method of assignment did 

not improve upon assignment by family (Figure 2.2 B). Therefore, we increased the 

coverage of kinases with PWMs by assigning to assign PWMs in a family wise manner (n 

= 209) or otherwise assign based SDR similarity (n=14) if a family PWM was not available. 

As a result, we PWMs assigned to 363 kinases (Figure 2.2 C).  

 We found that the PWMs of known regulators in OmniPath tend to assign a high PWM 

score to at least one phosphosite on the substrate kinase (one-sided Wilcoxon rank sum 

test, W= 1.0 X 108, p < 1 × 10-6) (Figure 2.2 D, left panel). Furthermore a highly functional 

score on the potential substrate kinase seems to indicate regulation and thus has a 

predictive of a regulatory relationship (one-sided Wilcoxon rank sum test, W= 6.4 × 107, 

p < 1 X 10-6) (Figure 2D, centre panel). By linking these two predictive features together, 

the DCG also captures known regulatory relationships (one-sided Wilcoxon rank sum 

test, W= 4.1 X 107, p < 1 X 10-6) (Figure 2.2 D, right panel). 

https://www.zotero.org/google-docs/?HMPEFy
https://www.zotero.org/google-docs/?Thv9nx
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Figure 2.2 Position weight matrix and functionality score based features. Position weight 

matrices and phosphosite functional scores turned out to be powerful predictors of 

regulation. To assign PWMs to kinases with few known phosphosites, we assigned family 

PWM and PWMs based on SDR similarity. For PWMs to be significantly better than 

random and have a Frobenius distance of less than 1.0 to duplicate PWM, SDR similarity 

of kinases had to be > 0.8 (A). SDR assignment did not perform better in terms of PWM 

distance compared with family assignment, therefore family PWMs were assigned before 

SDR was used (B). 363 PWM were assigned: 140 for kinases with more than 140 known 

substrates, 209 were assigned based on family and 14 based on SDR. Known 

relationships had significantly higher PWM score, maximum functional score of substrate 

and DCG score. Figure modified from Invergo & Petursson et al. (Invergo et al., 2020). 
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2.3.4 Choosing machine learning for network prediction 

For this project, we tried various different methods for kinase-kinase relationship 

predictions. The overview of the performance can be seen in table 2.1 as measured by 

the area under the ROC curve (AUROC). It should be noted that as BART incorporates 

missing data into its decisions, while the other methods -as implemented by scikit-learn- 

do not handle data missingness. As a result, the training sets used to train the models 

are not equivalent, as data with missing values were removed from the training set. 

Furthermore, all methods apart from BART used balanced training sets while BART 

trained with a larger negative set. All methods discerned between relationships found in 

the literature and the background. Furthermore, due to greater memory efficiency, the 

methods implemented by scikit-learn were validated with 5-fold cross validation rather 

than 20 runs of 3-folds as in the case of BART. In the end BART was chosen due to its 

strong performance as well as the ability to incorporate missing data into its predictions. 

 

Table 2.1: Performance of different machine learning methods. Methods implemented 

by scikit learn were evaluated by 100 runs 5-fold cross validation using training set 

without missing values. BART was evaluated with 20 runs of 3-fold cross validation for 

each of the 100 models trained. Due to BART’s ability to incorporate missing values, a 

full training set was used.  

Method AUC 

Support vector machines 0.75 

Logistic regression 0.80 

Neural network 0.80 

Random Forest 0.81 

AdaBoost 0.72 

BART 0.88 

 



  

45 
 

2.3.5 Description of the resulting probabilistic network 

All the predictors were merged and used as an input for BART. While all predictors had 

a limited but measurable predictive power, the PWMs were the strongest predictor with 

an AUC of 0.74. However, when combined, these predictors were able to make improved 

predictions with an average AUC 0.88 across one hundred runs (Figure 2.3 A). The AUC 

was derived using 20 runs of 3-fold cross validation. 

We then investigated whether annotated relationships tended to rank highly among our 

kinase predictions. The top ranks were significantly better than expected based on a per-

kinase random permutations of probabilities (one-sided Wilcoxon rank sum test, 

regulator: W= W= 5.8 × 108, p < 1 × 10-6; substrate: W= 7.4 × 104, p < 1 × 10-6). Indeed, 

50% of kinases had a known regulatory relationship among the top 10 predictions (Figure 

2.3 B).  

Another way of evaluating our predictor was to see how well it captured low quality 

regulatory relationships annotated in the literature. That is, relationships found in 

OmniPath that were mentioned in less than two sources (n =293). We found that these 

interactions had significantly higher probability assigned to them compared to the 

background set of edges (Figure 2.3 C). They had, however, edge probabilities lower than 

the training set (one-sided Wilcoxon rank sum test vs. unannotated: W= 6 × 107, p < 1 × 

10-6, vs. high-confidence set: W= 8.7 × 104, p < 1 × 10-6).  

We wanted to find out if we could predict substrate kinase and upstream kinases for less 

studied kinases. (Figure 2.3 D; kinase publication counts were retrieved from (Invergo 

and Beltrao, 2018)). We found that in our network, kinases in the top three deciles of 

citation counts (more than 95 publications) accounted for only 31% of the network. 

Furthermore, 589 regulatory relationships were predicted between kinases in the bottom 

50% of publication counts (fewer than 40 publications each).  

Overall, there is a large accumulation of novel edges with only around 7% of the high 

confidence edges being found annotated in the database (Table 2.2). However, it could 

also be because our training set consists largely of well-studied kinases as we can see a 

significant correlation between citation counts per kinase and top prediction rank. (Figure 

https://www.zotero.org/google-docs/?HbGhoZ
https://www.zotero.org/google-docs/?HbGhoZ
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2.3 E; Spearman’s rank correlation, as regulator: rho = -0.34, p < 1 × 10-6; as substrate: 

rho = -0.29, p < 1 × 10-6). 

Table 2.2: Precision and recall at different cut-offs for kinase-kinase network. The number 

of edges and precision of the network at different cut-offs.  

 

Cut-off No. edges portion annotated in 
databases 

0.5 4339 0.070 

0.6 2113 0.098 

0.7 863 0.15 

0.8 269 0.25 

2.3.6 Signed predictions of kinase-kinase relationships 

Prediction of phosphosite sign achieved a Matthews correlation coefficient of 0.42 at cut-

off of 0.58 which indicates that phosphosites with higher probability than 0.58 are 

assumed to be activating while lower values indicate inhibition. Combination of 

phosphosite sign and interaction features allowed us to predict signs for kinase-kinase 

regulatory relationships. The maximum Matthews correlation of 0.42 was achieved at a 

probability cut-off of 0.48 
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Figure 2.3: Validation of probabilistic network. (A) All predictors were able to discern 

between known relationships and the rest with the PWMs being the strongest predictor. 

However, a combination of the different features yielded the best results (AUC =0.88). (B) 

Looking at the ranking of top predictions we see that our network is significantly more 

likely to have known relationships among the top ten predictions than random. (C) Our 

predictor was able to capture relationships only supported by a single source (Which were 

not included in the training set). However, these were assigned lower probability than the 

training set. (D) Our predictor is able to make high confidence predictions for less studied 

kinases and substrates. (E) Nevertheless, highly cited proteins still occupy the top 

predictions; both for regulators and substrates. Figure modified from Invergo & Petursson 

et al (Invergo et al., 2020).  

https://www.zotero.org/google-docs/?op03yB
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2.3.7 Reconstruction of pathways from probabilistic kinase-kinase 

network 

We wanted to see if pathways could be extracted from the network by looking at a few 

well-studied kinases. For each pathway, interactions involving any of the kinases in the 

pathway were removed from the positive set. 0.5 was used as a probability cut-off both 

for regulatory interaction and sign. Starting with AKT1 and kinases closely functionally 

related to AKT1 we see that most interactions were recaptured (Figure 2.4 A). The 

inclusion of less studied kinases and paralogs of these kinases shows, however, that our 

performance drops suddenly (Figure 2.4 B). Similarly, if we expand the scope and look at 

the MAPK pathway, we notice an accumulation of unknown edges (Figure 2.4 C). 

 

Figure 2.4: Prediction of signalling pathways. Retrieval of pathways from the network. 

(A) By only including well studied kinases, we can capture and predict correctly most 

edges with a relatively low number of unannotated edges. (B) By including less studied 

kinases and paralogs of kinases used in (A) we get more mistakes and accumulation of 

unannotated edges. (C) By increasing the scope and including the MAPK pathway we 

see that while erroneous predictions remain relatively rare, accumulation of unannotated 

edges increases. Figure taken and modified from Invergo & Petursson et al. (Invergo et 

al., 2020). 

https://www.zotero.org/google-docs/?mGJZAQ
https://www.zotero.org/google-docs/?mGJZAQ
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2.3.8 Identification of functional modules within kinase-kinase 

network 

Biological networks are often thought of as being highly modular and scale-free with 

relatively few nodes as hubs and most proteins being peripheral in the network interacting 

with few other proteins. To test if these properties applied to the kinase-kinase network 

formulated here, I selected high confidence edges (edge probability of > 0.5), 4,339 edges 

between 317 kinases in all. I applied three different clustering methods on the high 

confidence network, MCR, greedy clustering and Louvain clustering. The methods 

identified 7, 5 and 4 clusters that included ten or more genes respectively. MCL did find 

3 clusters with biological functional enrichment (48 pathways in all), while greedy 

clustering was more similar to Louvain, who found 60 enrichments in 3 clusters. Louvain 

clustering was chosen as giving the most biologically relevant partition with 4 clusters and 

72 enrichments in 4 clusters. Louvain returned 4 different clusters each including 193, 45, 

107 and 87 kinases respectively. This partition yielded a modularity score of µ = 0.325 

which is significantly higher than an empirically derived distribution of modularity scores 

derived from hundred different randomization of the original unperturbed network where 

node degree distribution was preserved (µ = 0.197, σ = 0.00339, p < 0.001; Figure 2.5 

A). Biological modules are often understood as a functional subunit of the signalling 

network where each module has a biological function that does not overlap with other 

modules (Bhattacharyya et al., 2006; Kirschner and Gerhart, 1998). To see if that was the 

case, I conducted an enrichment analysis on the modules extracted above using the 504 

kinases as the background. In order to enrich the modules, the R package ReactomePA 

(Yu and He, 2016) was used. Each of the modules had a significantly enriched pathway 

with each of the modules having non overlapping assigned function the top enrichments 

can be seen below (Figure 2.5 B). Additionally, we found that pathways that clustered 

together were closer to each other in the literature network indicating that the kinase-

kinase network can be divided into modules that correspond to modules within the 

literature network (Wilcoxon rank sum test, W = 5.8 × 105, p < 1 × 10-6, Figure 2.5 C) 

 

https://www.zotero.org/google-docs/?leTWbb
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Figure 2.5: Establishing modularity of the probabilistic network. (A) Pathways that 

clustered together were closer together in the IntAct network than pathways that were not 

enriched in the same cluster. (B) We found that our network was more modular than an 

empirical distribution of modularity values made by randomizing our network while 

maintaining edge degree (C).  Each cluster has an assigned function in the form of an 

enriched pathway. Pathway enrichment did not overlap across clusters. Figure modified 

from Invergo & Petursson et al. (Invergo et al., 2020).  

https://www.zotero.org/google-docs/?M0vr6s
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2.3.9 Validation of kinase-kinase relationships with independent 

experimental kinase-substrate predictions 

Since large portions of the signalling system are understudied, any attempt to make less 

unbiased predictions is bound to run into the problem of accumulation of multiple high 

confidence predictions without any way of verification. While a significant portion of these 

unknown edges can be reasonably assumed to be false positives, a number of true novel 

hits is also likely. In order to evaluate the formulated kinase-kinase interaction network’s 

ability to capture unknown interactions two experimental kinase-substrate predictions 

were used for evaluation. One study was an in-vitro study predicting substrates for 354 

kinases by introducing kinases to dephosphorylated peptides (Sugiyama et al., 2019). 

The other study based its prediction on changes in phosphorylation following kinase 

inhibition (Hijazi et al., 2020). Both studies have their limitations, but together add 

confidence to the computationally derived predictions due to the different methodology. 

Another limitation of this data set for analysis is that these studies predict phosphorylation 

of phosphosites by an upstream kinase but not kinase regulation. 

Probability scores of kinase-kinase interactions that were predicted by either method were 

compared with predictions that were not. It was found that the experimentally supported 

edges did have higher probability assigned to them than the ones that were unsupported 

by either study; (in-vitro: median probability of 0.075 (W = 2.6 × 108, p < 1 × 10-6); cell 

line: median probability of 0.12 (W = 1.6 × 108, p < 1 × 10-6); background: median 

probability of 0.030, Figure 2.6 A). When only looking at kinase-substrate relationships, 

where the functional score of the target phosphosite was high (> 0.5) and thus indicating 

regulatory relationship, we found that both in-vitro sets (W= 1.0 X 108, p < 1 X 10-6) and 

cell line set (W= 8.8 X 107, p < 1 X 10-6) had a significantly higher probability assigned to 

them compared with the unsupported edges (Figure 2.6A). Experimentally predicted 

edges were also more likely to be included in our validation set (OR = 3.98 and p = 1.6 X 

10-4 for the cell line study and OR= 4.51 and p < 1 X 10-6 for the in vitro study). Overall, 

these results indicate that our computationally derived kinase-kinase network has 

captured real hitherto unknown interactions. 

https://www.zotero.org/google-docs/?ZFfqw3
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2.3.10 Identification of new regulatory circuits with independent 

experimental data 

Having established that the kinase-kinase regulatory network can discriminate between 

experimentally supported edges and the background, the ability of the network to discover 

new pathways was tested. To this end, we generated a phosphoproteomic data set 

derived from PI3K and MEK inhibited Kasumi-1 cell lines. The data set included 9,183 

phosphopeptides quantified upon PI3Ki or MEKi inhibition and a control condition. I found 

that 112 (PI3K) and 66 (MEKi) phosphosites were downregulated in each condition 

respectively. By adding known kinase phosphosite relationships from PhosphoSitePlus I 

identified the weighted shortest path from the inhibited kinases to the down regulated 

phosphosites. For the final analysis 6 (MEKi) and 11 (PI3K) phosphates were included as 

the rest either did not have any known upstream kinase or were direct substrate of MEKi 

and PI3Ki. The distances between the inhibited kinases and the down-regulated 

phosphosites were calculated as the sum of edge weights across the shortest weighted 

path. I found that downregulated phosphosites were closer to the inhibited kinases when 

compared to all other phosphosites included in the network (W=1.4 X 104, p= 0.0028) 

(Figure 2.6 B). In order to see if any new pathways could be identified, I selected the 

shortest paths linking the inhibited kinases and the down-regulated phosphosites and any 

unknown interaction that was corroborated by either prediction experiment were 

considered to be a possible new interaction. In this way, possible new interactions were 

found between CDK1, CDK2 and SRC and between PRPF4B by MAPK1 which was 

supported by both experiments (Figure 2.6 C).  
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Figure 2.6 Capturing novel pathways with phosphoproteomics data. (A) Experimentally 

supported edges had greater probability assigned to them than the background. 

Experimentally validated edges had, however, lower edge probability than the training 

set. (B) Phosphosites that were significantly less phosphorylated upon kinase inhibition 

were closer to the inhibited kinase in our network compared to phosphosites that were 

less impacted. (C) By linking impact phosphosites to inhibited kinases by the shortest 

path we found three putative new pathways. The links between SRC and CDK1 and 

SRC and CDK2 as well as MAPK1 and PRPF4B, MAPK1 and PRPF4B are of particular 

interest due to support by both experiments  

2.4 Discussion 

Due to the sheer scale of the possible human kinase regulation network, experimental 

validation of all potential kinase-kinase regulatory interactions is unfeasible. Here, we 

have proposed a data-driven machine learning approach to assign probability scores to 

these regulatory relationships to guide future exploration of the understudied signalling 

network space. These predictions cannot replace existing experimental methods for 

relationship confirmation but can be used to reduce the vast space of possible 

relationships worthy of consideration for the formation of credible hypotheses and to 

prioritize experiments, for less studied kinases in particular. 
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Previous efforts to produce kinome-wide predictions of regulatory relationships have 

depended on existing protein networks to aid data-driven predictions. Rudolph et al. 

(Rudolph et al., 2016) inferred signalling pathways by employing a network diffusion 

technique with phosphoproteomic data mapped onto a literature-derived protein-protein 

interaction network. However, these efforts are heavily impacted by the study bias 

discussed in the introduction of this thesis which overestimates the importance of well-

studied proteins in signal propagation.(Gillis et al., 2014; Invergo et al., 2020; Luck et al., 

2020; Rolland et al., 2014). To our knowledge, there has only been one other attempt to 

predict signed kinase regulatory relationships (Hernandez et al., 2010). This study, based 

their sign predictions on mapping phosphoproteomics data onto literature network, with 

its biases onto quantitative phosphoproteomic data. Missing interactions in particular for 

understudied kinases can reasonably be expected to have a large impact on the results. 

Our supervised machine learning approach reduces the impact of this bias as predictions 

can be made for less studied kinases improving the coverage in our predicted network as 

a result. We do retain, however, a level of bias by using known kinase-substrates to 

construct the kinase specificity models as well as using literature networks to form the 

training set. High-throughput methods that measure kinase specificity profiles (see, e.g. 

(Imamura et al., 2014; Sugiyama et al., 2019) could be used to remedy the former issue. 

The latter, which may miss highly context specific regulation, might improve as more 

relationships are experimentally validated. 

Many different factors have an impact on the nature of kinase-kinase regulatory 

relationships and each condition is unique in this way, due the different properties of the 

kinases involved. Therefore, system-wide generalized prediction for all kinases is an 

inherently difficult problem. Some features such as phospho-regulation are fundamental 

and shared by all kinases. However, in order to achieve high quality predictions based on 

regulation by phosphorylation, a large set of large scale phosphoproteomic experiments 

across different tissues, cell types and conditions need to be conducted due to the 

context-specific nature of phospho-signalling. In this study we relied on 

phosphoproteomic data from breast cancer samples and MCF7 cell lines. Due to the 

homogeneity of our data sources this might introduce bias into our predictions as the 

decisions based on the co-regulation score run the risk of being breast cancer specific. 

https://www.zotero.org/google-docs/?4iTpjq
https://www.zotero.org/google-docs/?t5OZHg
https://www.zotero.org/google-docs/?t5OZHg
https://www.zotero.org/google-docs/?jrORrE
https://www.zotero.org/google-docs/?UPab6H
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This problem is further compounded by the fact that cancer initiation and progression 

often leads to dysregulation in the signalling network so regulatory relationships inferred 

from cancer data might not be representative of healthy tissue. Furthermore, due to the 

limited number of data sets, only a limited number of kinases were represented in the 

data. It is therefore clear that in order to make kinase-kinase regulatory predictions, a 

large number of large-scale phosphoproteomic experiments need to be conducted. 

The importance of PWM scores in our predictions further stresses the need for high 

quality PWM to be constructed for every kinase to add confidence to the predictions made 

by high throughput data. PWMs will play an important role in kinase-substrate predictions 

as they help to prune out indirect effects captured by correlative predictors. One 

weakness of PWMs is that it is constructed from known kinase-substrate relationships 

and might therefore make overly conservative predictions in some cases. 

The predictions made here rested upon the presumption that the signalling network is 

sparse, that is most kinases regulate a relatively low number of other kinases. Indeed, 

75% of our predictions were assigned a probability score of less than 0.09 which is far 

less than the probability cut-off used in this exercise. However even at a relatively 

stringent cut-off 0.5 and higher there was a large accumulation of unknown interactions. 

For instance, at a cut-off of 0.5, only around 7% of the interactions were included in our 

positive training set. This is partly to be expected as the number of predictions made 

increases. This leads to a network that is denser and richer in cross-talks across modules 

and regulatory feedback loops than is typically considered to be the case in the literature. 

This might be due to the fact that cellular context, such as protein localization, is not 

considered in this study. In order to validate the new high probability relationships further 

development in experimental approaches for hypotheses free identification of regulatory 

relationships are needed. 

 

 
 
 
 



  

56 
 

3 Machine learning-based prediction of kinase-

substrate relationships 

3.1 Introduction 

The sheer size of the phosphoproteome emphasizes the need to explore the set of 

possible kinase-substrate relationships in a systematic manner. Most kinase-substrate 

relationships found in data bases such as PhosphoSitePlus (Hornbeck et al., 2015), 

SIGNOR (Licata et al., 2020) or Phospho.ELM (Diella et al., 2008) are found between 

well-studied kinases and well-studied substrates (Invergo and Beltrao, 2018). However, 

high throughput protein interaction mapping analyses (Luck et al., 2020; Rolland et al., 

2014) have found that the human interactome is more evenly distributed than databases 

indicate. This points to a literature bias in current research since the focus lies on well-

studied proteins.  

So far, many methods have been developed to predict kinase-substrate relationships 

using predictive features such as kinase specificity models and protein localization. Peer 

reviewed methods include GPS v5.0 (Wang et al., 2020), KinomeXplorer (Horn et al., 

2014), NetPhos v.3.1 (Blom et al., 2004), LinkPhinder (Nováček et al., 2020) and 

PhosphoPICK (Patrick et al., 2015). One of the shortcomings of these methods is either 

the limited use of features apart from known kinase-substrates or the use of literature 

derived networks such as STRING (Szklarczyk et al., 2021) or BioGRID (Oughtred et al., 

2019) which inherently increases the study bias in their predictions. Recently, a method 

titled CoPhosK (Ayati et al., 2019) addressed some of these issues by using 

phosphoproteomic data and integrating it with another well-known method: 

KinomeXplorer (Horn et al., 2014). Here I describe a method to make kinase-substrate 

predictions based on kinase specificity models, high throughput biological data and 

various features characterizing the potential acceptor phosphosite. I validated the network 

with external independent experimentally validated kinase-substrate relationships and 

compare it with established methods. Furthermore, I show that these features can be 

used to predict the sign of kinase-substrate relationships which, to my knowledge, has 

https://www.zotero.org/google-docs/?sP6VhF
https://www.zotero.org/google-docs/?yxmDRP
https://www.zotero.org/google-docs/?bsuQHt
https://www.zotero.org/google-docs/?52FT7e
https://www.zotero.org/google-docs/?aSuWal
https://www.zotero.org/google-docs/?aSuWal
https://www.zotero.org/google-docs/?NwZ5d3
https://www.zotero.org/google-docs/?gPMFCL
https://www.zotero.org/google-docs/?gPMFCL
https://www.zotero.org/google-docs/?NURWLr
https://www.zotero.org/google-docs/?cA1BRA
https://www.zotero.org/google-docs/?lYLNl2
https://www.zotero.org/google-docs/?KJWmAO
https://www.zotero.org/google-docs/?KJWmAO
https://www.zotero.org/google-docs/?T4RxI6
https://www.zotero.org/google-docs/?GkRTws
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not been done before, other than in our prediction of kinase-kinase regulatory networks 

discussed in Chapter 2 which were not phosphosite specific.  

These predictions were then incorporated into SELPHI2, an expansion upon SELPHI 

(Petsalaki et al., 2015) which previously based its predictions on correlation analysis to 

extract associations between kinases and phosphatases and phosphosites. SELPHI2 is 

a platform that provides biologists with various means to analyse their phosphoproteomic 

data including enrichment analysis, kinase-substrate relationship predictions and the 

identification of probabilistic sub networks specific to the conditions under study.  

 

3.2 Methods 

3.2.1 Data sets 

I downloaded kinase inhibition perturbation phosphoproteomics data from NTERA2, 

MCF7 and HL60 (23.02.2020) from a previous publication (Hijazi et al., 2020). Kinase-

substrate relationship predictions from two earlier experiments were retrieved from two 

previous publications (Hijazi et al., 2020; Sugiyama et al., 2019). I retrieved a compilation 

of 435 different perturbation conditions and phosphoproteomics data from breast cancer 

samples (Mertins et al., 2016) from previous publication (Ochoa et al., 2016). I 

downloaded tissue RNA expression data (Expression Atlas (Papatheodorou et al., 2020) 

, 26 April 2018) from the GTEx project (GTEx Consortium, 2013) and tissue and cell line 

RNA expression data was downloaded from the Human Protein Atlas project (Thul et al., 

2017; Uhlén et al., 2015; accessed from www.proteinatlas.org 1 December 2017). Known 

kinase-substrate interactions were downloaded (04.11.2020) from PhosphoSitePlus 

(Hornbeck et al., 2015) and signed kinase-substrate relationships were downloaded 

(13.03.20) from SIGNOR (Licata et al., 2020). 

