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Abstract

We present new concentration of measure inequalities for Markov chains, generalising results for
hains that are contracting in Wasserstein distance. These are particularly suited to establishing the cut-off
henomenon for suitable chains. We apply our discrete-time inequality to the well-studied Bernoulli–
aplace model of diffusion, and give a probabilistic proof of cut-off, recovering and improving the
ounds of Diaconis and Shahshahani. We also extend the notion of cut-off to chains with an infinite
tate space, and illustrate this in a second example, of a two-host model of disease in continuous time.
e give a third example, giving concentration results for the supermarket model, illustrating the full

enerality and power of our results.
2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license

http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

We have two main aims in this paper. The first is to develop some new concentration of
easure inequalities for Markov chains, both in discrete and continuous time, and the second is
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to introduce a wider perspective on the cut-off phenomenon for convergence to equilibrium of
Markov chains. Our past work suggests a strong connection between long-term concentration of
measure, rapid mixing, and cut-off: this paper is an attempt to formalise, explain and illustrate
this.

Our concentration of measure inequalities generalise and extend earlier results applicable
or chains contracting in Wasserstein distance, which means that there is a metric on the state
pace so that the chain makes only short steps with respect to the metric, and a coupling of two
opies of the chain so that the distance between the two copies decreases in expectation – in
he language of Ollivier [25], this means that the chain has positive coarse Ricci curvature.
or discrete-time Markov chains with positive coarse Ricci curvature, Ollivier proves that
ny real-valued function of the Markov chain that is Lipschitz with respect to the metric
emains well-concentrated around its expectation for all time, and in equilibrium; a similar
esult follows from results of Luczak [19] proved independently at around the same time.
aulin [26] gives a more general framework, obtaining concentration results, and bounds on

he mixing time, in cases where the “multi-step coarse Ricci curvature” is positive, even if the
oarse Ricci curvature is not. The concentration results proved in these papers, as well as in the
resent paper, are of the “Gaussian then exponential” type, akin to Bernstein’s Inequalities: the
robability of deviations of at least m from the mean is of order e−cm2

for small m and e−cm

or large m – Ollivier gives examples where this is the best possible form of the concentration
nequality.

Our new results in discrete time do not rely on the existence of a well-behaved metric on
he state space, and require only conditions regarding the function of interest. Thus we obtain
tronger concentration results for functions of the chain that evolve much more slowly than the
otal transition rate of the chain, as long as they are contractive, in a suitable sense. We recover
ssentially the same result as Ollivier in the case of positive coarse Ricci curvature, and we
an also obtain results very similar to those of Paulin, but our results can also be used to prove
oncentration of measure in other settings. The application we give in the final section of our
aper gives a concentration result that we do not know how to obtain by other means.

We also give analogous concentration inequalities for continuous-time Markov chains. These
re entirely new, although, for chains contracting in Wasserstein distance, similar results
ould be obtained via the methods and results of Ollivier [25], Luczak [19] and Paulin [26].
eysseire [29] gives definitions and results for coarse Ricci curvature in continuous time, but
oes not prove any results that are closely related to ours.

We now turn to the cut-off phenomenon. For a Markov chain (X (t)), with initial state
X (0) = x , consider the total variation distance between the law of the process at time t and the
equilibrium distribution. The chain is said to exhibit the cut-off phenomenon if this distance
falls from near 1 to near 0 over a window of time that is much shorter than the mixing time.
In previous work, it is assumed that the state space is finite, and the starting state x is chosen
to maximise the mixing time. We present a version of the definition allowing for an infinite
state space, and for variation of the mixing time over a region of potential initial states, with
a cut-off window of width that is uniform across this region.

Our concentration of measure inequalities, combined with coupling arguments, are well-
suited to proving cut-off, and we illustrate this with two examples of independent interest. The
first is the well-known Bernoulli–Laplace model of diffusion: there are initially n red balls in
one urn and n black balls in another, and at each time step one ball from each urn is chosen
uniformly at random and the two balls are exchanged. Cut-off was proved for this model in
1987 by Diaconis and Shahshahani [6] using algebraic techniques: we provide a probabilistic
379
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proof, essentially recovering the bound of Diaconis and Shahshahani for the upper tail of the
distribution of the mixing time, while providing a sharper bound for the lower tail.

Our second application concerns a continuous-time model of a disease with two types of
ost, each infecting the other; the disease is supported at a low level in a population by
mmigration of both types of infected host from outside. This example illustrates both the
pplication of our new continuous-time concentration inequality and our new concept of cut-
ff, as the state space is infinite and the mixing time varies significantly depending on the
nitial conditions.

In both of the sample applications above, the chain we examine is contractive in Wasserstein
istance, and variants of the results we obtain could also be obtained from concentration
nequalities in earlier work. We also present a third application which uses the full power of
ur new continuous-time inequality; this treats the supermarket model, a well-known queueing
ystem, with a certain range of parameter values. In this example, we utilise facts about the
quilibrium distribution from a paper of Brightwell, Fairthorne and Luczak [2], alongside our
ong-term concentration result, to show tight concentration in equilibrium of the number of
mpty queues.

.1. Concentration of measure inequalities

Our general concentration inequality for discrete-time Markov chains appears as Theo-
em 2.1, and the special case where the chain is contracting in Wasserstein distance with respect
o a suitable metric as Theorem 2.3. Part (a) of Theorem 2.3 is very similar to Theorem 32 of
llivier [25] – that result is for the equilibrium distribution of the chain, whereas ours is for
nite-time distributions, but Ollivier’s Remark 34 indicates that the proof in his paper transfers

o the finite-time case. A similar result for chains contracting in Wasserstein distance also
ollows readily from Theorem 4.5 of Luczak [19]. We give more details after we have given
recise definitions and statements of theorems.

There is another quite different recent strand of work providing tools to show concentration
f measure and rapid mixing for a given function of a Markov chain, useful in circumstances
here the function mixes more rapidly than the chain itself. See Watanabe and Hayashi [31]

nd Rabinovitch, Ramdas, Jordan and Wainwright [28].
Results similar to Theorem 2.1 appear in earlier works of the third author, some unpublished,

nd a number of other applications are to be found in these papers, as well as in Gheissari,
ubetzky and Peres [11]. The flavour of the inequality is similar to that of Luczak [19], but
heorem 2.1 can be much more powerful when the chain makes frequent transitions that do
ot alter the value of the function of interest.

One example where this is relevant is the supermarket model, as studied in the final section
f this paper, where the number of queues of length k only changes infrequently for some
alues of k.

Another example is the alternative routing model of Gibbens, Hunt and Kelly [12]. Here,
here are links of limited capacity between each pair of nodes in a phone network; requests
or pairs of nodes to be connected arrive according to a Poisson process, and these can be met
ither by using the direct link or by using some path of two links. Different protocols have been
roposed and studied for choosing the route; one such is to use the direct link if it has spare
apacity, and if not then to inspect d ≥ 1 links of two routes, and use one of those with most

spare capacity. In an unpublished preprint of Luczak [20], an earlier version of Theorem 2.1 is

used to prove a differential equation approximation for this model, extending earlier results of
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Crametz and Hunt [5] and Graham and Méléard [13]. The equilibrium behaviour of the model
s studied via a similar approach in an unpublished preprint of Brightwell and Luczak [3]. The
ame methods can be used to treat other routing protocols. The key principle is that quantities
uch as the number of occupied links incident with a given node change far less often than the
verall state of the network. Our new result, Theorem 2.1, improves on the earlier version in
uczak [20] (Theorem 2.3) by weakening and simplifying its hypotheses.

The corresponding inequality for continuous-time Markov chains is Theorem 3.1, and the
pecial case for chains that are contracting in Wasserstein distance is Theorem 3.3. Our proof
or continuous time uses different methods to those used for discrete time (although both proofs
raw on principles of concentration of measure for martingales), and it is perhaps a little
urprising that the resulting theorems are nearly exact analogues of each other. In Brightwell
nd Luczak [3], a continuous-time model is analysed (somewhat awkwardly) by applying
iscrete-time concentration of measure inequalities from [20] to its jump chain; it seems that
his analysis would be eased by direct application of our new continuous-time inequalities, and
e plan to produce an improved version of [3] in the future.
Our notion of contraction in Wasserstein distance is very different in flavour from that of

ontraction in total variation distance, as studied by Marton [22] and others subsequently. In
articular, for a chain to exhibit contraction in total variation distance, it is necessary that,
rom any two states, there is a positive probability that two coupled chains started in these
tates coalesce in a single step.

.2. Cut-off

We now discuss the cut-off phenomenon in the convergence to equilibrium for sequences X
(n)

f Markov chains.
Let Lx (X

(n)
(t)) denote the distribution of X

(n)
when X

(n)
(0) = x , and let π

(n)
be the

quilibrium distribution of X
(n)

. Let S
(n)

denote the state space of the chain X
(n)

.
In earlier papers (for instance, Diaconis and Shahshahani [6] and Levin, Luczak and

eres [17]), cut-off is defined as follows, in the case where the state space S
(n)

is finite for
ach n. The worst-case distance to stationarity for the chain X

(n)
at time t is

dn(t) = max
x∈S(n)

dT V

(
Lx

(
X

(n)
(t)

)
, π (n)

)
,

nd the sequence X
(n)

of chains is said to exhibit cut-off at time tn with window width wn if
n = o(tn) and

lim
s→∞

lim inf
n→∞

dn(tn − swn) = 1; lim
s→∞

lim sup
n→∞

dn(tn + swn) = 0.

n other words, for a large constant s, at time tn + swn , the chain X
(n)

is nearly in equilibrium,
hatever the starting state; on the other hand, there is a starting state x ∈ S

(n)
such that the

hain X
(n)

starting from state x is very far from equilibrium at time tn − swn .
In many cases where cut-off, with window width wn , can be proven, the situation is typically

s follows, with a proof involving two separate arguments. The state space has a metric, and
he Markov chain makes jumps that are small with respect to this metric. The equilibrium
istribution is concentrated around some point y (suitably scaled with n) in the state space.
f the chain is started at some “distant” point x , one shows that its trajectory is concentrated
round its expectation, up until some time t (x) when the expectation becomes suitably close
n
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to y. Once in the neighbourhood of y, one seeks a coupling with a copy of the chain in
quilibrium, where coalescence takes place in time of order wn . One example of such a proof
as given by Levin, Luczak and Peres [17], and our examples in Sections 5 and 6 both illustrate

his general approach.
Similar behaviour is often to be found in examples where the state space is infinite, and

here is no “most distant” starting point from equilibrium. For instance, in a population model,
here may be no effective upper bound on the initial size of a population. Thus we find it
seful to introduce a more general notion of cut-off, where the mixing time tn(x) depends on
he initial state, but the window width wn is independent of the starting state. The proof scheme
bove can then be applied, provided we restrict the class of allowed initial states to exclude
a) states x too close to the point y around which the equilibrium is concentrated, where the
travel time” tn(x) from x to y will be of similar or smaller order to the time wn required for
oalescence of the coupled chains in the neighbourhood of y, and (b) possibly also states x
xtremely distant from y, where the fluctuation in the travel time exceeds the window width
n .
We now give our formal definition of cut-off, which extends the previous definition, and in

articular allows for an infinite state space. For En a subset of the state space S
(n)

of X
(n)

, let
tn(x), x ∈ En) be a collection of non-random times, and let (wn) be a sequence of numbers
uch that limn→∞ infx∈En tn(x)/wn = ∞. We say that X

(n)
exhibits cut-off at time tn(x) on En

ith window width wn , if there exist (non-random) constants (s(ε), ε > 0) such that, for any
> 0 and for all n large enough,

dT V

(
Lx

(
X

(n)
(tn(x) − s(ε)wn)

)
, π (n)

)
> 1 − ε,

dT V

(
Lx

(
X

(n)
(tn(x) + s(ε)wn)

)
, π (n)

)
< ε, (1.1)

niformly for all x ∈ En .
In some examples, the travel time tn(x) can be taken not to depend on x , as long as x ∈ En .

e say that X (n) exhibits cut-off at tn on En with window width wn , for a sequence (tn, n ≥ 1),
f the tn(x) in the definition above can be set equal to tn for all n and all x ∈ En . An illustration
f this last concept comes in Section 5; the idea here is that the expected “travel times” from
ll suitably distant starting states are nearly equal.

Our concentration of measure results are suited to showing that a Markov chain closely
ollows an almost deterministic trajectory until it reaches the neighbourhood near where the
quilibrium is concentrated. In order to complete a proof of cut-off, one needs to show that
onvergence to equilibrium is rapid once that neighbourhood has been reached. Proposition 4.1
ives conditions guaranteeing that a Markov chain taking non-negative real values, with a non-
ositive drift in all positive states, reaches 0 quickly with high probability. This implies an
pper bound on the coalescence time for the two copies of the chain in a contracting coupling.
e give such a result only in continuous time, and apply it in our continuous-time sample

pplication in Section 6. Our proof of Proposition 4.1 is based on the proof of a discrete-time
nalogue appearing as Proposition 17.19 of Levin, Peres and Wilmer [18]. Our application
n Section 5 requires a sharper coupling result specific to the model; using some version of
roposition 17.19 from [18] would give weaker bounds on the tail of the distribution of the
ixing time.
382
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1.3. Applications

We give three examples. The first two feature chains that are contracting in Wasserstein
istance, illustrating both our methods and the cut-off phenomenon. In the third example, we
rove results about concentration of the equilibrium distribution by using the full strength of
ur new concentration inequalities.

Section 5 concerns the Bernoulli–Laplace model of diffusion, originally investigated in the
ontext of cut-off by Diaconis and Shahshahani [6]. In this discrete-time model, there are two
rns each containing n balls, with n red and n black balls in total: at each time step, one ball is
hosen uniformly at random from each urn and the two are exchanged. The state of the system
fter r steps is captured by the number X (r ) of red balls in the left urn, and one compares

the distribution of X (r ) with the stationary distribution (which is concentrated around n/2).
iaconis and Shahshahani prove cut-off for X (r ) at time 1

4 n log n with window width n. Indeed,
their proof establishes cut-off not only for the most distant starting states (where X (0) = 0 or
n) but on any set En(ε) = { j : | j −

n
2 | ≥ εn}. They also give specific exponential rates for

the tail of the distribution of the mixing time. The methods used by Diaconis and Shahshahani
are algebraic: we give an alternative proof, using our concentration of measure results. Our
proof gives the same exponential rate for the upper tail as in [6], although our proof does not
give information about the extreme end of the tail, where the total variation distance between
the distribution at time r and the equilibrium distribution is below n−1/2 log2 n. Our methods

ield a doubly exponential rate for the lower tail, improving on the results of Diaconis and
hahshahani.

In Section 6, we consider a toy model of a subcritical two-host infection, maintained
y immigration of infectives from outside, at rates that are constant multiples of a scale
arameter n. Our model is appropriate in circumstances where the number of infectives is
mall compared to the total population size, and the expected number of infectives of each
ype of host satisfies a linear equation with a fixed point nc ∈ R2

+
. We consider an arbitrary

tarting state x within an annular region En(ζ ) = {y : nζ ≤ |y − nc| ≤ n/ζ }, where ζ ∈ (0, 1),
nd we show cut-off at tn(x) with window width 1 over this region. Here the travel time tn(x) is
ounded between two constants times log n, but varies over the region En(ζ ), for any ζ ∈ (0, 1).

In Section 7, we consider the supermarket model. In this n-server queueing model, customers
rrive according to a Poisson process at rate λn, where λ < 1, and inspect d ≥ 1 queues before
oining a shortest queue among these d . The service time of each customer is exponential of

ean 1. We consider a parameter regime where λ tends to 1 as 1 − n−α , and d grows as nβ ,
here α and β are constants satisfying certain inequalities. We choose the precise parameter

ange so that, as shown by Brightwell, Fairthorne and Luczak [2], the maximum queue length in
quilibrium is 2 with high probability, and most queues have length exactly 2. For this model,
e study the distribution of the number of empty queues, and show that it is concentrated
ithin order n

1
2 (1−β) of its mean n1−α . The application is chosen to illustrate the power of our

eneral results; most transitions of the chain do not affect the number of empty queues, so that
ur methods give stronger concentration results than we are able to obtain by any other means.
he techniques we use will extend readily to other parameter ranges.

Further consequences of inequalities Theorems 2.1 and 3.1 will be explored in future work.

. Concentration inequalities: discrete time

In this section, we first state and prove a general concentration of measure inequality
esigned for the analysis of discrete-time Markov chains, generalising results of Luczak [19].
383
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We then show how to recover a version of a result of Ollivier [25] for contracting chains,
which is perhaps more appealing and still fairly widely applicable. Next, we outline how to
use the inequality when we have a coupling of two copies of the chain which is “approximately
contracting” in the function of interest. Finally, we give a toy example to illustrate the
application of the inequalities.

2.1. Main result

Here and throughout, we use Z+ to denote the non-negative integers. Let X = (X (i))i∈Z+
be

discrete-time Markov chain with a discrete state space S and transition probabilities P(x, y)
or x, y ∈ S. We allow X to be lazy; that is, we allow P(x, x) > 0 for x ∈ S.

