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Abstract

This thesis deals with the development and application of statistical learning methods

in insurance and finance. Firstly, we focus on an insurance-linked financial instrument

type namely catastrophe bond. Given the intricacies, and the over-the-counter nature of

the market where these instruments are traded, we introduce a flexible statistical learning

model called random forest. We use real data in order to predict the spread of a new

catastrophe bond at issuance and identify the importance of various variables in their

ability to predict the spread in a purely predictive framework. Finally, we develop and

implement a series of robustness checks to ensure repeatability of prediction performance

and predictors’ importance results.

Secondly, we explore a decision-making problem which is faced in an abundance of

interdisciplinary settings referring to the combination of different experts’ opinions on a

given topic. Focusing on the case where opinions are expressed in a probabilistic manner,

we suggest employing a finite mixture modelling methodology to capture various sources

of heterogeneity in experts’ opinions, and assist the decision maker to test their very own

judgement on opinions weights allocation too. An application in an actuarial context

is presented where different actuaries report their opinions about a quantile-based risk

measure to decide on the level of reserves they need to hold for regulatory purposes.

Finally, we focus on the problem of regression analysis for multivariate count data

in order to capture the dependence structures between multiple count response variables

based on explanatory variables, which is encountered across several disciplines. In partic-

ular, we introduce a multivariate Poisson-Generalized Inverse Gaussian regression model

with varying dispersion and shape for modelling different types of insurance claims and

their associated counts and we provide a real-data application in non-life insurance.
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Introduction

Statistical learning, as a set of methods aiming to address the problem of discovering

a function from data, can provide a useful framework for managing risk in insurance

and finance. This thesis showcases how this can be achieved via the development and

application of various statistical learning methods for addressing some problems faced in

non-life insurance and its intersection with finance.

Some words on contributions Our contributions to research via means of published

or under minor revision articles are three. Firstly, we focus on a spread prediction prob-

lem in the ”opaque” primary market for catastrophe bonds for which a random forest

methodology is deployed. Secondly, we explore model risk in reserve calculation express-

ing it as an opinion combination problem which can be addressed via a finite mixture

modelling methodology. Thirdly, we investigate the modelling of different types of claims

and their associated counts in non-life insurance for which purposes we develop a mul-

tivariate Poisson-generalised inverse Gaussian regression model with varying dispersion

and shape for capturing overdispersion and positive correlation structures in highly di-

mensional claim count data.

These three topics may seem quite different with respect to their subject, however

they are all motivated from daily business problems evidenced throughout the working

experience of the author of this thesis within catastrophe insurance. That said, some

of the contributions in this thesis are more general and therefore they are not limited

to catastrophe insurance as such even though they are inspired by it. In the first con-

tribution, the motivation has been a business need to develop an internal tool to assess

quickly whether the price guidance of new catastrophe bond issuance is fair at real time

when price negotiations between catastrophe bond sponsors and investors still take place.

The second contribution has been motivated from catastrophe model risk as sometimes

different licensed vendors models provide different views of risk for the same insurance

account often causing confusion to stakeholders which use these results to make business

decisions. The third contribution has been motivated from the wealth of multivariate

data available to insurers’ hands which are not yet extensively utilised for rate making

and claims modelling purposes.

Our broader contribution to research, apart from the aforementioned articles, is that

we bring together insights from insurance industry practice, as evidenced through the

author’s personal working experience and discussions with leading market participants,

and actuarial academic literature in a variety of topics ranging from London Insurance
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Market operations to premium calculation principles, and catastrophe risk modelling

process and uncertainties only to name a few. This wealth of information surrounds our

article contributions allowing the reader to have a bigger picture of the problems we study

and not only. That said, even if each chapter of this thesis could be read individually as

a selection of topics, we recommend that there are benefits to be extracted by reading it

cumulatively. A chapter by chapter breakdown of the thesis follow.

Thesis structure In Chapter 1, we present a preamble consisting of two parts out

of which the first presents the insurance and alternative risk transfer markets whilst

the second one focuses on statistical learning especially relevant to research workflow,

methods, and tools that are used in the research contributions presented later on. At the

end of the chapter, we provide a brief description of the extend at which statistical learning

is deployed in the insurance industry practice. We believe that this preamble is important

because it allows the reader to form a rounded view about the general context of our

research both from a market segment positioning and methodological perspectives. For

example, some parts of our study focus on pricing products falling under the traditional

insurance framework whilst others within an alternative risk transfer one, therefore the

understanding of both is crucial. Moreover, we believe that it is beneficial to present

some methods relevant to our research through the lenses of the type of the statistical

learning task that we perform.

In Chapter 2, we illustrate various concepts related to non-life catastrophe bond pric-

ing in the primary catastrophe bond market. We consider topics relevant to structuring,

notion of catastrophe bond pricing, and some crucial attributes that could affect the is-

suance price of catastrophe bond. Given the fact that catastrophe bonds payout is linked

to an underlying insurable risk, we deem helpful to end with an Appendix illustrating

a general pricing formation methodology for insurable risks. It is important to mention

that a big part of this chapter is based on the author’s working experience in the London

Insurance Market and discussions with key catastrophe bond market practitioners. Fi-

nally, the material presented here is a building block for Chapter 3 where our first research

paper on catastrophe bond pricing using statistical learning methods is presented.

In Chapter 3, we firstly present our article entitled ”A random forest based approach

for predicting spreads in the primary catastrophe bond market” published at Insurance:

Mathematics and Economics. We deploy a random forest methodology to facilitate spread

prediction in the primary catastrophe bond market and we assess the importance of

each covariate in the prediction of spread. The analysis is based on very rich data set

of non-life catastrophe bonds issued in a time period where the market has entered a

slightly more established stage after the financial crisis. It is worth mentioning that
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we perform multiple robustness tests both for random forest generalisation ability and

variable importance measures always in comparison with a very competitive benchmark

model. Since this work, to the best of our knowledge, is out of the first that suggests

a purely predictive framework in a catastrophe bond market setting we also discuss the

synergies that can be achieved when examined in line with previous contribution in

the explanatory framework. Additional to the main research paper, which is presented

as published in terms of format, we consider important to include some supplementing

material. The latter is mainly comprised of some modelling considerations at the initial

stage of our research, and extra robustness checks which, whilst they are not included in

the published version of the article, we believe that they are of material importance.

In Chapter 4, we introduce the concept of capital requirement which is the amount

of capital that a financial institution has to put aside for the risk taking activities that it

undertakes. The importance of an adequate reserve for the financial health and regulatory

compliance of a financial company is highlighted. Moreover, great emphasis is given in

presenting monetary risk measures as way to identify the minimum amount of capital

to add to a position to make it acceptable from a financial strength and regulatory

viewpoint. That said, there is variety of monetary risk measures that one could use

and thus we demonstrate some popular options along with their financial interpretation,

merits, and limitations. The chapter concludes by emphasising that no matter which

risk measure is chosen by a financial institution, there is an inherent model risk in its

computation. The latter point is a stepping-stone to Chapter 5 where our second research

paper relevant to model risk in reserve calculation.

In Chapter 5, we start from presenting our article entitled ”A Finite Mixture Modelling

Perspective for Combining Experts’ Opinions with an Application to Quantile-Based

Risk Measures” published at Risks. There we give a different perspective on expert

opinions’ combination using finite mixture models with the components of the mixture

not necessarily coming from the same parametric family. We flexibly account for multiple

sources of heterogeneity involved in the opinions expressed by the experts in terms of the

parametric family, the parameters of each component density, and also the mixing weights.

The flexibility of our approach in capturing multiple sources of heterogeneity involved in

the opinions expressed by the experts in terms of the parametric family, the parameters

of each component density, and also the mixing weights can assist a decision maker to

make informed decisions. Our proposed models are then used in an actuarial application

for numerically computing quantile-based risk measures taking into account model risk.

Except for the aforementioned article, we include some supplementary material where we

share some ideas regarding potential extensions of our study.

In Chapter 6, we touch upon the phenomenon of multivariate count data in non-life
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insurance through the angle of current trends in the market related to insurers underwrit-

ing several lines of policies, whose claim counts and size may showcase some dependence.

We then illustrate some situations stipulated by recent actuarial research to signify the

importance of multivariate data modelling with dependence for insurance premium and

claims prediction. In particular, we classify previous research studies per reason why

such joint modelling methodologies are important in the current non-life insurance prac-

tice. Then, we naturally proceed to Chapter 7, where we provide our contribution to the

literature of multivariate count data in non-life insurance with dependence.

In Chapter 7, we present our article entitled ”Multivariate Poisson-Generalized Inverse

Gaussian regression model with varying dispersion and shape” which is under submission

and minor revision and it is incorporated in the thesis in the exact format in which it has

been submitted. In particular, we introduce and build a multivariate Poisson-Generalised

Inverse Gaussian (MVPGIG) regression model with varying dispersion and shape in order

to model positively correlated and overdispersed claim counts from different types of non-

life insurance coverage flexibly. We implement the model by utilising bodily injury and

property damage claim count data from a European motor insurer. Additionally, some

supplementary material with research extensions which have not been accompanying the

submitted version of the article is included at the end.

It is worth mentioning that the references related to the articles which are, published

on an open access basis or under minor revision, and presented in Chapters 3, 5, and 7

are included within the articles. The references listed at the end of this thesis refer to any

other citations in this thesis other than those included within the aforementioned articles.

Generally, the text of this thesis is written using British English spelling except from the

name of some methods which are extensively used in the literature with American English

spelling.

On the experience of PhD Whilst this written work forms a representative piece of

my PhD studies, it cannot fully reflect this exciting personal development journey which

equals more than the sum of this thesis parts. The PhD has been a wonderful experience

improving my analysis, problem-solving, project management, collaboration, verbal, and

written communication skills among others. Whilst towards this direction, individual

effort played a role, I strongly believe that these improvements have been fostered by

the mentoring of my academic advisors with whom I have developed a very meaningful

connection.

Moreover, my prior professional experience in the London Insurance Market in mod-

elling natural catastrophes, terrorism, and political violence risks across various non-life
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insurance lines has brought a business perspective when formulating applied research

problems and made data search for conducting research easier. Furthermore, I am de-

lighted that, during my PhD, I have advanced my computing skills, by learning how to

code, which has in turn allowed me to implement and experiment on various research

ideas. Also, attending and presenting research in conferences and seminars introduced

me to the making of creative academic dialogues. With regards to my experience in re-

search publication process, it has equipped me with attention to detail, persistence, and

most of all appreciation of the merits of constructive feedback.

Having had the honour to be a member of the Department of Statistics at LSE

has provided me with a unique exposure to reading groups in several areas of statistics

which have ignited my interest in experimenting with a diverse set of research methods.

Teaching opportunities allowed for personal interaction with students and learning how

to break down complicated material into smaller pieces and then connecting it to real-

life applications. Last but not least, as an invited member in various departmental

committees, I have increased my awareness in various aspects of academic life.
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Chapter 1

Preamble

In this preamble, we present some preliminaries regarding the methods and tools that

we use in addition to the area in which the latter are applied. In particular, this intro-

ductory material is divided into two sections. The first part deals broadly with insurance

considering also reinsurance, and other alternative risk transfer mechanisms. Except

from discussing the aforementioned concepts, we put emphasis on the London Market

explaining the reasons behind its unique status globally, as well as the way in which the

business flows there, and its regulation. Distinctions between insurance and other forms

of risk transfer are drawn. In the second part, we present some preliminary material

on statistical learning relevant to the methods and tools that are used in the research

contributions presented later on. We also briefly refer to the current level of statistical

learning deployment in the current insurance practice.

1.1 Insurance essentials

In the first part of the Preamble, we will provide some background information in the

areas of insurance, reinsurance, and insurance-linked securitisation. We will place partic-

ular focus on the London Market, and even more so on Lloyd’s market as a distinctive

insurance market place within the London Market, whilst the insurance sector regulation

in the UK will also be discussed.
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1.1.1 Risks and risk transfer

The word ”risk” is being used in real life in an abundance of different settings. Whilst

there is no single accepted definition, see for example Punter (2003), by using a probability

theory terminology, risks can be seen as random variables which map uncertain states of

the world into values which may represent profits and losses. When a risk is associated

only with a possibility of loss to the party that is exposed to it, we speak of a pure risk.

When there is possibility for both making a loss or profit out of a situation then, we

speak of a speculative risk.

Some notions which are closely related to the concept of risk are these of peril, i.e.

the cause of a loss, and hazard, i.e. the event which originates or increases the peril.

Both peril and hazard have a bearing on risk but risk is a broader context although in

practice there are occasions where these terms may be used interchangeably. Focusing on

pure risks, individuals or businesses being exposed to them may decide to contractually

shift the latter to another party if they feel that they are not risk tolerant enough to

face the possible loss consequences, see Banks (2014). This is a risk management and

control strategy called risk transfer. As we will see throughout this thesis, there are many

risk transfer mechanisms from traditional insurance to alternative risk transfer options

involving the capital markets.

At this point, we refrain from providing a formal definition of insurance, as we

deal with this matter in Chapter 1, Section 1.1.2. However, we consider essential to

discuss a main concept behind insurance which is known as risk pooling. In particular,

as Smith & Kane (1994) nicely explain, based on the law of large numbers, the average

of a substantial number of independent identically distributed random variables tends to

approach the expected value. The latter means that when an insurer includes extra risks

in an insured pool can achieve reduction in the variation of the average loss per insured

around the expected value. Now, if every insured contributes more in terms of premium

payment into the pool than the expected loss payment, it means that by adding more

insureds into the pool, the probability that the pool will not have enough money to pay

for any claimed losses decreases.

However, one should bear in mind that whilst risk pooling works well for homogeneous

risks, it is not always applicable, see Braun et al. (2020). For instance, in the case of

catastrophe risks, which are described by a low frequency of occurrence combined with

very high loss severity potential, the insurer cannot easily achieve to diversify their losses

even at a global level. That said, we direct the interested reader to Chapter 2, Section

2.3.1 for more details on some limitations of risk pooling.
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1.1.2 Towards a legal definition of insurance

Whilst it may be tempting to provide a clear definition of insurance such a formulation

is not straightforward for several reasons. From a judicial perspective, any legal statues

regarding insurance regulatory matters refrain from providing a clear definition in fear

of running the risk to exclude contracts which should have been falling within the scope.

Keeping things relatively loose in terms of definitions provide regulators with enough

flexibility to judge on a case by case basis. Other reasons potentially why an official

strict definition is not formed is that insurance undertakings are very strictly regulated

anyway, and also from an insurance law viewpoint, there are some special principles, such

as the doctrine of utmost good faith, which before identifying whether the latter applies,

one would need to prove first that the contract in question is one of insurance.

From a purely regulatory purposes, we employ a rather loose explanation of what

insurance is as described in Birds (2010) according to which insurance is any contract

whereby a party agrees to take on a risk associated with the future occurrence of a

random event in which the other party has an interest and under which contract the first

party is obliged to remunerate the second party via means of money or its equivalent

subject to such an event occurring. It follows that any party entering frequently in

such contracts as risk bearer is considered an insurer for the purposes of the statue

regulating insurance business. In order for a contract to qualify as insurance the cedant

must generally demonstrate an insurable interest - it must prove that it has suffered an

economic loss once the defined event occurs. Insurable interest exists to reduce gambling

or moral hazard. There are other requirements for a valid insurance contract and we

direct the interested reader to Warr (2016a) and Birds (2010).

1.1.3 Some classifications of insurance

The risks that insurance business covers can be categorised in various ways depending

on the perspective that one would employ. For example, Jerry & Richmond (2012) have

provided a thorough discussion on the topic of examining several viewpoints including

the nature of the risk, nature of the insurer, and nature of marketing. Here, we make the

following three distinctions.

First versus third party insurance In Birds (2010), a simpler classification system

of two types is suggested on the grounds of legal importance. In particular, the first

distinction is between the so called first and third party insurance depending respectively
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on whether someone purchases insurance to cover risks such as their life, or personal

property or the motive behind buying insurance is to protect themselves against the

possibility of being held liable in law to pay damages to another party. Obviously, this is

not to say that there are no insurance policies that would cover both types of risks at the

same time but such a differentiation is important as insurance law signifies this difference

by requiring that some types of third party insurance have a compulsory character as

well as the fact that both the insured and a third party are involved.

Life versus non-life insurance The second classification distinguishes between life

and non-life insurance. Whilst for all types of insurance, an element of uncertainty is

required, there is some difference on how uncertainty is expressed between life and non-

life insurance. In life insurance policies, for example, it is certain that the person who

takes on a life insurance product will die at some point and thus a pay-out will be needed,

so the real question is when this will happen.

In contrast, in the context of non-life insurance, the occurrence of an event or suffering

of loss based on which a payout may be claimed is not certain. Think for instance, a

property policy the insured buys coverage against losses that may because to their house

because of fire but the house may eventually never burn. Generally, non-life insurance

contracts are contracts of indemnity meaning that they aim to indemnify the policyholder,

only with reference to the loss that the latter has suffered, assuming that such loss

has really been suffered and only to the size of the loss suffered. Of course, there are

exceptions in the above indemnity rule as insurer and insured could agree to waive this

out by agreeing that a particular amount of money is payable in case a certain event

occurs. Such policies are known as valued policies.

Catastrophe versus non-catastrophe insurance Another classification is to further

differentiate between insurance policies which provide coverage against losses arising out

of the occurrence of catastrophes or those which not. By catastrophe1 here, we mean

a low frequency event which can have a potentially big financial impact. The cause of

such events can be either of natural or man-made origin. Examples of the former case are

earthquakes, hurricanes, and wildfires whilst instances of the latter case include terrorism

attacks, explosions, and political violence risks among others.

Catastrophe insurance policies are usually specialised and provide coverage for very

specific disasters subject to policy terms. Although catastrophes events are of low fre-

quency, the global economic losses arising out of them have increased significantly over

1Throughout the thesis, we use the terms catastrophe, catastrophe risk and disaster interchangeably

4



the last decades for various reasons including climate change and the increase in the

population living in catastrophe prone areas to name a few, see Swiss Re (2019). In

particular, according to Swiss Re Institute (2021) this number reached 202 billion dollars

in 2020, an increase from 150 billion dollars compared to the previous year. Out of these

costs, the insurance industry has absorbed only 89 billion US dollars.

With regards to the non-catastrophe policies they cover for perils with relatively

higher frequency and lower severity potential, such as automobile, fire, or theft risks.

Non-catastrophe risks, from the other hand, are more well understood and can be pooled

fairly easily across the insurance sector. For more details on the distinction between

catastrophe and non catastrophe risks see Chapter 2, Section 2.3.1. The focus of the

current thesis lies on research topics relevant to non-life insurance policies with and

without catastrophe coverage.

1.1.4 A short history of insurance

The foundations of modern insurance were set by Italian merchants in the 14th century

in an effort to protect themselves against various maritime risks such as losing their cargo

or ships whilst in the sea. By the 16th century, the marine insurance tradition has been

passed on to London where such transactions have been taking place in a coffee house

owned by an individual named Edward Lloyd. There, whoever merchant wanted to buy

insurance would write in a slip of paper the information about the object that they

would like to insure and the size of coverage needed. Then the insurance buyer would

pass this slip around the clients of the coffee house in search for people that would accept

to provide insurance. The proportion of coverage which a given client would provide was

underwritten on the slip and this process continued up until the desired total amount of

insurance has been arranged.

With years, this place has been transformed into a corporation with statutory author-

ity under the same name, i.e. Lloyd’s, and whilst it seized from being a coffee shop the

way in which the insurance business is conducted up until today have remained the same

at its core. Lloyd’s have played a great role, not only at the development of insurance

but also the very foundations of insurance law. For instance, the Marine Insurance Act

1906 included the standard Lloyd’s maritime policy as a statutory form. Based on all

these principles other insurance types were born when there was a historic demand for it

starting from fire insurance after the Great Fire of London in 1666, and life and personal

accident insurance following the industrial revolution in the 19th century to present when

one can insure almost anything against the risk of loss or damage, see Warr (2016a).
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1.1.5 The London Market

The London Market is plausibly one of the most notable segments of the UK insurance

and reinsurance sector as this is where the placing of risks characterised by increased

complexity, rareness, and size from all over the world happens.

Global appeal There are several reasons behind the global appeal of the London Mar-

ket, see Warr (2016a) for a thorough discussion but some important points are sum-

marised as follows. Firstly, the London Market has enough financial capacity to take on

large risks and, as we will see in Chapter 1, Section 1.1.5.1, this is even more evident in

the case of Lloyd’s Market due to its subscription-based structure. Secondly, the spirit of

innovation prevailing in the London Market brings new perspectives in the area or risk

transfer and this is appreciated by clients all over the world demanding bespoke solutions.

Thirdly, the claims service, which is what attracts an insurer the most in the eyes of the

insured, has a strong reputation. Finally, throughout the 300-year history of the London

Market, the underwriting expertise has created a competitive advantage in underwriting

even emerging risks.

Business lines The classification of business lines across the London Insurance Market

is not strictly set at a theoretical level, but here we employ the approach of Warr (2016b)

employing the following categories, i.e. marine, non-marine, and aviation. Firstly, un-

der marine business, an insurer typically insure vessels, cargoes, and their subsequent

liabilities as well as offshore energy, and marine related construction risks. Secondly,

non-marine business provides coverage for property risks and associated liabilities includ-

ing construction for buildings, onshore energy including power generation and alternative

energy risks. Within the non-marine business class, one can also find coverage against

professional liability and personal accident risks. Finally, the aviation business covers

physical damage to air-crafts and associated liabilities.

Participants There are many participants operating in the London market including

insurers, reinsurers, protection and indemnity clubs, and Lloyd’s syndicates among others.

Briefly, insurers provide protection against losses arising from the materialisation of pre-

agreed risks for a fee, reinsurers provide insurance to insurers, and the protection and

indemnity (P&I) clubs are mutual marine insurance associations providing coverage for

its members. Lloyd’s syndicates are groups of private individuals or corporate investors

who actually carry the risks underwritten in Lloyd’s marketplace. Whilst all participants

are important in the ecosystem, here, we will focus on the Lloyd’s market since it is
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considered to be the world’s oldest and largest insurance marketplace, see Lloyd’s (2019),

and highlight its differences from the rest of what is called Company Market within the

London Market.

1.1.5.1 Lloyd’s market

When discussing about Lloyd’s, the first thing to clarify is that it is not an insurer but

a marketplace which is headquartered at London Lime Street. It is interesting to see that

Lloyd’s is considered to be the strongest insurance brand in the world without being the

insurance provider itself, see Warr (2016a).

Transactions In Lloyd’s, the insurance transactions are conducted mostly in person

in the so called ”Underwriting Room”. The risks are placed by brokers, who represent

the clients willing to buy insurance, and Lloyd’s specialist underwriters whose role is

the evaluation, pricing and acceptance of risks. To understand the size of the market,

we shall mention that according to Lloyd’s (2019), on an average working day there are

5,000 people with physical presence in Lloyd’s whilst the average daily premiums entering

the market exceed 100 million British pounds and the average amount of claims remitted

daily is more than 50 million British pounds. Furthermore, there are no limitations in

terms of size, complexity, geographical region, or industry segment for the risks that are

placed there.

Subscription market One reason behind strong Lloyd’s capacity and flexibility to

make unusual placements is that risks are written on a subscription basis meaning that

more than one carrier accepts a proportion of the same risk. By no party assuming

the whole financial liability, larger risks can be accommodated whilst having multiple

participants embraces diverse underwriting skills making it possible to create speciality

insurance solutions. It is important to mention that the Lloyd’s market is regulated by

two different regulatory bodies that is the Financial Conduct Authority (FCA) and the

Prudential Regulatory Authority (PRA) for which we will speak in detail in Chapter 1,

Section 1.1.5.4.

Structure They way in which Lloyd’s is structured for management purposes is defined

in several Acts of Parliament between 1872 and 1982 which are named Lloyd’s Acts, see

Warr (2016a). Out of these, the Lloyd’s Act 1982 showcases that Lloyd’s market is

managed and supervised by the Council of Lloyd’s. The primary goal of the Council is
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to govern and oversee the market putting the insured at the centre of focus. The Council

of Lloyd’s is comprised of three working2., three external3 and nine nominated members

which are elected by Lloyd’s members. The members of the Council of Lloyd’s elect the

Chairman and the Deputy Chairmen on an annual basis. The Council of Lloyd’s can

dismiss some of its functions by making decisions and issuing resolutions, requirements,

rules, and byelaws Warr (2016a). The market strategy of Lloyd’s market is set by the

Franchise board which is also accountable for meeting risk management and profitability

goals at a market level. In particular, it sets a set of rules of how managing agents should

operate which it then monitors to guarantee that high standards of underwriting and risk

management are met so to ensure that the market as a whole is profitable and financially

strong.

Syndicates The risks that are underwritten in Lloyd’s are carried and backed finan-

cially by groups of individual or corporate investors named syndicates. The terms Names

or underwriting members are used interchangeably in reference to the aforementioned

investor categories, i.e. individual or corporate, that may be comprising a syndicate. It

is important to clarify that the size of a given syndicate is not determined by the count

of its Names but from the financial capacity of each syndicate to cover risks. Therefore,

we see that even if the number of syndicates have dropped from 400 in 1990s to only 71

currently, the market has actually increased in size. Legally wise, syndicates have a very

unique status in that each of them does not exist as a legal entity separately but they

simply constitute a sum of their parts i.e. underwriting members.

Another interesting feature of syndicates is that they have an expiry date and in

particular, they need to be renewed on an annual basis. Syndicates are identified by a

pseudonym, a unique number, and the year of the account. As an example, for a given

year of account, HIS 0033 is a syndicate name standing for HISCOX insurer with a unique

reference number 0333. Finally, since a syndicate is nothing else than a sum of its parts,

the day to day operations need to be made through another entity which is known as

a managing agent. The latter is a company founded for the purpose of underwriting

management of one or several syndicates. The managing agent as such employs the

underwriters and this is the entity that it is subject to regulation for prudential and

conduct of business matters4.

2Working members are classified as those who have an active engagement in the market’s day to day
operations

3External members are those who do provide capital in the market but they cannot be classified as
working members

4More on the UK regulation will be found in Chapter 1, Section 1.1.5.4.
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Capital providers The biggest part of capital being invested in Lloyd’s is coming from

Names who are corporate investors rather than individual ones. However, no matter the

Names type, making an investment into this market requires meeting certain financial

adequacy criteria. In other words, Names cannot have unlimited liability in covering

losses. This is to ensure that the size of claims that would arise as a result of the risks being

undertaken in Lloyd’s can be capped. Such restrictions were imposed in 1990s straight

after a bitter chapter in the history of Lloyd’s when in the late 1980s, unprecedented

large claims, both in terms of size and count, arose due to the occurrence of various

catastrophic events such as hurricane Hugo. Back then, Names had unlimited personal

liability and consequently there was no way to limit these extreme claims demand. Due

to this incident, Lloyd’s had to rebuild itself by creating a run-off agent called Equitas

Reinsurance Limited (ERL) to clear out the balance sheet of Lloyd’s for the 1992 year of

account and prior and let the market start again from a fresh page. For any given year,

the capacity of Lloyd’s is the result of aggregation of the syndicates capacity.

Members’ agents Another Lloyd’s market participant is called members’ agents. The

main responsibility of the latter is to consult Names on which syndicate(s) they should

direct their investment to and what amount they shall invest. The advice is provided

considering the risk profile of a given Name. For instance, if the latter is risk averse, a

member agent may recommend providing capital to a syndicate that focuses on motor

insurance because the nature of the risk, mostly high frequency and low severity, would

easily ensure a steady and moderate rate of return. On the other hand, if a Name’s risk

appetite is more opportunistic, the member’s agent may recommend classes of business

which indicate higher volatility such as offshore energy. Such an approach would certainly

have the potential for larger returns but also large losses. Members’ agents also keep in

touch with Names within the year to communicate any foreseeable deviation in the spread

of their investment for the next year of accounts.

1.1.5.2 Company market and differences with Lloyd’s

Lloyd’s represents only a portion of the London Market. An important other part is

what is known as London Company Market and here we will present some of their dif-

ferences based on the following perspectives, i.e. insurer’s structure, market participants,

marketplace, regulation, and international liaison, see Warr (2016a).

Starting from insurer’s structure, London Company Market insurers have the free-

dom to choose among various structural formats such as limited liability firms, mutual

indemnity associations, mutual companies, and captive insurers whilst such flexibility
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does not exist for Lloyd’s insurers. In addition, participants’ wise, the London Company

Market includes firms which are very diverse with respect to their origin being normally

UK branches of large international firms from abroad or UK firms with large presence

in the UK and around the world. With regards to the marketplace, unlike Lloyd’s, the

Company Market does not provide any physical place to transact insurance business ex-

cept for the underwriting centre in minister court in which few insurers have voluntarily

decided to use it as basis.

Moreover, regulation wise, as we will see in Chapter 1, Section 1.1.5.4 in more detail,

all insurance providers in the UK are regulated by the Prudential Risk Authority (PRA)

for prudential issues such as solvency and capital requirements, and the Financial Conduct

Authority (FCA) for business conduct topics. Companies of EU origin also need to satisfy

the demands of their home regulator. That said, Lloyd’s Market is unique in that, except

for the aforementioned rules, whoever operates there, is subject to an additional layer

of regulation implied by Lloyd’s itself. Moving forward, from an international liaison

viewpoint, Lloyd’s as a whole liaises with regulators abroad whilst each participant in

the London Company Market needs to make separate arrangements with each foreign

regulatory body. In what follows, we will discuss some ways in which the business flows

in the London Market.

1.1.5.3 Flow of business in the London Market

The placement of risks and any associated processing of claims in the London market

follow a specific end to end business process workflow. Here, for expository purposes, we

differentiate between the following three stages namely risk quotation, risk placement,

and claims handling.

Risk quotation Starting with the placement of a risk, a broker, i.e. a party who

intermediates between the insurer and the insured, creates a summary of the risk in

question and the recommended terms and conditions in a file called a Market Reform

Contract (MRC) or simply “slip” – a traditional notion linked to historical facts described

in Chapter 1, Section 1.1.4. The MRC is standardised with respect to its content and

format to promote transparency for all stakeholders involved so that there is no ambiguity

regarding terms and coverage at the time that parties enter the insurance contract. This

is something that in the market is known as contract certainty indicating that prior the

inception of a policy all terms between the insurance company and the policyholder need

to be agreed upon and any supporting documents proving what has been agreed need to

be given by the policy inception or straight after – normally within 30 days. There is an
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element of flexibility regarding what documents can be considered as proof including the

official insurance policy contract, or simply a copy of the slip among others.

Risk placement When an insurance purchase agreement happens with the assistance

of a Lloyd’s broker, the latter first approaches for a quotation the underwriter who is

recognised by the market as being the expert, the so-called ”leader”, in the relevant class

of business. The leader will recommend a certain percentage of risk that they are willing

to share and communicate the terms and conditions for such coverage to be extended.

Since the Lloyd’s broker represents the client, they will try to identify as many leaders as

possible, if they exist5, and come back to the client presenting the quotes acquired and

recommending which of them would be most appropriate for the client given their needs.

When the client makes a decision about which leader’s quotation they want to proceed

with, the Loyd’s broker contacts other underwriters who can belong in any market, i.e.

Lloyd’s, London companies or the international markets, until 100 percent of the coverage

required is achieved. The risk placement and its associated documents are reported on a

central market database which is known as Xchanging Ins-sure Services (XIS). Then, the

broker needs to receive the premium from the client and pass it on to the insurers minus

a brokerage fee which is agreed in advance and it is a percentage of the total premium.

Once this process finishes, both the broker and the underwriters receive the risk data

from XIS.

Claims handling When an insured suffers a loss which they believe that it could be

covered by the insurance policy that they have in place, they need to notify the broker

as soon as possible. This is because the appropriate combination of insurers has to be

identified. After this happens, the broker submits the claim on paper or electronically

via the so-called Electronic Claims File (ECF). The broker sits in between the insurer,

and the client in all stages of the claims processing acting as they key contact for the

insurer, third parties such as loss adjusters and the client. If a claim is qualified and a

payment needs to be paid, the funds move from insurers’ bank account to the broker’s

bank account or an agreed third-party such as a lawyer’s office and from there directly to

the insured. All this happens in a very transparent way with electronic messages being

sent to both insurance companies, and the broker via the XIS where all information

is recorded regarding the movements of capital, and the claims to which these relate.

In what follows, we briefly discuss the regulatory framework in the London Insurance

Market.

5This highly depends on how unusual is the risk being transferred.
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1.1.5.4 The UK regulatory framework

Companies performing insurance undertaking business in the UK are regulated by two

bodies, both sitting within the Bank of England, namely Financial Conduct Authority

(FCA), and Prudential Regulation Authority (PRA).

Financial Conduct Authority The FCA views the market as a whole from the top

or in other words it is responsible for macro-prudential regulation. In particular, the FCA

has responsibility for matters relevant to the conduct of business and general market mat-

ters for all insurers so that to secure a certain level of protection for the policyholders.

In doing so, FCA performs analysis for the whole market, from insurance product design

to distribution, in order to identify practices that have the potential to harm policyhold-

ers. In case where such threats are identified, the FCA has power to intervene and ban

products or services.

Prudential Regulation Authority Moving to PRA, it has a more detailed approach

being interested in every single individual part of the market and in this sense it is

accountable for the micro-prudential regulation, see Bank of England (2021). Its role

involves encouraging the safety and financial fitness of the insurers it regulates and en-

sure that policyholders can achieve a proper level of protection. Towards this direction,

PRA looks at the external environment, business risk, management and governance, risk

management and controls, and capital and liquidity, see Warr (2016b), to assess and pre-

vent potential harm that insurers could cause to the stability of the UK financial system.

It implies rules to ensure that insurers are financially sound and have enough reserves

to fulfil the remuneration promise that they give to their policyholders if such a need

arises. Towards this direction, the PRA, under a EU Directive called Solvency II, see

European Insurance and Occupational Pensions Authority (2015) for more details, sets

the requirements for firms to calculate their solvency capital. Nevertheless, no specific

method that is implied for its computation, a point that we also touch upon in Chapters

4 and 5 in the current thesis.

Lloyd’s regulation status With regards to the regulation of Lloyd’s market partic-

ipants, it is worth mentioning that Lloyd’s managing agents are regulated by both the

FCA and the PRA whilst members’ agents and Lloyd’s brokers are regulated by the FCA.

For the calculation of the solvency requirements, Lloyd’s is treated as a distinct entity

which implies that any requirements are applied on a market level. Moreover, it is worth

mentioning that the regulators permit Lloyd’s to maintain a level of internal regulatory
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control, see Warr (2016b). Because there is a degree of overlapping objectives between

the FCA, PRA, and Lloyd’s, there are some arrangements for collaboration between the

aforementioned parties on topics regarding supervision, and its execution to limit the

amount of duplicated work. For more on these arrangements, we direct the interested

reader to Prudential Regulation Authority and Society of Lloyd’s (2013) and Financial

Conduct Authority (2013). Next, we focus on discussing the ways in which insurers can

insure themselves against risks undertaken within their normal course of business.

1.1.6 Reinsurance

Insurers may decide that they want to transfer some of the risks they face by buying

insurance for themselves. This practice is known as reinsurance and it has a longstanding

history as discussed in the classic essay of Kopf (1871). In particular, it may be plausible

that in the early years of marine insurance practice, as we also described in Chapter 1,

Section 1.1.4, the back then underwriters would not base their risk taking decisions on

a solid statistical analysis but they would write risks based on their perception instead.

Sometimes, the insurers whilst having assumed the risk, they may have been feeling

worried about the faith of the ship or cargo they had agreed to insure and they were

seeking to re-sell the risk for the more ”dangerous” parts of the voyage at a higher price.

If we apply the definition provided for the term insurance in Chapter 1, Section 1.1.2

to a reinsurance context, reinsurance is a practice where the original insurer enters into a

contract with another insurer or reinsurers (in the latter case we speak of retrocession) to

take on a partial or the full risk assumed by the primary insurer for an agreed premium.

In the London Market Insurance context, by insurers we mean all legal entities which are

allowed by the regulators to make contracts of insurance.

In the UK, the purchase of reinsurance does not have a compulsory character as it

happens for some classes of primary insurance but it is viewed by the regulatory bodies as

a good business practice. It is worth mentioning that reinsurance purchase does not take

away from the primary insurer the responsibility to remunerate the originally insured thus

in any case the insurer needs to be cautious for the risks it takes so that to avoid insolvency

in case claims arise, see Warr (2016b). Nevertheless, reinsurance entails multiple benefits

both for the primary insurer, and the reinsurer and some of them are presented below.
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1.1.6.1 Benefits of reinsurance

We discuss few merits of reinsurance both from the side of the buyer and the seller

based on Warr (2016b) and Swiss Re (2021). We differentiate between advantages that

an insurer may enjoy from buying and selling reinsurance protection.

Buy-side Starting from the buy side, when a primary insurer purchases reinsurance

reduces their gross direct exposure meaning that their underwriting capacity for any one

risk increases and in doing so they can achieve a bigger market share. That said, if this

holds for every insurer, it means that the risk sharing capacity of the market as a whole

increases. Moreover, because reinsurance acts as an alternative form of capital, there

may be benefits from a regulatory point of view when having to compute the solvency

capital requirement - a concept explained in Chapters 4 and 5 in this thesis. Furthermore,

reinsurance helps the primary insurer to manage their risk portfolio better as it enables

them to spread the cost of potentially very big losses over a longer period of time. An

additional benefit of reinsurance is that an insurer can use it as a indicator of good

practice in the eyes of the regulator when wishing to enter into an uncharted class of

business.

Sell-side When an insurer sells reinsurance, they can enjoy various advantages such as

exploring new business opportunities both in terms of geographic location, and risk type.

Starting from location, sometimes insurers face barriers for writing direct business in

certain places. However, such obstacles may seize to exist when it comes for reinsurance

provision enabling a insurer to entry into a new market geography. Moreover, reinsurance

is a relatively safe way to explore the feasibility of writing risks outside an insurer’s current

expertise. In particular, writing a novel risk perhaps requires an amount of investment

in underwriting headcount yet with uncertain financial outcomes. Since reinsurance is

renewed normally on an annual basis, the reinsurer has some room to experiment with

new risk categories. That said, if it appears that expected financial gain is not as high

after all, there is a clear exit strategy for the reinsurer which is simply not to renew the

risk. In what follows, we present some basic types of reinsurance contracts.

1.1.6.2 Some key types of reinsurance

There are plenty of reinsurance contract types, but most of them can be classified

into two forms namely facultative, and obligatory reinsurance. Their main difference

lies on whether individual risks are transferred on a standalone basis to the reinsurer in

14



which case we speak of facultative reinsurance or multiple risks are transferred all at once

namely obligatory reinsurance, see Swiss Re (2021).

Facultative In a facultative reinsurance contract the original insurer has the freedom

to select the risks to be reinsured, but at the same time the reinsurer also maintains the

option to accept or reject any given risk being offered by the primary insurer. Because of

its flexibility, facultative reinsurance is often used as an addition to obligatory reinsurance

in order to provide protection from risks over and above what is covered by an obligatory

reinsurance scheme.

Obligatory In cases when an insurer wants to buy reinsurance for the whole portfolio

within a given class of business then obligatory reinsurance may be the first choice. The

term obligatory signifies that both the insurer and reinsurer are legally obliged to transfer

or reinsure alike the batch of risks meaning that there is no room for not accepting specific

risks. Because there is an element of automation in the process, obligatory reinsurance

is associated with lower administrative costs.

Finally, both types of reinsurance can be written either on a proportional or a non-

proportional basis. In the former case, as a result of an in advance agreement, the rein-

surer is accepting a certain percentage share of the premium income and claim liabilities

that a primary insurer underwrites. On the contrary, in non-proportional reinsurance

the reinsurer is only liable for losses exceeding a pre agreed level. More information

on specific types of facultative and obligatory reinsurance can be found in Swiss Re

(2021),Warr (2016b), and Bugmann (1997). Finally, the profitability of the reinsurance

industry presents cyclical elements and in what follows we describe this phenomenon.

1.1.6.3 Reinsurance cycle

Both the primary insurance industry, and the reinsurance market are subject to cycles

of low and high profitability alike. In the former case, we speak of a soft market whilst

in the later case of a hard market. Various works such as these of Cummins et al. (1991),

Cummins & Outreville (1992), Meier & Outreville (2003), and Cummins et al. (2021)

have showed interest in this phenomenon.

Soft market In a soft market, there is plenty of supply for reinsurance and purchasing

it is less costly. Insurers can take this advantage and increase their own underwriting ca-

pacity. Generally, a soft market is experienced when it has been long since the occurrence
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of devastating events that would result in a very high amount of claims.

Hard market On the contrary, normally straight after a big disaster, many industry

players may face financial scrutiny or even bankruptcy and as a result a hard market

appears having the opposite characteristics; high reinsurance premiums, and tight policy

terms reflecting the unwillingness of the market to accept new risks or in other words the

power of the few reinsurers that have been left that can now dictate prices.

It is worth mentioning that reinsurance is not the only means by which the primary

insurers can transfer risk and some of the alternatives are discussed straight after in

Chapter 1, Section 1.1.7.

1.1.7 Insurance-linked securitisation

Apart from the traditional reinsurance, there are various risk mitigation strategies al-

lowing insurers, and reinsurers to transfer their risks directly in the capital markets.

Techniques which are used to securitise cashflows based on insurance risk fall under the

term insurance-linked securitisation (ILS).

Background details As Nowak et al. (2014) describes, ILS was developed in 1990s,

a time when the property and casualty insurance has been struggling post the occur-

rences of various catastrophic events in the United States, such as Hurricane Andrew

and Northridge Earthquake in California. The associated losses for the insurers and rein-

surers have been so large that concerns were raised with respect to the capacity of the

reinsurance market to absorb them all alone. Then the idea of using the capital markets

as a separate source of risk bearing capital was born as the amount of funds existing

there is multiple times bigger than in the reinsurance markets. From an investor’s per-

spective, a major benefit is that investment in ILS provides high returns and the fact

that insurance-linked events exhibit low correlation with other traditional investments in

the financial markets.

Market state ILS market currently accounts for more than 75 billion dollars of the

nearly 600 billion dollars of global reinsurer capital and since many transaction happen

on an over the counter basis the actual number can well exceed this number, see PwC

(2021). Traditionally, the strongest jurisdictions for ILS have been Bermuda, Ireland

and Gibraltar. Nevertheless, ILS has a growing importance in the UK market and both
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PRA and FCA are in close collaboration with the London Market Group6 to construct a

set comprehensive regulations for the implementation of a strong ILS regime in the UK

based on Solvency II provisions for Insurance Special Purpose Vehicles (ISPVs) and some

additional features that can increase the appeal of the UK for such transactions, see HM

Treasury (2016). Below, we briefly present some popular ILS products.

1.1.7.1 Catastrophe bonds

Hurricane Andrew and other major natural disasters happened in 1990s triggered the

development of a new, for that time, risk transfer security called catastrophe bond or

simply cat bond. The main reason for this development was to provide issuers with

coverage for risks of extremely low frequency (less or equal to 0.01) and very large po-

tential severity that could not otherwise be covered by traditional reinsurance contracts,

see Guy Carpenter (2005). Catastrophe bonds are kind of instruments whose payoff is

dependent on the occurrence of a predetermined event which may be related either to

natural catastrophes or not – such as extreme mortality or longevity in life insurance

sector, see Cummins (2008).

What differentiates catastrophe bonds from other bonds is a clause which allows the

sponsor to take back the interest payments if the trigger is activated. Just because of this

provision investors are compensated by receiving a higher interest rate which as we will

see below it is funded via the premium that a SPV receives from the sponsor, see Finken

& Laux (2009). In terms of lifespan, both one-year and multi-year bonds can be found.

However, the feasibility of being protected for more than one year is one of the reasons

of increasing cat bonds attractiveness compared to traditional reinsurance the last years,

see Michel-Kerjan & Morlaye (2008).

With regards to the covered perils can be again either single or multiple. The latter

case is very convenient for sponsors since there is no need for them to generate special deals

for every single peril from which they seek protection. Finally, it should be mentioned

that cat bonds are structured in various tranches reflecting in this way different levels of

risk and return that satisfy investors’ risk appetite. Catastrophe bonds is a very big area

of interest in the current thesis, therefore more details on the structuring, characteristics,

and pricing of this product are provided in Chapters 2 and 3.

6London Market Group is a market-wide body accountable for the representation of the insurance
and re-insurance market in London.
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1.1.7.2 Other ILS types

Except for catastrophe bonds, there are many other types of insurance-linked securities

that could be used to provide additional capacity such as side cars, contingent capital,

insurance loss warranties, and catastrophe risk swaps only to name a few. The idea here

is not to exhaust the list of products that could be created for alternative risk transfer

purposes but to give a short overview of some famous options.

Sidecars Another substitute to traditional reinsurance is sidecars. The latter are spe-

cial reinsurance structures with limited life span, created by other reinsurance companies

in order to transfer risks entailed in their book of business and gain a return on them.

Investors should put capital in the vehicle so that in case a particular catastrophic event

occurs, claims can get paid.

One of the key benefits of sidecars is that except for giving access to extra capital

directly, the time horizon is fixed and short (usually no more than 2 years) whilst enter

and exit is an easy task. The latter gives the opportunity to use the sidecar when the

reinsurance market is hard in order to access capital directly and in lower prices than

otherwise and to leave when the premiums start to fall again, see Greenwald (2006) and

NAIC (2021).