Functional score and a collection of features characterizing phosphosites were retrieved 

from a previous publication (Ochoa et al., 2020).  

https://www.zotero.org/google-docs/?o0rc9F
https://www.zotero.org/google-docs/?ZFfqw3
https://www.zotero.org/google-docs/?AXNjq2
https://www.zotero.org/google-docs/?sSOhjU
https://www.zotero.org/google-docs/?GHfKp4
https://www.zotero.org/google-docs/?n25zIN
https://www.zotero.org/google-docs/?U4GKNP
https://www.zotero.org/google-docs/?U4GKNP
https://www.proteinatlas.org/
http://www.proteinatlas.org/
https://www.zotero.org/google-docs/?U51vJc
https://www.zotero.org/google-docs/?WrWqa9
https://www.zotero.org/google-docs/?9P6XiL
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3.2.2 Training set for kinase-substrate prediction 

As a positive set to predict kinase-substrate relationships, I used kinase-substrate 

relationships listed in PhosphositePlus (Hornbeck et al., 2015). Since there is no 

database of true negatives, where it is established that kinase A does not phosphorylate 

phosphosite B, a set of randomly drawn kinase-substrate relationships ten times as large 

as the positive set was used. The rationale behind the larger size of the negative set is 

that biological networks are typically sparse so the training set should reflect this 

imbalance. The size of the positive set contains more than 5,500 interactions.  

In order to make predictions on kinase-substrate interaction signs, I used SIGNOR (Licata 

et al., 2020) which contains information on the sign of kinase-substrate relationships. 

Furthermore, for the signed predictions I only retained functional (functional score > 0.5) 

phosphosites (Ochoa et al., 2020). Here I keep the balance between the two groups 

relatively even; 673 activating interactions and 497 inhibiting interactions. Therefore, a 

single model was trained to predict the sign of the kinase-substrate relationships. 

To assess the models, ten-fold cross validation as implemented in scikit-learn (Pedregosa 

et al., 2011) was used to assign probabilities to the kinase-substrate relationships 

included in the training set by using the cross_val_predict() function. To quantify the 

AUROC and draw ROC curves, the ROCR R package was used (Sing et al., 2005). 

3.2.3 Formulation of predictors 

In order to train a machine learning model a set of informative predictors were generated. 

Here I generated a set of predictors similar to those described in Chapter 2. Here, 

however, predictions are being made on the phosphosite level rather than the protein 

level. In cases such as co-expression, where we simply have information on protein level 

the co-expression between the kinase and the protein on which the candidate substrate 

phosphosite is calculated. The following predictors were used: 

Co-expression: Kinases and their substrates can be reasonably assumed to be co-

expressed across tissues and cells. I generated the same predictors (co-expression and 

selectivity) for data derived from tissues and cell lines. Since expression is not measured 

on the phosphosite level, co-expression between the kinase and its potential substrate 
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protein was measured. Three data sets were used for this purpose: GTEx (GTEx 

Consortium, 2013) and from the human protein atlas we used expression data from 

human cell lines (Thul et al., 2017) and human tissues (Uhlén et al., 2015). 

Correlation between kinase activity and putative substrate phosphorylation: 

Similarly, we can assume that kinase activity correlates with the phosphorylation of its 

target phosphosite. Earlier we used co-regulation score for kinase-kinase regulatory 

relationship prediction (Chapter 2.2.3.7). I set out to develop another feature based on 

co-phosphorylation that was less dependent on the functional score since in this case, I 

am predicting kinase-substrates rather than kinase-kinase regulation. To this end we 

used three recent data sets from NTERA2, MCF7 and HL60 cells generated by Hijazi and 

colleagues (Hijazi et al., 2020) where these cells were introduced to 61 different kinase 

inhibitors targeting 103 kinases for 1 hour. The activity of the kinases was estimated with 

the KSEA method (Ochoa et al., 2016) which bases its estimates on the Kolmogorov 

Smirnov statistical test. To estimate the activities the ksea_batchKinases() function was 

used with 1000 trials to generate empirical p-values. The same method was used to 

calculate associations between kinases and their putative substrates within the CPTAC 

breast cancer data set (Mertins et al., 2016). These kinase activities were then correlated 

with the phosphorylation levels of the site in each condition using the Spearman’s rank 

correlation. The -log2 ratio of the p-values were used to quantify association.  

Functional score: Previously the functionality of 115,000 different phosphosites had 

been estimated by (Ochoa et al., 2020) by compiling 59 features such as evolutionary 

age and disorder to predict functional score with machine learning methods. In this case, 

functionality is defined here as the probability of a given phosphosite is to lead to changes 

in the functional state of the protein containing the phosphorylated residue. Changes in 

functionality encompass events such as changes in activity or localisation. The rationale 

behind this predictor is that kinases are more likely to target highly functional sites in a 

regulated and predictable way since these would form part of a coordinated cell response. 

In any case, we are interested in regulatory relationships between kinases and substrates 

and thus enriching for functional kinase target sites rather than spurious ones is more 

likely to give us the desired outcome. Furthermore, predictors used to score the 
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functionality were downloaded from an earlier publication and used as for prediction 

(Ochoa et al., 2020) 

Position weight matrices (PWM) scores: Kinases are known to target specific 

sequence patterns, or motifs, surrounding their target phosphosites. One way of 

modelling kinase specificities is by generating position weight matrices where the 

similarity between the candidate motif and the kinase’s consensus motifs are assessed. 

Here I used the position weight matrices we created for the work presented in Chapter 

2.2.3. (Invergo et al., 2020).  

Imputation was done on a per-predictor basis in the same manner as done in the original 

paper. In total 35 predictors, including evolutionary age, disorder as measured by 

DISOPRED (Jones and Cozzetto, 2015) score and the age of the phosphosite were 

added as predictors. A complete list of these predictors and their description is provided 

in Appendix 3.1.  

One issue that commonly arises when different predictors are added together in this 

manner is the introduction of missing values in the final matrix. Many different methods 

have been proposed to impute missing data for machine learning. For the predictors 

downloaded from a paper published by Ochoa and colleagues (Ochoa et al., 2020) 

describing the functional score, I used the same imputation methods as used in the paper 

and are listed in Appendix 3.1. For the rest of the predictors that had missing values, i.e. 

the predictors based on co-expression and co-phosphorylation, I considered three 

methods for imputation. 

Zero imputation: This imputation value replaces all missing values with zero. Generally, 

this method can introduce bias in the prediction. In this particular case, missing values for 

association measure were being estimated. In practice, by imputing by zero the 

assumption of non-association is being made for each kinase-phosphosite pair. 

Median imputation: In contrast median imputation replaces the missing values within 

each predictor with the median value. Similar to zero imputation this method does not 

factor in correlation between features. 

IterativeImputer (Buck, 1960; van Buuren and Groothuis-Oudshoorn, 2011): This is the 

most sophisticated of the three methods. Iterativeimputer method uses other features in 

the feature set to impute the missing feature. That is each feature with a missing value is 
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modelled as a function of the other features. For this purpose IterativeImputer() 

implemented by the python suite scikit-learn was used for the imputation. Bayesian ridge 

was used to estimate the missing values. The number of iterations run to estimate the 

missing feature was 10.  

Each method was evaluated by their predictive power as measured by mean AUC derived 

from ten-fold cross validation run on hundred different training sets. The method giving 

the highest AUC value was selected for the finalized pipeline. Zero imputation resulted in 

the best model and was therefore used for model training. 

3.2.4 Selection of predictive features 

To select the optimal number of predictors for classification, I used recursive feature 

elimination (RFE) with cross validation (Guyon et al., 2002) as implemented in scikit-learn 

(Pedregosa et al., 2011). RFE uses a learning method, random forest in this case, to 

assess the relative importance of each feature and the least important feature is then 

removed. The method then recursively considers a smaller and smaller set of features to 

train the model. The features used by the model yielding the best AUC were then selected 

for subsequent prediction. I tuned the following parameters: Bootstrap, which decides if 

the number of samples drawn to train the base estimator, max_depth, which sets the 

maximum depth of the tree, min_samples_split, which sets the minimum number of 

samples needed to constitute a leaf node and n_estimators, which set the number of trees 

included in the forest. The following parameters were considered: Bootstrap: True, 

max_depth: [10, 20, 50, 70, 80, 100], min_samples_split: [8, 10, 12], n_estimators: [150, 

300, 400, 500, 1000, 1500]. This procedure is then recursively repeated until the best 

feature set as measured by cross validation is found.  

Due to the fact that the negative set is randomly sampled from the set of kinase-substrate 

pairs not present in the positive set, optimal features were selected from one hundred 

training sets and features that were selected in more than half of the runs were kept. For 

the kinase-substrate prediction 37 of the 49 features were kept and for the signed 

predictions 45 predictors were kept for model construction. The whole set of features 

considered, the features used for kinase-substrate prediction and the ones used for sign 

prediction are listed in Appendix 3.1.  
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3.2.5 Training of predictive model 

I used the predictors listed above to train a random forest model as implemented in the 

scikit-learn package (Pedregosa et al., 2011). As mentioned above, I trained 100 different 

models for the kinase-substrate relationships with the full feature set. Random forest was 

used to make predictions based on the predictors listed above. To optimize the model 

selected I used grid search with cross validation (10-folds) to select models. With the 

parameters same parameters as considered for the feature elimination or: Bootstrap: 

True, max_depth: [10, 20, 50, 70, 80, 100], min_samples_split:[8, 10, 12], n_estimators: 

[150, 300, 400 ,500, 1000, 1500].  

3.2.6 Comparison with other kinase-substrate prediction methods 

Since I have created a web server that provides my kinase-substrate prediction method 

as a service to users. I will henceforth refer to the kinase-substrate predictions as 

SELPHI2. In order to assess SELPHI2’s predictive power relative to other established 

methods, we compared SELPHI2’s ability to make accurate predictions to five different 

methods available in the literature:  

PhosphoPICK (Patrick et al., 2015): I submitted the sequences of all substrate proteins 

included in SELPHI2’s predictions onto the server 

(http://bioinf.scmb.uq.edu.au/PhosphoPICK/submit). A p-value threshold for predictions 

was not used to include all possible predictions. PhosphoPICK makes predictions for 107 

human kinases. 

GPS v.5.0 (Wang et al., 2020) : In this study I used GPS version 5.0. This method makes 

predictions for 457 kinases. I submitted the sequences of all substrates to a desktop 

version of GPS v 5.0. I set the threshold (all, medium or stringent) to all to include all 

possible predictions. GPS was downloaded from (http://gps.biocuckoo.cn/download.php) 

and batch kinase prediction was run on Ubuntu 18.04  

KinomeXplorer (Horn et al., 2014): NetworKIN v 3.0 was downloaded from 

(http://www.networkin.info/download.shtml) and all substrate sequences were submitted 
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as a fasta file with an additional file indicating location of relevant phosphosites. 

KinomeXplorer includes predictions for 193 kinases. 

Netphos v.3.1 (Blom et al., 2004): Netphos only allows for the substrate prediction of 17 

kinases. All sequences were submitted to the NetPhos v3.1 server 

(http://www.cbs.dtu.dk/services/NetPhos/). Predictions were made for all residues 

(Serine, Threonine and Tyrosine). To include all possible predictions, no score threshold 

was applied.  

LinkPhinder (Nováček et al., 2020): Altogether LinkPhinder contains 11,581,940 

predictions, which were downloaded from https://linkphinder.insight-centre.org/download. 

These methods are described in greater detail in Chapter 1.10.3 in the Introduction. 

In order to compare SELPHI2 to other peer reviewed methods I compared SELPHI2’s 

ability to detect known annotated kinase-substrate relationships as listed in 

PhosphoSitePlus (Hornbeck et al., 2015) as well as novel kinase-substrate relationships 

supported by previous high throughput kinase-substrate prediction experiment 

(Sugiyama et al., 2019) which is described in greater detail in Chapter 2.2.10. 

The comparison between two kinase-substrate prediction methods is a nontrivial problem. 

Methods differ in their use of training sets and the number of kinases included in the 

analysis. To address this difference, I made five different comparisons between SELPHI2 

and the other methods, only assessing the overlap between SELPHI2 and the 

comparison method. I quantified the ability of these methods to discern between known 

or predicted kinase-substrates and the background by calculating the area under the ROC 

curve as implemented by ROCR (Sing et al., 2005). The same approach was used also 

for comparing their ability to recover an independent dataset of experimentally determined 

sites (Sugiyama et al., 2019). The data set is discussed in greater detail in chapter 2.2.10 

To compare SELPHI2’s ability of predicting known kinase-substrates to the other 

methods, I generated 100 training sets for each method with known interactions from 

PhosphoSitePlus (Hornbeck et al., 2015) and included ten times as many random sets of 

kinase-substrate pairs that were shared by both methods. These sets were used to train 

and assess SELPHI2’s models. Each training set was split ten times into a test set and 

training set and for each split the training set was used to assign probabilities to the test 

set.  
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For each of the hundred training sets, SELPHI2’s performance at capturing known kinase-

substrates was compared with the other peer reviewed methods.  

In order to assess the ability of the methods to capture potentially new kinase-substrate 

relationships not found in the literature, I compared SELPHI2’s ability to discriminate 

between experimentally predicted interactions (Sugiyama et al., 2019) and the 

background. To remove any bias, kinase-substrate phosphorylation relationships found 

in PhosphoSitePlus were excluded from the positive set.  

3.2.7 Mapping of kinase-substrate prediction onto 

phosphoproteomics data  

I hypothesized that a way to select for true edges is to prune the kinase-substrate 

interactions by fitting on independent data. The kinase-substrate predictions were fitted 

to high throughput phosphoproteomic mass spectrometry data that had been compiled 

and analysed by Ochoa and colleagues (Ochoa et al., 2016). This compilation contained 

phosphoproteomic data generated under 436 conditions.  

In order to link our kinase-substrate predictions together into a comprehensive network I 

linked the kinase-substrates together with the kinase-kinase regulatory network (Invergo 

et al., 2020) created in Chapter 2. In both cases the probability cut-off of 0.5 was used to 

extract high confidence edges. The Prize collecting Steiner’s forest as implemented in the 

PCFS package (Akhmedov et al., 2017) was used to generate sub-networks to identify 

kinase-substrate relationships that are likely to be active in a given context. PCSF seeks 

to optimize profit which is calculated as the sum of node prizes after subtracting the edge 

costs. Here, I set node prices as the absolute value of the log2 ratios of the phosphosites 

included in the data and the cost was set as the edge probability subtracted from one.  

PCSF has three tuneable parameters: w which sets the number of trees, b the parameter 

that tunes the node values and µ the parameters that tunes the edge cost. Different 

parameter combinations can give different results and therefore all combinations of the 

following parameters settings were tried: For w anything between one and ten trees were 

tested. For the node tuning, b, the values: 0.25, 0.5, 0.75, 1.0 1.25 and 1.5 were tested 

and for µ: 0.000005, 0.00005, 0.0005, 0.005, 0.05. This meant that for each condition, 
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175 subnetworks were generated. For each condition, we selected the subnetwork that 

retained the set of kinase-substrate relationships with the highest F1 score. 

I also considered a method based on the shortest path. For this analysis, only conditions 

where the biological sample had been treated with a kinase inhibitor were considered in 

order to be able to link downregulated phosphosites to a perturbed kinase. This included 

42 conditions in all. For each of these inhibitory conditions, phosphosites with higher log2 

ratio than 1 or lower than -1, were identified among the phosphosites included in the data 

set and the shortest path from the inhibited kinase to these regulated phosphosites were 

included in a pruned sub network. To calculate the shortest path the all_shortest_paths() 

function as implemented in the R package igraph (Csárdi and Nepusz, 2006) was used 

to identify all shortest paths between the inhibited kinase and the phosphosites. 

The third approach that I tried included applying various heat diffusion methods through 

the combined network. The log2 ratios of the phosphosites were applied as heat to diffuse 

throughout the network. I used the various heat diffusion algorithms that were 

implemented in the R package diffuStat (Picart-Armada et al., 2018, 2021): 

Raw (Vandin et al., 2011; Zoidi et al., 2015): Takes positive values and sets them as one 

while non-labeled nodes and nodes with negative values are set as zero. Hereby this 

vector will be referred to as y. The algorithm then proceeds to smoothen these values 

with the following formula: 

 𝑓𝑟𝑎𝑤 = 𝐾 ⋅ 𝑦𝑟𝑎𝑤 

Where K is a kernel. In this case I used the default a regularised Laplacian kernel. 

Ml (Zoidi et al., 2015): works in the same manner as raw while introducing negative values 

as -1. Unlabelled nodes are set to zero. 

 

Gm (Mostafavi et al., 2008): Functions in the same way as ml except for the fact that 

unlabelled nodes that are assigned a bias value that is calculated from the relative size 

of the three sets of nodes: positive, negative and unlabelled. 

 

Mc (Bersanelli et al., 2016): Mc calculates the score of the node based on an empirical 

p-value where the node values are permuted n times. The final p-value is in proportion to 
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how often the diffusion value derived from the initial node values was higher than the 

permuted values. The p-value is calculated as follows: 

 pi =
ri+1

n.perm+1
 (2) 

Where n.perm is the number of permutation and ri is the original raw diffusion value of 

node i. mc is then calculated as follows: 

fmc,i = 1 − pi(3) 

Z (Harchaoui et al., 2013): A parametric alternative to mc and thus provides a faster 

alternative. The raw value of node i is subtracted by the mean value and divided by the 

standard deviation. 

 

Ber_s (Bersanelli et al., 2016): Here the nodes are given values based on the change in 

values between before and after smoothing. 

fbers,i =  
fraw,i

yraw,i+ε
(4) 

Where ε is a parameter controlling for the importance of relative change and fraw,i and yraw,i 

are the same variables as defined in equation 1. 

Ber_p (Bersanelli et al., 2016): This scoring combines mc and the raw method. 

 

fberp,i =  −log10(pi) ⋅ fraw,i(5) 

Where pi is the same as in equation (2) and fraw,i is the same as in equation (1) 

These diffusions returned a list of node values. In order to select nodes to include in the 

sub-network, I generated an empirical distribution of node values by randomizing the 

network with the vertexsort()(Jothi et al., 2009) function as implemented in the VertexSort 

R package which randomizes networks while maintaining the edge distribution. The 

randomization step was repeated hundred times and nodes with heat values that were 

higher than 95% of their respective empirical distribution of heat values. 

I evaluated the performance of the fitting by measuring the F1 scores of the part of the 

network included in the fitting. In the case of the PCSF it included phosphosites that were 

present in the high throughput data and their predicted upstream kinases were compared 

with the F1 scores of the fitted network. In the case of the shortest path, only phosphosites 

that were regulated were considered. Since the heat diffusion used an undirected network 

https://www.zotero.org/google-docs/?FJ3s0X
https://www.zotero.org/google-docs/?zIoaux
https://www.zotero.org/google-docs/?rnfxOu
https://www.zotero.org/google-docs/?f0a7n3


  

67 
 

as an input which means that signal can traverse all nodes, including phosphosites that 

are not present in the data, all phosphosites were included in the validation. The validation 

set in this case was kinase-substrate relationships listed in PhosphositePlus (Hornbeck 

et al., 2015).  

3.2.8 Enrichment of predicted kinase-substrates 

Each kinase with more than five predicted substrates had a Reactome (Jassal et al., 

2020) enrichment analysis conducted on their substrates. I will refer to the set of predicted 

substrates of each kinase as a substrate set. For this analysis, only substrate sets larger 

than five were included. For this analysis kinase-substrate relationships found in 

PhosphoSitePlus (Hornbeck et al., 2015) were excluded from the SELPHI2 predictions. 

Different cut-offs were used to select a high confidence network: 0.5, 0.6, 0.7, 0.8 and 

0.9. In this manner I analysed SELPHI2 predictions as well as SELPHI2 predictions that 

were corroborated by either experimental study (Hijazi et al., 2020; Sugiyama et al., 2019) 

(See chapter 2.2.10). Thirdly, the same enrichment analysis was run on kinase-substrates 

found in PhosphoSitePlus for comparison. The ReactomePA (Yu and He, 2016) R 

package was used for the enrichment analysis. All proteins included as substrates in the 

network were used as a background for the analysis. I used 10 as a minimum size of 

pathway term and 500 as a maximum size. P-values were adjusted with the Benjamini 

and Hochberg method (Benjamini and Hochberg, 1995) and the p-value cut-off used was 

0.05 and q value 0.2. 

After significantly enriched pathways for each substrate set were identified, I used the 

Fisher’s exact test (Fisher, 1935) to establish if the pathways that were found to be 

enriched within each substrate set overlapped significantly with the pathways that the 

upstream kinase belonged to. Pathways that include any protein included in the SELPHI2 

predictions were used as a background. 

The resulting p-values were then adjusted with Bonferroni correction (Bonferroni, 1936) 

equalling the number of kinases with more than five substrates. 
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3.2.9 Correlation between kinase activities derived from known 

substrates and activities derived from unknown substrates  

I calculated the kinase activities using the KSEA (Ochoa et al., 2016) package 

(https://github.com/evocellnet/ksea/blob/master/R/ksea.R). KSEA takes known kinase-

substrate relationships as input and uses the Kolmogorov Smirnov (Kolmogorov, 1933; 

Smirnov, 1948) test to assess if known substrates are overrepresented at either the upper 

or lower end of the log10 ratio distribution found in each condition. To calculate kinase 

activities, a compilation of perturbation data collected and curated by Ochoa and 

colleagues (Ochoa et al., 2016) was used and for each condition, kinase activities for all 

kinases were calculated with the ksea_batchKinases() function as implemented in the 

KSEA package. The trial parameter which determines the number of permutations 

conducted on the data in order to generate empirical p-values was set to 1000. The log 

ratios of the resulting p-values were signed based on the sign of the average log2 ratios 

of the substrates. Activities were derived from three different sets of kinase-substrates: 

known kinase-substrate relationships found in the PhosphoSitePlus database as well as 

from relationships predicted by SELPHI2, excluding those found in the PhosphoSitePlus 

database and kinase-substrates and those SELPHI2 predictions that were supported by 

external experimental kinase-substrate predictions (Hijazi et al., 2020; Sugiyama et al., 

2019). In each case different confidence thresholds were tested: 0.5, 0.6, 0.7, 0.8, and 

0.9.  

The similarity between the kinase activity profile attained by using the interactions 

extracted from PhosphoSitePlus and the predictive kinase-substrate sets was calculated 

using the pairwise Spearman’s rho coefficient for each kinase between the literature 

derived activities and the activities estimated from the SELPHI2 predictions at different 

thresholds and for the corresponding kinase.  

3.2.10 Development of the SELPHI server 

I developed the SELPHI2 server using the shiny (Chang et al., 2019) R package for 

website development. To provide information on which kinase is the most likely to 

phosphorylate the phosphosites included in the data set, the SELPHI2 kinase-substrate 
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predictions were used. The user can also choose to predict upstream kinases with 

correlation analysis similar to the earlier SELPHI version (Petsalaki et al., 2015). In this 

version phosphosites found on kinases are correlated with all the other phosphosites. 

Spearman’s rho is used to calculate the correlation coefficient. In cases where more than 

one phosphosite is found on each kinase the pair with the highest correlation coefficient 

is selected.  

To conduct an enrichment analysis on the data set a user defined threshold needs to be 

selected to identify up and downregulated phosphosites. Another way of selecting 

phosphosites to enrich is to have the data clustered by either k-means(Hartigan and 

Wong, 1979) clustering or mixed Gaussian models as implemented by the Mclust R 

package (Scrucca et al., 2016). If k-means is selected, the gap statistic (Tibshirani et al., 

2001) as implemented clusterGenomics (Nilsen and Lingjaerde, 2013) R package or the 

silhouette method (Rousseeuw, 1987) as implemented by ancova(Vidal et al., 2017) R 

package is used to calculate the optimal number of clusters. The members of each cluster 

are then used as a gene set to conduct the enrichment on. For the enrichment analysis 

enrichR (Kuleshov et al., 2016) R suite was used. The databases available for the 

enrichment are: GO (Gene Ontology Consortium, 2021), KEGG (Kanehisa, 2019), 

Reactome (Jassal et al., 2020) and Jensens diseases (Pletscher-Frankild et al., 2015). 

As an output a dot plot with dot size representing odds ratio and colour representing 

up/down regulation is produced. 

The user is also offered the option to fit the kinase-substrates to their data set. To this 

end we add the high confidence kinase-substrate predictions to a backbone network 

either of high confidence edges predicted by the kinase-kinase regulatory network 

(Invergo et al., 2020) described in Chapter 2 or all kinase-kinase interactions found in 

OmniPath (Turei et al., 2016). For each condition or sample, the Prize Collecting Steiner’s 

Forest algorithm (Akhmedov et al., 2017) is used to make the fit. The user can select a 

set of parameters w (number of trees), b (node prize tuning parameter) and μ (edge cost 

tuning parameter). Furthermore, the user can define a threshold for log2 ratios to use as 

prizes for the prize collection.  