For x ∈ S, we set

N (x) := {y ∈ S : P(x, y) > 0}.

or k ∈ Z+ and a function f : S → R, define the function Pk f by

(Pk f )(x) := Ex [ f (X (k))], x ∈ S,

henever it exists, where Ex and Px are used to denote conditional expectation and probability
iven X (0) = x .

heorem 2.1. Let P be the transition matrix of a discrete-time Markov chain (X (i))i∈Z+
with

iscrete state space S. Let S̃ be a subset of S. Let f : S → R be a function such that (P i f )(x)
xists for all x ∈ S and i ∈ Z+, and satisfying, for all i ∈ Z+,⏐⏐(P i f )(x) − (P i f )(y)

⏐⏐ ≤ β, x ∈ S̃, y ∈ N (x); (2.1)∑
y∈N (x)

P(x, y)
(
(P i f )(x) − (P i f )(y)

)2
≤ αi , x ∈ S̃, (2.2)

here β and (αi )i∈Z+
are positive constants. Set ak :=

∑k−1
i=0 αi , k ≥ 1. Define Ak := {X (i) ∈

S for 0 ≤ i ≤ k − 1}, the event that (X (i)) stays in S̃ for the first k − 1 steps. Then, for all
x0 ∈ S̃ and all m ≥ 0,

Px0

({⏐⏐ f (X (k)) − (Pk f )(x0)
⏐⏐ ≥ m

}
∩ Ak

)
≤ 2e−m2/(2ak+4βm/3).

The conditions of the theorem are what is needed to fit into the framework of bounded
ifferences (Bernstein-like) inequalities, and the expression in the assumption on f is, as we
hall see, exactly what emerges when we bound conditional variances.

Evidently ak increases with k. Under a contractivity assumption, as we shall see shortly, the
i can be taken to tend to 0 exponentially, so that the ak are uniformly bounded: this means

hat we have a concentration of measure bound that is uniform in k. The result can also be
pplied in circumstances where the αi either converge more slowly to 0, or increase not too
apidly: in these cases, we obtain tighter concentration of f (X (k)) for smaller values of k.

Theorem 2.1 improves on Theorem 4.5 of Luczak [19] by using (2.2) to define αi , instead
f the cruder bound

L2
∑

y∈N (x)

P(x, y)W
(
Lx (X (i)),Ly(X (i))

)2
,

here f is assumed to be a Lipschitz function with Lipschitz constant L , and W denotes
he Wasserstein distance (both defined with respect to the same metric on the state space S).
384
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This is particularly important in contexts in which f (X (i)) evolves significantly more slowly
than X (i) itself, because many of the transitions of X do not change the value of f . An example

here this is relevant is the supermarket model, discussed in the final section of this paper, as
ell as the alternative routing model of Gibbens, Hunt and Kelly [12] and its generalisation, as

tudied in Brightwell and Luczak [3]. (These particular examples are set up as continuous-time
arkov chains, for which our companion inequality, Theorem 3.1, is more naturally applicable,

hough it is also natural to consider their discrete-time analogues.) Theorem 2.1 also improves
n Theorem 2.3 of Luczak [20], by weakening and simplifying its hypotheses.

In the case where the hypotheses of Theorem 2.1 are satisfied with S̃ = S, we can
immediately derive a bound on the variance of f (X (k)), valid for any fixed starting state x0.
Indeed, we have

var( f (X (k))) =

∫
∞

r=0
Px0

((
f (X (k)) − (Pk f )(x0)

)2
≥ r

)
dr

≤ 2
∫

∞

r=0
exp

(
−r

2ak + 4β
√

r/3

)
dr

≤ 2
∫

∞

r=0
e−r/4ak + e−3

√
r/8β dr

= 2(4ak + 128β2/9) ≤ 8ak + 29β2. (2.3)

2.2. Proof of Theorem 2.1

To prove Theorem 2.1, we use a slight extension of a result of McDiarmid [23]. Inequal-
ity (2.4) in Lemma 2.2 is a ‘two-sided’ version of inequality (3.28) in Theorem 3.15 of
McDiarmid [23]; inequality (2.5) is a slight extension of inequality (3.29) of McDiarmid [23],
in that we work with a non-deterministic bound on |Z i − Z i−1|, and is also two-sided.

For a square integrable random variable Y and a σ -field G ⊆ F , we use var(Y | G) to denote
the conditional variance of Y on G.

Lemma 2.2. Let (Ω ,F ,P) be a probability space equipped with a filtration {∅,Ω} = F0 ⊆

F1 ⊆ · · · ⊆ Fk in F . Let Z be an Fk-measurable random variable with EZ = µ, and let Z i =

E(Z | Fi ), for i = 0, . . . , k. Let γ and δ be constants such that
∑k

i=1 var(Z i | Fi−1)(ω) ≤ δ

.s. and |Z i (ω) − Z i−1(ω)| ≤ γ a.s. for all i = 1, . . . , k. Then for any m ≥ 0,

P
(⏐⏐Z − µ

⏐⏐ ≥ m
)

≤ 2e−m2/(2δ+2γm/3). (2.4)

More generally, the following holds. For δ, γ ≥ 0, let

A(δ, γ ) :=

{ k∑
i=1

var(Z i | Fi−1) ≤ δ
}

∩
{⏐⏐Z i − Z i−1

⏐⏐ ≤ γ, 1 ≤ i ≤ k
}
.

or any m ≥ 0 and any values δ, γ ≥ 0,

P
({⏐⏐Z − µ

⏐⏐ ≥ m
}

∩ A(δ, γ )
)

≤ 2e−m2/(2δ+2γm/3). (2.5)

The proof is that of Theorem 3.15 (inequalities (3.28) and (3.29)) in McDiarmid [23], except
that we use the indicator of the event A(δ, γ ) instead of the event

{∑k
i=1 var(Z i | Fi−1) ≤ δ

}
.

he proof is rather like a stopping argument, avoiding some technicalities.
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Proof. Following McDiarmid [23], we use Lemma 3.16 [23], which is as follows. If (Yi ) is
a martingale difference sequence with respect to a filtration (Fi ), where each Yi is bounded
above, if I is an indicator random variable, and if h is a real number, then

E
(

I eh
∑k

i=1 Yi | F0

)
≤ ess sup

(
I

k∏
i=1

E(ehYi | Fi−1) | F0

)
.

(The statement in [23] involves the supremum instead of the essential supremum: the notionally
stronger version is obtained by changing the Yi on a set of measure 0. The proof is fairly
straightforward by induction over a single-step inequality.)

Now, for any random variable X such that X ≤ b and EX = 0, we have E(eX ) ≤ eg(b)varX ,
where g(x) := (ex

−1− x)/x2 (see Lemma 2.8 in McDiarmid [23]). So, for any h, defining the
(possibly infinite) Fi−1 random variables vari := var(Z i | Fi−1) and dev+

i := ess sup(Z i −Z i−1 |

Fi−1), we have

E(eh(Zi −Zi−1)
| Fi−1) ≤ eh2g(hdev+

i )vari .

Let I be the indicator of the event A(δ, γ ). It then follows that

E(I eh(Z−µ)) ≤ ess sup
(

I
k∏

i=1

eh2g(hdev+

i )vari
)

≤ eh2 ess sup
(

I
∑k

i=1 g(hdev+

i )vari
)

≤ eh2g(hγ )δ.

Hence

P({Z − µ ≥ m} ∩ A(δ, γ )) = P(I eh(Z−µ)
≥ ehm)

≤ e−hmE(I eh(Z−µ)) ≤ e−hm+h2g(hγ )δ.

ptimising in h, we set h =
1
γ

log(1 +
mγ
δ

) and use the inequality (1 + x) log(1 + x) − x ≥

x2/(2 + 2x/3) for x ≥ 0, as in the proof of Theorem 2.7 in McDiarmid [23].
We obtain that

P({Z − µ ≥ m} ∩ A(δ, γ )) ≤ e−m2/(2δ+2γm/3).

he same proof gives the same upper bound on P({Z − µ ≤ −m} ∩ A(δ, γ )), and the result
ollows. □

roof of Theorem 2.1. We start by assuming that S̃ = S. Let (Fi ) denote the natural filtration
f (X (i))i∈Z+

. We fix a function f : S → R, a natural number k, and an initial state x0 ∈ S. We
onsider the evolution of (X (i))i∈Z+

for k steps, conditional on X (0) = x0. Define the random
ariable Z := f (X (k)). Then, for i = 0, . . . , k, Z i is given by

Z i = Ex0 [ f (X (k)) | Fi ] = (Pk−i f )(X (i)).

To apply Lemma 2.2, we need to bound the conditional variances var(Z i | Fi−1), for
≤ i ≤ k. Conditional on the event X (i − 1) = xi−1, Z i takes the value (Pk−i f )(x) with

robability P(xi−1, x). Since varZ ≤ E{(Z − c)2
} for any c ∈ R, it follows that

var(Z i | X (i − 1) = xi−1)

≤

∑
P(xi−1, x)

(
(Pk−i f )(x) − ci−1

)2
, (2.6)
x∈N (xi−1)

386



A.D. Barbour, G. Brightwell and M. Luczak Stochastic Processes and their Applications 152 (2022) 378–423

u

s

N

I

u
w

t
a

2

w

A
m

I
c

with ci−1 := (Pk−i f )(xi−1). Using Assumption (2.2), this yields

var(Z i | X (i − 1) = xi−1)

≤

∑
x∈N (xi−1)

P(xi−1, x)
(

(Pk−i f )(x) − (Pk−i f )(xi−1)
)2

≤ αk−i , (2.7)

niformly in xi−1 ∈ S. It thus follows that
k∑

i=1

var(Z i | Fi−1) ≤

k−1∑
j=0

α j = ak,

o we set δ = ak .
We also need a uniform upper bound on |Z i − Z i−1|. We note that

Z i−1 = E
{
E( f (X (k)) | Fi ) | Fi−1

}
=

∑
z∈N (X (i−1))

P(X (i − 1), z)(Pk−i f )(z).

ote that, from Assumption (2.1), if y, z ∈ N (x) for some x ∈ S, then⏐⏐(P i f )(y) − (P i f )(z)
⏐⏐ ≤ 2β. (2.8)

t then follows from (2.8) that, on the event {X (i − 1) = xi−1},⏐⏐Z i − Z i−1
⏐⏐ =

⏐⏐(Pk−i f )(X (i)) −

∑
z∈N (xi−1)

P(xi−1, z)(Pk−i f )(z)
⏐⏐

≤

∑
z∈N (xi−1)

P(xi−1, z)
⏐⏐(Pk−i f )(X (i)) − (Pk−i f )(z)

⏐⏐
≤ 2β, (2.9)

niformly in xi−1 ∈ S, since, in the last sum, both X (i) and z belong to N (xi−1). Accordingly,
e take γ = 2β.
Theorem 2.1 now follows from inequality (2.4) in Lemma 2.2, in the case where S̃ = S.
In general, for each i , (2.7) and (2.9) hold if xi−1 ∈ S̃, and so all the above bounds hold on

he event Ak = {X (i) ∈ S̃ for i = 0, . . . , k −1}. Thus Ak ⊆ A(δ, γ ), as defined in Lemma 2.2,
nd the full statement of Theorem 2.1 follows from inequality (2.5) in Lemma 2.2. □

.3. Contracting chains

We next show how to use Theorem 2.1 to recover a version of Ollivier’s results on chains
ith positive coarse Ricci curvature.
Let d(·, ·) be a metric on the state space S of a discrete-time Markov chain X = (X (i))i≥0.
Markovian coupling (X (1), X (2)) of two copies of the chain is contracting with respect to the
etric if, for some positive constant ρ and for all x, y ∈ S,

E[d(X (1)(1), X (2)(1))|(X (1)(0), X (2)(0)) = (x, y)] ≤ (1 − ρ)d(x, y). (2.10)

f condition (2.10) holds for all x, y in some subset S̃ of S, then we say that the coupling is˜
ontracting on S.
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The existence of a coupling satisfying (2.10) for all pairs of states is equivalent to the
nequality

sup
x,y∈S

Wd (Lx (X (1)),Ly(X (1)))
d(x, y)

≤ 1 − ρ, (2.11)

here Wd denotes the Wasserstein distance between two measures with respect to the metric d
n a space S: Wd (µ, ν) is the infimum of Ed(X, Y ) over all pairs (X, Y ) of S-valued random

variables, with L(X ) = µ and L(Y ) = ν. Ollivier [25] defines a Markov chain to have coarse
Ricci curvature at least ρ if (2.11) holds: we prefer to say that the Markov chain is contracting
in Wasserstein distance.

In the case where d is a graph distance – i.e., d(x, y) is the length of a shortest path in a
graph between vertices x and y – inequality (2.11) is equivalent to

sup
x∼y

Wd (Lx (X (1)),Ly(X (1))) ≤ 1 − ρ, (2.12)

where ∼ denotes adjacency in the graph. Gheissari, Lubetzky and Peres [11] call a chain
satisfying (2.12)(1 − ρ)-contracting. We prefer to use the term contracting in Wasserstein
distance to avoid confusion with the concept of contraction introduced by Marton [22], which
is contraction in total variation distance.

For a Markov chain that is contracting in Wasserstein distance with respect to a metric d,
we now prove concentration of measure for any real-valued function f on the state space that
is Lipschitz with respect to d. Part (a) of the theorem below applies when the Markov chain
is contracting on the entire state space; part (b) is for when the contraction is only on some
“good set”.

For an event A, we let A denote its complement.

Theorem 2.3. Let X be a discrete-time chain on discrete state space S with transition matrix
P. Suppose that d(·, ·) is a metric on S, and let f : S → R be a function such that, for some
constant L, | f (x) − f (y)| ≤ Ld(x, y) for all x, y ∈ S. Suppose also that D is a positive
constant such that d(x, y) ≤ D whenever P(x, y) > 0.
(a) If X is contracting in Wasserstein distance, with constant ρ, and D2 is a constant such
that, for all x ∈ S,∑

y∈N (x)

P(x, y)d(x, y)2
≤ D2 (2.13)

hen, for all x ∈ S, m ≥ 0, and k ∈ N,

Px

(
| f (X (k)) − Ex [ f (X (k))]| ≥ m

)
≤ 2 exp

(
−

m2

2L2 D2/(2ρ − ρ2) + 4L Dm/3

)
.

(b) More generally, suppose that X is contracting in Wasserstein distance on a subset Ŝ of S,
ith constant ρ, and let S̃ be a further subset of S such that S̃+

:= S̃∪
⋃

x∈S̃ N (x) ⊆ Ŝ. Suppose
hat (2.13) holds for all x ∈ S̃. For k a positive integer, let Ak = {X ( j) ∈ S̃ for 0 ≤ j ≤ k −1},
nd define

ek := sup Py(X (i) /∈ Ŝ for some i < k).

y∈S̃+
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Then, for all x ∈ S̃ and m ≥ 0,

Px

(
{| f (X (k)) − Ex [ f (X (k))]| ≥ m} ∩ Ak

)
≤ 2 exp

(
−

m2

4L2(D2/ρ + 12k3 D2e2
k ) + 4L Dm(1 + 6kek)/3

)
.

Note that we may always take D2 = D2, but sometimes it is possible to take D2 significantly
smaller. In part (b), we would expect to be able to choose the various sets so that ek is very
small. In order to apply part (b) effectively, one would need to know that P(Ak) is small, and
his will not be true if the starting state is “close to the boundary” of S̃: a natural approach is
o have three nested sets of states S∗

⊂ S̃ ⊂ Ŝ, with the starting state restricted to S∗, and with
he probability of escaping from one set to the next over the time interval of interest being
mall; then we obtain concentration of measure over that time interval, uniformly over starting
tates in S∗.

roof. For part (a), we apply Theorem 2.1 with S̃ = S. For states x and y with y ∈ N (x),
et (X (1)(i)) and (X (2)(i)) be copies of the chain with X (1)(0) = x and X (2)(0) = y, coupled so
hat E[d(X (1)(i), X (2)(i))] ≤ d(x, y)(1 − ρ)i for each i ∈ Z+. Then we have

|(P i f )(x) − (P i f )(y)| = |E f (X (1)(i)) − E f (X (2)(i))| ≤

E| f (X (1)(i)) − f (X (2)(i))| ≤ LEd(X (1)(i), X (2)(i)) ≤ Ld(x, y)(1 − ρ)i ,

henever y ∈ N (x) and i ∈ Z+. Thus we may take β = L D in (2.1) and αi = (1 − ρ)2i L2 D2
n (2.2) for each i ∈ Z+. Since then ak ≤ L2 D2/(2ρ−ρ2) for all k ≥ 1, the inequality follows.

For part (b), our plan is to apply Theorem 2.1 to the “inner” set S̃, so we need bounds on
(P i f )(x) − (P i f )(y)| valid whenever x ∈ S̃ and y ∈ N (x) ⊆ S̃+. Accordingly, we fix such a
air (x, y), and k ∈ N. We now consider two copies (X (1)(i)) and (X (2)(i)) of the chain, with

X (1)(0) = x and X (2)(0) = y, with a contractive coupling on Ŝ with constant ρ. For i ≥ 1, let
Bi be the event that both copies of the chain are in Ŝ for all j < i , and note that P(Bi ) ≤ 2ei .

e claim that, for each i ,

E[d(X (1)(i), X (2)(i))I [Bi ]] ≤ d(x, y)(1 − ρ)i .

his is true for i = 0. If the inequality is true for i − 1, then

E[d(X (1)(i), X (2)(i))I [Bi ]]
= E[E[d(X (1)(i), X (2)(i))I [Bi ] | X (1)(i − 1), X (2)(i − 1)]]
≤ E[(1 − ρ)d(X (1)(i − 1), X (2)(i − 1))I [Bi−1]]
≤ (1 − ρ)d(x, y)(1 − ρ)i−1,

s claimed. As each step of either chain increases the distance between them by at most D,
e also have the bound

E[d(X (1)(i), X (2)(i))I [Bi ]] ≤ (2i + 1)DP(Bi ) ≤ 6i Dei ,

for i ≥ 1 and also for i = 0, and therefore

E[d(X (1)(i), X (2)(i))] ≤ (1 − ρ)i d(x, y) + 6i Dei .

