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Abstract 

As civilization enters the twenty-first century, the ideal of sustainable development is being 

accepted by more and more countries in the world. The most influential countries on this 

planet, including the UK, are negotiating and cooperating in the 26th United Nations Climate 

Change conference (COP26) to achieve the zero-carbon goal by the middle of this century. 

To achieve sustainable development, renewable energy sources are being widely introduced 

into the electricity grid which demands extra energy storage systems, such as batteries, to 

reduce the grid instability caused by them. In the meantime, electric vehicles are being 

promoted to replace traditional hydrocarbon-burning vehicles which further increases 

battery demand. All these ongoing changes are indicators of the importance of battery energy 

storage systems (BESSs) as an integral component of the technologies of the future. 

To support these changes, this thesis reports on work which tackles an important aspect of 

battery-energy storage: the modelling and electrical properties of a large battery pack. The 

work focusses on grid-tied packs but the work is equally applicable to transport applications. 

The thesis describes the development of a simulator tool for large-scale BESSs which is able 

to simulate BESSs at pack level and cell level. With the University of Sheffield’s grid-tied 

battery research platform, the Willenhall Energy Storage System (WESS), as an example, 

the study starts with the modelling of the large-scale BESS at pack level which provides 

three sets of equivalent circuit parameters for two different equivalent circuit models. These 

models are extracted directly from a large-scale BESS which provides high fidelity and can 

be used for the system-level modelling such as system design and investment evaluation. 

The study of large-scale BESS modelling is then extended to cell level, where an efficient 

software tool for cell-level simulation is proposed. Cell-level simulations considering the 

cell-to-cell variation are conducted and the simulation and experimental results reveal some 

important properties of large-scale BESSs that are related to the cell voltage deviation. The 

findings in this section improve the understanding of the practically observed battery pack 

behaviour in the large-scale BESS (at Willenhall specifically, but most findings are generally 

applicable), especially at the cell level. 

The study concludes by studying open circuit voltage (OCV) hysteresis in the large-scale 

battery pack inside (i.e., WESS) through experiments. The study of hysteresis based on 

measured performance is found to be significantly improved through the application of an 
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extended Kalman filter. OCV hysteresis has historically been primarily discussed and 

measured in small-scale batteries. This work demonstrates not only the challenges of OCV 

hysteresis measurement in large-scale BESS but also reveals the effects of the properties of 

large-scale battery systems on OCV hysteresis experiments. 
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Chapter 1. Introduction 

1.1 Overview of electrical energy and challenges for the grid 

As civilization evolves, electronic devices and electrical machines are widely used in modern 

industrial and domestic activities, which cause a massive demand for electrical energy. In 

the UK, from 1920 to 2018, the electricity generated by major power producers was boosted 

from 4 TWh to 281 TWh per year [1] to meet the increasing electricity demand. 

Traditionally, electricity is gained from fossil energy sources such as coal through 

combustion reaction and energy conversion during which a large amount of greenhouse 

gases (e.g., carbon dioxide) are produced. Excessive greenhouse gases lead to a global 

temperature rise and extreme climate events [2] which urges counties to achieve sustainable 

development. As suggested by the ongoing 26th Conference of the Parties (COP26), net-zero 

carbon emission is expected to be achieved by the year 2050 [3]. 

To reduce greenhouse gases emission and achieve sustainable development, renewable 

energy such as solar PV, wind power, etc. are displacing non-renewable forms of generation 

such as coal. However, some of these renewable sources are influenced by environmental 

conditions. For example, the output power of a wind farm is affected by wind and so it cannot 

be relied upon to be available all the time. The change in electricity supply and demand will 

cause the grid frequency fluctuation. In detail, a frequency raise will be witnessed when the 

electricity supply is more than the demand. On the contrary, if the electricity supply is less 

than the demand, the grid frequency will drop. 

When penetration of renewable energy generation onto the grid was very low, stability could 

be easily managed through excess generation provision and ancillary services. However, in 

the UK, renewable energy takes a significant part in generating electricity. Taking the first 

quarter of 2021 as an example, renewable energy contributed 41.6% of the electricity in the 

UK [4]. As a result, the stability of the grid is compromised by the introduction of these 

variable renewable energy sources. 

Replacing traditional generators with renewable energy sources also leads to another 

challenge for the grid inertia reduction. Traditional generators have large inertia which 

provides the grid with a long response time to a fault (e.g., a power station trip). However, 
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renewable energy such as solar PV and wind power have low inertia which makes the 

maintaining of a constant frequency more challenging. 

Infrastructure ageing is another problem for the grid. The grid system was devised well over 

half a century ago since which the demand in certain geographic areas has increased and 

exceeded the ability of its local substation. The replacement of old infrastructure takes a 

large financial cost. For instance, as reported in [5], in Isle of Wight, the railway system 

cannot be fully supported by the local electrical infrastructure. The railway system including 

the infrastructure is under an upgrade that costs £26 million [6]. 

1.2 Opportunities for battery energy storage system 

The challenges that the grid is facing, and the pursuit of sustainable development provide 

the energy storage systems, especially battery energy storage systems (BESSs), with a 

golden opportunity. Compared to other types of energy storage systems such as compressed 

pumped hydro energy storage systems [7], air energy storage systems [8] and flywheel 

energy storage systems [9], battery energy storage systems have an advantage in scalability. 

As will be discussed in Chapter 2, BESSs can be manufactured at small to large scales which 

provides a wide range of capacity from Wh level to MWh level. 

BESS is a promising candidate for overcoming the challenges in the grid. Grid-tied BESSs 

can compensate for the instability of renewable energy [10] and help maintain a stable utility 

frequency by balancing the difference between electricity supply and demand. Normally, a 

lithium-ion battery is preferred in grid scale applications because it has high power and 

energy capacities and low self-discharge [11]. Besides, batteries have a fast response time 

(lead-acid and lithium-ion batteries response time: ~40 ms [12]) which is capable of meeting 

the challenge caused by inertia reduction. Moreover, BESS can also defer the upgrade of the 

electrical infrastructure and avoid (or at least defer) a large amount of investment. As [13] 

reports, two 4 MWh batteries were installed in Punkin, Arizona which saved half of the cost 

of upgrading the infrastructure.  
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Figure 1.1 Some important applications of battery energy storage systems 

Apart from frequency response services and infrastructure upgrade deferral, there are some 

other emerging applications of BESS including peak load lopping, electric vehicles and 

arbitrage as shown in Figure 1.1. To achieve sustainable development, electric vehicles are 

being promoted by many governments which is causing increased demand for (mostly 

lithium-ion) batteries. As a result, due to the demand in transportation (e.g., EVs), stationary 

(e.g., grid-tied BESSs), end consumer electronics (e.g., smartphones), and as Figure 1.2 

shows, the global lithium-ion battery market steadily increased from about 30 GWh in 2011 

to 195 GWh in 2019. 

 

Figure 1.2 Historical global lithium-ion battery market (adapted from: [14]) 
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1.3 Research purpose 

As discussed in section 1.2, battery energy storage systems have the potential to overcome 

the challenges in modern grid systems and, at this time, are essential for the prosperous 

electric vehicle market. The batteries in grid applications normally have a large scale which 

requires a large investment. For example, the 1 MWh battery energy storage system in 

Willenhall, Willenhall Energy Storage System (WESS) as shown in Figure 1.3, cost four 

million pounds [15]. In this case, the simulation of large-scale battery becomes important 

for investment evaluation, battery energy management, control strategy development, etc. 

 

Figure 1.3 Willenhall Energy Storage System (source: [15]) 

The main motivation of this research is to propose generic models for large-scale BESSs at 

cell level and pack level. The research demonstrated the modelling process on the WESS 

platform which is an LTO battery. Theoretically, the modelling techniques proposed in this 

research can be adopted in other types of BESSs. The modelling of other cell chemistries are 

not included in this thesis. 

The common simulation method for a large-scale battery is scaling from a single cell model 

according to the electrical configuration inside the battery pack without considering the cell-

to-cell variation (CtCV) that can often exist within the battery. This method is convenient 

but has some shortcoming. In detail, scaling up a single cell does not capture the properties 

of other parts in the BESS such the inverter and the battery management system. More 
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importantly, the cell level information cannot be obtained from a single whole battery 

equivalent circuit, because each cell is subtly different, which causes difficulties for further 

understanding the BESS’s operation if it is considered a symmetrical collection of identical 

cells. 

The first challenge to the large-scale battery modelling is the data accessibility of large-scale 

BESSs. The lack of experimental data restricts the direct modelling of large-scale BESS. 

Fortunately, the research described here uses WESS as the experiment platform which 

provides the users a limited but valuable data access. WESS is owned by the university as a 

research platform and can be used for experimental work. Secondly, cell level equivalent 

circuit for a large-scale BESS produces a large-order RC circuit network which is 

challenging to simulate. As will be discussed later in Chapter 4, modified nodal analysis 

method used in traditional circuit solver is not able to solve the massive RC circuit for large-

scale battery in a computationally efficient manner to support extensive optimisation and 

Monte Carlo type analyses. To explore the battery properties at the cell level, an efficient 

simulator is required. 

The purpose of this research is, therefore, to develop a software tool that can evaluate large-

scale battery storage systems under various applications from both pack level and cell level 

so that the internal operations within battery and the effects of cell-to-cell variation on battery 

performance can be understand through simulations. At the end, the developed software tool 

should be able to simulate large-scale BESSs under various applications and to evaluate the 

economic value of the applications and to help develop energy management strategies. 