The user can also generate the sequence logo for each kinase from the substrates that 

are included in any of the subnetworks generated above. The R package Logolas (Dey 

https://www.zotero.org/google-docs/?Ixu8cq
https://www.zotero.org/google-docs/?FYzPJG
https://www.zotero.org/google-docs/?FYzPJG
https://www.zotero.org/google-docs/?kdq1zz
https://www.zotero.org/google-docs/?YKR9Fq
https://www.zotero.org/google-docs/?YKR9Fq
https://www.zotero.org/google-docs/?nIydQf
https://www.zotero.org/google-docs/?caNUxH
https://www.zotero.org/google-docs/?2I6eYH
https://www.zotero.org/google-docs/?s5EZOv
https://www.zotero.org/google-docs/?G5mlWj
https://www.zotero.org/google-docs/?s1nLNJ
https://www.zotero.org/google-docs/?omM1Kf
https://www.zotero.org/google-docs/?GfNw0B
https://www.zotero.org/google-docs/?7Gd0Qg
https://www.zotero.org/google-docs/?AwRGtq
https://www.zotero.org/google-docs/?cWLyBr
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et al., 2018) was used for logo generation. If the kinase in question has more than 15 

predicted substrates, the user can choose an enrichment depletion logo is drawn using a 

background frequencies of amino acids as derived from the UniProt proteome database 

(UniProt Consortium, 2018). If the kinase has less than 15 predicted substrates a 

standard sequence logo using information content is generated.  

Kinase activities were calculated for kinases by selecting predictions from the top 5% of 

kinase-substrate predictions. For each condition or time point, the overrepresentation of 

the kinase’s substrates were calculated with the Kolmogorov Smirnov test using the 

ks.test() function in R with the alternative parameter set to greater, indicating that 

overrepresentation at the upper end of the log2 ratios in each condition is being calculated. 

The -log10 of the p-value is then calculated and used as a proxy for activity.  

 

3.3 Results 

3.3.1 A probabilistic, data-driven kinase-substrate network 

A set of predictive features including kinase specificities, co-expression, and the 

correlation between kinase activities and phosphorylation of potential phosphosites and 

disorder in regions surrounding phosphosite were integrated to generate a set of kinase-

substrate predictions (details in Methods). These features were used to train a random 

forest classifier to assign probability to each kinase-substrate relationship. Predictions 

were made for more than 22 million kinase-substrate relationships between 367 kinase 

and more than 80,000 phosphosites.  

Biological networks are typically considered to be relatively sparse with most proteins only 

interacting with a relatively low number of other proteins. The predictions made here 

reflect this view with less slightly more than 1% (286,392) of the predictions being high 

confidence with probability of equal or higher than 0.5. The median probability of all 

kinase-substrate predictions is 0.010. The human interactome is often thought of as being 

largely understudied and undiscovered and due to study bias the same is true for the 

human phospho-regulatory network. Taking this into consideration, it is unsurprising that 

the vast minority of the high confidence edges identified by our predictor (1.6 %) were 

https://www.zotero.org/google-docs/?cWLyBr
https://www.zotero.org/google-docs/?bZBcc8
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actually present in PhosphoSitePlus (Hornbeck et al., 2015) Table 3.1 shows the different 

precision and recall values, that is what portion of the edges in PhosphoSitePlus are 

included in the high confidence prediction set at different confidence cut-offs.  

 

Table 3.1:.Overview the number of edges at different high confidence threshold the 

portion of those that are present in PhosphoSitePlus as well as the recall (Portion of 

training set that is captured).  

Probability cut-off No. edges % present in PSP % edges in train 
set 

0.5 286,392 1.6 85 

0.6 145,146 2.9 75 

0.7 55,034 6.5 65 

0.8 14,375 18 46 

0.9 2,061 48 18 

  

3.3.2 SELPHI2 captures known relationships while making 

predictions for less studied proteins 

While the overwhelming majority of the high confidence edges identified by SELPHI2 are 

unknown, known edges are overrepresented at the upper end of the edge probability 

distribution. For each of the one hundred training sets, we conducted a ten-fold cross 

validation and found that our average performance as measured in AUROC was 0.956 

across the hundred models trained (Figure 3.1 B).  

As the aim of this thesis chapter is to investigate the non- and under-studied parts of the 

phosphoproteome, I looked at how well understudied proteins were represented in this 

study and compared them with kinase-substrate interactions in PhosphoSitePlus 

(Hornbeck et al., 2015). Our high confidence (>0.5 probability) kinase-substrate 

predictions included 367 kinases and 32,566 phosphosites found on 6,787 proteins 

compared to 388 kinases found in PhosphoSitePlus which phosphorylate 7,255 

phosphosites on 2,308 proteins. For comparison, the weighted mean number of citations 

https://www.zotero.org/google-docs/?rKqd92
https://www.zotero.org/google-docs/?kGETq1
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per kinases in the PhosphoSitePlus database is 500 and substrates have mean citation 

number of 115. When looking at high confidence edges my predictions had on average 

69 citations per kinase and 23 citations per phospho-acceptor (Figure 3.1 A). This set of 

high confidence edges includes substrates that have not been assigned an upstream 

kinase in the literature, stressing the value of this predictor as a tool to explore the space 

of less studied proteins.  

 

Figure 3.1: General description of kinase-substrate predictor. The average number of 

citations per kinase and substrates in SELPHI2 predictions was significantly lower than 

the average number of citations per kinase and substrates in the PhosphoSitePlus 

database, indicating that the kinase-substrate predictions have the ability to capture 

relationships between less studied proteins (A). The average AUROC derived from 100 

ten-fold cross-validations run during model training resulting in a high AUC of 0.96 was 

achieved. Precision-recall curve drawn from the same set of 10-fold cross validation runs 

(B).  

3.3.3 Independent experimentally supported kinase-substrate 

relationships have higher probability assigned to them compared 

to background 

One of the main challenges of analysing kinase-substrate predictions is evaluating how 

much confidence can be assigned to the vast number of edges that are not present in the 
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current literature. While methods such as cross-validation give us an indication of the 

ability of the predictor to capture known edges, it is not certain that the computational 

predictor has the capacity to capture novel edges. 

To further validate the SELPHI2 predictions, I set out to compare SELPHI2 to 

experimental predictions. Currently various high throughput experimental kinase-

substrate predictions have been made that could shed light on the power of SELPHI2 to 

capture novel relationships. For this analysis I used kinase-substrate predictions from an 

experimental kinase-substrate prediction study made earlier (Hijazi et al., 2020; 

Sugiyama et al., 2019).  

The predictions made by Sugiyama and colleagues were done based on in vitro 

experiments. Phosphopeptides were de-phosphorylated and introduced to a kinase and 

the resulting phosphorylation levels were compared to a control sample that was not 

introduced to the kinase. The method developed by Hijazi and colleagues, on the other 

hand, assigned kinases to phosphosites based on the decrease in phosphorylation in 

cells that were introduced to 61 different kinase inhibitors, inhibiting the activities of 103 

different kinases in three different human cell lines: NTERA2, MCF7 and HL60.  

These methods both have their shortcomings. While Sugiyama’ study was done in vitro, 

meaning that many of the predicted kinase-substrate relationships cannot be expected to 

occur in vivo given different environments and the context specificity of kinases. At the 

same time, many kinase-substrate interactions that take place within cells cannot be 

expected to be captured in vitro. The predictions done by Hijazi were based on data from 

human cell lines but relied on decrease in phosphorylation levels upon kinase inhibition 

meaning that it is hard to ascertain if the decrease in phosphorylation is due to inhibition 

directly. 

Given these different methodologies with different limitations, the overlap between the 

two predictions can be expected to yield a set of relatively high confidence kinase-

substrate predictions. With this in mind, I looked at whether kinase-substrates predicted 

by these two methods had higher probabilities assigned to them compared to the 

background of unsupported edges. As I was interested in interactions not found in the 

literature I excluded kinase-substrate relationships found in PhosphoSitePlus. Of the over 

22 million predictions made by SELPHI2, 8,154 were found in the Hijazi et al. data set 

https://www.zotero.org/google-docs/?BE4vMY
https://www.zotero.org/google-docs/?BE4vMY
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and 61,980 relationships predicted by Sugiyama et al. and 76 predicted by both studies. 

Strikingly, the overlap between the two experimental predictions was low (n= 82) (Figure 

3.2 A). I found that edges with experimental evidence supporting them had a significantly 

higher probability assigned to them. The background, defined as edges predicted by 

neither study, had a median of 0.012 probability of while edges supported by Hijazi’s study 

having a median probability 0.051 (W = 1.4 ×1011, p < 2.2 ×10-16, Wilcoxon rank sum test) 

and edges corroborated by Sugiyama’s study with median probability of 0.068 (W = 1.1 

×1012, p < 2.2 ×10-16, Wilcoxon rank sum test) . Significantly, the kinase-substrate 

interactions predicted by both methods had yet higher probability assigned to them or 

0.28 (W = 1.5 ×109, p < 2.2 ×10-16, Wilcoxon rank sum test) (Figure 3.2 B).  

The overlap between the three prediction sets (SELPHI2, Sugiyama and Hijazi) is rather 

small with 76 interactions all together which are listed in Appendix 3.2. Of these 76 

interactions 24 have high confidence of 0.5 or higher. There were 7 interactions with 

confidence higher than 0.8 which are listed in Table 3.2.  

 

Table 3.2: Experimentally corroborated Interactions with edge probability > 0.8. 

Kinase Substrate Probability STRING score 

CDK2 FAM122B 115 0.90 NA 

CDK2 NFIC 323 0.86 NA 

CDK2 NOP2 732 0.86 0.46 

CDK2 NUMA1 2000 0.92 NA 

CDK2  PDCD4 94 0.80 NA 

CDK2 HNRNPA2B1 259 0.81 NA 

MAPK9 EFHD2 74 0.81 NA 

 

Earlier CDK2 has been found to phosphorylate NUMA1 at a different site; 1776. Previous 

analysis on human kinases in yeast indicate that kinases often target phosphosites in the 

vicinity of a substrate (Corwin et al., 2017) lending some credence to the hypothesis that 

NUMA1 is targeted by CDK2. To see if there is some further evidence of interaction 

between any of these high confidence pairs, I looked them up in the STRING database. 

https://www.zotero.org/google-docs/?KBrUJe
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Of the five relationships in question, there is a link between CDK2 and NOP2 in STRING 

(Szklarczyk et al., 2021) with a combined score of 0.46 with Experimental/Biochemical 

Data score of 0.41 with three publications mentioning a protein-protein interaction 

between the three. Furthermore, the proteins co-occur in abstracts of two papers and two 

papers mention co-expression. The other CDK2 interactions as well as the link between 

MAPK9 and EFHD2 were not present in the STRING database suggesting little to no 

evidence that these kinases target these phosphosite. At the same time, it showcases the 

predictor’s ability to capture interactions without any support from prior knowledge. 

Naturally experimental validation would be needed to be certain that these represent true 

relationships. 

 

Figure 3.2: External validation of kinase-substrate predictions. Overlap between the 

different kinase-substrate predictions sets. While high confidence edges in SELPHI2 

share a large overlap in predictions with the other sets, the intersection between the three 

predictions is small, 24 edges. Given the different methodologies, a relatively high 

confidence can be allotted to these relationships (A). We find that SELPHI2 assigns 

higher probability to experimentally validated edges than the background (edges with 

neither experimental support nor evidence in the literature). Strikingly, edges supported 

by both experimental studies get assigned an even higher confidence than those 

supported by either study (B). 
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3.3.4 Resulting network is competitive in comparison to other 

networks 

Previously, various methods have been developed to predict kinase-substrates. 

Therefore, I compared SELPHI2 to five other methods: KinomeXplorer (Horn et al., 2014), 

GPS (Wang et al., 2020), PhosphoPICK (Patrick et al., 2015), LinkPhinder (Nováček et 

al., 2020) and Netphos v.3.1 (Blom et al., 2004) These methods all differ in methodology 

and use different sets of predictors. LinkPhinder, GPS and NetPhos v. 3.1 primarily rely 

on kinase specificities, that is make predictions based on peptides surrounding candidate 

phosphosite and how well the surrounding peptide fits into the kinase specificity model. 

The other methods also base their predictions in part on kinase specificities but also 

various other features. KinomeXplorer uses the STRING network which scores protein-

protein interactions based on evidence found in literature and other sources. 

PhosphoPICK bases their prediction on PPI from STRING (Szklarczyk et al., 2021) and 

BioGRID (Oughtred et al., 2019) as well as protein abundance under different phases of 

the cell cycle. 

These different methods were compared in two ways: Their ability to discriminate 

between known kinase-substrate relationships and unknown edges and, on the other 

hand, how well they discerned between experimentally predicted edges and the edges 

not predicted by either study. By comparing the ability of the methods to capture 

experimentally predicted edges (Sugiyama et al., 2019) we can gauge their abilities of the 

methods to explore the space of undiscovered kinase-substrate interactions. Such 

comparisons are complex to carry out. Each method makes predictions for different 

numbers of kinases and substrates and therefore have different gaps in predictions. For 

the experimental comparisons, this issue was addressed by only considering the overlap 

in prediction made by both SELPHI2 and the comparison method. Due to the differences 

in each method’s prediction space (i.e. number of kinases the method is able to make 

predictions for), five different comparisons were made, one for each method. 

The methods’ ability to discern between the experimentally predicted edges and the rest 

were assessed by calculating the area under the ROC curve drawn from each method’s 

prediction score and the label of each edge. In all cases, SELPHI2 performed better at 

https://www.zotero.org/google-docs/?Vfy1mi
https://www.zotero.org/google-docs/?XEwGC4
https://www.zotero.org/google-docs/?CawgJs
https://www.zotero.org/google-docs/?PBIlM1
https://www.zotero.org/google-docs/?PBIlM1
https://www.zotero.org/google-docs/?Z8i15b
https://www.zotero.org/google-docs/?DS6CLi
https://www.zotero.org/google-docs/?YR56Mm
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capturing the predicted kinase-substrates manifesting the method’s value in the discovery 

of unknown kinase-substrates (Figure 3.3). 

 

 

 

Figure 3.3 Comparison with other methods; experimental predictions. The different 

methods’ ability to discern between experimentally supported edges and edges without 

any experimental in each case, SELPHI2 outperforms the comparison method. 

  

To assess the methods’ ability to predict known kinase-substrate relationships a different 

approach was used as the features included in SELPHI2 were used and cross validation 

employed to assign probabilities to the interactions used as training set (Methods). Like 

before five different comparisons were made between SELPHI2 and each of the other 

methods. Then the AUROC score for each training set was calculated for both SELPHI2 

and the comparison method and the scores were averaged over the one hundred runs. 

SELPHI2 performed the best of any of the tested methods. The results can be seen in 

Figure 3.4 
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Figure 3.4 Comparison with other methods in terms of known interactions .AUROC 

comparison between SELPHI2 and the other methods. ROC curves were generated from 

ten-fold cross validations conducted on the training set and averaged over hundred 

different runs. In each case, SELPHI2 outperforms the comparison method. 

3.3.5 Prediction of signed kinase-substrate relationships 

PTMs, including phosphorylation, often lead to changes in protein activity and/or 

localization. To capture these effects on kinase-substrates, I set out to predict the sign of 

phosphorylation to be used along with the kinase-substrate predictions. With the same 

initial set of predictive features as in the kinase-substrate predictions, I used recursive 

elimination feature selection to select the best model. The final 45 used for prediction are 

listed in Appendix 3.1. For the training set I used signed kinase-substrate relationships 

found in the SIGNOR (Licata et al., 2020) database consisting of 497 inhibiting and 673 

activating interactions. For the prediction we selected phosphosites with functional scores 

of higher than 0.5. Overall, more than 2 million predictions were made between 367 

kinases and over 7,000 phosphosites. I found that by using the features selected I was 

able to achieve an AUROC of 0.83. One issue with the training set is that a large portion 

of signed interactions are kinases regulating other kinases. Therefore, to assess this 

https://www.zotero.org/google-docs/?k9tSU9
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method, I used the same training set and used cross validation to assign probabilities to 

the training set and looked at the performance only considering interactions between two 

kinases. I found that there was a small decrease in performance with AUROC of 0.80. 

The ROC and precision-recall curve generated from ten-fold cross validation can be seen 

in Figure 3.5.  

 

 

 

Figure 3.5: Performance of signed kinase-substrate predictions. ROC and PR curve for 

signed kinase-substrate predictions. The signed predictor has good performance for 

signed interactions including for non-kinase substrates. The difference between the two 

sets is greater in terms of precision-recall with predictions for non-kinase-substrates only 

having a greater drop in precision as recall increases.  

3.3.6 Mapping kinase-substrate relationships onto data improves 

precision and F1 

In network biology, networks are often fitted to high throughput data sets to extract context 

specific networks (Hill et al., 2016; Saez-Rodriguez et al., 2011). I therefore investigated 

if mapping the kinase-substrate relationships to high throughput data could help select 

for known kinase-substrate relationships as well as single out context specific kinase-

substrate relationships. To form a single probabilistic phospho-signalling network the 
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SELPHI2 predictions were combined with the kinase-kinase regulatory network 

discussed in Chapter 2, forming a network of kinase-kinase regulatory circuits (Invergo et 

al., 2020) with predicted substrate phosphosites as nodes with no outgoing edges (Figure 

3.6 A). The kinase-kinase regulatory net was used as a backbone as the SELHPI2 

predictions predict phosphorylation rather than regulation. To select high confidence 

edges for both networks a threshold of 0.5 was applied to the combined network. The 

data used to fit the data was a compilation of phosphoproteomic data sets compiled and 

described earlier in a previous publication (Ochoa et al., 2016). The combined network 

was fitted to a total of 436 datasets.  

Different mapping methods were tried (description in the methods section 3.2.7) with 

varying success. The best heat diffusion of those I tested, z, having a median F1 score 

of 0.046 and median precision of 0.032. The corresponding values for the input network 

were 0.032 and 0.016. Below in Table 3.3 an overview over the performance across the 

different heat diffusion methods can be seen 

Table 3.3 Performance of different heat diffusion methods. Rest of the diffusion methods 

did not yield results. 

Method F1-score precision 

raw 0.028 0.015 

z 0.046 0.032 

ml 0.028 0.015 

gm 0.028 0.015 

Ber_s 0.028 0.015 

  

Using the shortest path between the kinases impacted by kinase inhibitors and up and 

downregulated phosphosites slightly improved performance. While the raw context 

specific input networks had a median precision of 0.025 the pruned network had a 

precision of 0.03. The corresponding values for the F1 score were 0.05 and 0.05. In both 

cases the difference was significant (F1 score: W = 373, p = 0.041, precision: W= 405, p 

= 0.0077, Wilcoxon rank sum test) 

https://www.zotero.org/google-docs/?5EnJwn
https://www.zotero.org/google-docs/?5EnJwn
https://www.zotero.org/google-docs/?hFySlF
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However, the best performing method was Prize Collecting Steiner's Forest, or PCSF 

(Akhmedov et al., 2017). For each parameter combination (see Methods 3.2.7, second 

paragraph) we selected the fitting that yielded the best F1 score. The resulting condition-

specific subnetworks were found to have a higher proportion of known edges. With the 

F1 scores of the fitted subnetworks (n = 435) being 0.19 while the unpruned input network 

had a F1 score 0.034 (Figure 3.6 B). The improvement in precision was even greater with 

the mean precision of the pruned subnetworks being 0.22 and 0.017 for the unpruned 

input networks. Both comparisons yielded a significant difference (F1: W= 1.7 × 105, p < 

2.2 × 10-16, precision: W= 1.7 × 105, p < 2.2 × 10-16, Wilcoxon rank sum test). This 

indicates that if this probabilistic network is fitted to an independent data set the 

predictions could be used in an exploratory manner to identify kinase-substrate 

relationships that could be feasible to test further experimentally as well as identifying 

kinase-substrate relationships that are likely to be active in a given context. 

https://www.zotero.org/google-docs/?8awerr
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Figure 3.6: PCFS fitting of predictions to independent data. Overview of the methodology, 

where kinase-kinase regulatory network is combined with kinase-substrate predictions 

with PCSF used to fit the data to independent phosphoproteomics data (A). Kinase-

substrate relationships that are included in the resulting sub networks had a higher F1 

scores (B). 

kin_1 sub_1

sub_2

sub_2

sub_m-1

sub_m-1

sub_m

kin_2

kin_n-1

kin_n-1

kin_5

kin_n

kin_2

kin_4

kin_n

... ...

kin_1

sub_2

sub_m-1

kin_2

kin_n-1

... ...

Kinase subst re predict ions

Kinase kinase regulatory network

....

....

....

kin_n-1

kin_5

kin_n

kin_2

kin_4

kin_1

....

....

Edge probability

       >  0.5

psites included 

in data set

Edge probability

       >  0.5

kin_n-1

kin_5

kin_n

kin_2

kin_4

kin_1

....

....

sub_2

sub_m-1

kin_n-1

kin_2

Combined network

PCSF

Context  specofic

sub net

phospho-proteom ics

data

0.00

y

0.1

0.0

0.25

0.50

0.75

1.00

0.2 0.3

F1 score

e
c
d

f

PCSF filtered subnet
I nput  network

A

B



  

83 
 

3.3.7 Analysis on the overlap between the functional assignment of 

kinases and their predicted substrates  

The signalling system is often thought of as a modular network organized into a set of 

different functional modules or pathways that are highly interconnected in contrast to the 

generally sparse signalling network. Therefore, it stands to reason to assume that kinase-

substrates belong to the same modules or pathways as their upstream kinase. I set out 

to evaluate whether the predictions made by SELPHI2 capture this functional association 

between kinases and their predicted substrates and compared SELPHI2’s results with 

results obtained by using kinase-substrate relationships from PhosphoSitePlus.  

To this end, I conducted a Reactome (Jassal et al., 2020) pathway enrichment analysis 

on predicted kinase-substrates. Significant pathways from this analysis will be referred to 

as the substrates’ pathways. I then looked at which pathways in Reactome each kinase 

belonged to. These pathways will be referred to as the kinase’s pathway. Then I set out 

to assess whether there was a significant overlap between the kinases’ pathways their 

respective substrates’ pathways. This analysis was conducted with known kinase-

substrates retrieved from PhosphoSitePlus (Hornbeck et al., 2015) and compared with 

high confidence SELPHI2 prediction as well high confidence SELPHI2 prediction 

supported by either of two independent experimental kinase-substrate predictions at cut-

offs of 0.5, 0.6, 0.7, 0.8 and 0.9.  

I looked at the proportion of kinases that had a significant pathway overlap with their 

substrates across the kinase-substrate sets tested. Kinase-substrate relationships 

extracted from PhosphoSitePlus yielded the highest proportion. Notably I found that the 

unfiltered set of kinase-substrates yielded significantly higher proportions across all cut-

offs than the experimentally supported kinase-substrate prediction sets (W = 20, p-value 

= 0.019). Below in Table 3.4 that shows the overall results from this analysis including 

the portion of kinases whose pathways overlap significantly with its substrate’s pathways. 

P-values indicate if the overlap portion differs significantly from the overlap portion 

achieved by the PhosphoSitePlus set. The literature interactions downloaded from 

PhosphoSitePlus perform the best. This can partly be explained by the fact that the 

pathways are built from known interactions. All sets of SELPHI2 predictions tested had a 

https://www.zotero.org/google-docs/?uzyKcw
https://www.zotero.org/google-docs/?tkLvUy
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significantly lower portion of significant pathway overlap than PhosphoSitePlus (pportion). 

Furthermore, the pathway overlap enrichment profile, that is the odd ratios derived from 

the overlap enrichment analysis, of the different SELHPI2 kinase-substrate interaction 

sets were quite different across the board from the enrichment profile derived from the 

literature kinase-substrate interactions as measured by Spearman’s rho (Figure 3.7). The 

most similar set was SELPHI2 edges that had higher probability than 0.8 and had been 

supported by experimental predictions with Spearman’s rho of 0.39. However, it should 

be noted that none of the correlations were significant. 

One limitation of this analysis is as before the large unexplored space of the 

phosphoproteome. Therefore, the proteins included in this analysis can be expected to 

participate in a large number of pathways that they have not been assigned to have either 

not been discovered. Furthermore, assignment of proteins to pathways can be somewhat 

arbitrary making enrichment analysis results hard to interpret (Mubeen et al., 2019). 
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Table 3.4: Kinase-substrate pathway similarity at different cut-offs. Overlap in kinase 

pathway membership and substrate pathway enrichments. Generally, the experimentally 

filtered SELPHI2 has a lower overlap in function between kinases and their predicted 

substrates than the full set of high confidence SELPHI2 predictions. 