Hence we have

|(P i f )(x) − (P i f )(y)| ≤ L
(
(1 − ρ)i d(x, y) + 6i De

)
,
i
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whenever x ∈ S̃ and y ∈ N (x). Additionally we have that∑
y

P(x, y)|(P i f )(x) − (P i f )(y)|
2

≤ 2L2
(

(1 − ρ)2i
∑

y

P(x, y)d(x, y)2
+ 36i2 D2e2

i

)
,

or all x ∈ S̃. Thus we can apply Theorem 2.1 with β = L D(1 + 6kek), for k ≥ 1, and
i = 2L2((1 − ρ)2i D2 + 36i2 D2e2

i ) for each i . Since then ak ≤ 2L2(D2/ρ + 12k3 D2e2
k ), the

nequality follows. □

Both parts of Theorem 2.3 follow directly, with essentially the same proof as here, from
heorem 4.5 of Luczak [19]. Part (a) of the result is also very similar to Theorem 33 of
llivier [25]. Ollivier’s result is for the equilibrium distribution, although he notes in Remark 39

hat a similar result can be obtained for the finite-time distributions. Ollivier’s bounds are stated
n terms of a quantity called the coarse diffusion constant σ (x), at a state x , which is closely
elated to our D2, and a quantity called the local dimension nx , that is of constant order in
ost applications with discrete state spaces. Our proof of Theorem 2.1 could be reworked

o use the coarse diffusion constant directly (when bounding the conditional variances, we
ould instead use that var(Z ) =

1
2E(Z1 − Z2)2, where Z1 and Z2 are independent copies

of Z – see the proof of Lemma 4.6 in [19]). The conclusion of our result translates to
essentially the same as Ollivier’s, with different constants. The concentration result is of the
“Gaussian-then-exponential” type.

2.4. Approximately f -contracting chains

We next illustrate how Theorem 2.1 can be applied in other settings, without even a metric
on the state space. One can obtain a result by analysing the direct effect a coupling has on the
function f of interest, if the coupling is “approximately f -contracting”, as we now describe.
As before, let (X (1)) and (X (2)) be two coupled copies of the Markov chain, and let f : S → R

e any function. Suppose that
∑

y∈N (x) P(x, y)| f (x) − f (y)|2 ≤ F2 for any x ∈ S, and that,
for all states x, y ∈ S,

E[| f (X (1)
1 ) − f (X (2)

1 )||(X (1)
0 , X (2)

0 ) = (x, y)] ≤ (1 − ρ)| f (x) − f (y)|

+ε(x, y),

or some constant ρ > 0, and some “error function” ε. (An example where there is a need for
uch an error function is in Lemma 3.1 of [3].)

An induction argument then gives that, for all x, y ∈ S and every k ∈ N,

Ex,y[| f (X (1)
k ) − f (X (2)

k )] ≤ (1 − ρ)k
| f (x) − f (y)| + ηk(x, y),

here

ηk(x, y) =

k∑
i=0

(1 − ρ)k−iEx,y[ε(X (1)
i , X (2)

i )].

convenient assumption, which is satisfied in the example from [3], is that Ex,y[ε(X (1)
i , X (2)

i )]
i k
ε0(1 − ρ) , for all i and all x, y ∈ S with y ∈ N (x), so that ηk(x, y) ≤ ε0(k + 1)(1 − ρ)
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for each k and each x and y with y ∈ N (x). It follows in this case that, for x ∈ S and every
∈ N, ∑

y∈N (x)

P(x, y)|(P i f )(x) − (P i f )(y)|
2

≤

∑
y∈N (x)

2P(x, y)
[
(1 − ρ)2i

| f (x) − f (y)|2 + ηi (x, y)2]
≤ 2F2(1 − ρ)2i

+ 2ε2
0(i + 1)2(1 − ρ)2i .

So we may take αi = 2(F2
+ ε2

0(i + 1)2)(1 − ρ)2i in Theorem 2.1, and hence ak = a =

2F2/ρ + 4ε2
0/ρ

3 for all k. Also we may take β = G + ε0, where G is a uniform bound on
| f (x) − f (y)| for all x ∈ S and y ∈ N (x). Applying Theorem 2.1 with these constants then

ives a concentration inequality valid for all x ∈ S and all m ≥ 0:

Px

(
| f (Xk) − (Pk f )(x)| ≥ m

)
≤ 2e−m2/(2a+4βm/3).

2.5. A toy example

Many of the chains we might be interested in have stationary distributions, and under suitable
conditions our results on long-term concentration of measure imply concentration of measure in
equilibrium. This is explored in Corollary 4.2 of Luczak [19], giving circumstances where the
chain is guaranteed to have a stationary distribution, and where concentration results carry over
to equilibrium. The main focus of the paper of Ollivier [25] is also concentration of measure in
equilibrium. In the example in Section 7 of this paper, we use facts from elsewhere about the
equilibrium distribution, as well as our long-term concentration results, to prove concentration
of measure of a suitable function in equilibrium.

We finish this section with a very simple class of examples, illustrating very different
circumstances when our results can be applied. These examples have no stationary distributions,
and our results can be applied to show concentration of measure within a window whose width
may be constant, or may increase with time.

Consider the discrete-time chain X (k) with state space Z+, X (0) = 0, and transition
robabilities p(i, i) = p(i, i + 1) = 1/2. This is thus a pure-birth chain, stepping up with
robability 1/2 at each time. We also consider a function f : Z+ → R, and we are interested

in the long-term behaviour of f (X (k)). Of course, this is easy to analyse directly since X (k)
has a Binomial distribution with parameters (k, 1/2). If, for example, f (x) = xr for some
constant r ∈ (0, 1], then f (X (k)) is concentrated within a window of width ckr−1/2 around
(k/2)r .

We start by explaining why the hypotheses of Theorem 2.3 are too restrictive to encompass
these examples. Consider a coupling of two copies of the chain, so that at each step either
both copies move up, or neither moves up. (Choosing a different coupling would not make
any difference.) Suppose that this coupling is contracting, with constant ρ > 0, with respect to
some metric d on Z+. Then we have

1
2
(d(i, j) + d(i + 1, j + 1)) ≤ (1 − ρ)d(i, j),

for each pair (i, j), which amounts to d(i + 1, i) ≤ (1 − 2ρ)d(i, i − 1) for each i ≥ 1.
If the function f is Lipschitz with respect to d, with constant L , then | f (i + 1) − f (i)| ≤

L(1 − 2ρ)i d(1, 0). This condition is only satisfied if ( f (i)) converges to a limit f , and
∞
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moreover | f (i) − f∞| ≤ C(1 − 2ρ)i for some constant C . In particular, none of the functions
f (x) = xr satisfy the hypotheses, even though a time-independent concentration result does
old when r ≤ 1/2.

We now show how to apply our more general result, Theorem 2.1, to the class of functions
f (x) = xr , with 0 < r ≤ 1. We note that f (x + 1) − f (x) is non-increasing in x , and that
(X (i) ≤ i/3) ≤ e−i/36 from the Chernoff bound. Then we have, for any x , and i sufficiently

arge,

|P i f (x + 1) − P i f (x)| ≤ P i f (1) − P i f (0)
≤ 1 × P(X (i) ≤ i/3) +

[
(i/3 + 1)r

− (i/3)r ]
≤ e−i/36

+ r (i/3)r−1
≤ 2(i/3)r−1.

ence we may take αi = 2(i/3)2r−2 for large enough i , and then ak =
∑k−1

i=0 αi is at most a
onstant C(r ) for r ∈ (0, 1/2), and at most C(r )k2r−1 for r > 1/2. We may also take β = 1.
or r < 1/2, applying Theorem 2.1 with Ŝ equal to the entire state space Z+, gives a uniform
ound on the concentration:

P(| f (X (k)) − E0 f (X (k))| ≥ m) ≤ 2e−m2/(2C(r )+4m/3),

or all k, showing that f (X (k)) remains concentrated within a window of constant width around
ts mean for all k. Of course, this is still far from a sharp result. For r > 1/2, we obtain that

P(| f (X (k)) − E0 f (X (k))| ≥ m) ≤ 2e−m2/(2C(r )k2r−1
+4m/3),

o that f is concentrated within kr−1/2 of its expectation, which in this case is the correct order
f magnitude.

. Concentration inequality: continuous time

We now state and prove a continuous-time version of Theorem 2.1. For definitions concern-
ng continuous-time Markov chains, see Anderson [1], in particular pages 13 and 81 (we use
he term “non-explosive” in place of “regular”).

Let X̂ = (X̂ (t))t∈R+ be a stable, conservative, non-explosive continuous-time Markov chain
ith a discrete state space S and Q-matrix (Q̂(x, y) : x, y ∈ S). Let P̂ t

= eQ̂t denote the
ransition probabilities of X̂ . Much as before, for a function f : S → R, we write (P̂ t f )(x) to
enote Ex f (X̂ (t)), whenever it exists.

For x ∈ S, we set

N (x) := {y ∈ S : Q̂(x, y) > 0}.

heorem 3.1. Let (Q̂(x, y) : x, y ∈ S) be the Q-matrix of a stable, conservative, non-
xplosive continuous-time Markov chain (X̂ (t))t≥0 with discrete state space S. Writing qx =

Q̂(x, x), let Ŝ be a subset of S, for which q := supx∈Ŝ{qx } < ∞. Let f : S → R be a
unction such that (P̂ t f )(x) := Ex f (X̂ (t)) exists for all t ≥ 0 and x ∈ S, and suppose that β̂
s a constant such that⏐⏐(P̂ s f )(x) − (P̂ s f )(y)

⏐⏐ ≤ β̂, (3.1)

or all s ≥ 0, all x ∈ Ŝ and all y ∈ N (x). Assume also that the continuous function
: R+

→ R+ satisfies∑
Q̂(x, y)

(
(P̂ s f )(x) − (P̂ s f )(y)

)2
≤ α̂(s), (3.2)
y∈S
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for all x ∈ Ŝ and all s ≥ 0. Define ât :=
∫ t

s=0 α̂(s) ds. Finally, let At := {X̂ (s) ∈ Ŝ for all 0 ≤

< t}. Then, for all x0 ∈ Ŝ, t ≥ 0 and m ≥ 0,

Px0

({⏐⏐ f (X̂ (t)) − (P̂ t f )(x0)
⏐⏐ > m

}
∩ At

)
≤ 2e−m2/(2̂at +2β̂m/3).

Exactly as in the discrete case, a bound on the variance of f (X̂ (t)) follows in the case where
S = S.

In order to prove the theorem, we first need to show that, for any fixed x ∈ Ŝ, the
unction (P̂ s f )(x) has zero quadratic variation on any finite s-interval. This follows from the
ollowing lemma.

emma 3.2. Under the above assumptions, for each x ∈ Ŝ, (P̂ s f )(x) is continuously
ifferentiable with respect to s.

roof. We can suppose that f (x) ≥ 0 for all x ∈ S; if not, it suffices to consider the positive
nd negative parts f + and f − of f separately. This enables the exchange of sums and integrals
n the argument that follows.

First, by considering what happens up to time s, we have

(P̂ t f )(x) ≥ e−qx s(P̂ t−s f )(x), 0 ≤ s ≤ t, x ∈ Ŝ.

hus, from (3.1), for x ∈ Ŝ and y ∈ N (x), it follows that

(P̂v f )(y) ≤ β̂ + eqx (t−v)(P̂ t f )(x), 0 ≤ v ≤ t. (3.3)

ow, since

P̂ s(y, z) = Py[X̂ (s) = z],

he Kolmogorov backward equations imply that, for any x ∈ Ŝ and s > 0, we have

(P̂ s f )(x) =

∑
y∈S

f (y)
{

e−qx sδxy +

∫ s

0
e−qx u

∑
z∈S

Q̂(x, z)P̂ s−u(z, y) du
}

= f (x)e−qx s
+

∫ s

0
e−qx (s−v)

∑
z∈S

Q̂(x, z)(P̂v f )(z) dv. (3.4)

n view of (3.3), and because
∑

z∈S Q̂(x, z) = qx < ∞, the integrand on the right hand side
f (3.4) is uniformly bounded on [0, t] for any t < ∞, implying that the indefinite integral is
ontinuous in s. From this, it follows immediately that (P̂ s f )(x) is continuous in s also. But
hen, for x ∈ Ŝ,∑

z∈S

Q̂(x, z)(P̂v f )(z) = qx (P̂v f )(x) +

∑
z∈S

Q̂(x, z){(P̂v f )(z) − (P̂v f )(x)}

s a uniformly convergent sum, in view of (3.1), and so the integrand in (3.4) is continuous;
hus the indefinite integral is continuously differentiable with respect to s, and hence (P̂ s f )(x)
s also. □

roof of Theorem 3.1. Fix X̂ (0) = x0 ∈ Ŝ and, for 0 ≤ s ≤ t , defineˆ t̂ t̂−s ˆ t̂
Zs := E{ f (X (t)) | Fs} − (P f )(x0) = (P f )(X (s)) − (P f )(x0);
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note that Z t = f (X̂ (t)) − (P̂ t f )(x0) and that Z0 = 0. Then (Zs)0≤s≤t is a martingale, and so
s (Ẑs)0≤s≤t , where Ẑs := Zs∧τ0 , and

τ0 := inf{s ≥ 0 : X̂ (s) /∈ Ŝ}.

e now use a supermartingale derived from Ẑ to prove a concentration bound.
In view of Lemma 3.2, the continuous part of Z has no quadratic variation until τ0, and so

he predictable quadratic variation of Ẑ is given by

⟨Ẑ⟩t =

∫ t∧τ0

0

∑
y

q(X̂ (s), y){(P̂ t−s f )(y) − (P̂ t−s f )(X̂ (s))}2 ds.

ence, by (3.2),

⟨Ẑ⟩t ≤

∫ t

0
α̂(t − s) ds = ât < ∞. (3.5)

Let the jump times of X̂ be denoted by 0 < σ1 < σ2 < · · · , and write

U h
s :=

∑
i : σi ≤(s∧τ0)

(eh∆Zi − 1 − h∆Z i ) = h2
∑

i : σi ≤(s∧τ0)

(∆Z i )2g(h∆Z i ),

here g(x) = (ex
− 1 − x)/x2, as in the proof of Lemma 2.2, and, for i such that σi ≤ τ0,

∆Z i := Zσi − Zσi − = (P̂ t−σi f )(X̂ (σi )) − (P̂ t−σi f )(X̂ (σi−)),

sing the continuity of (P̂ s f )(x) in s ≥ 0 for each x ∈ Ŝ.
Let V h denote the compensator of U h . We first note that V h

s is finite, at least for s ≤ τ0.
his is because, for 0 ≤ v < s ≤ τ0, we have

0 ≤ U h
s − U h

v ≤ h2g(hβ̂)
∑

i : v<σi ≤s

(∆Z i )2 a.s.,

y (3.1), as g is increasing on [0,∞). Hence, noting that At = {τ0 ≥ t}, we see that

I [At ]eV h
t ≤ I [At ] exp(h2g(hβ̂ )̂at ), (3.6)

n view of (3.5).
Now Ẑ is a square integrable martingale, because of (3.5), and hence, from the proof of

emma 2.2 in van de Geer [10], exp{h Ẑs − V h
s∧τ0

} is a non-negative supermartingale with
nitial value 1, since the continuous part of Ẑ has no quadratic variation. Thus

1 ≥ E(I [At ] exp{h Ẑ t − V h
t∧τ0

}) = E(I [At ] exp{h Z t − V h
t }).

n the other hand, using (3.6),

I [At ] exp{h Z t − V h
t } ≥ I [At ]eh Zt exp{−h2g(hβ̂ )̂at }.

ence

ehmPx [{Z t ≥ m} ∩ At ] ≤ Ex {I [At ]eh Zt } ≤ exp{h2g(hβ̂ )̂at },

r

Px [{ f (X̂ (t)) − (P̂ t f )(x) ≥ m} ∩ At ] ≤ exp{h2g(hβ̂ )̂at − hm}.

e again optimise in h, as in the proof of Theorem 2.7 in McDiarmid [23], and then repeat
he argument for a bound on P [{ f (X̂ (t)) − (P̂ t f )(x) ≤ −m} ∩ A ]. □
x t
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Let (X̂ (t))t≥0 be a stable, conservative, non-explosive continuous-time chain with state space
S, and let d(·, ·) be a metric on S. A Markovian coupling of two copies of (X̂ (t))t≥0 is itself a
ontinuous-time Markov chain, with a generator that we denote A. The coupling is said to be
ontracting with respect to d, with constant ρ > 0, if, for all x, y ∈ S,

Ad(x, y) ≤ −ρd(x, y). (3.7)

f the above holds for all x and y in some Ŝ ⊆ S, then we say that the coupling is contracting
n Ŝ. We say that (X̂ (t))t≥0 is contracting in Wasserstein distance if there is a coupling
atisfying (3.7) for all x, y ∈ S. This definition corresponds to that of positive coarse Ricci
urvature for continuous-time chains given by Veysseire [29], in the setting of jump chains.