1.4 Main contributions 

This research mainly focuses on the simulation of large-scale battery energy storage system. 

To achieve that, many experiments and simulations were conducted, during which 

contributions were made as listed below. 

• Implementation of cell-to-cell variance in large-scale BESS.  

The research developed the cell-to-cell variance phenomenon in large-scale BESSs through 

the equivalent circuit modelling method. This research discussed the intrinsic CtCV in cell 

capacity, internal resistance etc but the effect of temperature and degradation on cells are 

not included. The study helps the researchers understand the cell voltage deviation in 
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BESSs, especially the changing trend of the cell voltage deviation in charging and 

discharging cycles. The related experiments revealed the cut-off mechanism in WESS that 

trigged by cell voltage deviation. 

• Research and development of a novel cell level simulator for large-scale battery packs.  

The computational complexity of cell level simulation is a main challenge that limits cell 

level simulation for large-scale battery packs. The simulator introduced in this research is 

able to simulate a battery pack with over 21 thousand cells at an acceptable speed. The 

simulator is programmed with MATLAB language (as a MATLAB script) and run in 

MATLAB environment. 

• A minor comparison between pack modelling and single cell scale-up method.  

The single cell scale-up method is commonly used in large-scale battery simulation with 

the assumption that all cells in the battery are identical. In this research, with the support 

of the experiment platform (WESS), the single cell scale-up method is able to be compared 

with the pack level modelling method. 

• Exploration of the open circuit voltage (OCV) hysteresis phenomenon in large-scale BESS. 

Much prior research into OCV hysteresis has mainly focused on single cell behaviour. This 

research described in this thesis extends this to an OCV hysteresis study and experiment 

on a large-scale BESS. Hysteresis characteristics of WESS are described alongside a 

research investigation to accommodate hysteresis behaviour within a simulator using 

Preisach model. The OCV hysteresis theoretically exists in large-scale BESS. However, 

under the hardware and software settings in WESS, the OCV hysteresis in WESS is not 

experimentally verifiable. 

1.5 List of publications 

Conference paper: 

Zeyuan Wang, Jonathan Davidson and Martin Foster, "A large-scale battery energy storage 

system simulation tool for studying cell variation," The 10th International Conference on 

Power Electronics, Machines and Drives (PEMD 2020), pp. 261-265, doi: 

10.1049/icp.2021.1117. 
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Journal paper: 

Zeyuan Wang, Zhuo Wang, Jonathan Davidson, Martin Foster and Daniel Gladwin, "A 

Monte Carlo simulator to investigate cell-to-cell deviation in a grid-tied battery pack", IET 

Power Electronics. 1– 15 (2022). https://doi.org/10.1049/pel2.12289 

1.6 Thesis overview 

The thesis presents the modelling of a large-scale battery energy storage system, using 

WESS as an example. The thesis is constructed in the following structure. A literature review 

is provided in Chapter 2 which includes the background of electrochemical battery cells, the 

basic information of battery management and modelling, popular application of BESS such 

as enhanced frequency response support for the grid and peak load lopping, and the basic 

knowledge of battery pack simulation with considering cell to cell variation. The purpose of 

the literature review is to provide the basic and necessary information on battery storage 

systems and their simulation. 

Chapter 3 demonstrates a modelling process of a large-scale BESS at pack level. In this 

chapter, two experiments conducted on WESS will be discussed. The battery terminal 

current and voltage during the experiment are used to identify one-time-constant and two-

time-constant equivalent circuit models for WESS. The identified models from the battery 

pack are compared with scaling up a single cell model to the size of a full pack (scale-up 

method). Some important properties of WESS and its battery management system are 

reported in this chapter. 

Chapter 4 is a detailed discussion of the proposed cell level simulation tool for large-scale 

battery packs. First, the chapter explains the reason why the modified nodal analysis method 

in traditional circuit simulators cannot efficiently deal with the cell level simulation of large-

scale battery packs. The proposed simulator using Thévenin and Norton transformations will 

be explained and its operation verified. 

In Chapter 5, the phenomenon related to cell voltage deviation from observation taken from 

experiments performed using WESS is reported. The effect of cell-to-cell variation on the 

cell voltage deviation in WESS sized battery pack will be explored with the simulator 

introduced in Chapter 4. Monte Carlo simulation will be conducted with the battery pack’s 
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parameters generated according to specific probably distribution functions obtained from 

several single cell experimental characterisations. 

Chapter 6 investigates the open circuit voltage (OCV) hysteresis phenomenon in the large-

scale battery pack of WESS. After a discussion of the OCV hysteresis at single cell and the 

commonly used hysteresis model, the experiment for extracting OCV hysteresis in WESS 

will be introduced. The experiment result will be improved by an extended Kalman filter 

and will be discussed in detail in this chapter. Chapter 7 concludes and summarises this work 

and suggests some potential future work that would extend the research. 
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Chapter 2. Literature review 

This chapter provides a literature review of battery technologies including aspects from the 

cell chemistries and properties to applications, from a single cell to large-scale energy 

storage systems, from cell level modelling to pack level modelling, etc. The discussion in 

this chapter will provide a general background information of battery technologies which it 

is intended will help the reader understand the later chapters. 

2.1 Basics of battery chemistries 

Battery is a general term referring to a type of energy storage device that stores energy in 

electrochemical form. Batteries are classified into the primary and secondary types where 

the latter one can be charged and discharged multiple times whereas the former type cannot. 

Secondary batteries have been widely used as energy storage device to power up modern 

industrial and domestic activities. Due to its advantage of rechargeability over primary 

batteries, secondary batteries have drawn a lot attention from researchers and manufactures.  

After a long history of development, various secondary batteries with different shapes and 

chemistries have been invented and commercialised. Among many different types of 

secondary batteries, two most prevalent kinds of batteries, lead-acid batteries and lithium-

ion batteries, will be introduced and compared next. 

2.1.1 Lead-acid batteries 

Lead-acid batteries was invented in 1859 [16]; each cell has a ~2 V terminal voltage. As one 

of the oldest types of secondary batteries, lead-acid batteries are still active in the battery 

market mainly working as starting batteries in motor vehicles for SLI (starting, lighting, 

ignition) [17] or standby applications. Lead-acid batteries have advantages of outstanding 

safety, wide working temperature range (e.g., Yuasa NPL65-12IFR: -20°C to 60°C during 

discharge [18]), and low price (within 20 $/kWh [19]). However, the low energy density 

(~50 Wh/kg [20]) and low cycle durability characterises make lead-acid batteries 

inappropriate for applications like electric vehicles where large energy density and high 

durability are expected.  

Figure 2.1 illustrates the diagram of a lead-acid cell including the main parts: the negative 

electrode (metallic lead: Pb ) also known as the anode, the positive electrode (lead-
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dioxide: PbO2) also known as the cathode, the electrolyte (sulphuric acid:  H2SO4) and the 

porous separator.  

The main function of the separator is to avoid the physical contact between electrodes. The 

separator also holds the active martial, which helps to maintain the contact between the 

active martial and the grid [21]. The grid collects electrons from electrodes during the 

chemical reaction and also named as current collector [22].  

 

Figure 2.1 Diagram of a lead-acid battery (source: [17]) 

The anode and cathode materials, also known as active materials, take part in the chemical 

reaction during battery charging and discharging processes as equation (2.1) shows. The 

reactions happen at positive and negative electrodes are separately shown in (2.2) and (2.3). 

During the charging and discharging processes, the movement of sulphate ions SO4
2− and 

hydrogen ions H+ inside the battery and the flowing of electrons through the outside circuit 

generate a closed circuit. 

Total reaction: 

 
Pb + PbO2 + 2H2SO4

discharge
⇌

charge
2PbSO4 + 2H2O (2.1) 

Positive electrode reaction: 

 
PbO2 + 4H+ + SO4

2− + 2e−
discharge

⇌
charge

PbSO4 + 2H2O (2.2) 

Negative electrode reaction: 
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Pb + SO4

2−
discharge

⇌
charge

PbSO4 + 2e− (2.3) 

2.1.2 Lithium-ion batteries 

Lithium-ion batteries can be manufactured into different shapes such as cylindrical cells, 

coin cells, prismatic cells and pouch cells as Figure 2.3. However, for different shapes of 

lithium-ion batteries, the fundamental structure of a lithium-ion battery remains the same. 

Similar to the pre-described lead-acid batteries, a lithium battery also consists of five main 

parts that are the cathode, anode, electrolyte, separator and current collector. Figure 2.3 

shows the schematic diagram of lithium-ion batteries where the separator in the electrolyte 

is omitted.  

 

Figure 2.2  Schematic diagram of different shapes of Li-ion battery cell, (a): cylindrical, 

(b) coin, (c) prismatic, (d) pouch (source: [23]) 

The lithium-ion battery shown in Figure 2.3 has a Li1-xCoO2 cathode and a graphite (C6) 

anode where 𝑥  is a number between 0 and 1. The chemical reaction equations for a 

LiCoO2/C6 battery are shown in (2.4)–(2.6). During charging and discharging process, the 

active material in lithium-ion battery can be lithium-doped and lithium-undoped [24]. The 

Li+ departs from one electrode and travels to another electrode through the electrolyte which 
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generates the current path inside the battery. Similar to lead-acid batteries, the electron flows 

through the circuit outside the battery and forms a closed circuit with the internal current 

path.  