Kinase-substrate set Probabili
ty Cut-off 

No. 
overlap 
enrichmen
ts tested 

Portion of 
significant 
pathway overlap 

pportion 

PhosphositePlus NA 192 0.41 1.00 

SELPHI2 0.5 335 0.19 1.23 × 10-7 

SELPHI2 0.6 295 0.21 1.80 × 10-6 

SELPHI2 0.7 244 0.21 7.40 × 10-6 

SELPHI2 0.8 177 0.18 1.27 × 10-7 

SELPHI2 0.9 45 0.18 0.0059 

SELPHI2_exp 0.5 103 0.019 1.72 × 10-12 

SELPHI2_exp 0.6 85 0.059 9.09 × 10-9 

SELPHI2_exp 0,7 51 0.059 4.93 × 10-6 

SELPHI2_exp 0.8 17 0.12 0.034 
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Figure 3.7: Correlation between kinase activities derived from known interactions and 

predictions. Enrichment profile similarities between all the kinase-substrate prediction 

sets and PhosphoSitePlus. Sets represented as Full indicate that SELPHI2 predictions 

were filtered by confidence threshold and Exp that probability cut-off was applied and that 

only experimentally supported predictions were retained. For example Full_07 represent 

SELPHI2 predictions with higher probability assigned than 0.7. All sets yielded a relatively 

different enrichment profile to PhosphoSitePlus with SELPHI2 edges that had higher 

probability than 0.8 and had been supported by experimental predictions being the most 

similar.  
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3.3.8 Correlation between kinase activities derived from known 

substrates and activities derived from unknown predicted 

substrates 

Various methods have been proposed to predict kinase activities. Previously kinase 

activities under many different conditions had been calculated using known substrates. 

One would expect that if a kinase is active or inactive that their substrates would be 

affected. One limitation of this assumption is, though, that many of predicted kinase-

substrates could be context specific and therefore not active in a given context. 

Nevertheless, I conducted a kinase activity estimation by using the kinase-substrate set 

in PhosphoSitePlus(Hornbeck et al., 2015) and a separate estimation based on my set of 

predicted kinase-substrate relationships, to establish if estimating kinase activity based 

on experimentally corroborated kinase-substrate relationships gave estimates more 

similar to the literature derived estimates. 

By using kinase-substrate relationships from PhosphoSitePlus I was able to make 

predictions for 248 kinases across 396 perturbation conditions. As different cut-offs were 

used to extract high confidence edges, kinase activity estimates for a different number of 

kinases could be derived at different cut-offs. An overview of number of kinases available 

for activity estimates at a different cut-offs can be seen in Table 3.5 as well as how many 

of those could have their activity estimated by using literature kinase-substrate 

relationships.  

 

 

 

 

 

 

 

 

 

https://www.zotero.org/google-docs/?e7Pq9E
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Table 3.5: Overview of number of kinase activity estimation at different edge confidence 

cut-offs. Estimates were calculated for SELPHI2 predictions that were experimentally 

supported as well as non-experimentally supported predictions.  

Probability cut-
off 

Corroborated by external 
experimental predictions 

No kinases 
with activity 
estimates 

Kinase overlap 
with literature-
derived activities 

0.5  367 254 

0.6  350 243 

0.7  326 234 

0.8  255 176 

0.9  126 92 

0.5 ✓ 187 145 

0.6 ✓ 145 116 

0.7 ✓ 110 90 

0.8 ✓ 71 63 

0.9 ✓ 15 13 

 

There was little similarity between the kinase activity profiles across conditions of the 

literature derived activities to the ones derived from the predictions. In the case of 

experimentally supported edges the average Spearman’s rho coefficient was less than 

0.1 for all cut-offs and of 427 kinase activity pairs being correlated, 25 were significant 

(p< 0.05, Bonferroni corrected). For the unfiltered SELPHI2 predictions the highest 

correlation was achieved at cut-off 0.7 with Spearman’s rho of 0.16 (Figure 3.8) and 27 

of the 234 activity correlations assessed being significant (p < 0.05, Bonferroni corrected). 

The correlation between the cut-off of the kinase-substrate prediction and the median 

correlation coefficient with the literature derived activities was -0.5 (Spearman’s rho) with 

p-value of 0.45 for the full set and a Spearman’s rho of 0.36 and p-value of 0.55 for the 

experimentally supported relationships. Thus, the experimentally corroborated high 

confidence kinase-substrate relationships did not yield kinase activities that were more 
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similar to the literature derived activities than the unfiltered list of kinase-substrate 

predictions. 

 

Figure 3.8: Correlation between kinase activities derived from known interactions and 

predictions. The average (mean) correlation between kinase activities generated by 

literature-derived kinase-substrate relationships and high confidence predicted kinase-

substrates (blue) and high confidence predictions corroborated by experimental kinase-

substrate prediction (red). Correlations are low across the board and the difference 

between SELPHI2 and experimentally filtered SELPHI2 is insignificant apart from at the 

probability cut-toff of 0.7. The p-values were calculated using the Wilcoxon rank sum test.  
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3.3.9 Overview over the SELPHI2 server 

A secondary aim of this project was to rewrite the SELPHI (Systematic Extraction of 

Linked Phospho-Interactions; (Petsalaki et al., 2015) server which had previously been 

developed by Petsalaki and colleagues. The SELPHI server provides a platform for users 

to analyse their phosphoproteomics data. The tool enables the user to cluster and 

conduct a pathway enrichment on their data set as well as predicting upstream kinases 

through correlation analysis. Here I rewrote the server and based the kinase-substrate 

prediction on the SELPHI2 machine learning-based predictions described in this Chapter.  

To showcase how the SELPHI2 server can be used I tested it on data set generated by 

Köksal and colleagues (Köksal et al., 2018) where EGFR Flp-In cells were stimulated with 

EGFR at 8 different time points: 0, 2, 4, 8, 16, 32, 64, or 128 min. The user uploads the 

data through the upload page (Figure 3.9). The standard input is a log2 transformed ratio 

(conditions/control) with phosphosites coded as HGNC gene symbol and a number 

representing location within protein sequence as row names in the first column. If the 

input file is in a different format the user can also provide information on which columns 

contain information on proteins, phosphosite location in protein sequence and columns 

containing data. 

After uploading the phosphoproteomics data, the top kinase-substrate predictions are 

shown in a table. All kinase-substrate relationships can be downloaded as a .tsv file. 

Finally the upload page displays a density plot which helps the user visualize the 

probability distribution of the predicted edges both the ones that are not present in the 

literature (blue) and those that have previously been discovered (red) (Figure 3.10 B) .  

SELPHI2 also provides the user with the ability to conduct an enrichment analysis to 

identify pathway overrepresentation among up or down regulated proteins. The user can 

select between several databases: Jensen's diseases (Pletscher-Frankild et al., 2015), 

KEGG (Kanehisa, 2019), Reactome (Jassal et al., 2020) and GO (Gene Ontology 

Consortium, 2021).  

For the purpose of this overview, the KEGG database is used as a reference pathway to 

conduct the analysis and the log2 ratio threshold of one is applied to select up (> 1) and 

down (< -1) regulated phosphosites to conduct the enrichment analysis. Enriched 

pathways are represented as a dot plot where the size of the dot represents the odds 

https://www.zotero.org/google-docs/?rdqijd
https://www.cell.com/cell-reports/fulltext/S2211-1247(18)31389-5?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS2211124718313895%3Fshowall%3Dtrue
https://www.zotero.org/google-docs/?VEsjkX
https://www.zotero.org/google-docs/?4DgJve
https://www.zotero.org/google-docs/?G5mlWj
https://www.zotero.org/google-docs/?l8Qor4
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ratio of the enrichment while the colour represents the sum of the log2 ratios of the 

phosphosites involved in the given pathway and the different columns represent different 

time points or samples. In this case, some pathways are only overrepresented at several 

of the 8 time points such as spry regulation of FGF signalling which is overrepresented at 

the last three time points: 32,64 and 128 minutes while others like EGFR signalling are 

found to be overrepresented at all time points (Figure 3.10 A). The user can also cluster 

the data using the Gaussian mixture model based clustering implemented by the Mclust 

R package (Scrucca et al., 2016) or k-means (Hartigan and Wong, 1979) clustering and 

conduct an enrichment analysis on the phosphosites belonging to each cluster. 

The user can also map the kinase-substrate predictions onto their data to extract a context 

specific network for each context or time point. A network is constructed to link the kinase-

substrate predictions together; the user can either use the probabilistic kinase-kinase 

network described in Chapter 2 or list of kinase-kinase interactions downloaded from 

OmniPath (Turei et al., 2016) . Prize collecting Steiner’s forest (Akhmedov et al., 2017) is 

used to identify the optimum sub network. The user can then select their parameters and 

probability cut-offs for the probabilistic networks. SELPHI2 returns an interactive network 

where the user can zoom in and select nodes to see their log2 ratios. The resulting sub-

networks for each condition can then be downloaded for further analysis (Figure 3.11A). 

The resulting kinase-substrates can then be used to generate sequence logo from the 

kinases and their substrates that are involved in the sub-networks (Figure 3.11 B). 

The user can also calculate estimated kinase activities from predicted kinase-substrate 

relationships. SELPHI2 returns heat maps for the kinases whose substrates are 

significantly overrepresented at the upper end of the log2 ratio under the given 

condition/time point. Activity heat map is also generated from kinase-substrates derived 

from the literature for comparison. In this case, the predicted activity profiles are quite 

different from the literature derived activities with SRC being the only active kinase 

present in both heat maps. No serine/threonine kinases were significantly active based 

on the predicted kinase-substrate set while several were active based on the kinase-

substrates found in PhosphoSitePlus (Figure 3.12 A) Lastly, the user can see how well 

the predicted kinase-substrates are supported by two independent experimental kinase-

substrate predictions (Hijazi et al., 2020; Sugiyama et al., 2019) (Figure 3.12 B). 

https://www.zotero.org/google-docs/?D4Hxhj
https://www.zotero.org/google-docs/?wm81Cw
https://www.zotero.org/google-docs/?SsyyK7
https://www.zotero.org/google-docs/?48deXr
https://www.zotero.org/google-docs/?bZHqxi
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Figure 3.9: Screenshot from the SELPHI2 server data upload page. The user can upload 

data for further analysis. In this example and subsequent analysis (Figures 3.10-3.13) 

time series data from publication by Köksal and colleagues will be used (Köksal et al., 

2018). 

 

 

 

 

 

 

https://www.zotero.org/google-docs/?VEsjkX
https://www.zotero.org/google-docs/?VEsjkX


  

93 
 

 

 

 

Figure 3.10: SELPHI2 density and enrichment plots. Example output from a SELPHI2 

analysis. Once data has been uploaded the user can view top predictions, download all 

predictions, and view the probability distribution of kinase-substrate predictions for 

substrates present in the data set (A). Enrichment analysis returns dot plot showing 

enrichments among up and down regulated phosphosites. Results from analysis on up 

regulated phosphosites shown here (B) 
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Figure 3.11 SELPHI2: PCSF fitting and sequence logo. Example output from a SELPHI2 

analysis. PCSF is used to identify optimal sub networks obtainable from the 

phosphoproteomics data (A). Sequence logo for MAPK8 kinase generated from predicted 

substrates that are included in any of the condition specific sub networks (B).  
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Figure 3.12 SELPHI2: kinase activities and experimental validation. Kinase activities 

obtained from the predictions compared to the activities generated from known kinase-

substrates. The activity profiles were quite different across the different estimates with 

low overlap in active tyrosine kinases and no active serine/threonine kinase obtained 

from the predictions (A). The user can view how well supported predicted kinase-

substrates are by two independent experimental kinase-substrate predictions and 

download those predictions that are corroborated by the two experiments (B).  
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3.4 Discussion 

In this Chapter I sought to generate kinase-substrate predictions that incorporate kinase 

specificities as well as high throughput information to predict kinase-substrate 

relationships as well as the sign of these relationships. While the method described here 

relies on prior knowledge in the form of position weight matrices, other high throughput 

measures such as co-phosphorylation and co-expression are integrated as well as other 

phosphosite specific (Ochoa et al., 2020) features are used. I found that while SELPHI2 

is able to predict known kinase-substrates it is also able to capture experimentally 

predicted kinase-substrates that have not been discovered before. Notably, kinase-

substrates that were predicted by two experiments were assigned higher probability 

compared to kinase-substrates that were predicted by either method. This demonstrates 

the value of the method in the task of identifying new kinase-substrate relationships. 

Furthermore, the method is able to make high confidence predictions for less studied 

kinases and less studied protein substrates when compared with the found in the 

literature. It can therefore be argued that these predictions provide valuable insight into 

the less explored parts of the signalling network. While a significant portion of the high 

confidence predictions can be expected to be hitherto undiscovered relationships, a large 

part can be reasonably assumed to be false positives due to methodological limitations 

of kinase-substrate prediction methods, be they computational or experimental. This 

suggests that despite the value of these predictions for prioritising kinase-substrate 

relationships and exploring the dark signalling space, by themselves are not sufficient to 

explore the human cell signalling network architecture as a whole.  

In the future, increasing the number of independent high-throughput kinase-substrate 

experimental datasets could ameliorate this high uncertainty. With our network and 

literature as it stands, the 24 high confidence kinase-substrate predictions supported by 

both our method and the two orthogonal experimental studies provide a good starting 

point for validation of potentially novel components of the human cell signalling network. 

For instance, of the high probability SELPHI2 predictions, the relationship between CDK2 

and NOP2 32 and NUMA1 2000 might be interesting to experimentally validate further 

given external evidence. 

https://www.zotero.org/google-docs/?umnz6w
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In general, the large accumulation of kinase-substrate relationships that could not be 

corroborated made further analysis of the network difficult. When the activity profile of 

kinases derived from SELPHI2 predictions is compared to activities derived from 

PhosphoSitePlus, it is clear that the difference is quite pronounced. This could either be 

because of the literature bias in our current knowledge or accumulation of kinase-

substrates that do not occur in nature. It must also be pointed out that activity estimates 

can be noisy as the context specificity of kinase-substrates means that under any given 

condition only a part of the kinase-substrate relationships are active, even if the kinase is 

active. The fact that many substrates are targeted by many kinases makes these 

predictions even harder which in part explains the discrepancy between literatures 

derived activities and activities derived from kinase-substrate predictions.  

Similar issues arose when the similarity of biological function between kinases and their 

predicted substrates was analysed with kinase-substrates found in the literature having a 

more similar function to their upstream kinase compared to the predicted substrates. 

However, it should be noted that due to the large size of the underexplored protein 

interactome, a large number of proteins might be undiscovered participants in known 

pathways or partake in pathways that remain undiscovered.  

In comparison with five other methods: PhosphoPICK (Patrick et al., 2015), 

KinomeXplorer (Horn et al., 2014), NetPhos v3.1 (Blom et al., 2004), LinkPhinder 

(Nováček et al., 2020) and GPS (Wang et al., 2020) we find that SELPHI2 has better 

performance when it comes to discriminating between unknown kinase-substrate 

relationships and known ones. Furthermore, SELPHI2 is better at discerning between 

kinase-substrate relationships that have been independently identified by high throughput 

experiments. NetPhos performed well both at discerning between known positives and 

negatives as well as experimentally validated edges. It should be kept in mind though that 

NetPhos only makes predictions for 17 kinases.  

To my knowledge, no other method, neither computational nor experimental, has made 

predictions on the regulatory status of the predicted kinase-substrate relationships. One 

challenge is, therefore, that, while cross validation indicates that the predictor effectively 

discerns between activating and inhibiting relationships, it is difficult to find an 

https://www.zotero.org/google-docs/?DdQL5R
https://www.zotero.org/google-docs/?srKLta
https://www.zotero.org/google-docs/?1BgI2W
https://www.zotero.org/google-docs/?u3JHS8
https://www.zotero.org/google-docs/?a9TP7E
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independent set to validate my result and assess its ability to discover new regulatory 

relationships.  

In this Chapter I describe a method to predict kinase-substrate relationships. I find that by 

incorporating kinase specificity models with high throughput features and features 

describing potential acceptor phosphosites I am able to capture known kinase-substrate 

interactions and, crucially, novel experimentally predicted interactions. I find that my 

method preforms better than other state of the art methods both and capturing known 

kinase-substrate interactions and experimentally predicted ones. Furthermore, to my 

knowledge, this is the first method that predicts the sign of kinase-phosphosite 

interactions which adds to the value of this resource as signs can be incorporated into 

phosphoproteomic data analysis. These results have also been put together into a new 

server for SELPHI2 which will be available online once this project has been submitted 

for peer-review. 
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4. Towards data-driven modules 

4.1 Introduction 

Biological systems are often described as being structured in a modular manner. This 

general principle applies to ecosystems, cell architecture, protein interaction networks 

and proteins as well as other molecule such as DNA (Lorenz et al., 2011). In the context 

of signalling, this modularity manifests itself in the modular structure of signalling proteins 

such as kinases and phosphatases as well as the modular structure of signalling networks 

(Pawson, 1995). Modularity in signalling networks manifests itself as a network organized 

into modules of densely interconnected parts of the network with lower density of 

connections to other parts of the network.  

Current models of cell signalling organize the network into pathways, each of which has 

a certain function or a set of functions as laid out in databases such as KEGG (Kanehisa, 

2019), Reactome (Jassal et al., 2020) and WikiPathways (Slenter et al., 2018). While 

pathways are commonly used in functional analysis of biological data sets and gene sets, 

there are reasons to believe these static pathways are an overly simplistic representation 

of the signalling system. In particular, they seem insufficient when it comes to accounting 

for phosphoproteomic data sets. Olsen and colleagues (Olsen et al., 2006) had found that 

the signal spreads through the signalling network more widely than one would expect 

given current knowledge of signalling pathways. Other perturbation studies have reached 

similar conclusions where perturbation leads to patterns in the phosphoproteomic data 

sets that differ considerably from the annotated pathways (Köksal et al., 2018).  

A part of the reason for these discrepancies is that current literature is biased towards 

proteins and processes that are already well-studied (Edwards et al., 2011; Luck et al., 

2020). More systematic high throughput generation of protein interactome have found 

that the human protein-protein interactome network is denser with a more equal 

distribution of edges than the literature indicates (Luck et al., 2020; Rolland et al., 2014). 

This stresses the need for more data-driven methods to identify signalling modules for 

unbiased data analysis. Here I describe my work to identify data-driven biological 

modules and demonstrate their biological robustness and utility. I establish that the 

modules have properties that should be expected of biological modules such as, In the 

https://www.zotero.org/google-docs/?FblMsi
https://www.zotero.org/google-docs/?jfau01
https://www.zotero.org/google-docs/?G5mlWj
https://www.zotero.org/google-docs/?G5mlWj
https://www.zotero.org/google-docs/?Lq7EXF
https://www.zotero.org/google-docs/?odTb1U
https://www.zotero.org/google-docs/?E1PcIT
https://www.zotero.org/google-docs/?UcseCs
https://www.zotero.org/google-docs/?lzjCoH
https://www.zotero.org/google-docs/?lzjCoH
https://www.zotero.org/google-docs/?0laTTl
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case of modules from HL60 and MCF7 cells, proximity between members, correlation 

with transcription factor and kinase activity and assign traits and functions to the data-

driven module. Furthermore, I show that the modules have a greater explanatory power 

when it comes to independent phosphoproteomic data compared to established pathway 

modules. 

4.2. Methods  

4.2.1. Datasets 

To maximize the coverage of the data matrix with respect to data available for each 

peptide, I used 436 phosphoproteomics data sets compiled by David Ochoa and 

colleagues (Ochoa et al., 2016), extracted from PRIDE and reran with the same 

parameters through the peptide search protocol. I also used a) a phosphoproteomic data 

set derived from 50 colorectal cell lines, generated by Roumeliotis and colleagues 

(Roumeliotis et al., 2017) b) a perturbation data set generated by Hijazi et al. where 

MCF7, HL60 and NTERA2 cells were grown under different kinase inhibitory conditions 

(n = 61) with the cells being incubated for 1h under different kinase inhibitor treatments 

before lysis (Hijazi et al., 2020) c) log2 transformed and quantile normalized 

phosphoproteomic and log2 transformed median normalized expression data from cancer 

samples and cell lines derived from various sources that had been re-analysed and 

preprocessed by Abel Sousa and colleagues (Sousa et al., 2021) which included data 

from 983 samples and cell lines. The data contained data sets from different tissues: brain 

(Petralia et al., 2020), breast (Koboldt et al., 2012; Lapek et al., 2017; Lawrence et al., 

2015; Mertins et al., 2016), colorectal ( Cancer Genome Atlas Research Network, 2012; 

Roumeliotis et al., 2017; Zhang et al., 2014), kidney (Clark et al., 2019), liver (Gao et al., 

2019), lung (Gillette et al., 2020), ovary (Network, 2011; Zhang et al., 2016), stomach 

(Mun et al., 2019) and uterus (Dou et al., 2020) that had been retrieved from Clinical 

Proteomic Tumour Analysis Consortium (CPTAC) data portal (Edwards et al., 2015). 

Expression values from cancer cell lines were downloaded from the Cancer Cell line 

Encyclopedia (Barretina et al., 2012). 180 genome-wide association study (GWAS) SNP 

https://www.zotero.org/google-docs/?qKpxRO
https://www.zotero.org/google-docs/?lvnK1T
https://www.zotero.org/google-docs/?tR7CqW
https://www.zotero.org/google-docs/?pm12FL
https://www.zotero.org/google-docs/?uH5U9G
https://www.zotero.org/google-docs/?fBHLNg
https://www.zotero.org/google-docs/?fBHLNg
https://www.zotero.org/google-docs/?OfW8xI
https://www.zotero.org/google-docs/?OfW8xI
https://www.zotero.org/google-docs/?OCn7oS
https://www.zotero.org/google-docs/?27a9gW
https://www.zotero.org/google-docs/?27a9gW
https://www.zotero.org/google-docs/?v54hc2
https://www.zotero.org/google-docs/?15fIW2
https://www.zotero.org/google-docs/?J6jz62
https://www.zotero.org/google-docs/?riMMEG
https://www.zotero.org/google-docs/?rIiFso
https://www.zotero.org/google-docs/?P0U1Ha
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p-values data sets were derived from a DREAM challenge paper on the assessment of 

biological modules (Choobdar et al., 2019). 

4.2.2. Independent component analysis for module extraction 

Independent component analysis (ICA) (Jutten and Herault, 1991) divides multivariate 

signals into additive components assuming they follow a non-Gaussian distribution and 

are independent of each other.  Compared to Principal Component Analysis (PCA), ICA 

has been found to be able to extract a greater number of biologically relevant components 

compared to the ICA partly due to the assumption of the PCA that the data is multivariate 

Gaussian (Lee and Batzoglou, 2003). Already the independent component has been 

applied to solve biological problems such as to extract transcriptomics modules (Zhou 

and Altman, 2018) and analyse cancer modules (Sompairac et al., 2019). For this project, 

I used the ICA as implemented by MineICA (Biton et al., 2021). The function 

clusterFastICARuns was used to extract the phosphorylation modules. The function runs 

the FastICA (Hyvärinen, 1999) algorithm repeatedly with random initialization and then 

clusters the resulting components and returns the medoids of the resulting clusters as 

component estimates using the Iq cluster quality index (Himberg et al., 2004) defined as: 

Iq(Cm) =
1

|Cm|2
∑ σi,j

i,j∈Cm

−
1

|Cm||C−m|
∑ ∑ σi,j

j∈C−mi∈Cm

 

Where Cmrepresents the indices that are part of cluster m, C−m is the set of indices that 

are not part of cluster m and |Cm| is the number of items in cluster m and σi,j represent 

the similarities between components as measured by absolute of the mutual correlation 

coefficients between them. An Iq value of 1 indicates perfect clustering while lower values 

indicate that the cluster is less isolated and compact. 

The cluster quality index was used to assess the quality of the clustering. The final step 

entails clustering the components with hierarchical clustering and the centrotypes of each 

cluster are used as estimates for the components.  

A large number of independent components have been shown to yield biologically 

meaningful results (Kairov et al., 2017). Therefore, in this project, in order to extract as 

much biological information as possible, I extracted m=61 number of clusters as 61 is the 

number of samples in the different data set. Hierarchical clustering as incorporated into 

https://www.zotero.org/google-docs/?gapADz
https://www.zotero.org/google-docs/?jeVLIn
https://www.zotero.org/google-docs/?Xy5iwl
https://www.zotero.org/google-docs/?dgd0un
https://www.zotero.org/google-docs/?dgd0un
https://www.zotero.org/google-docs/?jofuRR
https://www.zotero.org/google-docs/?So0BT0
https://www.zotero.org/google-docs/?nDcUqf
https://www.zotero.org/google-docs/?7g82Xq
https://www.zotero.org/google-docs/?6utRRR
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the MineICA package was used to cluster component outcomes and alg.type was set to 

parallel.  

4.2.3. Pathway enrichment of phospho modules 

To assign biological processes to data-driven modules, I conducted a pathway 

enrichment on data-driven modules. I used Fisher's exact test (Fisher, 1935) to calculate 

enrichment odds ratios against the background of the Reactome (Jassal et al., 2020) 

pathways database. For each module the resulting p-values were adjusted with the 

Benjamini and Hochberg (Benjamini and Hochberg, 1995) method and finally when the 

results from all the different modules are pooled together I adjusted the p-values further 

with the Benjamini and Hochberg method. To define the background, I used proteins that 

were measured in the three data sets as NTERA2 is missing from the Cancer Cell line 

encyclopedia. This is done to avoid any enrichment that is cell type-specific. 