The next result establishes concentration of measure for continuous-time chains that are
ontracting in Wasserstein distance. We state our result only for the case when the Markov
hain is contracting on the entire state space, but there is not necessarily a global upper bound
n the total transition rate out of a state. We could also provide a version for use when the
ontraction property only holds on a “good set”, but it seems hard to cover all the possible
ases where such a result might be useful: an issue is that we need some mild control on the
rowth of f in the unlikely event that the chain leaves the good set (in the discrete case, we
sed that the chain makes a bounded number of steps of bounded distance) and the form of
he bounds will depend on the manner of that control.

heorem 3.3. Let X̂ be a stable, conservative, non-explosive continuous-time Markov chain
n a discrete state space S, with Q-matrix Q̂ := (Q̂(x, y) : x, y ∈ S). Suppose that
(·, ·) is a metric on S, and let f : S → R be a function such that, for some constant L,
f (x) − f (y)| ≤ Ld(x, y) for all x, y ∈ S.

Let Ŝ be a subset of S, and let q and D be constants such that −Q̂(x, x) ≤ q for all x ∈ Ŝ
nd d(x, y) ≤ D whenever x ∈ Ŝ and y ∈ N (x). For t > 0, let At = {X̂ (s) ∈ Ŝ for 0 ≤ s < t}.

Suppose that X̂ is contracting in Wasserstein distance, as in (3.7), with constant ρ. Then,
or all x ∈ Ŝ, t > 0 and m ≥ 0,

Px

({⏐⏐ f (X̂ (t)) − Ex [ f (X̂ (t))]
⏐⏐ ≥ m

}
∩ At

)
≤ 2 exp

(
−

m2

q L2 D2/ρ + 2L Dm/3

)
.

roof. It follows from (3.7) that, under a contracting coupling of two copies X̂ (1) and
X̂ (2), the process

{
eρt d(X̂ (1)(t), X̂ (2)(t))

}
t≥0 is a non-negative local supermartingale. Thus, if

X̂ (1)(0), X̂ (2)(0)) = (x, y), then

Ed(X̂ (1)(t), X̂ (2)(t)) ≤ e−ρt d(x, y), t ≥ 0. (3.8)

e can now apply Theorem 3.1, with

β̂ = L D, α̂(s) = e−2ρsq L2 D2,

nd so, for any t > 0,

ât = q L2 D2
∫ t

0
e−2ρs ds ≤

q D2L2

2ρ
.

he result now follows from Theorem 3.1. □
395



A.D. Barbour, G. Brightwell and M. Luczak Stochastic Processes and their Applications 152 (2022) 378–423

d
a
i
c

4

w
o
t
a

n
F
m
o
d

[
w

P
c
a

D

o
t
t

Note that the upper bound in Theorem 3.3 on the deviations of f (X̂ (t)) from its expectation
oes not depend on t . As in the discrete case, in many applications, the distribution of X̂ (t) will
pproach an equilibrium, and the bound above implies a bound on the concentration of f (X̂ (t))
n equilibrium. However, it might well be the case that P(At ) → 0 as t → ∞: eventually the
hain leaves the good set, and once it does we cannot hope to say much about its behaviour.

. Upper bounds on coalescence times

In this section, we prove an auxiliary result for continuous-time Markov chains, which we
ill use (primarily in Section 6) to show that a chain with a contracting coupling mixes rapidly
nce it enters a region R of the state space where the equilibrium distribution is concentrated;
his is therefore a useful ingredient in a proof of cut-off, showing that the mixing time from
ny “distant” state is dominated by the “travel time” to reach R.

We study a function of a continuous-time Markov chain on the non-negative reals, with
on-positive drift in all positive states, and prove a lower bound on the hitting time of state 0.
or a contracting coupling (X (t), Y (t)) of two copies of a Markov chain with respect to the
etric d on their state space S, we can apply our result below to the function d(X (t), Y (t))

f the Markov chain (X (t), Y (t)), in order to show that coalescence occurs quickly once the
istance between the two copies is reasonably small: we illustrate this method in Section 6.

We deal only with the continuous-time case. Proposition 17.19 of Levin, Peres and Wilmer
18] gives an analogous result for discrete-time chains, which can often be used in a similar
ay to that described above; our proof of the proposition below follows theirs.

roposition 4.1. Let X be a stable, conservative, non-explosive continuous-time Markov jump
hain, with state space S and Q-matrix Q. Let B and σ 2 be positive, and let f : S → R+ be
function. Set S0 := {x : f (x) = 0}, and assume that:

(i) the drift
∑

y Q(x, y)
(

f (y) − f (x)
)

of f is non-positive for all x in S \ S0;
(ii) f (X ) makes jumps of magnitude at most B;

(iii)
∑

y Q(x, y)
(

f (y) − f (x)
)2

≥ σ 2 for all x ∈ S \ S0.

efine T∗ := inf{t : f (X (t)) = 0}, the hitting time of S0. Then, for any t0 ≥ 2B2/σ 2,

P(T∗ ≥ t0) ≤
2
√

2 f (X (0))
σ
√

t0
. (4.1)

Notes:

(a) The nature of the underlying state space S is not relevant, and we do not need to assume
that the set { f (x) : x ∈ S} is discrete.

(b) It is not a priori obvious that S0 is non-empty or that T∗ is a.s. finite, but these follow
from the result.

(c) Suppose that f (X0) ≥ B/2. In the case where t0 < 2B2/σ 2, we then have P(T∗ ≥ t0) ≤

1 ≤
2
√

2 f (X (0))
σ
√

t0
, and so (4.1) holds without any condition on t0.

The motivating example underlying the proposition is that of a simple random walk X (t)
n Z+ (with f (x) = x), making steps up and down each at rate 1, until the walk hits 0, so
hat the sum in (iii) is equal to 2 for each positive state. In this case, the proposition says that
he walk hits 0 before time t with probability at least 1 −

2X (0)
√ , which is best possible up
0 t0

396



A.D. Barbour, G. Brightwell and M. Luczak Stochastic Processes and their Applications 152 (2022) 378–423

w
a

A

w

f

(

to a constant factor. The proposition then gives conditions, for more general processes, under
which the same behaviour holds.

As mentioned already, we shall apply Proposition 4.1 to a Markovian coupling (X, Y ), where
X and Y are two copies of a jump Markov chain with a state space S equipped with a metric d,
and f

(
(x, y)

)
= d(x, y). The conclusion is equivalent to saying that the chains have coalesced

by time t0 with probability at least 1 − 2
√

2d(X (0), Y (0))/
√

t0σ (unless the two chains start
ithin distance B/2 of each other, where B is the maximum size B of a jump in the distance,

nd t0 is less than 2B2/σ 2). If the coupling is contracting with respect to d , then condition (i)
is satisfied. A lower bound σ 2 on the expression in condition (iii) can be obtained when, under
the coupling, the distance between the two copies changes by at least η at rate at least r , for
suitable η and r .

Our proof follows that of Proposition 17.19 in Levin, Peres and Wilmer [18].

Proof. Let D(t) = f (X (t)), so that T∗ = inf{t : D(t) = 0}. For some h ≥ B ∨ D(0) to be
chosen later, let Th = inf{t : D(t) = 0 or D(t) ≥ h}. We note that, for any t0 ≥ 0,

P(T∗ ≥ t0) ≤ P(Th ≥ t0) + P(D(t0 ∧ Th) ≥ h).

We now give bounds on the two terms on the right above.
By (i), the process (D(t ∧ Th)) is a supermartingale, and by (ii) it is bounded between 0

and h + B. Therefore, by the Optional Stopping Theorem, we have D(0) ≥ ED(t0 ∧ Th) ≥

hP(D(t0 ∧ Th) ≥ h), and so P(D(t0 ∧ Th) ≥ h) ≤ D(0)/h.
For t ≥ 0, we set G(t) = D(t)2

−2h D(t)−σ 2t . We claim that (G(t ∧Th)) is a submartingale.
For s < t ∧ Th , we have

E[G(t ∧ Th) | X (s)]

= G(s) + E
∫ t∧Th

u=s

∑
y

Q(X (u), y)
(

f (y)2
− f (X (u))2

−2h
(

f (y) − f (X (u))
))

− σ 2 du

s

f (y)2
− f (X (u))2

− 2h
(

f (y) − f (X (u))
)

=
(

f (y) − f (X (u))
)2

− 2
(
h − f (X (u))

)(
f (y) − f (X (u))

)
,

e have∑
y

Q(X (u), y)
(

f (y)2
− f (X (u))2

− 2h
(

f (y) − f (X (u))
))

≥

∑
y

Q(X (u), y)
(

f (y) − f (X (u))
)2

−2
(
h − f (X (u))

) ∑
y

Q(X (u), y)
(

f (y) − f (X (u))
)

≥ σ 2

or all u < Th , by (i) and (iii), and so indeed E[G(t ∧ Th) | X (s)] ≥ G(s) for s < t ∧ Th .
For t ≤ Th , we have 2h D(t) − D(t)2

= (2h − D(t))D(t) ≥ 0, as 0 ≤ D(t) ≤ h + B ≤ 2h
since h ≥ B) for t ≤ T . Thus we have, for any t ≥ 0, E(2h D(t ∧ T ) − D(t ∧ T )2) ≥ 0, and
h h h
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so

2h D(0) = D(0)2
− G(0) ≥ −EG(t ∧ Th)

= E
(
2h D(t ∧ Th) − D(t ∧ Th)2)

+ σ 2E(t ∧ Th)

≥ σ 2E(t ∧ Th).

Hence we obtain, for any t ≥ 0, E(t ∧Th) ≤ 2h D(0)/σ 2. Letting t tend to infinity and applying
he Monotone Convergence Theorem, we obtain the same upper bound on ETh . Therefore, for
ny t0 > 0,

P(Th ≥ t0) ≤
2h D(0)
σ 2t0

.

We conclude that

P(T∗ ≥ t0) ≤
2h D(0)

t0σ 2 +
D(0)

h
.

ptimising this bound by setting h = σ
√

t0/2 now gives, provided t0 ≥ 2(B ∨ D(0))2/σ 2 (so
hat h ≥ B ∨ D(0)),

P(T∗ ≥ t0) ≤
2
√

2D(0)
σ
√

t0
.

f D(0) > σ
√

t0/2, then the result is trivial, so we obtain the bound above under the condition
0 ≥ 2B2/σ 2. □

We remark that the assumption of bounded jumps cannot be dropped. Let (X (t)) be a chain
n Q with Q-matrix Q given by (a) for x < 1, Q(x, x/2) = 1 and Q(x, x + 1/x) = x2/2,
nd (b) for x ≥ 1, Q(x, x + 1/2) = Q(x, x − 1/2) = 1. Then (X (t)) is a non-explosive jump
hain satisfying conditions (i) and (iii) with σ 2

= 1/2. From a state x < 1, the probability
hat all subsequent jumps are down is equal to

∏
∞

k=0 1/(1 + x2/22k+1) > 0. Thus the chain
akes a.s. finitely many visits to [1,∞) before entering (0, 1) and making only downward

umps thereafter, but (X (t)) can never reach 0.
Alternatively, consider the chain on Q with a Q-matrix such that Q(x, x + 1) = 1 for all x ,

Q(x, x/2) = 2/x for x ≤ 2, and Q(x, x − 1) = 1 for x ≥ 2. This chain satisfies all of (i)–(iii),
ith σ 2

= 1, but is explosive: starting from a state x ≤ 2, the probability that the chain makes
nfinitely many downward jumps before the first upward jump is

∏
∞

k=1 2k/(2k
+ x) > 0. State 0

s not reached before the explosion time.

. Bernoulli–Laplace diffusion model

As our first example, we re-examine the Bernoulli–Laplace chain (Feller [9], Example
V.2(f)), for which cut-off was first established in Diaconis and Shahshahani [6]. In this model,

here are two urns, the left urn initially containing n red balls, and the right urn n black balls.
hen, at each time step, a ball is chosen at random in each urn, and the two balls are switched.

The state of the system at any time r ≥ 0 is captured by the number X (n)(r ) of red balls in
he left urn at time r . The chain X (n) can be viewed as a discrete-time lazy random walk with
tate space {0, . . . , n} ⊂ Z, with state-dependent transition probabilities

P[X (n)(r + 1) = j + 1|X (n)(r ) = j] = (1 − j/n)2,

P[X (n)(r + 1) = j − 1|X (n)(r ) = j] = ( j/n)2
;

(n) (n) 2 2
P[X (r + 1) = j |X (r ) = j] = 1 − (1 − j/n) − ( j/n) .
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Diaconis and Shahshahani examine the total variation distance between the distribution of
X (n)(r ) and its equilibrium distribution π = π (n), a hypergeometric distribution with parameters
2n, n, n), defined by

π (n)( j) :=

(
n
j

)(
n

n − j

)/(
2n
n

)
, 0 ≤ j ≤ n.

Analogously to earlier, we use L j , P j and E j to refer to distributions conditional on X (n)(0) =

j , and we also use Lπ (n) , Pπ (n) and Eπ (n) to refer to the equilibrium distribution.
Letting rn(δ) := ⌊

1
4 n log n+δn⌋, Diaconis and Shahshahani [6] show that there are universal

onstants C1,C2 > 0 such that

dT V
(
Ln(X (n)(rn(δ))), π (n))

≥ 1−C1e4δ, −
1
4 log n ≤ δ < 0;

dT V
(
Ln(X (n)(rn(δ))), π (n))

≤ C2e−2δ, δ ≥ 0. (5.1)

heir proofs, especially that of (5.1), are based on algebraic techniques. Although they only
onsider starting from state n, which is easily seen to maximise the mixing time, their proofs
xtend readily to cover other starting states. The upper bound (5.1) holds for any starting state.
f the chain is started in a state j in

En(ε) := { j : | j −
n
2
| ≥ εn},

then a minor adjustment to their proof yields a bound of the form

dT V
(
L j (X (n)(rn(δ))), π (n))

≥ 1−C3e4δε−2, −
1
4 log n ≤ δ < 0, (5.2)

or some universal constant C3.
Thus, in the language introduced in Section 1, we have the following result.

heorem 5.1. For any ε > 0, the Bernoulli–Laplace chain exhibits cut-off at 1
4 n log n on

En(ε) with window width n.

We use the results of the previous sections to give an alternative, coupling proof of
Theorem 5.1, yielding the bounds in the result below.

Theorem 5.2. Let X (n)(r ) be a copy of the Bernoulli–Laplace chain. For δ ∈ R, set
n(δ) := ⌊

1
4 n log n + δn⌋.

(a) For −
1
4 log n ≤ δ < 0, we have

dT V
(
L j (X (n)(rn(δ))), π (n))

≥ 1−4 exp
(
−
ε2

32
e−4δ

)
,

or any ε > 0, any j ∈ En(ε), and n ≥ 4.
(b) For 0 ≤ δ ≤

1
4 log n − log log n, we have

dT V
(
L j (X (n)(rn(δ))), π (n))

≤ 21e−2δ, (5.3)

for any j ∈ {0, . . . , n}, and n sufficiently large.

Thus our upper bound in Theorem 5.2(b) matches that of Diaconis and Shahshahani in
(5.1), except that our proof requires a mild upper bound on δ, and our lower bound in part (a)
improves on (5.2). The inequalities above are more than enough to imply Theorem 5.1.

Extensions and generalisations of the result of Diaconis and Shahshahani have also been
obtained. For instance, Donnelly, Lloyd and Sudbury [7] showed cut-off for the separation
399
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distance mixing time for this model, and recently Eskenazis and Nestoridi [8] showed cut-off
for the version where k > 1 balls are exchanged at each step. All of these papers make some
use of algebraic techniques.

We now give a brief overview of our proof of Theorem 5.2. The first step is to use our
discrete-time concentration of measure inequality, Theorem 2.3(a), to show that, for any starting
state j = X (n)(0) and any r , X (n)(r ) is well-concentrated around its mean. An easy estimate
for the mean then shows that, with high probability, X (n)(r ) is far from n/2 for r ≤ rn(0), and
this is enough to give part (a).

The proof of (b) is more complicated. The concentration of measure result shows that X (n)(r )
is unlikely to leave a neighbourhood of n/2 for a long period of time after rn(0); while it is
in this neighbourhood, we can approximate the transitions of the chain by the transitions of
a simpler chain whose long-term behaviour is easy to analyse, and show that the two chains
therefore have approximately the same distributions over a suitably long time interval.

We proceed by stating and proving a sequence of lemmas. In what follows we drop the
superscript (n), writing X (r ) instead of X (n)(r ), to lighten the notation.

Lemma 5.3. Let X (r ) = X (n)(r ) be a copy of the Bernoulli–Laplace chain, with n ≥ 4. For
all starting states j ∈ {0, . . . , n}, all r ∈ Z+, and all c with 0 ≤ c ≤ 3

√
n/4, we have

P j (|X (r ) − nx j (r )| ≥ c
√

n) ≤ 2e−c2/2,

here

x j (r ) = E j X (r )/n =

( j
n

−
1
2

)(
1 −

2
n

)r
+

1
2
. (5.4)

roof. Our plan is to use Theorem 2.3, and accordingly our first step is to describe a contractive
oupling.