 

Figure 2.3 A schematic diagram of lithium-ion batteries using LiCoO2 battery as example 

(source: [25]) 

Total reaction: 

 
𝐿i1−𝑥CoO2 + Li𝑥C6

discharge
⇌

charge
C6 + LiCoO2 (2.4) 

Positive electrode reaction: 

 
Li𝑥C6

discharge
⇌

charge
𝑥Li+ + 𝑥e− + C6 (2.5) 

Negative electrode reaction: 

 
Li1−𝑥CoO2 + 𝑥Li+ + 𝑥e−

discharge
⇌

charge
LiCoO2 (2.6) 
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Apart from LiCoO2, various types of cathode active material for lithium-ion batteries have 

been developed. The other popular cathode active material includes LiFePO4, LiMn2O4, 

LiNiMnCoO2, etc. The working principle of these cells is similar to the LiCoO2 which has 

been introduced above. A description of LMO cell chemistry can be found in reference [26]. 

According to Faraday’s law, the theoretical specific capacity (𝐶th, often written in mAh/g, 

the capacity per unit mass) of an active material can be calculated as (2.7) [27], where 𝐹 is 

Faraday constant, 𝑀w is the molecular weight of the material and 𝑛 is the number of moles 

of transferred electrons in the chemical reaction per mole of the material (For example: 𝑛 =

1, for LiFeO4).  

 𝐶th =
𝑛𝐹

𝑀𝑤
 (2.7) 

Table 2.1 shows the theoretical specific capacity for different cathode materials calculated 

from (2.7) and the practical specific capacity from measurement. As Table 2.1 shows, the 

practical specific capacity is much lower than the theoretical value due to the reasons such 

as material purity. There are many types of LiNiMnCoO2 which has different ratio between 

Ni Mn and Co. LiNi1/3Mn1/3Co1/3O2 is the most common NMC cells [28], and it is being 

gradually replaced with LiNi0.8Mn0.1Co0.1O2 [29] which has a higher practical specific 

capacity. 

Table 2.1 Theoretical and practical specific capacity of various lithium 

battery 

(*: data not found). 

Chemistry 

Theoretical specific 

capacity (mAh/g) 

Practical specific 

capacity (mAh/g) 

LiCoO2 274 165 [30]/140 Ah [31] 

LiFePO4 170 120–160 [32] 

LiMnO2 148 ~120 [33] 

LiNi1/3Mn1/3Co1/3O2 278 163 [34] 

LiNi0.4Mn0.4Co0.2O2 279 * 

LiNi0.6Mn0.2Co0.2O2 277 * 

LiNi0.8Mn0.1Co0.1O2 276 203 [34] 

Compared with cathode material, the developed anode materials for lithium-ion battery 

normally have a much larger specific capacity. Carbon-based materials such as graphite are 

popular anode materials for lithium-ion batteries. The graphite has a theoretical specific 

capacity of 372 mAh/g [35] which can be easily approached by Polyfurfuryl alcohol derived 
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carbon (PFA-C) 350 mAh/g [24]; The porous carbon nanofibers (CNFs), 566 mAh/g [36], 

can easily exceed the theoretical specific capacity of the graphit. Another anode material, 

lithium titanate oxide who has a relatively low practical specific capacity (170 mAh/g [37]) 

shows ‘extremely stable and robust’ [35] properties during cycling, which is chosen by some 

manufactures such as Mitsubishi and Honda [38]. By contrast, the specific capacity of lead-

acid battery is ~30 mAh/g [39] which is much lower than lithium ion batteries. 

2.2 From cell to battery pack 

The battery structure and different battery chemistries have been discussed in section 2.1. 

Cells should be operated under certain restrictions, which will be discussed next. After 

introducing the concept of state of charge (SoC), the open circuit voltage (OCV) and SoC 

relationship for batteries will be discussed. In the end of this section, different scales of 

battery will be introduced. 

2.2.1 Cell operation restrictions 

For a battery cell, regardless of the chemistry, it needs to be operated under the restrictions 

specified by the manufacture to keep the battery safe and healthy. Summarized from the 

datasheet of some commercial cells [40–42], these restrictions mainly includes: the 

maximum and minimum cut-off voltages, the operating temperature, the storage temperature, 

the maximum allowed continuous charging and discharge current, the maximum allowed 

peak charging and discharge current, ambient humidity, etc. Violating these restriction or 

mechanically abusing batteries could cause permanent damage to the battery such as 

capacity loss, gassing, fires, thermal runaway, explosions, etc [43]. 

Among the restrictions, the maximum and minimum cut-off voltages are especially 

important for defining some vital concepts in battery study. The concepts and their 

definitions that used in this thesis are presented as below. 

• Fully charged: a battery is defined as in the fully charged state when its open circuit 

voltage (after relaxing) equals the specified maximum cut-off voltage. 

• Fully discharged: a battery is defined as in the fully charged state when its open 

circuit voltage (after relaxing) equals the specified minimum cut-off voltage. 
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• Capacity: the amount of charge that can be extracted from a battery when discharge 

it from the fully charged state to the fully discharged state, normally in the unit of 

Ah. 

• Remaining capacity: the amount of charge that can be extracted from a battery when 

discharge it from the present state to the fully discharged state. 

• State of charge (SoC): the ratio between the remaining capacity and the capacity, 

normally in a percentage form. 

Normally, the battery cut-off voltages provided by manufacturers are temperature-invariant; 

However, battery OCV and internal resistance are changing with temperature, which makes 

the measured battery capacity vary with temperature [44]. Ideally, defining temperature 

dependent cut-off voltages could maintain the battery capacity at a constant value and 

normalize SoC.  

It should be noted that strictly fully charged and fully discharged states are difficult to 

achieve in reality due to the existence of battery internal resistance so that fully charge and 

discharged states are normally replaced by a nearly fully charged and discharged state 

respectively. The ampere-hour (charge) capacity is the commonly used capacity index for 

batteries. However, it does not totally reflect the capability of a battery and sometimes is 

replaced by watt-hour (energy) capacity. The nominal watt-hour capacity is equal to the 

battery nominal voltage multiplied the battery nominal charge capacity. 

2.2.2 Cell open circuit voltage and state of charge relationship 

For a given battery cell, the open circuit voltage (OCV) changes is dominated by SoC and 

could be influenced by temperature and ageing [45]. Besides, the OCV and SoC relationship 

varies between cells with different chemistry. Reference [46] measured and modelled the 

OCV and SoC relationship of five cells with different chemistry. As the result in Figure 2.4 

shows, at the same SoC, the OCV value are different for different cells and the LMO battery 

has the greatest value while the LTO has the least value. 
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Figure 2.4 The measured and modelled OCV-SoC relationship for five cells with different 

chemistry. LMO: LiMn2O4, NCM: LiNi1/3Mn1/3Co1/3O2, NCM&LMO: NCM and LMO 

mixed, LTO: Li4Ti5O12, LFP: LiFePO4 (source: [46]) 

In general, as Figure 2.4 shows, the OCV of a battery gradually increase as the value of SoC 

increases. However, Lithium–Sulphur batteries have unique and unusual OCV and SoC 

relationship as Figure 2.5 shows. The OCV and SoC relationship are divided into two phases 

(Phase 1: 0-69%. Phase 2: 69%-100%). In phase 1, as SoC increases, the OCV keeps around 

2.1 V and has a slight decrease. In phase 2, similar to other pre-described chemistry, the 

OCV increases as SoC increases. For Lead-acid batteries the trend is almost linear, as shown 

in Figure 2.6, which allows the battery OCV to provide a reasonable indication of SoC. 

 

Figure 2.5 OCV and SoC relationship in a lithium–sulphur battery (adapted from [47]) 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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Figure 2.6 OCV and SoC relationship in a lead-acid battery (adapted from [48]) 

2.2.3 Small, medium and large scale batteries 

As section 2.2.1 and 2.1.2 discuss, a single cell has a low voltage (about several volts) and 

has a limitation in maximum allowed current so that the power delivered by a single cell is 

limited. To meet the design requirements (such as power and energy demand) in different 

applications, battery cells are often connected in series and parallel which generates different 

scales of batteries from small to medium to large [49]. Connecting cells in parallel increases 

the battery capacity and the series connection boosts the battery voltage [50]. 

Samsung SDI, which is a well-known lithium-ion battery manufacturer, displays various 

applications of different battery (from small to large) on its website [51]. As the website 

shows, typical applications of small scale batteries are laptops, mobile phones, wearable 

devices, etc. A small scale battery normally contains one or several battery cells with around 

tens of watt-hours of capacity (e.g., Samsung PGF3183A2 cell: 11.21 Wh [52]). The 

batteries for electric vehicles are in medium scale and have an capacity at kWh level (e.g., 

the battery in Nissan Leaf: 40kWh [53], 192 cells [54]). The large scale batteries have a 

capacity at MWh level and the typical example of large scale batteries is grid-tied battery 

energy storage system (e.g. Minamisoma Substation battery (Japan): 40 MWh [55], cell 

number not disclosed. Willenhall Energy Storage System: 1 MWh [15], 21,120 cells). 

2.3 Battery management system 

As section 2.2.3 describes, the cell number varies a lot between different scales of batteries. 

Despite of the scales of batteries, the users commonly expect the batteries to be safe and to 
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have a long lifespan, which motivates the battery, manufacturers to develop specialised 

battery management systems. 