4.2.4 Calculating distances between proteins in the interaction 

network 

Proteins included in any of the extracted modules were mapped onto the IntAct network 

(Orchard et al., 2014) (Downloaded 15th May 2019). All distances between the proteins 

in the modules were calculated by using the distance() function in the igraph package 

(Csardi and Nepusz, 2006). An unweighted breadth-first search algorithm was used to 

identify the shortest distance between any two proteins in an undirected network. 

Wilcoxon rank sum test (H. B. Mann and D. R. Whitney, 1947) was used to establish if 

the distance between proteins within modules was closer than protein pairs where the 

proteins belonged to different modules. 

4.2.5. Extracting modules from literature network 

To compare my data-driven modules to modules extracted from the literature network I 

downloaded the phospho-signalling network from OmniPath (Turei et al., 2016). 

OmniPath only contains signalling networks and is therefore attractive for our purposes 

as it leaves out interactions that are involved in non-signalling interactions. 

https://www.zotero.org/google-docs/?LCACUo
https://www.zotero.org/google-docs/?YjQqHH
https://www.zotero.org/google-docs/?ID6xIZ
https://www.zotero.org/google-docs/?r0aahB
https://www.zotero.org/google-docs/?N3ibWy
https://www.zotero.org/google-docs/?SKvQIT
https://www.zotero.org/google-docs/?Y0fbeA
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To identify modules within the network I used the DEMON (Coscia et al., 2012) network 

clustering algorithm as implemented in the python library Karate Club (Rozemberczki et 

al., 2020). DEMON uses the ‘local first’ method to find overlapping communities within 

networks. For the minimum community size, I used ten. I tried various merging thresholds 

from 0 to 1 eventually settling for 0.8 as it performed best in the enrichment of independent 

data sets (See chapter 4.2.6).  

4.2.6. Enrichment for independent data sets 

To evaluate the ability of the data-driven modules to describe independent datasets I used 

a compilation of 436 of different phosphoproteomics data sets compiled by David Ochoa 

and colleagues (Ochoa et al., 2016). This was done to ensure that the log2 ratios followed 

comparable distribution.  

When enrichment analysis is conducted it is important to select an appropriate 

background. Problems can arise when the whole genome is used as a background as in 

many cases the top enrichments may simply be tissue/sample related terms while in our 

case I am interested in processes that are activated in response to a perturbation or 

stimulation. To counter this, I used as background expression data extracted the Cancer 

Cell line Encyclopedia (Barretina et al., 2012) corresponding to the relevant cell lines that 

were used in each experiment. I used rpkm 0.5 as a threshold for expression. Due to the 

fact that not all data sets were extracted from cell lines, I ended up using 270 data sets 

for the final analysis.  

For the enrichment analysis the log2 ratios greater than 1 were used to indicate up-

regulated phosphosites. Subsequently, a Fisher’s test was used to calculate 

overrepresentation of module members. Fisher’s exact test was chosen since in many 

cases the calculations are done on a relatively low number of proteins in which case this 

test has been found to be effective.  

Enrichment (odd ratio) values were calculated for three modules sets: a) data-driven 

modules, b) pathways in Reactome found at all levels in the hierarchy (Jassal et al., 2020) 

and c) modules extracted from the OmniPath network (Turei et al., 2016). For each 

condition and each module set, I corrected the resulting p-values with the Benjamini 

Hochberg (Benjamini and Hochberg, 1995) method. I pooled the results together and 

https://www.zotero.org/google-docs/?y0MaC7
https://www.zotero.org/google-docs/?pv0VjA
https://www.zotero.org/google-docs/?pv0VjA
https://www.zotero.org/google-docs/?ZRmjJh
https://www.zotero.org/google-docs/?OSOxCx
https://www.zotero.org/google-docs/?naeBGA
https://www.zotero.org/google-docs/?jXNkko
https://www.zotero.org/google-docs/?OESp5f
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applied Bonferroni multiple testing correction (Bonferroni, 1936). Subsequently, a p-value 

cutoff of 0.01 was applied. 

To compare the module sets I looked at the number of significant enrichment as well as 

the odd ratios achieved with the different module sets. To ascertain if the difference was 

significant, Wilcoxon’s rank sum test was used (H. B. Mann and D. R. Whitney, 1947). 

4.2.7. Comparison between modules extracted from different data 

sets 

In order to look at the similarities and context specificities, I analysed the clustering 

assignment across the different data sets, I quantified the similarities between clustering 

assignments. Since different phosphosites are included in the different modules, only the 

overlap between the modules were analysed, that is, phosphosites that were included in 

both clustering assignments. As our clusters are overlapping I used the geometric 

accuracy metric to assess overlap as implemented function geometric_accuracy() y 

(Nepusz et al., 2012; Palla et al., 2005) from the python module CluSim (Gates and Ahn, 

2019) was used to assess the similarity between the cluster assignments between the 

different data sets. 

To calculate a p-value for each of the measurements I generated a distribution of 

geometric accuracies by randomly assigning phosphosites to the same number of 

clusters as in the original assignment. This was repeated a hundred times and the 

geometric accuracy was calculated between the random assignments. The similarity 

between the initial assignments was then ranked compared to the random distribution to 

derive empirical p-values.  

Furthermore, I did pairwise comparisons of the clustering assignments across cell lines 

by calculating the Jaccard Index (Jaccard, 1912) for each cluster pair. The Jaccard index 

is calculated as follows: 

Jacc(cnx,cmy)=
|A∧B|

|A∨B|
 

Where A is the set of phosphosites belonging to cnx (cluster no. n in cell line x) and B is 

the set of phosphosites belonging to cmy (cluster no. m in cell line y) 

https://www.zotero.org/google-docs/?pMdJXU
https://www.zotero.org/google-docs/?yiZnNE
https://www.zotero.org/google-docs/?gYOLEO
https://www.zotero.org/google-docs/?wl4Pk9
https://www.zotero.org/google-docs/?wl4Pk9
https://www.zotero.org/google-docs/?mmyAot
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4.2.8. Association of modules with kinase and transcription factor 

activities 

Next wanted to see if modules correlated with kinase or transcription factor activities 

across different samples. I used a phosphoproteomics data compilation (Sousa et al., 

2021) from the following tissues: brain (Petralia et al., 2020), breast (Koboldt et al., 2012; 

Lapek et al., 2017; Lawrence et al., 2015; Mertins et al., 2016), colorectal ( Cancer 

Genome Atlas Research Network, 2012; Roumeliotis et al., 2017; Zhang et al., 2014), 

kidney (Clark et al., 2019), liver (Gao et al., 2019), lung (Gillette et al., 2020), ovary ( 

Cancer Genome Atlas Research Network, 2011; Zhang et al., 2016), stomach (Mun et 

al., 2019) and uterus (Dou et al., 2020) that had been retrieved from Clinical Proteomic 

Tumour Analysis Consortium (CPTAC) data portal (Edwards et al., 2015). Kinase 

activities were calculated with the batch_kinase_predictions() function which calculates 

activities for all kinases with substrates in the data set as implemented previously in the 

KSEA package (Ochoa et al., 2016). I used kinase-substrate relationships from 

PhosphoSitePlus and the number of trials run for p-value generation was set to 1000. The 

resulting p-values were log10 transformed and the sign of the mean log2 ratio of the 

kinase’s substrate was used to put a sign on the log transformed p-value. A constant of 

10-6 was added to avoid log transforming zero values.  

For transcription factor activities I used the corresponding transcriptomics datasets 

(Sousa et al., 2021). The viper (Alvarez et al., 2016) R package was used to calculate 

transcription factor activities. A list of transcription factors and their targets was obtained 

from the Dorothea R package (Garcia-Alonso et al., 2019). Interactions with confidence 

levels of A or B of A-F were retained. A indicates that there are two or more curated 

resources supporting the TF-target pair or if there are four or more evidences for the 

interactions. Furthermore, if the interaction is found in a review or the curated interaction 

is signed and has other evidence it counts as class A. Meanwhile class B indicates likely 

confidence, which includes:  

I. Interactions found in curated databases and supported by CHIP-seq studies. 

https://www.zotero.org/google-docs/?hzi4pV
https://www.zotero.org/google-docs/?hzi4pV
https://www.zotero.org/google-docs/?XhltYt
https://www.zotero.org/google-docs/?TYNNIF
https://www.zotero.org/google-docs/?TYNNIF
https://www.zotero.org/google-docs/?J231Xk
https://www.zotero.org/google-docs/?J231Xk
https://www.zotero.org/google-docs/?T8KIdr
https://www.zotero.org/google-docs/?LOYE8M
https://www.zotero.org/google-docs/?JvAvjP
https://www.zotero.org/google-docs/?mCRWEe
https://www.zotero.org/google-docs/?mCRWEe
https://www.zotero.org/google-docs/?cV3d0y
https://www.zotero.org/google-docs/?cV3d0y
https://www.zotero.org/google-docs/?388nM5
https://www.zotero.org/google-docs/?Z6UeIt
https://www.zotero.org/google-docs/?KNApOO
https://www.zotero.org/google-docs/?OpPHcr
https://www.zotero.org/google-docs/?mnCdZb
https://www.zotero.org/google-docs/?uAR6Kx
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II. Interactions found in curated databases and further supported by transcription 

factor binding models and inferred by reverse engineering tissue specific networks 

from GTEx (GTEx Consortium, 2013).  

III. Interactions supported by CHIPseq, GTEx and transcription factor models are also 

retained.   

In order to assess how strongly data-driven modules were associated with distinct 

transcription factor and kinase activities compared to Reactome pathways (Jassal et al., 

2020), I used Fisher’s exact test to conduct a pathway enrichment with the data-driven 

modules and Reactome pathways. This enrichment analysis was conducted on every 

sample. Up regulated phosphosites were defined as phosphosites with log2 ratio > 1 in 

each sample. Subsequently, I correlated the resulting odds ratios for the samples with the 

activities using Spearman’s rho.  

4.2.9. Association of traits to modules with GWAS  

I used the Pascal (Lamparter et al., 2016) software in order to associate modules with 

variants that have previously been associated with various traits. The Pascal method has 

previously been developed to score genes and gene modules with SNP summary 

statistics. Pascal Z-scores are calculated from the number of SNPs associated with a 

gene assuming that the number of SNPs associated with a gene are normally distributed. 

To score a pathway, a fusion gene is created which contains all the SNPs for all the genes 

belonging to the module.  

Here I used the chi-squared method. To derive a pathway score the gene level p-values 

are ranked and divided by the number of genes plus one (n+1) to generate a uniform 

distribution. This distribution is then converted to a chi-squared distribution and the sum 

of the m genes belonging to the pathway is compared and tested against the chi-squared 

score of modules of size m. 

I associated our modules with SNP linked to various traits. I used 180 GWAS data sets 

used earlier to evaluate DREAM challenge submissions (Choobdar et al., 2019). For 

comparison I scored the data-driven modules and compared them with the scores 

achieved by the Reactome pathways. To associate traits with Reactome pathways all 

proteins that participate in a Reactome (Jassal et al., 2020) pathway were used as the 

https://www.zotero.org/google-docs/?1GsctW
https://www.zotero.org/google-docs/?ED7554
https://www.zotero.org/google-docs/?ED7554
https://www.zotero.org/google-docs/?PLfp1F
https://www.zotero.org/google-docs/?nENKdM
https://www.zotero.org/google-docs/?8CpPqv


  

107 
 

background. The background proteins I used for the data-driven module analyses were 

all proteins identified in the three phosphoproteomic data sets from MCF7, NTERA2 and 

HL60. The results from the Reactome and data-driven module associations were pooled 

together and the p-value was adjusted with the Benjamini Hochberg method (Benjamini 

and Hochberg, 1995).  

4.2.10. Predicting pathway co-occurrence with machine learning 

I then set out to see if our modules could be used to predict co-occurrence within 

pathways for pairs of phosphosites. These predictions were then compared with those 

made using co-phosphorylation, co-expression and finally if merging of these predictors 

could improve predictions of pairs of proteins participating in a similar function like they 

do in pathways. In order to select phosphosites for this analysis I used a set of 

phosphosites that had previously been assigned a functional score and picked 

phosphosites with functional score higher than 95% of the phosphosites (Ochoa et al., 

2020).  

For this purpose I downloaded pathways from KEGG (Kanehisa, 2019), Reactome 

(Jassal et al., 2020) and WikiPathways (Slenter et al., 2018). Since pathways, in general, 

may include processes that do not involve phosphorylation in any way, I focused on 

signalling pathways for subsequent predictions. Therefore, I only included Reactome 

pathways that were included in the subtree rooted in signalling pathways and for KEGG I 

included pathways whose entry started with hsa04. All pathways that did not include a 

kinase were filtered out. To represent module or pathway co-occurrence, I gave 

phosphosites found on a protein that belongs to the same pathway a value of one while 

the rest were given a value of zero. The same was done for the modules, that is, module 

co-occurrence was determined at the protein level.  

The training set was generated as follows: all phosphosites found on proteins that are 

known to partake in the same process were used as a positive set while a random set of 

phosphosite pairs was used as a negative set. This rests upon the assumption that most 

proteins do not co-occur in pathways. As a result of this sampling of negatives, a hundred 

https://www.zotero.org/google-docs/?r6OjC9
https://www.zotero.org/google-docs/?r6OjC9
https://www.zotero.org/google-docs/?hY1XFJ
https://www.zotero.org/google-docs/?hY1XFJ
https://www.zotero.org/google-docs/?G5mlWj
https://www.zotero.org/google-docs/?H7CWbF
https://www.zotero.org/google-docs/?GuxIc6
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models were generated and I assigned the final probability score by averaging across the 

100 runs. 

Other predictors I used in this exercise were co-expression between genes across tissues 

and cell lines. Data from GTEx (GTEx Consortium, 2013) and The Protein Atlas were 

used (Thul et al., 2017; Uhlén et al., 2015), as well as co-phosphorylation between 

phosphosites from cancer cell line data set generated earlier (Roumeliotis et al., 2017). 

In all cases Spearman’s rho was used to quantify co-expression and co-phosphorylation. 

Random forest (Tin Kam Ho, 1995) as implemented by the scikit-learn (Pedregosa et al., 

2011) python library was used to predict probability of co-occurrence in pathways. I used 

Grid to find optimal parameters. The same method and parameters were considered as 

in Chapter 3 (See 3.2.5).The model with the best AUC derived from ten-fold cross 

validation was used for each of the one hundred runs.  

4.2.11. Comparison between model performances based on 

predictor combinations 

To compare the predictive power of each predictor I looked at the performance of the 

modules, the co-expression and co-phosphorylation and the combination of these 

predictors. I looked at the intersection of phosphosite pairs between the module, co-

phospho and the co-expression and looked at the relative performance as measured by 

the area under the receiver operator curves. Furthermore, I looked at the combination of 

all predictors and the combination of co-expression and co-phosphorylation.  

 

 

 

https://www.zotero.org/google-docs/?JrcWs6
https://www.zotero.org/google-docs/?XO4mNz
https://www.zotero.org/google-docs/?WQGdF6
https://www.zotero.org/google-docs/?0qVKSd
https://www.zotero.org/google-docs/?fNNZ4e
https://www.zotero.org/google-docs/?fNNZ4e
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4.3. Results 

4.3.1. Properties of data-driven modules 

To derive data-driven modules phosphoproteomic data generated by a recent publication 

from three cell lines was used (Hijazi et al., 2020). Altogether, the three perturbation data 

sets contained information on 21,393 phosphosites. For MCF7 the number was 9,654 

phosphosites and NTERA2 and HL60 had measurements assigned to 17,577 and 16,756 

phosphosites respectively. The overlap between the three sets can be seen below (Figure 

4.1 A.). ICA does not assign a module to each and every phosphosite, rather it extracts 

subcomponents of a multivariate signal. Here I only extracted variables that contribute 

the most to each component that is variables whose contribution is greater than 3 

standard deviations above the mean. Therefore, not all phosphosites get assigned to a 

cluster and are therefore not included in subsequent analysis. Furthermore, unlike 

methods like K-means clustering, modules can overlap. These properties better reflect 

biological reality as not all phosphosites can be expected to participate in biological 

processes related to cell signalling and biological modules do indeed overlap. In the case 

of MCF7, ICA assigned 3144 phosphosites to 61 modules. In the case of HL60 and 

NTERA2, 5863 and 6952 were assigned to modules respectively indicating that a minority 

of measured phosphosite contribute to any sub-component. The median, minimum and 

maximum size of the modules extracted from the three data sets can be seen in Table 

4.1. 

 

Table 4.1: Overview over data-driven modules derived from three data sets: NTERA2, 

HL60 and MCF7. 

Set Minimum module 
size 

Median module size Maximum module 
size 

MCF7 104 145 195 

NTERA2 235 270 709 

HL60 220 269 346 

 

https://www.zotero.org/google-docs/?0lPuQ4
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I found that each component was quite dissimilar to all the other components. At the same 

time each phosphosite was assigned to more than one cluster on average with the median 

number of clusters per phosphosites being 2 in each data set. The median and maximum 

number of clusters per phosphosites can be shown in Table 4.2.  

 

Table 4.2: Median number of cluster assignment/phosphosite. 

Data set Median number of 
clusters/phosphosites 

Maximum number of 
clusters/phosphosite 

NTERA2 2 17 

MCF7 2 15 

HL60 2 19 

 

Generally speaking, each cell type had a different set of phosphosites contributing to the 

multivariate signal. In fact, a lower portion of phosphosites assigned to a cluster 

overlapped across cell types compared to the phosphosites as a whole (Figure 4.1 B).  

 

Figure 4.1 Venn diagram showing phosphosites from different datasets: MCF7, NTERA2 

and HL60 and assignments of phosphosites to clusters (A). The overlap between 

measured phosphosites the three data sets: MCF7, NTERA2 and HL60 (B) Venn diagram 

showing the overlap between phosphosites assigned to a cluster. 

A B
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One would expect interacting proteins to cluster together since phosphorylation of 

phospho-regulated proteins that interact should in theory correlate. Therefore, I set out to 

see if known interactions and protein complexes were overrepresented in our modules. 

In terms of known interactions, I found that protein pairs representing known interactions 

(Orchard et al., 2014) were over-represented within our modules when compared to 

across module protein pairs (X-squared = 1573.4, p-value < 2.2 10-16). Likewise, proteins 

belonging to the same complex (Jassal et al., 2020) had a greater tendency to cluster 

together (X-squared = 172.9, p-value < 2.2 10-16) 

4.3.2. Pathway enrichment of derived modules 

Enrichments were conducted for each cell type in three different analyses and the results 

were subsequently pooled together and p-values adjusted with the Benjamini Hochberg 

method (Benjamini and Hochberg, 1995). In all, 13,905 significant enrichments were 

identified for 183 modules with 1142 different pathways yielding a significant hit. A 

complete list of enrichments for these modules can be seen found uploaded at 

(https://gitlab.ebi.ac.uk/borgthor/Borgthor_Petursson_EBI_CAM_thesis/-/tree/master). It 

is therefore clear that all generated modules can be assigned a biological function in terms 

of annotated pathways. While some previous results that indicate that results from 

phosphoproteomic analysis do not neatly map onto our current knowledge of signalling 

processes (Humphrey et al., 2015; Köksal et al., 2018; Olsen et al., 2006) these results 

indicate that there is at least an overlap between these modules and the literature derived 

ones.  

4.3.3. Distance between proteins within the same module 

compared to distance across modules 

Modules are usually thought of as components of the signalling systems that are relatively 

highly interconnected compared to other parts of the network and insulated from the rest 

of the network. Therefore, it stands to reason, that proteins that cluster together in a 

phospho-signalling module should be closer to each other in the network than the rest. 

https://www.zotero.org/google-docs/?zN2EHV
https://www.zotero.org/google-docs/?HnoPIt
https://www.zotero.org/google-docs/?b5NXhZ
https://gitlab.ebi.ac.uk/borgthor/Borgthor_Petursson_EBI_CAM_thesis/-/tree/master
https://www.zotero.org/google-docs/?OvKVbW
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To assess if this is true, I mapped the protein on which the phosphosites were found onto 

IntAct (Orchard et al., 2014) and calculated the distance between them and compared 

the distance between proteins within the same cluster and the distance between proteins 

that do share a module. I found that proteins belonging to the same module were 

significantly closer to each other compared to the background in all cases except for 

NTERA2 (MCF7: W = 2.9 × 1011 p-value < 2.2 × 10-16, HL60 : W = 2.9 × 1012 , p-value < 

2.2 × 10-16 , NTERA2 : W = 4.3 × 1012 p-value =0.8 ). It should be noted though that the 

trend was very slight with most proteins being relatively close to each other with median 

distance being 4 edges in both sets (Figure 4.2). 

 

Figure 4.2 Distances between proteins clustering together and across clusters. While 

protein pairs that are within the same module tend to be closer to each other, the 

difference is small.  

https://www.zotero.org/google-docs/?cltivw
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4.3.4. Similarity between cluster assignment across the three 

different data sets 

While signalling is context specific one could make the assumption that some core 

processes are conserved across cell types and conditions. To test this, the similarity 

between the clustering assignments was assessed across the three large data sets: 

MCF7, HL60 and NTERA2. Other data sets were not considered due to low overlap in 

measured phosphosites. In order to assess the similarity between the clustering 

assignments I used geometric accuracy (GA) since the modules do overlap. GA returns 

a value between 0 and 1, 1 indicating that the two variables are mutually dependent while 

0 indicates no dependence between the variables. Clustering assignments of 

phosphosites that contributed significantly to a component (were assigned a cluster) in 

both datasets were compared. In all cases the mutual information was fairly low but in all 

cases the cluster assignment had higher GA than a set of 100 randomized clustering 

assignments. The results can be seen in Table 4.3 below. 

 

Table 4.3: Similarity of clustering assignments across data sets. In all cases the NMI 

score is low but significantly higher than NMI achieved by comparing randomized 

clustering assignments 

Data set 
comparison 

GA GArandomized (sd) pempirical 

MCF7, NTERA2 0.11 0.081 (0.0016) 0.00 

NTERA2, HL60 0.093  0.060 (0.00086) 0.00 

HL60, MCF7 0.101 0.085 (0.0015) 0.00 

 

In general, these results seem to indicate that the signalling modules drawn from these 

three different data sets differ to a great extent but less than would be expected by 

random. I did also explore the pairwise overlap between the clusters as measured by the 

Jaccard Index (Jaccard, 1912) (Figure 4.3). Overall, the similarity was quite low across 

all comparisons. The cluster overlap between NTERA2 and HL60, as an average 

maximum JI for each cluster was 0.070 while module 8 (HL60) and 61 (NTERA2) with JI 

https://www.zotero.org/google-docs/?lCKhPT
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0.24 of their phosphosites, which was the highest overlap between the two clustering 

assignments. For HL60 and MCF7 the corresponding values are 0.088 and 0.16 and 

0.085 and 0.22 between MCF7 and NTERA2. 

 

4.3.5. Enrichment of independent data sets with data-driven 

modules 

To compare the data-driven modules with established pathways I conducted an 

enrichment analysis on 270 independent perturbation phosphoproteomic data sets using 

the data-driven modules, literature network derived modules and Reactome pathways as 

a set for comparison. Each module set had a different number of modules and therefore 

different numbers of hypotheses were tested. The number of hypotheses tested are listed 

in Table 4.4. 

Table 4.4: Number of hypotheses tested and significant hits by module enrichment. List 

of module sets and the number of enrichment hypotheses tested. 

Module set Number of hypotheses 
tested 

Number of significant 
module enrichment 

Reactome Pathways, all 
levels 

296666 40 

Data-driven modules 49410 9477 

Network modules 192188 96 

  

Due to the difference in number of modules, the results were pooled, p-values were 

Bonferroni corrected and p-values with adjusted value lower than 0.01 were selected. As 

can be seen in Table 4.4, the data-driven modules yield by far the greatest number of 

significantly enriched modules, both as a portion of hypotheses tested and in absolute 

number. These results indicate that generally speaking a large portion of modules are 

core modules and active across different conditions and due to the interconnectivity of 

the network, the neat compartmentalized modules as laid out in the Reactome pathway 

database fail to capture these patterns. Notably, OmniPath clusters generated a greater 

number of significant hits than Reactome, which suggest that algorithmic methods to 
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extract modules from the current state of the art knowledge are better suited at capturing 

biological patterns than the predefined modules present in the data bases. 