We fix n ≥ 4, and j0 ∈ {0, . . . , n − 1}, and let (X1(r )) and (X2(r )) be two copies of the
hain starting in j0 and j0 + 1 respectively. We describe a coupling of the chains such that
X1(r ) − X2(r )| remains equal to 1 until dropping to 0. When the two chains are in adjacent
tates j and j + 1 with 1 ≤ j ≤ n − 2, say with X1(r ) = j and X2(r ) = j + 1, then the
ext step of the coupling is as follows. The two chains jump together up by 1 with probability
1 − ( j + 1)/n)2 and down by 1 with probability ( j/n)2. Additionally, the lower chain X1(r )
umps up by 1 alone with probability (1 − j/n)2

− (1 − ( j + 1)/n)2
= (2n − 2 j − 1)/n2, and

he higher chain X2(r ) jumps down by 1 alone at rate (( j + 1)/n)2
− ( j/n)2

= (2 j + 1)/n2.
his leaves probability 1

n2

(
(n − j)2

+ ( j +1)2
)

that both chains stay in their current state. Note
hat indeed X2(r + 1) − X1(r + 1) is either 1 or 0, and that

P(X2(r + 1) = X1(r + 1) | X1(r ) = j, X2(r ) = j + 1)

=
2n − 2 j − 1

n2 +
2 j + 1

n2 =
2
n
,

for 1 ≤ j ≤ n − 2.
The rules above do not define a coupling in the case where j = 0 or j = n − 1. In the

case j = 0, for instance, X1(r ) jumps from 0 to 1 with probability 1, and X2(r ) jumps to
one of 0, 1, or 2 with probabilities (1/n)2, 2/n − 2/n2, and (1 − 1/n)2 respectively. There is

1 2
hus no monotone coupling possible. However, when X (r ) = 0 and X (r ) = 1, the next step
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of the coupling is forced since X1(r + 1) = 1 with probability 1, and it is still the case that
|X2(r + 1) − X1(r + 1)| is either 1 or 0. We have

P(X2(r + 1) = X1(r + 1) | X1(r ) = 0, X2(r ) = 1) =
2
n

−
2
n2 ,

nd similarly for j = n − 1. Hence our coupling is contractive with constant ρ = 2/n − 2/n2.
We take f (x) = x in Theorem 2.3(a), with S = {0, . . . , n}, d(x, y) = |x − y|, L = D =

D2 = 1, and ρ = 2/n −2/n2, so that 2/(2ρ−ρ2) ≤ n for all n ≥ 4. Then, by Theorem 2.3(a),
or all j ∈ {0, . . . , n}, all r ∈ Z+, and all m > 0, we have

P j (|X (r ) − E j X (r )| ≥ m) ≤ 2e−m2/(n+4m/3).

f we set m = c
√

n, for 0 ≤ c ≤ 3
√

n/4, we obtain that n + 4m/3 ≤ 2n, and so

P j (|X (r ) − E j X (r )| ≥ c
√

n) ≤ 2e−c2/2.

To complete the proof, it remains to verify the formula for x j (r ) := E j X (r )/n. Observe that

E j X (r + 1) = E j X (r ) + E j (1 − X (r )/n)2
− E j (X (r )/n)2,

o that

x j (r + 1) = 1/n + x j (r )(1 − 2/n),

nd hence

x j (r ) =

( j
n

−
1
2

)(
1 −

2
n

)r
+

1
2
,

as claimed □

A matching tail bound for the equilibrium distribution π (n) follows from Lemma 5.3. In
act, unsurprisingly, sharper tail bounds on the hypergeometric distribution are known: results
f Hoeffding [15] (see Section 6 and Theorem 1) imply that, for any c ≥ 0,

Pπ (n) (|X −
n
2
| ≥ c

√
n) ≤ 2e−2c2

. (5.5)

An alternative proof was given by Chvátal [4].
It is now not hard to obtain the claimed lower bound on total variation distance for
< 1

4 n log n.

roof of Theorem 5.2(a). For r = rn(δ) = ⌊
1
4 n log n +δn⌋, and δ < 0, we have seen that both

X (r ) and the equilibrium distribution are well-concentrated around their respective means. We
will show that, if j = X (0) is in En(ε) for some fixed ε > 0, so that | j −

n
2 | ≥ εn, then the

eans are still far apart at time r .
From (5.4), we have that, uniformly in −

1
4 log n ≤ δ ≤ 0,⏐⏐⏐x j (rn(δ)) −

1
2

⏐⏐⏐ ≥ ε
(

1 −
2
n

) 1
4 n log n+δn

≥ εe2|δ|
(

1 −
2
n

) 1
4 n log n

≥
1
2εn

−1/2e2|δ|, (5.6)

for all n ≥ 4 (so that n1/2
(

1 −
2
n

) 1
4 n log n

≥ 1/2).

For fixed ε > 0 and δ with −
1
4 log n ≤ δ ≤ 0, we set

A :=

[n
−

1
εe2|δ|n1/2,

n
+

1
εe2|δ|n1/2

]
.

2 4 2 4
401
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By (5.5), we have

1 − π (n)(A) = Pπ (n)

(
|X − Eπ (n) (X )| >

1
4
εe2|δ|n1/2

)
≤ 2 exp(−

1
8
ε2e4|δ|).

Similarly, using (5.6) and Lemma 5.3, we have that, for any j ∈ En(ε),

P j (X (rn(δ)) ∈ A) ≤ P j

(
|X (rn(δ)) − E j (X (rn(δ)))| >

1
4
εe2|δ|n1/2

)
≤ 2 exp(−

1
32
ε2e4|δ|),

or all n ≥ 4. Hence we have

dT V
(
π (n),L j (X (rn(δ)))

)
≥ π (n)(A) − P j (X (rn(δ)) ∈ A)

≥ 1 − 4 exp(−
1
32
ε2e4|δ|),

uniformly in −
1
4 log n ≤ δ ≤ 0, which is the required result. □

Our proof of the lower bound above is actually very similar to that of Diaconis and
hahshahani: we have obtained an improved result by using Lemma 5.3, giving Gaussian
oncentration for X (rn(δ)), instead of appealing to Chebyshev’s inequality.

We now turn to the upper bound. We start by using Lemma 5.3 to show that, for a long
eriod beyond time rn(0) = ⌊

1
4 n log n⌋, the process X (r ) is unlikely to leave an interval of

idth C
√

n log n around n/2.

emma 5.4. For n ≥ 2e4, any s ∈ Z+, and any starting state j ,

P j

(
max
0≤r≤s

|X (rn(0) + r ) − n/2| ≥ 4
√

n
2 log( n

2 )
)

≤ 16(s + 1)n−3.

Proof. For t ≥ rn(0) = ⌊
1
4 n log n⌋ and any starting state j , we have from (5.4) that⏐⏐⏐x j (t) −

1
2

⏐⏐⏐ ≤
1
2

(
1 −

2
n

)t

≤
1
2 e−

2
n ( 1

4 n log n−1)
=

1
2 n−1/2e2/n

≤
3
4

n−1/2,

or all n ≥ 5.
Therefore, at times rn(0) + r , r ≥ 0, for any starting state j and for n ≥ 5, we have

|E j X (rn(0) + r ) −
n
2 | ≤

3
4 n1/2. (5.7)

Combining this with Lemma 5.3, we have for c ≤ 3
√

n/4,

P j (|X (rn(0) + r ) − n/2| ≥ (c + 3/4)
√

n) ≤ 2e−c2/2, r ≥ 0.

e apply this inequality with c = 4
√

1
2 log(n/2) − 3/4, which is greater than

√
6 log(n/2) for

n > 2e4 (since 2
√

2 − 3/8 >
√

6), and deduce that

P j

(
|X (rn(0) + r ) − n/2| ≥ 4

√
n
2 log( n

2 )
)

≤ 16n−3, r ≥ 0.

he required result now follows. □

We remark here that it would be relatively straightforward to complete the proof of cut-
ff at this point: we can exhibit a coupling between two copies of the chain both remaining
lose to n/2, such that the distance between the two copies is stochastically dominated by a
402
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simple lazy random walk — such a proof would show quickly that the two copies coalesce by
time rn(0) + δn with probability 1 − O(δ−1/2). (A similar argument is used by Eskenazis and

estoridi [8], based on a discrete-time analogue of Proposition 4.1.) In order to establish the
ound (5.3), we need a more precise argument.

For the moment we assume, for simplicity of exposition, that n = 4k for some positive
nteger k. We consider the walk Y = Y (n) defined by Y (r ) = X (rn(0) + r ) − n/2 =

X (rn(0) + r ) − 2k, r ≥ 0, which describes the evolution of X beyond the time rn(0). The
ransitions of this walk are given by:

p j, j+1 := P[Y (r + 1) = j + 1|Y (r ) = j] =
1
4

−
j

4k
+

( j
4k

)2
;

p j, j−1 := P[Y (r + 1) = j − 1|Y (r ) = j] =
1
4

+
j

4k
+

( j
4k

)2
;

p j, j := P[Y (r + 1) = j |Y (r ) = j] =
1
2

− 2
( j

4k

)2
, (5.8)

or −2k ≤ j ≤ 2k.
At least when j/4k is small, Y has transition probabilities close to those of the simpler

rocess Ỹ := (Ỹ (n)(r ), r ≥ 0), with Ỹ (0) = Y (0), and transition probabilities given by

p̃ j, j+1 = P[Ỹ (r + 1) = j + 1|Ỹ (r ) = j] =
1
4

−
j

4k
;

p̃ j, j−1 = P[Ỹ (r + 1) = j − 1|Ỹ (r ) = j] =
1
4

+
j

4k
; (5.9)

p̃ j, j = P[Ỹ (r + 1) = j |Ỹ (r ) = j] =
1
2
.

e shall use Ỹ as a surrogate for Y in the argument to come.
The similarity of the transition probabilities (5.8) and (5.9), together with Lemma 5.4, is next

sed to show that, with high probability, the processes Y and Ỹ are almost indistinguishable
or a long time.

For a sequence y := (y(r ), r ≥ 0), we denote the initial segment up to time s by
y([0, s]) := (y(0), y(1), . . . , y(s)).

emma 5.5. For n = 4k ≥ 8000, and s ≤
k2

2500 log2(2k)
, we have

dT V (L(Y ([0, s])),L(Ỹ ([0, s]))) ≤ 100s1/2k−1 log(2k).

Proof. For a sequence y := (y(r ), r ≥ 0) such that the y(r ) are integers with |y(r ) − y(r − 1)|
1 for all r ≥ 1, let the likelihood ratio of the process Ỹ compared to Y on the segment

y([0, s]) be given by

Λ(y([0, s])) :=

s∏
r=1

p̃y(r−1),y(r )

py(r−1),y(r )
.

For k ≥ 2000, we set εk = 5
√

2 log(2k)/k, and note that εk ≤ 1/2. If | j |/k ≤ εk , we then
ave, from the formulae for the transition probabilities, that

max
{⏐⏐⏐ p̃ j, j+1

− 1
⏐⏐⏐, ⏐⏐⏐ p̃ j, j−1

− 1
⏐⏐⏐, ⏐⏐⏐ p̃ j, j

− 1
⏐⏐⏐} ≤

1
2ε

2
k , (5.10)
p j, j+1 p j, j−1 p j, j
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so that, if Λ(y([0, s])) ≤ 2, it follows that

(Λ(y([0, s + 1])) − Λ(y([0, s])))2
≤ ( 1

2Λ(y([0, s]))ε2
k )2

≤ ε4
k . (5.11)

Replacing y by a path of Y , we note that (Λ(Y ([0, s])), s ≥ 0) is a martingale. Defining

τ := inf
{

s ≥ 0 : {Λ(Y ([0, s])) > 2} ∪ {|Y (s)| > 5
√

2k log(2k)}
}
,

t follows from (5.11) that the quadratic variation of the martingale Λ(Y ([0, r ])) until time s ∧τ

s at most sε4
k . Since also EΛ(Y ([0, s ∧ τ ])) = 1, it follows from the Burkholder–Davis–Gundy

nequality that

E
{(
Λ(Y ([0, s ∧ τ ])) − 1

)2
}

≤ sε4
k . (5.12)

Define the events As and Bs by

As := {Λ(Y ([0, s])) < 1}; Bs := {τ > s}.

hen

dT V (L(Y ([0, s])),L(Ỹ ([0, s]))) = E{I [As](1 − Λ(Y ([0, s])))}

≤ P[Bs] + E{I [As ∩ Bs](1 − Λ(Y ([0, s])))},

and, on Bs , s = s ∧ τ . Hence,

dT V (L(Y ([0, s])),L(Ỹ ([0, s]))) ≤ P[Bs] + E{(1 − Λ(Y ([0, s ∧ τ ])))+}

= P[Bs] +
1
2
E|1 − Λ(Y ([0, s ∧ τ ]))|

≤ P[Bs] +
1
2

s1/2ε2
k .

rom (5.12) and Kolmogorov’s inequality, and from Lemma 5.4, we have

P[Bs] ≤ sε4
k +

1
4 (s + 1)k−3

≤
5
4 sε4

k .

Hence, for s ≤ ε−4
k , we have

dT V (L(Y ([0, s])),L(Ỹ ([0, s]))) ≤ 2s1/2ε2
k = 100s1/2k−1 log 2k, (5.13)

s required. □

Thus, with error at most 100s1/2k−1 log 2k, we can replace Y ([0, s]) by Ỹ ([0, s]) when
alculating probabilities, and make only a small error if s ≪ (k/ log k)2. Recalling that n = 4k,
his means that the approximation of Y by Ỹ is asymptotically accurate over time intervals of
ength o

(
(n/ log n)2

)
.

We now use a coupling argument to show how fast Ỹ converges to its equilibrium
istribution π̃ (k).

emma 5.6. For any k ≥ 1 and r ≥ 4k, we have

dT V

(
L(Ỹ (r )), π̃ (k)

)
≤ (k−1/2E|Y (0)| + 2)e−r/2k .

roof. First, we note that the process Ỹ can equivalently be described by way of a discrete

hrenfest ball scheme. There are 2k balls, each of which is in state 0 or 1. At each step,
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a ball is chosen independently at random from the 2k balls, and its state is chosen to be 0
r 1, each with probability 1/2, independently of the whole past of the process. If k + j
alls are in state 1 and k − j in state 0 at step r , we say that Ỹ (r ) = j ; then the probabilities
or Ỹ (r+1) are easily seen to be given by (5.9), and its equilibrium distribution π̃ (k) to be Bi(2k,

1/2) ∗ δ−k .
We now define a coupling of two copies Ỹ 1 and Ỹ 2 of the process Ỹ , with Ỹ 1(0) ≥ Ỹ 2(0).

air the balls in the two processes so that those initially in state 1 in Ỹ 2 are paired with balls
n state 1 in Ỹ 1, and those initially in state 0 in Ỹ 1 are paired with balls in state 0 in Ỹ 2;
hen pair the remaining Ỹ 1(0) − Ỹ 2(0) balls in the two processes. Couple the evolution by
electing one of these pairs of balls at each step, and re-assigning its state independently (the
ew state being the same for both Ỹ 1 and Ỹ 2). Let M(r ) denote the number of pairs of balls
hat have not been drawn up to step r , made up of M1(r ) in state 1, M0(r ) in state 0, and
f M2(r ) = M(r ) − M1(r ) − M0(r ) from the Ỹ 1(0) − Ỹ 2(0) pairs of balls with differing initial
tates. Conditional on M0(r ), M1(r ) and M2(r ), we have

Ỹ 1(r ) = Z (r ) + M1(r ) + M2(r ) − k and Ỹ 2(r ) = Z (r ) + M1(r ) − k,

here Z (r ) has distribution Bi(2k − M(r ), 1/2). Now, since the distribution Bi(m, 1/2) is
nimodal with mode ⌊m/2⌋, we have, for all m ≥ 1, that

dT V (Bi(m, 1/2),Bi(m, 1/2) ∗ δ1) = Bi(m, 1/2){⌊m/2⌋} <
1

√
m
.

t follows that

dT V

(
L(Ỹ 1(r )|M0(r ),M1(r ),M2(r )),L(Ỹ 2(r )|M0(r ),M1(r ),M2(r ))

)
≤ min{1,M2(r )(2k − M(r ))−1/2

} ≤ M2(r )k−1/2
+ I [M(r ) > k],

mplying that

dT V

(
L(Ỹ 1(r )),L(Ỹ 2(r ))

)
≤ k−1/2EM2(r ) + P[M(r ) > k]. (5.14)

ow P(M(r ) > k) is the probability that all the k draws come from some subset of k of the
k matched pairs of balls, and so, for r ≥ 4k,

P(M(r ) > k) ≤

(
2k
k

)
2−r

≤ 22k−r
≤ 2−r/2.

e also have EM2(r ) = (Ỹ 1(0)− Ỹ 2(0))(1−1/(2k))r
≤ (Ỹ 1(0)− Ỹ 2(0))e−r/2k . Hence, allowing

ither ordering of Ỹ 1(0) and Ỹ 2(0), it follows from (5.14) that

dT V

(
L(Ỹ 1(r )),L(Ỹ 2(r ))

)
≤ k−1/2

|Ỹ 1(0) − Ỹ 2(0)|e−r/2k
+ 2−r/2. (5.15)

etting Ỹ 1(0) = Y (0), and taking Ỹ 2(0) ∼ π̃ (k) to be in equilibrium, we deduce, by taking
xpectations in (5.15), that

dT V

(
L(Ỹ 1(r )), π̃ (k)

)
≤ {k−1/2(E|Y (0)| +

√
k/2)}e−r/2k

+ 2−r/2

≤ (k−1/2E|Y (0)| + 2)e−r/2k,
as desired. □
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Proof of Theorem 5.2(b). We combine Lemma 5.5 with Lemma 5.6, replacing Y (r ) by
X (rn(0) + r ) − n/2, to deduce that, for any j ,

dT V

(
L(X (rn(0) + r ) − n/2), π̃ (k)

)
≤ (k−1/2E j |X (rn(0)) − n/2| + 2)e−2r/n

+ 100r1/2k−1 log 2k

≤ 4e−2r/n
+ 400r1/2n−1 log n, (5.16)

here we have used (5.7) to reach the last inequality, provided 8000 ≤ 4k = n ≤ r ≤
2/40000 log2(n/2).