Moreover, if the reinsurers who transfer the risk are large with a sound balance sheet,

a sidecar transaction may be an appealing option since more investors can be attracted

by the high quality of cedants’ books. Of course, the opposite also holds, i.e. lack of

information regarding the risks in which investors will be exposed to would investment

in sidecars less attractive. Another drawback is that, unlike other insurance - linked

securities such as cat bonds, sidecars do not provide a standard remuneration to investors

and of course that is unknown at the inception of the contract, see Lane (2007).

Contingent capital Another ILS instrument is called contingent capital defined as an

option converting debt into equity in case that a predefined trigger event occurs. This

may happen if, for instance, the value of the buyer’s equity falls in the market below a

certain level helping the purchaser to survive under extreme financial distress conditions

such as those arising after a severe natural catastrophe, see see Vermaelen & Wolff (2010).

Contingent capital facilities are beneficial for (re)insurers since they provide a cushion

in case that their financial results are influenced badly due to the occurrence of particular

events, see The Economist (2009). Another benefit of the product is that it can assist in

meeting the capital requirements that regulators and sometimes the market itself imposes.
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In particular, sometimes it may be preferable to keep reserves to a satisfactory level by

having exchangeable debt rather than facing the opportunity cost of retaining capital in

order to face the worse-case scenario. Contingent capital is also a good way to recapitalise

without forcing governments to pay much for “too big to fail” institutions. Moreover,

from a supervision perspective, the fact that the exercise of the options may create a

diluting effect for the shareholders, may act as a disincentive for (re)insurers to do the

conversion without this being really necessary, see Maes & Schoutens (2012).

Nevertheless, in other circumstances, converting debt into equity can have the opposite

effect as it can increase moral hazard. This is because (re)insurance companies, knowing

that their debt positions are covered can become more prone to extensive borrowing,

see The Economist (2009). Furthermore, systemic risk is another issue of concern as

regulators and financial institutions have not agreed yet whether contingent capital should

be considered as debt or equity.

Industry loss warranties Industry loss warranties (ILW) is another popular ILS so-

lution. An ILW is a reinsurance or derivative contract that pays out when the financial

losses experienced by an industry exceed a specified threshold. That said, the trigger

event that activates the payment is predominantly related to the amount of losses suf-

fered by the insurance industry as a whole and not the one suffered by the (re)insurer

who buys the protection, see Ishaq (2005).

A significant benefit of ILW is low transaction costs, short implementation times, no

credit risk given that these products are fully collaterilised, and that they are normally

subject to the same regulation as reinsurance, see Gatzert & Schmeiser (2012). Another

advantage of ILW is that moral hazard, i.e. a change observed in the behaviour of the

insurance buyer after purchasing protection because they have no longer motives to take

all the necessary measures in order to avoid losses, see Parsons (2003), is minimal. The

reason why this happens is that an ILW is typically based on a parametric index and thus

it cannot be affected in a great degree by the losses of a single (re)insurer, see Gatzert

& Kellner (2011). However, one of the most important drawbacks of ILW is that they

involve the so called basis risk. The latter is because there is always a probability that

the losses suffered by the individual reinsurer can be larger than those recorded in the

market for the pre-agreed industry loss threshold to be reached.

Catastrophe risk swaps An alternative mechanism that insurers and reinsurers use

in order to manage natural disaster exposures is risk swaps. The latter is a reciprocal

agreement in which different kinds of catastrophic risk can be exchanged between coun-
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terparties. One of the most important advantages of cat swaps is that enables reinsurers

to do business without having to keep as much equity capital as it would be required

otherwise, whilst it helps the reinsurer to diversify their portfolio as the swap concerns

risks which are not correlated, see Cummins (2008). In addition, the costs associated

with the transaction are insignificant especially in the case when many deals are made

with the same counterparty. Also, since there is no money transfer until the trigger event

happens, the present level of expenditure decreases considerably.

On the other hand, there are also disadvantages regarding cat swaps use. First and

foremost, parity is required and in order to accomplish that modelling of the risks in

questions should be absolutely precise. In addition, the basis risk involved in cat swap

transactions compared to other insurance linked securities is higher especially in case

of agreements that an index is used as basis for the trigger and finally the probability

that the counterparty may go bankrupt is significant since catastrophe risk swaps are a

non-collateralised deal type. After having presented some popular ILS products, we shift

our focus to what make ILS distinct from reinsurance.

1.1.8 Some differences between reinsurance and securitisation

ILS differ from traditional reinsurance contracts in various ways and here we provide

a brief summary based on some viewpoints shared in Gorge (2009).

In particular, starting from structuring, in reinsurance the underlying insurance risk

is seen as liability as opposed to ILS where it is seen as an asset. Moreover, the cost

associated with structuring a reinsurance agreement is most of the times much lower

than those associated with ILS issuance. Furthermore, in reinsurance it is feasible for

the reinsurer to fail to pay claims when due or at all because of several reasons such as

inadequate reserves, the effect of very large and unexpected claims after a big loss event

etc. Such a risk is not usually present in ILS as they are often fully collateralised.

Moreover, for some ILS products, there is secondary market meaning that there is

a clear exit strategy if the investor decides to do so. Finally, if one compares the two

markets from a regulation angle, they will realise a big difference. In particular, once a

risk is written by an insurer, the latter remains liable to their policyholder even if the risk

in question has already been transferred. Nevertheless, when it comes to other institution

types within the financial sector this restriction does not apply as banks, for instance, by

selling debt sign away any liability associated with the risk sold. As a result, the primary

insurer under a reinsurance contract knows exactly who holds the ceded risk. On the

contrary, in ILS transactions is more difficult to do so as the underlying philosophy is to
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resell the risk transferred and not to hold it.

1.2 Statistical learning essentials

The second part of the Preamble deals with statistical learning which is a set of algo-

rithmic methods aiming to address the problem of discovering, otherwise called ”learning”

a function from data, see James et al. (2013). Here, we provide some key categorisation

of the research tasks that it entails. Furthermore, we describe the representative statis-

tical learning workflow that is normally followed by a researcher before presenting some

broad information regarding statistical learning models that are relevant for the main

research studies of this thesis in Chapters 3, 5, and 7. Finally, we provide some informa-

tion regarding the application of statistical learning in actuarial science, something that

Wuthrich & Merz (2021) calls actuarial learning, in order to showcase the importance of

statistical learning in solving insurance problems.

1.2.1 Statistical learning and typical tasks

As evidenced in multiple statistical learning textbooks, see for instance Friedman et al.

(2001), Anzai (2012), Murphy (2012), and Zhou (2019) there is a general consensus that

one can distinguish among three types of statistical learning tasks namely supervised

learning, unsupervised learning, and reinforcing learning. A brief description for each of

them follows.

1.2.1.1 Supervised learning

The aim of supervised learning is to learn a function from a data set {(xn, yn), n =

1, 2, . . . , N} which is comprised by n = 1, . . . , N distinct input-output pairs, so that this

function is able to predict the response y′ given a new input x′ as accurately as possible.

Because for each input, the output is known, such a data set is called a labelled. By input,

we mean a p = 1, 2, . . . , P -dimensional, random vector of features, often called attributes,

predictors, covariates, or independent variables, denoted by xn = (x1n, x2n, . . . , xPn) being

an element of Rp. The input vectors can be anything from numbers, to an image, a

time series, etc, see Murphy (2012). The output, called response or dependent variable,

denoted by yn is indexed by example number n = 1, . . . , N and once again can take

any form, however most of the times it is either a real-valued scalar in which case the

supervised learning task is called regression, or it is a categorical or nominal variable from
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some finite set yn ∈ 1, ..., C in which case we speak of a classification task. All of the

research problems addressed in this research, see Chapters 3, 5, and 7 involve supervised

learning.

1.2.1.2 Unsupervised learning

In unsupervised learning, the approach is different based on the fact that our data set

consists only from inputs therefore being of the form {xn, n = 1, 2, . . . , N} and the aim is

to discover knowledge, or otherwise called patterns, without knowing for what kind of the

latter we are searching for. Examples of unsupervised learning tasks include clustering

where the goal to discover groups of similar examples within the data, and density may be

to discover groups of similar examples within the data, where it is called clustering, or to

determine the distribution of data within the input space, known as density estimation,

or to project the data from a high-dimensional space down to two or three dimensions

for the purpose of visualisation.

1.2.1.3 Reinforcement learning

Reinforcement learning aim is to learn what course of action needs to be taken in a

given circumstance in an effort to maximise a numerical reward signal, see Sutton &

Barto (2018) and Russell & Norvig (2010) for a comprehensive review. As opposed to

supervised learning, the model is not provided with instances of optimal outputs but

it has to find them via means of trial and error and observe which action leads to a

higher reward. To capture the idea of reinforcement learning one can think of a baby

who develops knowledge by interacting with their environment trying things out without

having instructions on how to do it - something that is referred to as a closed-loop in the

reinforcement learning jargon. Some further characteristics of reinforced learning include

that the outcome of actions, as well as reward signals, occur for longer duration in a sense

that a present action has an effect not only the reward on the current step but also on

the reward of all of the following steps.

1.2.2 Statistical learning workflow

The traditional statistical modelling process involves three steps namely model iden-

tification also seen as model selection, estimation, and prediction, see Box et al. (2015)

and McCullagh & Nelder (1983). In statistical learning though the aforementioned steps

are altered to some degree to include the following processes namely data collection, data
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cleaning and data pre-processing, model class selection, choice of objective function, pro-

viding solution to a a convex or non-convex optimisation problem, and model validation,

see Wuthrich & Merz (2021) based on which we provide the following summary.

Data Given that the goal is to ”learn from data”, the biggest part of the statistical

learning process relates to it. Starting from collection, this can range from being an easy

to challenging task depending on the public availability of information. As we will see

later in Chapter 3, data scarcity can bring difficulties in the modelling procedure. After

acquiring data, it is common for the researcher to perform an exploratory data analysis,

visualise, assess data quality, and pre-process the data. This data related preparatory

step can be very costly with respect to the time that the researcher may need to contribute

as a proportion of the overall statistical learning process. However, it is of paramount

importance as such exercise builds the researcher’s understanding regarding the data in

hand and assists in the formulation of both the research question and model.

Model class Given a set of data which is ready to use for modelling purposes, the

research shall choose the model class which is deemed to be the most appropriate based

on the ability to answer their research question. There is descent flexibility in what is

meant by model class here ranging from a stochastic data model to a total algorithmic

model, see Breiman et al. (2001) and Shmueli (2010) for a distinction between these two

modelling philosophies.

Briefly, in the case of a stochastic data model, the researcher assumes that the data

generative mechanism is described by this model. On the other hand, in an algorithmic

model, there is no such assumption, and it is a viable option for both big and smaller

data sets if the interest is to extract as much information as possible from data. More-

over, in the algorithmic culture, predictive performance key with the model as such being

much less important provided accuracy in prediction. Despite these differences, for the

researcher whose goal is to use data in order to give solutions to problems, it may be

beneficial to create synergies by utilising both modelling philosophies to the degree that

they are relevant. Indeed, recently there is an increasing number of works which advo-

cate towards narrowing the perceived gap between the these two alternative modelling

perspectives, see Neufeld & Witten (2021) and Imbens & Athey (2021). In Chapter 3 of

this thesis, we also address and show some benefits that can be enjoyed by exploring an

algorithmic viewpoint on the top of a traditional data model.

Objective function After specifying a model class, a definition of a rule based on

which a model class candidate will be picked for the data in-hand is required. There is

23



a tendency for this rule to be an objective function for example a loss function whose

goal is to quantify the degree at which our model is misspecified. That said, it is worth

mentioning that the choice of the objective function can be easier or less easy to find

depending on the learning tasks that one chooses to use, see Zhou (2019). For instance,

in supervised learning, where the goal is to predict sufficiently well on unseen data, the

choice of an objective function may be relatively more straightforward as the true value

of the response variable is known and thus one could assess how good a predictive model

is by seeing how close the predicted value for the response is compared to the true value.

In the case of unsupervised learning for example the choice of a performance metric is

not that obvious as the researcher does not have an in advance knowledge of the patterns

that are sought.

Optimisation problem Post choosing the objective function the need arise to solve a

optimisation problem which aims to discover the best model within the selected model

class with respect to the chosen objective function and data. This optimisation problem

may be convenient at times to assume that is convex because there is a good level of

comprehension of the way in which convex sets are structured and as a result numerical

methods can be utilised.

Nevertheless, with the vast increase of the amount of data available now-days, there

are many applications where formulating a research problem in a non-convex manner

may be naturally much more suitable in capturing the structure of the research problem.

Of course, the researcher shall keep in mind that working in a non-convex environment is

inevitably associated with a higher level of computational complexity than in the convex

case. Some typical domains when a non-convex formulation may be advantageous is high

dimensional problems in the area of signal processing or bioinformatics. In the current

thesis, the main focus lies on convex optimisation however the interested reader can find

an extensive review on the topic of non-convex optimisation in Jain & Kar (2017).

Model validation The last stage in the statistical learning process is the validation

of the model derived in the previous steps. The idea here is to assess the goodness of

model fit for the data in hand, the ability of the model to predict unseen data, and overall

explore the possibility that there may be a more appropriate model than the one in-hand

to work with. In case that in this stage the results are not adequate, the researcher may

need to repeat the process from the first step, i.e. data and contemplate whether the

data-pre processing for example was not done in a meaningful way, or need to include

additional variables etc.
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With respect to the performance of any given model, it is worth mentioning that there

is not clear consensus of when a model is good or not, i.e. it really depends on the needs of

the researcher for the problem in question. That said, different researchers may differ in

their expectations regarding learning performance. A typical move is for the researcher to

evaluate and estimate the performance of various models then reach a decision or possibly

select ”the best” out of the personal criteria of the researcher available out of candidate

models.

1.2.3 Discussion on some relevant models

We believe that it is important to discuss the general concepts of some key methods

that we use in Chapters 3, 5, and 7 and share some ideas regarding how they have been

applied in multidisciplinary settings based on literature other than those indicated in this

thesis. In most cases, these models are already defined in the aforementioned chapters,

thus to avoid repetition, we redirect you there for notations and formal definitions.

1.2.3.1 Random forest

Random forest, see Breiman et al. (2001), is a supervised statistical learning model

deployed to solve prediction problems of classification or regression types. The model is

comprised of a number of de-correlated decision trees, each grown from a different sample

which is taken out of the original data with replacement. The prediction is derived either

by taking the the majority vote (in the case of classification) or by taking the average

(in the case of regression) among all trees. The rationale behind the model, as well as

the model itself, is explained in detail in Chapter 3. However, we consider beneficial

to showcase the increasing research interest in random forests for several applications in

insurance. That said, the literature presented below is certainly not exhaustive but it

gives a flavour of different problems that have been attempted to be solved using random

forest across the insurance value chain.

One of the insurance areas where random forest has been applied is claim fraud de-

tection, see Li et al. (2018). Except from direct financial losses, fraud can pose significant

reputational damages to an insurer thus early prevention is of utmost importance. One

of the insurance classes that faces a significant number of fraudulent claims is automo-

bile insurance which includes a variety of wrongdoings such as misrepresentation when

answering questions in an insurance application, overstating the insurance claims size, or

faking accidents, just to name a few, see Insurance Information Institute (2021).
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That said, Li et al. (2018) has performed a comparative analysis using various sta-

tistical learning models for classification tasks and found that random forest achieved

better prediction performance and lower level of variance than the competing models.

Furthermore, from an insurance offering side, random forest has been deployed for the

prediction of future insured’s behaviour when they consider various options for buying a

new insurance product, see Guo et al. (2019). When compared to other popular algorith-

mic methods, random forest was shown to have an edge meaning that it could potentially

used successfully in practice for insurance products recommendation.

Moreover, random forest has been used in insurance applications relevant to flood

risk assessment, Mobley et al. (2021). In particular, in an effort to estimate flood related

hazards across a big flood-prone areas of the Gulf of Mexico, it was shown that random

forest has been successful in predicting flooding probabilities even when the prediction

results have been compared to those derived from the current Federal Emergency Man-

agement Agency regulatory floodplain. Finally, one the actuarial side, random forest can

be used for predicting the insolvency of insurance companies Rustam & Saragih (2021)

and for calculating the claim severity element of non-life insurance premiums, see Staudt

& Wagner (2021), where it was shown that random forest can perhaps be a powerful tool

for predicting right-skewed claims sizes.

1.2.3.2 Finite mixture models

Finite mixture models is a famous statistical modelling method. Their popularity is

due to their flexibility and extensibility for the approximation of general distribution

functions semi-parametrically whilst taking into account unobserved heterogeneity, see

Tzougas et al. (2014). In particular, Peel & MacLahlan (2000) provide a very thorough

review of the history, formulation and interpretation of finite mixture models thus we

direct the interested reader there. In brief, traditionally, mixture models have been

applied to data having inherently a group-structure with the main modelling goal being

to explore it - we call this clustering, see Bishop (2016). However, we see that with time

mixture models have been significantly used for inference purposes, apart from clustering,

and in particular for modelling unknown distributional shapes on a semi-parametric basis.

As we will see in Chapter 5, a standard way to represent a finite mixture model is to

consider that X ≜ {Xi}νi=1 is a sample of independent and identically distributed (i.i.d.)

random variables from an n-component finite mixture distribution with density function

f(x|Ξ) =
n∑

z=1

πzfz(x|θz),
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where Ξ = (θ,π), with θ = (θ1,θ2, ...,θn), where θz denotes the parameters of the

zth density function fz(·), and where πT = (π1, π2..., πn) is the vector of component

weights, with πz the prior (or mixing) probability of the component z, where 0 < πz ≤ 1

∀z ∈ {1, 2, ..., n} and
n∑

z=1

πz = 1 holds. This is also the angle we take in this thesis.

Apart from this simple finite mixture model representation, there are certainly a

variety of other finite mixture models. A helpful extension is to consider that fz(·) does
not only depend on parameters θz but also on a set of covariates via a multinomial

logistic regression such the one described in Rigby & Stasinopoulos (2010). In this case,

the simple finite mixture model form presented above will become

f(x|Ξ, g) =
n∑

z=1

πzfz(x|θz, gz),

where g = (g1, g2, ..., gn) are the explanatory variables.

Apart from applications in insurance, which we examine in the current thesis, there

are various other disciplines in which finite mixture models are used, and having said

that, Peel & MacLahlan (2000) groups them in the fields of agriculture, astronomy,

bioinformatics, biology, economics, engineering, genetics, imaging, marketing, medicine,

neuroscience, psychiatry, and psychology, to name a few. For the interested reader, in

Chapter 5, we provide a handful of references that have used various forms of finite

mixture models across some of the aforementioned disciplines.

1.2.3.3 Multivariate count regression models

Regression models for multivariate count data are well regarded in the literature for

allowing to make inferences regarding any statistical relationship that may exist between

multiple response variables given a set of explanatory variables. There are several means

by which the generalisation of univariate count regression models to their multivariate

peers can be achieved and this is demonstrated by the range of relevant literature across

multiple disciplines, see Winkelmann (2008), and Cameron & Trivedi (2013) for a detailed

presentation of various advancements in multivariate count data modelling and Jeong

et al. (2021) for a thorough and up-to-date literature review which we summarise below.

Over the last decades, the literature in the area of multivariate count data mod-

elling can be classified into three distinct categories namely multivariate Poisson models,

multivariate mixed Poisson models, and copula-based models. With regards to multi-

variate Poisson models, part of the literature has been aiming at developing multivariate
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Poisson models which could capture positive correlation between variables offering the

additional merit of closed-form densities, see Jung & Winkelmann (1993), Ho & Singer

(2001), and Kocherlakota & Kocherlakota (2001). This has been mostly achieved by using

the trivariate reduction method, see Kocherlakota (1992) for further details. Except for

the trivariate reduction scheme method, Lakshminarayana et al. (1999) built a bivariate

Poisson model which accounts for negative, zero or positive dependencies. Later, Karlis

& Meligkotsidou (2005) extended the multivariate Poisson model to allow for broader

covariance structures among the explanatory variables.

With respect to the multivariate mixed Poisson models, they constitute a substantial

model class where dependence structures and overdispersion can be flexibly accounted

for via adding variables which capture unobserved heterogeneity in the independent Pois-

son marginal probabilities which are following few mixing distributions, see Cameron &

Trivedi (2013). As it is described in Jeong et al. (2021), there are two general categories

of multivariate mixed Poisson models categories seen in the literature. The first one

allows for positive dependencies between variables and normally involves a shared ran-

dom effect which follows a univariate continuous mixing distribution, see Stein & Juritz

(1987), Stein et al. (1987), Kocherlakota (1988), Munkin & Trivedi (1999), Gurmu &

Elder (2000), Ghitany et al. (2012). As we will see in Chapter 7, this is the part of lit-

erature towards which we make a contribution. The second group of multivariate mixed

Poisson models account for both positive and negative correlation structures with several

random effects following a multivariate continuous mixing distribution, see Aitchison &

Ho (1989), Cameron & Trivedi (2013), Munkin & Trivedi (1999), Chib & Winkelmann

(2001), Park & Lord (2007), Ma et al. (2008), El-Basyouny & Sayed (2009), Aguero-

Valverde & Jovanis (2009), Zhan et al. (2015), Silva et al. (2019), and Chiquet et al.

(2020).

Lastly, the copula-based multivariate count data modelling methodology is more re-

cent compared to those described in the two previous paragraphs. The main idea is that

the multivariate count distribution can be seen through the lenses of a continuous copula

distribution coupled with discrete marginals, see Jeong et al. (2021). Some representative

works on regression models using copulas at their core are these of Lee (1999), Cameron

et al. (2004), Nikoloulopoulos & Karlis (2010), Nikoloulopoulos (2013), and Nikoloulopou-

los (2016). One of the key benefits behind using copula-based regression models is that

they can capture both positive and negative dependence structures and in this context

we direct the interesting reader to Chen & Hanson (2017) where a comprehensive review

is provided regarding the employment of copulas for specifying correlation structures. It

is worth mentioning, the combination of copula-based regression models with discrete

marginals has the drawback of increasing the computational cost considerably especially
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when the dimensionality of the model surges, see Zimmer & Trivedi (2006), and Genest

& Nešlehová (2007) for a discussion.

1.2.4 Deployment of statistical learning in the insurance indus-

try practice

The current and future role of statistical learning in insurance is important given the

breadth of interest in business applications across the whole value chain including pricing,

underwriting, claims management, fraud prevention, and customer service just to name a

few, see Accenture (2018). A recent report from McKinsey & Company (2021) shows that

the main trends shaping the use of statistical learning in insurance are the data wealth

arising from connected devices, the rise of physical robotics, the open-source ecosystems,

and rapid advances in cognitive technologies. That said, the pace and extend of the

adaptation differs across various insurance firms functions, see Swiss Re Institute (2020).

For indicative purposes, in what follows, we focus on insurance pricing which is the main

interest of this Thesis.

In an insurance context, statistical learning deployment has been relatively fast for

the more common supervised learning models such as generalised linear models fitted to

historical claims and premiums data, see McCullagh & Nelder (1983) and Wuthrich &

Merz (2021) for more on this model class and its use in insurance respectively. However,

in the daily practice insurers are relatively hesitant, at least until now, to embrace a

more flexible and therefore less interpretable models, for actuarial work, see Gareth et al.

(2013) for more details on the trade-off between flexibility and interpretability using

several statistical learning models.

Such reservations are mainly due to the difficulty associated with explaining models

with rather opaque operations to regulators and non-technical internal stakeholders. That

said, regulators do recognise the efficiencies that statistical learning can bring in the

insurance and finance sectors in general Financial Conduct Authority (2019), however

they would rather prefer the move to be more gradual so that new governance and controls

can be put in place. Nevertheless, a challenge here is that the pace that any regulatory

changes happen much slower than the technological progress and data availability. Some

insurers may be using more advanced statistical learning models as an internal tool on

the side to supplement with insights the traditional approaches they have in place. This

is something that we also discuss in Chapter 5.
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Chapter 2

Some remarks on catastrophe bond

pricing

Chapter 2 introduces concepts relevant to pricing formation in the primary non-life

catastrophe bond market and it is the stepping stone to Chapter 3. As a starting point,

we describe how a catastrophe bond deal is structured - a topic which is not addressed

in Chapter 1, Section 1.1. Next, we explain the notion of catastrophe bond pricing and

later discuss some important factors which are taken into account when determining the

issuance price of catastrophe bond. Since catastrophe bonds involve an underlying insur-

able risk, and for the sake of completeness, Chapter 2 ends with an Appendix presenting

a general pricing formation methodology for insurable risks.

2.1 Catastrophe bond structure

As we have seen in Chapter 1, Section 1.1, catastrophe bonds are insurance-linked

financial instruments, first developed in 1990s, in an effort to provide additional capacity

to the reinsurance industry post mega-disasters. For illustrative purposes, in Chapter 2,

Figure 2.1, a simplified version of the structuring process is presented below based on

Risk Management Solutions (2012).
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Figure 2.1: Structure of a typical catastrophe bond transaction, see Risk Management
Solutions (2012).

The securitisation of insurance risk in a form of a bond is initiated by a sponsor or

cedent in reinsurance terminology who can be an insurer, reinsurer or even a government

with a purpose of transferring some of their catastrophe risk exposure such as wind or

earthquake to name a few, to the capital markets.

For this to be achieved, a Special Purpose Entity (SPE) or otherwise called a Special

Purpose Vehicle (SPV) is established which then enters into a reinsurance contract with

the cedent. The SPE receives periodical payments called premiums in exchange for future

protection provided to the cedent via means of the insurance-linked bonds which SPE

issues. After the issuance, the SPE sells these securities to investors and receives principal

amounts in return which are kept as collateral into a separate account and invested in

low risk funds.

As a remuneration for the risk that the investors assume, the latter receive periodical

payments called coupons which include the premiums that the SPE previously earned and

the interest made on the principal amounts. If a qualifying event occurs, SPE liquidates

the collateral and pays back the cedent for their incurred loss in a way that contract terms

indicate. In case of no qualifying event, then the liquidation of the collateral happens at

the expiry of the catastrophe bond when is returned to the investors.

2.2 The notion of catastrophe bond price

The notion of catastrophe bond price is not as straightforward as in a traditional zero-

coupon bond setting where the nominal value of the bond equals its price. In particular,

the price of a catastrophe bond is subject to multiple meanings depending on the context

in which it is used. Based on discussions with industry participants, we shall distinguish

between three empirical catastrophe bond price categories namely launch price, trans-
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action price, and secondary market price, see Nowak et al. (2014). That said, a short

description for each of them follows.

Launch price Following the structuring of the transaction, determination of specific

design characteristics and risk modelling analysis, see Chapter 2, Section 2.3 for the latter

two, the cedent presents a precise risk-return deal profile, including a price guidance range,

to investors for reviewing. Based on this information, their current portfolio consistency

and factors affecting their perception of the true risk involved in the transaction, investors

give a quote of what price they are willing to pay for a specific size of insurance coverage

liability. At this stage, every investor can come up with a different price for certain level

of participation in the transaction and this price is usually called as initial offering price,

or launch price.

Transaction price The final transaction price usually differs from the initial offering

one and it is the same for all investors. For instance, assume that a reinsurer is in

need to cover potential future cat losses of 100 million dollars size. Every investor can

buy the portion of risk they want until they reach this 100 million dollars threshold.

However, at this point in time, the price for each and every investor is the same - obviously

denominated for the deal ”slice” they buy.

Secondary market price If a catastrophe bond is already issued and traded, its price

in the secondary market will not be the same to the one in the primary market, i.e. when

the catastrophe bond was first issued. Actually, this price difference and can be large

over time due to various forces including news.

In this thesis, the interest lies on the initial offering price stage in the primary market

for catastrophe bonds and from now on this is what we mean when using the notion of

price in a catastrophe bond setting. As we will see in Chapter 3, Section 3.1, the market

convention is to perceive the price as the amount of interest earned by an investor on

the top of the risk free rate namely spread. Consequently, in what follows the words

spread and price may be used interchangeably. Next, we discuss some elements which we

consider relevant in the process of determining a catastrophe bond price at issuance.
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2.3 The importance of expected loss

Given that the payout of a catastrophe bond is linked to an insurable risk, an important

factor when considering catastrophe bond pricing, at least at the initial offering stage,

is the expected loss arising out of the potential insured disaster occurrence - a typical

concept when calculating premium in general insurance, see Chapter 2, Appendix for

further details. That said, expected loss quantification for catastrophe events is certainly

non-trivial.

In what follows, we discuss some expected loss quantification considerations, the catas-

trophe risk modelling process based on which expected losses are calculated in the indus-

try, and few sources of uncertainty involved in this process. It is worth mentioning that

the computation of expected loss for non-life insurance-linked securitisation purposes is

the same as the one followed in general (re)insurance. Therefore, here for the purposes of

simplicity, we assume the simple case of a (re)insurer wanting to quantify the expected

loss for a new (re)insurance policy. The ideas presented are mainly based on Lloyd’s

Market Association (2013), Lloyd’s Market Association (2017), and this thesis author’s

working experience.

2.3.1 Quantification considerations

Prior to the acceptance of a new risk by a (re)insurer, an estimate of the potential

loss arising after the realisation of an event due to an insured peril must be made. This

estimation involves calculating the annual expected loss, otherwise called pure premium,

which reflects the mean loss per year averaged over multiple years. The average annual

loss is usually seen as the product of multiplication between two elements namely ex-

pected loss frequency, and expected loss severity. In particular, the annual expected loss

in (re)insurance is calculated by utilising historical loss data, various modelling methods

or a combination of both. Below, in providing some expected loss quantification consider-

ations, we deem useful to differentiate the case of catastrophe risks versus non-catastrophe

ones starting from the latter.

Non-catastrophe risks Risks which have high occurrence probability during one in-

surance period, i.e. typically a year, but low potential of adverse consequences can be

priced based on past insurance claims performance without a problem. When risks of

such non-catastrophic nature are included in an insurance pool, then the occurrence of

an individual insured event has no effect on the probability of other events included in
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the pool happening from the same source and in this sense the risks are statistically in-

dependent. Empirically, when there are sufficiently many observations of random claims,

fluctuations around the average claim become less significant. Then one can reduce the

aggregate claims size by simply adding more risks into the insurance pool releasing that

way capital needed to be held aside compared to the units of insurance coverage provided

Nowak et al. (2014) and Chapter 1, Section 1.1.1 in this thesis for more details on risk

pooling.

Catastrophe risks Past claims experience is not reliable source of information when

it comes to risks of catastrophic nature, and thus the risk pooling argument cannot be

extended to this risk category. There are many reasons why this is the case. First of

all, insured events of low frequency and high severity are not statistically independent.

One mega-disaster can trigger losses in multiple insured exposures at the same time,

even across different lines of business, and thus contravening with the diversification-

by-pooling concept. Secondly, historical catastrophe losses recorded are not enough for

the development of a reliable events database because the return periods can vary from

few years to centuries. Also, even if full records existed, their reliability would still be

questionable. This is because the rare nature, and unpredictability of disasters does not

change, no matter how many of them have occurred. That said, there is always a chance

that the next coming disastrous event will be the worst that has ever happened in history.

Finally, efforts to create an index by linking loss related factors to past disaster claims

cannot come into fruition easily because the former is not static. For example, when ex-

amining catastrophe risks, the quality of materials with which insured properties are built

of can determine their vulnerability to a natural disaster, of course among other factors.

Nevertheless, materials used in construction change from period to period. Similarly, the

number of inhabitants in areas prone to catastrophes is a factor affecting insured losses

but again in such a long return periods population cannot be stable. Under these con-

ditions, it is clear that any projections regarding catastrophe insured losses by analysing

past claims history and the employment of deterministic models in the process may not

reliable. Probabilistic modelling is a requisite for the analysis of catastrophe risks Cum-

mins & Mahul (2009). Next, we aim to present the stochastic catastrophe risk modelling

process as used in the industry.

2.3.2 Catastrophe risk modelling

A catastrophe model is a computerised system whose purpose is to produce catastrophe

loss estimates using a simulation methodology. The period in which these simulations
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expand reach thousand years in order to build the gap that the lack of historical data

create. This leads to the development of large simulated loss event catalogue which

renders the measurability of the simulated events occurrence frequency. Policy terms

are also taken into account and the loss per event can be reduced to an estimate that

reflects the insured loss. Based on the above, catastrophe modelling is the process of

using a catastrophe model for achieving the aforementioned aims. In the same context,

catastrophe risk modeller is a person who manipulates raw data and transforms them into

an input that the model comprehends whilst being able to analyse the model output. In

the following pages, we present some information regarding the users of catastrophe risk

models, a typical catastrophe risk model components, and we identify some sources of

uncertainty in the catastrophe risk modelling process.

2.3.2.1 Users

There are many parties across different sectors who use catastrophe models to enhance

the precision of their business decisions. Nevertheless, among all players being interested

in quantifying catastrophe risks, insurers are definitely at the top of the list. A catastrophe

model is capable of evaluating catastrophic risk and assist the insurer to make informed

risk management decisions related to risk pricing, mitigation, purchase of reinsurance, or

even the issuance of alternative risk transfer products such as catastrophe bonds among

others.

Moreover, (re)insurance brokers use catastrophe risk models extensively, given the fact

that they are the first stakeholder to gain access to clients’ data and by ”running” these

models, they can provide to (re)insurers a first insight on the risks to be transferred.

Finally, at a governmental level, catastrophe models can assist regulatory authorities

and emergency management agencies to develop strategies with regards to emergency

response post a disaster. In order to understand how the expected loss is derived through

the use of catastrophe risk modelling, it is important to comprehend the elements of a

typical catastrophe risk model first.

2.3.2.2 Model components

A catastrophe model consists of various components namely hazard module, inven-

tory/exposure data module, vulnerability module, and financial loss module which are

presented below.
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Exposure data module For a catastrophe model to operate, there is a need to ”feed”

it with data against which the risk evaluation will be made. Consequently, inseparable

part of a catastrophe risk model is the exposure data module. The modeller receives from

the underwriting team a Schedule of Values (SoV) which contains information regarding

the location, values, and special building characteristics of the insured property. This

document is used to feed the location file that will be inserted into the model. The location

file normally includes codified information taken originally from the SoV. The role of the

catastrophe risk modeller here is to transform this information into a meaningful input

that the model will be able to ”understand”.

In particular, there are certain fields of information that go into the model which

need to be filled in a spreadsheet by the modeller. That said, a list of all properties

at risk along with geographic coordinates, postcode/zipcode, address, city, county, and

country needs to be included. With regards to the location of the property to be insured,

a process called geocoding is performed. In particular, given the address of the property

at risk or another characteristic which describes its location, such as ZIP code in the US

for instance, city, county, and country, it is feasible to assign geographic coordinates to

the relevant property. Ideally, a SoV should include all of the aforementioned location

information.

In case that the data provided to the modeller do not contain all the required details,

the level of geocoding depends on the region where the property at risk is located. This

is because different regions across the world have different minimum standards for the

geocoding process to be considered accurate. For example, for an insured property in the

UK, the postcode is very relevant piece of data as it points out the exact building. In the

US, though, zip code is not enough and extra information needs to be included. Moreover,

in the case of energy or power generation insurance business classes, the risks may only be

possible to be located through given coordinates which of course does not allow the model

to geode but there is no other way as these locations are outside the mapping of a city or

even pipelines in the middle of the ocean. Now every location also needs to be numbered

as depending on the policy terms some locations may need duplication to capture various

catastrophe deductibles or sub limits that cannot be applied simultaneously.

Furthermore, each location at risk needs to be associated with an insured value which

is normally the replacement cost, i.e. the amount that the (re)insurer would have to

pay for the replacement of an insured asset (in case of property insurance) based on its

present worth. This value should not generally come as a total but it needs to be split

into the following categories in the original SoV namely buildings, contents, others such

as improvements, and business interruption values (in case of a commercial property) for

a specific time frame normally indicated in number of months. The split of values is very
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important for the faultless operation of other model components and especially for the

vulnerability module as we will later see. For instance, in the event of an earthquake,

history shows that contents are more susceptible to damage than the building itself.

Except from the spatial characteristics of the location, there are other details to be

included in the exposure module. These include primary characteristics of the property

at risk like construction, occupancy, and year built, or secondary characteristics such as

roof geometry, shear walls, and custom elevation only to name a few. Such details are

important for the vulnerability assessment of the property in question later on. Finally,

the modeller needs to read the insurance contract and include detailed policy terms such

as deductibles, and limits per location.

Hazard module In the hazard module, fundamental elements of physical hazard

are linked to each simulated event. For example, a hurricane can be described by its

landfall location, direction, and top wind speed whilst in the case of an earthquake, core

components would be its epicentre, magnitude, and the frequency of certain magnitudes

occurring. The details of the hazard module are combined with the exposure data, and

any other details that the model has on notable features, such as soil type in the case of

earthquake, for every single location. Finally, the impact of hazard on every location at

risk is determined.

Vulnerability module Thanks to the hazard and exposure data catastrophe risk

model components, it is feasible to calculate how vulnerable or susceptible to damage is a

building at risk. In particular, vulnerability module consists of many vulnerability curves,

and given the primary risk characteristics the most appropriate curve is automatically

chosen. Vulnerability curves are normally attained by engineering reports but sometimes

can be based on insurers’ experience whilst they portray the response of a risk under

various conditions. Let’s take earthquake as an example; the level of damage that a

building will suffer due to shaking is very much dependent on peak ground acceleration,

i.e. the maximum ground acceleration that is observed during an earthquake at a certain

location. Generally speaking, the higher the peak ground acceleration, the higher the

value of the expected damage to the building. This positive aforementioned relationship

is represented in a vulnerability curve.

It is also worth noting that the way in which quantification of vulnerability takes

place is not standard for all models. There are times where the state of the property

post the event is classified in a more descriptive way ranging from slight to complete

damage. Nevertheless, for most of the models damage to the property at risk is related
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to a severity parameter such as peak gust wind speed. What is standard for all model

vendors though is that the construction of damage curves happens separately for the

following loss categories; buildings, contents, and business interruption. The first two

categories represent direct losses, i.e. the cost that the insurer would have to bear for

replacing or repairing the damaged property whilst business interruption is an indirect

loss. The output of these computations is a damage ratio, which is then applied on the

structure at risk.

Financial module Post allocating a damage ratio for each location that needs to

be assessed, the catastrophe model takes into account any financial and insurance policy

terms populated by the modeller in the exposure module stage. The information about

policy terms is summarised in the contract file that a risk modeller prepares. The raw data

are coming from the (re)insurance slip, see Chapter 1, Section 1.1.5.3, which is provided

by the underwriter through the broker. This document lists all the policy terms; layer,

policy level limits and deductibles etc.

Firstly, the ground up loss to each location is calculated and then the model takes into

account policy terms and programme level conditions for every structure such as limits,

sub-limits and deductibles producing the gross loss. The result of this process is the gener-

ation of an event loss table with which an insurer can evaluate the financial risk exposure

to individual events. If one combines an event loss table with an exceedance probability

curve, they can derive additional measures for the whole risk. Further information about

the exceedance probability curve is provided below.

2.3.2.3 Model output

The most famous catastrophe model output is the Exceedance Probability (EP) curve.

For a certain portfolio of locations at risk, the EP curve represents graphically the prob-

ability that a certain loss level will be exceeded within a particular time framework. For

illustrative purposes, we present a graphical example in Chapter 2, Figure 2.2.
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Figure 2.2: Example of an Exceedance Probability (EP) curve, see Casualty Actuarial
Society (2020).

The importance of an EP curve lies in determining the size and distribution of

(re)insurers’ portfolio potential losses with extra attention paid in its right tail where

the top losses are located. By looking at the EP curve, insurers are able to identify

buildings categories and geographies where they believe it will be profitable to insure,

whilst getting an idea of what the policy should cover and at what price.

It is important to keep in mind that every insurance company wants to ensure its

solvency, see Chapter 4 for more details on reserving. Consequently except from pricing,

the EP curve can also be used for determining risk transfer proportions either to the

reinsurance or to the capital markets using alternative risk transfer solutions, see Chapter

1, Section 1.1.7, as a way to maintain the probability of insurer’s default at an acceptable

level. For indicative purposes, we consider an example assuming that an insurer provides

commercial windstorm coverage in Palm Beach, Florida. The acceptable level of loss

specified by the insurer for this area is 50 million USD dollars at 1 in 100 exceedance

probability. Nevertheless, the EP curve for the Palm Beach, Florida portfolio is 65 million

USD dollars at 1 in 100 exceedance probability meaning that the insurer must find ways

to reduce their exposure. This can happen in various fashions such as by transferring

part of the risk through the purchase of reinsurance or a catastrophe bond or simply

by writing the risk under stricter policy terms through the introduction of limits and

deductibles.

2.3.2.4 Sources of uncertainty

Catastrophe risk models are certainly important to insurers and other users in quan-

tifying the risk associated to disasters. However, decision makers should keep in mind

that there are many elements of uncertainties in the catastrophe risk modelling process
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meaning that an insurer cannot rely fully on cat-modelling output when making business

decisions. The following list of uncertainties is not exhaustive and heavily relies on the

working experience of the author of this Thesis. Nevertheless, recently there has been

an ongoing academic interest in decision making under uncertainty when using catas-

trophe risk models in insurance, see for instance Roussos et al. (2021) for an insight of

uncertainties in hurricane modelling.

Static events catalogue The development of a catastrophe risk model involves the

generation of a fixed set of catastrophic events. The latter obviously represents only

few states of the universe even if the scenarios number is satisfactory enough to give a

representation of the underlying hazard, and practical enough to facilitate fast decisions

from insurer’s viewpoint. A crucial observation in the licensed models of famous risk

modelling companies, i.e. RMS or AIR for instance, is that the events set used is not

random. The latter means that the same events run every single time that the model

functions. This simplification has the advantage of allowing for comparisons among risks

and other firms which licence the same model vendor. Nevertheless, given the fact that

these events reflect just a subset of all potential catastrophic scenarios that can happen,

and in the eye of climate change, extra caution should be taken especially for events

located at the tail of the distribution.

Non-modelled losses Non-modelled losses is an important source of uncertainty in

the insurance industry overall and typically it occurs because of limitations in the model

itself. For example, this may be the case when geographical areas or perils are excluded

from the modelling assessment, or the insurance account of interest faces risks that the

model is not able yet to consider. It is vital for key members in the business to be at

least aware of any material missing information as this can impair their decision making

process if this is relied on the model output.

That said, there are instances in the past where insurers faced considerable financial

pressure just because they did not take into account potential discrepancies between real

versus modelled losses. For instance, in Hurricane Katrina storm surge losses peaked

in a very unexpected way and proved that the level of water surge can be much above

the storm’s landfall intensity compared to what the model had predicted. Managers

sometimes seem confident about their ability to judge the materiality of missing exposures

but overconfidence could lead to serious business mistakes that can jeopardise the solvency

of the firm.
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Quality of exposure data It is crucial for the model to receive data that represent

the location for risk assessment in a best way possible. In case that there is absence

of information, assumptions are made about missing key characteristics. This can be

done either by the modeller or by the catastrophe risk model itself. In the case of very

big data sets such as in binding authorities, mistakes are naturally more in number

compared to those in an energy and power generation account where the sites to be

insured are limited to one or two normally. Nevertheless, in the latter case characteristics

such custom elevation and exact geocoding are super important especially for windstorm

hazard investigation and not always easy to map as they are normally located in isolated

or offshore locations.

Furthermore, sometimes, in SoV’s there is no split between different type of values

and it depends on the modeller’s discretion how they are going to prorate these values

in every value category. In the case of earthquake, contents value is very important as

contents are normally more vulnerable than buildings. Another common exposure data

pitfall is business interruption values to be provided for different (or even unknown) time

frame to the one that the model accepts. In this case, it is again in modellers’ discretion

how to deal with this, nevertheless pro-rating is again the most common approach.

Another problem is that the quality of data provided by the broker can be incom-

plete. Usually, no modelling request can be accepted without SoV and insurance slip.

Nevertheless, for renewals and in the absence of updated data, it is not uncommon to

use last year data until the new schedule/slip is ready. This is very risky strategy as if

an unanticipated big loss was to occur before the receipt of the updated SoV, this could

be devastating for the insurer.

Finally, geocoding process entails lots of risks as there are again multiple approaches

that a modeller can use to develop the location input and each of these could lead to

a different modelled outcome. For example, running a UK account with postcode as

location information could give reasonably acceptable results. If one though would use

ZIP code in the US as main location information though, the resulting model output

would be inaccurate and very risky for the financial health of the insurer in case that this

would happen for a high hazard territory. For instance, a ZIP code level geocoding in a

coastal area of Florida could swift the location at the postcode centroid producing as a

result considerably smaller expected loss. Finally, there are countries such as Chile that

do not offer lat/long resolution through online platforms making geocoding impossible. In

these cases, a lat/long must be manually inserted decreasing the reliability of the model

outcome. Added on this, is the difficulty to find these locations manually on the map,

as the schedules are normally not in English which makes the task very time consuming

and prone to human error.
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Special risk characteristics One of the most serious factors of uncertainty in cat

modelling is this related to how the characteristics of the hazard are being translated

into damage for a certain structure at risk. Whilst special risk characteristics such as

roof geometry are taken into account, they do not cause significant changes in a base

vulnerability curve. Consequently, the selection of the most appropriate vulnerability

curve by the model turns out to be highly generic. No matter the level of model sophis-

tication, generalisations as to the assignment of a certain risk to one of the specified base

vulnerability curves are inevitable. In order to moderate this uncertainty, it is important

to pursue as minimum the sensitivity of the portfolio to the assumptions made by the

vendors and perform testing to comprehend how material every aspect is in changing the

curve. Nevertheless, in a fast paced insurance business environment modellers have time

to do this only in periods when work-flow is very low and unfortunately it is perceived

as a low urgency task.