Among the significant enrichment hits the data-driven modules yielded the highest odds 

ratio with a median odds ratio of 6.25 while the corresponding values for the network 

modules and the Reactome pathways was 3.56 and 3.49. The difference between the 

odds ratios returned by the data-driven modules were significantly higher than the two 

literature derived sets (OmniPath: W = 1.9 × 105 p-value < 2.2 × 10-16, OmniPath network 

modules: (Reactome: W = 7.1 × 105 p-value < 7.2 × 10-12, Wilcoxon rank sum test) while 

the difference between the OmniPath network modules and Reactome pathways was not 

significant. These results can be seen in Figure 4.3. 

 

 

Figure 4.3 Odds ratios from enrichment analysis from three different module sets: Data-

driven modules, Reactome pathways and literature network clusters.The data-driven 

modules had the greatest performance in terms of odds ratios compared with the 

literature derived modules. 

 

Combined with the greater number of significant hits, these results seem to indicate that 

the databases are insufficient when it comes to capturing phospho-signalling patterns. 

This is likely due to the incompleteness of our knowledge. Technical limitations of mass 
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spectrometry data and in particular the enrichment of phosphopeptides could also explain 

part of the issue as in general, mass spectrometry only captures part of the cellular 

proteome with data missingness being non-random which introduces biases of its own 

(Chapter 1.8.3).  

4.3.6. Association of phospho-signalling modules with 

transcription factors modules 

Transcription factors regulate gene expression and are known to be regulated by 

signalling cascades. Due to this link to signalling, I set out to correlate module activity with 

the activity of transcription factors in matching proteomics and gene expression data sets 

in order to assign a biological function to the data-driven modules. Module activity was 

quantified by calculating the modules’ overrepresentation among up regulated 

phosphosites. 

For comparison, the corresponding odds ratios were calculated for the Reactome 

pathways which were also correlated with the transcription factor activities. The data used 

was retrieved from many different tissues and therefore tissue specific associations were 

also investigated as well as cross-tissue associations. To assign a transcription factor to 

each module, I applied a p-value threshold of 0.05 and, subsequently, I looked at the top 

correlation between the module odds ratios across samples and transcription factor 

activities (hereby referred to as the top correlation). I found that data-driven modules had 

higher association with its top transcription factor (Figure 4.4 A). The median top 

correlation for the data-driven modules was Spearman's rho of 0.37 while for the 

Reactome pathways is the coefficient was 0.26. The difference between the two sets of 

top correlations was significant (W = 2.3 × 105, p-value < 2.2 × 10-16, Wilcoxon rank sum 

test). Similar results were produced on the tissue level with data-driven modules having 

the median top correlation of rho = 0.34 while Reactome pathways had the median top 

correlation of rho = 0.29, with the difference between them being significant (W = 1.1 × 

107, p-value < 2.2 × 10-16, Wilcoxon rank sum test). However, these results differ 

depending on tissue, while data-driven modules yield significantly higher top correlation 

in brain, lung, liver, stomach, and uterus the difference is non-significant in breast, 
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colorectal, kidney and ovary. The results can be seen on a per tissue basis in Figure 4.4 

B. 

 

Figure 4.4 Association between data-driven modules and transcription factors. The top 

correlation between module enrichment odds ratios and transcription factor activities. 

Data-driven modules had higher top correlation compared to Reactome derived modules. 

This was true across tissues while on a per-tissue basis the results vary. 
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Interestingly, these results suggest that data-driven phosphorylation modules seem to 

better capture transcription factor activities than pre-defined Reactome pathways, even 

though the transcription factor modules are defined by the literature network. The 

modules are listed with their best matching transcription factor in Appendix 4.1. Results 

on a per tissue basis can be found at: 

(https://gitlab.ebi.ac.uk/borgthor/Borgthor_Petursson_EBI_CAM_thesis/-/tree/master) 

4.3.7. Association of phospho-signalling modules with kinase 

activities 

Similarly to the transcription factor correlation, I wanted to evaluate if a similar pattern 

emerged when kinase activities were correlated with module enrichment values by using 

the same phosphoproteomics data set as before. Kinases phosphorylate proteins as part 

of signal transduction networks so it stands to reason that kinase activities should 

correlate with the activity of signalling modules. Same as before, I applied p-value 

threshold of 0.05 and looked at the top correlation for each module. There was a similar 

pattern that emerged when kinase activities and module odds ratios were correlated 

across tissues with the data-driven modules having a median top-correlation of 0.30, 

while Reactome yielded the corresponding value was 0.21 and the difference between 

the two set was significant (W= 2.1 × 105, p-value < 2.2 × 10-16,Wilcoxon rank sum test) 

(Figure 4.5 A). Across tissues the results vary. Data-driven modules have higher top 

correlation in brain, colorectal tissue, kidney, lung and ovary, while the Reactome 

pathways achieved better results in the liver. The rest of the tissues had no significant 

difference in association between module and kinase. Overall data-driven module-kinase 

associations across the tissues yielded significantly higher top correlations (rho = 0.34) 

than the Reactome pathways (rho = 0.29) (W= 7.3 × 106, p-value < 2.2 × 10-16, Wilcoxon 

rank sum test) (Figure 4.5 B).  

This analysis yielded similar results to transcription factors and is surprising since kinase 

activities are defined by known kinase-substrates. The modules are listed with their best 

matching kinase in Appendix 4.2. The results for the tissue specific analysis can be found 

at: (https://gitlab.ebi.ac.uk/borgthor/Borgthor_Petursson_EBI_CAM_thesis/-/tree/master)  

  

https://gitlab.ebi.ac.uk/borgthor/Borgthor_Petursson_EBI_CAM_thesis/-/tree/master
https://gitlab.ebi.ac.uk/borgthor/Borgthor_Petursson_EBI_CAM_thesis/-/tree/master
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Figure 4.5 Association between data-driven modules and transcription kinases.The top 

correlation between module enrichment odds ratios and kinase activities. Data-driven 

modules had higher top correlation compared to Reactome derived modules (A). The 

results varied across tissues (B). 
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4.3.8. GWAS association of phospho-signalling modules with 

traits and diseases  

One way of linking modules with biological function is to establish whether certain gene 

variants that have previously been found associated with traits are overrepresented 

among the proteins present in each module. To this aim I used the Pascal (Lamparter et 

al., 2016) software to associate variants to each module. I associated traits from 180 

SNP-trait association data sets that had previously been used in a DREAM challenge 

(Choobdar et al., 2019) with the data-driven modules and Reactome pathways. Since my 

module set and Reactome have vastly different numbers of modules the resulting 

associations were pooled and the p-values are adjusted with the Benjamin Hochberg 

method. In all, 183 modules were tested and 21 had at least one trait significantly 

associated with it (11%). In all 5 traits were assigned to the 21 modules with 21 module-

trait associations found overall. A complete list of significant data-driven module trait 

associations can be seen in Appendix 4.3. 

For comparison, traits were associated with the Reactome pathways where 2,236 

modules were enriched for different traits. 401 significant associations were found 

between 113 (5 %) pathways and 26 traits. In both cases there was a considerable 

overlap in trait-module association that is many traits were associated with multiple 

modules. 

While a larger portion of the data-driven modules had significant trait association the 

Reactome pathways had a greater overall number of associations. Furthermore, the 

Reactome-trait associations generally had a lower assigned p-value (median = 0.015) 

compared with the data-driven modules (median = 0.023). However, the difference was 

not significant.  

4.3.9. Use of modules and high throughput data to predict 

pathway co-membership 

Next, I set out to analyse how well the data-driven modules correspond to known 

signalling pathways and compare this with predictions based on high throughput data. 

For this aim, I looked at co-phosphorylation from cell line-based phosphoproteomic data 

https://www.zotero.org/google-docs/?q2kpdI
https://www.zotero.org/google-docs/?q2kpdI
https://www.zotero.org/google-docs/?erC6Yx
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sets (Roumeliotis et al., 2017), co-expression, phosphorylation and co-occurrence in 

data-driven modules. I found that that co-occurrence in modules predicts pathway co-

membership poorly (AUC=0.52). Both co-expression and co-phosphorylation perform 

better at predicting pathway membership than random with AUC of 0.61 for 

phosphorylation and 0.93 for co-expression. Interestingly, phosphorylation seems to 

perform worse than co-expression. Furthermore, I do not find that basing predictions on 

phosphorylation and co-expression improves predictive performance, and adding the 

module membership features does not improve predictive performance either. The 

combination of modules and phosphorylation, however, performs better than either 

feature (Figure 4.6 A). 

Looking at high probability phosphosite pairs (probability > 0.5) from each of the runs, I 

found that predictions based on expression included a large portion of high probability 

pairs found by the different feature combinations are not annotated in any of the pathway 

databases used, while high confidence predictions based on phosphorylation included a 

relatively high portion of unknown protein pairs. Table 4.5 lists the number of high 

probability pairs predicted by each combination and the percentage of those who are 

unknown.  

 

Table 4.5: Number of high confidence phosphosite pairs per feature set. Number of high-

confidence phosphosite pairs per predictor used for prediction and how many of these 

pairs are not annotated in the data bases.  

Predictors No. high confidence 
predictions 

No. unknown high 
confidence 
predictions 

Percentage 
unknown  

Co-phosphorylation 11586 7553 85  

Co-expression 8634 4525 47 

Co-phosphorylation 
& co-expression 

7990 3875 49 

Co-
phosphorylation, 
co-expression & 
modules 

7767 3653 43 

https://www.zotero.org/google-docs/?fqTSxM
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Interestingly, the two sets of undiscovered high probability pairs have a relatively low 

overlap, that is phosphoproteomics and RNAseq data seem to capture different sets of 

novel protein pairs associated with the same signalling pathway (Figure 4.6 C). High 

probability phosphosite interactions by each feature combination can be accessed from 

(https://gitlab.ebi.ac.uk/borgthor/Borgthor_Petursson_EBI_CAM_thesis/-/tree/master).  

 

 

 

 

 

 

 

 

 

 

 

 

https://gitlab.ebi.ac.uk/borgthor/Borgthor_Petursson_EBI_CAM_thesis/-/tree/master
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Figure 4.6 Predictive performance of different features and feature combinations. The 

features were used to predict signalling pathway co-membership of phosphosites. I find 

that co-expression outperforms the other features while the data-driven modules do not 

predict signalling pathway membership by themselves they improve prediction when 

combined with other features (A). High probability predictions of co-membership differ 

across the different feature sets with co-phosphorylation differing the most from the other 

feature sets and with a higher portion of high probability co-memberships that were 

previously unknown (B). This is particularly the case when previously known co-

memberships were excluded (C).  
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4.4 Discussion 

Various studies have found that pathways as defined in the different data bases such as 

KEGG ( Kanehisa, 2019) or Reactome (Jassal et al., 2020) have been found to have 

limited value in terms of explanatory power in phosphoproteomic studies (Humphrey et 

al., 2015; Köksal et al., 2018; Olsen et al., 2006). This is partly due to the fact that the 

signal disperses quite fast and widely throughout the signalling network but also due to 

the size of the under-explored part of the signalling network. In this Chapter, the possibility 

of data-driven methods to identify signalling modules of co-phosphorylated phosphosites 

is explored. Data-driven modules were derived from three phosphoproteomic data sets 

extracted from NTERA2, MCF7 and HL60 cell lines (Hijazi et al., 2020) for further 

analysis. In HL60 and MCF7 proteins that clustered together were found to be closer to 

each other than proteins that belonged to other clusters the same pattern did not emerge 

in NTERA2 cells. The difference, while significant, was very small. While one would 

expect phosphosites that cluster together to be close to each other. These results confirm 

the hypothesis that biological networks are small world networks with most nodes being 

only a few edges away from each other (Jeong et al., 2001; Wagner and Fell, 2001). In 

addition, empirical phosphoproteomic perturbation studies have shown that the signal 

propagates farther and more widely across the proteome than one would expect if the 

signalling network was divided into highly insulated compartments as current models 

(Jassal et al., 2020; Slenter et al., 2018) suggest. This suggests that the idea of a more 

interconnected signalling network, which is reflected in these results, might be closer to 

biological reality.  

I found that the data-driven modules have a greater number of significant enrichments for 

independent data sets and a higher odds ratio compared to the protein modules in the 

Reactome pathway data set, as well as modules extracted from the OmniPath literature 

interaction network. This indicates that data-driven methods have a greater explanatory 

power when it comes to the analysis of phosphoproteomic data by better capturing the 

inherent complexity in the signalling network.  

https://www.zotero.org/google-docs/?zFq3u9
https://www.zotero.org/google-docs/?cSUVwT
https://www.zotero.org/google-docs/?s0gEtc
https://www.zotero.org/google-docs/?s0gEtc
https://www.zotero.org/google-docs/?mL673F
https://www.zotero.org/google-docs/?5hpYNs
https://www.zotero.org/google-docs/?SPoaH8
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Even though functional enrichment could be made, the assignment of function to each of 

the modules remains a challenge. Part of the explanation lies in the fact that evidently the 

modules defined in the literature do not capture the signalling system except to a limited 

extent. Similarly, the GWAS conducted to establish link between modules and traits 

yielded mixed results. The association of traits with Reactome pathways yielded more 

significant results in terms of lower p-values. However, a larger portion of the data-driven 

modules are assigned a trait than the Reactome pathways. In both cases, a relatively low 

portion of modules (11 (data-driven) and 5% (Reactome pathways) were assigned a trait 

indicating that in general, complex traits do not map neatly onto pathways or signalling 

network modules. The slight advantage the data-driven modules have might be due to 

the fact that phospho-signals propagate more widely throughout the signalling network 

than is often depicted in the literature (Humphrey et al., 2015; Köksal et al., 2018; Olsen 

et al., 2006). Since, they capture this property of the signalling network which might better 

reflect the distribution of trait associated mutations across the network (Dozmorov et al., 

2020).  

On the other hand, I found that many of the modules were significantly correlated with 

transcription factor activities and kinase activities across biological samples and cell lines. 

Indeed, looking at the top module- transcription factor activity correlation for each module, 

a higher top correlation was achieved between the data-driven modules then the 

Reactome pathways. The same was true for kinase activities, indicating a biologically 

meaningful signal that outperforms current pathway models. At the same time, these 

results are surprising due to the fact that our current methods of assessing kinase and 

transcription factor activities are based on known targets of these molecules. These 

results perhaps reflect that the assignment of protein interactions are compartmentalized 

in a somewhat arbitrary way in the current pathway annotations (Domingo-Fernández et 

al., 2018), while cross-talks are common and the interaction network is more 

interconnected than the pathways databases reflect (Vert and Chory, 2011).  

Furthermore, I looked into the ability of the modules to predict co-occurrences in signalling 

pathways in concert with high throughput data, RNAseq from human tissue (Thul et al., 

2017; Uhlén et al., 2015, 2013) and co-phosphorylation from cell line data (Roumeliotis 

et al., 2017). While the modules had a limited predictive power which reflects the 

https://www.zotero.org/google-docs/?xHuaBZ
https://www.zotero.org/google-docs/?xHuaBZ
https://www.zotero.org/google-docs/?QaAotM
https://www.zotero.org/google-docs/?QaAotM
https://www.zotero.org/google-docs/?941hlo
https://www.zotero.org/google-docs/?941hlo
https://www.zotero.org/google-docs/?tWSFty
https://www.zotero.org/google-docs/?julaBo
https://www.zotero.org/google-docs/?julaBo
https://www.zotero.org/google-docs/?EJRIBI
https://www.zotero.org/google-docs/?EJRIBI
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challenge it has been to assign biological function to the modules, I found that the 

modules slightly improved predictive performance when combined co-phosphorylation 

while not improving the predictive power of co-expression when these features are 

combined. Interestingly, co-expression seems to have a higher predictive power than co-

phosphorylation. These results are counter to what would be expected as phosphorylation 

should in theory better reflect signal propagation through signalling pathways but can 

partly be explained by the large scale of the understudied phosphoproteome. These 

results however, agree with analysis done recently (Szalai and Saez-Rodriguez, 2020) 

which found that pathways as defined in the literature overlap significantly with 

transcription modules which explains the surprising finding that RNAseq data has higher 

explanatory power when it comes to known pathways. Another reason could be that 

phosphosites are usually not assigned to pathways. In other words, while two proteins 

might share the same signalling pathway only a single phosphosite of many might explain 

a protein’s role in that particular signalling pathway, meaning that phosphorylation on a 

phosphosite level might add significant noise. Interestingly, the two features seemed to 

complement each other. In other words, there is low intersection between high probability 

pairs captured by co-expression and co-phosphorylation, particularly, when looking at 

phosphosite pairs that have not been previously assigned to the same pathways. These 

results might indicate that different data sets are needed to fully capture signalling 

processes as each method has its strengths and limitations: Some proteins in a signalling 

process might not be regulated by phosphorylation in which case expression data might 

be more suitable. At the same time, expression profiles might not capture proteins 

regulated by phosphorylation while remaining expressed across conditions. Limitations 

include the tendency of expression data to capture transcription factor modules as 

discussed above while mass spectrometry data has incomplete coverage (Tabb et al., 

2010; Timp and Timp, 2020).  

The main limitation of the data-driven approach stems from technical limitations of data 

generation. In order to identify modules of co-regulated phosphosites several challenges 

need to be overcome. One of the more important ones is that sampling is inherent in mass 

spectrometry data generation meaning that phosphosites captured in one data set are 

often missing in another comparable set (Tabb et al., 2010). Furthermore, static 

https://www.zotero.org/google-docs/?MSgma0
https://www.zotero.org/google-docs/?OvqDXa
https://www.zotero.org/google-docs/?OvqDXa
https://www.zotero.org/google-docs/?20UEWv
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phosphoproteomic data sets often do not capture variation in phospho-signalling across 

samples but rather changes in protein expression levels (Roumeliotis et al., 2017). 

Therefore, it is preferable to incorporate either time series data, that is data sets where 

phosphorylation levels are measured at different time points under otherwise the same 

condition and in the same biological sample (i.e. same tissue or same cell line). Yet 

another issue is context-specificity, meaning that phosphorylation profiles differ a lot 

across different conditions (Saez-Rodriguez et al., 2011). One implication of this is that in 

order to capture all modules active under all environments, an infinite number of data sets 

is needed. It is therefore clear that a complete mapping of human signalling modules will 

remain a challenge in the foreseeable future. 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://www.zotero.org/google-docs/?R4vxHE
https://www.zotero.org/google-docs/?zh1fYw
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5 Conclusion 

The overarching theme of this thesis has been to develop methods to expand our current 

understanding of human cell signalling networks beyond its well-studied components. My 

main contributions lie in the development of largely data-driven methods to predict kinase-

kinase regulatory networks, which I then expanded also to non-kinase-substrates and the 

identification of a set of purely data-driven modules of phospho-signalling. These 

methods, as well as the resulting networks, provide the basis on which to start exploring 

the dark space of human cell signalling networks and also highlight both the extent to 

which this is unexplored and the potential for new hypothesis generation and discovery. 

As more comprehensive datasets become available, these methods can be reapplied to 

continually improve our insights into the human cell signalling network. 

5.1 Summary of results and key findings 

In Chapter 2 I discuss the development, in collaboration with my colleague Brandon 

Invergo (Beltrao group), of a method to predict signed kinase-kinase regulatory circuits 

by using features based on kinase specificities, co-expression, co-phosphorylation and 

phosphosite functionality. We find that our predictions capture known interactions that 

were not included in the training set and we are able to make predictions across the 

spectrum of the kinases regardless of how well they are studied. This is in accordance 

with recent literature from interactomics, which have shown that unbiased protein 

interaction networks do cover the entire spectrum of the proteome rather than the well-

studied portions of it. (Invergo and Beltrao, 2018; Luck et al., 2020; Rolland et al., 2014). 

Furthermore, we find that our kinase network is modular with modules that are functionally 

distinct from one another which agrees with the common but not in reality proven- belief 

that biological systems are modular in structure. Crucially, we find that the kinase-kinase 

predictions can be validated by novel experimental kinase-substrate predictions (Hijazi et 

al., 2020; Sugiyama et al., 2019). With the aid of these novel predictions to support our 

predictors we propose new kinase-kinase regulatory pathways that traverse between the 

three kinase-kinase regulatory relationships: SRC and CDK1, SRC and CDK2 and the 

regulation of PRPF4B by MAPK1. SRC is known to phosphorylate CDK1 

https://www.zotero.org/google-docs/?0O0CDW
https://www.zotero.org/google-docs/?0keQRU
https://www.zotero.org/google-docs/?0keQRU
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(PhosphoSitePlus (Hornbeck et al., 2015), downloaded May 2, 2021) while a signed 

regulatory relationship has not been established between the two. Both of the suggested 

target sites found on CDK1, Y15 and Y19, have a high functional score of > 0.8 which 

adds further evidence of regulation between the two proteins. No relationship is reported 

between the other pairs in OmniPath and there is no association reported in STRING 

(Szklarczyk et al., 2021), suggesting that these two are entirely novel. The relationship 

between MAPK1 and PRPF4B is of particular interest as it was supported by both 

experiments (Hijazi et al., 2020; Sugiyama et al., 2019). In the predictions made by 

Sugiyama et al, MAPK1 is suggested to phosphorylate PRPF4B on position 578 and 580, 

both of which are relatively functional with functional values of 0.46 and 0.53 respectively 

representing the 86th and 93th percentile. Hijazi and colleagues, however, predict 

phosphorylation at sites 87 (functional score of 0.31, 63th percentile) and 93 (functional 

score of 0.55, 94th percentile). So while the data sets do not agree on the phosphosites 

both predict phosphorylation at phosphosites that are predicted to be highly functional. 

In Chapter 3 I discuss an expansion upon the work presented in Chapter 2 where exact 

kinase-substrate relationships are predicted. Predictions are based on a similar set of 

features as discussed in Chapter 2 with the addition of features relevant to the potential 

phospho-acceptor sites. I find that the resulting predictions manage to predict interactions 

between less studied proteins when compared with the established data bases such as 

PhosphoSitePlus. The predictor also manages, for the first time, to predict the sign of the 

kinase-substrate relationships. Furthermore, I find that I am able to capture 

experimentally-derived edges from completely independent datasets. Furthermore, my 

method does better at capturing known kinase-substrates and experimentally predicted 

edges than other state-of-the-art methods (Blom et al., 2004; Horn et al., 2014; Nováček 

et al., 2020; Patrick et al., 2015; Wang et al., 2020), while having a greater coverage of 

the human kinome, with the exception of GPS v.5.0 (Wang et al., 2020). This is potentially 

due to the fact that my method incorporates features based on high throughput data and 

information characterizing phosphosites which allows for kinase-substrate predictions 

that are not purely based on kinase specificities.  

In Chapter 4, I discuss my work on the development of data-driven modules. Current 

modules of signal transduction, represented by curated pathways, (Jassal et al., 2020; 

https://www.zotero.org/google-docs/?MgHzle
https://www.zotero.org/google-docs/?m7OEsl
https://www.zotero.org/google-docs/?3w1bEX
https://www.zotero.org/google-docs/?3w1bEX
https://www.zotero.org/google-docs/?KrtIek
https://www.zotero.org/google-docs/?vzdhGo
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Kanehisa, 2019; Slenter et al., 2018) are insufficient when it comes to explaining high 

throughput data. I find that my modules perform better at capturing phosphorylation 

patterns in independent data sets. However, pinpointing biological function has remained 

a challenge even with the majority of the modules have a significant pathway enrichment. 

Meanwhile, most modules could not be associated with traits vie GWAS analysis 

indicated that most of them were not significantly associated with any trait. It should be 

stated that relatively few Reactome pathways were associated with traits as well, which 

might indicate that the traits tested can only be associated with a few modules and that a 

greater number of traits need to be tested for more general module-trait association. 

Furthermore, traits such as height are complex which means that associated SNPs can 

be expected to be distributed among many modules (Dozmorov et al., 2020). However, 

modules could be associated with kinase and transcription factor activities. The data-

driven modules had a higher association with their most highly associated kinase or 

transcription factor in terms of protein activity compared to the Reactome modules. This 

seems to indicate that there is in fact a strong link between the biological modules and 

wider biological regulation in terms of transcription and phosphorylation. 

5.2 Limitations of this study 

One of the main challenges of this project has been to explore the less studied 

phosphoproteome without over-relying on the literature and thereby succumbing to its 

inherent bias. In the case of kinase-substrate predictions and kinase-kinase relationships, 

we heavily relied on position weight matrices which in turn are constructed from inherently 

biased knowledgebases. While high-throughput associative features and features that 

contain descriptive information on phosphosites and kinases do remedy this in part, 

predictions made by our models are inevitably biased towards previous knowledge. The 

way forward in the prediction of novel kinase-substrates will be to rely more heavily on 

high throughput data. Preferably, perturbation phosphoproteomics data should be used 

as RNA expression is known to poorly correlate with protein levels. Ironically, despite 

reliance on the literature, the accumulation of false positives is always going to be a 

challenge when a large number of predictions are made. In the case of this thesis well 

over 90% of the edges predicted in both chapters will prove hard to validate. Predictions 

https://www.zotero.org/google-docs/?vzdhGo
https://www.zotero.org/google-docs/?TNIoMr
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that involve less studied kinases are particularly hard to assess as they are less likely to 

have any information on them in the data bases. There have been some efforts to 

experimentally predict kinase-substrate relationships (Hijazi et al., 2020; Sugiyama et al., 

2019). These methods, however, do themselves accumulate a large number of kinase-

substrate predictions that cannot be corroborated by any external source. Similarly, there 

are some methodological issues such as the problems of identifying direct interactions in 

the case of cell line studies while in vitro studies are conducted under conditions that are 

not present in the cell. Nevertheless, these studies are invaluable in the validation of in 

silico predictions as they provide a way of validation that is independent of the biased 

literature sources. Edges that are predicted by multiple experimental approaches, 

provided that the methodology is different enough can be expected to be fairly likely to be 

accurate. 