The bound in (5.16) remains valid for any initial distribution; taking X (0) ∼ π (n), so that
lso X (rn(0)) ∼ π (n), this implies that

dT V

(
π (n)

∗ δ−n/2, π̃
(k)

)
≤ 4e−2r/n

+ 400r1/2n−1 log n.

lso. (The bound above is valid for any r , and is minimised for r of order n log n. One could
btain a stronger bound, of order n−1, by direct computation, but this is rather delicate and the
ain is not relevant to us.)

Hence, for n a sufficiently large multiple of 4, and n ≤ r ≤
1
4 n log n − n log log n, we have,

dT V

(
Ln(X (rn(0) + r )), π (n)

)
≤ 2{4e−2r/n

+ 400r1/2n−1 log n}

≤ 10e−2r/n. (5.17)

his bound also holds trivially for r ≤ n. Taking r = δn, this proves the result in the case
here n is a multiple of 4.
If n is not divisible by 4, the argument remains almost the same. Define k := ⌊n/4⌋, and

et Y (r ) := X (rn(0) + r ) − 2k, as above. The transition rates for Y are not quite as in (5.8),
ut they are very close, resulting only in an extra contribution of order O(k−1) to the bounds
n (5.10). This correction is of smaller order than ε2

k , and can be absorbed into the bound (5.13)
rovided k is sufficiently large. The rest of the proof is unchanged. □

Diaconis and Shahshahani [6], and other authors, actually consider a more general version,
ith boxes of unequal sizes. The first box initially contains n′ red balls, and the second 2n −n′

lack balls. The mixing process runs as before. Our approach can be used for this model as
ell. The jump probabilities for the process counting the number X of red balls in the first box

re again quadratic in the current state j of the process. When evaluated close to the equilibrium
ean n′ p, where p := n′/2n, these probabilities are close to the linear jump probabilities near

quilibrium of another process Ỹ consisting of ℓ balls, coloured red or black, with the following
ynamics. At each time step, a ball is chosen. It is left with unchanged colour with probability
− θ ; otherwise, it is re-coloured red with probability q and black with probability 1 − q,

ndependently of everything else (so that its colour may in fact still be unchanged). Then Ỹ (r )
enotes the number of red balls at time r . The values of ℓ, θ and q to best match the original
rocess are found to be

q := 2p(1 − p); θ :=
1

2(1 − 2p(1 − p))
and ℓ :=

⌊
np(1 − p)

1 − 2p(1 − p)

⌋
;

note that, for n′
= n, as previously, we have p = 1/2 = q, θ = 1 and ℓ = ⌊n/2⌋, corresponding

to the approximation made before. With these modifications, an analogous argument can be
carried out, to establish cut-off.
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6. A two host model of disease

Our next example is a two-dimensional Markov chain X̂ (n) in continuous time, representing
two host model of disease, in which transmission only occurs between one host type and

he other (snails and human beings in schistosomiasis (Jordan, Webbe and Sturrock [16]), or
ales and females in sexually transmitted diseases (Hethcote and Yorke [14]). Our framework

s appropriate for a disease that is not naturally endemic in a region, being supported at a low
evel through immigration from outside. In state x := (x1, x2)T

∈ Z2
+

, there are x1 type-1 hosts
nd x2 type-2 hosts infected. From any state x, there are four possible transitions, whose rates
re as follows:

(x1, x2) → (x1 + 1, x2) at rate αx2 + µn

(x1, x2) → (x1, x2 + 1) at rate βx1 + νn

(x1, x2) → (x1 − 1, x2) at rate γ x1

(x1, x2) → (x1, x2 − 1) at rate δx2. (6.1)

ere, α, β, γ , δ, µ and ν are fixed positive constants, and the parameter n is a measure of
he typical size of the infected population. The first transition corresponds to the infection of a
ype 1 host, by a type 2 host or from outside, and the second to the infection of a type 2 host.
he third transition corresponds to the recovery of a type 1 host, and the fourth to the recovery
f a type 2 host. The infection transition rates are appropriate in circumstances in which the
ost population is so large that the reduction in infection rate caused by some of the population
lready being infected is negligible, or for diseases such as malaria, when ‘super-infection’ is
ossible: a host infected more than once is proportionately more infectious — in this case, x
enotes the total number of infections of each type of host.

Let m(t) := mx(t) := n−1Ex{X̂ (n)(t)}, where Ex,Px and Lx refer to the distribution
conditional on X̂ (n)(0) = x. It follows that m satisfies the differential equation dm/dt =

Am + b, where

A :=

(
−γ α

β −δ

)
and b :=

(
µ

ν

)
,

with initial condition m(0) = n−1x. We define R := αβ/γ δ, and assume from now on that
R < 1, so that A has both eigenvalues negative, and we denote them by −ρ > −ρ ′, with
corresponding unit (right) eigenvectors v and v′. The differential equation has a non-trivial
equilibrium at

c := −A−1b =
1

γ δ(1 − R)

(
αν + δµ

βµ+ γ ν

)
, (6.2)

nd its full solution is

mx(t) = c + eAt (n−1x − c), (6.3)

howing that the equilibrium c is globally attractive when R < 1.
For any n and any x ∈ Z2

+
, we define the travel time from state x (to within n−1/2 of c) to

e

tn(x) := inf{t > 0 : |eAt (n−1x − c)| ≤ n−1/2
},

hich, in view of (6.3), is therefore the infimum of times t such that |E {X̂ (n)(t)} − nc| ≤ n1/2.
x
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For 0 < ζ < 1, let

En(ζ ) := {x ∈ Z2
+

: nζ ≤ |x − nc| ≤ n/ζ }.

e shall prove the following theorem.

heorem 6.1. Suppose that R < 1. Then, for any 0 < ζ < 1, X̂ (n) exhibits cut-off at tn(x)
n En(ζ ), with window width 1.

We first consider the problem of estimating tn(x) for x ∈ En(ζ ). Writing n−1x−c as a linear
ombination λv + λ′v′ of the unit eigenvectors v and v′ of A, we have

eAt (n−1x − c) = λeAt v + λ′eAt v′
= λe−ρt v + λ′e−ρ′t v′.

hen tn(x) ∼ max{ρ−1 log(n1/2λ), (ρ ′)−1 log(n1/2λ′)}.
For ζ ∈ (0, 1), there is a constant Lζ such that, for all x ∈ En(ζ ), tn(x) ≤

1
2ρ

−1 log n +

Lζ . For “most” states in En(ζ ), there is a matching lower bound, but tn(x) is as small as
1
2 (ρ ′)−1 log n + O(1) when 1

n x − c is close to a multiple of v′.
The rest of this section is devoted to a proof of Theorem 6.1: we give a brief road map of

the proof here. Our basic plan is to apply Theorem 3.3 to our chain, showing concentration of
measure for X̂ (n)(t) while t ≤ tn(x). To this end, we specify a suitable metric, and a Markovian
coupling of two copies of the chain which is contracting in Wasserstein distance with respect
to that metric. We show that the chain remains within a good set (where, in particular, the total
transition rate is bounded) over a long time period. Then we apply Theorem 3.3 to each of the
two coordinate projections, showing that both remain concentrated around their means for a
long time. We deduce readily that the chain is far from its equilibrium for times less than tn(x).

n the other hand, once the chain reaches a neighbourhood of nc, we can use Proposition 4.1
o show that it couples rapidly with an equilibrium copy of the chain, so the total variation
istance to the equilibrium copy is small for times only slightly greater than tn(x).

The two left eigenvectors of A can be written in the form (1, ξ ), where ξ is a solution of the
quation δ − α/ξ = γ − βξ , with the common value δ − α/ξ being minus the corresponding
igenvalue. This equation has one negative solution ξ = θ ′, corresponding to the eigenvalue

−ρ ′, and the other solution ξ = θ lying in the interval (α/δ, γ /β). Thus we have

δ −
α

θ
= ρ = γ − βθ. (6.4)

We introduce the norm ∥ · ∥θ on R2, with

∥x∥θ =: |x1| + θ |x2|.

We shall shortly prove that our chain has a contracting coupling with respect to the distance
∥x − y∥θ .

Next, we collect some elementary properties of the Markov chain X̂ (n). First, we note that,
for R < 1, X̂ (n) is a 2-type subcritical Markov branching process with immigration, and hence
has an equilibrium distribution π (n). Furthermore, since the process without immigration is
sub-critical and has birth and death rates that do not depend on n, whereas the immigration
ates are multiples of n, the mean of π (n) is nc, and its covariance matrix is of the form nΣ ,
or Σ not depending on n (see, for example, Quine [27] (Theorem on p. 414 and Equation
29)) for analogues in discrete time).

Next, for use with Theorem 3.3, we show that the chain rarely gets too far from the origin,
o that the total transition rate remains bounded. For H > 0, we define

D (H ) := {x ∈ Z2
: ∥x∥ ≤ Hn}.
n + θ
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Proposition 6.2. Suppose that R < 1. Then there exist positive constants C and ψ , depending
n the parameters of the model but not on n, such that, for any H ≥ 4∥b∥θ/ρ, any n ∈ N,
ny x ∈ Dn(H ), and any T, w > 0,

Px

[
sup

0≤t≤T
∥X̂ (n)(t)∥θ > n(H + w)

]
≤ CnT e−nψw.

roof. Let A(n) denote the generator of X̂ (n), and define hψ (x) := exp{ψ∥x∥θ }. The first step
s to show that, for sufficiently small positive ψ , (A(n)hψ )(x) < 0 for all x such that ∥x∥θ is
arge enough.

Setting g(s) := s−2(es
− 1 − s) for s ̸= 0, and g(0) = 1/2, we have:

(A(n)hψ )(x) = hψ (x)
{
(αx2 + nµ)(eψ − 1) + γ x1(e−ψ

− 1)

+(βx1 + nν)(eθψ − 1) + δx2(e−θψ
− 1)

}
= hψ (x)ψ

{
αx2 + nµ− γ x1 + θβx1 + θnν − θδx2

}
+hψ (x)ψ2{(αx2 + nµ)g(ψ) + γ x1g(−ψ) (6.5)

+θ2(βx1 + nν)g(θψ) + θ2δx2g(−θψ)
}
.

e now see that

αx2 + nµ− γ x1 + θβx1 + θnν − θδx2

= n(µ+ θν) + (α/θ − δ)x2θ + (βθ − γ )x1

= n∥b∥θ − ρx2θ − ρx1

= n∥b∥θ − ρ∥x∥θ .

e bound the ψ2 term in (6.5) above by noting that g(±ψ) and g(±θψ) are all at most 1,
rovided ψ ≤ 1/(1 ∨ θ ), and hence

(αx2 + nµ)g(ψ) + γ x1g(−ψ) + θ2(βx1 + nν)g(θψ) + θ2δx2g(−θψ)

≤ (µ+ θ2ν)n + (βθ2
+ γ )x1 + (α + δθ2)x2

≤ (1 ∨ θ )n∥b∥ + (α/θ + βθ2
+ γ + δθ )∥x∥θ .

ence, for ψ ≤ min(1/(1 ∨ θ ), 1
2ρ/(α/θ + βθ2

+ γ + δθ )), we have

(A(n)hψ )(x) ≤ hψ (x)ψ
[
n∥b∥θ − ρ∥x∥θ

+ψ(1 ∨ θ )n∥b∥θ + ψ(α/θ + βθ2
+ γ + δθ )∥x∥θ

]
≤ hψ (x)ψ

[
2n∥b∥θ − ρ∥x∥θ/2

]
, (6.6)

hich is non-positive whenever ∥x∥θ ≥ 4n∥b∥θ/ρ.
Now fix some H ≥ 4∥b∥θ/ρ, and some starting state x ∈ Dn(H ), so that ∥x∥θ ≤ nH and

therefore x1 ≤ nH and x2 ≤ nHθ−1. Fix also some w > 0. We will show that the probability
that X̂ (n) ever exits the set Dn(H + w) during a fixed time interval [0, T ] is very small for
large n.

We consider the excursions out of the set Dn(H ) during [0, T ]. Note that, each time that
X̂ (n) enters Dn(H ), it remains there at least for the holding time of the state at which it first
enters, which has an exponential distribution with mean at least 1/nq(H ), for

−1(α + δ), (β + γ )}H.
q(H ) := µ+ ν + max{θ
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This implies that the number of exits of X̂ (n) from Dn(H ) in [0, T ] is stochastically dominated
y a Poisson random variable with mean nT q(H ).

We claim that, each time that X̂ (n) leaves Dn(H ), the probability that ∥X̂ (n)
∥θ exceeds the

alue n(H + w) before X̂ (n) returns to Dn(H ) is exponentially small in n. To prove this,
onsider starting in some state y which can be reached in one step from Dn(H ), so that
y∥θ ≤ nH + (1 ∨ θ ), and let

τ1 := inf{t > 0 : X̂ (n)(t) ∈ Dn(H )};
τ2 := inf{t > 0 : X̂ (n)(t) /∈ Dn(H + w)}.

n view of (6.6), hψ (X̂ (n)(t ∧ τ1)) is a non-negative supermartingale in t ≥ 0. Stopping at
in{τ2, τ1}, it thus follows that,

enψH+ψ(1∨θ )
≥ hψ (y) ≥ enψ(w+H )Py[τ2 < τ1],

rom which it follows that

Py[τ2 < τ1] ≤ e−nψweψ(1∨θ ). (6.7)

It follows that the expected number of times that X̂ (n) exits Dn(H +w) in the interval [0, T ]
s at most nT q(H )eψ(1∨θ )e−nψw, establishing the proposition. □

We now introduce a Markovian coupling of two copies of the Markov chain X̂
(n)

, which
e will then show to be contracting with respect to the metric d(x, y) = ∥x − y∥θ on Z2

+
.

n this coupling, the two copies U (n) and V (n) make moves independently in any co-ordinate
here they currently differ (so in particular the two copies a.s. never move together in such a

o-ordinate), but make moves together as far as possible in co-ordinates where they currently
gree.

For each J ∈ J := {(1, 0)T , (0, 1)T , (−1, 0)T , (0,−1)}, we denote the transition rate of X̂
(n)

rom x to x+J, given in (6.1), by rJ(x). We then couple copies U (n) and V (n) of X̂
(n)

as follows.
Suppose that U (n)(t) = u and V (n)(t) = v. If u1 ̸= v1, then for J = (1, 0)T or (−1, 0)T , there

s a transition to (u + J, v) at rate rJ(u), and a transition to (u, v + J) at rate rJ(v). If u1 = v1,
hen there is a transition to (u + J, v + J) at rate min(rJ(u), rJ(v)), a transition to (u + J, v)
t rate max(0, rJ(u) − rJ(v)), and a transition to (u, v + J) at rate max(0, rJ(v) − rJ(u)). The
ransitions in directions (0, 1)T and (0,−1)T are defined analogously.

roposition 6.3. The coupling defined above for X̂
(n)

is contracting with respect to the metric
(x, y) = ∥x − y∥θ , with constant ρ.

roof. If both chains make the same transition at t , then the distance between them does not
hange: d(U (n)(t), V (n)(t)) = d(U (n)(t−), V (n)(t−)). Otherwise, the distance changes by ±1 as
result of a jump by either copy in either 1-direction, or by ±θ as a result of a jump by either

opy in either 2-direction.
Let the generator of the process (U (n), V (n)) be denoted by Â(n). We start by looking at the

ontribution of the (−1, 0)T jumps to (Â(n)d)(u, v). If u1 = v1, then r(−1,0)T (u) = γ u1 = γ v1 =

(−1,0)T (v), so the two chains always make this transition together, contributing no change to
he distance. If u1 > v1, then the (−1, 0)T jump in U (n) occurs at rate γ u1 and reduces the
istance by 1, while the (−1, 0) jump in V (n) occurs at rate γ v1 and increases the distance
y 1: overall, the net contribution is −γ |u1 − v1|. The same calculation applies if u1 < v1,
o in all cases the contribution of this jump is −γ |u1 − v1|. Similarly, the contribution of the

T
0,−1) jump is −δθ |u2 − v2|.
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We now turn to the (1, 0)T jump. If u1 = v1, the distance increases by 1 whenever one
chain makes this jump and the other does not, which occurs at rate |r(1,0)T (u) − r(1,0)T (v)| =

α|u2 − v2|. If u1 ̸= v1, a (1, 0)T jump in one of the chains increases the distance by 1, while
the same jump in the other chain decreases the distance by 1, so the net contribution from
this jump is at most |r(1,0)T (u) − r(1,0)T (v)|, which is again equal to α|u2 − v2|. Similarly, the
ontribution of the (0, 1)T jump is at most βθ |u1 − v1|.