Financial calculations When assessing the risk of an insurance contract, the mod-

ellers need to include financial terms into the model input such as deductibles, sub-limits,

covered perils per location, and sometimes even reinsurance terms. This requires the mod-

eller to have experience in understanding of the policy wording included in the slip which

is certainly not straightforward and not always possible. Consequently, misunderstand-

ing of policy terms can inject uncertainty in pricing process and when trying to predict

future claims.

Moreover, when risk analysis happens at a portfolio level, all underlying exposure from

both direct and reinsurance side of business need to be accounted accurately. Modellers

must select the appropriate settings and options before they run the model. The majority

of the models run in timetables that are practical from time perspective using various

approximations whilst computing. This forces the output of individual stages in the

modelling process into pre-determined distributions or deployment of sampling techniques

making it very complex to make direct calculations.

For instance, consider an insurance policy that is set to provide coverage against wind

damage only but the insured structure has faced damage from both wind and storm surge.

With the current sophistication level of models, it is not possible to identify post the event

occurrence whether the actual loss was caused by wind only or storm surge only or by a

mixture of both perils. Also, demand surge, i.e. the increase in the cost of materials and

labour post a disaster is another aspect that causes difficulties in translating the pure

loss into a claim accurately. Even if most vendors include demand surge in their settings,

none can know for sure how much the demand will actually surge, as politics may play a

role in restricting the influx of labour and materials in the country hit by the disaster.
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Moral hazard Another element of concern is related to the financial incentive of the

underwriters to bring revenue in the business. For very long time, insurance business

have been highly dependent on business relationship building and pricing decisions were

mostly based on intuition and experience. Nowadays, risk modelling has by far more

weight in making underwriting decisions as opposed to the past and sometimes this

change in business approach comes with conflicts.

For example, in cases when the catastrophe risk model output disagrees with the

underwriter’s intuition to accept the risk, pressure may be applied on modellers to re-

model the insurance account, by offering different interpretation to grey zones of data.

This may happen in an effort of the underwriter to align the modelling results with the

business network pressures.

Communication of Uncertainty Communication of uncertainty in catastrophe

risk model output is vital for making wise insurance business decisions. Being over-

confident or under-confident regarding catastrophe risk modelling results can be finan-

cially unhealthy for the insurer in the long term. Due to the complexity of the catastrophe

risk modelling process, stakeholders who use the modelled output for decision making

purposes may not be in position to judge the level of trust that they need to show in

it. That said, sometimes, there is too much of reliance on the model, and the modeller

being ”right”. With regards to the latter, it is worth mentioning that the way in which

the modeller present the risk analysis results to major stakeholders in the company can

influence the level of confidence of the latter in the reliability of the assessment. That

said, psychological factors may influence the way in which a decision maker perceives the

level of uncertainty in the catastrophe risk modelling process.

For instance, based on observation from personal working experience, when stake-

holders are presented with loss numbers with many decimal points, they somehow tend

to feel more secure and overconfident about the reliability of the results. From the other

hand, when modellers state the assumptions, and uncertainties in the reliability of the

modelled output in a very detailed way, underwriters may become more conservative or

they may reach the point of ignoring the model altogether and price the risk based on

their personal judgement.
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2.4 Other important characteristics

Except from the expected loss of the underlying insurance risk in a catastrophe bond,

there are other factors which could potentially influence the issuance price. As mentioned

in Chapter 2, Appendix, the expected loss can be seen as the pure insurance premium

on the top of which an additional loading is added to account for some variability. Thus,

in what follows, on the top of the expected loss discussed in Chapter 2, Section 2.3, it is

worth presenting some attributes that could potentially have some influence on the risk

loading of a catastrophe bond price at issuance.

In particular, we deal with attributes influencing mainly investors’ risk perception,

and consequently, the catastrophe bond risk load and initial offering price. These char-

acteristics are either linked to the design and contract provisions of the catastrophe bond

deal or general conditions in the market which alternate investors’ risk perception. That

said, the direction in which the risk perception of investors is influenced by these factors

may differ from investor to investor depending on their attitude towards risk and the

current state of the portfolio. The ideas below are based on Nowak et al. (2014), Boyd

(2016), and author’s working experience and they are not a result of a statistical analysis.

In Chapter 3, though we use some of these factors in a their ability to predict the price,

not solely the risk load, of a catastrophe bond at issuance.

2.4.1 Timing

There are at least two ways in which the timing of a catastrophe bond issuance may

influence its risk load. Firstly, a catastrophe bond which is issued in a time period of

low disaster activity may have a lower risk load compared to the one of an issuance with

similar characteristics straight after the occurrence of a mega-catastrophe. Obviously,

such a distinction does not usually reflect a true change in the risk involved but perhaps

a change of investors’ risk perception driven by psychological factors.

Secondly, every issuance relates to a well specified deal size reflecting the amount of

coverage that the sponsor of a catastrophe bond needs. Investors buy ”slices” of the

issuance up to the point that this pre-defined amount is reached. At a time when the

participation potential in a given issuance is still high, the associated risk load shall be

relatively small. This is because, from a cedent’s perspective, there is more confidence

that there will sufficient investors’ demand to achieve the level of coverage needed. Also,

from an investor’s perspective there is more flexibility into buying the ”slice” size that

meets better their portfolio needs, and risk-return desired structure. However, moving
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closer to the exhaustion of the deal size, uncertainty increases and the associated safety

load shall also move upwards.

2.4.2 Peril in conjunction with territory

The rarity of the peril from which a sponsor seeks for coverage, combined with the

coverage territory may affect investors’ perception regarding the level of a catastrophe

bond riskiness. That said, one view is that risk loads of issuances covering perils in

peak zones, i.e. areas with high disasters activity, tend to be higher compared to bonds

with perils in non-peak zones. This is usually attributed to the diversification effect

that rarer risks can offer to investors. In particular, by purchasing a catastrophe bond

with an unusual underlying peril, investors can smooth the risk-return structure of their

current portfolio. However, a different perspective is that catastrophe bonds with peak

zone perils could offer more ”certainty” as they are better understood, and ”reliable”

modelling methods are more likely to exist.

For instance, a catastrophe bond covering losses against US/North American hurri-

cane is considered more of a ”mainstream” product compared to a pure flood or wildfire

peril in a less developed part of the world. Since US hurricanes happen every year, the

availability of loss data, the quality of modelling techniques, and of course the experience

of the cedent in insuring these risks in the first place, makes the issuance process more

straightforward and increases investors’ level of confidence. Even though losses can occur,

investors can have a more informed indication of how much they can lose.

Another important aspect regarding the catastrophe bond underlying peril is whether

the latter is of long or short tail nature. For example, securitising liability related risks,

i.e. casualty lines, may result in a higher risk load because in this class of business claims

may take longer to arise, sometimes even well after the expiration date of the coverage,

whilst the estimation of loss magnitude is relatively difficult. From the other hand, risks

belonging to property business class are more certain with regards to the time span

between coverage start date and arrival of claims and the calculation of the expected loss

can be perhaps considered more reliable.

2.4.3 Reinsurance cycle

Both catastrophe bond, and reinsurance risk loads alike are related through the forces

that reinsurance cycle, see Chapter 1, Section 1.1.6.3, implies on the pricing of catastrophe

coverage. In particular, after a period of severe catastrophe losses, the cost of reinsurance
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normally increases (hard market) and consequently cedents look into alternative ways to

transfer risk, i.e. such as a catastrophe bond, in an effort to release capacity. This may

increase demand for catastrophe bonds nevertheless the risk load rises in line to reflect

the general market conditions. It is important to mention that the market cycle can

affect either the whole market or a specific segment of it, depending on the region and

peril that caused the loss. For example, a very active US hurricane season would increase

the risk load for US perils. However, if no other serious disasters occurred in other parts

of the world, the market for non-US perils may still be considered soft.

2.4.4 Trigger

One of the most intricate parts of catastrophe bond issuance is determining what can

trigger principal and/or interest impairment to investors. The trigger always include an

attachment which needs to be breached for investors to be liable to cover losses. Some

popular trigger types are called indemnity, industry loss, parametric, and model ones

respectively. In general, the difference among them lies on the level of correlation to the

real losses of the ceding reinsurer.

In particular, in the case of a catastrophe bond with an indemnity trigger, the princi-

pal/interest payments will be suspended in line with the actual loss which cedent suffered

after the occurrence of the trigger event. With an industry loss trigger, the suspension

decision is linked to the level of losses sustained by the whole insurance industry as it

is reflected through an industry wide loss index. In a catastrophe bond with paramet-

ric trigger what matters are not the losses of the individual cedent or industry but the

physical parameters of the insured disaster such as specific wind speed or earthquake

magnitude in Richter scale. Finally, catastrophe bonds with modelled loss trigger rely on

cat claim amounts estimated by cat models.

Given the prolonged period of time associated with claims handling post a catastro-

phe, it is natural to argue that indemnity triggers would originate more uncertainty to

investors as for what percentage of the principal will be lost in claims payments. Also,

since indemnity triggers guarantee the coverage of actual losses incurred to the cedent,

the process inevitably involve a higher degree of moral hazard which puts investors in a

disadvantageous position. As a result, a higher safety loading is necessary and investors

would require from the cedent to charge a more competitive price for taking this uncer-

tainty. Obviously, the more irrelevant the actual losses are, the more attention should be

paid in the structure and calibration of the cat bond. However, investors could be ready

to pay a premium for avoidance of delays in the claims process.
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The number of triggers is another factor which can affect risk load. A catastrophe

bond can be constructed to have either a single or multiple triggers. In the instance of

a single trigger, the first insured loss event exceeding the attachment point triggers the

provision of coverage by the investors. For loss events that do not manage to reach the

pre-agreed level, the cedent cannot suspend payments to investors as this attachment

point acts as deductible.

In catastrophe bonds with multiple triggers, various loss events must exceed various

pre-determined attachment points before investors held liable to cover any insured losses.

This can be done in various ways. For example, sometimes the occurrence of a very

specific first event leads to the trigger activation of a very particular second trigger event

which will make investors liable in case that a pre-defined loss threshold will be exceeded.

Alternatively, the trigger event can be single but the requirements which need to be met

multiple for the activation of the coverage to occur. Based on the above, investors are

slightly less prone to be held liable to pay claims when they buy multi-trigger catastrophe

bonds as more conditions need to be met before they start losing money compared to

coverage activation single trigger instruments. This means that multi-year catastrophe

bonds may have smaller risk load.

2.4.5 Resets provision

Normally, catastrophe bonds are designed to offer coverage against disasters over the

course of multiple years rather than for a single year as it happens for most of (re)insurance

contracts. This multi-year coverage provision can cause complications in the risk quan-

tification process, especially this of non parametric cat-bonds. The reason behind this

is the possible size alteration of cedent’s exposure base. In particular, the expected loss

in these instruments is calculated based on the cedent’s inventory at risk at the time

of issuance. Nevertheless, the portfolio of the cedent, and thus their exposure, is not

stable over the duration of the bond. This randomness of cedent’s wealth can overexpose

investors to risks they are unaware of and thus not compensated for.

Consequently, the presence of basis risk is apparent and grows in line with the time

difference between the risk assessment and the change in the exposure. This problem can

be mitigated through the so called ”resets”. This process entails regular re-modelling of

the risk based on the updated exposure followed by adjustment of the trigger to preserve

cat bond’s loss probability at the level agreed when the latter was issued. In this sense,

in an absence of number of resets provision, the risk load that needs to be charged needs

to be higher to compensate for this basis risk and equivalently resets happening on an

annual basis should lead to a lower safety loading.
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2.4.6 Bonds liquidity

Catastrophe bond liquidity can also affect the risk load. Catastrophe bonds that have

the potential to be sold fast in the secondary market shall require a smaller load as they

are considered less risky. Investors benefit from holding liquid investments because of

the versatility they offer for portfolio re-balancing, hedging, or simply obedience to rules

regarding assets credit rating minimum acceptable level introduced by some investment

funds.

Generally, one could say that a high credit rating, a relatively short coverage period, a

well known covered territory, and a quite common peril could make a cat bond qualify as

a liquid investment. However, whilst the first two factors are easy to determine, things are

not as straightforward when it comes to peril and territory as depending on the current

circumstances investor’s perception of riskiness can change. For example, after a very

active hurricane season with serious landfalls investors may feel that holding a Turkey

earthquake based cat bond provides them with more opportunities to cash out without

much loss in value. The latter risk though may be proved a very illiquid one, after years

of low loss hurricane seasons.

Another factor that it relates to the liquidity of the market as a whole and thus the

risk loads is regulation. In the early stages of cat bond market development, the purchase

base of these instruments were specialist hedge funds and asset management companies.

Nowadays though, there are jurisdictions where regulation allows for pension funds and

other institutional investors to buy cat bonds. This means that issuances in areas with

looser regulation with respect to this matter may enjoy a lower risk load.

2.4.7 Reputability of issuance participants

A reinsurer with a high credit rating and solid experience in insurance-linked securi-

tisation could fairly result in a lower risk load. Reinsurers such as Zurich Re and Swiss

Re are pioneers in securitisation of insurance risks and they have a proven record of suc-

cessful deals placements. This creates a contract of trust between reputable reinsurance

players and investors that affects the perception of catastrophe bond riskiness and risk

load, and eventually the catastrophe bond initial offering price.

Similarly, a higher credit rating illustrates the cedent’s ability to assess risk and pay

valid claims without compromising the soundness of their financial performance. Once

again this boosts investors’ confidence around the quality of the cedent’s risk selection

practices minimising the necessity for additional loading. Cedent’s trustworthiness is not
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the only one that matters though. In particular, the risk modelling company used for

the risk assessment of the deal may also be important especially when the securitisation

comes to periods of model upgrades. This is something that we will also see in Chapter

3, Section 3.1.

2.5 Appendix; On premium calculation principles

The price formation for an insurable risk follows some basic actuarial principles. This

methodological framework is not very far away from the one employed in a catastrophe

bond pricing setting thus its study becomes relevant. That said, we look into some main

traditional premium principles used in non-life insurance along with their properties. For

the purposes of this written work, the focus will be mostly on classical and economic

premium principles based on the views of Gerber (1979), Deprez & Gerber (1985), and

Bühlmann (2005).

Premium calculation in insurance is a topic of tremendous importance. Neverthe-

less, the fact that there is no standard way to perform premium computation makes the

decision of appropriateness of the existing methods intriguing. The discussion starts by

establishing the main categories of these actuarial principles. There are mainly three

methodologies that actuaries utilise for the development of premium principles namely

the classical, the characterisation, and the economic methods. Some brief description for

each follows.

In the classical method, the actuary chooses a premium calculation method and then

examines whether the chosen principle satisfies any good properties. On the other hand,

the characterisation method requires the actuary to produce a list of desired properties

first and based on them then to develop the premium principle that satisfies them. The

economic method, which is often considered the most meticulous one of all, stems from

adopting a specific economic theory and then quantifying the emerging premium principle.

However, it is highlighted that in reality it is often difficult to distinguish among these

methods, as there are circumstances where a premium principle originates from more

than a single method. What is really important is to understand what constitutes such

a principle.
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2.5.1 Defining a principle of premium calculation

The basis of premium calculation in (re)insurance lies on assuming that fixed payments

called premiums can recompense for fortuitous claims. A reinsurer who wants to price

an accidental loss operates in a uncertain universe. The latter is described through a

probability space (Ω,F ,P) which models a real-world insurance pricing process containing

states of random loss occurrence. This random loss, say X is a bounded random variable.

Then a principle of premium calculation is a rule, suppose R, whose role is the assignment

of a real number, say P, to any bounded random variable, X. The latter mapping can be

illustrated as follows.

P = R(X)

where X represents an insurable risk and P the premium attributed to it.

It is obvious that the aforementioned definition is quite abstract in a sense that no

emphasis is given to the fact that the functional R(X) is formed by distributions. Never-

theless, this generality serves a deeper purpose which is to reveal that both the payment

that the insurer has to make post the occurrence of the insured event and consequently

her gains are random. In particular, this principle says that for any insurable risk the

insurer can provide a premium quotation P meaning that they are ready to accept P

and as an exchange pay a random loss X. Since X is random, then the insurer’s earning

from such a policy is P −X also random.

2.5.2 Properties of premium principles

Properties that are usually accepted as true in most of the premium principles, without

necessarily being so, are the following.

Independence The premium to be charged depends only on the distribution of the

risk X. In other words, the same premium is assigned to insurable risks that happen

to be identically distributed. The property of independence presented in the previous

section is a very important one in the general insurance industry. Nevertheless, when the

underlying peril of a (re)insurance or cat bond transaction is a rare event the assumption

of independence needs loosening. The reason behind this will be thoroughly explained

later on.
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Non-negative risk Loading For any X, R(X) ≥ E(X) meaning that the premium

charged should be at least equal to but most of the times larger than the expected loss.

The inequality is quite intuitive as the expected loss is just an estimate whose reliability

depend on multiple factors. Nevertheless, where there is equality it means that for all

constant risks, a safety load is indefensible.

Invariance Take any insurable risk X and any constant, say c. Then a premium

augmentation by an additive constant c is equivalent to the original premium plus this

constant. This can be expressed as

R(X + c) = R(X) + c

Additivity Consider that X1, X2 are two risks which are independent then it holds

that the premium of their sum equals to the sum of their premiums.

R(X1 +X2) = R(X1) +R(X2)

Thus, by combining two uncorrelated risks, the total premium should not be affected.

Iterativity Except from risk X consider now randomly another risk Y . Then according

to this principle the premium can be calculated in two steps; first apply the rule R(.)

to the conditional distribution of X which is a function and thus a random variable

itself. Then the application of the rule R(.) to the distribution R(X|Y ) follows to derive

R(X) = R(R(X|Y )). In other words, when risks X and Y are of arbitrary nature,

R(X) = R(R(X|Y ))

holds.

2.5.3 Examples of premium calculation principles

This paragraph introduces some representative examples of premium calculation prin-

ciples. These are presented below.
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Net Premium Principle The net premium principle or otherwise called principle of

equivalence says that the premium charged for an insurable risk equals the expected value

of the random payment.

R(X) = E(X)

The absence of loading is based on the assumption that if an insurer issues a large

enough number of identically distributed and independent policies there is effectively no

risk. This principle could be appropriate for life insurance but it is out of context in the

case of property and casualty risks especially those of low frequency and high severity

risks as they are not characterised by homogeneity.

The Standard Deviation Principle The standard deviation principle says that the

loading is proportional to standard deviation. Specifically, for a parameter β > 0

R(X) = E(X) + β
√
V ar(X)

This principle is perhaps the most famous across property and casualty insurance

lines. The reason behind its popularity is the its linearity with reference to a proportional

change in (re)insurer’s claims experience. Moreover, it is claimed that if the probabil-

ity distribution of risks included in the portfolio is normal, then all premiums have the

same probability of being surpassed by the related claims. Both arguments though are

not appropriate for all types of risks and especially those of catastrophic nature as their

distributions are highly skewed.

The Variance Principle The variance principle incorporates a security loading which

is proportionate to the variance of the expected random payment. In particular, for a

parameter a > 0 the following equation holds.

R(X) = E(X) + aV ar(X)

The variance principle is not as extensively used. The theoretical advantage lies on its

alleged linearity with reference to the addition of independent risks even though there is

no longer linearity with reference to a proportional change in (re)insurer’s claims pattern.
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Similarly with the standard deviation principle, it is improper for low frequency and high

severity risks.

The principle of zero utility The concept behind this principle is that the insurer

wants to charge a premium which is fair in terms of monetary units of utility. Consider

that u(.) is a function which positions options according to their utility to an insurer.

This utility function is increasing and satisfies the property of concavity. The element w

reflects the wealth that the insurer has under his procession before the issuance of the new

policy. In this context, the premium principle P = R(X) is derived from the following

rule showing the fairness of the premium, i.e. the utility of the insurer is unchanged when

provides the cover. The latter reflects more the situation where the insurer examines the

provision of coverage to the insured but it can be easily adjusted for cases where the

insurer wants to transfer the risk X out from his portfolio to a reinsurer or a financial

market by simply changing the sign of P and X.

E(u(w + P −X)) = u(w)

An important aspect here is that when the insurer’s utility is exponential, the pricing

equation can be solved explicitly. The result is then called the exponential principle, as

shown below, where the level of premium charged increases as the size of the parameter

a increases.

u(x) =
1

a
(1− e−aX)

P =
1

a
lnE(eaX)

The generalised principle of zero utility The difference between this principle and

the previous one lies on the nature of the parameter of wealth. Whilst previously, the

fortune of the insurer has been taken as constant, here it is stochastic, W , and unlike

earlier, it appears in the explicit solution of the exponential utility principle. Once again,

with a change of sign in P and X the principle falls in the context of risk transfer.

E(u(W + P −X)) = E((W ))
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P =
1

a
ln

E[ea(X−W )]

E[e−aW ]

It shall be mentioned that when parameter a is small enough, the below approximation

can be derived.

P ≈ E(X) +
a

2
V ar(X)− aCov(X,W )

This finding demonstrates that the premium to be charged is dependent on the joint

distribution of the risk X itself and the ”wealth” W of risks that the insurer held already

prior considering to cover risk X.

As mentioned before the principle of (generalised) zero utility fits perfectly the con-

cept of reinsurance or risk securitisation and offers the advantage of offering a pricing

solution which takes into account the individual preferences and attitudes towards risk

of stakeholders involved in the transaction.

To summarise, in a non-life insurance context the price for an insurable risk exceeds

the expected loss value by a safety load which compensates the (re)insurer for the un-

certainty around real losses. Thus, one aspect of pricing involves the estimation of the

expected loss and another to understand the dynamics that force the risk load upwards

or downwards. This is relevant not only in the case of reinsurance pricing but also in a

cat bond transaction initial valuation. These aspects have been discussed in Chapter 2.
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Chapter 3

A random forest based approach for

predicting spreads in the primary

catastrophe bond market

This chapter is mainly dedicated to our article published on an open access basis at

Insurance: Mathematics and Economics entitled ”A random forest based approach for

predicting spreads in the primary catastrophe bond market”1, see Makariou, Barrieu &

Chen (2021). In particular, the chapter is comprised of two sections out of which the first

is the article itself presented as it appears in the journal, whilst the second one includes

some supplementing material which is not discussed in the published version of the article

but we think that it may be of interest for the readers of the thesis.

3.1 A random forest based approach for predicting

spreads in the primary catastrophe bond market

1The article can be accessed via the following link: https://doi.org/10.1016/j.insmatheco.2021.07.003
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We introduce a random forest approach to enable spreads’ prediction in the primary catastrophe bond 
market. In a purely predictive framework, we assess the importance of catastrophe spread predictors 
using permutation and minimal depth methods. The whole population of non-life catastrophe bonds 
issued from December 2009 to May 2018 is used. We find that random forest has at least as good 
prediction performance as our benchmark-linear regression in the temporal context, and better prediction 
performance in the non-temporal one. Random forest also performs better than the benchmark when 
multiple predictors are excluded in accordance with the importance rankings or at random, which 
indicates that random forest extracts information from existing predictors more effectively and captures 
interactions better without the need to specify them. The results of random forest, in terms of prediction 
accuracy and the minimal depth importance are stable. There is only a small divergence between the 
drivers of catastrophe bond spread in the predictive versus explanatory framework. We believe that the 
usage of random forest can speed up investment decisions in the catastrophe bond industry both for 
would-be issuers and investors.

© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND 
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Catastrophe bonds are Insurance-Linked Securities (ILS), first 
developed in 1990s, in an effort to provide additional capacity to 
the reinsurance industry post mega-disasters. The pricing of these 
instruments is particularly challenging as most of these securities 
are traded over the counter. Over the last years, there have been 
several empirical papers trying to address this difficulty by study-
ing the price of catastrophe bonds using real-market data, mainly 
in the explanatory framework, see Lane (2000), Lane and Mahul 
(2008), Lei et al. (2008), Bodoff and Gan (2009), Gatumel and Gue-
gan (2008), Dieckmann (2010), Jaeger et al. (2010), Papachristou 
(2011), Galeotti et al. (2013), Braun (2016), Gürtler et al. (2016), 
Götze and Gürtler (2018), Trottier et al. (2018), and only very re-
cently in the context of comparative studies for machine learning 
algorithms, Götze et al. (2020).

The main orientation of the explanatory based approach was 
to explain catastrophe bond price via means of identification of 
variables having a theoretically material and statistically significant 

* Corresponding author.
E-mail addresses: D.Makariou@lse.ac.uk (D. Makariou), P.M.Barrieu@lse.ac.uk

(P. Barrieu), Y.Chen101@lse.ac.uk (Y. Chen).

link to it. This was mostly achieved through the use of explanatory 
statistical models. Certainly, the aforementioned works have shed 
light on the drivers of catastrophe bond prices in the presence of 
causal theory. However, there are certain limitations, namely, selec-
tion bias, predictor interactions, non-linearities, and a non-purely-
predictive study goal. Starting from selection bias, the data samples 
used previously often excluded bonds of certain characteristics, un-
usual issuances were eliminated as outliers, and observations with 
missing entries were excluded from data sets, leading to a po-
tential significant loss of information. See Bodoff and Gan (2009), 
Götze and Gürtler (2018), Galeotti et al. (2013), Braun (2016) and 
Lane and Mahul (2008). Meanwhile, in Papachristou (2011), con-
cerns about interactions between independent variables were ex-
pressed but not investigated. Another limitation is the extensive 
use of linear regression without justification of its suitability in 
a catastrophe bond market setting. This was recognised in some 
cases, see Lane and Mahul (2008) and Papachristou (2011). Finally, 
as Major (2019) mentioned, in terms of study goal, past works did 
not aim directly at spread prediction, although there is a business 
need for it.

In this manuscript, we suggest a supervised machine learning 
method called random forest (Breiman 2001) to predict spreads 
in the primary catastrophe bond market. Some reasons about the 

https://doi.org/10.1016/j.insmatheco.2021.07.003
0167-6687/© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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model specification are discussed below. The model choice is par-
tially based on the fact that random forest is widely considered 
as one of the most successful machine learning methods to date, 
see Berk (2008), and Biau and Scornet (2016) among others. It 
should be noted that random forest success in providing highly 
accurate predictions is mainly achieved by resolving the trade-off 
between over-fitting and prediction accuracy, as discussed in vari-
ous works such as these of Breiman (2001), Díaz-Uriarte and De 
Andres (2006), Oh et al. (2003). Moreover, the recent novel re-
search of Götze et al. (2020) compared different machine learning 
methods in a catastrophe bond market setting, which provides ev-
idence that random forest outperforms neural networks, and linear 
regression which is combined with variable selection via Lasso and 
Ridge penalisations. In addition, we believe that the random for-
est method has a number of particular aspects which could help 
overcome some of the limitations presented previously in the ex-
planatory framework in the literature. Firstly, random forest is a 
flexible method in a sense that makes no assumptions about the 
underlying data generative process. This is an important advantage 
that could help us effectively tackle the issue of non-linearities 
in the catastrophe bond market. Secondly, because the building 
blocks of the method are regression trees, random forest is reason-
ably robust to outliers. This is very useful given that catastrophe 
bonds can be extremely heterogeneous and losing information is 
particularly “costly” in this opaque market segment. Thirdly, once 
again, due to the tree structure of the method, variables are con-
sidered in such a way that allows to capture interactions without 
the need to specify them (Breiman et al. 1984). Fourthly, internal 
measures of variables’ importance can be derived solely in a pre-
diction context, and selection of the most important variables is 
feasible. Finally, there is only a small number of hyperparameters 
to tune, and the need for data pre-processing is minimal because 
many steps are integrated in the method itself, ensuring time effi-
ciency from a business perspective.

Here, we apply the random forest method to predict spreads 
in the full spectrum of primary non-life catastrophe bond market. 
We aim to generate accurate spreads’ predictions of new catastro-
phe bond observations on both temporal and non-temporal bases. 
Comparisons are made with highly competitive benchmark mod-
els. In absence of causal theory, we assess how spread predictors 
rank in terms of importance using two different methods, namely, 
permutation importance and minimal depth, where the latter is 
random forest specific. To our best knowledge, this work is among 
the first to apply the minimal depth method as described in Ish-
waran et al. (2010) in a financial application. In addition, we ex-
plore whether the variables found by now to be good at explaining 
catastrophe bond spreads in the explanatory framework are sim-
ilar to those good at prediction in absence of causal theory. As 
mentioned in Shmueli (2010), one should not expect these two to 
be exactly the same and indeed we find some small level of di-
vergence. From an empirical perspective, we aim at random forest 
prediction accuracy and variables’ importance results to be stable 
thus this aspect is also evaluated subject to multiple iterations of 
random subsampling. Besides, we assess the degree at which the 
prediction accuracy of random forest versus benchmark model is 
sensitive to simultaneous missingness of more than one predic-
tor. By doing so we also check the degree to which the random 
forest captures predictors’ interactions without specifying them, as 
well as its ability to extract information from existing variables to 
recover the loss of predictive power in the absence of other impor-
tant predictors.

With regards to the benchmark model, first we reproduce and 
then improve the model of Braun (2016) to account for non-rated 
catastrophe bond issuances. Braun (2016) is chosen as it indicates 
the best out of sample performance to date in the relevant ex-
planatory literature. Next, we build a new simple linear regression 

model based on the same set of variables we use for the random 
forest generation. For the first time, we include the risk modelling 
company and coverage type in the analysis as potential catastro-
phe bond spread drivers making a contribution in the explanatory 
framework. A potential reason for lack of prior works taking into 
account these variables is most probably due to the difficulty of 
finding information about them as they pin-point to very detailed 
aspects of a transaction - a view that Braun (2012) already ex-
pressed regarding the risk modelling company. The newly built re-
gression model outperforms the improved version of Braun (2016)
and thus is used as our benchmark in this manuscript.

The rest of the paper is organised as follows. In Section 2, we 
briefly introduce machine learning concepts. We explain our re-
search methodology in Section 3 and present our catastrophe bond 
data set details in Section 4. Benchmark models are discussed 
in Section 5. We then demonstrate the random forest generation 
based on our catastrophe bond data in Section 6, followed by the 
evaluation of the random forest’s performance in Section 7, and 
the importance analysis of catastrophe bond spread predictors in 
Section 8. Furthermore, in Section 9, we provide an example of 
how the random forest could be used in practice to assist is-
suers’ and investors’ decision making when they examine a new 
catastrophe bond issuance. Finally, concluding remarks follow in 
Section 10.

2. Machine learning preliminaries

In this section, we introduce some machine learning concepts 
that will be useful for the comprehension of methods used later on 
in our study. The explanations to be given are limited to a regres-
sion problem because catastrophe bond spread is a quantitative 
response variable.1

2.1. Supervised learning

Machine learning includes a set of approaches dealing with the 
problem of finding or otherwise learning a function from data 
(James et al. 2013). Supervised learning is a machine learning task 
where a function, otherwise called a hypothesis, is learned from 
a data set - often referred to as training set. The latter consists 
of a number of input-output pairs where for every single input in 
the training set the correct output is known. An algorithm is going 
through all data points in the training set identifying patterns and 
finding how to map an input to an output. Because the desired an-
swer for the output is known, the algorithm modifies this mapping 
based on how different algorithm generated outputs are compared 
to the original ones in the training set (Friedman et al. 2001). Ul-
timately, the aim is that by the time the learning process finishes, 
this difference will be small enough for the algorithm to be able to 
map any set of new inputs the algorithm will come across in the 
future in a reasonable manner.

2.2. Ensemble learning

Sometimes instead of learning one mapping, it is useful to 
have a collection of mappings which merge their predictions to 
create an ensemble (Russell and Norvig 2016). Individual approx-
imation functions in the ensemble are usually called base learn-
ers and predictions combination can happen in various ways with 
most usual ones being voting or averaging. Such techniques have 

1 We clarify that in machine learning literature, the term “regression problem” 
often refers to prediction using a continuous response variable, see James et al. 
(2013). We distinguish this from the term linear regression that is used throughout 
this work to describe either the linear regression models in the literature or our 
benchmark model.
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been investigated quite early on, see for example Breiman (1996c),
Clemen (1989), Perrone (1993) and Wolpert (1992). The main ben-
efit of ensembles is that if each single hypothesis is characterised 
by high degree of accuracy and diversity then the ensemble is 
going to produce more accurate predictions than any of the in-
dividual hypotheses on its own, see Zhou (2012). Here, accuracy 
means that a hypothesis results in a lower error rate as opposed 
to one that would be derived from random guessing on new input 
values, while diversity means that each hypothesis in the ensem-
ble makes different errors on new data points (Dietterich 2000a). 
Ensembles are usually built by utilising methods to derive various 
data sets out of the original data set for each base learner. One 
of the most famous methods to construct an ensemble is briefly 
discussed below.

2.3. Bagging

Bagging, an acronym for bootstrap aggregating presented by 
Breiman (1996a), is a powerful ensemble learning method. As the 
name indicates, the ensemble uses the bootstrap, see Efron (1992), 
as resampling technique to take multiple data samples from which 
multiple base learners will be then generated. At the same time, 
aggregation, which is simple averaging for regression, is the way 
to combine the predictions of these individual base learners. There 
are various merits in using bagging for building ensembles. First, 
using a bootstrap sample to build each base learner means that 
a part of the original data (normally two third by default) are 
not used in its construction. Then, these unseen data points can 
constitute an unbiased test data to quantify how well each base 
learner generalises (Breiman 2001). Secondly, the method is useful 
when data is noisy (Opitz and Maclin 1999). Thirdly, and probably 
most importantly, by aggregating base learners which individu-
ally suffer from high variance, e.g. decision trees (Breiman et al. 
1984), the ensemble as a whole achieves a variance reduction; 
see Breiman (1996a), Bauer and Kohavi (1999), Breiman (1996c), 
Breiman (1996b) and Dietterich (2000b). A pitfall of the method 
though is that whilst bagging reduces the ensemble variance, there 
are diminishing returns in variance reductions as the computa-
tional cost increases. This is because all bootstrap samples are 
drawn from the same original data set, meaning that base learn-
ers will inevitably be correlated. This latter point is where the idea 
of random forest is based on and it will be further discussed in 
Section 3.

3. Research methodology

Having provided necessary background information about cer-
tain machine learning concepts, the purpose of this section is 
twofold. We start by stating our catastrophe bond spread predic-
tion problem introducing notations that will be used later in our 
study. We then continue by presenting our research methodology.

3.1. Problem statement with notations

Broadly, we use an ensemble algorithmic method to perform a 
supervised learning task for the primary catastrophe bond market. 
For now, let x generally denote2 the input which reflects character-
istics of catastrophe bonds available in the offering circular at the 
time of issuance and ILS market conditions. At the same time, let 
symbol y denote catastrophe bond spreads at the time of issuance. 
A function f of the form y = f (x) relates catastrophe bond char-
acteristics, conditions in the economic environment and possibly 
random effects to their spreads, however f is unknown. Based on 

2 Our convention is that bold lowercase letters reflect random vectors.

past primary catastrophe bond data including information both for 
x = (x1, x2, . . . , xP ) where p = 1, 2, . . . , P and y, we first want to 
find a function that approximates f so that we can predict spreads 
given new catastrophe bond input.

In particular, experience about past catastrophe bond issuances 
is captured by collecting n = 1, . . . , N distinct input-output pairs. 
The input is a vector of predictors, also called features, covari-
ates or independent variables, xn = (x1n, x2n, . . . , xPn) indexed by 
dimension p = 1, 2, . . . , P and it is a element of Rp . The output, 
also called response or dependent variable, is a real-valued scalar 
denoted by yn indexed by example number n = 1, . . . , N . By as-
sembling these N pairs, we collectively form a catastrophe bond 
data set D = {(xn, yn), n = 1, 2, . . . , N} based on which the en-
semble algorithmic method will search the space H of all feasible 
functions, in a process called learning, and find a function, denoted 
by hen , that is able to predict the response y′ given a new input 
x′ as accurately as possible. Because, we use an ensemble method, 
hen is in reality a collection of functions approximating f . We are 
also interested in assessing the importance of each input of x in 
predicting the spread. Finally, all results will be evaluated on the 
grounds of them being stable subject to random subsampling of 
the whole data set.

3.2. Random forest

The ensemble method that we use is called random forest. It is 
developed by Breiman (2001) and is used to solve prediction prob-
lems. Below we present the rationale behind the method, random 
forest construction process, main hyperparameters, and lastly how 
random forest is used to make predictions.

3.2.1. Underlying logic
As James et al. (2013) mentioned, the underlying logic of ran-

dom forest is to “divide and conquer”: split the predictor space 
into multiple samples, then construct a randomised tree hypoth-
esis on each subspace and end with averaging these hypotheses 
together. Generally, random forest can be seen as a successor of 
bagging when the base learners are decision trees. This is because 
random forest addresses the main pitfall of bagging; the issue of 
diminishing variance reductions discussed earlier in Section 2.3. 
This is achieved by injecting an additional element of randomness 
during decision trees construction for them to be less correlated to 
one another. At the same time, since the base learners are decision 
trees there are not many assumptions about the form of the target 
function resulting in low bias.

3.2.2. Random forest construction process
The process of constructing a random forest involves various 

steps which are summarised in Fig. 1 and discussed straight after.
The first step in the random forest generation process is boot-

strap sampling. In particular, from a data set, like D , we take 
1, . . . , K samples with replacement each of them having the same 
size as the original data set. The second stage is regression trees 
development. From each bootstrap sample, K regression trees are 
grown using recursive partitioning as done in Classification And
Regression Trees (CART) (Breiman et al. 1984) but with a smart 
twist which further randomises the procedure. At each level of the 
recursive partitioning process, the best predictor to conduct the 
splitting is considered based on a fresh, each time, random sub-
sample of the full set of predictors denoted as mtry. The best split 
is chosen by examining all possible predictors in this sub-sample 
and all possible cut-points as of their ability to minimise the 
residual sum of squares for the resulting tree. A tree stops grow-
ing when a minimum number of observations in a given node is 
reached but generally speaking trees comprising the random forest 
are fully grown and not pruned. By constructing these K trees we 
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Fig. 1. Random forest construction scheme. For each regression tree, light grey cir-
cles indicate the root node, dark grey circles intermediate nodes and white colour 
circles terminal nodes.

effectively get K estimators of function f namely h1, h2, . . . , hK . 
The average of these individual estimators hen = 1

K

∑K
k=1 hk(xn) is 

the random forest.

3.2.3. Hyperparameters
From the above process description, it is evident that there are 

three parameters whose value needs to be fixed prior to random 
forest development; namely the number of trees grown, node size, 
and number of variables randomly selected at each split. Each of 
them respectively control the size of the forest, the individual tree 
size and an aspect of the within tree randomness. There are certain 
default values that have been suggested following empirical exper-
iments on various data sets but one can use an optimising tuning 
strategy with respect to prediction performance to select the most 
suitable values specifically for the data set under study (Probst et 
al. 2018).

3.2.4. Making predictions
After the random forest is built, it can be used to provide pre-

dictions of the response variable. To make predictions though, it 
is necessary to feed the method inputs that have never been seen 
before during the construction process. As we have briefly men-
tioned in Section 2.3, due to bootstrap sampling, we can refrain 
from keeping aside in advance a portion of the original data set for 
testing purposes. The reason for this is that each tree uses more or 
less two thirds of the observations, from now on called in-bag ob-
servations, whilst the remaining one third of the observations are 
never used to build a specific tree, from now on called out of bag 
(OOB) observations. For each tree, the out of bag observations act 
as a separate test set. To predict the response variable value for 
the nth observation, one should drop its corresponding input down 
every single tree in which this observation was out of bag. This 
means that by doing so one will end up having in hand on av-
erage K/3 predictions for any n = 1, . . . , N observation. Then, in 
order to derive a single response prediction for the nth observa-
tion, the average of these predictions is taken. The same procedure 
is repeated for all other observations. Whether these predictions 
are good enough or not needs to be evaluated based on certain 
metrics as shown next.

3.3. Performance evaluation criteria for random forest

To assess the performance of any machine learning algorithm, 
one needs to set in advance the criterion upon which judgement 
will be made. In this paper, we employ two criteria for the per-
formance evaluation of our random forest; prediction accuracy and 
stability. They are discussed below.

3.3.1. Prediction accuracy
Prediction accuracy is one of the most used performance indi-

cators in machine learning algorithms aiming at prediction. This is 
no different for random forest algorithm as originally presented 
in Breiman (2001). In the current study, prediction accuracy is 
assessed based on two different perspectives: a temporal and a 
non-temporal one. We believe that such a distinction highlights 
different prediction needs and could add value in a practical con-
text.

By employing a non-temporal approach, one can assess random 
forest predictions robustness when at the time of the spread pre-
diction, the general catastrophe bond market conditions have been 
relatively stable over a time period prior the prediction, thus the 
time element could potentially be ignored. A non-temporal per-
spective would also be meaningful when simply the character of 
the prediction is not time relevant. With regards to the latter, an 
instance would be when there is ambiguity around the accuracy of 
spread information a company holds for a transaction or in cases 
that the spread information for a given transaction is unavailable 
resulting in a company having to face the issue of an incomplete 
data base. In both cases, the element of time may appear to be 
less important compared to the need of having a bigger and more 
diverse training set in the analysis. On the other hand, a tem-
poral approach considers the robustness of the random forest in 
accurately predicting spreads over time. Effectively, such a point of 
view allows us to account for regime shifts and examine the de-
gree at which an industry participant would be able to predict a 
new catastrophe bond spread no matter its features and risk pro-
file. For this purpose, we need to split the data into separate train 
and test sets for various time periods and then assess the random 
forest and benchmark model prediction accuracy performance.

In the non-temporal context, prediction accuracy is primarily 
measured by means of the proportion of the total variability ex-
plained by the random forest, here denoted as R2

OOB. Following 
Grömping (2009), the latter metric is defined as R2

OOB = 1 − SEOOB
TSS

where SEOOB stands for the total out of bag squared errors and 
TSS for the total sum of squares. In addition, we denote the 
out of bag mean squared error as MSEOOB = SEOOB/N . With re-
spect to MSEOOB, it shows the variability in the response variable 
that is not forecasted by the random forest. It is calculated as 
MSEOOB = {∑N

n=1(yn − ŷnOOB
)2}/N where ŷnOOB

is the mean pre-
diction for the nth observation where n = 1, . . . , N for all trees for 
which the nth data point was out of bag. In effect, MSEOOB is a 
sound approximation of the test error for the random forest be-
cause every single data point is predicted based solely on the trees 
that were not constructed using this observation. Actually, when 
the number of trees K is very large then the MSEOOB is roughly 
equivalent to leave one out cross validation James et al. (2013). 
With regards to TSS, as in linear regression, it reflects the degree 
at which the response variable, here the catastrophe bond spread, 
deviates from its mean value. It is defined as TSS = ∑N

n=1(yn − y)2

where yn is the response variable value for the nth observation 
where n = 1, . . . , N and y the mean value of the response vari-
able. In this study, R2

OOB is going to be expressed in percentage 
terms. The higher the R2

OOB, the better the prediction accuracy of 
the random forest is. Whilst for random forest, it is somehow nat-
ural to use the R2

OOB, see Breiman (2001), we deem useful to also 
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present the prediction accuracy results derived by two “more stan-
dard” statistical approaches, i.e. 10 fold cross validation and leave 
one out cross validation even though we expect that results may 
be fairly similar. In the temporal context, prediction performance 
will be assessed on the basis of out of sample R2 denoted as R2

OOS. 
The metrics presented here both in the non-temporal, and tempo-
ral context will be also used for the benchmark model to allow for 
a fair comparison.

3.3.2. Stability
The term stability here refers to how repeatable random for-

est results are when different samples taken from the same data 
generative process are used for its construction, see Turney (1995)
and Philipp et al. (2018) for the rationale behind this approach. 
The rationale for investigating stability is rooted from the fact that 
consistent results are deemed more reliable, see Stodden (2015), 
Turney (1995), Yu (2013) and Philipp et al. (2018) for a discussion.

Various ways of measuring the stability of algorithmic results 
have been presented in Turney (1995), Lange et al. (2004), Ntoutsi 
et al. (2008), Lim and Yu (2016) and Philipp et al. (2018). In this 
study, we are inspired by the works of Turney (1995) and Philipp 
et al. (2018) with regards to stability and its empirical measure-
ment. In particular, the idea is that by obtaining two sets of data 
from the same phenomenon sampled from the same underlying 
distribution the algorithm needs to produce fairly similar results 
from both data sets for it to be considered stable. One way to 
achieve this is to randomly partition the whole data set into two 
separate data sets multiple times. An important decision though 
is how to take the samples. Here, we propose taking the samples 
using the split-half technique as described in Philipp et al. (2018)
meaning that the whole catastrophe data set will be split into two 
disjoint data sets of roughly equal size. This sampling method en-
sures that a similarity between the results is not attributed to the 
same observations being in both samples as this could result in 
similar results without meaning that the algorithm is actually sta-
ble. By choosing a small learning overlap it is possible to examine 
the degree of a result generalisation for independent draws from 
the catastrophe bond data generative process.

In particular, following Turney (1995) and Philipp et al. (2018), 
we obtain two sets of data from the same phenomenon and same 
underlying distribution with as little learning overlap as possi-
ble, then construct two random forests from each one and check 
whether prediction accuracy is fairly similar. To be more specific, 
we take a random 50% of the observations without replacement 
from the initial catastrophe bond data set, namely Sample A. The 
rest of the original data set observations, not included in Sample A, 
forms Sample B. Then, two separate random forests are grown out 
of Sample A and Sample B to assess the stability of random forest 
prediction accuracy to changes in the initial data set. We repeat 
this process 100 times. Optimal values for the number of variables 
randomly selected to be considered at each split are sought in both 
cases.