One thing to consider for the future development of the work described in chapter four is 

the use of databases that are known to include pathways that are too detailed on one 

hand and not well defined on the other hand as a reference point against which the data-

driven modules are compared. Databases with more standardized and uniformly curated 

pathway databases such as SIGNOR (Licata et al., 2020) or SignaLink (Csabai et al., 

2021) could be more useful as a reference point to assess the performance of the data-

driven modules.  

The available phosphoproteomic data sets also provide us with a different set of 

challenges. Currently, diseases are a popular field for phospho-proteomic study and for 

a valid reason. Cancers and other diseases are known to lead to dysregulation of 

phospho-signalling and mutations common in cancers are often found in signalling 

proteins (Yaffe, 2019). In addition, current phosphoproteomics protocols rely on very large 

numbers of cells to acquire high quality data. Therefore, large-scale phosphoproteomic 

studies are often conducted in disease models such as cancer cell lines. However, this 

raises the question of whether modules extracted from these cell lines and protein 

relationship predictions based on the data are generally valid under normal conditions. 

Large scale phosphoproteomic studies need to be studied under a diverse set of 

conditions including healthy tissue for any truly general assumption to be made. In this 

thesis, data sets extracted from cancer cell lines and cancer samples were the primary 

https://www.zotero.org/google-docs/?rjuMvY
https://www.zotero.org/google-docs/?rjuMvY
https://www.zotero.org/google-docs/?ggMbV8
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source for module extraction. The independent data sets used to showcase the improved 

ability of the modules to capture independent regulation were also from cancer cell line 

data sets. It is therefore not clear, due to the ubiquitous use of cancer data sets, if the 

results presented here do generally apply in healthy tissue, or indeed in tissues other than 

breast, that was used in our study. Similarly, cancer data was used to generate the 

phosphoproteomic based features for kinase-substrate predictions. While other features 

such as co-expression from tissue data and in particular PWMs do not exhibit this bias, it 

is conceivable that the inclusion of these features has made the predictions skew towards 

a more cancer specific network of interactions. 

Phospho-enriched mass spectrometry data sets also pose challenges to the aims of this 

thesis. This is partly due to context specificity but also due to less than full recovery of 

phospho-peptides. This means that unlike RNAseq data sets, the phosphosites quantified 

can vary across different measurements. This makes capturing trends and system-wide 

analyses difficult due to data missingness. As a result, the data-driven modules described 

in this thesis were generated from different data sets and are therefore all cell type specific 

to an extent since they were generated from different perturbation states (kinase 

inhibitors).  

5.3 Future directions 

At present, our understanding of the human signalling network is limited. Only a fraction 

of the more than 100,000 phosphosites have a known upstream kinase and around 20% 

of kinases remain without a single annotated substrate (Needham et al., 2019) with most 

known kinase-substrate relationships occurring between a well-studied kinase and a well-

studied substrate protein (Invergo and Beltrao, 2018). Due to our limited knowledge the 

current models of signalling pathways fall short when it comes to predicting outcome of 

perturbations in the signalling system (Humphrey et al., 2015; Köksal et al., 2018; Olsen 

et al., 2006). At the same time the signalling system is at the centre of many complex 

chronic disease such as cancers (Yaffe, 2019), with kinases being some of the most 

commonly dysregulated cancer driver proteins (Zhang et al., 2009). This stresses the 

need to expand upon our knowledge of the phosphoproteomic system due to its integral 

role in cell decision making and development and as a result in diseases. At the same 

https://www.zotero.org/google-docs/?tCbV3t
https://www.zotero.org/google-docs/?hhHwfk
https://www.zotero.org/google-docs/?WrBwwE
https://www.zotero.org/google-docs/?WrBwwE
https://www.zotero.org/google-docs/?XcfjYK
https://www.zotero.org/google-docs/?OEMXMi
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time, the signalling system is complex and context specific (Hill et al., 2017) meaning that 

not all pathways can be captured at once with the same data set. Furthermore, due the 

number of potential kinase-substrate interactions and regulatory circuits, computational 

methods are needed to spearhead the exploration of the human phosphoproteome.  

In this thesis I set out to explore the understudied phosphoproteome. I described methods 

predicting kinase-substrate and kinase-kinase interactions by combining kinase 

specificities and high throughput data. In this way my collaborators and I managed to 

make predictions even for less studied kinases and proteins. Additionally, I discuss the 

generation of data-driven signalling modules that better capture independent 

phosphoproteomic data sets, and discuss ways to assign function to these novel data-

driven modules.  

There are, however, remaining issues. While here I describe a more data-driven method 

for kinase-substrate predictions, predictions still rely on the literature as kinase specificity 

models feature heavily in predictions, them being the most powerful predictive feature 

(Chapters 2 and 3). Kinase specificity models have also been commonly used for kinase-

substrate predictions by others (Horn et al., 2014; Invergo et al., 2020; Patrick et al., 

2015). While literature-derived kinase specificity models are not without problems such 

as the introduction of bias, the results presented here show that the generation of high-

quality specificity models for all kinases are crucial for accurate kinase-substrate 

predictions. In the case of the inference of kinase-kinase relationships, PWMs provide 

directionality that would be hard to obtain simply by using features based on high 

throughput data. Furthermore, they have the ability to capture direct interactions whereas 

it is hard to distinguish between direct and indirect effects simply from correlative analysis 

of phosphoproteomics or RNAseq data. A way of getting around the study-bias introduced 

by applying these models for kinase-substrate predictions would be to obtain a high-

quality set of unbiased and experimentally derived relationships. While the accumulation 

of false positives is an inherent problem in these kinds of high throughput experiments, 

the intersection of different sets of kinase-substrate predictions, derived by different 

methods, could be used to produce a high confidence set of kinase-substrates from which 

specificity models could be constructed. While, to my knowledge, this has not been 

attempted before it could be a viable strategy once a greater number of such experiments 
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are made and under greater numbers of conditions. These could also help validate 

computational predictions and prioritize kinase-substrates for further testing with low-

throughput, more accurate methods. Many of these methods depend on mass 

spectrometry and while some methods have made predictions for a great number of 

kinases some substrates might not be captured which makes the intersection between 

such sets challenging. I also found that, when fitting kinase-substrate predictions to 

phosphoproteomic data sets. Therefore, hypothetically using multiple data sets we could 

assign higher confidence to edges that are included in multiple sub-networks derived from 

multiple high-throughput data sets.  

Assignment of biological function to novel data-driven modules is also a major challenge 

even though indicative functional enrichment can be found, since our current state of the 

art knowledge on functional units in the network is quite limited when it comes to 

explaining high throughput phosphoproteomic data. While association with biological 

molecules such as transcription factors and kinases give us an idea of their function a 

better functional characterization is needed. On way of addressing this issue could be to 

apply forward genetics such as CRISPR-based assays (Shalem et al., 2015) for functional 

annotation and phenotypic screening. Already, such methods have been used to 

simultaneously modifying the expression of multiple genes, providing us with a promising 

way to experimentally validate the signalling modules generated in this project by 

analysing the phenotypic impact of module activation or inhibition (Konermann et al., 

2015).  

Central to the limitations of this thesis are the limitations of the use of mass spectrometry 

for phosphosite quantification. Recent technologies in particular nanopores have been 

used to capture primary structure of unfolded proteins and experiments such as the one 

conducted by Rosen (Rosen et al., 2014) and colleagues showed that phosphorylation 

could be captured. Rosen et al. identified phosphorylation on thioredoxin on two adjacent 

sites and were able to differentiate between single and double phosphorylation using α-

hemolysin pore. Similarly, AeL and FraC nanopores have been used to identify 

phosphorylation on peptides (Meng et al., 2019; Restrepo-Pérez et al., 2019). This 

approach works on the single molecule level and therefore addresses the inability of mass 

spectrometers to detect low abundance proteins. None of these experiments sequenced 
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the proteins or peptides, however, nanopores have already been used for DNA 

sequencing by passing single strand DNA through the pores (Manrao et al., 2012). The 

development of similar approaches for protein sequencing is a very ‘hot’ field currently. 

Proteins, however, are more complex due to the 20 different amino acids and need to be 

unfolded to be able to be sequences by nanopores. While proteins have been passed 

through nanopores (Kennedy et al., 2016), differentiating between the 20 different amino 

acids remains a challenge partly because of their smaller size. Individual amino acids 

have been identified as well as phosphotyrosine (Ohshiro et al., 2014; Zhao et al., 2014) 

but many have remained indistinguishable. In 2019, Ouldali and colleagues found that 

aerolysin nanopore could be used to identify 13 of the 20 amino acids while being able to 

detect even more by chemically modifying the nanopore. A way of sequencing proteins 

in this manner might address the difficulty inherent in assigning phosphoryl group to a 

specific site in 10 AA long peptide that arises due to the fact that multiple serine/threonine 

and tyrosine residues could be present in the peptide. These advances could provide us 

with a more accurate and complete coverage of the cellular phosphoproteome. 

Nanopores’ ability to capture low abundance protein might also solve another problem; 

that of data sparsity. With more complete proteomic data sets, we might be able to extract 

more general modules and better identify modules that are active across most conditions, 

which would further aid in the mapping of the architecture of phospho-signalling. 

Furthermore, nanopore technologies are relatively cheap compared to mass 

spectrometers. Another method that has been proposed as an alternative to the mass 

spectrometer in protein identification and quantification is protein fingerprinting where 

certain amino acids are tagged with fluorescent reporters. Recently, Swaminathan and 

colleagues coupled fluorescent tagging with Edman’s degradation for sequencing 

(Swaminathan et al., 2018). Their method works for thousands to millions of protein 

molecules in parallel. This method, however is slow and there still challenges that have 

to be addressed if they are to be used for PTM detection as PTMs need to be specifically 

labelled (Swaminathan et al., 2018). To date, labelling chemistry is only available for a 

small number of PTMs. Put together, these advances promise alternatives to mass 

spectrometers that address several of the problems inherent in mass spectrometry data 

generation, namely, low specificity, high cost, low reproducibility due to sampling and 
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difficulty in pinpointing the locations of PTMs in the sequence. As a result, better informed 

hypotheses can be generated for testing as well as a more robust conclusions can be 

drawn from the data which in turn makes data-driven exploration of the “dark” 

phosphoproteome a less daunting task. 

Nevertheless the work discussed in this thesis is a valuable first step towards more data-

driven approaches in the identification of signalling circuits signalling modules which in 

turn could prove useful in the development of targeted drug therapies. Computational and 

data-driven methods could provide us with the tools necessary both to ignore kinases that 

are likely to be more important to cell function or participate in a greater number of 

interactions than previously thought as well as target previously understudied or 

neglected phosphorylation events.  

5.4 Concluding remarks 

This study has focused on the exploration of the less studied parts of the 

phosphoproteome. My results indicate that data-driven methods of kinase-substrate 

prediction perform well at capturing novel edges when kinase specificity models are 

combined with high throughput data and various phosphosite related features. This 

combination works better at capturing both known interactions and experimentally 

predicted interactions than other state of the art methods that often rely solely on kinase 

specificity models. We show that machine learning methods can make predictions on 

regulatory signs when high throughput data is combined with high throughput predictors 

and other information such as evolutionary age and location within the protein are 

incorporated into the predictions. This is true both for kinase-kinase relationship 

predictions as well as kinase-substrate predictions. Furthermore, the computational 

methods proposed here are able to make high confidence predictions for less studied 

kinases and substrates. However, heavy reliance on biased data bases remains an issue 

in this field. 

Another take home message from the results presented in this thesis is that data-driven 

modules, derived from clusters of co-phosphorylated phosphosites, are better suited for 

describing phosphoproteomic data compared to pathways as they are laid out in the data 

bases. The challenge of assigning a function to these modules remains, even though 
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some hints can be drawn from associating the modules with the significant pathway 

enrichments, the activity profile of kinases and transcription factors. Then there is the 

question of high-quality high throughput data. For general broadly applicable modules to 

be generated a large number of high coverage and high throughput data sets need to be 

generated. Novel technologies such as nanopores could potentially rise to the challenge 

and meet this need but the use of purely data-driven modules will remain a challenge in 

the foreseeable future not only due to technical and computational difficulty in generating 

them in a robust manner but also due to the paradigm shift needed to move away from 

the static models (pathways) that are currently being used. Nevertheless, due to the fact 

that these modules do seem to perform better at capturing phosphoproteomic changes 

that occur under perturbation, there is an indication that data-driven approaches are 

needed to capture the and analyse and understand the human phospho-signalling 

network architecture on a system wide scale.  
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https://www.zotero.org/google-docs/?IaoO5Z
https://www.zotero.org/google-docs/?IaoO5Z
https://www.zotero.org/google-docs/?IaoO5Z
https://www.zotero.org/google-docs/?IaoO5Z
https://www.zotero.org/google-docs/?IaoO5Z
https://www.zotero.org/google-docs/?IaoO5Z
https://www.zotero.org/google-docs/?IaoO5Z
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Appendix 3.1 

Features considered for kinase-substrate model training (Chapter 3.2.3). Apart from: 

Residue, PWM score, Coreg_293, Functional_score, GTEx, RNA_tissue, RNA_cell, 

Kinase_selectivity, Substrate_selectivity, NTERA2_coreg, MCF7_coreg and 

HL60_coreg. The features were downloaded from previous publication by Ochoa et al. 

(Ochoa et al., 2020) 

  

Name of feature Description Imputation Used for kinase-

substrate 

prediction 

Used for sign 

prediction 

Residue phospho acceptor 

residue: S/T/Y 

No missing 

values 

Y Y 

PWM score Score generated by fitting 

phosphosite to kinases’ 

PWM (Invergo et al., 

2020) 

No missing 

values 

Y Y 

Coreg_293 Association between 

kinase activity and 

phosphorylation of 

phosphosite across 86 

cancer samples (Mertins 

et al., 2016) 

0 Y Y 

Functional_score Score denoting the 

probability of phosphosite 

to be functional(Ochoa et 

al., 2020) 

No missing 

values 

Y Y 

GTEx Co-expression between 

kinase and putative 

substrate gene across 

tissues GTEx( GTEx 

Consortium ,2013)  

0 Y Y 

https://www.zotero.org/google-docs/?C11qCu
https://www.zotero.org/google-docs/?C11qCu
https://www.zotero.org/google-docs/?bPRpOD
https://www.zotero.org/google-docs/?bPRpOD
https://www.zotero.org/google-docs/?p7YhKz
https://www.zotero.org/google-docs/?p7YhKz
https://www.zotero.org/google-docs/?a1bVyQ
https://www.zotero.org/google-docs/?a1bVyQ
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RNA_tissue Co-expression between 

kinase and putative 

substrate gene across 

tissues ( Uhlén et al., 

2015) 

0 Y Y 

RNA_cell Co-expression between 

kinase and putative 

substrate gene across 

cell lines (Thul et al., 

2017) 

0 Y Y 

Kinase_selectivity kinase skewness in 

expression distribution 

across tissues (Uhlén et 

al., 2015) (See chapter 2) 

0 Y Y 

Substrate_selectivi

ty 

Substrate protein 

skewness in expression 

distribution across tissues 

(Uhlén et al., 2015) (See 

chapter 2) 

0 Y Y 

NTERA2_coreg Association between 

kinase activity and 

phosphorylation of 

phosphosite across 63 

kinase inhibition 

conditions, NTERA2 cell 

line (Hijazi et al., 2020). 

0 Y Y 

MCF7_coreg Association between 

kinase activity and 

phosphorylation of 

phosphosite across 63 

kinase inhibition 

conditions, MCF7 cell line 

(Hijazi et al., 2020). 

0 Y Y 

https://www.zotero.org/google-docs/?u5AP3y
https://www.zotero.org/google-docs/?u5AP3y
https://www.zotero.org/google-docs/?nsp3q8
https://www.zotero.org/google-docs/?nsp3q8
https://www.zotero.org/google-docs/?lcYRDU
https://www.zotero.org/google-docs/?lcYRDU
https://www.zotero.org/google-docs/?fkTL0X
https://www.zotero.org/google-docs/?63qcI3
https://www.zotero.org/google-docs/?0k5Tg1
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HL60_coreg Association between 

kinase activity and 

phosphorylation of 

phosphosite across 63 

kinase inhibition 

conditions, HL60 cell line 

(Hijazi et al., 2020).  

0 Y Y 

Is_DISOPRED Indicates if phosphosite is 

disordered. If Disopred v2 

score is lower than 0.5, 

the site is considered 

disordered (Jones and 

Cozzetto, 2015). 

Phosphosite

s with 

missing 

values are 

assumed to 

be 

disordered 

N Y 

DISOPRED score The phosphosite disorder 

score as given by 

DISOPRED v2 (Jones 

and Cozzetto, 2015). 

Median 

imputation 

Y Y 

Exp3d_ala_ddG_e

ffect 

Discretized changes in 

Gibbs energy when 

residue is mutated into 

alanine. Measured by 

FoldX v4 (Guerois et al., 

2002) 

Missing 

data set to 

unknown 

N Y 

Exp3d_acid_ddG_

effect 

Discretized average 

changes in Gibbs energy 

when residue is mutated 

into acidic residue. 

Measured by FoldX v4 

(Guerois et al., 2002) 

Missing 

data set to 

unknown 

Y Y 

https://www.zotero.org/google-docs/?AmoD41
https://www.zotero.org/google-docs/?LgCdht
https://www.zotero.org/google-docs/?LgCdht
https://www.zotero.org/google-docs/?o5u5Up
https://www.zotero.org/google-docs/?o5u5Up
https://www.zotero.org/google-docs/?wMRiJI
https://www.zotero.org/google-docs/?wMRiJI
https://www.zotero.org/google-docs/?SHng8K
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Log_10_of_hotspo

t_pval_min 

The feature quantifies 

occurrence of 

phosphorylation events 

within the structural 

region. The p-value 

indicates if the 

phosphosite is found 

within a region within 

which phosphosites are 

significantly enriched 

(Strumillo et al., 2019) 

0 Y Y 

Is_hotspot If the phosphosite has 

hotspot (Strumillo et al., 

2019) enrichment 

p_value of <3.36e-07 and 

has been found in more 

than 10 MS data sets, the 

site is considered a 

hotspot. 

Missing 

values set 

to FALSE 

N Y 
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Is_Interface Data on experimentally 

resolved or modelled 

interaction interfaces 

were downloaded from 

Interactome3d (Mosca et 

al., 2013). NACCESS 

(Lee and Richards, 1971) 

was used to calculate 

relative solvent 

accessibility of atoms. I 

the relative solvent 

accessibility changed 

between interacting and 

non-interacting form the 

residue was considered 

to be on the interface 

Missing 

values are 

set to 

FALSE 

Y Y 

Adj_ptms w21 Number of phosphosites 

within +/- 10 residues on 

either side of the 

phosphosite. 

Zero Y Y 

Netpho_max_all Highest posterior 

probability derived from 

all models in NetPhorest 

v2.1 (Horn et al., 2014). 

Median 

imputation 

Y Y 

Netpho_max_KIN Highest posterior 

probability derived from 

kinase models in 

NetPhorest v2.1 (Horn et 

al., 2014). 

Median 

imputation 

Y Y 

https://www.zotero.org/google-docs/?hRqIdL
https://www.zotero.org/google-docs/?hRqIdL
https://www.zotero.org/google-docs/?bdkg9Y
https://www.zotero.org/google-docs/?lCbsml
https://www.zotero.org/google-docs/?YzeZR7
https://www.zotero.org/google-docs/?YzeZR7
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Paxdb_abundance

_log10 

Consensus protein 

abundance as deposited 

in the PaxD(Wang et al., 

2012) data base 

Median 

imputation 

Y Y 

W0_mya Age of the phosphosite. 

The age was estimated 

by combining 

phylogenetic data with 

cross species 

phosphoproteomics 

(Ochoa et al., 2020). 

0 Y Y 

W3_mya Age of the +/- 3 amino 

acid region surrounding 

the phosphosite. The age 

was estimated by 

combining phylogenetic 

data with cross species 

phosphoproteomics 

(Ochoa et al., 2020). 

0 Y Y 

Quant_top1 Number of times the 

phosphosite was in the 

1% regulated 

phosphosites across 435 

conditions (Ochoa et al., 

2016). 

0 Y Y 

Quant_top5 Number of times the 

phosphosite was in the 

1% regulated 

phosphosites across 435 

conditions (Ochoa et al., 

2016) 

0 Y Y 

https://www.zotero.org/google-docs/?oFpO6s
https://www.zotero.org/google-docs/?oFpO6s
https://www.zotero.org/google-docs/?ypD3PK
https://www.zotero.org/google-docs/?WHoEyJ
https://www.zotero.org/google-docs/?ZKGaRM
https://www.zotero.org/google-docs/?ZKGaRM
https://www.zotero.org/google-docs/?kRMAUA
https://www.zotero.org/google-docs/?kRMAUA
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PWM_max_mss The best fit to the PSSM 

of 143 kinases with at 

least 10 known. 

Measured as a score 

from 0 to 1 with the 

MATCH algorithm (Kel et 

al., 2003).  

Median 

imputation 

Y Y 

ACCpro Solvent accessibility as 

predicted by ACCpro 

(Pollastri et al., 2002a) 

Missing 

values set 

to unknown 

Y Y 

SSpro Secondary structures 

estimates form 

SSpro(Pollastri et al., 

2002b) 

Missing 

values set 

to unknown 

N Y 

SSpro8 One of the following 

class: alpha-helix, 3-10 

helix, pi-helix, extended 

strand, beta-bridge, turn, 

bend and the 

rest as predicted by 

SSpro8 (Pollastri et al., 

2002b) 

Missing 

values set 

to unknown 

N Y 

SIFT_min_score SIFT (Dana et al., 2019) 

score is used as a proxy 

for conservation as it 

predicts functional impact 

of variants. This scores 

calculates minimum 

score across all variants 

Median 

imputation 

Y Y 

https://www.zotero.org/google-docs/?jfSrGQ
https://www.zotero.org/google-docs/?a9nuYN
https://www.zotero.org/google-docs/?a9nuYN
https://www.zotero.org/google-docs/?BgPX04
https://www.zotero.org/google-docs/?BgPX04
https://www.zotero.org/google-docs/?8Inkrd
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SIFT_mean_score SIFT (Dana et al., 2019) 

score is used as a proxy 

for conservation as it 

predicts functional impact 

of variants. This scores 

calculates mean score 

across all variants 

Median 

imputation 

Y Y 

SIFT _ala_score SIFT (Dana et al., 2019) 

score is used as a proxy 

for conservation as it 

predicts functional impact 

of variants. This scores 

calculates score of 

alanine variants 

Median 

imputation 

Y Y 

SIFT_acid_score SIFT (Dana et al., 2019) 

score is used as a proxy 

for conservation as it 

predicts functional impact 

of variants. This score 

calculates average score 

across variants leading to 

negative charge. 

Median 

imputation 

Y Y 

IsProteinDomain Indicates whether 

phosphosite is in a 

protein domain, data 

derived from Uniprot 

(UniProt Consortium, 

2018). 

Missing 

values set 

to FALSE 

Y Y 

https://www.zotero.org/google-docs/?poIlgl
https://www.zotero.org/google-docs/?ktOBm0
https://www.zotero.org/google-docs/?shdraH
https://www.zotero.org/google-docs/?whUFYk
https://www.zotero.org/google-docs/?whUFYk
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IsProteinKinaseDo

main 

Indicates whether 

phosphosite is in a kinase 

domain, data derived 

from Uniprot 

(UniProt Consortium, 

2018). 

Missing 

values set 

to FALSE 

N Y 

IsUniprotRegion Indicates whether 

phosphosite is in a 

protein domain, data 

derived from Uniprot 

(UniProt Consortium, 

2018). 

Missing 

values set 

to FALSE 

N Y 

IsUniprotCompBia

s 

Indicates whether 

phosphosite is found in a 

compositionally biased 

region, data derived from 

UniProt 

(UniProt Consortium, 

2018). 

Missing 

values set 

to FALSE 

N N 

IsUniprotRepeat Indicates whether 

phosphosite is found 

within a repeated motif, 

data derived from Uniprot 

(UniProt Consortium, 

2018). 