Referring to (6.4), it follows that, for all states u, v,

(Â(n)d)(u, v) ≤ (−γ + βθ )|u1 − v1| + (−δ + α/θ )θ |u2 − v2|= − ρd(u, v), (6.8)

s required. □

We will now apply Theorem 3.3 to the Markov chain X̂
(n)

, with f (x) either of the two
o-ordinate projections f1(x) = x1 or f2(x) = x2. We fix some 0 < ζ < 1, and note that, for
ny x ∈ En(ζ ), we have |x − nc| ≤ n/ζ , and therefore

∥x∥θ ≤ (1 ∨ θ )|x| ≤ (1 ∨ θ )(1/ζ + |c|)n.

ow we take H = max((1 ∨ θ )(1/ζ + |c|), 4∥b∥θ/ρ), so that En(ζ ) ⊆ Dn(H ), and apply
roposition 6.2 with w = H . We see that, for any x ∈ En(ζ ), and any T > 0, the probability

hat the chain exits the set Dn(2H ) before time T is at most CnT e−nψH , for some constants
and ψ . To apply Theorem 3.3, we take Ŝ = Dn(2H ), and note that, for y ∈ Ŝ, the total

ransition rate −Q̂(y, y) out of state y is at most q := n
[
µ+ ν + 2(θ−1(α+ δ) + β + γ )H

]
. If

f is the first co-ordinate projection f1, we have | f1(x) − f1(y)| ≤ ∥x − y∥θ , so we may take
L = 1: for f = f2, we need instead L = 1/θ . We may also take D = 1 ∨ θ .

Theorem 3.3 now tells us that, for i = 1, 2, all t > 0 and all c > 0, and all x ∈ En(ζ ),

Px

({
|X̂

(n)

i (t) − Ex X̂
(n)

i (t)| > c
√

n
}

∩ At

)
≤ 2 exp

(
−

c2n

n(µ+ ν + 2( α+δ
θ

+ β + γ )H ) (1/θ∨θ )2

ρ
+

2
3 (1/θ ∨ θ )c

√
n

)
,

here

At :=

{
sup

0≤s≤t
∥X̂ (n)(s)∥θ ≤ 2nH

}
.

hus, for some constant b depending on the parameters of the model and on ζ , and all c ≤ ε
√

n,
here ε > 0 is sufficiently small, we have

Px

({
|X̂

(n)

i (t) − Ex X̂
(n)

i (t)| > c
√

n
}

∩ At

)
≤ 2e−bc2

(6.9)

for i = 1, 2, all t > 0 and all x ∈ En(ζ ).
Moreover, for a suitable constant K , t ≤ n, and c ≤ ε

√
n for some sufficiently small ε > 0,

Px[At ] ≤ Cnte−nψH
≤ K e−bc2

, (6.10)

rom (6.9) and (6.10), it now follows that, for 0 < t ≤ n, x ∈ En(ζ ), and c ≤ ε
√

n,

Px

({
|X̂

(n)
(t) − nmx(t)| > 2c

√
n
})

≤ (4 + K )e−bc2
, (6.11)

or suitable constants b, ε and K , depending on the parameters of the model and on the choice
f ζ .

We are now in a position to prove cut-off for our model.
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Proof of Theorem 6.1. A lower bound on the mixing time can now easily be proved, much
as in the previous example, by considering the distribution of X̂

(n)
(tn(x) − s), for s > 0. Let

> 0, depending on the parameters of the model, be such that

|e−Asz| ≥ κeρs
|z|, for all z ∈ R2. (6.12)

y (6.3) and the definition of tn(·), we have

n|mx(tn(x)) − c| = n|eAtn (x)(n−1x − c)| = n1/2. (6.13)

herefore, using (6.12),

n|mx(tn(x) − s) − c| = n|eA(tn (x)−s)(n−1x − c)| ≥ κn1/2eρs .

Let Bs := {w ∈ Z2
+

: |w − nc| ≤
1
2κn1/2eρs

}. Then, from (6.11) with c =
1
4κeρs , noting that

n(x) ≤ n for x ∈ En(ζ ) provided n is sufficiently large, we have

Px(X̂
(n)

(tn(x) − s) ∈ Bs) ≤ (4 + K )e−bκ2e2ρs/16.

On the other hand, as stated in the discussion before Proposition 6.2, the covariance matrix
f the equilibrium distribution of X̂

(n)
is of the form nΣ , with Σ being independent of n. It

ence follows, using Chebyshev’s inequality, that π (n)(Bs) ≥ 1−4κ−2ve−2ρs , with v := Tr (Σ ).
This then gives, for a suitable constant K ′ and s and n sufficiently large,

dT V (Lx(X̂
(n)

(tn(x) − s)), π (n)) ≥ 1 − K ′e−2ρs, (6.14)

or any x ∈ En(ζ ). This establishes the first part of the definition of cut-off in (1.1).
We now turn to the upper bound. We will apply Proposition 4.1 to the Markov chain

U (n), V (n)), where U (n) is a copy of the started close to nc, V (n) is another copy in equilibrium,
nd the pair are coupled as in Proposition 6.3. We use the proposition to show that coalescence
ccurs quickly with high probability.

Consider a copy U (n) of X̂
(n)

starting from state x and couple it with an equilibrium copy
V (n), as in Proposition 6.3. For any fixed ε > 0, we choose c= c(ε) so that (4+K )e−bc2

≤ ε/4,
nd use (6.11) and (6.13) to conclude that

Px(|U (n)(tn(x)) − nc| > (c + 1)n1/2) ≤ ε/4,

nd similarly for the equilibrium copy V (n)(tn(x)). Therefore, with probability at least 1 − ε/2,
e have

∥U (n)(tn(x)) − V (n)(tn(x))∥θ ≤ 2(c + 1)(1 ∨ θ )n1/2.

We are now in a position to apply Proposition 4.1 to the function ∥U (n)(tn(x) + s) −

V (n)(tn(x)+ s)∥θ , for s ≥ 0. Condition (i) of the proposition is satisfied by Proposition 6.3, and
ondition (ii) is satisfied with B = 1 ∨ θ . For condition (iii), note that, if u ̸= v, each of the
hains moves while the other does not – and so the distance between the two chains changes
y at least 1 ∧ θ – at rate at least (µ ∧ ν)n. Hence the generator of the quadratic variation
rocess is at least σ 2

:= (1 ∧ θ )2(µ ∧ ν)n from all states where coalescence has not occurred.
Proposition 6.3 then implies that, on the event that ∥U (n)(tn(x)) − V (n)(tn(x))∥θ ≤ 2(c(ε) +

)(1 ∨ θ )n1/2, the probability that coalescence has not occurred by time s is at most

4(c(ε) + 1)(1 ∨ θ )n1/2

√ =
ϕ(ε)
√ ,
sσ s
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where ϕ(ε) :=
4(c(ε)+1)(1∨θ )

(1∧θ )
√
µ∧ν

. For s = s(ε) = 4ϕ(ε)2/ε2, we conclude that

P(U (n)(tn(x) + s(ε)) ̸= V (n)(tn(x) + s(ε)))

≤ ε/2 + P(∥U (n)(tn(x)) − V (n)(tn(x)∥θ ) ≤ 2(c(ε) + 1)(1 ∨ θ )n1/2) ≤ ε.

ince V (n)(tn(x) + s(ε)) is in equilibrium, it follows that

dT V (Lx(X̂
(n)

(tn(x) + s(ε))), π (n)) ≤ ε,

as required for the second part of the definition of cut-off in (1.1). □

7. Supermarket model

In this section, we apply our general continuous-time inequality, Theorem 3.1, to a range of
instances of the supermarket model. This is a simple and natural model of a queueing system,
introduced by Mitzenmacher [24] and Vvedenskaya, Dobrushin and Karpelevich [30], and
studied extensively since; see, for instance [2,21], which contain other references to related
literature.

The supermarket model (in continuous time) with parameters (n, d, λ) (n and d natural
numbers, λ ∈ (0, 1)) is defined as follows. There are n servers, each with their own queue
of customers, and customers arrive according to a Poisson process with rate λn. Each arriving
customer inspects the queues for d of the servers, chosen uniformly at random with replace-
ment, and joins one of the shortest queues among these d; customers cannot subsequently
switch to a different queue. At each server, customer service times are iid exponential of mean
1.

The memoryless property of the arrival and service processes means that the supermarket
model can be viewed as a continuous-time jump Markov chain, whose state space is the set Zn

+

of possible n-tuples of queue lengths. The possible transitions are of two types: (i) departures,
where each queue of positive length is shortened by one at rate 1, and (ii) arrivals, at total rate
λn, where some queue, chosen by the procedure described above, is lengthened by 1. To be
precise, on an arrival, an ordered d-tuple of queues is chosen uniformly at random from all
the nd possibilities, and the first shortest queue in the list receives the arriving customer and
is thus lengthened by 1.

Much of the initial interest in the supermarket model stemmed from its properties as a
“low-cost” load-balancing mechanism: for λ < 1 a constant, the maximum queue length in
equilibrium is of order log n when d = 1, but of order log log n when d is a constant at least 2.
In [2] and this paper, we are interested in different ranges of parameters, where λ tends to 1
from below as n → ∞, while d tends to infinity. In these ranges, as shown in [2], the load-
balancing among the servers in equilibrium is close to perfect – the maximum queue length is
a given constant k with high probability, and most queues have length exactly k – even though
the system is nearly at full capacity.

For the rest of this section, as in [2], we set λ = 1 − n−α , and d = nβ , where α and β are
fixed constants in (0, 1). We will assume throughout that

β < α < 2β and α < (1 + β)/2. (7.1)

For β ≤ 1/3, the corresponding range of α is thus (β, 2β); for 1/3 ≤ β < 1, the corresponding
range for α is (β, (1 + β)/2). Other parameter ranges come into the scope of [2] and, with a

little more work, we could prove concentration results for those too.
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Theorem 6.1 from [2] gives the general behaviour of the model in a variety of ranges,
ncluding this one (referring to that theorem, assumptions (7.1) are equivalent to setting k = 2).
he basic result is that, in equilibrium, the chain lies in a “good set” where all queues have

ength at most 2, with very high probability; it also states that, if the chain is started anywhere
ithin an “interior good set”, then with high probability it remains in the good set for a long
eriod of time. We first set up notation, and then state the part of the result covering our range.

In fact, the model analysed in [2] is a discrete-time variant of the continuous-time model
tudied here. In that variant, the transition at each time-step is an arrival with probability
/(1 + λ) and a potential departure with probability 1/(1 + λ). If the transition is an arrival,
queue is chosen as in the continuous-time version, and the length of that queue is increased

y 1. If the transition is a potential departure, a queue is chosen uniformly at random, and
he length of that queue is decreased by 1 if it is not empty. If an empty queue is chosen
or a departure, then the chain remains in its current state. An alternative description of the
ontinuous-time model is that events occur according to a Poisson process with rate (1 + λ)n,
nd the transition associated with an event is chosen as for the discrete-time model above.

consequence is that the two models have the same equilibrium distribution, and if the
robability that the chain remains in some set S of states for k steps of the discrete chain is at
east q, then the probability that the chain remains in S up to time k/4n in the continuous model
s at least q minus the probability that a Poisson random variable with mean k(1 +λ)/4 ≤ k/2
s greater than k, which is at least q − e−k/8. Similarly, provided λ ≥ 1/2, if the total variation
istance between the discrete-time supermarket model after k or more steps and the equilibrium
istribution is at most p, then the total variation distance between the continuous-time model
nd the equilibrium distribution is at most p + e−k/16 for all times at least k/n.

For n ∈ N, a state x in Zn
+

, and j ∈ N, let u j (x) denote the proportion of queues in x of
ength at least j . Let ε = ε(n) be any function such that ε ≤ 1/100 and ε(n)−1

= o(nδ) for
very δ > 0. For n ∈ N, and α and β satisfying the inequalities in (7.1), let N ε(n, α, β) be the
et of states x such that:

(1 − 6ε)n−α
≤ 1 − u1(x) ≤ (1 + 6ε)n−α

(1 − 6ε)n−α+β
≤ 1 − u2(x) ≤ (1 + 6ε)n−α+β

u3(x) = 0

state x in N ε(n, α, β) will thus have between (1 ± 6ε)n1−α empty queues, between
1 ± 6ε)n1−α+β queues of length 0 or 1 – most of which will then have length 1 – and the
emaining queues all of length 2. As β < α, this implies that the proportion of queues of length
xactly 2 tends to 1 as n → ∞.

The following result is taken from Theorems 6.1 and 1.2 of [2] — in the application of
heorem 1.2, we take t ≥ n2 so that t/3200n1+β > 1

4 log2 n for n sufficiently large; as is
emarked after Theorem 10.5 of [2], the conclusion is valid for the full range of ε stated
bove. Note that the results in [2] are stated for the discrete-time version of the model; we
ave derived results for the continuous-time version as described above, and bounded above
he error probabilities involved in the translation by e−

1
4 log2 n .

Theorem 7.1 (Brightwell, Fairthorne and Luczak). Given n and ε(n) as above, and α and
β satisfying the inequalities in (7.1), let (Y (t)) be a copy of the supermarket process with
parameters (n, d, λ), where λ = 1 − n−α and d = nβ , in equilibrium. Then, for n sufficiently
large,

P Y (t) /∈ N ε(n, α, β) ≤ e−
1
4 log2 n.
( )
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Moreover, if (X (t)) is a copy of the supermarket process with X (0) ∈ N ε/6(n, α, β), then

P
(

X (t) /∈ N ε(n, α, β) for some t ∈ [0,
1

4n
e

1
3 log2 n]

)
≤ 2e−

1
4 log2 n,

nd, for n sufficiently large and t ≥ n,

dT V
(
L(X (t)),Π

)
≤ 7ne−

1
4 log2 n,

here Π denotes the equilibrium distribution.

We will focus on the number V (x) = n(1 − u1(x)) of empty queues, and investigate how
ell V (Y (t)) is concentrated around its mean for an equilibrium copy (Y (t)) of the supermarket
rocess with parameters as above. For (Y (t)), the mean total arrival rate is λn = n(1 − n−α),
hile the mean total departure rate is the expected number of non-empty queues, which is
−EV (Y (t)) = nEu1(Y (t)). In equilibrium, the mean arrival rate is equal to the mean departure
ate, so we have EV (Y (t)) = n1−α . States x in N ε(n, α, β) thus all have V (x) within 6εn1−α

f the mean EV (Y (t)). We shall prove that we have concentration of V (Y (t)) within n(1−β)/2

f its mean n1−α: as (1 − β)/2 < 1 − α, this is a sharper concentration result than is given by
heorem 7.1. It is remarked in [2] that the proof of Theorem 7.1 goes through for ε = n−δ ,
here δ is sufficiently small: the implied result is still not as strong as we shall prove here,

ince δ would have to be strictly less than the minimum of several quantities, one of which is
1 − α) − (1 − β)/2, and this is the smallest of the quantities for part, but not all, of our range

more details can be found in the arXiv version of [2].
The supermarket model is also used as an example by Luczak in [19], to illustrate the

oncentration inequality derived in that paper. That analysis is based on a natural coupling
X (t), Z (t)) of two copies of the supermarket model with the same parameters, which we now
escribe – our proof is also based on this coupling. In the coupling, the arrival times for the
wo processes are identical, and on an arrival the same ordered d-tuple of queues is inspected
n the two processes. For each of the queues, a “potential departure” from the queue occurs
t rate 1: for each of the copies of the process, if the queue is non-empty at the time of the
otential departure, a customer is served and leaves the system at that time. If states x and z
re adjacent (i.e., one can be reached from the other by a single transition), then they differ
y 1 in exactly one queue. For an adjacent pair (x, z), we call the queue where the two states
iffer the unbalanced queue, and we say that x > z if the unbalanced queue is longer in x
han in z. If X (0) = x and Z (0) = z, where x and z are adjacent with x > z, then we claim
hat, under the coupling, the pair (X (t), Z (t)) remains adjacent, with X (t) > Z (t), until the two
opies coalesce. On a departure from the unbalanced queue, coalescence occurs if that queue
s already empty in Z (t), and otherwise the queue remains unbalanced. If an arriving customer
oins the unbalanced queue in x , they join that queue in z as well. It is also possible that an
rriving customer joins the unbalanced queue in z and a different queue in x ; the states remain
djacent, but a different queue becomes unbalanced.

The analysis in [19] assumes that d is a constant, but it is easy to see that the proof there
ives concentration around the mean only to within order

√
nd. For small enough β and α,

this is still a stronger result than that implied by Theorem 7.1, but the result we prove below
always gives stronger concentration.

Theorem 7.2. Let (Y (t)) be a copy of the supermarket model with parameters (n, d, λ), in
equilibrium, where λ = 1−n−α , d = nβ , and (α, β) satisfy (7.1). Then, for n sufficiently large,
415
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and any m,

P
(
|V (Y (t)) − n1−α

| > m
)

≤ 2 exp
(

−
m2d
112n

)
+ exp

(
−

1
5

log2 n
)
.

n particular, if c = c(n) is positive, with c = o(log n), and n is sufficiently large, we have

P
(
|V (Y (t)) − n1−α

| > cn(1−β/2))
≤ 3e−c2/112.