3.4. Evaluation of predictors’ importance

The random forest algorithm allows for assessing how impor-
tant each predictor is with respect to its ability to predict the 
response, a concept that is briefly called as variables importance. 
Its assessment is executed empirically (Grömping 2009) and see 
Chen and Ishwaran (2012) for a comprehensive review of various 
methods that can be used to achieve this. Here, the focus lies on 
two widely used approaches namely permutation importance, and 
minimal depth importance.

3.4.1. Permutation importance
The central idea of permutation importance, also known as 

“Breiman-Cutler importance” (Breiman 2001), is to measure the 
decrease in the prediction accuracy of the random forest resulting 
from randomly permuting the values of a predictor. The method 
provides a ranking for predictors’ importance as end result and it is 
tied to a prediction performance measure. In particular, the permu-
tation importance for xp predictor is derived as follows. For each of 
the K trees: firstly, record the prediction error MSEOOBk ; secondly, 
noise up, i.e. permute, the predictor xp in the out of bag sam-
ple for the kth tree; thirdly, drop this permuted out of bag sample 
down the kth tree to get a new MSE

xp perm

OOBk
after the permutation 

and calculate the difference between these two prediction errors 
(before and after the permutation). In the end, average these dif-
ferences over all trees. The mathematical expression of the above 
description is Ixp = ∑K

k=1[ 1
K (MSE

xp perm

OOBk
− MSEOOBk )] where Ixp is 

the importance of variable xp , K the number of trees in the forest, 
MSE

xp perm

OOBk
the estimation error with predictor xp being permuted 

for the kth tree, and MSEOOBk the forecasting error with none of the 
predictors being permuted for the kth tree. The larger the Ixp the 
stronger the ability of xp to predict the response. Generally speak-
ing a positive permutation importance is associated with decrease 
in prediction accuracy after permutation whilst negative permuta-
tion importance is interpreted as no decline in accuracy.

3.4.2. Importance based on minimal depth
The other approach for measuring predictors importance is 

based on measure named minimal depth, presented in Ishwaran et 
al. (2010) with the latter being motivated by earlier works of Strobl 
et al. (2007) and Ishwaran (2007). The minimal depth shows how 
remote a node split with a specific predictor is with respect to the 
root node of a tree. Thus, here the position of a predictor in the kth

tree determines its importance for this tree. The latter means that 
unlike permutation importance, the importance of each predictor 
is not tied on a prediction performance measure. Also, in addition 
to ranking variables, the method also performs variable selection -
a very useful feature for elimination of less important predictors.

Specifically, Ishwaran et al. (2010) have formulated the concept 
of minimal depth based on the notion of maximal sub-tree for fea-
ture xp . The latter is defined as the largest sub-tree whose root 
node is split using xp . In particular, the minimal depth of a pre-
dictor xp , a non-negative random variable, is the distance between 
the kth tree root node and the most proximate maximal sub-tree 
for xp , i.e. the first order statistic of the maximal subtree. It takes 
on values {0, . . . , Q (k)} where Q (k) the depth of the kth tree re-
flects how distant is the root from the furthermost leaf node, i.e. 
the maximal depth (Ishwaran et al. 2011). A small minimal depth 
value for predictor xp means that xp has high predictive power 
whilst a large minimal depth value the opposite. The root node is 
assigned with minimal depth 0 and the successive nodes are se-
quenced based on how close they are to the root. The minimal 
depth for each predictor is averaged over all trees in the forest. 
Ishwaran et al. (2010) showed that the distribution of the minimal 
depth can be derived in a closed form and a threshold for pick-
ing meaningful variables can be computed, i.e. the mean of the 
minimal depth distribution. In particular, variables whose forest 
aggregated minimal depth surpasses the mean minimal depth ceil-
ing are considered irrelevant and thus could be excluded from the 
model. However, since Ishwaran et al. (2010) suggests that variable 
selection using the minimal depth threshold is more meaningful 
for problems with high dimensionality, this aspect is not consid-
ered relevant in the current study.
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3.4.3. Other evaluation factors
After calculating the importance of predictors using the meth-

ods described above, we consider useful to examine the results 
based on two additional criteria. Firstly, we want to ensure that 
primarily the importance rankings and secondarily the selected 
variables are repeatable. Because both permutation and minimal 
depth importance are linked to the random forest constructed, 
the stability of predictors’ importance results is evaluated in line 
with the random forest stability evaluation for the catastrophe 
bond data set, as mentioned in Section 3.3.2. Secondly, we check 
whether the predictors’ importance results reflect investors’ knowl-
edge from an empirical perspective. In a business context, it would 
be uncomfortable for an investor to see good catastrophe bond 
predictions but with importance rankings of the predictors outside 
their empirical knowledge, even though this type of agreement is 
not necessary from a statistical viewpoint.

4. Catastrophe bond data

In this section, we present how the catastrophe bond data used 
in this study have been collected and processed whilst details are 
given with respect to the choice of variables and their role in our 
study.

4.1. Collection

The core of catastrophe bond pricing cross sectional data has 
been collected from a leading market participant enabling us to 
work with a data set that is substantially larger than those used 
in the literature. The websites of ARTEMIS, Lane Financial LLC and 
Swiss Re Sigma Research have been also extensively used to cross 
validate data entries that were unclear or non-available in the 
main data body. Historical values of the Synthetic Rate on Line 
index have been given by Lane Financial LLC. To the best of our 
knowledge, our data set refers to all non-life catastrophe bonds is-
sued in the primary market from December 2009 to May 2018, 
a total of 934 transactions. This time period is particularly inter-
esting since it coincides with the restart of the catastrophe bond 
sector after almost two years of low activity following the collapse 
of Lehman Brothers, which played a counterparty role in several 
bonds and therefore ignited concerns and reflection around the 
structuring of transaction as to ensure security of collateral, see 
Hills (2009). The information gathered was related to investors’ re-
turn, loss potential of the securitized risk, i.e. expected loss and 
attachment probability, various design characteristics of the risk 
transfer, i.e. issuance size, coverage period, coverage type, trigger, 
region, peril, credit score, risk modelling company, price cyclicality 
in ILS market, and BB corporate bond spreads level.

4.2. Preparation

Since we consolidated data from various sources there were 
pieces of information referring to the same concept but measured 
in different units across different data providers. Such scaling is-
sues have been appropriately addressed to maintain consistency. 
With regards to the spread at issuance, it was derived from the 
coupon by subtracting the element of the money market rate. In 
the case of zero coupon catastrophe bonds the spread was derived 
from the implied coupon by subtracting the element of the money 
market rate.

Through validating the data across various sources, we ensured 
that there are no missing values in the study, a pitfall in many 
previous works. On this note, it needs to be acknowledged that 
an exception in the above non-missing values claim is very few 
catastrophe bonds for which there was no information regarding 
the risk modelling firm because these transactions were privately 

placed even though our data set contains other private placement 
deals for which we did not have missing values. For these few 
deals for which vendor information was missing, we created a sep-
arate category level to capture this specific reason for missingness, 
i.e. private placement. Including this level is considered important 
via means that the developed algorithmic method will be able to 
predict spreads for these circumstances also. Further information 
on this category level can be found in Appendix A.

4.3. Discussion about the choice of variables

The variables included in the data set can be seen in Table 1, 
presented along with the definition, type, and their role in this 
study. In Appendix A, one can find basic statistical information and 
histograms for all variables along with a discussion to enhance the 
understanding of catastrophe bond data intricacies. With regards 
to the role of each variable in our research, the spread was cho-
sen as dependent variable as it is an industry wide accepted lens 
through which one can see catastrophe bond pricing. The spread is 
of utmost interest to the investors as it indicates how much they 
could earn on the top of the risk free rate if they decided to em-
ploy their capital in this alternative risk transfer segment.

Since the goal of this study lies on the prediction of spread, a 
major consideration is that the independent variables need to be 
available at the time of the prediction. This is indeed the case here, 
as the predictors constitute information included in the placement 
material offered to investors prior to a new catastrophe bond is-
suance. Also, in the case of predictor RoL, investors are also aware 
of the general ILS market conditions and possibly we could assume 
that the Financial Lane LLC Synthetic Rate on Line index values are 
readily available at an investment company level. Similar rationale 
applies for the BB spread regarding its availability at the point of 
the prediction. The reason why we have incorporated RoL and BB 
spread in the study is because the prior literature shows that such 
macroeconomic variables have a relevant influence on catastrophe 
bond spreads, see Braun (2016) and Gürtler et al. (2016) for exam-
ple.

We note that there are previous works (see Galeotti et al. 
(2013), Braun (2016), Gürtler et al. (2016), and Trottier et al. 2018, 
among others) refraining from using the attachment probability 
(AP) as a predictor for the spread forecast, even though the rea-
son was not mentioned explicitly. A potential explanation for why 
the EL was preferred over the AP in these works is because the EL 
is a coherent risk measure, meaning that if we were to examine 
catastrophe bonds in a portfolio context, then the EL contributes 
proportionately to the portfolio EL. This is not the case when a 
risk measure such as Value at Risk (VaR) is developed using AP 
as basis because there are instances where the subadditivity con-
dition of coherent risk measures, i.e. V aR A P (X) + V aR A P (Y ) ≥
V aR A P (X + Y ), is not satisfied; see Galeotti et al. (2013). Having 
said that, whether or not AP might be appropriate for assessing 
catastrophe bonds at the portfolio level is not examined in the 
current study. It should also be mentioned that for our purpose, 
it may be helpful to include the variable AP, thanks to the fact that 
the correlation between EL and AP appears heterogeneous in this 
dataset. For example, whilst it is somehow expected that EL and 
AP are highly correlated, if we were to focus on transactions with 
large spreads, then the correlation between EL and AP is around 
70%, indicating that AP contains information which is not captured 
by EL for these cases. Moreover, since our study aims at prediction, 
the addition of an extra variable is not an issue for the random 
forest. In addition, including AP does not materially affect the per-
formance of LR model in this example either.

With regards to the variable loc_peril, we use a location - peril 
code categorisation closely in line with the data provided to reflect 
industry practice. In Appendix A, we provide details regarding all 
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Table 1
Catastrophe bond data set glossary.

Variable Description Type Role

spread The amount of interest earned on the top of the risk free rate. continuous response

AP (Attachment Probability). The probability of incurred losses surpassing the attachment point. 
For catastrophe bonds with parametric triggers, AP is translated as the probability that 
measured parameters will surpass the agreed trigger point.

continuous predictor

BB spread U.S. High Yield BB Option-Adjusted Spread for the examined time period computed as the 
difference between a yield index for the BB rating category and the Treasury spot curve, as in 
Braun (2016). It reflects the BB rated corporate bond spread, with the BB rating being chosen 
because, because out of the rated catastrophe bonds, the vast majority of them exhibit this 
rating. It can be considered as a macroeconomic variable.

continuous predictor

coverage Contract term indicating whether protection is offered for a string of loss events or a single 
loss event.

categorical predictor

EL (Expected Loss). The annual expected loss within the layer in question divided by the layer 
size.

continuous predictor

rating A dummy variable indicating the credit rating quality of the bond (granular rating), or 
whether it has not been rated at all.

categorical predictor

iss_year The year of issuance of a given catastrophe bond to capture cyclical effects. continuous predictor

loc_peril A location-peril combination. categorical predictor

RoL (Rate on Line). Quarterly values of Lane Financial LLC Synthetic Rate on Line Index for the 
examined time period capturing the level of rates in the ILS, and ILW markets. It can be 
considered as a macroeconomic variable, see Fig. 8.

continuous predictor

size Catastrophe bond nominal amount. continuous predictor
term Years passed from issuance to maturity date. continuous predictor
trigger Mechanism through which a loss payment is activated. categorical predictor
vendor Catastrophe risk modelling software firm. categorical predictor

location peril combinations we have considered. Finally, the reason 
why we have incorporated the issuance year in the predictors set 
is to account for any other unknown drivers of spread related to 
a particular issuance year. As an example, one possible instance of 
such a driver would be the release of an updated model by a risk 
model vendor which would significantly influence underwriting as 
it happened in 2011 when RMS released its software Version 11.

To the best of our knowledge, one of the novelties in our study 
is that we explore the association between coverage type and 
catastrophe bond spreads. This is in line with current sector dis-
cussions as expressed in ILS3 speciality articles, such as Risk (2019)
and Muir-Wood (2017). There, the need to incorporate the cov-
erage type in catastrophe bond pricing was highlighted following 
the extensive capital freezes investors experienced after Califor-
nia wildfires in 2018. Briefly touching upon this topic, wildfires, 
a not well understood peril, has been mostly transferred to in-
vestors with a provision that losses are covered on an aggregate 
basis. By design, aggregate deals tend to obtain losses easier, even 
from small events, compared to their per occurrence counterparts, 
as a string of loss events triggers the bond. The incapacity of the 
models to account for this to date led to big losses from aggre-
gate deals and pressure for spreads to incorporate this transaction 
aspect. This signifies the importance of considering this variable. 
A further addition into the variables kit for studying the spread is 
the incorporation of information regarding the modelling company 
employed to calculate the frequency and severity of the securi-
tised catastrophe risks. The software used for this purpose is firm 
specific thus it is interesting to explore whether by knowing this 
information part of the spread can be predicted.

A final note for the variables of this study regards credit ratings. 
Following Braun (2016), we initially thought to consider whether 
an issuance was allocated an investment grade by an independent 

3 ILS is an abbreviation for Insurance Linked Securities or Insurance Linked Secu-
ritisation depending on the context in which it is used.

credit rating agency and add an additional categorical value to ac-
count for transactions which were not rated as in our data set the 
majority of catastrophe bonds were issued without a credit rating 
attached to them. However, as we explain in Section 5, our bench-
mark model performed better when used granular rating for the 
rated transactions with the extra categorical value for the non-
rated deals - thus our analysis follows this set up. It is worth 
noting that the absence of credit rating in new issuances is not 
solely an observation in the current data set. In ILS professional 
circles, the popularity of non-rated catastrophe bonds is justified 
from a catastrophe bond market evolution perspective; investors 
feel more comfortable and trust the risk modelling companies for 
the calculation of loss and the analysis of the risk return profile 
more. As a result, credit ratings are somehow no longer seen as 
essential as they used to be in the past and this is reflected in the 
increasing issuance pace of non-rated bonds, see ARTEMIS (2019). 
In the following sections, we choose our benchmark model out of 
two alternative ones and then apply the research methodology of 
Section 3 to the catastrophe bond data set that we have just dis-
cussed here.

5. Benchmark models

Before we report the random forest generation and prediction 
accuracy results, we discuss the benchmark models we consid-
ered. Even if random forest is not a new approach, it would be 
helpful to use a benchmark model for its performance assessment 
and evaluation as its rationale somehow differs from the methods 
used in most of the previous studies. In search for a benchmark, 
we looked into the models of Galeotti et al. (2013), Gürtler et 
al. (2016), Braun (2016), and Trottier et al. (2018), as they are 
non-fragment4 and exhibit high out of sample performance. Given 

4 By non-fragment, we mean that multiple peril - territory coding has been con-
sidered.
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that the majority of catastrophe bond transactions in our data set 
are non-rated transactions, we decided to slightly alter the model 
of Braun (2016) to account for non-rated transactions in addition 
to those having attached an investment or non-investment grade 
credit quality tag. Such an alteration allows us to use all 934 obser-
vations in our data set. However, the results of the original Braun 
(2016) model can be found in Appendix C.5

As an alternative benchmark model, we also built a new lin-
ear regression model (from now on denoted as LR) using the set 
of variables we consider for the random forest generation, as pre-
sented in the previous section.6 The improved Braun (2016) model 
is then compared to our LR model by means of in sample overall 
R2 and out of sample R2 resulting from 10 fold cross validation, 
leave one out cross validation, and bootstrap.7 The results are pre-
sented in Tables 2 and 3.

It appears that LR model outperforms the improved model of 
Braun (2016) both in terms of in sample and out of sample perfor-
mance. The overall in sample R2 for LR is around 85% compared to 
80% when using the improved Braun (2016) model. LR also gives 
consistently better R2

OOB, R2
10CV, and R2

LOOCV results compared to 
the improved model of Braun (2016). Consequently, the random 
forest model will be compared to the more competitive LR regres-
sion model when we examine its prediction accuracy.

6. Random forest generation

In order to build8 the random forest using our catastrophe 
bond data set, we first needed to decide the hyperparameters’ val-
ues that we will use, i.e. number of trees, number of variables 
randomly selected at each split and node size. Breiman (2001)
has suggested certain default values that seem to work well after 
multiple empirical experiments; still we have incorporated certain 
tuning strategies for the most important hyperparameters. Our ap-
proach in choosing these values is explained below.

6.1. Number of trees

The number of trees in the random forest controls its size. Gen-
erally, it is good to have a large number of trees as their resulting 
decisions will be complementing each other more, having a pos-
itive impact on random forest prediction accuracy. At the same 
time, a large number of trees is a safe option in case the opti-
mal value of hyperparameter mtry is small so that each variable 
has enough of a chance to be included in the forest prediction 
process. However, except for the computational cost which is asso-
ciated with growing large random forests, it was found by Breiman 
(2001) that there are diminishing returns in the prediction accu-
racy increase by adding a bigger number of trees. Taking these 
reflections into account, we start the random forest development 
process by growing 2000 trees and in Fig. 2 one can see how the 

5 Both the in sample, and out of sample results of the improved Braun (2016)
model are very similar to those of the original Braun (2016) model, even though 
the improved model performs slightly better.

6 For an alternative, yet worse performing, linear regression model where, instead 
of the variable rating as described in Table 1, we include the variable Investment 
grade (IG) as per the improved model of Braun (2016), see Appendix B.

7 The reason why we present the bootstrap results here is because it is used as 
measure of prediction performance in the following sections.

8 The statistical software used is R, version 3.5.1. The statistical packages em-
ployed to perform computations are the following. randomForest (Liaw and 
Wiener, 2002) for developing the random forest as well as calculating permutation 
importance values, randomForestSCR (Ishwaran and Kogalur, 2019) for calcu-
lating minimal depth importance measures, and caret (Kuhn, 2008) for tuning 
the main hyperparameter using grid search methodology. It should be mentioned 
that whenever packages randomForestSCR and Kuhn (2008) were used, algo-
rithm arguments used agreed to those used in package randomForest to avoid 
inconsistencies.

MSEOOB converges for various values of random forest size up to 
this level (the plot is produced on a logarithmic scale for the ease 
of readability). From a first sight, it does not take a large number 
of trees for MSEOOB to stabilise. Before even reaching 100 trees, 
MSEOOB drops from around 35000 to less than 5500. By the time 
we reach to 200 trees, it seems that the MSEOOB is almost sta-
bilised. Finally, we find that 500 trees, i.e. the default value that 
Breiman (2001) suggests, is adequate for our problem as it corre-
sponds to virtually the same R2

OOB as when using 2000 trees and 
has a much smaller computational cost. Therefore, we choose 500
as the number of trees in the random forest.

6.2. Node size

The hyperparameter node size, i.e. the minimum number of 
data points in the terminal nodes of each tree, controls the size 
of the tree in the random forest and effectively determines when 
the recursive partitioning should stop. A large node size results 
in shallower trees because the splitting process stops earlier. This 
has the advantage of lower computation times, but it effectively 
means that the tree will not learn some patterns resulting in lower 
prediction accuracy. A small node size translates to a higher com-
putational cost but more thorough learning of patterns and conse-
quently a more accurate base learner. The recommended value for 
node size given by Breiman (2001) is 5 for regression problems. 
This default value was also suggested and used by many other au-
thors, as Wang et al. (2018), Grömping (2009), and Berk (2008)
and therefore we also employ it as node size value here. The ran-
dom forest needs to consist of trees which are fully or almost fully 
grown, see Breiman (2001), thus there is not much added value 
in exploring this aspect further as 5 meets this requirement and 
there is a general consensus for its appropriateness.

6.3. Number of variables selected at each split

The number of candidate predictors getting randomly consid-
ered at each split, mtry, is the most important hyperparameter. 
This is because it mostly affects the performance of the random 
forest and the predictors’ importance measures, see Berk (2008). 
The significance of mtry lies on the fact that it influences at the 
same time both the prediction accuracy of each individual tree but 
also the diversity of the trees in the forest. To get the most out 
of the random forest, one wants each tree to have good predic-
tion performance but at the same time trees not to be correlated 
to one another. However, these two goals are conflicting. An indi-
vidual tree will be the most accurate when mtry has a high value 
but this would result in high correlation for the ensemble. In par-
ticular, an extreme case of mtry = P would force the process to 
account to simple bagging (James et al. 2013). Generally, a small 
mtry is preferable as, for a sufficiently large number of trees, each 
predictor will have higher chance to get selected and thus con-
tribute to the forest construction. All in all, the trade-off between 
individual learner accuracy and diversity needs to be managed by 
finding an optimal value which secures balance for the data set we 
study.

In Breiman (2001), the default value of mtry = P/3 (rounded 
down) is suggested for regression problems. This means that in our 
problem where P = 12, the algorithm would consider 3 predictors 
at each potential split. We have investigated the relevance of this 
empirical rule using a tuning strategy called grid search followed 
by 5-fold cross validation. The goal was to ensure that the most 
appropriate mtry is chosen. The process started by specifying the 
range of all possible values that mtry can take, namely the grid. In 
the current study, this is between 1 and 12, i.e. as many as the 
number of predictors. Then, 12 different versions of the random 
forest algorithm were built one for each possible value of mtry. 
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Table 2
In sample fit of the improved linear regression model of Braun (2016) versus the new linear regression model LR. Further 
information on the category levels of the LR variables can be found in Appendix A.

Improved LR model of Braun (2016) Estimate Std. error t value Pr(> |t|)
(Intercept) −801.78 41.53 −19.30 0.000 ***
Swiss Re 16.56 13.31 1.24 0.210
RoL index 6.90 0.40 17.52 0.000 ***
BB spread 68.55 8.35 8.21 0.000 ***
Investment grade no (baseline)
Investment grade yes −180.01 92.74 −1.94 0.050 *
Investment grade nr 62.68 14.74 4.25 0.000 ***
Peak territory 196.42 17.36 11.31 0.000 ***
Expected Loss 1.13 0.02 44.20 0.000 ***

R2 80.04%
Adjusted R2 79.89%
Res. Std. Error 183.70 (df = 926)
F Statistic 530.60 (df = 7; 926)

LR Estimate Std. error t value Pr(> |t|)
(Intercept) 55940.00 9396.00 5.95 0.000 ***
RoL 6.25 0.41 15.10 0.000 ***
BB spread 46.24 8.39 5.51 0.000 ***
term −28.83 8.57 −3.36 0.001 ***
size 0.00 0.00 2.521 0.012 *
trigger industry loss index (baseline)
trigger indemnity −21.10 14.49 −1.46 0.146
trigger model −69.30 38.66 −1.79 0.073
trigger multiple −44.55 42.70 −1.04 0.297
trigger parametric index −28.88 40.60 −0.71 0.477
trigger parametric −167.60 36.55 −4.59 0.000 ***
coverage aggregate (baseline)
coverage both 52.27 82.10 0.64 0.525
coverage occurrence −49.45 13.56 −3.65 0.000 ***
vendor AIR (baseline)
vendor AON 98.50 87.51 1.13 0.261
vendor EQECAT −0.82 32.80 −0.03 0.980
vendor pp 9.08 71.18 0.13 0.899
vendor RMS 27.97 18.73 1.49 0.136
AP −13.99 5.90 2.37 0.018 *
EL 1.26 0.09 14.91 0.000 ***
iss_year −27.95 4.65 −6.01 0.000 ***
APAC_Quake (baseline)
loc_peril APAC_Typh −63.60 43.11 −1.48 0.141
loc_peril Europe_APAC_Multi_Peril −105.00 125.50 −0.84 0.403
loc_peril Europe_Quake 8.94 55.94 0.16 0.873
loc_peril Europe_Wind −148.20 39.36 −3.77 0.000 ***
loc_peril NA_APAC_Multi_Peril 55.08 47.07 1.17 0.242
loc_peril NA_Europe_APAC_Multi_Peril 139.00 41.14 3.38 0.001 ***
loc_peril NA_Europe_Multi_Peril 118.10 39.79 2.97 0.003 **
loc_peril NA_Multi_Peril 158.90 27.33 5.82 0.000 ***
loc_peril NA_Quake −23.64 34.40 −0.69 0.492
loc_peril NA_Wind 86.64 29.74 2.91 0.004 **
loc_peril SA_Quake 139.90 103.80 1.35 0.178
rating B (baseline)
rating BB −146.80 18.05 −8.13 0.000 ***
rating BBB −346.70 83.25 −4.16 0.000 ***
rating CCC −45.11 94.25 −0.48 0.632
rating nr −2.09 18.90 −0.11 0.912

R2 85.07%
Adjusted R2 84.52%
Res. Std. Error 161.10 (df = 900)
F Statistic 155.40 (df = 33; 900)

Note for signif. codes: ∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01
Observations number: 934

Table 3
Out of sample performance measured in terms of R2

OOB, R2
10CV, and R2

LOOCV for the 
improved linear model of Braun (2016) versus the new linear regression model LR.

Model R2
OOB R2

10CV R2
LOOCV

Improved Braun (2016) 79.71% 80.81% 79.40%
LR 83.30% 84.42% 83.84%

The prediction accuracy of each random forest version, measured 
by means of R2

OOB, was evaluated through a 5-fold cross validation.

The results, shown in Fig. 3, reveal that there is considerable 
improvement in random forest performance when the mtry value is 
increased from 1 to 2, and then 3 to 4. No real advantage in terms 
of prediction accuracy seems to be yielded from further increas-
ing the mtry value above 4 which also happens to be the default 
value mtry = 12/3 as per the suggestion of Breiman (2001). More-
over, since variable importance measures are to be calculated later 
on, we deem preferable to choose the smaller value of mtry = 4, 
by discipline, as this would lead to less correlated trees giving the 
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Fig. 2. Out of bag mean squared error convergence with respect to random forest size. The line corresponds to the mean squared error based on out of bag samples (MSEOOB) 
versus the number of trees in random forest. The plot is produced on a logarithmic scale for the ease of readability.

Fig. 3. Tuning of main random forest hyperparameter through grid search followed by 5-fold cross validation. Out of bag based R2 (R2
OOB) for random forest versus number 

of candidate predictors getting randomly considered at each split (mtry) during forest generation.

Table 4
Description of final random forest in terms of sample size, 
predictors number, and hyperparameters values.

Final random forest description

sample size 934
number of predictors 12
random forest type regression
number of trees 500
no. of variables tried at 

each split (mtry)
4

node size 5

opportunity to see the influence of weaker predictors to catastro-
phe bond spreads prediction. Also, a smaller mtry value would lead 
to a simpler model which would be less costly in terms of com-
putational time. Having decided on the hyperparameter values, the 
final random forest was generated and a summary description is 
provided in Table 4. The next section investigates how well the 
random forest performed in our catastrophe bond setting.

7. Random forest performance evaluation

In this section, we evaluate how well our random forest per-
forms with regards to its prediction accuracy and stability.

7.1. Random forest prediction accuracy

As mentioned in Section 3.3.1, the ability of the random forest 
to predict catastrophe bond spreads on new inputs is investigated 
from both a non-temporal and a temporal point of view. In the 

former case, the prediction accuracy metrics we consider are R2
OOB, 

R2
10CV, and R2

LOOCV whilst in the latter case R2
OOS is used to assess 

the out of sample performance. The prediction accuracy results of 
the random forest versus the benchmark model are presented and 
discussed below for each of the two perspectives.

7.1.1. Non-temporal prediction accuracy
We start by clarifying what we regarded as new inputs followed 

by how the catastrophe bond spread predictions were made for 
the computation of R2

OOB as it may appear to be a less standard 
approach (especially for the benchmark model) compared to 10 
fold, and leave one out cross validation.

Starting from the random forest, as new inputs for a given tree, 
we have accounted its out of bag observations. Due to the property 
of sampling with replacement, only around two thirds of N = 934
data points were used to build each of the 500 unpruned and al-
most fully grown (node size = 5) regression trees. For a given tree, 
the remaining one third of N = 934 data points were never used 
during the building process and as a result they formed a reliable 
test set for it. Secondly, a prediction for the spread at issuance 
for the n = 1 observation, ŷ1, was produced by dropping its corre-
sponding input down every single tree in which the n = 1 observa-
tion was out of bag. This resulted on average to around one third 
of 500 catastrophe bond spread predictions for the n = 1 obser-
vation. Then, a single spread prediction for the n = 1 observation 
was made by taking the average value of these predictions. After 
having predicted the catastrophe bond spread value for the obser-
vation n = 1, the same process has been repeated for the n = 933
observations left. Finally, in order to evaluate the prediction accu-
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Table 5
Prediction accuracy performance measured in terms of R2

OOB, R2
10CV, and R2

LOOCV
versus in sample performance measured in terms of R2 for random forest (RF), and 
linear regression (LR).

Model R2
OOB R2

10CV R2
LOOCV R2

RF 96.57% 96.49% 96.59% 99.25%
LR 83.30% 84.43% 83.84% 84.52%

racy of our random forest, the metrics discussed in Section 3 were 
calculated. In particular, we have computed the mean squared er-
ror based on the out of bag data as SEOOB = ∑934

n=1(yn − ŷnOOB
)2, 

the total sum of squares as TSS = ∑934
n=1(yn − y)2 and, the variabil-

ity explained by our random forest as R2
OOB = 1 − SEOOB

TSS .
With respect to the benchmark model, the calculation of R2

OOB
was done as it was described in the case of random forest; we 
used 500 bootstrap samples to refit the model and for each obser-
vation, we only considered predictions from bootstrap samples not 
including that observation. The results for the prediction accuracy 
metrics both for the random forest,9 and the benchmark model are 
presented in Table 5. Note that in Table 5, we have also included 
the in sample R2 for both models as reference.

It stands out that our random forest explains more than 96%
of the total variability in the non-temporal context no matter 
whether using the bootstrap or one of the other two cross val-
idation methods. At the same time, the non-temporal predictive 
performance of our benchmark model, i.e. linear regression, is 
lower - the highest total variability it explains across all metrics is 
84.43%. Once again the prediction accuracy results for the bench-
mark model are very similar across different resampling methods. 
As a result, from now on we will be focusing on the out of bag 
related metrics in the non-temporal context.

With regards to the in sample R2, it seems that random forest 
may lead to some degree of overfitting which is expected as the 
individual regression trees are fully grown. The latter signifies the 
fact that measuring performance in terms of R2 for random forest 
in this instance might not be as appropriate as in the case of linear 
regression.10

An important aspect is to evaluate whether the 96.57% random 
forest non-temporal prediction accuracy is high enough given the 
nature of the problem under study. On a broader perspective, mak-
ing predictions in a financial market setting is not an easy task. 
Inefficiencies, multiple market participants and, the influence of 
psychology on their behaviour are only few of the factors making 
the prediction task complex. Consequently, one might claim that 
achieving an R2

OOB of more than 96% here corresponds to a very 
satisfactory level of prediction accuracy. Of course this also holds 
true for the around 84% benchmark model prediction performance 
but since there is a considerable difference in the reported R2

OOB, 
we would conclude that using random forest in a non-temporal 
context may be preferable.

7.1.2. Temporal prediction accuracy
In a temporal context, we focus on the forecasting ability of the 

random forest versus the linear regression model over time. In this 
case, the training data is not picked randomly thus we are able 
to assess robustness towards potential regime shifts. Regime shifts 

9 In a robustness check, see Appendix D, we provide the prediction accuracy of 
the random forest when the categorical variables in the catastrophe bond data set 
are pre-processed with categorical dummies as in the case of linear regression. As 
we see the two random forest versions, i.e. with and without dummies, lead to very 
similar results.
10 It should be noted that this problem is not specific to random forest but more 

general and lies in the use of in-sample performance measures in case of over-fitted 
models and therefore can also be seen in a linear regression context.

Table 6
Prediction accuracy of random forest (RF) versus linear regression (LR) measured in 
terms of R2

OOS for various train-test sets by issuance year.

Train set Test set RF R2
OOS LR R2

OOS

2009-2010 2011 64.42% < 0.00%
2009-2011 2012 58.04% 71.36%
2009-2012 2013 45.64% 16.84%
2009-2013 2014 88.74% 72.90%
2009-2014 2015 55.12% 70.47%
2009-2015 2016 84.23% 89.55%
2009-2016 2017 91.24% 91.06%
2009-2017 2018 88.59% 91.69%

Average R2
OOS across 

all train sets
72.00% 62.98%

in the catastrophe bond market can include regulatory changes, 
issuances with unusual features, demand forces etc but their iden-
tification for the time period we study is beyond the goals of this 
study. Our aim here is simply to examine the degree by which 
the trained models (random forest, and linear regression) can ac-
curately predict catastrophe bond spreads even in presence of such 
changes. The temporal prediction performance challenge between 
random forest and linear regression is designed by using the train-
test data set split approach in eight cycles of operation so that 
we can have a more complete picture of how models performance 
compare as the catastrophe bond market evolves. We start by us-
ing as train data set, the data from December 2009 to December 
2010. We fit the random forest and linear regression models to this 
train data set and we make spread predictions using data from 
2011. The second cycle of operation includes adding bonds from 
2011 into the train data set and using bonds from 2012 as test set. 
The aforementioned process is repeated up until the train data set 
reflects the period up to 2017 and the test data set includes the 
catastrophe bond issuances in 2018. The prediction accuracy re-
sults measured in terms of out of sample R2 (R2

OOS) for each cycle 
of operation are presented in Table 6. It should be mentioned that 
assessing the prediction performance on a temporal context has a 
particular limitation. That is, new observations in a given test set 
cannot (directly) include categorical variable levels which did not 
appear in the respective train set. Thus, in order to avoid delet-
ing deals having new levels in some of the categorical predictors 
in any given test year, we have imputed these values based on the 
most commonly observed categories in the corresponding training 
set accordingly.

We note that there seem to be some noticeable regime shifts 
especially in the first few cycles of operation. However, we can-
not be definite about which model, the random forest or linear 
regression, handles regime changes best as in some years random 
forest does better than linear regression and vice versa. By look-
ing at the variability of the R2

OOS across all cycles for both models, 
it appears that the R2

OOS range for random forest is between 45%
and 91% whilst the respective range for the linear regression model 
is around between below 0% and 91%. It should be noted that in 
the first year, LR exhibits a very low temporal predictive power 
but we believe that this may be the result of the imputation in a 
small data set sample and perhaps the fact that some categorical 
variables contain quite granular information; see Table 13 in Ap-
pendix A. It is worth mentioning that the worst performance for 
both models is observed for the 2013 test set. By looking into how 
the regression model is parameterized for the test sample in 2013, 
it appears that the poor performance of the regression model on 
this test sample is largely due to the fact that catastrophe bonds 
in 2013 indicated record high EL values, i.e. the largest of them al-
most doubled the maximum EL value that was observed prior to 
2013, for which models based on earlier observations might not be 
entirely suitable for the purpose of prediction. A potential reason 
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Table 7
A typical realisation regarding random forest prediction accuracy stability results.

Random forest summary Sample A Sample B

sample size 467 467
number of predictors 12 12
random forest type regression regression
number of trees 500 500
no. of variables tried at each split 5 6
node size 5 5
MSEOOB 13855.34 14744.59
R2

OOB 92.14% 90.71%

Table 8
Random forest stability measured in terms of minimum, mean, and maximum ab-
solute difference of R2

OOB between Sample A and Sample B across 100 iterations.

R2
OOB Min Abs. Dif. R2

OOB Mean Abs. Dif. R2
OOB Max Abs. Dif.

0.01% 2.19% 6.92%

is the largest version change in the history of RMS model, imple-
mented towards the end of 2012, which affected all 2013 renewals 
in having the potential to increase insured loss results even above 
100% in some cases. Overall, it appears that the random forest is 
relatively more robust than linear regression in this respect. More 
comparisons between RF and LR when taking into account miss-
ingness of more than one predictor at a time follow in Section 8.5.

7.2. Random forest stability

We now examine the stability of random forest prediction ac-
curacy results over the entire time period of interest. This is mea-
sured empirically from a practitioner’s point of view as presented 
in Section 3.3.2 and in Table 7, we present a typical realisation of 1 
out of 100 iterations with respect to the repeatability of prediction 
accuracy results.

As we observe in Table 8, across all 100 iterations, the recorded 
mean absolute difference of R2

OOB between Sample A and Sample 
B for the catastrophe bond data set is 2.19% with the minimum 
and maximum absolute differences being 0.01% and 6.92% respec-
tively.11 Given that our problem sits in the intersection of financial 
and insurance market spheres where many behavioural aspects can 
affect prices, we consider the reported difference for the catastro-
phe bond data set being small. In essence, it is unlikely that an 
ILS fund would reject the use of the method solely for such a level 
of dissimilarity. In fact, the repeatability of prediction results here 
means that we can fairly safely say that our initial random forest 
prediction accuracy result, i.e. of an R2

OOB of 96.57% presented in 
Table 5, is reliable, in the non-temporal context.

This finding is beneficial for the usage of the method in the 
industry. With new catastrophe bonds being issued, the random 
forest would need to be validated at some point in time as any 
other model in an insurance related firm. Surely, in a business con-
text, there is no point in investing time and capital to introduce a 
new model if the latter provides accurate predictions strictly for 
one particular data set. Having gone through the examination of 
prediction accuracy results stability, we proceed with determining 
the importance of each independent variable in the study.

11 As a robustness check, we have also repeated the random forest stability evalua-
tion using two popular Open Source data sets, namely Boston Housing and Abalone, 
which are also used in the original paper of Breiman (2001) for the empirical as-
sessment of the random forest method and are available at the UCI repository. The 
results are close with those derived for the catastrophe bond data set.

8. Predictor importance analysis

The importance of predictors is assessed using the methodolo-
gies of permutation and minimal depth importance presented in 
Section 3. It should be highlighted that the goal here is to find how 
powerful each independent variable is in predicting catastrophe 
bond spreads at issuance. No kind of relationship between spread 
at issuance and the predictors is to be established - the focus lies 
solely on their prediction ability. We then compare the stability 
of predictors’ importance results for both methods. Then based on 
the ranking of the most stable predictors importance method, we 
examine the sensitivity of the random forest versus the benchmark 
to simultaneous missingness of multiple predictors in an effort to 
reveal and understand variables interactions. Next, by considering 
once again the most stable importance method, we examine the 
degree of similarity in predictors importance results in the predic-
tive versus explanatory modelling frameworks. Finally, we discuss 
whether the rankings make empirical sense from investors’ view-
point.

8.1. Permutation importance

The importance of each independent variable in predicting 
catastrophe bond spreads has been here assessed on the basis of a 
percentage increase in MSEOOB when a predictor is randomly per-
muted from the out of bag data whilst others remain untouched. 
First, the MSEOOB for each of the 500 trees comprising the ran-
dom forest, was recorded. The same process was repeated after 
randomly shuffling the values of a particular xp across all observa-
tions. Then, the change between these two mean squared errors, 
before and after xp permutation, has been calculated and averaged 
across the 500 trees after being normalised by the standard de-
viations of the differences. In this way, the importance score for 
xp has been derived. Finally, based on these scores, an importance 
ranking has been produced. The ranking of catastrophe bond pre-
dictors based on their permutation importance score is shown in 
Fig. 4. Variables higher on the vertical axis are more important in 
predicting catastrophe spread at issuance with respect to this mea-
surement.

One of the first observations is that all scores have posi-
tive value, indicating that each of the independent variables pre-
sented here does contribute towards prediction of catastrophe 
bond spreads. The predictors EL and RoL followed closely by term 
appear as the most important predictors of spread at issuance. In 
particular, when EL is shuffled, the out of bag mean squared error 
increases by around 41% whilst the respective percentages for RoL 
and term are slightly lower between 33% and 34%. Next, had any of 
the predictors; loc_peril and AP been randomly permuted, the pre-
diction performance of the random forest would have been dete-
riorated between 31% and 32%. By shuffling the predictor iss_year, 
we see an almost 28% decrease in random forest prediction accu-
racy whilst the respective percentages for BB spread and size are in 
the range between 27% and 28%. Rating contributes to the reduc-
tion in the prediction accuracy of the random forest by around 19%
and the least important predictors are coverage and vendor result-
ing in an approximately 16% and 13% prediction accuracy decrease 
respectively.

8.2. Minimal depth importance

The focus is now shifted from using a specific prediction perfor-
mance measure to assess variables importance to a criterion based 
on the way that the forest was constructed, namely, the minimal 
depth. A tour over the constructed random forest was made to find 
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Fig. 4. Permutation importance based ranking of predictors. Predictors being permuted versus percentage increase in MSEOOB as a result of the permutation.

Fig. 5. Minimal depth importance based ranking of predictors. Predictors and their forest averaged minimal depth.

the maximal subtree12 within each of the K = 500 trees for a par-
ticular xp predictor. From there, the minimal depth for xp within 
each tree was identified following the rationale explained in Sec-
tion 3. Then, the forest level minimal depth for xp was derived by 
averaging the minimal depth for xp within each tree among all 500
trees. Fig. 5 illustrates the ranking of the covariates with respect to 
their average minimal depth; higher values of minimal depth cor-
respond to less predictive variables.

Predictors EL and AP, with random forest average minimal 
depths of 1.45 and 1.60 respectively, have the largest impact in 
predicting catastrophe bond spreads. In particular, such small val-
ues of minimal depth demonstrate that these two variables were 
mostly used to split either the root node or any of its child nodes 
at least in most of the trees in the forest. Straight after in rank-
ings comes the variable RoL followed closely by iss_year which on 
average were chosen to split a node for the very first time at a 
depth equal to 2.17 and 2.23 respectively. At similar level of im-
portance stand the loc_peril and size with a level of depth still 
closer to 2.00 rather than 3.00 implying that they also have a con-
siderable forecasting power. It appears that predictors BB spread, 
term, rating, and trigger were on average chosen to split the third 
node in the regression trees comprising the random forest. The 
aforementioned predictors appear as not being as powerful be-
cause they split nodes which naturally have less data points due 
to their proximity to the terminal nodes. Then the remaining vari-
ables, coverage and vendor, have minimal depth measurements of 

12 See Section 3.4.2 for an explanation of what constitutes a maximal subtree.

5.08 and 5.21 respectively. These values are the highest among all 
predictors, revealing that coverage and vendor have the most lim-
ited forecasting ability out of all predictors.

8.3. Divergence between permutation and minimal depth importance 
results

Permutation and minimal depth importance procedures pre-
sented for ranking or selecting catastrophe bond spread predictors 
above are not directly comparable. This is because, as it has been 
seen, each of them follows a different approach in defining and 
quantifying the importance in prediction. However, empirically we 
would expect that there should be some consensus between the 
two methods. What we see is that whilst there is indeed a degree 
of agreement for the very top and bottom of the rankings, there is 
some divergence at the upper middle ranks. This realisation makes 
us think which of the two variable importance approaches leads 
to the most trustworthy results for our catastrophe bond spread 
prediction problem. Indeed, empirically, an answer to this ques-
tion would be to examine which ranking makes more sense from 
a practitioner’s perspective. However, we believe that it is also 
preferable to bring our attention back to the concept of stability, 
but this time for the catastrophe bonds features importance. If one 
of the two methods is unstable, then we can shift our focus to the 
other one that is more robust and then discuss whether the rank-
ing it provides makes sense from an investor’s perspective. In the 
following, we present the stability checks for the importance re-
sults derived by both permutation and minimal depth importance.
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Fig. 6. Bar plots showing the percentage frequency where a given predictor was ranked as top, second from top and in the last two positions for the most stable variable 
importance method in terms of ranking, i.e. minimal depth.

Table 9
Stability of ranking of predictors by different importance ranking method.

Ranking position Agreement % Agreement %
(Permutation) (Mimimal depth)

Top 98% 100%
Second from top 36% 46%
Second from bottom 27% 69%
Bottom 22% 69%
Last two 10% 100%

8.4. Stability checks for predictors importance results

Here a predictor ranking method will be considered reliable if 
its importance ranking for catastrophe bond spread predictors is 
fairly robust to certain type of changes in the data set, such as 
random splitting. If a change in the catastrophe bond data set from 
which the random forest is constructed lead to a big change at the 
top and at the bottom of predictors importance rankings, then that 
particular importance ranking method will be considered unstable 
and thus probably unreliable.

Towards this direction, since both permutation importance and 
minimal depth importance are procedures derived internally after 
the construction of the random forest, the stability of permuta-
tion and minimal depth importance has been mainly examined 
based on the 100 random forests pairs grown out of 100 Sam-
ple A and Sample B pairs which have been previously used when 
the stability of the random forest was investigated in Section 7.2. 
In Table 9, we report by variable importance method, the per-
centage of times where there was an agreement between Sample 
A and Sample B in the predictor chosen at the top, second, and 
bottom positions of the ranking for all data sets. As bottom po-
sitions of the rankings we consider the last two positions jointly. 
This is because we understand that the further we go down the 
ranking, the more susceptible variables may jump from the posi-
tion to its neighbours across different iterations. It is evident that 

minimal depth importance method provides more stable ranking 
results for both top, and bottom positions compared to permu-
tation importance method. The biggest differences between the 
two methods are recorded for the second from bottom, bottom, 
and last two ranking positions combined where the discrepancy in 
the agreement percentage reaches 42%, 47% and 90% respectively. 
As previously highlighted in Chen and Ishwaran (2012), the com-
plex randomisation element of permutation importance procedure 
makes it difficult to assess the underlying cause for it being rela-
tively more unstable. However, it should be mentioned that this is 
not the first work when this measure showed an irregular conduct. 
As an example from bioinformatics, Calle and Urrea (2010) showed 
that permutation importance rankings were unstable to small per-
turbations of a gene data set related to the prognosis bladder 
cancer. All in all, it should be acknowledged that the appropri-
ateness of a feature importance method is mostly data set specific 
and at least for the catastrophe bond set in hand it seems that per-
mutation importance is not as reliable.13 Based on the above, any 
discussion from now on which is relevant to predictors importance 
will be based on results of minimal depth importance as presented 
in Section 8.2.