2.3.1 Battery management system function 

Battery management system (BMS) is an essential part of battery energy storage system 

(BESS) and the functions of a BMS is achieved through the cooperation of hardware and 

software. Four main functions of  advanced BMSs are summarize from [50,56–61] and listed 

below. 

1. Monitoring: the BMS measures the battery cell information including current, 

voltage and temperature through sensor system. 

2. Safety: the BMS avoids any battery cell exceeds the allowed current, voltage and 

temperature boundary as specified in the datasheet. 

3. Estimation: the BMS estimates the battery SoC value and the battery ageing 

condition. 

4. Cell balancing: through the balancing circuit, BMS reduces the voltage difference 

among cells to achieve a larger available capacity and long battery lifespan. 

Apart from the main functions, other functions such as communication with other parts of 

the system, providing user interface (to display information such as SoC), fault diagnosis 

and handling, and data recording are also generally included in a modern BMS. Achieving 

these BMS functions in a battery often requires extra hardware which increases the cost. For 

example, as it will be discussed later, the cell balancing function normally requires complex 

control algorithms and extra components such as resistor, capacitor, etc. Some BMSs are 

designed without balancing function to keep the battery price affordable. Similarly, in a 

large-scale battery, monitoring every cell’s current, voltage and temperature requires a large 

number of sensors and recording these data requires large memory space which will increase 

the financial cost and the system size. A BMS should therefore make a balance between the 

functionality and the cost. 

2.3.2 Cell balancing 

Passive balancing and active balancing are two categories of balancing strategies where 

passive balancing uses resistors to consume the energy in the cells with higher voltage [62]. 

By contrast, in the active balancing method, the energy is transformed from the cells with 

higher voltage to other cells with lower voltage through capacitors and inductors [63]. 
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2.3.2.1 Passive balancing 

In passive balancing strategy, each cell is connected in parallel with a resistor. These resistors 

are controlled by switches as Figure 2.1 shows. During balancing, the switches connected to 

the cells with higher voltage will be turned-on and a discharge current will pass through the 

balancing resistors and the energy will be released as heat [62].  

 

Figure 2.7 Passive balancing diagram with n number of cells in series 

Passive balancing has a simple structure and control algorithm, which makes it extremely 

robust and reliable. More importantly, the passive balancing has a low cost [64] which means 

it still the preferred choice for a large-scale battery pack. However, the efficiency of passive 

balancing strategy is low and is suggested to work during the battery charging mode only 

[65]. Besides, a long balancing time is required to avoid serious thermal problems [64].  

2.3.2.2 Capacitor and inductor based balancing 

Figure 2.8 presents diagrams of capacitor-based and inductor based active balancing using 

two series connected cells as an example. The main idea for capacitor balancing [66] and 

inductor balancing [67] are similar. They are operated by switching the energy storage 

device (i.e. capacitor or inductor), which is first connected to the cell with higher voltage 

first and then to the cell with lower voltage. In this way, the energy from a cell with higher 

voltage transfers to the energy storage device first and then to the cell with a lower voltage.  

Taking the capacitor based balancing in Figure 2.8(b) as an example, assuming cell 1 has a 

higher voltage than cell 2, the capacitor will be combined with cell 1 first by turning the 

switches S1 and S2 to left. In this process, the capacitor is charged to the same voltage with 

cell 1. Then cell 2 with lower voltage will be connected with the capacitor by turning the 

switches to right. The energy will be released by the capacitor into cell 2.   

R1

Cell 1

S1 R2

Cell 2

S2 Rn

Cell n

Sn

...

...
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Figure 2.8 Simple examples of capacitor based balancing and inductor-based balancing 

In reality, a string could contain more than two cells and the energy transfer is not limited 

between two adjacent cells. The design of the capacitor and inductor balancing circuits are 

flexible. As [68] shows, the capacitor balancing for a string can be design in a single 

capacitor structure with a complex switching network (shown in Figure 2.9(a)) and also a 

multi-capacitors structure with slower balancing speed (shown in Figure 2.9(b)). Similarly, 

more complex design with inductors (transformer) can also be achieved as shown in [65] 

where each cell is parallel connected with a inductor (secondary winding of a transformer) 

and the balancing can be achieved with the cooperation of a shared primary winding.  

 

Figure 2.9 Capacitor based balancing. (a): single capacitor, (b): multi-capacitor (adapted 

from: [68]) 
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2.3.3 State of charge estimation 

Apart from cell balancing, SoC estimation is another main function of BMS which provides 

an important system status information for the user and for the energy management system 

to make usage decisions. The SoC estimation methods can be classified into two categories 

that are online and offline methods. The main difference between these two methods is that 

the offline methods are not suitable for real-time SoC estimation due to their restricted 

requirements. For example, the long resting time in the open circuit voltage method.  

In this section, an offline method (open circuit voltage method) will be discussed first. Then, 

several online SoC estimation methods will also be introduced including the coulomb-

counting method, model-based method, and data-driven method. 

2.3.3.1 Offline method: open circuit voltage method 

The open circuit voltage method is a typical offline SoC estimation method which is also 

known as the look-up method. It uses the relationship between OCV and SoC to estimate the 

SoC value in a battery cell. The OCV and SoC relationship is obtained from pre-experiments. 

An accurate OCV and SoC relationship containing the effect of ageing, temperature, etc. is 

crucial to this method which requires a large number of experiments. The open circuit 

voltage method is a good method to estimate a start SoC value. However, it is not very 

appropriate for a battery with a flat OCV and SoC relationship such as the lithium–sulphur 

battery [47]. Moreover, a strict OCV value should be measured after a few hours (1~3 h) of 

relaxation which is unacceptable for most applications. 

2.3.3.2 Online methods 

Method 1: coulomb-counting 

The coulomb-counting method is a commonly used conventional method which estimates 

SoC value by integration of the battery current. (2.8) provides a general expression of the 

coulomb-counting method in which 𝑆, 𝑆init, 𝐼, and 𝑄 represents the value of SoC, initial SoC, 

current, and capacity respectively. 

 𝑆(𝑡) = 𝑆init + ∫ 𝐼(𝑡)𝑑𝑡
𝑡

0

/𝑄 (2.8) 
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The coulomb-counting has advantages in the low complexity of computation but the 

accuracy can be easily influenced by the initial SoC value and current sensor accuracy [69].  

Method 2: model-based method 

The extended Kalman filter is a typical example of model based SoC estimation method 

which is not as sensitive to the initial SoC value since the Kalman filter can ‘correct’ the 

SoC estimation through the battery model and the difference between the measured and 

model estimated battery voltage. The developing and deriving process of Kalman filters is 

based on the equivalent circuit model of batteries. A detailed discussion of the extended 

Kalman filter and its application of it can be found in section 6.3.  

Similar algorithms include adaptive Kalman filter [70], particle filter [71], etc. These 

algorithms require a complex deriving process and the SoC estimation from these methods 

can be influenced by the battery model [72–74]. 

Method 3: data-driven method 

The data-driven methods include three main procedures that are data collection, model 

training and SoC estimation [75]. In this type of method, a data-driven model is trained with 

collected data such as current, voltage, temperature and the corresponding SoC value. During 

the online operation of a battery, the SoC can be estimated through the trained model and 

the measured data (e.g., current, voltage and temperature). 

Artificial neural network (ANN) is a popular type of data-driven model. Reference [76] 

introduces the back propagation (BP) ANN whose structure is shown in Figure 2.10. In the 

diagram, a circle represents an artificial neuron. The BP ANN has three layers including the 

input layer (𝑛 number of the artificial neuron), the hidden layer (𝑚 number of the artificial 

neuron), and the output layer (one number of the artificial neuron). 𝑥 and 𝑧 are the input and 

output information respectively, 𝑿 = [𝑥1, 𝑥2, … , 𝑥𝑛]
𝑇 . 𝑣  and 𝑤  are the weight between 

different layers, 𝑾 = [𝑤1, 𝑤2, … , 𝑤𝑛]
𝑇 . For the 𝑖𝑡ℎ  neuron in hidden layer, 𝑽𝒊 =

[𝑣1𝑖 , 𝑣2𝑖 , … , 𝑣𝑛𝑖]
𝑇. For the input layer, the input and the output of a neuron are the same. For 

the 𝑖𝑡ℎ neuron in the hidden layer, the input 𝑦𝑖 = 𝑽𝑖
𝑇𝑿 and the output 𝑜𝑖 = 𝑓(𝑦𝑖) where the 

excitation function 𝑓(𝑦) =
1

1+𝑒−𝑦. For the neuron in the output layer, the input 𝑝 = 𝑾𝑻𝑶 

where 𝑶 = [𝑜1, 𝑜2, … , 𝑜𝑚]𝑇 and the output 𝑧 = 𝑓(𝑝). In the case of battery SoC estimation, 

𝑧 is the value of SoC. 
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Figure 2.10 Single hidden layer ANN structure (source: [76]) 

Artificial neural networks become complex when more hidden layers and more input are 

introduced into the model as shown in [77]. A large amount of experiment data and 

computation are required to training the neural network in the method. 

2.4 Battery Energy storage system applications 

As mentioned before, a large-scale battery system could have a capacity at MWh-level which 

makes it a promising candidate for large-scale applications. In this section, some popular 

application of large-scale battery energy-storage systems will be introduced. 

2.4.1 Enhanced frequency response 

Frequency response services are aiming to constrain the grid frequency between 49.5 Hz and 

50.5 Hz (in the EU) by reducing the difference between supply and demand. Enhanced 

frequency response (EFR) is a type of frequency response services. The National Grid 

requires the participators in this service, such as BESS operators, to respond to the frequency 

deviation within 1s.  