Missing 

values set 

to FALSE 

N N 

IsUniprotZnFinger Indicates whether 

phosphosite is in a zinc 

finger, data derived from 

Uniprot 

(UniProt Consortium, 

2018). 

Missing 

values set 

to FALSE 

N N 

IsCytoplasmic Indicates whether 

phosphosite's protein is 

found in the cytoplasm, 

data derived from Uniprot 

(UniProt Consortium, 

2018). 

Missing 

values set 

to FALSE 

Y Y 

https://www.zotero.org/google-docs/?whUFYk
https://www.zotero.org/google-docs/?whUFYk
https://www.zotero.org/google-docs/?whUFYk
https://www.zotero.org/google-docs/?whUFYk
https://www.zotero.org/google-docs/?whUFYk
https://www.zotero.org/google-docs/?whUFYk
https://www.zotero.org/google-docs/?whUFYk
https://www.zotero.org/google-docs/?whUFYk
https://www.zotero.org/google-docs/?whUFYk
https://www.zotero.org/google-docs/?whUFYk
https://www.zotero.org/google-docs/?whUFYk
https://www.zotero.org/google-docs/?whUFYk
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IsMotif Indicates whether 

phosphosite is found in 

any other curated motif, 

data derived from 

Uniprot. 

Missing 

values set 

to FALSE 

N N 

IsELMLinearMotif Indicates if flanking motif 

is found in a linear motif 

listed in ELM (Dinkel et 

al., 2016). 

Missing 

values set 

to FALSE 

Y Y 

IsEV_ala_predictio

n_epistatic5 

Indicates If ala mutation 

leads to epistatic effects. 

Calculated with the 

EVmutation algorithm 

(Hopf et al., 2017). 

Missing 

values set 

to FALSE 

N Y 

IsKinaseCoreg Indicates if phosphosite is 

co-regulated with a 

kinase. Data used for 

analysis from compilation 

of phosphoproteomic 

data with 435 conditions 

(Ochoa et al., 2016). 

Missing 

values set 

to FALSE 

Y Y 

 

 

 

 

 
 

 

 

 

https://www.zotero.org/google-docs/?uk4hVn
https://www.zotero.org/google-docs/?uk4hVn
https://www.zotero.org/google-docs/?Qclrim
https://www.zotero.org/google-docs/?Q8kekF
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Appendix 3.2 

Kinase-substrate relationships that are predicted by experimental kinase-substrate 

prediction (Chapter 3.3.3). 

 

Kinase Substrate Probability 

AKT1 ABLIM1 452 0.1995 

AKT1 ARHGEF12 1288 0.1942 

AKT1 MEPCE 152 0.2902 

AKT2 ARHGEF12 1288 0.0611 

AKT2 HDGFL2 454 0.0469 

AKT2 NDRG1 367 0.0623 

AKT2 PLEC 4386 0.7158 

AKT3 MEPCE 152 0.032 

CAMK2A ARFGAP2 432 0.5819 

CAMK2D ARFGAP2 432 0.132 

CAMK2D CEP170 881 0.0158 

CAMK2D EIF4B 207 0.031 

CAMK2D HNRNPM 528 0.0848 

CAMK2G ARFGAP2 432 0.7265 

CAMK2G EIF4B 207 0.4385 

CDK1 PDCD4 94 0.8022 

CDK2 AHNAK 177 0.043 

CDK2 DDX21 71 0.7653 

CDK2 EFHD2 74 0.7721 

CDK2 FAM122B 115 0.8951 

CDK2 HNRNPA2B1 259 0.8051 

CDK2 MEF2D 180 0.3348 

CDK2 NFIC 323 0.8574 

CDK2 NOP2 732 0.8644 

CDK2 NUMA1 2000 0.9232 

CDK2 PDCD4 94 0.626 



  

176 
 

CDK2 UBAP2L 416 0.785 

CDK5 MARK2 619 0.6949 

CDK5 PDCD4 94 0.6782 

CDK6 MEPCE 213 0.2002 

CDK6 RBMX 208 0.2908 

CDK9 EFHD2 74 0.0756 

CDK9 MEPCE 213 0.1441 

CDK9 MEPCE 217 0.4568 

CDK9 RBMX 208 0.1526 

CDK9 ZC3HAV1 378 0.0314 

CSNK1E EEF1D 147 0.0669 

CSNK1E PDXDC1 718 0.0666 

CSNK2A2 FXR2 411 0.0075 

CSNK2A2 UPF3B 169 0.0145 

MAP3K1 PRKAR2A 99 0.1698 

MAP4K4 RPLP1 104 0.184 

MAP4K4 RPLP2 105 0.2103 

MAP4K4 UFD1 299 0.0628 

MAP4K5 EIF3A 584 0.0793 

MAP4K5 IMPDH2 416 0.4189 

MAPK1 EEF1D 162 0.2224 

MAPK1 WAPL 221 0.5611 

MAPK1 WAPL 226 0.3193 

MAPK1 XRCC1 453 0.7276 

MAPK3 WAPL 221 0.4199 

MAPK3 WAPL 226 0.4219 

MAPK9 ARID1A 363 0.5973 

MAPK9 EFHD2 74 0.8148 

MAPK9 RANBP2 1396 0.4317 

MAPK9 WBP11 237 0.2654 

MELK RANBP1 60 0.7485 



  

177 
 

MINK1 EIF3A 584 0.0228 

MINK1 HNRNPAB 242 0.0294 

MINK1 HNRNPM 365 0.0092 

MINK1 NPM1 260 0.056 

MINK1 UFD1 299 0.0211 

PAK1 EIF3A 584 0.0566 

PAK1 NUCB1 369 0.1064 

PAK3 EIF3A 584 0.0213 

PLK1 KPNA3 60 0.7032 

PLK1 UBA1 820 0.4098 

PRKAA1 PPP1R12A 445 0.3224 

PRKACA HDGFL2 454 0.3345 

PRKACB HDGFL2 454 0.1738 

PRKCI PRKAR2A 99 0.2646 

RPS6KA2 EIF4H 21 0.341 

RPS6KA2 NCBP1 22 0.7327 

RPS6KA2 NDRG3 331 0.7722 

RPS6KA3 NCBP1 22 0.6674 

SRPK3 HNRNPK 284 0.1012 
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Appendix 4.1  

Top association between module enrichment odds ratio and transcription factor 

activities (Chapter 4.3.6). 

 

Module TF Spearman's rho p-value 

1 E2F1 0.2839 4.34E-19 

2 E2F1 0.44819 3.56E-48 

3 E2F1 0.50353 2.82E-62 

4 E2F1 0.35848 3.25E-30 

5 E2F1 0.37734 1.52E-33 

6 E2F4 0.47739 2.71E-55 

7 E2F1 0.38339 1.16E-34 

8 E2F4 0.49037 1.10E-58 

9 E2F1 0.28622 2.18E-19 

10 E2F1 0.40358 1.47E-38 

11 E2F1 0.44118 1.44E-46 

12 E2F1 0.35405 1.82E-29 

13 E2F1 0.35096 5.99E-29 

14 E2F1 0.37464 4.70E-33 

15 E2F4 0.39572 5.21E-37 

16 E2F1 0.45556 6.60E-50 

17 E2F1 0.33224 6.08E-26 

18 E2F1 0.38042 4.13E-34 

19 E2F1 0.43719 1.14E-45 

20 E2F4 0.44689 7.12E-48 

21 E2F4 0.49415 1.06E-59 

22 E2F4 0.45269 3.15E-49 

23 E2F1 0.4151 6.63E-41 

24 E2F1 0.45386 1.67E-49 

25 E2F4 0.50994 4.40E-64 

26 E2F1 0.3677 8.15E-32 



  

179 
 

27 E2F4 0.42722 1.79E-43 

28 E2F1 0.40789 2.00E-39 

29 E2F4 0.45919 8.91E-51 

30 FOXM1 0.40671 3.47E-39 

31 E2F1 0.36964 3.69E-32 

32 FOXM1 0.40609 4.63E-39 

33 E2F1 0.43162 1.96E-44 

34 E2F1 0.41255 2.24E-40 

35 E2F1 0.42121 3.47E-42 

36 E2F1 0.45559 6.50E-50 

37 E2F1 0.39537 6.11E-37 

38 E2F1 0.40634 4.12E-39 

39 E2F1 0.41392 1.17E-40 

40 E2F1 0.43104 2.62E-44 

41 E2F1 0.41101 4.62E-40 

42 E2F4 0.55496 6.38E-78 

43 E2F1 0.43966 3.19E-46 

44 E2F4 0.56799 2.45E-82 

45 E2F1 0.40104 4.72E-38 

46 E2F1 0.41961 7.53E-42 

47 E2F1 0.4198 6.88E-42 

48 E2F4 0.42698 2.01E-43 

49 E2F1 0.45439 1.25E-49 

50 E2F1 0.40835 1.61E-39 

51 E2F1 0.46981 2.23E-53 

52 E2F1 0.46734 9.15E-53 

53 FOXM1 0.40762 2.27E-39 

54 E2F1 0.38956 8.01E-36 

55 E2F1 0.49449 8.57E-60 

56 E2F1 0.45929 8.41E-51 

57 E2F1 0.36627 1.45E-31 
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58 E2F1 0.4245 6.90E-43 

59 FOXM1 0.4015 3.82E-38 

60 E2F1 0.39685 3.15E-37 

61 E2F1 0.42908 7.03E-44 

62 E2F4 0.34816 1.74E-28 

63 E2F1 0.37465 4.67E-33 

64 E2F1 0.35515 1.19E-29 

65 FOXM1 0.39422 1.02E-36 

66 E2F1 0.27969 1.50E-18 

67 E2F4 0.41072 5.31E-40 

68 FOXM1 0.34078 2.74E-27 

69 E2F1 0.2867 1.89E-19 

70 E2F1 0.30712 3.20E-22 

71 E2F1 0.36149 9.87E-31 

72 E2F1 0.31887 6.44E-24 

73 E2F1 0.36299 5.42E-31 

74 FOXM1 0.35933 2.32E-30 

75 E2F1 0.27516 5.55E-18 

76 E2F1 0.38734 2.11E-35 

77 E2F4 0.44946 1.80E-48 

78 E2F4 0.27232 1.24E-17 

79 E2F1 0.26103 2.80E-16 

80 E2F1 0.22877 9.30E-13 

81 E2F1 0.33544 1.93E-26 

82 FOXM1 0.30136 2.04E-21 

83 PRDM14 0.19306 1.94E-09 

84 E2F1 0.23057 6.09E-13 

85 E2F1 0.41845 1.33E-41 

86 E2F4 0.46023 5.02E-51 

87 MYC 0.21659 1.47E-11 

88 FOXM1 0.34676 2.95E-28 
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89 FOXM1 0.31395 3.38E-23 

90 E2F1 0.37273 1.04E-32 

91 MYC 0.31813 8.29E-24 

92 FOXM1 0.26778 4.44E-17 

93 FOXM1 0.30191 1.71E-21 

94 E2F1 0.33014 1.29E-25 

95 E2F1 0.29931 3.90E-21 

96 E2F1 0.24998 5.14E-15 

97 E2F1 0.28494 3.19E-19 

98 SOX2 0.10227 0.00159 

99 E2F4 0.36372 4.05E-31 

100 E2F4 0.34814 1.75E-28 

101 E2F1 0.30409 8.52E-22 

102 E2F4 0.379 7.55E-34 

103 E2F4 0.35831 3.47E-30 

104 E2F4 0.48264 1.20E-56 

105 E2F1 0.31632 1.53E-23 

106 E2F1 0.3041 8.49E-22 

107 E2F1 0.33288 4.85E-26 

108 E2F1 0.33852 6.29E-27 

109 FOXM1 0.37537 3.46E-33 

110 E2F4 0.37523 3.67E-33 

111 E2F4 0.24672 1.18E-14 

112 E2F1 0.22755 1.23E-12 

113 E2F1 0.33812 7.28E-27 

114 MYC 0.3127 5.13E-23 

115 E2F1 0.23872 8.65E-14 

116 E2F1 0.31002 1.24E-22 

117 PRDM14 0.39361 1.34E-36 

118 PRDM14 0.26871 3.42E-17 

119 E2F1 0.31391 3.42E-23 
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120 E2F4 0.29543 1.31E-20 

121 FOXM1 0.27723 3.06E-18 

122 FOXM1 0.35551 1.04E-29 

123 E2F1 0.36524 2.20E-31 

124 E2F1 0.38263 1.61E-34 

125 FOXM1 0.36707 1.05E-31 

126 E2F1 0.35981 1.92E-30 

127 FOXM1 0.4181 1.57E-41 

128 E2F1 0.38776 1.76E-35 

129 SOX2 0.30266 1.35E-21 

130 E2F1 0.46463 4.25E-52 

131 E2F1 0.40001 7.52E-38 

132 E2F1 0.37556 3.20E-33 

133 E2F1 0.32365 1.25E-24 

134 E2F1 0.45027 1.17E-48 

135 E2F1 0.455 8.97E-50 

136 E2F1 0.40174 3.42E-38 

137 E2F1 0.26574 7.78E-17 

138 E2F1 0.18165 1.69E-08 

139 E2F1 0.31374 3.62E-23 

140 E2F1 0.36728 9.63E-32 

141 E2F1 0.40455 9.41E-39 

142 MYC 0.35335 2.39E-29 

143 E2F1 0.31397 3.36E-23 

144 FOXM1 0.32666 4.38E-25 

145 E2F1 0.27658 3.69E-18 

146 E2F1 0.4139 1.17E-40 

147 FOXM1 0.34943 1.08E-28 

148 E2F1 0.35438 1.61E-29 

149 E2F1 0.39335 1.50E-36 

150 FOXM1 0.2744 6.89E-18 
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151 E2F1 0.41418 1.03E-40 

152 E2F1 0.37169 1.59E-32 

153 E2F1 0.43379 6.52E-45 

154 E2F1 0.31109 8.72E-23 

155 E2F1 0.46964 2.46E-53 

156 E2F1 0.40978 8.26E-40 

157 E2F1 0.27123 1.69E-17 

158 E2F1 0.40098 4.86E-38 

159 FOXM1 0.4575 2.28E-50 

160 E2F1 0.24162 4.23E-14 

161 E2F1 0.29995 3.18E-21 

162 E2F1 0.50734 2.41E-63 

163 SOX2 0.31855 7.17E-24 

164 E2F1 0.42533 4.56E-43 

165 E2F1 0.40105 4.70E-38 

166 E2F1 0.4378 8.33E-46 

167 E2F1 0.3481 1.78E-28 

168 E2F1 0.34063 2.90E-27 

169 E2F1 0.32445 9.47E-25 

170 E2F1 0.26481 1.01E-16 

171 E2F1 0.36261 6.32E-31 

172 E2F1 0.27222 1.28E-17 

173 E2F1 0.39643 3.79E-37 

174 E2F1 0.39328 1.55E-36 

175 E2F4 0.41155 3.59E-40 

176 E2F1 0.34804 1.82E-28 

177 E2F1 0.47436 1.60E-54 

178 E2F1 0.40063 5.67E-38 

179 E2F1 0.3663 1.43E-31 

180 E2F1 0.33589 1.64E-26 

181 E2F1 0.33615 1.49E-26 
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182 E2F1 0.42947 5.81E-44 

183 E2F1 0.30201 1.66E-21 
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Appendix 4.2 

Top correlation between modules and kinase activities (Chapter 4.3.7). 

 

Module Kinase Spearman's rho p-value 

1 AURKC 0.32553 0.0291 

2 CDK2 0.22971 3.35E-13 

3 WEE1 0.31973 1.09E-07 

4 AURKC 0.31683 0.03396 

5 WEE1 0.26487 1.29E-05 

6 AURKC 0.48167 0.00081 

7 HIPK1 0.27235 2.88E-09 

8 CDK2 0.24939 2.32E-15 

9 AURKC 0.36565 0.01351 

10 CDK2 0.23309 1.47E-13 

11 CSNK2A1 0.21456 1.14E-11 

12 AURKC 0.35656 0.01621 

13 AURKC 0.32658 0.02856 

14 AURKC 0.34371 0.02079 

15 AURKC 0.3866 0.00871 

16 AURKC 0.32309 0.0304 

17 MKNK1 0.21052 0.01222 

18 AURKC 0.41691 0.00439 

19 HIPK1 0.25642 2.43E-08 

20 CDK2 0.22789 5.19E-13 

21 CDK2 0.26033 1.21E-16 

22 WEE1 0.28496 2.53E-06 

23 AURKC 0.36268 0.01435 

24 AURKC 0.40808 0.00539 

25 AURKC 0.36802 0.01287 

26 CSNK2A1 0.23465 1.00E-13 

27 AURKC 0.2943 0.04972 

28 WEE1 0.24176 7.23E-05 

29 HIPK1 0.2491 6.17E-08 

30 EIF2AK2 0.25281 0.00861 

31 EIF2AK2 0.24426 0.01123 

32 CDK2 0.26948 9.12E-18 

33 CDK7 0.24663 7.43E-13 

34 AURKC 0.3196 0.03235 
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35 AURKC 0.31334 0.03609 

36 WEE1 0.26469 1.31E-05 

37 CDK7 0.30593 2.87E-19 

38 AURKC 0.40175 0.00623 

39 AURKC 0.35583 0.01644 

40 AURKC 0.30339 0.04277 

41 WEE1 0.18875 0.00207 

42 AURKC 0.31854 0.03296 

43 CSNK2A1 0.31162 1.64E-23 

44 CDK2 0.34874 2.10E-29 

45 CDK2 0.22468 1.11E-12 

46 CSNK2A1 0.15952 5.18E-07 

47 CDK2 0.26952 9.00E-18 

48 AURKC 0.32632 0.02869 

49 HIPK1 0.24246 1.40E-07 

50 HIPK1 0.268 5.23E-09 

51 CSNK2A1 0.29796 1.53E-21 

52 AURKC 0.3644 0.01386 

53 AURKC 0.3364 0.02386 

54 WEE1 0.26464 1.32E-05 

55 AURKC 0.35583 0.01644 

56 AURKC 0.35932 0.01534 

57 CDK2 0.15637 8.70E-07 

58 WEE1 0.32771 5.02E-08 

59 AURKC 0.47284 0.00104 

60 AURKC 0.31024 0.03807 

61 CDK7 0.26557 9.80E-15 

62 AURKC 0.37131 0.01203 

63 AURKC 0.4144 0.00465 

64 AURKC 0.47073 0.0011 

65 WEE1 0.25992 1.90E-05 

66 SRPK1 0.17858 0.00261 

67 EIF2AK2 0.31449 0.00097 

68 HIPK1 0.27647 1.63E-09 

69 CDK2 0.18174 1.00E-08 

70 WEE1 0.23921 8.66E-05 

71 PTK2 0.23937 0.03997 

72 WEE1 0.18665 0.00233 

73 CDK7 0.21441 5.29E-10 



  

187 
 

74 HIPK1 0.33348 2.07E-13 

75 AURKC 0.37988 0.01006 

76 AURKC 0.43384 0.00291 

77 AURKC 0.44181 0.00238 

78 HIPK1 0.18959 4.27E-05 

79 AURKC 0.55552 7.46E-05 

80 AURKC 0.32849 0.02759 

81 EIF2AK2 0.21131 0.0289 

82 AURKC 0.42283 0.00381 

83 BCR/ABL 0.18979 0.00642 

84 AURKC 0.29562 0.04866 

85 AURKC 0.43298 0.00297 

86 EIF2AK2 0.2115 0.02875 

87 AURKC 0.36005 0.01512 

88 CSNK2A1 0.23903 3.37E-14 

89 YES1 0.21388 0.00365 

90 WEE1 0.23192 0.00014 

91 AURKC 0.4175 0.00432 

92 AURKC 0.3364 0.02386 

93 AURKC 0.2995 0.04564 

94 LATS2 0.17163 0.04185 

95 AURKC 0.35913 0.0154 

96 CDK7 0.09951 0.00429 

97 AURKC 0.36618 0.01337 

98 PTK2 0.3127 0.00668 

99 YES1 0.27107 0.00021 

100 AURKC 0.36683 0.01319 

101 AURKC 0.38383 0.00924 

102 TTK 0.23619 1.84E-06 

103 AURKC 0.33903 0.02271 

104 ILK 0.20352 0.04556 

105 HIPK1 0.25676 2.33E-08 

106 AURKC 0.35886 0.01549 

107 CDK7 0.21093 1.02E-09 

108 AURKC 0.36321 0.01419 

109 HIPK1 0.28654 3.84E-10 

110 HIPK1 0.31057 9.63E-12 

111 PTK2 0.23479 0.04405 

112 ATM 0.16992 1.04E-06 
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113 AURKC 0.32098 0.03157 

114 AURKC 0.398 0.00678 

115 AURKC 0.39259 0.00764 

116 CSNK2A1 0.2048 9.68E-11 

117 LATS2 0.24367 0.00359 

118 CAMKK1 0.22117 0.00994 

119 CSNK2A2 0.19438 3.06E-07 

120 HIPK1 0.212 4.50E-06 

121 CAMKK1 0.21077 0.01414 

122 EIF2AK2 0.24054 0.01257 

123 AURKC 0.38759 0.00852 

124 HIPK1 0.24941 5.94E-08 

125 AURKC 0.34167 0.02161 

126 CSNK2A2 0.2734 3.57E-13 

127 WEE1 0.28382 2.78E-06 

128 CDK7 0.15301 1.05E-05 

129 AURKC 0.31123 0.03743 

130 AURKC 0.29509 0.04908 

131 CDK7 0.18788 5.73E-08 

132 WEE1 0.28196 3.25E-06 

133 AURKC 0.37125 0.01205 

134 AURKC 0.35755 0.0159 

135 CDK7 0.22279 1.05E-10 

136 AURKC 0.37922 0.0102 

137 WEE1 0.13062 0.03389 

138 GRK6 0.15501 0.00695 

139 AURKC 0.44866 0.00199 

140 AURKC 0.35432 0.01694 

141 AURKC 0.353 0.01738 

142 HIPK1 0.28588 4.22E-10 

143 HIPK1 0.24885 6.37E-08 

144 AURKC 0.49939 0.00048 

145 AURKC 0.39134 0.00785 

146 AURKC 0.5882 2.15E-05 

147 HIPK1 0.28671 3.74E-10 

148 HIPK1 0.18841 4.77E-05 

149 AURKC 0.43173 0.00306 

150 MAPK7 0.25516 5.51E-11 

151 CSNK2A1 0.19839 3.72E-10 
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152 WEE1 0.30157 5.93E-07 

153 AURKC 0.36683 0.01319 

154 YES1 0.30339 2.98E-05 

155 AURKC 0.3671 0.01312 

156 CDK2 0.22619 7.78E-13 

157 EIF2AK2 0.21653 0.02508 

158 AURKC 0.31841 0.03303 

159 CSNK2A1 0.2607 1.09E-16 

160 AURKC 0.37915 0.01021 

161 EPHA2 0.3111 0.01166 

162 AURKC 0.36321 0.01419 

163 CHUK 0.12354 0.00086 

164 CDK2 0.18957 2.22E-09 

165 AURKC 0.39306 0.00756 

166 CDK7 0.29825 2.38E-18 

167 WEE1 0.1631 0.00792 

168 AURKC 0.31215 0.03684 

169 WEE1 0.27416 6.17E-06 

170 PKM 0.19071 1.57E-05 

171 AURKC 0.30747 0.03992 

172 BCR/ABL 0.14236 0.04173 

173 CDK7 0.23834 4.42E-12 

174 AURKC 0.44148 0.0024 

175 CDK7 0.25231 2.10E-13 

176 AURKC 0.36242 0.01442 

177 AURKC 0.42369 0.00373 

178 AURKC 0.36216 0.0145 

179 CDC7 0.22902 3.66E-12 

180 AURKC 0.31953 0.03239 

181 AURKC 0.39747 0.00686 

182 AURKC 0.53194 0.00017 

183 AURKC 0.44991 0.00193 
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Appendix 4.3  

Traits that are significantly associated with data-driven modules (Chapter 4.3.8). 

 

Trait Module P-value 

HIP 152 0.03837381009 

Height 44 0.00237109901 

Height 58 0.02156365714 

Height 159 0.02223752143 

Height 130 0.004024890756 

Height 141 0.01417822836 

Height 178 0.006069039041 

Height 42 0.0232802247 

Height 123 0.007881653165 

Height 1 0.004371478571 

Height 151 0.02525776172 

Height 8 0.03912647324 

Height 160 0.04684224939 

Height 125 0.02931724698 

Height 150 0.03769608333 

Height 112 0.04237465416 

Height 166 0.04575691563 

HIP (female) 32 0.0180170285 

BMI (male, WC-adj) 10 0.04079071978 

Weight women 161 0.0232802247 

Neuroticism 138 0.0383459003 

 

 