Moving forward, it is interesting to examine stability within the 
minimal depth importance output with respect to which variable is 
chosen at a given position of the minimal depth importance rank-
ings. In order to do so, we considered the number of counts out 
of 200 sub-samples taken in 100 iterations (or 400 samples taken 
in 100 iterations when we consider the last two ranking positions 

13 We have also examined the robustness of the predictors importance stability 
results using the Boston Housing and Abalone Open Source data sets, as we did in 
the case of random forest stability evaluation. The results align with those derived 
for the catastrophe bond data set, i.e. the minimal depth method, at least for the 
top ranking positions, appears to be more reliable compared to the permutation 
importance one.
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Table 10
Sensitivity analysis for random forest (RF) versus linear regression (LR) to missing predictors using R2

OOB as performance 
measure. The performance is examined by removing predictors sequentially based on the minimal depth importance rank-
ing. Here we also report the R2

OOB of RF and LR without any missing predictors to facilitate comparison.

Missing predictors RF R2
OOB LR R2

OOB

no missing predictors 96.57% 83.30%
EL 95.74% 79.98%
EL, AP 87.69% 50.68%
EL, AP, RoL 87.86% 47.30%
EL, AP, RoL, iss_year 84.83% 43.65%
EL, AP, RoL, iss_year, loc_peril 84.56% 33.33%
EL, AP, RoL, iss_year, loc_peril, size 68.81% 30.76%
EL, AP, RoL, iss_year, loc_peril, size, BB spread 30.86% 21.18%
EL, AP, RoL, iss_year, loc_peril, size, BB spread, term 18.89% 17.69%
EL, AP, RoL, iss_year, loc_peril, size, BB spread, term, rating 12.23% 10.40%
EL, AP, RoL, iss_year, loc_peril, size, BB spread, term, rating, trigger 7.60% 7.69%
EL, AP, RoL, iss_year, loc_peril, size, BB spread, term, rating, trigger, coverage 5.67% 6.03%

Table 11
Sensitivity analysis for random forest (RF) versus linear regression (LR) to missing 
predictors using R2

OOB as performance measure. The performance is examined by 
randomly removing M predictors from the original data set for M = 1, . . . , 11. For 
each M , this experiment is repeated 100 times, and the average R2

OOB is reported. 
Here we also report the R2

OOB of RF and LR without any missing predictors to facil-
itate comparison.

Number of missing 
predictors at random - M

RF R2
OOB LR R2

OOB

no missing predictors 96.57% 83.30%
1 96.21% 82.47%
2 95.87% 80.58%
3 95.19% 78.19%
4 92.84% 73.56%
5 91.01% 70.78%
6 89.28% 67.34%
7 73.76% 59.74%
8 67.49% 51.74%
9 60.08% 43.45%
10 45.02% 29.22%
11 28.09% 16.97%

jointly), where a given predictor was ranked as top, second from 
top, or in last two positions in terms of importance by variable 
importance method. The results are shown in Fig. 6 in terms of 
percentage frequency. We see that minimal depth method is also 
fairly stable with regards to its predictors’ choices for the exam-
ined ranking positions. That said, in the top position the predictor 
EL was chosen 100% of the times and only a small variation is vis-
ible for the second from top and last two ranking positions. In the 
next section, we provide some further analysis on how well the 
random forest handles missingness of important predictors as op-
posed to LR model.

8.5. Further analysis - on handling missingness of important variables

We now assess the sensitivity of prediction accuracy of random 
forest in the absence of important predictors, and contrast the out-
comes with those from the benchmark model. Doing so also allows 
us to understand and characterise interactions between predictors. 
Here we consider removing more than one predictor each time and 
then report the resulting prediction accuracy of both random for-
est and the benchmark model. The removal of predictors is made 
firstly, sequentially based on the minimal depth ranking presented 
in Section 8.2, from the most important one to the least important 
one, and secondly, by (uniformly) randomly dropping M predic-
tors from the original data set for M = 1, . . . , 11. For each M , the 
second experiment is repeated 100 times, with the average R2

OOB
computed for both RF and LR. The sensitivity results are presented 
in Table 10 and Table 11.

When predictors are removed sequentially according to the 
minimal depth ranking, it appears that random forest prediction 

accuracy results seem to be considerably more robust compared 
to the ones derived from LR when the most important predictors, 
as identified in the minimal depth analysis, such as EL and AP, 
are jointly missing. For example, when the most important predic-
tors EL and AP are excluded from the analysis, the RF prediction 
accuracy drops by around 8% as opposed to 29% in the case of 
LR compared to the respective prediction performances when only 
EL, i.e. the most important predictor, is missing. This may be an 
indication that there are potentially interactions, as well as non-
linearities, between the predictors, which random forest appears 
to be capturing whereas the linear regression model struggles. An-
other observation is that we see a significant drop in random forest 
prediction accuracy when size and even more so BB spread are 
included in the missing predictors set. In particular, when size 
is removed, RF prediction accuracy deteriorates by 16%, i.e. the 
biggest drop up to this point since the beginning of the mini-
mal depth based sequential removal of predictors. When BB spread 
is excluded, RF prediction accuracy declines by an additional 38%
which is the highest drop in RF prediction accuracy across the 
whole experiment. A potential interpretation is that there is a cer-
tain degree of information redundancy among all the predictors. 
Here the predictors size and BB spread contain a large amount of 
useful information of all its predecessors found to be of higher 
importance in catastrophe bond spread prediction, which can be 
effectively extracted by random forest.

Similar observations are made when randomly removing M
predictors from the original data set for M = 1, . . . , 11 repeated 
100 times and taking the average of R2

OOB for the RF and LR re-
spectively. RF still shows a better predictive performance than LR 
having an average R2

OOB of around 90% even by randomly drop-
ping half of the variables, again forcing the impression that RF is 
more flexible than LR and is likely better at capturing interactions 
and dealing with possible missingness of the predictors. It should 
be noted that thanks to the random dropping mechanism, the re-
sults in Table 11 appear smoother than these in Table 10 where 
we exclude the most important variables first - a strategy which 
acts more like assessing the worst case scenario. In summary, ran-
dom forest is better at borrowing strength from existing predictors 
to (partially) recover the predictive power lost due to the absence 
of important predictors.

8.6. Predictive versus explanatory importance

Now we discuss whether the importance results in our predic-
tive framework agree with those presented in explanatory models 
of past works but also the LR model in the current study.

As mentioned in Shmueli (2010), variables which are consid-
ered important in explaining the response are tied to theoretical 
hypotheses which are set at the beginning of the study, and on 
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the notion of statistical significance. These aspects are immaterial 
in a purely predictive modelling framework as the one we present 
by using random forests. Exploring the level of this divergence is 
meaningful, as it can add value in understanding the full spectrum 
of catastrophe bond spread drivers for both prediction, and expla-
nation. It should be mentioned that this is an exercise that shall 
be made with extra caution as, to our best knowledge, every study 
in the explanatory catastrophe bond pricing literature to date and 
our predictive study has utilized different data sets and made dif-
ferent assumptions (apart from the LR model). However, given the 
fact that satisfactory level of agreement has been recorded in the 
past for certain variables in the explanatory framework, even un-
der these constraints, it merits a short discussion.

The starting point is independent variables where harmony 
with respect to predictive and explanatory importance between 
this and previous studies has been observed. In particular, in Sec-
tion 8.2, it is seen that EL is the most major contributor in pre-
dicting spreads in the primary catastrophe bond market. This re-
sult comes in agreement with our LR model presented in Table 3, 
and the majority of the previous explanatory oriented literature, 
see Lane (2000), Lane and Mahul (2008), Bodoff and Gan (2009), 
Dieckmann (2010), Braun (2016), Galeotti et al. (2013), and Jaeger 
et al. (2010). In Lei et al. (2008), the conditional expected loss is 
considered instead of expected loss, despite the fact that the for-
mer is not found to be statistically significant, while other variables 
related to the loss distribution are.

At the same time, in this study we observe that the probabil-
ity of losses outstripping the attachment point has almost equal 
forecasting power as the expected loss. Moreover, we see that the 
predictor AP is statistically significant in LR too. Lane (2000) also 
supports that the catastrophe bond premium is derived through 
an interplay between frequency and severity of catastrophe bond 
expected losses. On the top of this, Lei et al. (2008) and Jaeger 
et al. (2010) agree with the view that the attachment probabil-
ity is of high significance in explaining catastrophe bond spreads. 
Moving forward, the importance of variables reflecting the cycli-
cality of the market is high both in a predictive, and explanatory 
context, see LR, Lane and Mahul (2008), and Braun (2016). At the 
same time, peril-territory combination which is found particular 
importance for its ability to forecast spreads here and in the ex-
planatory framework. In particular, alike results are obtained by 
LR, Gatumel and Guegan (2008), Jaeger et al. (2010), and Götze 
and Gürtler (2018). Similarly, trigger is predictive in the current 
research whilst Dieckmann (2010), Götze and Gürtler (2018) and 
Papachristou (2011) also commented about the explanatory signif-
icance of this variable in their models. Finally, the predictor rating 
which is found to be predictive in our study (although not of top 
importance), is seen as major determinant of spread in our LR 
model, and also in Lei et al. (2008), and Götze and Gürtler (2018); 
even though Götze and Gürtler (2018) have examined rating from 
a different perspective to the one we employ, i.e. the variable re-
lated to rating does not refer to the credit quality of the bond but 
to that of the cedent instead.

With respect to the predictor term, no general consensus on its 
statistical significance has been reached in the literature up until 
now, although here it appears to be relevant for both prediction 
and explanatory purposes as LR reveals. For example, Papachris-
tou (2011) and Braun (2016) exclude the variable term from their 
analysis whilst on the other hand Dieckmann (2010), Galeotti et al. 
(2013), and Gürtler et al. (2016) highlight its importance. At the 
same time, the predictor size is minded as less influential or not 
significant at all by the models of Papachristou (2011), Lei et al. 
(2008), Braun (2016), and LR (zero coefficient even if the variable 
is significant) but it is considered sufficiently important for predic-
tion purposes in our study. This divergence may once again stem 
from the way weak predictors are treated in a typical linear re-

gression model versus random forests. As it is mentioned by Berk 
(2008), in a traditional regression framework a variable having a 
very small association with the response is most often excluded 
from the model being regarded as noise. Nevertheless, a big num-
ber of small associations when considered not on an individual 
basis but on an aggregate level can have a substantial impact on 
fitted values. That is not to say that linear regression is not capable 
of capturing interactions, however to do so any interactions need 
to be explicitly specified - a complicated task when the number 
of predictors in the study starts increasing. On the contrary, ran-
dom forests, as a tree based method, is naturally able to capture 
associations between predictors without the need to specify them. 
Indeed, Papachristou (2011) also acknowledges that in the context 
of his study, the fact that the term is not considered as important 
enough to be included in the suggested model may be due to the 
challenge of capturing complex effects between covariates. Com-
ing back to the discrepancy between explanatory and predictive 
power for predictor size, we recall that in Section 8.5 the inter-
acting behaviour of this variable is also observed in the predictive 
framework.

Finally, our study indicates that the variables vendor and cov-
erage are predictive despite of their appearance at the bottom of 
the ranking. Since this is the first time that these variables are 
studied, we can only compare them with LR in the explanatory 
framework. In particular, vendor does not appear as a statistically 
significant variable whilst coverage is. Overall, we can conclude 
that explanatory (based on LR and past literature) and predictive 
power appears to coexist for all catastrophe bond spread drivers 
considered in our study apart from size and vendor.

8.7. Discussion of predictors’ importance results from an industry 
perspective

Looking broadly at the minimal depth ranking presented in 
Fig. 5, we observe that the predictors may fall into three groups: 
those of utmost (the top two), medium (the next seven) and 
low prediction strength (the last two). We acknowledge that the 
bounds of where medium and lowest importance variables groups 
start may be subjective. The distinction here is made looking at 
the ranking from the perspective of a practitioner. The reason why 
we want to avoid focusing on individual importance scores is that 
explaining results in such a detailed way would neither be appro-
priate nor meaningful for a prediction oriented study. This section 
is not about interpreting results but seeing whether the results 
capture somehow investors’ perception and knowledge of the mar-
ket.

Having explained our rationale, the group of top importance 
predictors comprises from the two fundamental ingredients in any 
risk quantification process, that is the product of severity and fre-
quency of losses, i.e. EL, and AP. This is something that would 
most probably not surprise insurance professionals, risk managers 
or even investors if the variable importance results were to be pre-
sented to them. Especially with respect to investors, it is well com-
prehended that the return to be earned by investing into a catas-
trophe bond deal needs to surpass the expected value of catas-
trophe bond payouts. Thus, from an empirical viewpoint, investors 
would expect that by knowing the expected loss and probability of 
them losing the first dollar, at least a part of the spread value can 
be predicted.

The second group refers to some cyclical market elements and 
catastrophe bond features which could influence investors’ interest 
in a deal. The high importance of cyclical aspects in the predic-
tion of a new issuance spread is somehow natural since a hard 
or soft market directly sets some bounds on the top of which a 
deal’s specific loss profile and characteristics would be assessed. 
One reason why certain catastrophe bond features could influence 
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an investor’s appetite considering a deal, is the effect that these 
features could have on investors’ portfolio returns. In particular, 
investors would most probably agree with the predictor loc_peril 
having a high position in the ranks, as this type of information 
acts as the window shop for them entering the transaction. The 
rarity of the peril combined with the coverage territory indirectly 
informs investors about the diversification effect that the particu-
lar security can bring into their portfolio; a significant incentive for 
them to invest in this asset class. We acknowledge that this may 
not be true for new or rare perils, for which the existing catas-
trophe models are not yet trusted, however even in this case the 
peril-territory combination is informative in this sense. Another 
reason why the predictors of the second group could trigger in-
vestment interest is because some of these features are typical 
in traditional bond types traded in the financial markets and in-
vestors are already accustomed to this type of information such as 
issuance size, BB spread level, time between issuance and matu-
rity date, credit rating related information, and trigger of payment. 
Consequently, one can say that the location of these variables in 
the ranking supports the way an average investor would think even 
for a typical non-insurance linked investment.

Finally, the last group of predictors in the importance ranking 
comprises from variables having strong technical weight in the se-
curitization process and being insurance sector specific. The first 
predictor in this group, i.e. coverage type, refers to a contract term 
found in insurance contract whilst the second one, i.e. vendor, to 
the software company used to calculate the expected loss and var-
ious loss probabilities. Whilst this may not be immaterial informa-
tion, there is not direct equivalent of such features in the financial 
markets. Thus, the average investor not specialising in insurance 
linked securities would not really dig deep into analysing vendor 
model updates, and historical loss catalogues, or even the wording 
of the transaction when thinking of returns prediction. Especially 
for vendor, it is a matter of fact that there is a global oligopoly in 
firms offering catastrophe risk modelling solutions in the insurance 
industry. Although the software developed by each of these com-
panies is based on different assumptions, their scientific grounds 
are not disputed in the marketplace. This can be mostly attributed 
to the fact that these companies have been founded years before 
the birth of the first catastrophe bond and also that they have a 
long track record of being used in the traditional insurance and 
reinsurance markets. Thus, there is a contract of trust between 
them and the market participants as all vendors are perceived to 
be of equivalent reputational standing. Having said that, it does 
not mean that investors are sure about the reliability of the ex-
pected loss computation. It is just that most likely they would not 
believe that one vendor will have a much more valid estimate of 
loss compared to another. Similarly, coverage type really matters 
from an investor’s perspective when seen in conjunction with the 
trigger or the combination of peril and geography. For example, 
catastrophe bonds with indemnity triggers or not well understood 
risks when combined with aggregate coverage terms can be risky 
in trapping investors’ capital, as it was seen after 2018 Califor-
nian wildfires (Risk 2019). Taking into account all the above, the 
minimal depth predictors’ importance ranking seem to reasonably 
reflect investors’ current understanding of the market.

9. Example of random forest application in the industry

In this section, we present some possible examples of how the 
random forest could add value to ILS industry participants’ daily 
operations. In particular, we discuss how the random forest could 
assist a would-be catastrophe bond issuer or investor in making 
faster and more informed decisions. In other words, we attempt 
to showcase examples of random forest applicability both from the 
“buy” and “sell” sides of the catastrophe bond market.

Starting from the sell side, a would-be catastrophe bond issuer 
along with their investment advisors, prior to finalising the terms 
of a new catastrophe bond issuance, would use the random forest 
to predict the likely spread at which investors would accept the 
offering. Getting to know this information is important as it allows 
for exploration of terms which would make the deal appear more 
attractive to an investor. In case this would not be feasible, the 
would-be issuer would realise faster that it may be preferable to 
explore alternative risk financing options.

From the buy side point of view, the random forest could also 
be beneficial to investors. In particular, just before a new catas-
trophe bond is issued, potential investors are provided with an 
offering circular. This document includes information about the 
deal which is to be launched and an invite for them to attend a 
road show, post which the issuance pricing will be settled. The in-
formation disclosed in this package refers to risk details, various 
design characteristics of the issuance and a price guidance. In-
vestors want to make sure that the suggested spread compensates 
them enough for the true element of risk that they would under-
take had they entered the transaction. However, a detailed analysis 
of this aspect can be time consuming as various departments and 
sometimes even external risk modelling firms get involved in the 
process. Whilst this process is undoubtedly important, investors 
would like to have a first flavour for a new deal’s potential faster. 
Then, let’s imagine how useful a straightforward prediction tool 
like random forest would be, where investors could plug in de-
tails provided in the circular of the new issuance the moment they 
receive it to get a quick spread prediction for the new transac-
tion they investigate on the spot. This prediction would then be 
compared with the spread guidance offered and give investors an 
initial idea on whether the bond is overpriced, under-priced or 
“fairly” priced based on past catastrophe bond experience. This 
would direct investors to identify bargains faster and ask more 
relevant questions about the deal whilst on the road show. Then 
if the deal would be of interest, they could send all information 
needed to their modelling teams to perform the usual tasks of re-
modelling the underlying risk exposure and calculate the marginal 
impact that this new investment would bring into their portfolio. 
Overall, random forest is a solution that can speed up the invest-
ment decisions and help ILS investment firms not to use their 
valuable human resources for irrelevant catastrophe bond deals. As 
mentioned in Section 3.3.1, random forest could also be used to 
populate incomplete catastrophe bond deals databases when there 
is uncertainty or missingness of spread values for past transactions. 
We believe that its suitability for this purpose is very likely given 
the fact that we have some evidence about its high non-temporal 
prediction accuracy (see Section 7.1.1), and its “robustness” when 
information for more than one predictor is missing simultaneously 
(see Section 8.5) - a relatively usual phenomenon in an opaque 
market setting.

Besides, one note that needs to be made is that when assessing 
the discrepancy between the predicted spread value provided by 
the random forest (which for the buy side is the price guidance, 
and for the sell side it is the price for which the issuer would think 
that investors would accept the deal), one might first want to look 
back at what happened in the past, i.e. the historical discrepancy 
between the predicted and actual values recorded in the prediction 
phase post the random forest training. This may shed some light 
on the level at which a mispriced deal according to random forest 
is due to the portion of variability that the random forest could not 
explain or merely due to the fact that the new catastrophe bond 
has characteristics that have never been recorded in the past. The 
latter problem, could be mitigated if the random forest would be 
re-trained at frequent intervals, as part of the model validations 
taking place at least annually in a business context, enriching the 
training data set with more deals.
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Finally, although many other parameters could be taken into ac-
count for random forest to be incorporated into internal business 
processes, here we give an idea of how the prediction power of 
random forest can liaise with issuers and investors’ personal judge-
ment to make faster and more informed decisions. It should be 
highlighted that recent developments in the catastrophe risk mar-
ket also support the use of machine learning techniques. Prime 
examples are the new cyber risk model of AIR vendor, see AIR 
(2018), and a new platform for analysing deals and facilitating 
transparency in the catastrophe bond market, see Jones (2019).

10. Concluding remarks and future research

Until recently, the data-driven catastrophe bond pricing litera-
ture was mainly focused on building statistical models with an aim 
to test causal theory. The centre of interest lied on identification 
of variables which have a theoretically material and statistically 
significant link to catastrophe bond price, i.e. hypotheses of rela-
tionship between price and each independent variable were made. 
Then a statistical model, mostly linear regression, was applied to 
observed data to compute the size of this effect and the statis-
tical significance of each independent variable in relation to the 
causal hypotheses set at the beginning. For model evaluation, in 
sample R2 has been the classical way to assess model success, 
even though few more recent studies, such as Galeotti et al. (2013), 
Gürtler et al. (2016), and Braun (2016) have also considered out of 
sample model performance, and in some cases robustness checks 
for stability over different time periods. Model selection happened 
on the basis of keeping statistically significant factors and some-
times those non-significant ones having large coefficients to match 
the function connecting catastrophe bond spread and factors to the 
true underlying catastrophe bond data generation process.

The approach presented in the current research study was fun-
damentally different. A machine learning method called random 
forest was applied to a rich primary market catastrophe bond data 
set with a goal to predict catastrophe bond spreads at issuance 
given information in the offering circular and knowledge about 
current market conditions available at the time of prediction. Here, 
we did not focus on the underlying data generation process instead 
we learned the association between catastrophe bond spreads and 
predictors from the data directly using the random forest. The 
performance of our method was assessed on how accurately it pre-
dicted spreads based on unseen catastrophe bond observations on 
both temporal and non-temporal bases as well as the sensitivity of 
this prediction accuracy when possibly interacting predictors are 
missing. Variable importance measures referred to predictive abil-
ity and not the power to explain how the spreads are generated in 
this universe. There was also interest in securing repeatable pre-
diction accuracy and predictors’ importance results because of the 
multiple levels of randomness incorporated in random forests thus 
relevant checks were performed. The degree of divergence between 
predictive and explanatory importance was also of interest.

It was found that random forest has at least as good prediction 
performance as linear regression in the temporal context, and bet-
ter prediction performance in the non-temporal one. Random for-
est performed better than linear regression when multiple predic-
tors were missing from the model, as it has the ability to capture 
and extract interactions between existing variables. By assessing 
variables’ importance on a non-explanatory basis, we found that 
all examined predictors have a say in the prediction of spread even 
if this is in varying degrees. The prediction accuracy, and predic-
tors’ importance results of random forest were stable. Taking prior 
explanatory literature and LR model into account, it appeared that 
predictive and explanatory power coexist for all catastrophe bond 
spread drivers considered in our study apart from size and vendor. 
There is potential for random forest to be used in the catastro-

phe bond industry to fast track investment decisions from both 
the buying and selling sides.

Based on the above findings there are certain aspects that 
would be interesting to research in the future. Although by us-
ing random forest as presented here, an investor, for instance, can 
see whether a new issuance of any type has a competitive price 
guidance or not, they do not get informed about the suitability of 
a new deal given their current portfolio composition. Addressing 
this need is a significant and important topic for future research. 
Another subject for future study is to extend our data set prior to 
2009 to focus on the years of the financial crisis, and also addi-
tionally examine whether the drivers of private placements differ 
compared to those of non-private catastrophe bond deals. Finally, 
for the explanatory framework, another direction is for the vari-
ables size and BB spread to be further investigated as they stand 
out due to their potential interactions with other variables when 
other important variables are missing in the context of random 
forest.

In conclusion, our research provides some evidence that util-
ising both predictive and explanatory modelling can enhance the 
understanding of catastrophe bond market segment, increase its 
transparency and contribute to its development.
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Appendix A. Summary statistics for the catastrophe bond data 
set

We now provide further information about the catastrophe 
bond data set used in this research paper. Summary statistics are 
presented for all variables, both continuous and categorical ones. 
Starting from the continuous variables, we present histograms in 
Fig. 7 and measures of central tendency and spread of the observa-
tions in our data set in Table 12. In Fig. 7, we see that all continu-
ous variables have a right skewed distribution except variables RoL, 
BB spread, iss_year, and term. In particular, we see that the major-
ity of catastrophe bond issuances in our data set corresponded to 
a RoL value of less than 100 indicating a soft market. Moreover, 
most of catastrophe bonds were issued in the year 2012-2013. It 
appears that term distribution has two peaks reflecting that most 
catastrophe bond issuances have a 3 to 5 year time horizon. Look-
ing at Table 12, we notice that the range between minimum and 
maximum values for all continuous variables as well as the in-
terquartile range are rather broad indicating that data points are 
well spread out. Such a data structure is anticipated in a catastro-
phe bond market setting. In essence, each issuance is a bespoke 
product developed to meet a very specific risk transfer need and 
consequently the population of catastrophe bond deals is hetero-
geneous.

Moving forward to categorical variables in Table 13, we present 
for each of them the number of level and number of observations 
under each level, with the latter quantity also being expressed as a 
percentage of the total number of observations. All variables levels 
are those used by the industry unless otherwise stated. Some com-
ments regarding each categorical variable follow. With regards to 
coverage type, we find that the majority of catastrophe bonds dur-
ing the studying period were issued to provide compensation in 
situations where a single large-scale loss event would activate the 
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Fig. 7. Histograms for the continuous variables. Percentage of total observations versus different ranges of a given numerical variable.

Table 12
Continuous variables summary statistics. The unit in which each continuous variable is measured is provided in brackets.

Continuous variable Min. 1st Qu. Median Mean 3rd Qu. Max.

spread (in basis points) 50.00 375.00 590.0 687.70 871.50 2200.00
EL (in basis points) 1.00 111.00 188.50 274.60 333.80 1735.00
AP (%) 0.02 1.36 2.51 3.72 4.68 25.04
RoL (in basis points) 83.57 91.73 96.06 106.97 124.57 159.73
BB spread (%) 2.12 2.61 3.41 3.46 4.14 5.98
iss_year (as numeric value) 2009.00 2012.00 2014.00 2014.00 2016.00 2018.00
size (in million US dollars) 3.00 75.00 130.00 164.70 200.00 1500.00
term (in years) 1.00 3.02 3.18 3.49 4.02 5.12

trigger, i.e. per occurrence coverage, as opposed to this happening 
due to a collection of insured loss events i.e. aggregate coverage. 
In very few instances in the data set, such as tranches A and B of 
Riverfront Re Ltd Series 2017-1 for example, per occurrence and 
annual aggregate coverage co-existed.

With respect to loc_peril, we shall start by providing some ex-
planations in terms of abbreviations. The first part in each loc_peril 
level name indicates (a) geographical region(s). In particular, APAC 
stands for perils specific to Asia Pacific region, NA for perils rele-
vant to North America, SA for prominent perils in South America, 
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Table 13
Summary statistics for all the categorical variables. Levels of each categorical variable are presented by 
number of observations and percentage of total observations. Abbreviations are explained in the text.

Categorical 
variable

Levels No. of 
observations

Percentage (%)

coverage aggregate 303 32.4
occurrence 627 67.1
both 4 0.5

loc_peril APAC_Quake 51 5.46
APAC_Typh 22 2.36
Europe_APAC_Multi_Peril 2 0.21
Europe_Quake 12 1.28
Europe_Wind 54 5.78
NA_APAC_Multi_Peril 26 2.78
NA_Europe_APAC_Multi_Peril 36 3.85
NA_Europe_Multi_Peril 39 4.18
NA_Multi_Peril 425 45.50
NA_Quake 80 8.57
NA_Wind 184 19.70
SA_Quake 3 0.32

rating B 141 15.09
BB 286 30.62
BBB 4 0.43
CCC 4 0.43
nr (not rated) 499 53.43

trigger indemnity 511 54.7
parametric 29 3.1
industry loss index 325 34.8
parametric index 23 2.5
model 22 2.4
multiple 24 2.6

vendor AIR 741 79.3
AON 4 0.4
EQECAT 42 4.5
RMS 141 15.1
pp 6 0.6

Fig. 8. Historical development of the Lane Financial LLC Synthetic Rate on Line Index (measured in percentage terms). Values above 100 indicate a hard market.

and Europe for perils in the aforementioned region. What follows 
the geographical region code, for instance APAC, is the peril type 
covered in the aforementioned location. There, except for those 
that are self-explanatory, Typh stands for typhoon and Multi_Peril 
includes various individual perils in the earlier indicated regions. 
For instance, one out of the NA_Europe_APAC_Multi_Peril tagged 
transaction provide cover against US named storms, Canadian 
earthquake, European earthquake, Australian wind and Australian 
earthquake. We see that almost half of the catastrophe bond deals 
in the data set had a mixture of perils in NA geographical territory 
which is quite expected since the perils in the area are gener-
ally considered to be more well understood and there is a longer 
heritage of issuances there. For example, bonds covering wind in 

North America are very popular even if the assumption of losses in 
the area is more likely due to the effect of hurricane seasons. Nev-
ertheless, the high frequency of events had allowed risk modelling 
companies to understand the risk better, and build more trustwor-
thy models with investors feeling more secure to buy exposures in 
this region. Looking into the credit quality allocation of the bonds 
issued, it is evident that more than 99% of catastrophe bonds in 
the data set either were characterised as non-investment grade se-
curities or they did not receive a rating by any independent credit 
quality agency - the latter point has already been discussed more 
thoroughly in Section 4.3.

With regards to triggers, indemnity ones were the most popu-
lar among the bonds included in the study followed by industry 
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indices. This clearly shows a preference from cedents’ perspective 
to get compensated for the exact level of losses that they antici-
pate to experience or at least to be compensated in line to industry 
losses. Deals which are triggered when pre-determined event pa-
rameters are satisfied or surpassed accounted only for 5.6% of the 
total market in the period under study. Examples of parametric 
index deals in the current data set is Atlas VI Capital Ltd. Series 
2010-1 and Bosphorus Ltd. Series 2015-1 whilst IBRD CAR 118-
119 is an example of pure parametric trigger deal issued by the 
International Bank for Reconstruction and Development for Mexi-
co’s natural disaster fund named FONDEN. The least used triggers 
were those combining different trigger types such as Fortius Re 
II Ltd. Series 2017-1 and those based on the modelled losses of 
the cedent’s exposure portfolio calculated based on event parame-
ters gathered from specified agencies, such as Akibare II Ltd. single 
tranche.

With respect to the risk modelling company used to calculate 
the expected loss of investors’ exposure to underlying peril, we see 
that AIR Worldwide is the most widely used followed by RMS. To-
gether, they account for the 94.4% of all non-life securitisations in 
the data sample followed by EQECAT, AON and pp accounting for 
the rest 5.6%. It is worth to note that pp abbreviation is not a risk 
modelling firm but it stands for private placement. Examples are 
the single tranches of Merna Re Ltd. Series 2016-1, 2017-1, 2018-1

which were privately purchased by specialized ILS funds. Finally, 
the internal model of AON was used for very few deals where the 
aforementioned company had acted as the structuring and place-
ment agent, such as in the case of Windmill I Re series 2013-1.

Appendix B. In sample and out of sample performance of LR 
model using the variable Investment Grade (IG) instead of the 
variable (granular) rating

See Tables 14 and 15.

Table 15
Out of sample performance measured in terms of R2

OOB, R2
10CV, and R2

LOOCV for the 
improved linear model of Braun (2016) versus the linear regression model with
Investment Grade (IG) variable to indicate credit quality (LR with IG), and the 
benchmark linear regression model (LR) which includes the variable rating pre-
sented in Table 1 and Table 13 in Appendix A.

Model R2
OOB R2

10CV R2
LOOCV

Improved Braun (2016) 79.71% 80.81% 79.40%
LR with IG 82.22% 82.35% 82.72%
LR (with granular rating) 83.30% 84.42% 83.84%

Table 14
In sample fit of the linear regression model with Investment Grade (IG) variable to indicate credit quality (LR with IG) as 
opposed to variable rating presented in Table 1 and Table 13 in Appendix A.

Estimate Std. error t value Pr(> |t|)
(Intercept) 61540 9677 6.36 0.000 ***
RoL 6.05 0.43 14.15 0.000 ***
BB spread 50.34 8.66 5.81 0.000 ***
IG 0 (baseline)
IG 1 −253 85.34 −2.96 0.003 **
IG nr (not rated) 87.99 15.71 5.6 0.000 ***
term −27.25 8.86 −3.07 0.002 **
size 0.00 0.00 3.06 0.002 **
trigger industry loss index (baseline)
trigger indemnity −0.58 14.77 −0.04 0.969
trigger model −92.47 39.91 −2.32 0.021 *
trigger multiple −44.9 40.13 −1.12 0.264
trigger parametric index −23.9 42.02 −0.57 0.570
trigger parametric −122.6 37.4 −3.28 0.001 **
coverage aggregate (baseline)
coverage both 55.80 85.00 0.66 0.512
coverage occurrence −59.95 13.95 −4.3 0.000 ***
vendor AIR (baseline)
vendor AON 101.1 90.59 1.11 0.265
vendor EQECAT −0.68 33.96 −0.02 0.98
vendor pp 21.33 73.65 0.29 0.772
vendor RMS 15.4 19.25 0.8 0.424
AP −16.32 6.09 −2.68 0.008 **
EL 1.33 0.09 15.22 0.000 ***
iss_year −30.79 4.79 −6.42 0.000 ***
APAC_Quake (baseline)
loc_peril APAC_Typh −77.74 44.6 −1.74 0.082
loc_peril Europe_APAC_Multi_Peril −9.11 129.2 −0.07 0.944
loc_peril Europe_Quake −13.43 57.83 −0.23 0.816
loc_peril Europe_Wind −138.1 40.7 −3.4 0.001 ***
loc_peril NA_APAC_Multi_Peril 100.1 47.48 2.1 0.035 *
loc_peril NA_Europe_APAC_Multi_Peril 152.7 42.51 3.6 0.000 ***
loc_peril NA_Europe_Multi_Peril 149.9 40.96 3.66 0.000 ***
loc_peril NA_Multi_Peril 166.8 28.25 5.9 0.000 ***
loc_peril NA_Quake −19.79 35.59 −0.55 0.57
loc_peril NA_Wind 97.83 30.72 3.18 0.002 **
loc_peril SA_Quake 133.1 107.4 1.24 0.216

R2 83.96%
Adjusted R2 83.41%
Res. Std. Error 166.8 (df = 902)
F Statistic 152.3 (df = 31; 902)

Note for signif. codes: ∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01
Observations number: 934
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Appendix C. In sample and out of sample performance of Braun 
(2016) model using a subset of our catastrophe bond data

See Tables 16 and 17.

Table 16
In sample fit of candidate benchmark models specification. Here, the linear regres-
sion model of Braun (2016) was applied on our catastrophe bond data set. We 
notice that only 434 data points are considered as the binary Investment grade 
variable does not take into account non-rated transactions.

Estimate Std. error t value Pr(> |t|)
(Intercept) −665.97 40.33 −16.51 0.000***
Swiss Re −20.12 14.57 −1.38 0.168
RoL index 5.24 0.44 12.02 0.000***
BB spread 57.18 11.66 4.91 0.000***
Investment grade −39.17 73.32 −0.53 0.593
Peak territory 224.95 19.22 11.70 0.000***
Expected Loss 1.64 0.07 23.85 0.000***

R2 79.97%
Adjusted R2 79.69%
Res. Std. Error 143 (df = 428)
F Statistic 284.8 (df = 6; 428)

Note for signif. codes: ∗p < 0.1;
∗∗p < 0.05;
∗∗∗p < 0.01

Observations number: 434

Table 17
Out of sample performance measured in terms of R2

OOB, R2
10CV, and R2

LOOCV for the 
linear model of Braun (2016) versus the linear regression (LR) in this study.

Model R2
OOB R2

10CV R2
LOOCV

Braun (2016) 79.20% 80.40% 79.12%
LR 83.30% 84.43% 83.84%

Appendix D. Prediction accuracy performance of RF 
with categorical dummy variables

See Table 18.

Table 18
Prediction accuracy performance measured in terms of R2

OOB, R2
10CV, and R2

LOOCV for 
random forest (RF) when converting all the categorical variables into dummies in 
the catastrophe bond data set.

Model R2
OOB R2

10CV R2
LOOCV R2

RF 96.57% 96.49% 96.59% 99.25%
RF_dummies 96.48% 96.16% 96.63% 99.18%
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3.2 Supplementing material

There has been a considerable amount of work behind the scene which is meaningful

yet not directly visible in the published version of it. Consequently, we have decided

to include a supplementing material section where we can share this information with

the readers of this thesis. We will talk about issues relevant to the data preparation,

choice of variables, development of a random forest model that can be fairly compared

to benchmark models, and a comparative analysis of robustness results when using our

data set versus some open source data sets from different disciplines.

3.2.1 Data collection and preparation

The collection and preparation of data is important in statistical research. To fulfil

our study objectives, it was necessary to gather secondary data, however due to the over

the counter nature of the financial products we analyse, and our desire to have the full

population of these instruments for the chosen period of study, we had to seek for data

from multiple sources. This information came in different formats, some were in pdf files,

others in excel files requiring a lot of manual work to bring all information together in a

single file. Some examples of such endeavours follow.

Starting from units, there were pieces of information referring to the same concept but

measured in different units across different data providers. For example, some sources

expressed expected loss as a percentage of issuance size whilst others in basis points

terms. Since those measured on percentage terms were the majority, the appropriate

transformation was made to change the unit from basis points2 into percentage terms to

maintain consistency within the same data columns.

In addition, there were categorical variables whose levels have not been following a

rational flow in the original data set even though from discussion with people in the

industry we understand that such categorisations reflected their needs at a business level.

To give an example, in the context of the categorisation of the location-peril variable, it

was not very reasonable to categorise some variables (NA Quake, NA Wind, SA Quake)

at the peril-location level, others at the location level (APAC, Europe), and to neither

consider peril nor location for multi peril bonds, which compose the majority of the

sample. We do not doubt that such a categorisation serves some business need but from

a statistical perspective such option was not as suitable. Thus, we made all categorical

levels of this variable consistently reflect a location-peril combination.

2The equivalent of 1 basis point is 0.01 percent.
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There were also instances where the effect that a wrong categorisation even in nu-

merical variables would distort the prediction accuracy of the benchmark model. In

particular, we have seen that there was a small number of observations corresponding

to zero coupon deals which in the original data set have been recorded in the industry

as if they carried zero spread. This was wrong to assume as the implied spread should

have been derived from the implied coupon (which was available in the original data

set) by subtracting the element of the money market rate. By modifying zero spread to

an implied spread, the prediction performance of our benchmark linear regression when

using only the variables describing catastrophe bond characteristics had increased from

R2
OOB = 47% and R2

10CV = 51% to R2
OOB = 65% and R2

10CV = 67%. Next, we discuss the

choice of variables.

3.2.2 The choice of variables

At the beginning of our research design process, we thought to focus only on the vari-

ables that describe the characteristics of a catastrophe bond issuance without taking into

consideration the market conditions at the time of the issuance. The reason for this was

partially due to the fact that we wanted our model to enable a fairly accurate prediction

accuracy with information that has been readily available in the offering circular of a new

catastrophe bond.

Such a strategy did not significantly alter the performance of the random forest per-

haps due to its flexibility to extract information by the rest of the predictors. In particular,

by adding the Financial Lane Synthetic Rate variable into the study the R2
OOB for random

forest increased only by around 3%. However, the improvement in the linear regression

results has been been approximately 30% and by incorporating the variable issuance year

(iss year) into the set of predictors, the linear regression prediction accuracy increased

by further 2%. The aforementioned insights, as well as the fact that the macroeconomic

variables have been included in previous studies which employed linear regression model,

we decided to add them in the study.

Another decision that we had to make was how to represent the rating status of each

catastrophe bond in our data set. We first tried out a relatively rough subdivision of our

issuances into those that have not been rated at all, those that have been allocated an

investment grade meaning having received a rating of ’BBB’ or higher by Standard and

Poor’s or Moody’s and those who did not qualify for investment grade. This categorisation

was our first option because it has been used in the literature. Then, we tried out a finer

specification using more granular rating categories but not individual rating notches and

keeping of course the category for the non-rated deals. Finally, our analysis continued
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with the latter specification as it indicated a better prediction performance.

3.2.3 Developing a random forest model that can be comparable

to the linear regression benchmark

In the context of the specification of random forest’s hyperparameters, it may not be

intuitive to the reader that P = 9 is the number of variables considered in the random

forest, because in a traditional regression framework some of the categorical characteris-

tics (diversifier, vendor) would enter the model as a series of dummy variables for each

category, thus leading to a higher overall number of variables.

In regression models, categorical variables can only be considered through such cat-

egory dummies. Therefore, one may think that dummy variables for each category of a

categorical variable should also be included in the random forest model, to compare it

to other models based on an identical set of variables, even though random forest is able

to directly process categorical variable. For categorical variables (with more than two

levels), one would perhaps agree that in the traditional linear regression that whether

using dummy variables or not makes virtually no difference. However, for random forest,

despite the fact that we have performed this robustness check, and as seen in Appendix

D of the research paper, the prediction accuracy performance of the random forest with

categorical dummy variables is not considerable for our catastrophe bond data set, there

are a few reasons why we would refrain from following the dummy variables route.

Firstly, we believe that by considering categorical variables through category dummies

would make each split in the random forest less flexible because it would limit the cut off

point options for the categorical variable chosen to make a split. Maintaining plurality

in the levels of categorical predictors provides more cut off point options and this can

increase the diversity of each tree in the random forest which, as mentioned across Chapter

3, Section 3.1, is important. In particular, for expository purposes, suppose that we have a

categorical variable with 4 levels, A, B, C, and D. Then, with the original implementation,

if this particular variable is picked for splitting, then the tree would consider its options

over 7 possibilities, i.e. {(A), (B, C, D)}, {(B), (A, C, D)}, {(C), (A, B, D)}, {(D), (A,
B, C)}, {(A, B), (C, D)}, {(A, C), (B, D)}, and {(A, D), (B, C)}. On the other hand,

using dummy variables, the number of available options for splitting would be effectively

reduced to 4, i.e., {(A), (B,C,D)}, {(B), (A, C, D)}, {(C), (A, B, D)}, {(D), (A, B,
C)}. This difference would be more dramatic for variables with more levels (such as the

loc peril variable with 12 levels in our catastrophe bond data set). In addition, with

many levels, the resulting dummy variables would tend to be unbalanced (i.e. a large
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proportion of zeros, and a small proportion of ones), which would in turn make the trees

less balanced.

Secondly, using dummy variables also make the evaluation of variable importance

measures, such as those based on minimum depth, less straightforward. To give more

details, for a particular categorical variable with K levels, (depending on the way in

which the dummy variables are coded), one would now get K (or K−1) different average

minimum depth scores D1, . . . , DK , one for each dummy variable; but how to aggregate

them into one final score that represents the importance of this categorical variable as a

whole remains unclear, with many open options such as using the average, or taking the

smallest of all, etc. Still, these options are not with their problems. For instance, if we

were to use the average of D1, . . . , DK , then the entire variable would tend to be assigned

a lower importance rankings than what it really deserve even when only one or two levels

are not too relevant (because the corresponding Dk tend to be very large). On the other

hand, if we were to use the smallest of D1, . . . , DK , then one might argue that variables

with a larger K (i.e. number of levels) tend to have higher importance rankings than

what they really deserve (because for these predictors, we are taking the minimum over

a larger set).

Thirdly, to our best knowledge, most of the existing software implementing random

forests (in R and Python) does not convert categorical variables into dummies by default,

unless the number of levels is very large (because otherwise, going through all possible

splitting options would be very time-consuming). As such, for most practitioners, if they

were to apply random forest to their data, chances are that categorical variables will

not be automatically converted into dummies by their software. Consequently, from a

practitioner’s viewpoint, we believe that it makes more sense for us to report results

where categorical variables in random forest are handled in the default manner.

3.2.4 Assessing the stability of random forest model using as

benchmark other random forest models developed with

open source data sets

We appreciate that our data set is not publicly available and the reader of this thesis

would like to have a benchmark when evaluating the stability of the results our proposed

methods. A clear indication of absolute stability would require the establishment of a

threshold. However, we recognise that, with our approach, it is perhaps more informative

to look at these measurements in relative instead of absolute terms, i.e. by comparing

stability of different methods on the same dataset, etc.
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In particular, even through there is a temptation for the establishment of clear absolute

cut-off point for characterising stability, we believe that may be potentially problematic

or misleading because repeatability of the results in practice is often data (or research

area) dependent. For instance, what is regarded as stable in financial applications (based

on somewhat noisy data) might well be deemed as an unacceptable cut-off point in image

processing or speech recognition (where noise level is lower).

In addition, the stability of any sensible methods in these measures would almost

always improve in the simulations if we increase the number of observations from the

same data generating process, since there would be less uncertainty associated with the

data. Consequently, in our research study, the stability results for the random forest are

discussed through the prism of the financial nature of our problem, allowing the reader

to make their own judgement. Moreover, in the stability analysis of the predictors im-

portance, stability is presented in relative terms - we examine two methods, permutation

importance and minimal depth, and results are discussed on this comparative basis.