In general, a grid-tied BESS is expected to release energy to the grid when the grid frequency 

is low and to absorb energy from the grid when the grid frequency is high. At different 

frequency values, the National Grid allows EFR service participator (e.g., a battery) to 

provide output power according to the service envelope as shown in Figure 2.11. The output 

power value of the battery to the grid is expected to be inside the upper and lower envelopes. 

Operating the energy storage system outside the envelope will incur a penalty [78]. 



24 

 

Figure 2.11 EFR service 2 envelop and reference point [78] 

The National Grid allows participators to choose from Service 1 and Service 2 as shown in 

Figure 2.11. The main difference between the services is the dead band (Service 1: [49.95Hz, 

50.05Hz] and Service 2 [49.985Hz, 50.015Hz]). Two EFR services with different dead band 

are compared and analyzed in [79]. As a result in [79], under the same frequency profile, 

Service 2 requires greater energy exchange between BESS and the grid. 

2.4.2 Peak load lopping 

Peak load lopping or peak shaving is the technique of reducing the peak power demand from 

the grid at peak time. BESS is an effective way to achieve peak shaving. The battery is 

charged during off-peak time (low power demand) and discharged during peak time. 

 

Figure 2.12 A load profile in peak shaving application (source: [80]) 



25 

Peak load lopping can effectively reduce the average and peak power demand from the grid. 

Reference [81] introduced a peak shaving method for a grid-connected PV system in which 

a battery works as ESS. The result showed a 15% reduction in average peak power and 39% 

maximum peak power. Since the difference between peak and off-peak times electricity 

prices, the reduction in peak power will result in the saving in operating cost of the system. 

2.5 Battery simulations 

Battery modelling and simulation are important. As it has been discussed in section 2.3, a 

battery management system could use battery models to estimate some important battery 

states such as SoC.  Battery modelling and simulation are also useful to predict the return on 

investment of a battery system which is important for the invertor. 

The electrochemical model, data driven model and equivalent circuit model (ECM) are three 

types of battery models that are widely used in different areas. In this section, the 

electrochemical model and data driven model will be introduced first and then a review of 

the commonly used electrical equivalent battery model will be presented. 

2.5.1 Electrochemical model 

Electrochemical models can provide an accurate description of the physical and chemical 

processes inside a battery. In electrochemical models, the physical and chemical properties 

of battery components and electrochemical reactions are represented by a set of equations 

[82]. 

Single particle model (SPM) is the simplest electrochemical model whose mathematical 

expression can be found in [83]. SPM assumes that the chemical reaction in electrodes is 

uniform. According to Fick’s law, the diffusion process of lithium inside the active material 

is governed by (2.9) in spherical coordinates. 𝑟𝑖, 𝑐𝑖 and 𝐷𝑖 are the radial coordinates, lithium 

concentration, and lithium diffusion coefficient in electrode 𝑖 where 𝑖 can be + (representing 

the cathode) or – (representing the anode).  

 
𝜕𝑐𝑖
𝜕𝑡

=
𝐷𝑖

𝑟𝑖
2

𝜕

𝜕𝑟𝑖
(𝑟𝑖

2
𝑐𝑖
𝜕𝑟𝑖

) (2.9) 
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The boundary conditions are 𝐷𝑖
𝜕𝑐𝑖

𝜕𝑟𝑖
|
𝑟𝑖=0

= 0 and 𝐷𝑖
𝜕𝑐𝑖

𝜕𝑟𝑖
|
𝑟𝑖=0

= −𝑗𝑖  where 𝑗𝑖  is molar flux 

and can be calculated as 𝑗+ = −
𝐼

𝛼+𝛿+𝐹𝐴
 and 𝑗− =

𝐼

𝛼−𝛿−𝐹𝐴
. 𝐼, 𝛼𝑖, 𝛿𝑖, 𝐹 and 𝐴 are the battery 

current, the specific active surface area of the electrode 𝑖, the thickness of the electrode 𝑖, 

Faraday’s constant, and the electrode surface area respectively. 

In SPM, the battery terminal voltage 𝑉 is calculated with (2.10) where 𝑈𝑖 is the OCV of the 

electrode 𝑖. The relationship between 𝑈𝑖 and the surface stoichiometry 𝑥𝑖
𝑠 is obtained from 

pre-experiments. The surface stoichiometry is the ratio of the surface lithium concentration 

𝑐𝑖
𝑠 to the maximum lithium concentration 𝑐𝑖

𝑚𝑎𝑥. 

 𝑉 = 𝑈+(𝑥+
𝑠 ) − 𝑈−(𝑥−

𝑠 ) + 𝜂+ − 𝜂− (2.10) 

𝜂𝑖 is the overpotential on electrode 𝑖 and is governed by the Butler-Volmer equation. By 

setting the charge transfer coefficient equal to 0.5, the 𝜂𝑖 is represented by (2.11) where 𝑖0,𝑖 

is the exchange current density. 𝑖0,𝑖  is a function of the reaction rate constant 𝑘𝑖 , the 

electrolyte concentration 𝑐𝑒, and the surface lithium concentration 𝑐𝑖
𝑠. 

 𝜂𝑖 =
2𝑅𝑇

𝐹
sinh−1(

𝑗𝑖𝐹

2𝑖0,𝑖
) (2.11) 

 𝑖0,𝑖 = 𝑘𝑖𝐹√𝑐𝑒√𝑐𝑖
𝑠√𝑐𝑖

𝑚𝑎𝑥 − 𝑐𝑖
𝑠 (2.12) 

Using electrochemical models to simulate a battery cell requires a large number of equations 

to describe the battery chemical reaction and quantities such as the electrode, separator and 

positive thicknesses are needed. The electrochemical model benefits cell designing [84] but 

the complexity of the electrochemical model leads to a heavy computational burden. 

2.5.2 Data driven model 

Data driven models (for example, neural network model, auto-regressive model, and support 

vector machine model) use a large amount of experiment data to train the model and do not 

directly simulate the physical or chemical process inside a battery [82]. 

Data driven models can estimate the battery internal states based on the battery external 

signal. For example, section 2.3.3.2 has discussed the SoC estimation method using data 

driven model (neural network). Apart from SoC estimation, data driven models can also be 
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used for terminal voltage prediction ([85]: auto-regressive model) and state of health 

estimation ([86]: support vector machine model). 

Although data driven models avoid the complex mathematic description in electrochemical 

models, it requires a large amount of data to achieve good accuracy. Besides, the model 

training process normally takes a long time. 

2.5.3 Equivalent circuit model 

Equivalent circuit models are using simple electrical components to represent the main 

electrical properties of a battery. Some basic electrical properties of a battery are listed below 

which may not be totally included in every model. 

1. Open circuit voltage (OCV): section 2.2.2 describes, the OCV of a battery changes 

with SoC which is the main part of the battery terminal voltage. 

2. Ohmic resistance: when a current flow through a battery, an instantaneous voltage 

change will be witnessed as a result of ohmic resistance. The ohmic resistance mainly 

comes from the electrolyte, current collector, and the membrane in the battery [87]. 

3. Transient properties or time constant: during a resting process, after the instantaneous 

voltage change, a gradually voltage recovering process will happen which is related 

to the charge transfer and diffusion processes in the battery [88]. These chemical 

processes also effect the battery voltage during charging and discharging. 

4. Self-discharge: a battery could be discharged through the path inside the battery. 

Self-discharge is a slow process in batteries. The typical self-discharge rate for 

lithium-ion batteries is 1-3% per month [89]. 

2.5.3.1 Internal resistance Model 

Internal resistance model, as shown in Figure 2.13, consists of an ideal voltage source and a 

resistor representing the internal resistance of a cell. The model is simple, but the internal 

resistance can reflect the transient voltage change due to the diffusion and charge transfer 

process.  
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Figure 2.13 Internal resistance model (adapted from: [90]) 

2.5.3.2 Randles’ model 

Randles’ model first published in [91] in 1947 to describe an electrochemical process. Since 

then, it has been modified or simplified for electrical circuit simulation. Reference [92] 

provides a Randles’ model circuit for lead-acid battery simulation as shown in Figure 2.14. 

In the model 𝑅0  represent the ohmic resistance of the battery, 𝐶1  and 𝑅1  represents the 

properties related to charge transfer and diffusion processes in the battery and 𝑅𝑑 is the self-

discharge resistance. In this model, the voltage on 𝐶𝑏 represents the battery OCV which is 

appropriate for lead-acid batteries that has an almost linear OCV and SoC relationship as 

shown in Figure 2.6. 

 

Figure 2.14 Randles’ model circuit for lead-acid battery (adapted from: [92]) 

2.5.3.3 One-time-constant model 

The one-time-constant model, as shown in Figure 2.15, uses a voltage source to replace the 

bulk capacitor Cb in Randles’ model and the self-discharge resistance Rd is omitted while 

the rest part of the circuit remains the same. The value of the voltage source is SoC-

dependent which makes it suitable for batteries with non-linear OCV and SoC relationship. 

R0 VOCI

Vt

Vt

R0 R1

C1

I Cb
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Figure 2.15 One time constant model (adapted from: [93]) 

2.5.3.4 Two-time-constant model 

The two-time-constant model, as Figure 2.16 shows, is generated by introducing another RC 

branch into the one-time-constant model. In the two-time-constant model, one RC branch 

with a larger time constant emulates the diffusion process. The other RC branch with a 

smaller time constant is corresponding to charge transfer process.  