Our proof will be an application of Theorem 3.1 to the (well-behaved) continuous-time chain
Y (t)). We give the proof below, postponing the proof of a key lemma.

roof. We shall apply Theorem 3.1 to the supermarket model with the given parameters, with
f (x) = V (x), the number of empty queues in state x . We set ε = ε(n) = 1/ log n, and let Ŝ
e the set N ε(n, α, β). We then consider starting in a state X (0) ∈ N ε/6(n, α, β). Note that,
or any state x , the total transition rate qx out of state x is at most 2n. In order to apply the
esult, we need to identify a constant β̂ satisfying (3.1), and a function α̂(s) satisfying (3.2).

e obtain these by analysing the natural coupling of two copies of the chain described above.
Accordingly, we consider a pair of copies (X, Z ) starting in adjacent states x and z with

x > z, evolving according to the coupling described above, so that the two copies remain
djacent until coalescence. At any time t , X (t) and Z (t) are adjacent or equal, and if they
re adjacent then there is one unbalanced queue. Let L(t) denote the length of the longer
nbalanced queue, or 0 if there is none, at time t : the random process (L(t)) is thus a function
f the coupled pair (X (t), Z (t)), taking values in Z+, making steps up and down by 1, until it
teps from 1 to 0 and remains at 0 thereafter. For a pair (x, z) of adjacent initial states, and
≥ 0, let a1(s) = axz

1 (s) denote the probability that L(s) is equal to 1.
For an initial adjacent pair of states (X (0), Z (0)) = (x, z) with x > z, and any time s, the

ifference V (X (s)) − V (Z (s)) is equal to 1 when L(s) = 1 and 0 otherwise, so the quantity
P̂ s V )(x) − (P̂ s V )(z) = Ex V (X (s)) − Ez V (Z (s)) is exactly equal to axz

1 (s). In particular, we
hus have |(P̂ s V )(x) − (P̂ s V )(z)| ≤ 1, so we may take β̂ = 1.

If x ∈ Ŝ = N ε(n, α, β), and z is adjacent to x , then either z ∈ N 2ε(n, α, β), or z > x and z
as a queue of length 3; in the latter case, the transition from x to z is an arrival in which only
ueues of length 2 are inspected, and the rate of such arrivals from any state x ∈ N ε(n, α, β)
s at most (1 −

1
2 n−α+β)d

≤ exp(− 1
2 n−α+2β) ≤ exp(− 1

4 log2 n), for n sufficiently large. As the
otal transition rate out of any state x is at most 2n, we have, a little crudely,∑

z∈S

Q(x, z)
(
(P̂ s V )(x) − (P̂ s V )(z)

)2
≤ exp(−

1
4

log2 n) + 2n max
z∼x

axz
1 (s)2, (7.2)

here the maximum is over initial pairs (x, z) where z is adjacent to x and both are in
2ε(n, α, β).

emma 7.3.

axz
1 (s) ≤ e−(d+2)s/2

+
4

d + 2
e−s/(d+2)

+ 2e−
1
4 log2 n, (7.3)

henever x and z are adjacent states in N 2ε(n, α, β), and s ≤ e
1
5 log2 n .

We postpone a proof of Lemma 7.3 until later, but we now indicate briefly what the terms
n (7.3) signify. The final term accounts for the possibility of leaving the set N 12ε(n, α, β).
he first term accounts for the probability that L(0) = 1 and no transition has occurred before
416
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time s to change the length of the unbalanced queue. The second term is the main term; roughly
speaking, it arises from showing that coalescence occurs in time of order d, and, conditional

n coalescence not occurring before time s, the probability that L(s) = 1 is of order 1/d .
We continue with the main thread of our proof, assuming the bound (7.3) in Lemma 7.3.

iven this bound, we may take α̂(s) in (3.2) to be

exp(−
1
4

log2 n) + 2n
(

e−(d+2)s/2
+

4
d + 2

e−s/(d+2)
+ 2e−

1
4 log2 n

)2

≤ exp(−
1
4

log2 n) + 6n
(

e−(d+2)s
+

16
(d + 2)2 e−2s/(d+2)

+ 4e−
1
2 log2 n

)
≤ 2 exp(−

1
4

log2 n) + 6ne−(d+2)s
+

96n
(d + 2)2 e−2s/(d+2),

and

α̂t =

∫ t

0
α̂(s) ds ≤ 2te−

1
4 log2 n

+
6n

d + 2
+

48n
d + 2

+ ≤
55n

d + 2
,

or t ≤ e
1
5 log2 n and n sufficiently large.

Now consider starting at any state X (0) ∈ N ε/6(n, α, β), and let At be the event that the
rocess stays within Ŝ = N ε(n, α, β) until time t . For t ≤ e

1
5 log2 n , Theorem 7.1 tells us that

he probability of Ac
t is at most 2e−

1
4 log2 n . We now apply Theorem 3.1, and obtain that, for

ny m ≥ 0, and any t ≤ e
1
5 log2 n ,

PX (0)
({

|V (X (t)) − P̂ t V (X (0))| > m
}

∩ At
)

≤ 2 exp
(

−
m2

110n/(d + 2) + 2m/3

)
.

or m < n/d , we have m2

110n/(d+2)+2m/3 ≥
m2d
111n ; for m ≥ n/d , we have that m2

110n/(d+2)+2m/3 ≥

m
111 ≥

1
4 log2 n for n sufficiently large (depending on β). Therefore we have, for any m and

≤ e
1
5 log2 n ,

PX (0)
(
|V (X (t)) − P̂ t V (X (0))| > m

)
≤ 2 exp

(
−

m2d
111n

)
+ 4 exp(−

1
4

log2 n).

The final part of Theorem 7.1 tells us that, for t ≥ n and any X (0) in N ε/6(n, α, β), the total
ariation distance between LX (0)

t and the equilibrium distribution is at most 7ne−
1
4 log2 n . Thus,

hoosing t so that n ≤ t ≤ e
1
5 log2 n , we see firstly that |EV (X (t)) − EV (Y (t))| ≤ 7n2e−

1
4 log2 n

≤

, for n sufficiently large, where Y (t) is a copy in equilibrium. Recalling that EV (Y (t)) = n1−α ,
his yields that

PX (0)
(
|V (X (t)) − n1−α

| > m
)

≤ 2 exp
(

−
(m − 1)2d

111n

)
+ 4 exp(−

1
4

log2 n)

≤ 2 exp
(

−
m2d

)
+ 4 exp(−

1
log2 n),
112n 4
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for m ≥ 224, and the inequality also holds trivially for m < 224 provided n is sufficiently
arge. We then further deduce that

P
(
|V (Y (t)) − n1−α

| > m
)

≤ 2 exp
(

−
m2d
112n

)
+ 8n2 exp(−

1
4

log2 n),

hich implies the claimed result. □

It remains to prove Lemma 7.3. For this, we will use the following technical lemma, a
ariant of Gronwall’s Lemma.

emma 7.4. If f (x) is continuous on [0, τ ] and, for some γ > 0,

f (s) ≤ f (t) − γ

∫ s

t
f (u) du for all 0 ≤ t ≤ s ≤ τ,

hen f (s)eγ s is non-increasing on [0, τ ] and so f (s) ≤ f (0)e−γ s for all s ∈ [0, τ ].

roof. Suppose for a contradiction that f (s)eγ s > f (t)eγ t , where 0 ≤ t < s ≤ τ . Now take t ′

o be the maximum value in [t, s) such that f (t ′)eγ t ′
= f (t)eγ t . By continuity, it follows that

f (u)eγ u
≥ f (t ′)eγ t ′ for all u ∈ [t ′, s].

Applying the hypothesis to the times t ′ and s, we obtain that

f (s) ≤ f (t ′) − γ

∫ s

t ′
f (u) du ≤ f (t ′)

[
1 − γ

∫ s

t ′
e−γ (u−t ′) du

]
= f (t ′)e−γ (s−t ′)

= f (t)e−γ (s−t),

hich gives the desired contradiction. □

roof of Lemma 7.3. We need to show that, for n sufficiently large, (7.3) holds whenever
x and z are adjacent states in N 2ε(n, α, β), and s ≤ e

1
5 log2 n . Fix adjacent states x and z

n N 2ε(n, α, β) with x > z. Let pexit be the probability that either copy of the chain exits
12ε(n, α, β) before time e

1
5 log2 n; by Theorem 7.1 (with ε/6 replaced by 2ε), we have

pexit ≤ 2e−
1
4 log2 n. (7.4)

Until the copies coalesce, there is an unbalanced queue, with length L(t) in X (t) and length
L(t) − 1 in Z (t); whatever the length of the unbalanced queue, the rate of departures from the
nbalanced queue is 1, and a departure would lead to coalescence if L(t) = 1, or reduce the
nbalanced queue lengths by 1 if L(t) ≥ 2. If L(t) = 2, then an arrival does not change L(t)
nless the process leaves N 12ε(n, α, β). If L(t) = 1, then an arrival increases the length of the
nbalanced queue exactly when the arriving customer joins the (empty) unbalanced queue in

Z (t). The rate Rt of such arrivals depends on the number of empty queues in Z (t); we could
ive an exact expression, but we content ourselves with loose bounds that are easy to derive.
he rate Rt is certainly at most the rate of arrivals in which the unbalanced queue is inspected,
hich is equal to λn(1 − (1 − 1/n)d ) ≤ λd ≤ d. Any arriving customer who inspects the
nbalanced queue and no other empty queue in Z t – we call such an arrival a critical arrival
will join the unbalanced queue and thus cause L(t) to increase from 1 to 2: while Z (t) is in
12ε −α
(n, α, β), the proportion pt of empty queues in Z (t) is at most 2n , and so the rate of
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critical arrivals is

λn
[(

1 − pt +
1
n

)d
− (1 − pt )d

]
≥ λn

d
n

(1 − pt )d−1
≥ λd(1 − pt d)

≥
3
4

d(1 − 2n−α+β) ≥
1
2

d,

or n sufficiently large. Hence Rt ≥ d/2 as long as L(t) = 1 and Z (t) is in N 12ε(n, α, β).
In summary, if L(t) = 1, then L decreases at rate 1, and increases at a rate Rt between d/2

provided Z (t) ∈ N 12ε(n, α, β)) and d . If L(t) = 2, then L decreases at rate 1.
We consider the coupled pair of chains up to time τ = e

1
5 log2 n , starting from the initial state

x, z). Extending our earlier notation, we let a j (t) = P(L(t) = j) and a≥ j (t) = P(L(t) ≥ j),
or j = 1, 2.

Applying Dynkin’s formula, as well as the facts we have established about the rates of
ransitions for L(t), we have that, for t < s,

a≥1(s) = a≥1(t) −

∫ s

t
a1(u) du; (7.5)

a≥2(s) = a≥2(t) +

∫ s

t

(
−a2(u) + E[1L(u)=1 Ru]

)
du; (7.6)

a1(s) = a1(t) +

∫ s

t

(
−a1(u) + a2(u) − E[1L(u)=1 Ru]

)
du. (7.7)

e also note that, for u ≤ τ ,

da1(u) ≥ E[1L(u)=1 Ru] ≥
1
2

d(a1(u) − pexit). (7.8)

Recall that pexit is the probability that either copy leaves the set N 12ε(n, α, β) before time
. Note that

a2(t) ≤ a≥2(t) ≤ a2(t) + pexit (7.9)

or all t ∈ [0, τ ].
Our aim is to prove the upper bound (7.3) on a1(s) = axz

1 (s) for all s ≤ τ . We shall establish
hat a≥2(s) is of order da1(s), for s larger than about 1/d , and that a≥1(s) falls off at least as
ast as roughly e−s/d . This implies that the time to coalescence is approximately dominated by
n exponential random variable with mean d , while, for t greater than about 1/d, conditional
n coalescence not having occurred, the probability that L(t) = 1 is of order 1/d; these bounds
ill yield (7.3). In our formal analysis, we shall use Lemma 7.4 several times.
We first consider the function

r (s) = a≥2(s) − (d + 1)a1(s) − pexit.

rom (7.6), (7.7), (7.8) and (7.9), we have

r (s) = r (t) +

∫ s

t

(
(d + 2)(−a2(u) + E[1Lu=1 Ru]) + (d + 1)a1(u)

)
du

≤ r (t) +

∫ s

t

(
(d + 2)(−a≥2(u) + pexit + da1(u)) + (d + 2)a1(u)

)
du

= r (t) − (d + 2)
∫ s

r (u) du,

t
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and therefore from Lemma 7.4 we have that r (s) ≤ r (0)e−(d+2)s
≤ e−(d+2)s . Rearranging, we

btain that, for s ≤ τ ,

a1(s) ≥
1

d + 2

[
a≥1(s) − e−(d+2)s

− pexit
]
. (7.10)

his tells us that, roughly speaking, after a lead-in time of order 1/d, the probability a1(s) that
he unbalanced queue has length 1 is at least about 1/(d + 2) times the probability a≥1(s) that
oalescence has not occurred.

The next step is to use the above to show that a≥1(s) falls off at least as fast as roughly
−s/d . We see from (7.5) and (7.10) that

a≥1(s) ≤ a≥1(t) −
1

d + 2

∫ s

t

(
a≥1(u) − e−(d+2)u

− pexit

)
du

Now we consider the function

v(s) = a≥1(s) +
2

(d + 2)2 e−(d+2)s
− pexit.

e have∫ s

t

(
a≥1(u) − e−(d+2)u

− pexit

)
du

=

∫ s

t

(
v(u) −

(
1 +

2
(d + 2)2

)
e−(d+2)u

)
du

≥

∫ s

t
v(u) du −

2
d + 2

(e−(d+2)t
− e−(d+2)s),

and so

v(s) ≤ v(t) +
2

(d + 2)2 (e−(d+2)s
− e−(d+2)t ) −

1
d + 2

∫ s

t
v(u) du

+
2

(d + 2)2 (e−(d+2)t
− e−(d+2)s)

= v(t) −
1

d + 2

∫ s

t
v(u) du.

Therefore, by Lemma 7.4, v(s) ≤ v(0)e−s/(d+2)
≤ 2e−s/(d+2), and we deduce that, for s ≤ τ ,

a1(s) + a≥2(s) = a≥1(s) ≤ 2e−s/(d+2)
+ pexit. (7.11)

Finally, we show that a1(s) is at most about 2/d times a≥1(s). We apply Lemma 7.4 to the
function

q(s) =
d
2

a1(s) − a≥2(s) −
d
2

pexit.

rom (7.6), (7.7) and (7.8), we have, for t < s,

q(s) = q(t) +

∫ s

t

(
−

d
2

a1(u) +

(d
2

+ 1
)(

a2(u) − E[1Lu=1 Ru]
))

du

≤ q(t) +

(d
2

+ 1
) ∫ s

t

(
a≥2(u) −

d
2

(a1(u) − pexit)
)

du

≤ q(t) −

(d
+ 1

) ∫ s

q(u) du.

2 t
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We obtain that q(s) ≤ q(0)e−(d/2+1)s
≤

d
2 e−(d/2+1)s , so

d
2

a1(s) − a≥2(s) ≤
d
2

e−(d/2+1)s
+

d
2

pexit.

Summing with (7.11) yields, for s ≤ τ ,(d
2

+ 1
)

a1(s) ≤
d
2

e−(d/2+1)s
+ 2e−s/(d+2)

+

(d
2

+ 1
)

pexit,

and so

a1(s) ≤ e−(d/2+1)s
+

4
d + 2

e−s/(d+2)
+ pexit,

hich is the required bound. □

Theorem 7.2 gives concentration of the random variable V (Y (t)) about its mean within order
n/d . We note that no such bound can be shown if we rely only on the fact that V (x) is a

Lipschitz function of the state space. Indeed, coalescence of the Markov chain takes time of
order d , and the results of [19,25] or [26] would only give concentration within order

√
nd of

he mean.
We indicate briefly why we expect that concentration of V (Y (t)) within order

√
n/d of its

xpectation is best possible. If we look at the transitions of the process over a time period
0, t] of length t = nd, the number of arrivals has fluctuations of order

√
nd. The analysis

n the proof of Theorem 7.2 and Lemma 7.3 suggests that a positive proportion of the extra
ustomers will still be in the system at the end of the period, and approximately a proportion
/d of these will be in queues of length 1, so that fluctuations of order

√
nd in the number

f arrivals during [0, t] result in fluctuations of order
√

n/d in the number of empty queues at
time t .

We believe that a similar proof can be used to show sharp concentration of measure results
for the supermarket model in the range where λ < 1 and d ≥ 2 are fixed constants. Here
t is known that the proportion of queues of length at least k, for each k fixed, is close to
(k) = λ(dk

−1)/(d−1) in equilibrium. For k ≥ 1, let fk(x) be the number of queues at least
; for x any state with approximately nv(k) queues of length k for each k, and k large, the
uantity Q(x, y)((P̂ s fk)(x) − (P̂ s fk)(y))2 is dominated by terms where the transition from x

to y creates an unbalanced queue of length k, and there is no departure from the unbalanced
queue before time s. Thus we may take α̂(s) at most some constant times nv(k)e−2s , and obtain
oncentration within order

√
nv(k) for fk(x) in equilibrium, at least for k large.
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