However as an extra robustness check, we have repeated the whole analysis using two

other open source data sets as it is done in other machine learning applications. We have

chosen to work with two data sets that were used by Breiman in his original random

forest paper. As we observe in Table 3.2, across all 100 iterations, the recorded mean

absolute difference of R2
OOB between Sample A and Sample B for the catastrophe bond

data set is 2.19% with the minimum and maximum absolute differences being 0.01% and

6.92% respectively. We see that these results are in line with the random forest stability

performance of the Boston Housing and Abalone data sets, which act as benchmarks for

the stability evaluation, as explained in Section 3.3.2 of the published article.

Given that our problem sits in the intersection of financial and insurance market

spheres where many behavioural aspects can affect prices, we consider the reported dif-

ference for the catastrophe bond data set being small. In essence, it is unlikely that

an ILS fund would reject the use of the method solely for such a level of dissimilarity.

In fact, the repeatability of prediction results here means that our initial random forest

prediction accuracy result, i.e. of an R2
OOB of 96.57% is reliable, in the non-temporal con-

text. Similarly, by looking Table 3.3, it is evident that the stability results of variables

importance when using the minimal depth method and the catastrophe bond data set

are more encouraging compared to when using the Boston using and Abalone data sets.

Also, for the top of the variable importance ranks, it is still evident that minimal depth

leads to more stable results than permutation importance for the two open source data

sets just like it happens in the case of the catastrophe bond data set.
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Data set R2
OOB Min Abs. Dif. R2

OOB Mean Abs. Dif. R2
OOB Max Abs. Dif.

Cat bond 0.01% 2.19% 6.92%
Boston Housing 0.14% 2.90% 9.07%
Abalone 0.04% 2.05% 6.04%

Table 3.2: Random forest stability of random forest using the cat bond data set versus
these of Boston housing and Abalone data sets respectively.

Data set Ranking position Agreement % Agreement %
(Permutation) (Mimimal depth)

Top 98% 100%
Second from top 36% 46%

Cat bond Second from bottom 27% 69%
Bottom 22% 69%
Last two 10% 100%

Top 60% 72%
Second from top 60% 72%

Boston Housing Second from bottom 47% 17%
Bottom 55% 18%
Last two 44% 1%

Top 70% 100%
Second from top 39% 93%

Abalone Second from bottom 20% 27%
Bottom 19% 27%
Last two 4% 0%

Table 3.3: Ranking stability by different importance ranking method for three different
datasets: Cat bond, Boston housing, and Abalone.
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Chapter 4

Model risk in reserve calculation

Risk taking is inherent to the business nature of all financial institutions, including

banks, insurance companies, investment companies just to name a few. As a result,

regulatory supervision is needed to ensure the integrity of the global financial system.

The main requirement is that prior any financial position is taken, the risk associated

with it needs to be quantified. Based on the latter, an equitable amount to the size of

the risk has to be put aside as a reserve to ensure the soundness of the financial entity.

Nevertheless, unused capital has an opportunity cost, i.e. this of not realising new

business opportunities. Consequently, it is natural for financial institutions to want to

know what is the minimum amount of capital to add to a position to make it acceptable

from regulatory viewpoint. In this chapter, we will see that this can be achieved by using

a monetary measure of risk given its ability to be interpreted as a capital requirement.

That said, there is variety of monetary risk measures that once could use. The goal of

this chapter is to present some popular options and highlight that no matter which risk

measure will be chosen there is an inherent model risk in their computation.

4.1 Monetary risk measures

A risk measure is a mapping from a set of random variables to the real numbers.

This set reflects the uncertain terminal worth of a position at the end of a given trading

period. That said, the net monetary outcome can be of any sign meaning that it can

reflect both profit and loss. Moreover, risk measures need to satisfy certain properties

namely monotonicity, translation invariance, and normalisation even though the latter

property can be relaxed when it is convenient to do so. There are various risk measures

85



and there is a need to formulate a set of properties which a good risk measure must fulfil.

Later on, we explore how these measures are being structured. Examples of various

monetary risk measures are also presented.

It is important to mention that whilst literature on the topic of risk measures is

massive, there are two classical financial mathematics seminar papers which open the

field namely Artzner et al. (1999) and Föllmer & Schied (2002). Since then, there has

been a a plethora of great works focusing on the understanding of key properties of these

risk measures, see for example Boyd & Vandenberghe (2004), Barrieu & El Karoui (2007),

Henderson & Hobson (2009), Föllmer & Schied (2010), Rheinlander & Sexton (2011),

Laeven & Stadje (2012), Delong (2013), and Föllmer & Schied (2016). That said, whilst

the content of Chapter 4, Section 4.1 in this thesis follows strictly the aforementioned

works, this literature list is certainly not exhaustive. Formal mathematical definitions,

assumptions, and results are written in italics font for clarity purposes.

4.1.1 Definition and properties

An agent considers to take a financial position which intuitively carries an element of

risk. Our aim is to quantify this risk by finding out the minimal amount which if added

to the position, it would make it acceptable.

Definition (Financial position). We denote Ω as an non-empty set representing a fixed

set of possible scenarios. A financial position taken by an agent is a mapping X : Ω −→
R∪{+∞}. Let ω be a scenario which is part of Ω. Then X(ω) reflects the terminal value

of the position (profit or loss) at the end of the trading period if the scenario ω ∈ Ω is

observed.

Let X be a set of financial positions and let the financial position X belong to it.

Whilst from an economic perspective X would had to be of a very large size, preferably

the space of all X : Ω −→ R ∪ {+∞}, it is mathematically convenient to introduce the

restriction of boundedness. Furthermore, X is a linear space containing the constants.

At this point we do not fix a probability measure in Ω. Below, we will find some number

ρ(X) which quantifies the risk of taking the financial position X.

Definition (Monetary Risk Measure). A monetary risk measure is a mapping

ρ : X −→ R which satisfies the conditions of monotonicity and cash/translation invari-

ance for all X and Y ∈ X as follows.

Monotonicity:

86



If X ≤ Y , then ρ(X) ≥ ρ(Y )

Cash Invariance:

ρ(X +m) = ρ(X)−m, for all m ∈ R

The condition of monotonicity simply reflects the fact that a position yielding a higher

payoff in all scenarios, i.e. in the whole Ω, carries less risk. The cash invariance property,

which can also be seen as translation invariance, demonstrates that risk is measured in

monetary units meaning when an amount m is added to a risky position, its risk will

decrease by the same amount m. Particularly, the cash invariance property indicates

that:

ρ(X + ρ(X)) = ρ(X)− ρ(X) = 0

and

ρ(m) = ρ(0)−m = −m

for all m ∈ R and given that ρ is normalised, see Assumption straight below.

Thus, ρ(X) accounts for the amount which if added to the position X, it would make

the position acceptable from a regulatory perspective. For an agent to be protected

against the risk of incurring a loss of size m, she would have to put aside as reserve

the same amount m. Consequently, we see that the notions of risk measure and capital

requirement are interchangeable.

Assumption. A monetary measure of risk, generally, satisfies the condition of normal-

isation, as follows.

Normalisation:

ρ(0) = 0

Normalisation implies that if one has nothing, there is no need to put aside any reserve.

Given the above mentioned assumption, there is an equivalence between the properties

of cash invariance and cash additivity in a way that:

ρ(X +m) = ρ(X) + ρ(m)

It should be noted though, that there are times when it is not convenient to make
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the assumption of a normalised monetary risk measure. Nevertheless, in most cases it is

considered safe to do so.

Lemma. Any monetary risk measure ρ is Lipschitz continuous with regards to the supre-

mum norm ||.||, as follows.

ρ(X)− ρ(Y ) ≤ ||X − Y ||

Definition (Convex risk measure). A convex risk measure is a monetary risk measure

ρ : X −→ R which fulfills the property of convexity, as follows.

Convexity:

ρ(λ(X) + (1− λ)Y ) ≤ λρ(X) + (1− λ)ρ(Y ), for 0 ≤ λ ≤ 1

Let’s think about an agent who wants to make investment but she naturally comes

across with the problem of scarce resources. The agent needs to consider the set of

probable future outcomes that can be produced given the limited resources available. Let

A and B be two investment strategies which lead to X and Y respectively. If the agent

decides to build a diversified portfolio, she will invest only a fraction λ of the resources on

the first possibility and spend whatever is left for the second option. Then the portfolio

will look like λX+(1 − λ)Y . Coming back now to the property of convexity, it implies

that diversification has a risk diminishing effect as it states that the risk of the diversified

portfolio λX+(1 − λ)Y is less or equal to the weighted average of the individual risks,

see Föllmer & Schied (2002). The latter is even more evident if one takes into account

that for a monetary measure of risk there is equivalence between the requirements of

convexity and quasi-convexity even though the latter one is weaker, see Cerreia-Vioglio

et al. (2011) for more on this topic. In particular, the quasi-convexity is given by the

following equation.

ρ(λX + (1− λ)Y ) ≤ max(ρ(X), ρ(Y )), for 0 ≤ λ ≤ 1

The interpretation here is that the risk associated with the diversified portfolio is not

higher than the maximum risk of both positions signifying that diversification should not

increase risk.

Definition (Coherent risk measure). A coherent risk measure ρ is a convex risk measure

which satisfies the property of positive homogeneity.
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Positive homogeneity:

ρ(λX) = λρ(X), for λ ≥ 0

The latter property reflects the fact that the risk associated with a liquid position shall

be proportionate to its size implying that the absence of liquidity risk in the market. It

is worth mentioning that when positive homogeneity axiom holds for a monetary risk

measure ρ, then it is also normalized, meaning that ρ(0) = 0. Given that positive

homogeneity applies, there is equivalence between the properties of convexity and sub-

additivity which is described straight below. The difference lies in the fact that in the

convexity property risks have weights.

ρ(X + Y ) ≤ ρ(X) + ρ(Y )

The aforementioned axiom is particularly useful as it provides scope for risk decen-

tralization. If every department in a financial institution has been provided with different

risk limits, then the sub-additivity property ensures that the risk of the aggregate posi-

tion has bounds; this of the sum of the individual risk limits. Nevertheless, there is a

pitfall here as by relying on this property, we acknowledge that the risk rises linearly as

the size of the position grows. This is a big assumption which does not always reflect the

reality, so it would be convenient to focus on convex risk measures instead.

4.1.2 Acceptance sets and their relation to monetary risk mea-

sures

We introduce the concept of acceptance sets which describe the requirements that

a financial position needs to meet for it to pass the demands of the regulator, see for

instance Föllmer & Schied (2016) and Föllmer & Schied (2010).

Definition (Acceptance set). A monetary risk measure ρ gives rise to the class of posi-

tions which do not require additional capital and are thus acceptable.

Aρ := {X ∈ X |ρ(X) ≤ 0}

The class Aρ will be named as the acceptance set of ρ.
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Below we will present the relation between a monetary risk measure and its acceptance

set. In this context, one can easily prove:

a) ρ is a convex risk measure if and only if Aρ is a convex set.

b) ρ satisfies the property of positive homogeneity if and only if Aρ is a cone. Specif-

ically, ρ is coherent if and only if Aρ is a convex cone.

c) the acceptance set Aρ completely determines ρ, as:

ρ(X) := inf{m ∈ R|m+X ∈ Aρ} (4.1.2.1)

Now, let ρ be a monetary risk measure with an acceptance set A . For A := Aρ to

hold the following properties must be satisfied:

1) A ∩R ̸= ∅ meaning that there exists a monetary amount m such that having m is

for sure acceptable.

2) inf{m ∈ R|m ∈ A } > −∞

3) X ∈ A , Y ∈ X , Y ≥ X then Y ∈ A , implying that if one position is accepted

then all better positions will also be accepted.

Conversely, given a subset A of X (acceptance set) and a position X ∈ X , the risk

of the position X can be defined as:

ρA (X) := inf{m ∈ R|m+X ∈ A } (4.1.2.2)

If the properties 1-3 hold, then ρA is a monetary risk measure. Then:

a) If A is convex, then ρA is also convex.

b) If A is a cone, then ρA satisfies positive homogeneity.

c) AρA is equal to the closure of A with respect to the supremum norm ||.||. In

particular, AρA = A holds if and only if A is ||.||-closed.

d) Given Equation 4.1.2.2, we see that Equation 4.1.2.1 appears as ρA (X)=ρ.
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4.1.3 Dual Representation

A commonplace in mathematical optimisation theory is the so called duality principle

according to which an optimisation problem can be seen from two different viewpoints, i.e,

the primal (minimisation) or dual (maximisation) problem, see Laeven & Stadje (2012),

Barrieu & El Karoui (2007), Föllmer & Schied (2016), and Föllmer & Schied (2010).

Finding solution for the dual problem means that a lower bound to the solution of the

primal problem is identified. Nevertheless, equality between the optimal values of of the

primal and dual problems is not necessary. In particular, the notation duality gap is

exactly used to describe the difference between these two optimal values. However, when

considering convex optimisation problems something interesting happens; the duality gap

equals to zero under certain conditions.

Coming back to the previous section, it is understandable that the quantification of

ρ(X) signifies the need to solve an optimisation problem. Equation 4.1.2.1 reflects the

primal approach interpreting the risk measure as a capital requirement. However, under

this representation, finding the value of ρ(X) is a quite complicated task. Also, it would

be interesting to see whether we can derive a different interpretation of ρ(X) other than

the one mentioned above. Indeed, we will see that the dual approach of our optimisation

problem is a robust analogue equation to Equation 4.1.2.1 which is easier to calculate

plus it shows that a risk measure is also the lens through which model uncertainty can

be seen.

Result (Dual representation of convex risk measures). Let’s assume that X is comprised

of measurable functions on (Ω,F ). Then the dual form of a convex risk measure ρ is the

following.

ρ(X) = sup
Q∈M

(EQ[−X]− a(Q))

Where M is a set of probability measures on (Ω,F ) and Q is a subset of probability

measures in M . M is such that EQ[X] is well defined for all Q ∈ M and X ∈ X . The

functional a : M −→ R ∪ {+∞} is named penalty function.

The probability measures contained in M can be seen as probabilistic models whose

reliability depends on how big or small the penalty a(Q) is. Therefore, the value of

ρ(X) is calculated as the worst case expectation taken over all models Q ∈ M and then

penalized by a(Q).

The main goal in the dual representation theory of convex risk measures is to derive a

representation in a systematic way by applying convex duality. In this context, we admit
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the following.

Result (Minimal penalty function). For every Q ∈ M c, the minimal penalty function

ρ is defined by:

aρ(Q) := sup
X∈X

(EQ[−X]− ρ(X)) = sup
X∈Aρ

(EQ[−X])

By adding more assumptions on the structure of X and as well as on the continuity

properties of ρ, it is feasible for one to represent ρ(X) through Fenchel-Legendre duality

as follows:

ρ(X) = sup
Q∈M

(EQ[−X]− aρ(Q)) (4.1.3.1)

In the special case, where aρ takes only the values 0 and +∞, ρ is a coherent measure

of risk which can be represented as follows:

ρ(X) = sup
Q∈Qρ

(EQ[−X])

where Qρ contains all Q ∈ M for which aρ(Q) = 0.

Coming back to Equation 4.1.3.1, we explain the circumstances under which such a

representation can be derived. In this setting, it is requisite to extend the set M to

include finitely additive set functions and discuss about risk measures on L∞(P).

4.1.4 Risk Measures on L∞(P)

When a probability measure P is fixed, we can naturally define risk measures ρ on

L∞(P) and not on X , see for example Föllmer & Schied (2016), given that the following

compatibility condition is satisfied:

If X = Y , then ρ(X) = ρ(Y ) P-almost surely.

At this point, we introduce two new notations. In particular, let M1,ac(P) be the set

of all finitely additive measures absolutely continuous with respect to P, and M1,ac(P) be
the set of probability measures absolutely continuous with respect to P. We also need to

provide the definition of the natural extension of continuity from below and above in the

space L∞(P) as follows:
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Definition (Continuity from below in the space L∞(P)).

Xn ↘ X P-almost surely =⇒ ρ(Xn) ↗ ρ(X)

Definition (Continuity from above, Fatou property, in the space L∞(P)).

Yn ↗ Y P-almost surely =⇒ ρ(Yn) ↘ ρ(Y )

Theorem. Let P be a probability measure.

1. Any convex risk measure ρ on X satisfying the 5.01 may be considered as a risk

measure on L∞(P). A dual representation holds true in terms of absolutely continuous

additive measures Q ∈ M1,ac(P).
2. ρ admits a dual representation on M1,ac(P):

α(Q) = sup
X∈L∞(P)

{EQ[−X]− ρ(X)}
,

ρ(X) = sup
Q∈M1,ac(P)

{EQ[−X]− α(Q)}

if and only if one of the following equivalent properties is true:

a) ρ is continuous from above (Fatou property);

b) ρ is closed for the weak topology σ(L∞, L1);

c) the acceptance set {ρ ≤ 0 is a weak-closed in L∞(P ).

3. Assume that ρ is a coherent (homogeneous) risk measure, satisfying the Fatou property.

Then:

ρ(X) = sup
Q∈M1,ac(P)

{EQ[−X]|α(Q) = 0} (4.1.4.1)

The supremum in Equation 4.1.4.1 is a maximum if and only if one of the following

equivalent properties hold:

a) ρ is continuous from below.

b) The convex set Q = {Q ∈ M1,ac|α(Q) = 0} is weakly compact in L1(P).

With regards to the latter point, according to the Dunfford-Pettis theorem, the weakly

relatively compact sets of L1(P) are sets of uniformly integrable variables and La Vallée

-Poussin gives a criterion to check this property: the subset of A of L1(P) is weakly

relatively compact iff it is closed and uniformly integrable in the sense that there exists

an increasing convex continuous function Ψ : R+ −→ R (the so called Young’s function),

such that:

lim
x−→∞

Ψ(x)

x
= +∞

and

sup
Q∈A

EP

[
Ψ
(dQ
dP

)]
< +∞

Having made a formal presentation of the concept of monetary risk measures, we
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proceed by providing few monetary risk measures examples.

4.2 Some examples

There is a variety of risk measures, see for instance Barrieu & El Karoui (2005), Föllmer

& Schied (2010), and Föllmer & Schied (2016). Here, we present some examples of

monetary measures of risk, based on the works of Barrieu & El Karoui (2007), Boyd &

Vandenberghe (2004), Laeven & Stadje (2012), Delong (2013), Föllmer & Schied (2016),

Föllmer & Schied (2010), Henderson & Hobson (2009), and Rheinlander & Sexton (2011),

which have quantiles as a key ingredient namely Value at Risk, Average Value at Risk,

and also a non-quantile based monetary risk measure called Entropic Risk Measure. The

choice of these instances is based on the popularity or the potential value that they can

bring in the financial industry practice given their properties. Moreover, some reviews

regarding potential drawbacks for some of these methods are also mentioned. Formal

mathematical definitions, and results are written in italics font for clarity.

4.2.1 Quantile-based risk measures

Since, we provide examples of quantile-based risk measures, it makes sense to start

with an introduction on quantiles. In particular, one of the most common practices in

the topic of measuring the risk of a financial position X is to determine a quantile of the

distribution of X under a given probability measure P whose definition follows.

Definition (Quantile). Let λ ∈ (0, 1). Then a λ − quantile of a random variable on

(Ω,F , P ) is any real number q which satisfies the following property.

P [X ≤ q] ≥ λ

and

P [X < q] ≤ λ

Now, the set of all λ − quantiles of X is an interval [q−X(λ), q
+
X(λ)] where the lower

quantile function of X is:

q−X(t) = sup{x|P [X < x] < t} = inf{x|P [X ≤ x] ≥ t}
and the upper quantile function of X is:

q+X(t) = inf{x|P [X ≤ x] > t} = sup{x|P [X < x] ≤ t}
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Having explained the notion of quantile and the bounds of the set of all quantile

functions of X, we next introduce Value at Risk and Average Value at Risk.

4.2.1.1 Value at risk

The financial and insurance industry uses extensively a monetary risk measure called

Value at risk (V@R) whose mathematical definition is provided below.

Definition (Value at risk). Fix some level λ ∈ (0, 1). The Value at Risk of a financial

position X at level λ is defined as follows.

V@Rλ(X) := −q+X(λ) = inf{m|P [X +m < 0] ≤ λ}

The financial interpretation of V@Rλ(X) is the smallest amount of capital which, if

added to the position X and invested in a risk free manner, ensures that the probability

of a negative outcome is below the level λ. Thus, we see that by using V@R one can

maintain control of the probability of a loss. Nevertheless, V@R does not provide any

information about the size of loss in case it occurs meaning that if an agent is looking

only at this measure there is no way to know the maximum possible loss that can incur.

It is important to mention that V@Rλ(X) is coherent measure of risk as it satisfies

the property of positive homogeneity. However, the acceptance set of V@Rλ(X) does not

fulfil the convexity property and consequently V@Rλ(X) is not a convex measure of risk.

As we have mentioned in Chapter 4, Section 4.1.1, convexity reflects the diversification

effect. Thus, this second limitation of V@R not being convex implies that this measure

may penalise diversification instead of encouraging it. Indeed, V@R may actually create

an incentive to concentrate risk on a scenario of small probability.

4.2.1.2 Average value at risk

As a result of the drawback of V@R to determine the size of losses, a new risk measure

was developed to account for this, i.e., the Average Value at Risk (AV@R). The idea

behind it is to calculate the V@R at few levels of the distribution and then take the

average. A formal definition of AV@R follows.

Definition (Average value at risk). The Average Value at Risk at level λ ∈ (0, 1] of a

position X ∈ X is given by

AV@Rλ(X) =
1

λ

∫ λ

0

V@Rγ(X)dγ
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For X ∈ L∞, we have

lim
λ↓0

V@Rλ(X) = − ess infX = inf{m|P [X +m < 0] ≤ 0}

Therefore, we can define

AV@R0(X) = V@R0(X) := − ess infX

representing the most conservative (worst case) risk measure in L∞ which is continuous

from above but in general not from below, and

AV@R1(X) = −
∫ 1

0

q+X(t)dt = −E[X]

It is worth mentioning that despite the aforementioned correction of the original V@R,

the Average Value at Risk is still not convex and the problem of penalising diversification

is not solved. Consequently, we thought that it would be interesting present a risk measure

example, which happens to be non-quantile based this time, which satisfies the convexity

property. In this context, next we introduce the entropic risk measure.

4.2.2 Entropic risk measure

Another alternative to V@R and AV@R is the entropic risk measure. We could say

that it enjoys the highest popularity among convex risk measures on L∞ and it is a

prime example of a convex risk measure which is not coherent, i.e. the property of

positive homogeneity is not satisfied. We will define this measure as eγ functional which

is continuous from below. Entropic risk measure derives its name from the notion of

relative entropy which appears in its dual representation. That said, we start by defining

the relative entropy and we continue with presenting results with respect to the dual and

primary formulation of the entropic risk measure.

Definition (Relative entropy). The relative entropy of H(Q,P) of a probability measure

Q with respect to a probability measure P is given as:

H(Q,P) =




E[dQ

dP log dQ
dP ], if Q ≪ P

+∞, otherwise

Result (Dual formulation of entropic risk measure). We now regard a penalty function

α : M (P) −→ (0,+∞] which is defined by:
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α(Q) :=
1

γ
H(Q,P)

Here γ is a given constant and H(Q|P) = EQ[log
dQ
dP

] is the relative entropy of Q ∈
M (P) with respect to P.

Then, the dual representation of the corresponding entropic risk measure eγ(X) is

given by

eγ(X) = sup
Q∈M (P)

(
EQ[−X]− 1

γ
H(Q|P)

)

It can be shown that α is in reality the minimal penalty function representing eγ(X),

as follows.

αmin(Q) = supX∈L+∞

(
EQ[−X]− 1

γ
H(Q|P)

)
=

1

γ
H(Q|P)

Result (Primal Formulation of entropic risk measure). Above, we presented the dual

form of the entropic risk measure. One, though, can see the optimization problem from

the primal point of view which is described below.

eγ(X) = γ lnEP

[
exp
(
− 1

γ
x
)]

Let’s now consider the Theorem 1. Since eγ is continuous from below in L∞, then

∀X ∈ L∞(P) the following holds true.

eγ(X) = γ lnEP

[
exp
(
− 1

γ
x
)]

= max
Q∈M1,ac

{EQ[−X]− γH(Q|P)}

.

This is very important as it indicates that we can find an explicit solution to our

optimisation problem. Moreover, the entropic risk measure is closely related to the ex-

ponential utility function and to the associated indifference price, more details on both

of these two aspects can be found in Chapter 4, Appendix.

As we have done already for V@R and AV@R in Chapter 4, Section 4.2.1.1 and

4.2.1.2 respectively, it is interesting to see how we can interpret the relative entropy from

a financial viewpoint. In particular, the quantification of risk with the relative entropy
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has a somehow natural interpretation in a financial setting. In particular, a financial

agent has a reference model Q. Obviously, the measure Q is not the true measure but a

mere approximation to the probabilistic model of the payoff X. As a result, an issue of

”trust” arises.

In particular, the agent disputes the model Q and takes into consideration many

models P whose worth of being accepted as true or reasonable decreases proportionally

to their distance from the reference model Q. It is apparent that for every given X, the

mapping γ −→ eγ(X) is increasing. As a result, the parameter γ may be seen as a tool

which quantifies the degree of trust the agent puts in the reference measure Q. If γ = 0

then e0(X) = − ess infX which corresponds to maximal level of mistrust. In the latter

case only the zero sets of the measure Q are considered trustworthy. On the other hand,

if γ = 0 then the e∞(X) = −E[X] showing a maximal level of reliability in the measure

P .

Having explained what risk measures are and shown some alternative risk measures

that can be used in effort to compute a financial institution’s reserve, we next focus on

some model risk considerations.

4.3 Model risk in reserve computation

Until now we have seen that there are various risk measures although some of them

lack important properties which can in turn lead to poor risk management strategies

eventually. For example, Value at Risk is a risk measure that the industry uses massively

as it is implied by regulators. Nevertheless, it is well known that it can lead to the

accumulation of shortfall risk in some scenarios, see Embrechts & Wuttrich (2022).

Here, we ignore what makes a financial institution choose one risk measure over an-

other, for instance AV@R instead of V@R, and we focus on uncertainties regarding the

computation of any risk measure. In particular, this is important given that the regula-

tory rules for financial institutions, such as these of Basel II and Solvency II directives,

grant total flexibility in the choice of internal models for the computation of a monetary

risk measure. Similarly, there are no specific requirements regarding the assumptions

deployed in the stochastic modelling process apart from the fact that resulting reserve

shall respond to a certain quantile of the aggregated loss data over the period of a year

among some other data related details. Moreover, there are not explicit rules with regards

to how the correlation between different risks that financial institutions take should be

captured, except from a general guideline that any assumptions need to be justifiable,
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see Embrechts et al. (2013).

Consequently, post choosing a monetary risk measure to work with, and no matter

how the decision to work with a particular risk measure over another is made, an actuary

faces the hurdle of deciding which is an appropriate model to use for its computation,

and straight after this which are the suitable parameters for the chosen model. In other

words the actuary faces model risk, Alexander & Sarabia (2012). In particular, model

choice is inherent in the decision making of an actuary when calculating the reserve as

assumptions need to be made for the random variable of interest, the data generative

mechanism, and for the statistical model itself as a stochastic model inevitable involves

an element of randomness in its output, see Cairns (2000). With respect to the model

parameters, they are subject to estimation but given the fact that there is only a finite

amount of data available at any given point in time, one can never be rest assured that

the parameters estimation is truly reflective of the underlying phenomenon of interest.

Also, parameter estimation can be achieved by using a variety of numerical methods each

of which could yield dissimilar results for a given set of data and model.

It is worth mentioning that the aforementioned decomposition of model risk into

model choice and parameter ambiguity is not ultimate as there is no clear agreement in

the literature regarding the origins of model risk. We direct the interested reader to Cont

(2006), Kerkhof et al. (2010), and Cairns (2000) on some views on this matter. Also, some

selective, and certainly not exhaustive, literature aiming to address model risk relevant

to the the computation of capital reserves include the works of Kerkhof et al. (2010),

Boucher et al. (2014), Barrieu & Scandolo (2015), and Bertram et al. (2015).

Finally, in the subsequent Chapter 5, we see model risk for the computation of the

reserve through the lenses of an opinion combination problem.

4.4 Appendix; Entropic risk measure and indiffer-

ence price

The entropic risk measure is closely related to the exponential utility function and to

the associated indifference price, where the latter refers to the price at which an agent is

indifferent between entering a financial transaction or not based on an expected utility

level argument. We deem interesting to talk about this topic, as literature, see Barrieu

& El Karoui (2005), suggests that this mathematical model can be used for the pricing

of financial products in incomplete markets. That said, in Chapter 3, we have seen an

example of such a market for catastrophe bonds.
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4.4.1 Indifference pricing

Indifference pricing is an alternative approach to hedge a contingent claim. Under this

framework, the agent is able to maximise her expected utility of wealth and lower the risk

associated with the payoff uncertainty even in an incomplete market setting. At the same

time, when the market is complete this method advances to the standard risk neutral

hedge and as a result it is a powerful pricing tool.

In any case, the agent’s risk preferences with regards to risk exposure are quantified

through the use of utility functions. The choice of a representative utility function has

even greater importance when an incomplete market is present. Ultimate goal is to find

an amount which confirms that the agent’s utility is unchanged by purchasing/selling the

contingent claim. This price is called utility indifference or reservation price.

In practice, assuming that the agent has a utility function U, we can say that from

the buyer’s viewpoint, the reservation price shows the maximum amount π that the agent

is willing to pay for a claim X, thus:

E[U(X − π)] = U(0)

Similarly, from a seller’s aspect this price reflects the minimum amount π the agent

is ready to accept in order to sell claim c.

E[U(π −X)] = u(0)

Thus, depending from which side we are looking into this (”buy” or ”sell”) we can

determine an upper or lower bound respectively so that the transaction will happen.

Consequently, the utility indifference price can just provide us with a decision rule and

it is not the actual transaction price.

The indifference price satisfies certain properties:

i) it is a monotonically increasing function of the claim X such that

π(X) ≤ π(Y ), if X ≤ Y .

ii) it is also a convex function of the claim X, thus allowing one to capture the effect

of diversification
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π(λX + (1− λ)Y ) ≤ λπ(X) + (1− λ)π(Y ),∀λ ∈ [0, 1].

iii) it is cash translation invariant meaning that if the payoff of the claim X can be

translated by a riskless amount m then the price π can be also translated by the same

amount

π(X +m) = π(X) +m,∀m ∈ R

.

Next, we discuss the way in which the exponential utility function is linked to the

entropic risk measure presented in Chapter 4, Section 4.2.2.

4.4.2 Relation between exponential utility and entropic risk

measure

We start describing the relation between the exponential utility function, and entropic

risk measure by considering an agent who operates in an uncertain universe which is

modelled by a probability space (Ω,F ,P). Let T be the time horizon of interest. It is

assumed that the agent’s risk preferences are best described by an exponential utility

function for the computational convenience it offers and takes the form:

U(X) = −γ exp(−1

γ
X)

where γ is the risk tolerance coefficient reflecting how tolerant is the agent to the part

of risk that cannot be hedged. As a result, an agent with a risk averse profile would

require a higher price for a non-perfectly replicated claim as remuneration for accepting

this residual risk. When this risk aversion goes to the limit, the agent leans towards

demanding the super-replication price for the contingent claim. The agent has wealth W

reflecting the state of their portfolio at time T. At this point, we assume that the wealth

W is random in our model. The random variables X and W are bounded and given the

current low interest rate environment, we can safely ignore interest rate fluctuations.

For the agent to decide whether or not to buy a contingent claim1 with a payoff X

at time T. Then, it is enough to find the pricing rule which makes the agent indifferent

between keeping his wealth stable and entering the transaction. As it was described

1That is a financial instrument whose payout depends on the occurrence of a random future event.
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earlier, there are two ways to capture this concept in an equation depending on whether

our agent is from the ”buy” or ”sell” side. Taking as given that the agent is a buyer,

the problem of deciding whether to take the risk or not will be reduced in finding the

maximal price for which she is ready to pay for it. The indifference price π(X) is given

by the constraint:

EP[U(W +X − π(X))] = EP[U(W )]

Then:

EP[exp((−
1

γ
)(W +X − π(X))] = EP[exp(−

1

γ
)W ]

⇔ π(X|W ) = eγ(W )− eγ(W +X)

where eγ is the opposite of the guaranteed return that someone would accept rather than

taking a chance on a higher, but uncertain, return i.e the opposite of certainty equivalent

defined for any bounded random variable Ψ as eγ(Ψ) ≜ γ lnEP[exp(− 1
γ
Ψ)].

Based on the above, it is apparent that π(X|W ) satisfies the properties of increasing

monotonicity, convexity, and translation invariance π(X+m|W ) = π(X|W )+m whilst the

functional eγ(X) = −π(X|W = 0) is also monotonous decreasing, convex and translation

invariant eγ(Ψ +m) = eγ(Ψ)−m , and thus it has similar properties.

An important remark on π(X) is that it is dependent on the agent’s initial exposure.

Consequently,if πs(X|W ) is the indifference seller’s price and πb(X|W ) is the indifference

buyer’s price it holds that there is a strong relationship between the seller’s and buyer’s

reservation price rules in a way that the one is the opposite of the other, given that the

presented framework is symmetric.

πs(X|W ) = −πb(−X|W )

As we can see the functional eγ is nothing else than the entropic risk measure described

in the previous section. So having started from a utility maximisation problem, we

concluded with an equivalent risk measure minimisation problem in order to price this

contingent claim X. The entropic functional is the most appropriate to work with given

the desired properties that satisfies as a convex measure of risk and not the one of utility

as such, allowing to focus only to the notion of price. Consequently, we see that the
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entropic risk measure cannot be used only for quantifying reserves for meeting the capital

requirement set by a regulator but it also constitutes a very powerful pricing tool.
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Chapter 5

A finite mixture modelling

perspective for combining experts’

opinions with an application to

quantile-based risk measures

This chapter is mostly dedicated to our article published on an open access basis at

journal Risks entitled ”A finite mixture modelling perspective for combining experts’

opinions with an application to quantile-based risk measures”1, see Makariou, Barrieu

& Tzougas (2021). The model risk associated with the computation of the reserve is

described as a traditional opinion combination problem which can be effectively captured

by using a finite mixture modelling approach to allow for both sources of model risk

described in Section 4.3.1 to be accounted. Here, the article is presented in the exact

format in which it has been published followed by some supplementary material.

5.1 A finite mixture modelling perspective for com-

bining experts’ opinions with an application to

quantile-based risk measures

1The article can be accessed via the following link: https://doi.org/10.3390/risks9060115
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1. Introduction

“Opinion is the medium between knowledge and ignorance” is an expression that is
ascribed to Plato. Indeed, due to the growing uncertainty in an abundance of contemporary
societal settings, we often come across circumstances when an agent, who acts on behalf of
another party, is called to make a decision by combining multiple and sometimes diverging
sources of information that can be described as opinions. Moreover, the latter may take
any form; from experts to forecasting methods or models (see Clemen and Winkler (2007)),
and from now on, we may use these terms interchangeably when referring to an opin-
ion. Opinions communicated to an agent can differ to varying degrees, and the level of
confidence that an agent allocates to any given viewpoint is subjective.

Some examples where an idiosyncratic combination of opinions is required for a deci-
sion to be made at an individual, corporate, and policy level follow. In the private sphere,
consider an individual who plans to sell their house, and in doing so consults property
experts to determine an appropriate selling price. While the latter may be influenced by
some "standard" factors, such as the number of bedrooms in a given postcode, various
experts may additionally examine different price determinants such as the proximity of the
property to a good school or a park. That said, the seller may want to incorporate all this
diverse information in an effort to achieve a better financial outcome for themselves, but the
weight that each reported opinion has in this process lies mostly on the seller’s perception.
In a financial corporate environment, consider the case where an investment manager
asks a number of quantitative analysts to evaluate the return on a stock. Disagreement in
opinions here could arise from the fact that some analysts may be more optimistic than
others about the future. As mentioned in Peiro (1999), aggregate stock market returns are
asymmetrically distributed; the largest movements in the market usually refer to decreases
rather than increases in returns. As a result, one can say that an analyst foreseeing a regime
shift, let us say, close to a firm’s earnings announcement period (see McNichols (1988))
would possibly choose a more heavy-tailed distribution to model the returns compared to
others who did not have such a negative expectation. Once again, an investment manager
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decides on the level of trust to show to any given opinion, based on their own subjective cri-
teria. Finally, at a public policy level and in light of the COVID-19 pandemic, policy makers
consult experts from a variety of disciplines, such as anthropology, mathematics, statistics,
epidemiology, and engineering, to name a few (see Government Office for Science (2020))
to enable them to build the strategy for its effective management. Reported opinions may
not always align, as each specialist sees the problem from a different angle. Government
officials though, regardless of divergent opinions, need to combine and evaluate the weight
of each view for policy decisions. The subjective character of how much emphasis is given
to each opinion by a given policy maker is apparent by the recorded observations of so
many different responses related to handling the pandemic across different countries. Simi-
larly to the aforementioned quandaries, decision dilemmas have long been investigated in
the particularly rich literature concerning combinations of opinions, which, as Clemen and
Winkler (1999) indicate, embraces a number of behavioural and quantitative approaches.
See Section 2 for a detailed literature review.

Let us now discuss our motivation behind this study. As is well known, in quanti-
tative risk management, the process of defining, measuring and managing operational
risk is crucial since it formalizes the financial institutions’ approaches to comply with the
qualifying qualitative criteria of the Basel Capital Accord and Solvency Directive. This
approach relies on the knowledge of experienced enterprise agents and risk management
experts who are asked to provide opinions regarding plausible high-severity events. For
instance, these opinions can be expressed as parameters of an assumed loss distribution.
However, the company’s risk profile, which could accord to a consensus of experts’ individ-
ual judgements regarding the severity distribution, might often not be robustly estimated.
The main reason for this is that when experts are presented with internal data and need to
express probabilistic opinions about the same uncertain quantity of interest, there may be
multiple sources of heterogeneity in their responses concerning the choice of models and
their parameters and, in addition to these, the allocation of weights from the agent that are
not considered as being embedded in the data-generative process of the uncertain quantity
of interest based on which the agent needs to make a decision. In particular, each expert
reports their opinion based on what their focus is, and if we assume that they report their
opinions honestly, each believes that their opinion reflects best the true data-generative
process. Therefore, since a major challenge in operational risk management is to evaluate
the exposure of severe losses based on a weighted combination of a variety of opinions in
the first place, it appears that it would make more sense to employ probabilistic models
that reflect group structures.

In this paper, we present an alternative perspective for modelling of operational risk
in an enterprise context by combining expert opinions based on finite mixture models.
Finite mixtures models can provide a formal framework for clustering and classification
that can be effectively used within the opinions combination research setting. In particular,
this versatile and easily extensible class of models can accommodate different sources
of unobserved heterogeneity in the data-generative process of the uncertain quantity of
interest by allowing for the mixture components to represent groups within which there is
a concurrence of judgements. At this point, it is worth noting that finite mixtures models
have not been applied in the area of opinion combinations, with the exception of Rufo
et al. (2010), who employed Bayesian hierarchical models based on mixtures of conjugate
prior distributions for merging expert opinions. Furthermore, it should be noted that
Shevchenko and Wüthrich (2006) employed the Bayesian inference method for quantifying
frequency and severity distributions in the context of operational risk. Their approach
was based on specifying the prior distributions for the parameters of the frequency and
severity distributions based on expert opinions or external data. Furthermore, Lambrigger
et al. (2009) extended the framework of the previous paper by developing a Bayesian
inference model that permits combining internal data, external data, and expert opinions
simultaneously. The setup they proposed enlarged the Bayesian inference models of the
exponential dispersion family (EDF) and their corresponding conjugate priors; see, for
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instance, Bühlmann and Gisler (2006), Chapter 2. However, to the best of our knowledge,
the use of finite mixture models within the traditional frequentist approach for combining
diverging opinions remains a largely uncharted research territory. Our main contribution
is that we consider that the component distributions can stem from different parametric
families. The advantage of this formulation is that it allows the agent to obtain the ag-
gregated opinion of a group of experts, based on a linear opinion pool, and account for
the various sources of unobserved heterogeneity in the decision-making process in the
following ways: (i) by assuming that the data are drawn from a finite mixture distribution
with components representing different opinions about both the distribution family and
its parameters regarding the uncertain quantity of interest, and (ii) via the mixing weights
that reflect the quality of each opinion. Furthermore, when the proposed family of models
is applied to internal data, it can enable the agent to utilize all the available information for
accurately assessing the effectiveness of (i) the combination of the expert judgements and
(ii) their own judgement about the weights that they intended to allocate to each expert—a
concept not so dissimilar to the the main idea behind the long-established weights alloca-
tion approach of Cooke (1991) and the scoring rules in general. Finally, the proposed family
of models is used for numerically computing quantile-based risk measures, which are of
interest in a variety of different types of insurance problems, such as setting premiums,
insurance deductibles, and reinsurance credance levels and determining reserves or capital
and ruin probabilities.

The rest of this paper proceeds as follows. Section 2 provides a brief literature review
on some traditional approaches for combining diverging opinions. Section 3 explores the
topic of combining diverging opinions using finite mixture models. Section 4 describes
the calculation of quantile-based risk measures based on the finite mixture modelling
methodology. In our numerical application, we focus on quantile-based risk measures.
Finally, concluding remarks can be found in Section 5.

2. Traditional Approaches for Combining Expert Judgements

In this section, we briefly present some famous approaches in aggregating expert
judgements. The latter topic can be seen from different perspectives, and in recent decades,
several quantitative and behavioural methods have been used for its study. That said,
no method can be considered superior to another because for each opinion combination
problem, a whole process should be established to identify the most appropriate com-
bination strategy; see Clemen and Winkler (1999). In doing so, factors such as experts’
availability, degree of divergence in opinions, past experience regarding the experts, and
the random quantity of interest among others should all be considered. As one would
expect, such diversity in approaches to combining judgements has resulted in a rich and
interdisciplinary literature that would be impossible to cover in its entirety in this article;
however, we provide a short review of some important works.

2.1. Behavioural Approaches

Behavioural approaches to opinion aggregation typically involve sources of informa-
tion, commonly referred to as experts, interacting with each other in order to reach some
conclusions. This interaction between experts can happen in a direct or indirect manner. For
instance, in an approach called feedback and re-assessment (see Winkler (1968)) no direct
communication is allowed among the experts. The agent first collects the views of each indi-
vidual expert, and then each of them is presented with the other expert opinions and given
the opportunity to revise their own view and re-submit it to the agent. Multiple rounds of
this process may be required to reach a consensus, or at least to decrease the number of
diverging views, thus simplifying decision making. Subsequently, these views may need to
be quantitatively combined. One of the earliest methods associated with the feedback and
re-assessment approach is known as the Delphi Method; see Linstone and Turoff (1975),
Dalkey (1969), and Parenté and Anderson-Parenté (1987).
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Additionally, another behavioural aggregation approach, which is known as group
re-assessment (Winkler (1968)), allows for direct discussion between experts, after they
have individually shared their view, in search of a group opinion consensus. Examples
of methods falling into this category are the Nominal Group technique and Kaplan’s
approach; see Delbecq et al. (1975) and Kaplan (1992), respectively. An advantage of such
group reassessment approaches is that experts, when given the opportunity to discuss, may
find that there are other factors to consider that would have been otherwise overlooked.
However, the fact that the experts need to make a decision as a group comes with certain
complications, which we discuss briefly below.

In particular, if we assume that the initial individual opinions are expressed in terms
of probability distributions, the moment that discussion between experts starts, each
expert also brings considerations about their individual utility function. Furthermore,
psychological factors have a role to play in reaching common agreement; some experts may
have more advanced leadership skills than others, which may result in the latter adjusting
their views merely to reach consensus without necessarily agreeing on the outcome. Last
but not least, a phenomenon called polarisation may happen when the group takes riskier
decisions as a whole compared to if an individual were to make a decision alone; see
Plous (1993) and Wallach et al. (1962). However, this is certainly not to say that the choice
to use group decisions is flawed; direct group interactions can be functional in certain
circumstances; see Hogarth (1977). Having discussed some behavioural methods, we
continue with the presentation of a few quantitative approaches for combining diverging
expert opinions.

2.2. Quantitative Approaches

Addressing the problem of combining opinions quantitatively often involves analytical
models and procedures operating on individual probability distributions to yield a single
combined distribution; see Winkler (1968), French (1983), Genest (1992), Cooke (1991),
Clemen (1989), and Clemen and Winkler (1999) for an overview. Focusing on the field of
quantitative combination of probability distributions, we see that the linear, logarithmic,
and Bayesian pooling methods are typical approaches—a summary of the general ideas
behind these methods follows.

The linear pool (see Stone (1961)) and logarithmic pool (see Genest et al. (1984) and
Clemen and Winkler (1999)) involve, respectively, a weighted linear or multiplicative com-
bination of the expert probabilities. Out of the two, the linear pool is often perceived as a
more attractive combination method because of its intuitiveness and the fact that it satisfies
a number of convenient properties; see Cooke (1991) and Clemen and Winkler (1999). In
the Bayesian framework, the agent firstly determines a prior distribution over the values
of the examined random variable, and then information provided by other sources, say
experts, is merely seen as observed data. These “data” are then inserted into a likelihood
function along with the prior distribution of the agent to derive a posterior distribution.
Although interesting, the implementation of this approach can be challenging in practice;
see Bolger and Houlding (2016).