 

Figure 2.16 Two time constant model (adapted from: [94]) 

2.5.3.5 Constant and dependent parameter 

In reference [95], a battery is represent with a Randles model where the component 

parameters of the equivalent circuit (𝑅0, 𝑅1,𝐶1 and 𝐶𝑏) are constant. On the contrary, as 

reference [94,96,97] shows, the components value in the equivalent circuit models changes 

with SoC. In this case, either partially or all the parameters in the equivalent circuit models 

are set as SoC dependent.  

Apart from the SoC, the value of the equivalent circuit parameters also vary with temperature 

[98], battery current value [99], ageing condition [100], etc. Introducing the dependency or 

nonlinearity between factors and parameters increases the model complexity. Whether or not 

introducing the nonlinearity of parameters should be decided by the application, simulation 

purpose, etc.  
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2.5.4 Battery pack simulation 

As section 2.2.3 describes, for a large-scale battery pack, there are over tens of thousands of 

cells which are connected in series or parallel. If all the cells are identical, the voltage and 

current of a battery pack can be simulated by scaling-up a single cell’s voltage and current 

according to the series/parallel relationship. Due to the existence of cell-to-cell variance, the 

battery pack simulation becomes complex. In this section, cell-to-cell variance will be 

introduced first which will be follow by a discussion of Monte Carlo simulation for battery. 

2.5.4.1 Cell-to-cell variance 

The differences between cells, namely the cell-to-cell variation (CtCV), is generally 

classified by whether it is brought about by intrinsic or extrinsic sources [101]. The intrinsic 

variations are caused by the difference in cell chemistry and electrical properties; for 

example, the impedance and capacity. On the other hand, factors like the unevenness of pack 

temperature, cooling system and external circuits are considered extrinsic sources. These 

variation sources also influence each other in difficult to predict ways [102]. 

Experiments and statistical analysis on CtCV have been widely conducted on cells with 

different sample sizes, from dozens to thousands [103–106]. The CtCV measurement mainly 

includes temperature, capacity, weight, DC resistance, AC impedances, self-discharge, 

calendar ageing and frequencies for typical impedance value. 

The experiment results provide statistical data for variation research based on a simple 

electrical model [107]. In more sophisticated electrochemical models [84][108], the 

variation sources are considered from the other quantities such as the electrode thickness, 

electrode density and weight fraction of active material.  

2.5.4.2 Monte Carlo simulation 

After introducing parameter variance into the battery pack simulation, once simulation is not 

capable of representing the behaviour of the battery under the give parameter distribution. 

To solve this problem, the Monte Carlo method is adopted by repeating a large number of 

simulations.  

Reference [109] provides an example of Monte Carlo analysis by considering the cell 

parameter variance. The author measured 50 cells to extract the parameter distributions of 
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equivalent circuit components and studied the influence of the parallel branches number on 

parallel-series structure battery pack (the battery pack contains two parallel branches and 

each branch consists of 108 series connected cells). For every configuration, five hundred 

simulations were completed. The authors used the maximum, minimum, and median values 

as metrics to analyse the losses in battery packs. Moreover, the mean value and standard 

derivation of cell capacity are used to measure cell degradation. 

 

Figure 2.17 The process of Monte Carlo Analysis on battery pack simulation 

In summary, the process of the Monte Carlo method on battery pack simulation is showed 

in Figure 2.17. Since the parameter is uncertain, the parameter distribution is used to generate 

the data for simulations. N times of independent simulations are carried on with the same 

distribution obtained from pre-measurements. The general conclusion will be made from all 

the N times simulation. 
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2.6 Summary 

This chapter introduced the background information of battery energy storage systems 

(BESSs) which includes battery chemistries, battery properties, the battery management 

system (BMS), applications of battery energy storage system, battery pack simulation with 

cell-to-cell variation (CtCV), etc. General functions of a BMS have been discussed in this 

chapter and the BMS in large-scale BESS will be discussed in the following chapters. 

Besides, the concepts defined in this chapter such as state of charge, capacity, etc. will be 

frequently used in this thesis. 

As has been discussed in section 2.5, equivalent circuit models (ECMs) are widely used in 

battery simulations. However, ECMs are normally identified from a cell. This work will 

present a more challenging ECM identification process on a large-scale BESS in Chapter 3. 

The computational complexity of battery equivalent circuit simulation increases with the cell 

number so that the CtCV is normally simulated within a small or medium-scale battery. This 

work will expand the simulations to large-scale batteries (>21k cells) with the help of an 

efficient simulator. The simulator will be presented in Chapter 4 and the cell level large-

scale BESS simulation can be found in Chapter 5. 
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Chapter 3. Pack-level modelling for Willenhall Energy Storage 

System 

Battery modelling is the study of the performance of a battery at a specific operating 

condition (load, temperature, history, age, etc.). Accurate modelling and simulation of 

battery energy storage systems are extremely important to both system builders and investors. 

The system builder is required to ensure satisfactory operation of the system under 

anticipated events and the investors undertake economic viability studies to ensure adequate 

return on investment. Essential to these activities is the fidelity of the battery model which 

should provide an accurate indication of the available capacity. 

Willenhall Energy Storage System (WESS) is a grid-tied battery energy storage system 

which contains a 2 MW/1 MWh Toshiba lithium titanium oxide (LTO) battery pack. This 

chapter aims to build equivalent circuit models (ECMs) with a different number of time 

constants for WESS which can be used for the system simulation under specific loads, such 

as frequency service. 

However, the traditional ECM parameter identification method for single cell cannot be 

directly applied on a large-scale battery energy storage system (BESS) like WESS due to 

hardware limitations and software restrictions in WESS. This chapter proposes a modified 

parameter identification method in the time domain that can be used for large-scale BESSs 

(e.g. WESS). During the parameter identification process, WESS was subjected to power 

pulse profiles from which the corresponding voltage and current waveforms were used to 

extract equivalent circuit parameters for RC equivalent circuit battery models. 

The experiments for parameter identification reveal some properties in WESS related to the 

controller, state of charge calculation, battery management system, etc. The WESS has a 

power-controlled inverter which cannot provide convenient control of current. The SoC in 

WESS’s BMS is estimated from the Coulomb counting method with a self-correction 

mechanism, which could contain a large error after a long-term charging or discharging. The 

WESS’s BMS recorded data at a low frequency (1Hz) with frequent data missing. These 

issues could lead to misinterpretation of the battery system behaviour and complicate the 

battery modelling process. In this chapter, these phenomena will be discussed alongside 

some experimental profiles.  
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3.1 Experimental platform: Willenhall Energy Storage System 

WESS is a grid-connected energy storage system research platform. The 2 MW / 1 MWh 

battery enclosure located at Willenhall consists of 21,120 Toshiba SCiB LTO cells. The 

connection of the cells is shown in Figure 3.1. Working from the pack to cell level: the pack 

contains 40 parallel connected racks. Within one rack, there are 22 series-connected 2P12S 

modules [110]. Every 2P12S module consists of 12 series of 2 parallel cells. The blue dashed 

lines in Figure 3.1 represent the self-balancing paths in WESS battery. Compared to the 

single SCiB LTO cell, WESS’s voltage, maximum allowed current, Ah capacity, and power 

are significantly increased because of series and parallel connections. The complex internal 

connection provides WESS with more paths for self-balancing current and greater flexibility 

in maintenance and operation. 

 

Figure 3.1 Schematic diagram of cell connection inside WESS battery 

LTO cells are noted for their exceptional performance on lifetime and safety [111]. SCiB 

LTO cells used in WESS have a 20 Ah nominal capacity and could be operated between 1.5 

V and 2.7 V. These LTO cells have a maximum rated charge and discharge current of 160 

A (8 C-rate) and could work under a temperature as low as -30°C. SCiB LTO cells have 

been shown to survive over 1,500 cycles (decrease to 80 % capacity) and can be charged 

from 0% to 80% SoC in just 6 mins [111]. For lithium iron phosphate cells, the suggested 

continuous charging current is normally restricted to 1 C-rate or lower. Thus, constructing a 

BESS using LTO provides greater accessible power than a similar system built using lithium 

iron phosphate cells. 
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Toshiba provided its own BMS for WESS. The main functions of a BMS include: safety and 

protection for the battery and also facility and the operators; providing crucial information 

such as battery terminal voltage, current, SoC and temperature to the operator (software 

management platform) and to help optimise the overall battery performance and maintain 

lifetime. Under the supervision of the BMS, the operator can charge or discharge the battery 

within a limit of 5% to 95% SoC. The operation beyond this SoC limitation is very rare. 

3.2 Equivalent circuit models and traditional parameter identification 

3.2.1 Equivalent circuit models 

Equivalent circuit models (ECMs) use simple electrical components to simulate the 

dominant behaviour of the battery/cell. Figure 3.2(a) and (b) provide two examples of battery 

ECMs with a different number of time constants, which will be used for modelling 

Willenhall Energy Storage System (WESS) later in this chapter. Commonly, three electrical 

behaviours are described in an ECM. First, ohmic resistance 𝑅0  corresponding to the 

instantaneous voltage drop when a current flows through a battery/cell. This resistance 

mainly comes from electrolyte and contact resistance. Second, a parallel connected resistor 

and capacitor branch (or branches) are used to simulate the dynamic responses of the battery 

including the electrochemical diffusion process and charge transfer reaction [112]. The 

voltage source corresponding to the battery/cell’s open circuit voltage (sometimes termed 

the equilibrium terminal voltage). The number of time-constants is chosen to balance model 

accuracy and computation cost. Generally, model accuracy increases with the number of 

time constants [113]. 