Furthermore, an important note is the meaning of the word “probabilities” in the quan-
titative opinion combination literature. Whilst traditionally, “probabilities” means mass
or density functions for the discrete case and continuous case, respectively Clemen (1989),
in recent years, there has been some evidence that combining quantiles, first suggested
by Vincent (1912), might be at least as good as combining probability densities (see Lich-
tendahl et al. (2013), Busetti (2017), Bansal and Palley (2017), Hora et al. (2013), Bogner
et al. (2017), and Jose et al. (2013)), despite some criticism from Colson and Cooke (2017).
Quantiles combination was also found to be preferable when individual forecasts are
biased; see Bamber et al. (2016) and Lichtendahl et al. (2013). Next, we discuss the topic of
weights allocation, which, as we will see, is once again a subjective matter depending on
the opinions combination problem in question.
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2.3. Weights Determination

When combining competing views, the determination of weights is difficult because
there are no methods for weights allocation obtained straight from first principles; see
Clemen (2008). Nevertheless, the interpretation of weights is flexible, and as Genest and
McConway (1990) mention, based on the meaning chosen, one can direct oneself in selecting
an appropriate method for their computation. Generally speaking, the weights should
somehow reflect the quality of expert opinions; see Bolger and Houlding (2016). When
weights are interpreted in this way, the evaluation of the quality of probabilistic forecasts
entails the computation of performance measures that account for what has happened in
reality; see Winkler et al. (1996) and Gneiting and Raftery (2007).

Such measures, known as scoring rules, play an ex post and ex ante role in the
evaluation of probabilities reported; see Winkler et al. (1996): an ex post role because
the decision maker needs to first observe what happens in reality before they can truly
assess the quality of probabilities experts have reported, and an ex ante role because the
experts anticipate the ex post evaluation from the agent and thus have an incentive to
be honest when they are expressing their opinions. There are many scoring rules, even
though the most preferred are those called strictly proper, meaning that an expert can only
maximise their score for an expressed opinion by reporting their forecast honestly; see
Winkler et al. (1996) and Gneiting and Raftery (2007). Overall, the choice of scoring rule
would in turn lead to different weights; see Genest and McConway (1990).

That said, probably one of the most famous approaches for weights determination,
often referred to as the "classical" method, is the one presented in Cooke (1991). There,
before making a decision, the agent requests experts to provide their views on quantities
whose values are known to the agent but totally unknown to the experts. See Cooke and
Goossens (2008) and Eggstaff et al. (2014b) for merits of the "classical" approach, Eggstaff
et al. (2014a) for a novel way to make it account for sequential weight updating, and Flan-
doli et al. (2011) for shortcomings and some alternatives to the "classical" approach. Given
the complication involved in weights calculation, the simple averaging scheme is popular
in practice because of its perceived robustness and simplicity (see O’Hagan et al. (2006),
Lichtendahl et al. (2013)), whilst there is no clear indication that it performs worse than
Cooke’s approach; see Clemen (2008).

All in all, it should be mentioned that there is limited literature on determining the
opinion weights, but for the interested reader, the recent work of Koksalmis and Kabak
(2019) provides a comprehensive literature review across various disciplines, suggest-
ing a classification system with the following categories: similarity-based approaches,
index-based approaches, clustering-based approaches, integrated approaches, and other
approaches. Moving forward to Section 3, we recommend an alternative approach in the
area of quantitative combination of probabilistic opinions based on finite mixture models.
Such an approach has the benefit of accounting for various forms of heterogeneity among
expert views, and straightforward weights computation being able to deal with even a
large number of experts.

3. A Finite Mixture Modelling Viewpoint for Opinions Combination

In this section, we present a different approach and incorporate finite mixture models
into the diverse set of methodologies for aggregating different opinions. We start by
explaining the motivation behind our proposal, followed by a formal presentation of finite
mixture models. We then explain how the finite mixture model framework is interpreted
for the purposes of combining judgements.

3.1. Motivation Behind the Suggested Approach

Thinking about opinions in the context of distributions or models, in the traditional
framework of combining judgements, described in Section 2, each expert gives the agent
a different model, and then these individual models are combined into a single model
with weights being decided by the agent—most often by taking the weighted average of
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the individual probability density functions or quantiles. Our proposed finite mixture
modelling perspective provides a platform for opinion pooling in two stages. Firstly, we
cluster expert opinions of the same kind, and secondly, we perform a convex combination
of different clusters using mixing weights that represent the quality of each opinion as this
is perceived by the agent. Using historical data, the maximum likelihood (ML) estima-
tion of the parameters and weights can reveal whether both parties are rigorous in their
judgements.

3.2. Finite Mixture Models

We start by giving some background on finite mixture models and their use across
multiple disciplines and then provide their mathematical definition.

3.2.1. Overview

Finite mixtures is a flexible and easily extensible class of models that account for
unobserved heterogeneity; see, for instance, Newcomb (1886), Pearson (1894), Everitt and
Hand (1981), Titterington et al. (1985) and McLachlan and Basford (1988) and McLachlan
et al. (2019). In particular, starting from a sample of observations, which are assumed to
come from a number of underlying classes with unknown proportions, the density of the
observations in each of these classes is determined for the purpose of decomposing the
sample into its mixture components; see Wedel and DeSarbo (1994). It should be noted that
the popularity of mixture models has spread substantially in works of applied and method-
ological interest across various disciplines such as insurance, economics, finance, biology,
genetics, medicine, and most recently in the sphere of artificial intelligence. A few notable
works across the aforementioned disciplines include these of Titterington (1990), Samadani
(1995), Yung (1997), Allison et al. (2002), Karlis and Xekalaki (2005), McLachlan et al. (2005),
Grün and Leisch (2008), Efron (2008), Schlattmann (2009), Bouguila (2010), Mengersen et al.
(2011), Elguebaly and Bouguila (2014), Tzougas et al. (2018), Henry et al. (2014), Miljkovic
and Grün (2016), Gambacciani and Paolella (2017), Oboh and Bouguila (2017), Tzougas
et al. (2014), Miljkovic and Grün (2016), Punzo et al. (2018), Blostein and Miljkovic (2019),
Chai Fung et al. (2019), Caravagna et al. (2020), and Bermúdez et al. (2020), though this
list is certainly not exhaustive. A short summary of the main characteristics of the class of
finite mixture models with component distributions stemming from different parametric
families, which we consider in this study follows. The interested reader can also refer to
McLachlan and Peel (2000b) for a more detailed treatment of finite mixture models and
to McLachlan et al. (2019) for an up-to-date account of the theory and methodological
developments underlying their applications.

3.2.2. Definition

Consider that X , {Xi}ν
i=1 is a sample of independent and identically distributed

(i.i.d.) random variables from an n-component finite mixture distribution with density
function

f (x|Ξ) =
n

∑
z=1

πz fz(x|θz), (1)

where Ξ = (θ, π), with θ = (θ1, θ2, ..., θn), where θz denotes the parameters of the zth
density function fz(·), and where πT = (π1, π2..., πn) is the vector of component weights,
with πz the prior (or mixing) probability of the component z, where 0 < πz ≤ 1 ∀z ∈
{1, 2, ..., n} and

n
∑

z=1
πz = 1 holds. Furthermore, assume that the density functions fz

are absolutely continuous with respect to the Lebesgue measure and are elements from
univariate parametric families with a d-dimensional parameter vector θz, F = { fz(·|θz),
θz ∈ Θ ⊂ Rd}.

At this point, it is worth noting that, under the proposed modelling framework,
the component distributions fz(·) in Equation (1) do not necessarily arise from the same
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parametric family. Therefore, our general approach allows for the design of more flexible
models to include a large number of alternative convex combinations of heavy-tailed and
light-tailed distributions. Moreover, with this formulation, this class of models can take into
account heterogeneity in the data arising from three different sources, differing parameters,
differing parametric families, and mixing weights.

3.2.3. Estimation via the Expectation Maximisation Algorithm

Consider the finite mixture model with the associated log-likelihood

l(Ξ) =
ν

∑
i=1

log( f (xi|Ξ)),

where f (xi|Ξ) is given by Equation (1). The direct maximization of the above function with
respect to the vector of parameters Ξ = (θ, π), is complicated. Fortunately, such a task can
be easily achieved via the Expectation Maximization (EM) algorithm, which is the standard
iterative method that is used for finding ML estimates for models with latent variables; see
Dempster et al. (1977). In particular, the popularity of EM algorithm for fitting mixture
models to data is such that, as stated in McLachlan et al. (2019), all research works on this
topic after 1977 use this method because it unifies the ML estimation from data that can be
viewed as being incomplete. For more details regarding the EM algorithm, the interested
reader can, for instance, refer to the works of Titterington et al. (1985), McLachlan and
Basford (1988), Couvreur (1997), and Karlis and Xekalaki (1999).

Regarding the implementation of the EM algorithm for ML estimation in the context
of finite mixture models, we follow the standard approach of combining the observed data,
which are represented by the random variable X, with the set of unobserved latent random
variables w = (wi1, wi2, ..., win), where wiz = 1 if the i-th observation belongs to the z-th
component, and 0 otherwise, for i = 1, ..., ν and z = 1, ..., n.

Then, the complete data log-likelihood of the model is given by

lc(Ξ) =
ν

∑
i=1

n

∑
z=1

wiz[log(πz) + log( fz(xi|θz)]. (2)

In what follows, at the E-Step of the algorithm, it is necessary to compute the Q-
function, which is the conditional expectation of the complete data log-likelihood given
by Equation (2), while the M-Step consists of maximizing the Q-function with respect to
Ξ = (θ, π). A generic algorithm is formally described in what follows.

E− Step : Using the current estimates π
(r−1)
z and θ

(r−1)
z at iteration r− 1, calculate

the “membership weights”:

π
(r)
iz = E(wiz|xi, Ξ(r−1)) =

π
(r−1)
z fz(xi|θ(r−1)

z )

∑n
z=1 π

(r−1)
z fz(xi|θ(r−1)

z )
, (3)

for i = 1, ..., ν and z = 1, ..., n. Note that π
(r)
iz is the posterior probability that xi comes from

the mixture component z, calculated at the rth iteration of the EM algorithm. Thus, the
Q-function is given by

Q(Ξ|Ξ(r−1)) =
ν

∑
i=1

n

∑
z=1

π
(r)
iz [log(πz) + log( fz(xi|θz)).

M− Step : Obtain new estimates for π and θ by maximizing the Q-function:
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• The updated estimates π̂
(r)
z are given by:

π̂
(r)
z =

∑ν
i=1 π

(r)
iz

ν
, z = 1, ..., n.

• The updated estimates θ̂
(r)
z are obtained using a weighted likelihood approach for

each of the different component distributions with weights π
(r)
iz given by Equation (3).

It is clear that ML estimation can be accomplished relatively easily when the M-Step
is in closed form. On the contrary, when this is not the case, numerical optimization
methods are required for maximizing the the weighted likelihood.

Finally, initialization of parameters can be done using the following data partition
methods: (i) means clustering method (see Forgy (1965) and MacQueen (1967)), (ii) Eu-
clidean distance-based initialization (see Maitra (2009)), and (iii) random initialization (see
McLachlan and Peel (2000a)).

3.3. Opinions Combination Problem in a Finite Mixture Model Setting

When considering the application of finite mixtures in the area of opinions combi-
nation, the framework described in Section 3.2 can be adjusted as follows. A decision
maker, otherwise called an agent, needs to make a decision about an X random quantity of
interest. Since this decision is made under circumstances of uncertainty, the agent seeks for
the opinion of an arbitrary number of consultants z = 1, 2, ...n and the combined opinion
is seen as a finite mixture model of the type described in 2.3.1 allowing for divergence
in expert opinions, both in the class of fz and in components parameters θz. The mixing
weights πz show the level of trust that the agent has to each expert. As in traditional
approaches to expert opinions combination, the weights is up to the agent to determine. If
the agent has access to older data about X, the decision process can be made in two stages
to ensure that weights allocation is right.

In the first stage, the agent fits alternative finite mixture models to the available internal
data and identifies the mixing probabilities πz, the class of fz(·), and the parameters θz
that lead to a robust estimation of the company’s risk profile. Then, the experts are asked to
provide their views on fz(·) class and θz given the old data without knowing that the agent
knows the real answer. The agent checks the reply of the zth expert by comparing it to the
correct answer, which, as mentioned previously, it is known to the agent but unknown
to the zth expert. In the second stage, the agent needs to make a decision on a totally
unknown situation and thus provides the data of real interest to Z experts. Assuming
that past experts’ performance in getting a good answer indicates their future ability in
providing reliable advice, the agent has an indication of how much trust should be given
to the zth consultant. Assessing the quality of a probabilistic forecast on an ex post and ex
ante basis using real data is not much different from the rationale of using scoring rules
as mentioned in Section 2.1. In what follows, we present an application of finite mixture
models to combine expert views in a financial setting and in particular when multiple
experts are given the task to compute the financial risk measure Value at Risk (V@R).

4. Application to a Quantile-Based Financial Risk Measures Setting

In this section, we apply a finite mixture methodology to address the issue of com-
bining diverging expert opinions in an insurance context. We assume that the experts are
actuaries and that the opinions expressed by each of them refer to the reserve, or otherwise
risk measure, that the institution needs to report to the financial regulator. In particular,
without loss of generality, we focus on the popular risk measure called Value at Risk (V@R)
having the quantile as core ingredient; however our general approach can be applied to any
quantile-based risk measure. Any discussion from now on is focused on quantiles because,
as we will later on see, the latter is the core ingredient of V@R. We start by giving a brief
presentation of risk measures and V@R using a general notation, and then the application
using simulated finite mixture data follows.
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4.1. Motivation Behind the Application

Financial institutions are subject to a number of economic capital requirements fol-
lowing Basel II and Basel III directives in the banking sector and Solvency II and the Swiss
Solvency Test in the insurance industry. Since the regulators do not instruct the use of a
specific model for the calculation of the reserve, otherwise called risk measure, the choice
of any probabilistic model that is used internally by a financial institution for calculating
risk measures is crucial.

The above-mentioned challenge known as model risk (see Barrieu and Scandolo (2015)
and Barrieu and Ravanelli (2015), among others) is of paramount importance for the health
of the financial system along with the choice of the risk measure itself by the regulator; see
Danielsson et al. (2001) and Embrechts et al. (2014). The multiple model alternatives for
computing a given risk measure can be seen through the prism of an opinions’ combination
problem. A financial institution, being an agent, instructs actuaries to present alternative
internal models for the computation of a risk measure such as V@R. In presence of model
risk, the agent prefers to use a combination method to take into account the different
opinions, i.e., models, prior to reaching a capital reserve decision.

In the context of combining expert opinions for computing quantile-based risk mea-
sures, such as V@R, there is a clear advantage that the suggested finite mixture modelling
approach enjoys over the classical approach of calculating quantiles such as the weighted
average of individual quantiles coming from the expert judgements; see, Lichtendahl et al.
(2013). This is that it provides a way to assess if the information from the experts that
determines the decision-making process of the agent and the data-generative process are
highly “synchronous” under a single chosen model in order to ensure that the resulting risk
measure value can, as accurately as possible, determine the minimum cushion of economic
liquidity.

Finally, under our general approach, which allows for flexibility in the choice of the
component distributions which reflect different expert opinions, the resulting risk measures
can be calculated using a convex combination of an abundance of alternative heavy-tailed
and light-tailed distributions. Thus, since risk measures are equal or proportional to
solvency capital requirements, the adopted modelling framework allows us to strike the
right balance between calculating risk measures that are not too conservative and hence
are preferred by financial institutions and insurance companies who wish to minimise the
level of their reserves, since there are many restrictions on how this money can be invested,
and computing stricter risk measures that would rather be imposed by regulators who
wish to protect consumers. Moving forward, we start by defining financial risk measures
in general before narrowing down to Value at Risk, which we use in our application.

4.2. Risk Measures

Financial institutions want to know the minimum amount of capital to add to a
position they take in the market to make it acceptable from a regulatory viewpoint. From
now on, our random quantity of interest X is a financial position. More precisely, a financial
position is a mapping

X : Ω −→ R∪ {+∞}
where Ω is an non-empty set representing a fixed set of possible scenarios. Let ω be a
scenario that is part of Ω. Then X(ω) reflects the terminal value of the position (profit or
loss) at the end of the trading period if the scenario ω ∈ Ω is observed. Assuming that
X is a set of financial positions, we let the financial position X belong to it. Whilst from
an economic perspective X would have to be of a very large size, preferably the space
of all X : Ω −→ R ∪ {+∞}, it is quantitatively convenient to introduce the restriction of
boundedness. Furthermore, X is a linear space containing the constants. At this point, we
do not fix a probability measure in Ω.
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To calculate the capital requirement, an actuary finds some number ρ(X) that quanti-
fies the risk of taking the financial position X. In particular, a monetary risk measure ρ is a
mapping

ρ : X −→ R

which satisfies the following conditions

Monotonicity: if X ≤ Y , then ρ(X) ≥ ρ(Y)

Cash invariance: ρ(X + m) = ρ(X)−m ∀ m ∈ R for all X, Y ∈ X

Normalisation: ρ(0) = 0

The condition of monotonicity simply reflects the fact that a position yielding a higher
payoff in all scenarios, i.e., in the whole Ω, carries less risk. The cash invariance property
demonstrates that risk is measured in monetary units, meaning when an amount m is
added to a risky position, its risk will decrease by the same amount m. Normalisation
implies that if one has nothing, there is no need to put aside any reserve.

There is a variety of risk measures (see, for instance Barrieu and El Karoui (2005),
Föllmer and Schied (2010), Acciaio and Penner (2011), Föllmer and Schied (2016)), and in
many cases, quantiles are a key ingredient. That said, for an α ∈ (0, 1), the α-quantile of a
random variable on a probability space (Ω, F ,P), where P is a probability measure on a
measurable space (Ω, F ), is any real number Q that satisfies the property

P[X ≤ Q] ≥ α and P[X < Q] ≤ α.

The set of all α-quantiles of X is an interval [Q−X (α), Q+
X (α)] where the lower quantile

function of X is

Q−X (t) = sup{x|P[X < x] < t} = inf{x|P[X ≤ x] ≥ t}

and the upper quantile function of X is

Q+
X (t) = inf{x|P[X ≤ x] > t} = sup{x|P[X < x] ≤ t}

A very famous risk measure upon which the financial and insurance industry heavily
relies is Value at Risk (V@R). If we fix some level α ∈ (0, 1), the V@R of a financial position
X at level α is defined as

V@Rα(X) := −Q+
X (α) = inf{m|P[X + m < 0] ≤ α}

where Q+
X (α) is the upper quantile function of X. The financial interpretation of V@Rα(X)

is the smallest amount of capital, which, if added to the position X and invested in a
risk-free manner, ensures that the probability of a negative outcome is below the level α. In
the following subsection, we discuss how quantile-based risk measures, such as V@R, can
be numerically computed in the case of finite mixtures utilising the EM algorithm.

4.3. Computation of V@R Using Finite Mixtures Models

In the context of computing quantile-based risk measures using finite mixtures models,
one should take into account that there is no closed-form solution and numerical estimation
is required. For expository purposes, we present the numerical calculation of the V@R
using a finite mixture modelling methodology in the context of combining diverging expert
opinions. However, note that the computation of other quantile risk measures, with many
more interesting properties than the V@R, such as the Tail Value at Risk (TV@R) is straight
forward using finite mixture models. For more details, one can refer to Miljkovic and Grün
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(2016). Since under the modelling framework we propose the component distributions can
stem from different parametric families further interesting results can be obtained.

Let X, presented in Section 3.2, be the random vector of ν financial positions of a
financial institution introduced in Section 4.2. As we have seen in Section 4.2, V@Ra(X)
is the α-quantile of the distribution of financial position X, and it satisfies the following
property

P(X > V@Ra(X)) = 1− α

Since in the context of finite mixture models, the V@Ra(X) does not have a closed-form
solution, we compute it numerically by solving Equation (4)

FX(V@Ra(X)) = α (4)

where FX := R −→ [0, 1] is the cumulative distribution function of the random financial
position X.

In particular, the numerical computation of V@Ra(X) can be achieved easily using the
R programming language in a two-step process. Firstly, we create an R function according
to Equation (1) with the only difference that now fz is replaced by FXz as follows

FX(x|Ξ) =
n

∑
z=1

πzFXz(x|θz)

where Ξ = (θ, π), where θ = (θ1, θ2, ..., θn), and πT = (π1, π2..., πn) represents the vector
of unknown parameters, πz is the prior (or mixing) probability of the component z where

0 < πz ≤ 1 ∀z ∈ {1, 2, ..., n} and
n
∑

z=1
πz = 1 holds. Secondly, we create the inverse function

of FXz denoted as F−1
Xz

, which is the V@Ra(X). The function F−1
Xz

is derived in R by returning
the uniroot() argument in the package stats in R of (FXz − α) for a pre-determined quantile
bracket. It should be mentioned that in order to evaluate FXz at the point x, one needs to
utilise the EM algorithm to estimate the parameters and mixing probabilities of FX . In
the end, in order to calculate the quantile using the function F−1

Xz
, one just needs to insert

as arguments the the percentile α upon which V@Ra(X) will be calculated as well as the
vectors of estimated parameters and mixing probabilities. In Section 4.4, we present our
numerical application.

4.4. Numerical Application

In this subsection, a numerical example is presented to illustrate the proposed ap-
proach for combining expert opinions. In particular, without loss of generality, we assume
that the experts can be classified into two groups within each of which there is a consensus
of opinions. In this context, the components represent different expert opinions about
the distribution family and its parameters, whilst the weights reflect the quality of each
opinion as this may be assessed by the agent.

In what follows, we generate multiple samples from two-component mixtures of some
classical distributions where the components of the mixture do not necessarily belong to
the same parametric family. In particular, we consider the two-component (2C) Normal,
2C Gamma, 2C Lognormal, 2C Pareto mixtures, and also the 2C Lognormal-Gamma,
and 2C Pareto-Gamma mixtures. Note that when using real data, one can distinguish
between the competing models by employing the Deviance (DEV), Akaike information
criterion (AIC), and the Schwartz Bayesian criterion (SBC). Furthermore, the prediction
performances of the models can be assessed via out-of-sample validation. The prediction
performances can be measured using the root-mean squared error (RMSE) and the deviance
statistic. To provide a potential practical application of the proposed perspective, note
that the convex combination of moderate and heavy-tailed distributions, similar to the
aforementioned ones, can be used for efficiently approximating positive insurance loss
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data with right skewness, which can often be represented as an amalgamation of losses of
different magnitudes. For example, Tzougas et al. (2014) and Miljkovic and Grün (2016)
proposed the use of mixtures of finite mixture claim severity models in an actuarial setting,
whilst Tzougas et al. (2018) and Blostein and Miljkovic (2019) considered finite mixture
models where all components of the mixture are not necessarily assumed to be from the
same parametric family.

The probability density functions (pdfs) of the component distributions, denoted by
fz in Equation (1), are given by Equations (5)–(8) below.

• Normal distribution: the pdf of the Normal distribution is given by:

fz(x|µ, σ) =
1√
2πσ

e−−−
(x−µ)2

2σ2 (5)

for −∞ < x < ∞ where −∞ < µ < ∞ and σ > 0. The mean of X is given by
E(X) = µ and the variance of X by Var(X) = σ2. This parametric family is chosen
for relatively symmetric insurance loss data, which take either positive or negative
values.

• Lognormal distribution: the pdf of the Lognormal distribution is as follows:

fz(x|µ, σ) =
1√

2πσ2

1
x

e−
[log(x)−µ]2

2σ2 (6)

for x > 0 where µ > 0 and σ > 0. Here, E(X) = c
1
2 eµ and Var(X) = c(c − 1)e2µ

where c = eσ2
.

• Gamma distribution: the density of the Gamma is given by:

fz(x|µ, σ) =
1

(σ2µ)
1

σ2

x
1

σ2−1e
−x

(σ2µ)

Γ( 1
σ2 )

(7)

for x > 0, where µ > 0 and σ > 0. This is a re-parameterisation, which was given in
Equation (17.23) of Johnson et al. (1994) in p.343, and it can be obtained by setting
σ = 1

α and µ = αβ. Moreover, E(X) = µ and Var(X) = σ2µ2. The Gamma has a less
heavier tail than the Lognormal one.

• Pareto distribution: the pdf of the Pareto distribution is as follows:

fz(x|µ, σ) =
1
σ

µ
1
σ (x + µ)−

1
σ+1 (8)

for x ≥ 0, where µ > 0 and σ > 0. Furthermore, E(X) = µ( 1
σ − 1), and Var(X) =

(µ( 1
σ − 1))2( 1

1−2σ ) exists only if σ < 1/2. This is an alternative distributional class
choice that may be preferred to model more heavily right-skewed insurance loss data
than the previous two distribution choices.

As described in Section 3.3, the fitting of such mixture distributions can be achieved
via the EM algorithm, which is implemented for estimating both the parameters of each
mixture component distribution and mixing weights. Subsequently, using these estimated
values, we proceed with calculating the quantiles of the mixture models across all estimated
weights combinations and for various probability levels (1− α). At this point, it should
be noted that we choose to compute quantiles directly from the finite mixture models, but
for comparison purposes, we also combine quantiles for each expert view as it has often
been encountered in the literature; see, for instance, Lichtendahl et al. (2013). Note also
that the calculation of risk measures using finite mixture models has also been addressed
by Miljkovic and Grün (2016) and Blostein and Miljkovic (2019). However, we would like
to emphasise that this is the first time that the 2C Pareto and 2C Pareto-Gamma models
are used for computing quantile based risk measures. Therefore, this constitutes one more
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novelty of our work in addition to proposing the finite mixture modelling approach as an
efficient tool for combining expert opinions.

The results of our numerical application for each of the 2C component mixture models
we consider in this study, namely the Normal, Gamma, Lognormal, Pareto, Lognormal-
Gamma, and Pareto-Gamma, are presented in the following manner. In Table 1, for each
of the previously described 2C mixture models, we show the parameters estimates across
all estimated weights combinations derived using the EM algorithm. Then, in Table 2, we
present the 2C mixture model-based quantiles which are computed by utilising the EM
algorithm parameter and weight estimates, which are presented in Table 1, as well as the
quantiles derived by using the weighted average approach across all weights combinations
that are used to generate the data. Both quantile types are calculated at two widely used,
in a financial context, probability levels (1− α), i.e., 0.950 and 0.990. Finally, in Figures 1–6,
we plot the mixture-model-based quantiles and the weighted average-based quantiles
computed at a more extended range of (1− α) probability levels ranging from 0.950 to 0.995.
It is important to mention that the values for the two quantile types of interest appear to be
substantially different, and therefore we deemed it necessary to have two distinct y axes in
each plot of Figures 1–6 to allow for an easier comparison.

As we observe, the quantile values in the case of the 2C Normal, 2C Gamma, 2C Log-
normal, and 2C Pareto mixtures, and also the 2C Lognormal-Gamma and 2C Pareto-Gamma
mixtures, are higher than the weighted-average-based ones. Regarding the decision-making
problem we address, as was previously mentioned, the approach we consider is more
flexible because it provides a two-fold benefit to the decision maker, since, in addition to
enabling them to evaluate the efficacy of the expert views aggregation process, it allows
them to test how the weights that they were intending to allocate to each expert opinion
based on their personal judgement compared to the ones estimated by the model.
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Table 1. EM algorithm estimates for various two-component (2C) finite mixture models. Estimates
refer to the parameters mean (µ̂1, µ̂2) and standard deviation (σ̂1, σ̂2) and the mixing weights of each
mixture component (π̂1, 1− π̂1) across all plausible mixing weight combinations (π1) in the true data
generative process. All estimates provided are statistically significant at a 5% threshold or below.

Parametric Family π̂1 π̂2 µ̂1 µ̂2 σ̂1 σ̂2

0.098 0.902 5271.210 1333.022 0.228 0.442
0.203 0.797 5273.012 1342.762 0.231 0.448
0.300 0.700 5272.341 1341.234 0.225 0.448
0.400 0.600 5271.032 1340.012 0.221 0.446

2C Normal 0.500 0.500 5272.002 1342.569 0.230 0.447
0.600 0.400 5272.321 1343.812 0.238 0.449
0.700 0.300 5270.921 1341.989 0.236 0.444
0.800 0.200 5271.981 1345.091 0.239 0.449
0.901 0.099 5273.182 1343.991 0.240 0.447

0.090 0.910 9.538 8.042 0.723 0.884
0.200 0.800 9.521 8.025 0.717 0.879
0.299 0.701 9.539 8.042 0.772 0.883
0.398 0.602 9.537 8.041 0.771 0.881

2C Lognormal 0.498 0.502 9.538 8.064 0.778 0.899
0.600 0.400 9.548 8.053 0.766 0.896
0.700 0.300 9.528 8.035 0.741 0.873
0.802 0.198 9.508 0.722 8.016 0.858
0.901 0.099 9.511 0.733 8.023 0.867

0.086 0.914 6786.348 3162.126 0.625 0.352
0.207 0.793 6737.558 3127.165 0.629 0.340
0.307 0.693 6738.557 3124.408 0.635 0.342
0.400 0.600 6739.659 3127.512 0.629 0.344

2C Gamma 0.499 0.501 6784.309 3171.627 0.630 0.357
0.601 0.399 6754.742 3123.512 0.638 0.341
0.700 0.300 6783.127 3170.006 0.636 0.346
0.799 0.201 6783.021 3172.871 0.621 0.341
0.902 0.098 6786.735 3172.513 0.599 0.343

0.088 0.912 1364.138 3148.568 3.354 2.439
0.204 0.796 1329.177 3099.778 3.342 2.442
0.295 0.705 1326.426 3100.769 3.344 2.448
0.405 0.595 1329.524 3101.871 3.346 2.443

2C Pareto 0.494 0.506 1373.639 3146.521 3.359 2.444
0.605 0.395 1325.524 3116.954 3.343 2.452
0.694 0.306 1372.018 3145.339 3.348 2.450
0.805 0.195 1374.883 3145.233 3.343 2.434
0.896 0.104 1374.525 3148.947 3.345 2.422

0.088 0.912 1902.904 2393.673 2.085 0.604
0.204 0.796 1867.943 2344.883 2.073 0.608
0.295 0.705 1865.186 2345.882 2.075 0.614
0.404 0.596 1868.129 2346.984 2.077 0.608

2C Lognormal-Gamma 0.494 0.506 1912.405 2391.634 2.079 0.609
0.605 0.395 1864.289 2362.067 2.074 0.617
0.694 0.306 1910.784 2390.452 2.079 0.615
0.805 0.195 1913.649 2394.123 2.074 0.602
0.896 0.104 1912.018 2396.106 2.076 0.599

0.088 0.912 9.538 3175.526 0.725 0.737
0.197 0.803 9.522 3140.588 0.722 0.741
0.297 0.703 9.543 3139.065 0.781 0.747
0.396 0.604 9.547 3142.169 0.777 0.742

2C Pareto-Gamma 0.496 0.504 9.547 3186.286 0.784 0.743
0.598 0.402 9.558 3138.171 0.772 0.751
0.698 0.302 9.537 3184.665 0.765 0.749
0.800 0.200 9.517 3187.353 0.728 0.734
0.899 0.101 9.520 3189.272 0.739 0.729
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Table 2. Comparison between the finite mixture model-based (1− α) quantile Qmix. and the weighted average-based (1− α)
quantile Qw.a. derived for the various parametric families considered in this study. Note that (1− α) denotes the probability
level at which the quantile is computed. The quantile Qmix. is calculated by using the derived EM parameters and weights
estimates shown in Table 1. For the computation of quantile Qw.a., no model estimation is involved, and it is calculated as
the weighted average of two individual quantiles, each coming from a distribution family with parameters and weights as
those used to generate the data.

Finite Mixture Model-Based Quantile Qmix.

1 − α 2C Normal 2C Lognormal 2C Gamma 2C Pareto 2C Lognormal-Gamma 2C Pareto-Gamma

0.950 5271.204 18,674.230 6254.920 7221.820 13,053.610 5189.413
0.990 5271.499 37,254.660 11,911.220 16,895.230 33,302.150 7286.269

0.950 5273.171 24,144.120 9057.693 6569.990 22,039.780 5157.749
0.990 5273.394 45,694.640 14,982.950 15,542.580 44,546.370 7797.691

0.950 5272.559 30,361.480 10,637.600 6108.752 29,534.510 5231.247
0.990 5272.754 57,847.270 16,443.240 14,589.80 58,206.920 8493.526

0.950 5271.286 34,225.830 11,600.840 5564.221 34,066.590 5273.603
0.990 5271.465 63,167.590 17,229.970 13,503.800 63,994.280 9481.466

0.950 5272.297 38,063.000 12,505.360 5147.291 38,106.660 5449.650
0.990 5272.474 68,905.430 18,108.690 12,655.920 69,880.110 10,662.670

0.950 5272.650 40,758.710 13,203.380 4409.509 41,120.820 5487.197
0.990 5272.827 71,836.230 18,826.360 11,044.520 73,116.860 11,643.710

0.950 5271.267 40,870.610 13,793.70 3904.314 42,478.650 5662.312
0.990 5271.438 69,767.140 19,373.060 9889.721 73,938.670 12,784.550

0.950 5272.348 40,907.890 14,083.190 3191.665 41,516.230 5810.997
0.990 5272.517 68,097.500 19,440.430 8118.793 69,476.320 13,964.470

0.950 5273.564 43,519.640 14,211.730 2596.741 44,222.170 5958.190
0.990 5273.731 72,328.780 19,271.110 6335.289 73,824.540 14,757.320

Weighted average-based quantile Qw.a.

1 − α 2C Normal 2C Lognormal 2C Gamma 2C Pareto 2C Lognormal-Gamma 2C Pareto-Gamma

0.950 1713.689 15,847.350 6130.278 6974.334 9075.481 5234.196
0.990 1713.975 28,081.790 7666.813 16,133.486 12,933.270 7791.443

0.950 2106.655 19,018.620 7108.780 6415.912 12,999.186 5328.475
0.990 2106.926 33,072.860 9074.596 14,783.290 19,607.500 8635.935

0.950 2499.620 22,189.900 8087.282 5857.489 16,922.892 5422.755
0.990 2499.877 38,063.930 10,482.379 13,433.094 32,955.980 9480.427

0.950 2892.586 25,361.170 9065.785 5299.066 20,846.597 5517.035
0.990 2892.828 43,054.990 11,890.162 12,082.899 26,281.740 10,324.919

0.950 3285.551 28,532.450 10,044.287 4740.644 24,770.303 5611.315
0.990 3285.779 48,046.060 13,297.946 10,732.703 39,630.220 11,169.410

0.950 3678.516 31,703.730 11,022.790 4182.221 28,694.008 5705.594
0.990 3678.730 53,037.130 14,705.729 9382.508 46,304.450 12,013.902

0.950 4071.482 34,875.000 12,001.292 3623.798 32,617.714 5799.874
0.990 4071.682 58,028.200 16,113.512 8032.312 52,978.690 12,858.394

0.950 4464.447 38,046.280 12,979.794 3065.376 36,541.419 5894.154
0.990 4464.633 63,019.270 17,521.295 6682.116 59,652.930 13,702.886

0.950 4857.413 41,217.550 13,958.297 2506.953 40,465.125 5988.433
0.990 4857.584 68,010.340 18,929.078 5331.921 66,327.170 14,547.377
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Figure 1. Two-component (2C) Normal finite mixture model-based (1− α) quantile Qmix. (blue colour) across all (π̂1, π̂2)
combinations versus two-component (2C) Normal weighted average-based (1− α) quantile Qw.a. (red colour) across all
(π1, π2) combinations, where (1− α) takes values in the range of 0.950-0.995. Note that, due to a considerable discrepancy
between Qmix. and Qw.a. values, each given plot has two different y axes—one for each quantile type.
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Figure 2. Two-Component (2C) Lognormal finite mixture model-based (1− α) quantile Qmix. (blue colour) across all (π̂1, π̂2)
combinations versus two-component (2C) Lognormal weighted average-based (1− α) quantile Qw.a. (red colour) across all
(π1, π2) combinations, where (1− α) takes values in the range of 0.950-0.995. Note that, due to a considerable discrepancy
between Qmix. and Qw.a. values, each given plot has two different y axes—one for each quantile type.
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Figure 3. Two-Component (2C) Gamma finite mixture model-based (1− α) quantile Qmix. (blue colour) across all (π̂1, π̂2)
combinations versus two-component (2C) Gamma weighted average-based (1− α) quantile Qw.a. (red colour) across all
(π1, π2) combinations, where (1− α) takes values in the range of 0.950-0.995. Note that, due to a considerable discrepancy
between Qmix. and Qw.a. values, each given plot has two different y axes—one for each quantile type.
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Figure 4. Two-Component (2C) Pareto finite mixture model-based (1− α) quantile Qmix. (blue colour) across all (π̂1, π̂2)
combinations versus two-component (2C) Pareto weighted average-based (1− α) quantile Qw.a. (red colour) across all
(π1, π2) combinations, where (1− α) takes values in the range of 0.950-0.995. Note that, due to a considerable discrepancy
between Qmix. and Qw.a. values, each given plot has two different y axes—one for each quantile type.
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Figure 5. Two-Component (2C) Lognormal-Gamma finite mixture model-based (1− α) quantile Qmix. (blue colour) across
all (π̂1, π̂2) combinations versus two-component (2C) Lognormal-Gamma weighted average-based (1− α) quantile Qw.a.

(red colour) across all (π1, π2) combinations, where (1− α) takes values in the range of 0.950-0.995. Note that, due to a
considerable discrepancy between Qmix. and Qw.a. values, each given plot has two different y axes-one for each quantile
type.
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Figure 6. Two-Component (2C) Pareto-Gamma finite mixture model-based (1− α) quantile Qmix. (blue colour) across all
(π̂1, π̂2) combinations versus two-component (2C) Pareto-Gamma weighted average-based (1− α) quantile Qw.a. (red colour)
across all (π1, π2) combinations, where (1− α) takes values in the range of 0.950-0.995. Note that, due to a considerable
discrepancy between Qmix. and Qw.a. values, each given plot has two different y axes—one for each quantile type.

5. Concluding Remarks

When making a decision in an uncertain environment, an agent may consult multiple
experts. In such a scenario, the aggregation of individual opinions before reaching a
decision is required. In this study, we contribute to the plethora of interdisciplinary
literature on this topic by proposing a finite mixture modelling approach that can enable
the agent to combine the component distributions in order to obtain a single distribution of
the quantity of interest that is a quantile-based risk measure. The component distributions
we consider in this study can be used in practice to model various quantities of interest
in financial and insurance applications such as financial returns and insurance losses
with light and heavy tails. The suggested method allows for considerable flexibility in
expert opinions regarding the distribution class of the random quantity of interest and
its parameters, and it also provides an efficient way for weights computation—a task
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recognised as being particularly strenuous in this segment of literature. By employing
the perspective that opinions take the form of quantiles, we compare our approach to
the traditional weighted average one, and we find that they lead to different results.
Furthermore, the proposed models can be used for carrying out different tasks in insurance
such as calculating premiums and reserves and measuring tail risk.

A compelling direction of further research would be to use combinations of finite
mixtures and composite models that can mitigate instabilities of tail index estimations
inherited by finite mixture models; see, for instance, Fung et al. (2021). Furthermore, a
natural extension of our study is to employ Bayesian inference for mixtures, which will
allow us to combine internal data, external data, and expert opinions proceeding along
similar lines as in Lambrigger et al. (2009). Additionally, in this paper, we have focused
only on the opinion aggregation process without considering how experts have elicited
their views; therefore, it would be interesting to examine ways in which this aspect is also
taken into account. Finally, another potential topic of interest, with regards to weights
allocation this time, is for the weights to reflect the risk aversion level of the agent as well as
the quality of a given expert’s judgement, and the level of disagreement between experts.
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5.2 Supplementary material

In our study, for expository purposes of our suggested method, we generate the data

ourselves thus there is not ambiguity regarding which model is more appropriate for the

data in hand. Nevertheless, if the introduced method were to be applied to real data, there

may be multiple competing models out of which we need to choose the most ”appropriate”

one. Usually, the fitness of these models alternatives is judged based on several criteria

such as the global deviance (DEV), Generalized Akaike Information Criterion (GAIC),

and Bayesian Information Criterion (BIC) which are defined below as follows.

Definition (Global deviance).

D̂ = −2 log(L̂)

where D̂ is the fitted DEV and L denotes the probability of observing the data sample.

Definition (Generalized Akaike Information Criterion).

AIC = D̂ + 2df

where df are the degrees of freedom which can be defined as the number of fitted parameters

in the model.

Definition (Bayesian Information Criterion).

BIC = D̂ + log(n)df

where n is the number of independent observations.

It is evident that both AIC and BIC criteria add a loading on D̂ which is generally

equal to the degrees of freedom multiplied by a quantity whilst their difference lies on this

quantity. The basis for both AIC and BIC is highly theoretical and each of them have a

different goal. For instance, as Kuha (2004) mentions, BIC implies a ”penalty” on large

models and it may be more appropriate criterion if the aim is to find which model out

of those examined is more probable to be true whilst with AIC there is no assumption

that there must be an identifiable model. For a good overview of some aspects of model

selection criteria we direct the interesting reader to the works of Sclove (1987) and Stone

(1979).

A further extension of our work is for the components of the mixture distribution to

be coming from different parametric families than those exhibited already. For instance,

we could consider that for one of the components of the mixture distribution, individual

claim sizes Xi,k come from the Weibull distribution which can be parameterised as follows

according to Johnson et al. (1994)
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m is a scale parameter which also has an effect on the mean ofXi,k. It is worth mentioning

that for s = 1, the Weibull distribution reduces to the exponential distribution whilst

for s = 2 to the Rayleigh distribution. Finally, the reason why we suggest the Weibull

distribution is because it is a beneficial option for modelling truncated data, i.e. a data

type which is seen extensively across the non-life insurance sector especially in the case

of excess of loss reinsurance treaty contracts.

On a separate note, we remark on the fact that in our application we considered finite

mixture models with two components for expository purposes. We acknowledge that in

real life applications, we expect that the number of components, as well as the experts,

is more realistic to be greater than two. Whilst this is computationally feasible, it means

that the complexity of the problem naturally increases. The degree at which complexity

rises cannot be quantified easily as it depends on many parameters such as the type and

volume of data in hand, and the power of the computers owned by the company which

would like to solve the opinions combination problem. That said, there is a way to reduce

the computational times by using parallel computing, see Ferrall (2005) for an application

of the later to finite mixture models.

In Chapter 6, we examine at a general level the topic of multivariate data with de-

pendence in non-life insurance.
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Chapter 6

On modelling multivariate data with

dependence in non-life insurance

Nowadays, insurance companies often underwrite several lines of insurance contracts,

whose claim counts and size may exhibit some dependence structures. As a result, the

actuarial modelling exercise may involve multivariate data. In Chapter 6, we present

some situations indicated by recent actuarial literature in which multivariate data mod-

elling with dependence is of particular importance for rate-making and claim prediction

purposes.

As a starting point, it is worth mentioning that actuarial pricing or claims modelling

in insurance is usually made under the assumption that losses arising out of different

coverage types are independent. Nevertheless, there are several circumstances when it

would be beneficial to relax such an assumption when modelling jointly different types

of claims and their associated counts.

In what follows, we briefly present some relevant studies which are classified per reason

why such joint modelling methodologies are important in the current non-life insurance

landscape. That said, some of these previous works are general enough to be used for

multiple applications, thus we note that the classification that we deploy here relies mostly

on the examples that the authors of these works have used with respect to the application

potential of their approaches.
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6.1 Multiple types of coverage under a single policy

for one insured

We recognise that sometimes multiple types of coverage may exist under the same

insurance policy for a given policyholder. If a qualifying insurance event happens, the

insurer may have to deal with more than one claim types under a single policy for the

same insured. A prime example of an insurance business class where this problem can

arise is motor. There, a car crash may result in an insurer having to pay both for claims

towards fixing the damaged vehicle and potential bodily injury claims arising out of the

accident. Another instance is property insurance as the total sum insured is usually

divided among three different elements, i.e. building, contents, and business interruption

values. This means that if, as an illustration, a fire is a qualifying event for the insurance

to be activated, and we assume that the property is used for commercial purposes, the

insured may claim for any of the aforementioned coverage types.

One of the works addressing the aforementioned issue is of Bermúdez & Karlis (2011)

which challenges the assumption that different claims types are independent and in doing

so several multivariate Poisson regression models are introduced, namely the common

covariance model and the full covariance model alike which are then extended by their zero

inflated variants. The aforementioned models are fitted by using a Bayesian approach.

The reasons behind such choice is to ease the estimation process and allow to derive

posterior quantities of interest which are not merely point estimates but they are also

accompanied with their posterior distribution. A real data application showcases that

the proposed approaches are insightful for rate-making purposes in non-life insurance.

Along similar lines regarding the recognition of dependence structures existing be-

tween different types of claims, Bermúdez & Karlis (2012) employ bivariate Poisson (BP)

regression models for premium derivation in motor insurance taking into account corre-

lation between two different types of claims, i.e. third party liability versus all other car

insurance claims types which are often observed. It is shown that even a small correlation

between these claims types can lead to considerably higher premiums as opposed to those

that would have been derived if the dependence structure would not have been captured.

Furthermore, an interesting and slightly different approach comes from Abdallah et al.

(2016) having as motivation the fact that claims that have happened lately as opposed

to more past ones may be more predictive of future claims. It is recognised that the

multivariate negative binomial distribution, whilst being a famous modelling option for

panel data, does not allow for imposing weights on past claims based on time. Whilst

there are models that can capture this time element, these usually require very intricate
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numerical procedures for estimating the parameters and the whole modelling procedure

becomes even more complicated when one also considers the dependence that exist be-

tween multiple types of claims. That said, a bivariate dynamic distribution for claim

counts is developed using as basis random effects originating from the Sarmanov family

of multivariate distributions and an approximation of the posterior distribution of such

random effects is recommended as a way of retrieving a dynamic distribution based on

such types of bivariate priors. The proposed model is then applied on real insurance

claims data exhibiting the flexibility of the method in deriving predictive premiums.

Furthermore, Bermúdez & Karlis (2017) extend various bivariate Poisson regression

models which have been considering correlation between different claims types to deduce

premiums on an a priori basis, to now account for posteriori, i.e. experience based, rating

which also accounts for dependence between different types of claims. Then, two bivariate

posteriori rating models are introduced to obtain posterior premiums and a posteriori risk

factors. By applying the models on a real motor insurance claims data set, it is found

that the deduced posteriori risk factors are considerably lower than those factors deduced

under the independence assumption.

Moreover, Bermúdez et al. (2018) introduces a novel approach recognising that in

the process of rate making, an insurer may want to take into account simultaneously

both time and cross dependence between different types of policies or claim types rather

than treating these elements as two distinct cases. This is important as the correlation

may exist not only between different coverage types for a given policyholder but also in

between observations of the same policyholder experienced over time impacting the rates

charged by the insurer. The author captures this effect by developing a bivariate INAR(1)

regression model which is followed by a numerical application in motor insurance field

and finds that the suggested approach leads to better performance compared to simpler

models which do not take into account simultaneously the elements of time and cross

correlation.

Finally, Bolancé & Vernic (2019) analyses three models which rely on the multivari-

ate Sarmanov distribution to account for inter-dependencies across various claims data.

The work uses real motor and home insurance data on which are fitted three trivari-

ate Sarmanov distributions with generalised linear models (GLMs) for marginals. The

parameters of the presented models are estimated using a method to approach the the

maximum likelihood (ML) estimators. A numerical study based on real motor and home

insurance data indicates that there is a positive and long run dependence between the

accident frequency in auto and home insurance classes of business.
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6.2 Multiple types of coverage for multiple perils un-

der a single policy for one insured

An additional categorisation of the literature involve modelling methods accounting for

a policyholder who buys an insurance policy which includes multiple types of coverage

but for multiple perils. That said, this is a fairly often phenomenon within property

insurance where the total insured value for a given location may be split among the sum

of buildings, contents, and business interruption insured values, as we have also seen in

Chapter 2, Section 2.3.2.2.

Under such circumstances, claims may arise if a loss is experienced in any of the

aforementioned coverage types. However, as an example, the building element may be

covered against earthquake, fire, or hurricane losses whilst for the contents element may

exclude earthquake related losses. In this context, an interesting approach is coming from

Jeong & Dey (2021) where a shared random effects model is presented to account for the

unobserved heterogeneity across different types of claims considering also the correlation

among the claims from multiple perils.

6.3 Multiple types of coverage under a single policy

for multiple insureds in the same household

An actuary, who is pricing an insurance policy with several types of coverage for a given

insured, may want to take into account that other members of their same household may

have bought an insurance policy too. This information is important because dependence

structures may exist between these ”seemingly” independent policies.

The research studies of Pechon et al. (2018) and Pechon et al. (2019) acknowledge that

there may be correlation between different coverage types bought by different members

of the same household. In the light of big data and an ongoing trend for customising

insurance products, it is suggested that there is a need to build multivariate count models

that take into account such inter-dependencies. In particular, this work aims to bring

this household-wide perspective in the actuarial pricing. Similarly, Pechon et al. (2021)

proposes a multivariate Poisson mixture, with random effects correlated using a hierar-

chical structure, capturing the correlation between unobserved risk factors across home

and motor insurance and among insureds from the same household allowing to identify

which households should be considered as ”riskier” by the insurer.
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6.4 Insurance bundling

Another trend in non-life insurance is the offering of multiple insurance contracts bun-

dled together by an insurer to meet several coverage requirements of a policyholder.

Several advantages to the insured and the insurer related to bundled insurance products

are provided in Chapter 7, Section 7.1.

Looking at the literature, Shi & Valdez (2014) addressed the need for multivariate

count models taking into account the dependency among different claims types when

pricing bundled insurance policies. In this context, various approaches in developing

multivariate count models using the negative binomial distribution are explored. It is

acknowledged that, traditionally, common shock variables could be used for introducing

correlation, however such a choice would rely on the Negative Binomial type I distribution

and it would not be appropriate for dispersion modelling.

To resolve such limitations, it is suggested to use copulas for the modelling multi-

variate claim counts. Within this perspective two approaches are explored. Firstly, a

mixture max-id copulas applied on discrete count data to account for pair-wise associa-

tion in addition to tail and global dependence. Secondly, elliptical copulas which regard

unstructured dependence and both positive and negative correlation between different

claim types. The suggested models are compared to the common shock model in an

application using real motor insurance data and results indicate a better performance for

the copula-based models.

6.5 Data analytics-based pricing

In the era of big data, insurers may want to utilise the wealth of information that they

can nowadays gather about their policyholders from various sources in order to produce

more fair premiums and expand their business line offerings.

With this in mind, Denuit et al. (2019) examines the topic of Pay-How-You-Drive

(PHYD) or Usage-Based (UB) systems for automobile insurance where actuaries are

provided with behavioural risk factors of the policyholders, such as the time of the day

in which they commute and the average speed in which they drive among other driving

patterns. Normally these data are collected with the assistance of telematic devices

located in policyholders’ automobiles and it is beneficial for actuarial purposes for such

data to be incorporated for rate making purposes. Towards this direction, multivariate

mixed models are introduced for the description of the joint dynamics of telematics data
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and claim frequencies.

Further to the aforementioned literature review, we transition to Chapter 7, where

our contribution entitled ”The Multivariate Poisson-Generalized Inverse Gaussian Claim

Count Regression Model with Varying Dispersion and Shape” is presented.
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Chapter 7

The Multivariate

Poisson-Generalized Inverse

Gaussian Claim Count Regression

Model with Varying Dispersion and

Shape

This chapter is primarily dedicated to our article entitled ”The Multivariate Poisson-

Generalized Inverse Gaussian Claim Count Regression Model with Varying Dispersion

and Shape”, which is currently under minor revision in a peer reviewed journal. The

article is presented in the exact format in which it has been submitted for review. Some

supplementary material is included at the end.

7.1 The Multivariate Poisson-Generalized Inverse Gaus-

sian Claim Count Regression Model with Vary-

ing Dispersion and Shape
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The Multivariate Poisson-Generalized Inverse Gaussian Claim

Count Regression Model with Varying Dispersion and Shape

George Tzougas1,∗and Despoina Makariou2

1 Department of Actuarial Mathematics and Statistics, Heriot-Watt University, UK

2Department of Statistics, London School of Economics and Political Science, UK

May 3, 2022

We introduce a multivariate Poisson-Generalized Inverse Gaussian regres-
sion model with varying dispersion and shape for modelling different types
of claims and their associated counts in non-life insurance. The multivariate
Poisson-Generalized Inverse Gaussian regression model is a general class of
models which, under the approach adopted herein, allows us to account for
overdispersion and positive correlation between the claim count responses in a
flexible manner. For expository purposes, we consider the bivariate Poisson-
Generalized Inverse Gaussian with regression structures on the mean, disper-
sion, and shape parameters. The model’s implementation is demonstrated
by using bodily injury and property damage claim count data from a Eu-
ropean motor insurer. The parameters of the model are estimated via the
Expectation-Maximization algorithm which is computationally tractable and
is shown to have a satisfactory performance.

Keywords: Multivariate Poisson-Generalized Inverse Gaussian Distribu-
tion; EM Algorithm; Regression Models for the Marginal Means, Dispersion,
and Shape Parameters; Bonus-Malus Premiums; Non-Life Insurance

1 Introduction

The regression analysis of multivariate count data for capturing the dependence struc-
tures between multiple count response variables based on explanatory variables is en-
countered across several disciplines such as biology, biometrics, genetics, medicine, mar-
keting, ecology, sociology, econometrics, and insurance. In general, multivariate count

∗Heriot Watt, Edinburgh, EH14 4AS, Email: G.Tzougas@hw.ac.uk
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data models can be classified into the following three classes: multivariate Poisson mod-
els, multivariate mixed Poisson (MVMP) models, and copula-based models. For more
details, the interested reader can refer to the works of M’Kendrick (1925), Stein and Ju-
ritz (1987), Stein et al. (1987), Kocherlakota (1988), Aitchison and Ho (1989), Jung and
Winkelmann (1993), Joe (1997), Johnson et al. (1997), Krummenauer (1998), Lakshmi-
narayana et al. (1999), Lee (1999), Munkin and Trivedi (1999), Gurmu and Elder (2000),
Chib and Winkelmann (2001), Ho and Singer (2001), Kocherlakota and Kocherlakota
(2001), Cameron et al. (2004), Karlis and Meligkotsidou (2005), Zimmer and Trivedi
(2006), Genest and Nešlehová (2007), Park and Lord (2007), Ma et al. (2008), Winkel-
mann (2008), Aguero-Valverde and Jovanis (2009), El-Basyouny and Sayed (2009),
Famoye (2010), Nikoloulopoulos and Karlis (2010), Ghitany et al. (2012), Cameron and
Trivedi (2013), Nikoloulopoulos (2013), Rüschendorf (2013), Zhan et al. (2015), Marra
and Wyszynski (2016), Nikoloulopoulos (2016), Chen and Hanson (2017), Silva et al.
(2019), and Chiquet et al. (2020).

In a non-life insurance setting, the actuary may be concerned with modelling jointly
different types of claims and their associated counts. In this market segment, there are
several circumstances where the interest lies in developing models which can accommo-
date for positively correlated claims whilst accounting for overdispersion which is a direct
consequence of unobserved heterogeneity due to systematic effects in the data. Further-
more, these dependence structures between different claim types may be observed within
the same insurance policy, such as property damage and bodily injury claims in motor
third party liability (MTPL) insurance, or in alternative types of coverage, such as home
and auto insurance, bundled together under a single policy. Regarding the latter, some
of the advantages for the policyholder are multi-product premium discounts, straight-
forward tracking of policy renewal dates, easy claims reporting, and a more ”personal”
relationship between the insured and their insurer where the latter closely identify their
needs and mitigate possible insurance coverage gaps. From the insurer’s perspective
though, bundling multiple types of insurance for the same policyholder translates into
a need to develop predictive models which can efficiently capture the joint dynamics of
different claims types associated with various insurance business lines. With regards to
the use of alternative multivariate count models in non-life insurance, see for instance,
Bermúdez and Karlis (2011), Bermúdez and Karlis (2012), Shi and Valdez (2014a), Shi
and Valdez (2014b), Abdallah et al. (2016), Bermúdez and Karlis (2017), Bermúdez
et al. (2018), Pechon et al. (2018), Pechon et al. (2019), Bolancé and Vernic (2019), De-
nuit et al. (2019), Fung et al. (2019), Bolancé et al. (2020), Pechon et al. (2021), Jeong
and Dey (2021), Gómez-Déniz and Caldeŕın-Ojeda (2021) and Tzougas and di Cerchiara
(2021).

In the current study, we develop a multivariate Poisson-Generalised Inverse Gaussian
(MVPGIG) regression model with varying dispersion and shape for modelling positively
correlated and overdispersed claim counts from different types of coverage in a flexi-
ble manner. In particular, within the adopted modelling framework, in addition to the
marginal mean parameters, which are traditionally modelled using risk factors, regres-
sors are allowed on the dispersion and shape parameters. The proposed approach allows
us to model the skewness and kurtosis of the model explicitly as a function of the ex-
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planatory variables for the mean, dispersion and shape parameters. Instead, if only the
mean parameter is modelled in terms of explanatory variables then this can lead to a
misclassification of policyholders with a high number of claims due to the unobserved
heterogeneity changes with covariates.Furthermore, the MVPGIG, is a broad family of
models including many MVMP models considered in the aforementioned literature ones
as special and/or limiting cases, such as, for example, the multivariate Negative Bino-
mial (MVNB), or multivariate Poisson-Gamma, multivariate Poisson-Inverse Gaussian
(MVPIG), multivariate Poisson–Inverse Exponential, multivariate Poisson–Inverse Chi
Squared, and multivariate Poisson–Scaled Inverse Chi Squared distributions, depend-
ing on the estimated values of the dispersion and shape parameters which are modelled
based on covariate information, hence enabling us to account for the tail behaviour of
observed data in versatile manner. The latter can be regarded as an important prop-
erty for capturing overdispersion since this phenomenon is not necessarily attributed to
an excess of zeros but it may be also caused by a heavy tail in the claim count data,
see Shared (1980). For illustrative purposes, the bivariate Poisson-Generalised Inverse
Gaussian (BPGIG) regression model with varying dispersion and shape is fitted on Mo-
tor Third Party Liability (MTPL) insurance bodily injury and property damage claim
count data using a novel Expectation-Maximization (EM) type algorithm. The proposed
maximum likelihood (ML) estimation scheme takes advantage of the stochastic mixture
representation of the BPGIG model in order to reduce the problem of maximizing its
cumbersome likelihood function which is expressed in terms of the modified Bessel func-
tion of the third kind to the simple problem of maximising the likelihood function of its
mixing densivty.

The remainder of this article is organized, as follows: Section 2 deals with the con-
struction of the proposed MVPGIG regression model with varying dispersion and shape
parameters. In Section 3, we describe the ML estimation procedure for the BPGIG
model via the EM algorithm. A real data application based on the two dimensional
MTPL data set is presented in Section 4 and the fitting performance of the BPGIG
regression model with varying dispersion and shape parameters is compared to that of
the bivariate Negative Binomial (BNB) and Poisson-Inverse Gaussian (BPIG) regression
models with varying dispersion of Tzougas and Pignatelli di Cerchiara (2021) that we
use as a benchmark for comparison. In Section 5, the a posteriori, or Bonus-Malus,
premiums determined by the from the BNB and BPIG models are compared to those
resulting from the proposed BPGIG model using the expected value principle. Finally,
concluding remarks can be found in Section 6.

2 The Multivariate Poisson-Generalized Inverse Gaussian
Regression Model with Varying Dispersion and Shape
Parameters

Consider that in a non-life insurance policy of an insured j, where j = 1, ..., n, we
observe multi-peril claim frequencies Ki,j , for i = 1, ...,m types of coverage. Assume that
given the random variables Zj > 0, Ki,j |Zj per claim type i are distributed according to
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a Poisson distribution with probability mass function (pmf) given by

P (ki,j |zj) =
exp[−µi,jzj ](µi,jzj)ki,j

ki,j !
, (1)

for ki,j = 0, 1, 2, 3, ..., where µi,j > 0, with mean and variance E(ki,j |zj) = µi,jzj and
Var(ki,j |zj) = µi,jzj .

Also, suppose that Zj are random variables from a Generalized–Inverse Gaussian
(GIG) distribution with probability density function (pdf) given by

g(zj ;σj , νj) =
c
νj
j

2Kνj

(
1
σj

)zνj−1j exp

[
− 1

2σj
(cjzj +

1

cjzj
)

]
, (2)

for σj > 0 and −∞ < νj <∞, where cj =
Kνj+1(σ

−1
j )

Kνj (σ
−1
j )

and

Kνj (ω) =

∫ ∞

0
xνj−1 exp{−1

2
ω(x+

1

x
)}dx

is the modified Bessel function of the third kind of order νj and argument ω. This
parameterization ensures that the model is identifiable since E(Zj) = 1. Furthermore,
note that

V ar(Zj) =
Kνj+2(

1
σj

)Kνj (
1
σj

)

Kνj+1(
1
σj

)2
− 1.

Thus, considering the assumptions in Eqs (1 and 2) it is easy to see that the uncon-
ditional distribution of Ki,j will be a multivariate Poisson-Generalized Inverse Gaussian
(MVPGIG) distribution with joint probability mass function (jpmf) given by

P (k1,j , k2,j , ..., km,j) =

m∏
i=1

µ
ki,j
i,j

m∏
i=1

ki,j !

c
νj
j

2Kνj (
1
σj

)

[
(2

m∑

i=1

µi,j +
cj
σj

)cσj

]−
m∑
i=1

ki,j+νj

2

2K m∑
i=1

ki,j+νj



√√√√ 1

cσj
(2

m∑

i=1

µi,j +
c

σj
)


 .

(3)

Note that if we let νj = −0.5 in Eq. (3) the MVPGIG distribution reduces to a multi-
variate Poisson-Inverse Gaussian (MVPIG) distribution. Further, the multivariate Neg-
ative Binomial (MVNBB) distribution is a limiting case of Eq. (3), obtained by letting
σj →∞ for νj > 0 and νj < −1 respectively.

Henceforth, for expository purposes, we will restrict attention to the bivariate case
m=2. We assume that the mean, dispersion and shape parameters of the bivariate
Poisson-Generalized Inverse Gaussian (BPGIG) are modelled as functions of explanatory
variables with parametric linear functional forms:

µ1,j = exp(xT1,jβ1), (4)
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µ2,j = exp(xT2,jβ2), (5)

σj = exp(xT3,jβ3) (6)

and

νj = xT4,jβ4, (7)

where x1,j , x2,j , x3,j and x4,j are vectors of covariates with dimensions p1×1, p2×1,
p3×1 and p4×1 respectively, with (β1,1, ..., β1,p1)T , (β2,1, ..., β2,p2)T , (β3,1, ..., β3,p3)T and
(β4,1, ..., β4,p4)T the corresponding parameter vectors and where it is considered that the
matrices X1, X2, X3 and X4 with rows given by x1,i, x2,i, x3,i and x4,i respectively, are
of full rank.

Finally, the following desirable properties ensure the flexibility of the proposed model
for capturing overdispersion and accommodating for positive correlation structures1 be-
tween the different claim count response variables.

1. The marginal distribution of Ki,j , for i = 1, ...,m and j = 1, ..., n, is a Poisson-
Generalized Inverse Gaussian, or Sichel, distribution. Also, the mean and the
variance of Ki,j are given by

E (Ki,j) = µi,j (8)

and

Var (Ki,j) = µi,j + µ2i,j

(
c−2j +

2(νj + 1)

cj
σj − 1

)
. (9)

2. Let Ki,j |zj and zj , for i = 1, ...,m and j = 1, ..., n, be distributed according to the
Poisson and GIG distributions which are given Eqs (1 and 2) respectively. Also,
consider that the cumulative generating function of zj is denoted by Cj (t), then
the cumulative generating function of the marginal distribution of Ki,j , which is
denoted by CKi,j (t), is given by

CKi,j (t) = Cj [µi,j(e
t − 1)] (10)

and hence, since j has a unit mean, the third and fourth cumulants of Ki,j and zj
are related by

C3Ki,j = µi,j + 3µ2i,jV ar(zj) + µ3i,jC3zj , (11)

and

1A limitation of the proposed model is that it cannot allow for negative correlation between the claim
count response variables. However, regarding MTPL data, such as those we use in this study, positive
correlation between MTPL bodily injury and property damage claim counts is what we expect.
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C4Ki,j = µi,j + 7µ2i,jV ar(zj) + 6µ3i,jC3zj + µ4i,jC4zj , (12)

where C3Ki,j and C4Ki,j are the third and fourth cumulants of Ki,j .

The skewness and kurtosis of Ki,j are
√
β1 = κ3Ki,j/[V ar(Ki,j)]

1.5 and β2 = 3 +
{κ4Ki,j/[V ar(Ki,j)

2]} respectively, where the cumulants of the mixing distribution
are given by

C3j = [g2 − 3g1] (13)

and
C4γ = (g3 − 4g2 + 6g1 − 3g21), (14)

where
g1 = [1/c2j + 2σj(νj + 1)/cj − 1],

g2 = 2σj(νj + 2)/c3j + [4σ2j (νj + 1)(νj + 2) + 1]/c2j − 1

g3 = [1 + 4σ2j (νj + 2)(νj + 3)]/c4j + [8σ3j (νj + 1)(νj + 2)(νj + 3) + 4σ(νj + 2)]/c3j − 1.

3. The covariance (Cov) between K1,j and K2,j is given by

Cov (K1,j ,K2,j) = µ1,jµ2,j

(
c−2j +

2(νj + 1)

cj
σj − 1

)
. (15)

3 Statistical Inference: The EM Algorithm

In this section, an Expectation-Maximization (EM) type algorithm (Dempster et al.,
1977; McLachlan and Krishnan, 2007) is developed to facilitate maximum likelihood
(ML) estimation of the BPGIG regression model with varying dispersion and shape.

Furthermore, assume that (k1,j , k2,j ,x1,j ,x2,j ,x3,j , x4,j), j = 1, ..., n, is a sample
of independent observations, where K1,j and K2,j are the claim count variables and
x1,j ,x2,j , x3,j and x4,j are the vectors of covariates with dimensions p1 × 1, p2 × 1,
p3× 1 and p4× 1 respectively. Also, assume that Zj , j = 1, ..., n, are the random effects
which are non-observable and are considered to produce missing data. By augmentation
of the unobserved Zj one can write the complete log-likelihood as follows:

`c(θ) ∝
2∑

i=1

n∑

j=1

[−µi,jzj + ki,j log(µi,j)]

+
n∑

j=1

[
νj log(cj) + (νj − 1) log(zj)− log(Kνj (σ

−1
j ))− 1

2σj

(
cjzj +

1

cjzj

)]
,

(16)

where θ = (β1,β2,β3,β4) is the vector of the parameters.
We present below the E- and the M-Steps of our EM type algorithm. At the E-Step,

we compute the Q-function, which is the conditional expectation of the complete log-
likelihood function given by Eq. (16), given θr, which is the estimated value of θ at
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the r-th iteration. The M-Step consists in maximizing the Q-function. In particular, we
want to find the updated parameters θr+1 such that the Q-function is increased with
respect to θ.

• E-Step:

The Q-function at the r-th iteration can be written as

Q(θ;θ(r)) ≡ Ez
(
`c(θ)|k1,j , k2,j ;θ(r)

)

∝
2∑

i=1

n∑

j=1

[
−µ(r)i,j w1,j + ki,j log(µ

(r)
i,j )
]

+

n∑

j=1

[
ν
(r)
j log(c

(r)
j ) + (ν

(r)
j − 1)w3,j−

log(K
ν
(r)
j

(1/σ
(r)
j ))− 1

2σ
(r)
j

(
c
(r)
j w1,j +

w2,j

c
(r)
j

)
,

(17)

where we have defined the pseudo-values w1,j = Ezj [zj |ki,j ;θ(r)], w2,j = Ezj [z
−1
j |ki,j ;θ(r)]

and w3,j = Ezj [log(zj)|ki,j ;θr].

• M-Step:

– Firstly, differentiate the Q−function with respect to β1:

h1 (β1) =
∂Q
(
θ;θ(r)

)

∂β1,l
=

n∑

j=1

(
k1,j − µ(r)1,jw1,j

)
x1,j,l, (18)

and

H1 (β1) =
∂2Q

(
θ;θ(r)

)

∂β1,l∂β
T
1,l

=
n∑

j=1

(
−µ(r)1,jw1,j

)
x1,j,lx

T
1,j,l, (19)

for j = 1, ..., n and l = 1, ..., p1.

Then, the Newton-Raphson iterative algorithm for β1 is as follows:

β
(r+1)
1 ≡ β(r)

1 −
[
H1

(
β
(r)
1

)]−1
h1

(
β
(r)
1

)
. (20)

– Secondly, differentiate the Q−function with respect to β2:

h2 (β2) =
∂Q
(
θ;θ(r)

)

∂β2,l
=

n∑

j=1

(
k2,j − µ(r)2,jw1,j

)
x2,j,l, (21)

and
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H2 (β2) =
∂2Q

(
θ; θ(r)

)

∂β2,l∂β
T
2,l

=
n∑

j=1

(
−µ(r)

2,j
w1,j

)
x2,j,lx

T
2,j,l, (22)

for j = 1, ..., n and l = 1, ..., p2.

Then, the Newton-Raphson iterative algorithm for β2 is as follows:

β
(r+1)
2 ≡ β(r)

2 −
[
H2

(
β
(r)
2

)]−1
h2

(
β
(r)
2

)
. (23)

– Thirdly, differentiate the Q−function with respect to β3:

h3 (β3) =
∂Q
(
θ;θ(r)

)

∂β3,l
=

n∑

i=1

σ
(r)
j



ν
(r)
j

σ
(r)
j

−
c
(r)
j(

σ2j

)(r)

+
1

2
(
σ2j

)(r)

(
c
(r)
j w1,j +

w2,j

c
(r)
j

)
+
ν
(r)
j

c
(r)
j

∂c
(r)
j

∂σ
(r)
j

− 1

2σ
(r)
j

∂c
(r)
j

∂σ
(r)
j


w1,j −

w2,j(
c2j

)(r)





x3,j,l, (24)
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and

H3 (β3) =
∂2Q

(
θ;θ(r)

)

∂β3,l∂β
T
3,j

=

=
n∑

i=1

σ
(r)
j




ν
(r)
j

σ
(r)
j

−
c
(r)
j(

σ2j

)(r) +
1

2
(
σ2j

)(r)

(
c
(r)
j w1,j +

w2,j

c
(r)
j

)

+
ν
(r)
j

c
(r)
j

∂c
(r)
j

∂σ
(r)
j

− 1

2σ
(r)
j

∂c
(r)
j

∂σ
(r)
j


w1,j −

w2,j(
c2j

)(r)




+σ
(r)
j






ν
(r)
j

c
(r)
j

− 1

2σ
(r)
j


w1,j −

w2,j(
c2j

)(r)







∂2c
(r)
j

∂
(
σ2j

)(r)

+
1

(
σ2j

)(r)


w1,j −

w2,j(
c2j

)(r) − 1



∂c

(r)
j

∂σ
(r)
j

−




ν
(r)
j(
c2j

)(r) +
w2,j(

c3j

)(r)
σ
(r)
j



(
∂c

(r)
j

∂σ
(r)
j

)2

−
ν
(r)
j(

σ2j

)(r)

+
2c

(r)
j(

σ3j

)(r) −
1

(
σ3j

)(r)

(
c
(r)
j w1,j +

w2,j

c
(r)
j

)





x3,j,lx

T
3,j,l,

(25)

for j = 1, .., n and l = 1, ..., p3, where

∂c
(r)
j

∂φ
(r)
j

=
c
(r)
j (2ν

(r)
j + 1)

φ
(r)
j

+
1−

(
c2j

)(r)

(
φ2j

)(r) (26)

and where

∂2c
(r)
j

∂
(
φ2j

)(r) =




2ν
(r)
j + 1

φ
(r)
j

−
2c

(r)
j(

φ2j

)(r)



∂c

(r)
j

∂φ
(r)
j

−
c
(r)
j (2ν

(r)
j + 1)

(
φ2j

)(r) +
2(
(
c2j

)(r)
− 1)

(
φ3j

)(r) .

(27)

Then, the Newton-Raphson iterative algorithm for β3 is as follows:

β
(r+1)
3 ≡ β(r)

3 −
[
H3

(
β
(r)
3

)]−1
h3

(
β
(r)
3

)
. (28)
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– Finally, differentiate the Q−function with respect to β4:

h4 (β4) =
∂Q
(
θ;θ(r)

)

∂β4,l
=

∂

∂β4,j

{
n∑

i=1

[
ν
(r)
j log

(
c
(r)
j

)

+
(
ν
(r)
j − 1

)
w3,j − log

(
K
ν
(r)
j

(
1

σ
(r)
j

))

− 1

2σ
(r)
j

(
c
(r)
j w1,j +

w2,j

c
(r)
j

)]}
x4,j,l, (29)

and

H4 (β4) =
∂2Q

(
θ;θ(r)

)

∂β4,l∂β
T
4,j

=
∂2

∂β4,j∂βT4,j

{
n∑

i=1

[
ν
(r)
j log

(
c
(r)
j

)

+
(
ν
(r)
j − 1

)
w3,j − log

(
K
ν
(r)
j

(
1

σ
(r)
j

))

− 1

2σ
(r)
j

(
c
(r)
j w1,j +

w2,j

c
(r)
j

)]}
x4,j,lx

T
4,j,l,(30)

for j = 1, .., n and l = 1, ..., p4.

Thus, the Newton-Raphson iterative algorithm for β4 is as follows:

β
(r+1)
4 ≡ β(r)

4 −
[
H4

(
β
(r)
4

)]−1
h4

(
β
(r)
4

)
. (31)

4 Numerical Illustration

We conducted an empirical analysis using a sample of claim frequency data which was
randomly selected from a larger pool of MTPL insurance policies observed during the
year 2017 from a major European insurance company. We are interested in modelling
the MTPL bodily injury and property damage claims with their associated claim counts
denoted by K1,j and K2,j respectively, for j = 1, ..., n. For each policy, the total number
of claims for each type of claim were reported within this yearly period. The sample
comprised insured parties with complete records; i.e., with the availability of all a priori
rating variables which affect both K1,j and K2,j . Furthermore, an exploratory analysis
was carried out in order to accurately select the subset of explanatory variables with the
highest predictive power for both K1,j and K2,j . There were n = 5186 observations and
three explanatory variables that met our criteria. Table 1 summarizes the explanatory
variables whilst Table 2 depicts some standard descriptive statistics for K1,j and K2,j ,
along with the values of Kendall’s τ and Spearman’s ρ correlation coefficients. As it
was expected, Table 2 shows the existence of positive correlation between k1,j and k2,j
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as well as their marginal overdispersion. Furthermore, we would like to call attention to
the fact that, as is well known, the range of Kendall’s τ and Spearman’s ρ for discrete
random variables is narrower than [−1, 1], see Denuit and Lambert (2005), Mesfioui
and Tajar (2005) and Mesfioui et al. (2021). Furthermore, Nikoloulopoulos and Karlis
(2010) and Safari-Katesari et al. (2020) showed how to compute the population versions
of Kendall’s τ and Spearman’s ρ by pairing copulas with discrete marginal distributions
respectively. Following their setup, we investigated the variability of the population
versions of Kendall’s τ and Spearman’s ρ from lowest to highest attainable values for
our data by pairing two marginal Poisson distributions with varying mean parameter µ
from 1 up to 20 using the Normal copula. Also, we considered that the copula parameter
θ can vary from -1 to 1. We observed that the values of Kendall’s τ and Spearman’s ρ
stabilize close to 1 for the values of µ which are greater than 10. Therefore, the bivariate
Negative Binomial (BNB) and Poisson-Inverse Gaussian (BPIG) regression models with
varying dispersion and the bivariate Poisson-Generalized Inverse Gaussian (BPGIG)
regression model with varying dispersion and shape which allow for positive correlation
between the two types of claims are better assumptions than the bivariate Poisson model,
as the latter is not equipped for handling overdispersion. Moreover, Table 3 presents the
estimated regression coefficients for the BNB and BPIG regression models with varying
dispersion and the BPGIG regression model with varying dispersion and shape2.

Furthermore, we compare the fit of the BNB and BPIG regression models with varying
dispersion to that of the BPGIG regression model with varying dispersion and shape
based on the standard specification tests DEV, AIC and SBC. The DEV is given by

DEV = −2l̂
(
θ̂
)
, (32)

with l̂ being the maximum of the log-likelihood and θ̂ the vector of estimated parameters
of the model. Moreover, the AIC is defined as

AIC = DEV + 2× df (33)

and the SBC is given by
SBC = DEV + log (n)× df, (34)

where df are the degrees of freedom which correspond to the number of fitted parameters
in the model and n is the number of observations in the sample. The values of the DEV,
AIC and SBC for the competing models are provided in Table 4. As is well known,
two models can be considered to be significantly different if the difference in the log-
likelihoods exceeds five, corresponding to a difference in their respective AIC and SBC
values of greater than ten and five respectively. Thus, this case we see that the best fitting
performances are provided by the BPGIG regression model with varying dispersion and
shape3.

2All the parameters were statistically significant at a 5% threshold.
3Note that the stopping criterion for the EM algorithm was rather strict as the algorithm iterated

between the E and the M-steps until the relative change in the log-likelihood between two successive
iterations was smaller than 10−12.
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Finally, we compare the forecasting performance of the proposed model and the bench-
mark models using both in-sample estimation and out-of sample validation. For this
purpose, we split the data into training and test data at the ratio of 9 : 1. Therefore,
the training data for the re-estimation of the parameters of the models contains 4149
data points. The remaining 1037 data points are used for testing purposes. To measure
the prediction performances the deviance statistic is used. The deviance value for the
BNB, BPIG, and BPGIG models are 490.80, 475.25, and 472.35 respectively. Thus, the
BPGIG model outperforms the two competing bivariate mixed Poisson models.

5 Calculation of the A Posteriori Premiums

In this subsection, the expected value premium principle is used to compute the a
posteriori, or Bonus-Malus, premium rates determined by the BNB, BPIG, and BPGIG
models for t = 1 for three risk class profiles that we classify as Best, Average, and Worst
according to the values of the mean claim frequencies µ1,j and µ2,j , which are calculated
using the same set of explanatory variables per claim type i = 1, 2. The results are
depicted in Table 5.

6 Conclusions

In this article, we presented the MVPGIG claims count regression model with varying
dispersion and shape for modelling different types of claims in non-life insurance. The
MVPGIG is a wide family of models which, under the proposed modelling framework,
can provide sufficient flexibility for capturing overdispersion and positive correlation
structures in highly-dimensional claim count data. For demonstration purposes, the
bivariate version of the model, namely the BPGIG model, with regression specifications
for the mean, dispersion, and shape parameters was fitted on MTPL property damage
and bodily injury claim count data. The ML estimates of the parameters of the model
were obtained via a novel EM type algorithm. However, it should be noted that a
shortcoming of the proposed approach is that there is a strong discrepancy between
the flexibility within the equations of the random effect distribution, and the rigidity
between these equations. In order to relax this rigidity, the BPGIG model can be
constructed either by using the so-called trivariate reduction method or by considering
correlated GIG random effects (say z1;j and z2;j) paired via a Gaussian copula following
the approaches of Bermúdez and Karlis (2017) and Pechon et al. (2018) in the former
and latter case respectively. Both approaches are very efficient when modelling different
types of claims from different types of coverage or household claim frequencies in MTPL
insurance. Finally, in a forthcoming paper, time series components will be included
to accommodate for both cross dependence between different types of claims and time
dependence, proceeding along similar lines as in Bermúdez et al. (2018) among others.
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List of tables

Table 1: The explanatory variables and their description

Variables Categories

C1 C2 C3

City population (v1) ≤ 1,000,000 1,000,001-2,000,000 ≥ 2,000,001

Number of years that the policyholder

has been registered with the < 5 years > 5 years -

insurance company (v2)

Horsepower of the vehicle (v3) 0-1400 cc 1400-1800 cc ≥ 1800 cc

Table 2: Descriptive statistics for the two responses

K1 K2

statistic value statistic value

Minimum 0 Minimum 0
Median 0 Median 0
Mean 0.0954 Mean 0.0618

Variance 0.1375 Variance 0.0644
Maximum 4 Maximum 3

Kendall’s τ : 0.1760
Spearman’s ρ: 0.1777

Table 3: Parameter estimates of the BNB and BPIG regression models with varying
dispersion and the BPGIG regression model with varying dispersion and shape

BNB BPIG BPGIG

Variable Coeff. β1 Coeff. β2 Coeff. β3 Coeff. β1 Coeff. β2 Coeff. β3 Coeff. β1 Coeff. β2 Coeff. β3 ν = −0.53

Intercept -2.3933 -2.9262 -1.1296 –2.3950 –2.9279 –0.5908 -2.3964 -2.9293 -0.5893 -

v1 C2 0.0524 0.1504 -0.1912 0.0535 0.1518 –0.1157 0.0543 0.1529 -0.1149 -

v1 C3 0.1556 0.1770 -0.2303 0.1587 0.1793 –0.1364 0.1615 0.1813 -0.1352 -

v2 C2 0.0452 0.1780 0.3627 0.0465 0.1790 0.1959 0.0475 0.1797 0.1968 -

v3 C2 -0.1216 -0.0203 -0.3144 –0.1203 -0.0190 –0.1769 -0.1187 -0.0174 -0.1756 -

v3 C3 0.1767 0.1712 -0.0883 0.1784 0.1731 –0.0716 0.1798 0.1747 -0.0711 -
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Table 4: BNB, BPIG and BPGIG Models Comparison based on Global Deviance, AIC
and SBC

Model df Global Deviance AIC SBC

BNB 18 4388 4424 4542
BPIG 18 4249 4285 4403

BPGIG 19 4223 4261 4386

Table 5: Comparison of the A Posteriori, or Bonus-Malus, Premium Rates for t = 1

t = 1

BNB regression model

t = 1

BPIG regression model

t = 1

BPGIG regression model

Best profile Best profile Best profile

k1,j/k2,j 0 1 2 3 0 1 2 3 0 1 2 3

0 76.36 312.65 548.94 785.23 82.05 239.47 500.38 800.56 82.05 254.83 556.90 917.13

1 312.65 548.94 785.23 1021.52 239.47 500.38 800.56 1110.36 1 254.82 556.90 917.13 1297.67

2 548.94 785.23 1021.52 1257.81 500.38 800.56 1110.36 1422.85 556.91 917.13 1297.67 1688.07

3 785.23 1021.52 1257.81 1494.10 800.56 1110.36 1422.85 1736.37 917.13 1297.67 1688.07 2084.96

t = 1

BNB regression model

t = 1

BPIG regression model

t = 1

BPGIG regression model

Average profile Average profile Average profile

k1,j/k2,j 0 1 2 3 0 1 2 3 0 1 2 3

0 73.18 334.41 595.64 856.88 80.00 247.48 528.29 849.50 80.00 264.20 590.75 978.13

1 334.41 595.64 856.88 1118.11 247.48 528.29 849.50 1179.87 264.20 590.75 978.13 1386.04

2 595.64 856.88 1118.11 1379.35 528.29 849.50 1179.87 1512.72 590.75 978.13 1386.04 1804.03

3 856.88 1118.11 1379.35 1640.58 849.50 1179.87 1512.72 1846.48 978.13 1386.04 1804.03 2228.75

t = 1

BNB regression model

t = 1

BPIG regression model

t = 1

BPLN regression model

Worst profile Worst profile Worst profile

k1,j/k2,j 0 1 2 3 0 1 2 3 0 1 2 3

0 71.49 283.19 494.88 706.58 79.05 210.99 425.43 674.37 79.05 223.39 470.01 766.39

1 283.19 494.88 706.58 918.27 210.99 425.43 674.37 932.83 223.39 470.01 766.39 1081.27

2 494.88 706.58 918.27 1129.97 425.43 674.37 932.83 1194.13 470.01 766.39 1081.27 1405.04

3 706.58 918.27 1129.97 1341.66 674.37 932.83 1194.13 1456.54 766.39 1081.28 1405.04
1734.49
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7.2 Supplementary material

We briefly consider a potential extension of our work based on the research of Bermúdez

& Karlis (2017). That said, we deem helpful to provide the following background infor-

mation. In particular, there, the number of claims for two coverage types for an insured

i at time j are random variables which are represented by N1ij and N2ij. The values of

these random variables are denoted as n1ij and n2ij respectively. The bivariate Poisson

distribution is presented as a tool that can be used to capture the underlying correla-

tion between two types of claims arising from the same insurance contract. That said,

(N1, N2) ∼ BP(λ1, λ2, λ3) reflecting that the pair of random variables (N1, N2) are fol-

lowing the bivariate Poisson distribution with parameters λ1, λ2 and λ3.

Then, an alternative definition of the bivariate Poisson distribution using the so-called

trivariate reduction method is presented. It starts by considering that the independent

random variables Xk for k = 1, 2, 3 follow the Poisson distribution with respective pa-

rameters λk. Consequently, the random variables N1 = X1 +X3 and N2 = X2 +X3 also

follow a bivariate Poisson distribution jointly. Then, the joint probability function for

the ith policyholder, when ignoring the subscript j for the sake of simplicity is given by

P (n1i, n2i) = P (N1i = n1i, N2i = n2i;λi) =

= e−(λ1i+λ2i+λ3i)
λn1i
1i

n1i!

λn2i
2i

n2i!

min(n1i,n2i)∑

s=0

(
n1i

s

)(
n2i

s

)
s!

(
λ3i

λ1iλ2i

)s

where λi = (λ1i, λ2i, λ3i).

That said, it would be fruitful for future research to consider an extension of our

problem using a trivariate reduction scheme in order to incorporate flexibility in the tail

of claims distribution, and also model the correlation between the two response variables

by incorporating risk factors in λ3.

Finally, in our application we focus on the widely used Kendall’s τ and Spearmann’s

ρ measures of correlation between the different claims types, and this means that in our

bivariate case, we associate the entire distribution of the two claims types. Nevertheless,

it is worth noting that there may be differences in the dependence between the upper part

of the distribution and the mid-range and/or lower part of the distribution and this can

impact claims modelling, see Embrechts et al. (2002). Therefore, a potential extension

of our research could focus on the tail dependence aspect, especially if we were to model
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claim sizes instead of claims counts as in the former case tail dependence is perhaps even

more relevant.
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Bermúdez, L. & Karlis, D. (2017), ‘A posteriori ratemaking using bivariate Poisson mod-

els’, Scandinavian Actuarial Journal 2017(2), 148–158.

Bertram, P., Sibbertsen, P. & Stahl, G. (2015), ‘The impact of model risk on capital

reserves: A quantitative analysis’, Journal of Risk 17(5).

Birds, J. (2010), Birds’ Modern Insurance Law, 8 edn, Sweet & Maxwell.

Bishop, C. (2016), Pattern Recognition and Machine Learning, Information Science and

Statistics, Springer New York.

Bolancé, C. & Vernic, R. (2019), ‘Multivariate count data generalized linear models:

Three approaches based on the sarmanov distribution’, Insurance: Mathematics and

Economics 85, 89–103.

Boucher, C. M., Danielsson, J., Kouontchou, P. S. & Maillet, B. B. (2014), ‘Risk models-

at-risk’, Journal of Banking & Finance 44, 72–92.

Box, G. E., Jenkins, G. M., Reinsel, G. C. & Ljung, G. M. (2015), Time series analysis:

forecasting and control, John Wiley & Sons.

Boyd, J. (2016), ‘Modeling fundamentals: So you want to issue a cat bond’. Accessed =

2016-08-26.

URL: ht tp // ww w. ai r-wo rl dw id e. co m/ Pu bl ic at io ns /A IR -Cu rr en ts /2

01 6/ Mo de li ng -Fu nd am en ta ls --So -Yo u-Wa nt -to -Is su e-a-Ca t-Bo nd /

Boyd, S. & Vandenberghe, L. (2004), Convex Optimization, Cambridge University Press.

161

http//www.air-worldwide.com/Publications/AIR-Currents/2016/Modeling-Fundamentals--So-You-Want-to-Issue-a-Cat-Bond/
http//www.air-worldwide.com/Publications/AIR-Currents/2016/Modeling-Fundamentals--So-You-Want-to-Issue-a-Cat-Bond/


Braun, A., Eling, M., Schmeiser, H. & Schanz, K.-U. (2020), ‘An investigation into the

insurability of pandemic risk’. Accessed = 2021-12-03.

URL: ht tp s: // ww w. ge ne va as so ci at io n. or g/ si te s/ de fa ul t/ fi le s/

re se ar ch -to pi cs -do cu me nt -ty pe /p df p ub li c/ in su ra bi li ty r ep or

t w eb .p df

Breiman, L., Cox, D. & Breiman, L. (2001), ‘Comment-statistical modeling: The two

cultures’, Statistical Science 16(3), 199–231.

Bugmann, C. (1997), ‘Proportional and non-proportional reinsurance’. Accessed = 2021-

10-12.

URL: ht tp s: // ww w. sw is sr e. co m/ da m/ jc r: 1e c8 b4 cd -da fc -41 1f -

aa fd -38 5d 65 17 cc fd /p ub p ro po rt io na l n on p ro po rt io na l e n. pd f
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Föllmer, H. & Schied, A. (2016), Stochastic Finance: An Introduction in Discrete Time,

De Gruyter Textbook, De Gruyter.

Friedman, J., Hastie, T., Tibshirani, R. et al. (2001), The elements of statistical learning,

Vol. 1, Springer series in statistics New York.

Gareth, J., Daniela, W., Trevor, H. & Robert, T. (2013), An introduction to statistical

learning: with applications in R, Spinger.

Gatzert, N. & Kellner, R. (2011), ‘The influence of non-linear dependencies on the basis

risk of industry loss warranties’, Insurance: Mathematics and Economics 49(1), 132–

144.

Gatzert, N. & Schmeiser, H. (2012), ‘Industry loss warranties: contract features, pricing,

and central demand factors’, The Journal of Risk Finance .

164

https://www.eiopa.europa.eu/rulebook-categories/directive-1382009ec-solvency-ii-directive_en
https://www.eiopa.europa.eu/rulebook-categories/directive-1382009ec-solvency-ii-directive_en
https://assets.lloyds.com/assets/pdf-regulation-of-lloyds-fca-cooperation-agreement20130717/1/pdf-regulation-of-lloyds-FCA-cooperation-agreement20130717.pdf
https://assets.lloyds.com/assets/pdf-regulation-of-lloyds-fca-cooperation-agreement20130717/1/pdf-regulation-of-lloyds-FCA-cooperation-agreement20130717.pdf
https://assets.lloyds.com/assets/pdf-regulation-of-lloyds-fca-cooperation-agreement20130717/1/pdf-regulation-of-lloyds-FCA-cooperation-agreement20130717.pdf
https://www.bankofengland.co.uk/-/media/boe/files/report/2019/machine-learning-in-uk-financial-services.pdf
https://www.bankofengland.co.uk/-/media/boe/files/report/2019/machine-learning-in-uk-financial-services.pdf
http://alexschied.de/Encyclopedia6.pdf
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