 

Figure 3.2 Battery equivalent circuit models (a): ECM1; (b): ECM2  

Equations (3.1)-(3.3) are the mathematical expressions for the relationship between the 

battery current 𝐼 (defined as flowing into battery, i.e. charging) and terminal voltage 𝑉𝑡 in 
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ECM1. The state of charge (SoC) is calculated using current integration and is relative to the 

maximum battery capacity Q and initial SoC value 𝑆init. The value of 𝑅0, 𝑅𝑖&𝐶𝑖 and open 

circuit voltage (OCV) are all SoC dependent. In this thesis, in the equations 𝑆 and 𝑉𝑂𝐶 are 

the values of SoC and OCV respectively.  

 𝑑𝑉𝐶1(𝑡)/𝑑𝑡 = −𝑉𝐶1(𝑡)/(𝑅1(𝑆(𝑡))𝐶1(𝑆(𝑡))) + 𝐼(𝑡)/𝐶1(𝑆(𝑡)) (3.1) 

 𝑉𝑡(𝑡) = 𝑉𝑂𝐶(𝑆(𝑡)) + 𝐼(𝑡)𝑅0(𝑆(𝑡)) + 𝑉𝐶1(𝑡) (3.2) 

 𝑆(𝑡) = 𝑆init + ∫ 𝐼(𝑡)𝑑𝑡
𝑡

0

/𝑄 (3.3) 

The process used to simulate the battery is illustrated in Figure 3.3 where the battery current 

provides SoC from which the battery equivalent circuit parameters of 𝑅0, 𝑅𝑖 and 𝐶𝑖 and OCV 

are determined from an a priori curve-fit. Δ𝑡 is the simulation step length which is set as 1 

s in this chapter. The value of resistances and capacitances are estimated through the linear 

interpolation method whereas a cubic spline is used to determine OCV under different SoC. 

During the simulation, in every time step, these values are updated according to the pre-

calculated SoC. Then the battery internal state 𝑉𝐶1 and terminal voltage are obtained. 

 

Figure 3.3 Simulation processes, using ECM1 as an example 

3.2.2 Parameter identification method for a small battery 

To identify the ECM parameters for single cell or small-scale battery pack, a constant pulse 

current experiment is normally conducted in a laboratory environment. The cell current value 

is accurately controlled, and experiment data is recorded in high resolution and sample rate. 

Reference [114] provides a typical parameter identification method in time domain for 

battery equivalent circuits and the method is demonstrated with a two time constant ECM 
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(as shown in Figure 3.2(b)) in which a cell is discharged with a constant pulse current at 

every 10% SoC and the voltage response during resting is used for parameter identification. 

Figure 3.4 shows the battery voltage profile after a constant current pulse discharge (PD). 

𝑡cpe is the time instant when discharging current pulse ends. At 𝑡0, the current decreases to 

zero. There are two time windows (time window 1: from 𝑡11 to 𝑡12, time window 2: from 

𝑡21 to 𝑡22), are chosen for identifying the RC branches with different scale of time constant 

in Figure 3.2(b), for example 𝜏1 = 𝑅1𝐶1 ≪ 𝜏2 = 𝑅2𝐶2. In [114], time windows are chosen 

as 𝑡11 = 0 s, 𝑡12 = 12 s, 𝑡21 = 240 s and 𝑡22 = 600 s, and typically 𝑡11 = 𝑡0. 

 

Figure 3.4 Battery terminal voltage profile during a pulse discharge (PD) test (source: 

[115]) 

The method assumes that at the end of the first window, the 𝑅1𝐶1 branch with a smaller time 

constant is fully discharged and have zero voltage. At the end of resting 𝑡end, the battery 

terminal voltage 𝑉𝑡 equals the OCV (𝑉OC). For 𝑡 > 𝑡21, 𝑉𝐶2 (the voltage on 𝑅2𝐶2) can be 

written as (3.4): 

 𝑉𝐶2(𝑡) = 𝑉𝐶2(𝑡21) ∙ ex  (−
𝑡 − 𝑡21

𝜏2
) (3.4) 

At 𝑡22, terminal voltage equals 𝑉t(𝑡22) and the larger time constant 𝜏2 can be estimated with 

(3.5) where 𝑉𝐶2 at 𝑡21 and 𝑡22 can be estimated with (3.6). 
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𝜏2 =

𝑡22 − 𝑡21

 n (
𝑉𝐶2(𝑡21)
𝑉𝐶2(𝑡22)

)
  

(3.5) 

 𝑉𝐶2(𝑡) = 𝑉𝑡(𝑡) − 𝑉𝑂𝐶 (3.6) 

Because the value 𝜏2 is obtained, the value of 𝑉𝐶2 can be calculated for 𝑡 > 0 including the 

time window 1. During the time window 1, 𝑉𝐶1 (the voltage on the 𝑅1𝐶1) can be described 

with the following (3.7): 

 𝑉𝐶1(𝑡) = 𝑉𝐶1(𝑡11) ∙ ex (−
𝑡 − 𝑡11

𝜏1
) (3.7) 

At 𝑡12, terminal voltage equals 𝑉t(𝑡12) and the small time constant 𝜏1 can be estimated with 

(3.8) where 𝑉12 at 𝑡11 and 𝑡12 can be estimated with (3.9) and (3.4). 

 
𝜏1 =

𝑡12 − 𝑡11

 n (
𝑉𝐶1(𝑡11)
𝑉𝐶1(𝑡12)

)
 

(3.8) 

 𝑉𝐶1(𝑡) = 𝑉𝑡(𝑡) − 𝑉OC − 𝑉𝐶2(𝑡) (3.9) 

In the method, ohmic resistance 𝑅0 is calculated from the instant voltage change Δ𝑉 at the 

beginning or the end of the discharging current as (3.10) shows where 𝐼 is the amplitude of 

the pulse current. Normally the voltage change Δ𝑉 during 0.1 s is used for 𝑅0 estimation 

[116]. 

 𝑅0 = |
Δ𝑉

𝐼
| (3.10) 

In theory, the equivalent circuit parameter identification method developed on a single cell 

can be also applied to large-scale batteries. However, there are some obstacles in large-scale 

battery systems like WESS causing difficulties in applying the method. As will be discussed 

in section 3.3, there is a long current raising and falling process in WESS which could last 

for over 10 s. During this process, the voltage on 𝑅0, 𝑅1𝐶1 and even 𝑅2𝐶2 are changing at 

the same time. The changing of battery terminal voltage is the combined result of 𝑅0, 𝑅1𝐶1 

and 𝑅2𝐶2. This slow current response causes a slow change in battery terminal voltage, 

which not only makes the ohmic resistance method invalid but also basically eliminates the 
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existence of the first window. Other properties like low sample rate, data missing, and low 

data resolution exacerbate the situation and make the 𝑅0 calculation less reliable. 

In the proposed parameter identification method in this chapter, WESS is discharged with a 

constant power load. 𝑅1𝐶1  and 𝑅2𝐶2  are identified from a voltage profile during resting 

using the nonlinear least square error method. The ohmic resistance 𝑅0 is calculated as a 

supplementary element to complete the function of ECM. Before discussing the detail of the 

method, the parameter identification experiments on WESS will be introduced first. 

3.3 Experiment profiles 

To build ECMs for WESS, two similar pulse experiments were conducted on two different 

days. In the two experiments on WESS, the battery voltage and current and the real power 

were recorded by the battery management system (BMS). The minus sign of the current and 

real power indicates that the battery is being discharged.  

3.3.1 Controller related phenomena: inverter and current response speed 

As a grid-connected facility, the inverter of the battery pack is designed for power control 

rather than current control. The power control strategy is necessary for a frequency response 

service where the demanding output and operating criteria are normally power. However, 

this is at the expense of losing direct and accurate control of the battery current. Due to this 

restriction, in the WESS, to identify the ECM parameter value, a constant current experiment 

is replaced by a constant power test (500 kW, 0.5 C). C is the theoretical current required to 

discharge the battery at constant current in one hour. Figure 3.5(a) and (b) show the battery’s 

real power profile on 3rd (day 1) and 4th (day 2) September 2019 respectively.  

To provide a direct view of the magnitude change of the recorded data, the current and real 

power are plotted with a reversed vertical axis. In the following discussion, the describing 

words such as ‘increase’ and ‘decrease’ refer to the change of magnitude, unless otherwise 

specified. 
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Figure 3.5 Experimental real power and battery current profiles, on day 1 and day 2. (note: 

‘Time’ refers to the time in the experiments) 

For both days, the battery was discharged from 95% SoC and expected to be discharged in 

5% SoC intervals until it reached a minimum of 5% SoC. Each discharge interval is 

characterised by discharge and then relaxation. For the test on day 1, each discharge interval 

takes 10 mins including discharging (~6 mins) and resting (~4 mins) phases. For the test on 

day 2, each pulse takes 20 mins including discharging (~6 mins) and resting (~14 mins) 

phases. At the end of the tests, some discharge intervals are incomplete since the operation 

of the test sequence is overridden by the protection features of the BMS. The battery current, 

Figure 3.5(b) and (d), in constant power tests is no longer constant because the battery 

voltage is changing during discharging.  

In addition to the varying current pulse amplitude, the fall-time of current is also not ideal. 

Figure 3.6(a-b) and (c-d) show the falling process of the first power pulse in the two 

experiments and the corresponding instantaneous battery current. Although the power level 

is seen to fall rather rapidly, the current takes longer to achieve the desired value. For the 

pulse on day 2 (Figure 3.6(c), (d)) the current lags the power profile by several seconds. The 
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battery power can be decreased from 500 kW to 0 kW in 1 or 2 seconds (Figure 3.6(a), (c)). 

However, it takes WESS more than 10 s to decrease the discharging current from ~700 A to 

~0 A (Figure 3.6(c), (d)). A similar effect is also observed at the start of each power pulse 

discharge. This slow current change may lead to a bad performance under some applications 

that require fast responses, and also makes the battery voltage change due to ohmic resistance 

hard to be identified. It is believed that the battery power recorded by BMS is the aiming 

power of the inverter’s control system rather than the real-time power of the battery. By 

contrast, the current response of batteries in laboratory tests is much faster (e.g. 0.01 s in 

[117]).  

 

Figure 3.6 The first pulse of the experimental real power and current profiles on day 1 and 

day 2. (note: ‘Time’ refers to the time in the experiments) 

Considering the WESS has an approximate 1600 Ah capacity, it is estimated that this rate-

limiting is, in fact, much slower than a lithium battery’s expected performance. The reason 

for this phenomenon is not clear but it is suspected that it is caused by a rate-limit setting 

within BMS or energy management system. Thus, the model of the battery which is obtained 

from this dataset will also include feature behaviour from the BMS and inverter.  
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3.3.2 State of charge related phenomena: calculation, correction and resolution 

Coulomb counting (current integration) is a widely accepted technique for estimating SoC. 

Since current integration is known to suffer from issues associated with drift and sensor 

precision, the BMS often periodically corrects SoC estimations. Figure 3.7(a) and (c) show 

SoC as a function of time for the day 1 and day 2 tests. SoC can be seen to decrease during 

discharge and the relaxation intervals can be readily seen. Figure 3.7(d) show the BMS 

applying a correction to its estimate during quiet periods of little or no current flow. It is 

believed the BMS is using the OCV and SoC relationship to correct the SoC estimation value. 

Figure 3.7(d) shows a 0.9 percentage point SoC change, labelled at ΔSoC, which is a 

correction for SoC estimation. This “correction” step in SoC was observed in the data of day 

2 experiment but not in the day 1 experiment (Figure 3.7(b)), which indicates that this type 

of correction only occurs when the quiet periods are of sufficient length (5 mins in WESS) 

for the terminal voltage to approximate OCV.  

 

Figure 3.7 The SoC profiles and the pulse around 70% on day 1 and day 2. (note: ‘Time’ 

refers to the time in the experiments. DCH: discharge. RT: rest) 
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3.3.3 Battery management system data related phenomena: sample rate, resolution and 

accessibility 

Table 3.1 shows some points from the raw dataset of day 1. As the first column in Table 3.1 

suggests, the maximum data sample rate is 1 Hz and samples often go missing. By contrast, 

the data sample rate in single cell or small battery laboratory tests is normally much higher 

(e.g. 10 Hz in [113,118] and 100 Hz in [117]). The resolution of the reported battery current 

measurements is 1 A and 0.1 V for the voltage measurement. The quantisation of the current 

might lead to inaccurate SoC estimation. For example, if there is a constant 0.99 A 

measurement error, after 24 hours continuous operation the SoC has an error of 1.5%. 

Besides, the ohmic resistance of a battery is small (in milliohms) and the low resolution of 

current and voltage measurements introduces a large error in its calculation in the traditional 

method (𝑅0 = |
Δ𝑉

𝐼
|). 

Table 3.1 WESS's partial history data on day 1 

Time (24h 

format) 

Current 

(A) 

Voltage 

(Volt) 

SoC 

(%) 

Real power 

(kW) 

7:30:56 -718 655.5 88 -504 

7:30:58 -718 655.5 88 -503 

7:30:59 -719 655.3 87.9 -500 

7:31:01 -719 655 87.9 -502 

7:31:03 -720 654.9 87.9 -500 

7:31:04 -720 654.9 87.9 -501 

7:31:06 -720 654.9 87.8 -503 

7:31:08 -720 654.8 87.8 -505 

7:31:09 -720 654.8 87.8 -502 

3.3.4 Voltage response in profiles and pseudo-OCV model 

Interesting behaviour regarding the shape of the terminal voltage curve has been observed 

for SoC around 60%, Figure 3.8(a) and (b). The voltage response to the discharge intervals 

repeats a similar pattern where the voltage decreases on the application of the discharge pulse 

and then increases during the relaxation time. Figure 3.8(a) and (b) show the instantaneous 

battery voltage and the upper and lower envelopes associated with the battery voltage 

deviation that occurs during the discharge and rest cycles. As can be seen, the separation 

between the two envelopes is constant for the majority of the experiment. However, at 

approximately 60% SoC the pulse discharge voltage waveform is somewhat different. The 

voltage rising process around 60% SoC is slower than that in the other SoC zones. 
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Consequently, the tops of these voltage profiles during resting around 60% SoC are no longer 

as flat. 

 

Figure 3.8 Experimental voltage profiles and pseudo-OCV. (a) and (b): battery voltage 

profiles from the experiments on day 1 and day 2 respectively; (c): pseudo-OCV vs. SoC 

from BMS obtained from six separated low current experiments (fitted with two 8th 

polynomial equations) 

This unusual voltage behaviour around 60% SoC happened in both day 1 and day 2 

experiments indicating that it is a behaviour of the battery (or the BMS) rather than the 

profile. As will be discussed in the following paragraph, it is believed this response is related 

to the battery’s OCV since the end of rest terminal voltage is close to OCV. The depressed 

resting voltage profile located around 60% SoC requires a large time constant within the 

ECM. 



45 

The OCV and SoC have a stable relationship so that SoC is often used to estimate battery 

OCV based on an a priori characterisation of this relationship. One commonly used method 

to determine this relationship is by measuring OCV at least once every 10% SoC and then 

approximating this response using a polynomial (or other equation) to model the overall 

relationship [119]. Although viable, this method sometimes fails to capture the minor details 

between the OCV-SoC data points. In another method, a small current is used to discharge 

the battery and the terminal voltage is assumed to be equal to OCV under these small-signal 

conditions. In this method, the battery terminal voltage under the low-current is widely 

known as pseudo-OCV. The word “Pseudo” indicates the fact that pseudo-OCV is close but 

not identical to OCV. 

 𝑉𝑂𝐶 = 𝑝1𝑆
8 + 𝑝2𝑆

7 + 𝑝3𝑆
6 + 𝑝4𝑆

5+𝑝5𝑆
4 + 𝑝6𝑆

3 + 𝑝7𝑆
2 + 𝑝8𝑆 + 𝑝9 (3.11) 

Table 3.2 Coefficients of 8th polynomial equations: 

pseudo-OCV and SoC relationship (show 4 significant 

digits). 

Coefficients SoC <= 59.9% SoC > 59.9% 

𝑝1 −1.096 × 10−11 7.334 × 10−10 

𝑝2 2.413 × 10−9 −4.458 × 10−7 

𝑝3 −2.323 × 10−7 1.179 × 10−4 

𝑝4 1.328 × 10−5 −1.770 × 10−2 

𝑝5 −5.063 × 10−4 1.651 

𝑝6 1.344 × 10−2 −97.93 

𝑝7 −0.2428 3605 

𝑝8 3.506 −7.527 × 104 

𝑝9 539.7 6.830 × 105 

Over the 4 years that WESS has been in service, six individual low current (< 0.01 C, 16 A) 

discharge experiments have been performed. As can be seen in Figure 3.8(c), the six 

experiments cover most of the SoC zone and so can provide a good estimator for OCV. The 

pseudo-OCV and SoC relationship is modelled with two 8th polynomial equations (3.11) and 

plotted in a black line in Figure 3.8(c). In the equations 𝑆 and 𝑉𝑂𝐶 are the values of SoC and 

OCV respectively. The coefficients of the polynomial equations are listed in Table 3.2. It 

should be noted that, between 55% and 70%, a change in gradient is observed and it is 

believed this is responsible for the characteristics observed in Figure 3.8(a) and (b). As will 

be discussed in section 3.4.5, the pseudo-OCV and SoC relationship is close to the embedded 

OCV-SoC lookup table for SoC correction which is unsuitable for the ECM simulation in 

this chapter. 
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3.4 Equivalent circuit model parameter identification 

3.4.1 Capacity estimation 

Both ECMs require a value for the battery capacity Q.  The SoC value at the beginning and 

the end of an experiment (day 1 or day 2) can be obtained from BMS history data and the 

charge accumulation can also be estimated using Coulomb counting (∫ 𝐼(𝑡)d𝑡
𝑡

0
). According 

to (3.3), Q is estimated as 1606.2 Ah for day 1 and 1605.3 Ah for day 2 and both values are 

close to the nominal capacity 1600 Ah. 

3.4.2 RC parameter estimation 

As mentioned in section 3.2.1, the ECM parameters are observed to be a function of SoC 

and so must be found through an identification process which is undertaken with the 

following assumptions:  

i) the ECM can represent the electrical behaviour of the battery pack. 

ii) the voltages on the internal RC branches within the ECM have reached a 

maximum value before the resting period (i.e. C is fully charged). 

iii) the same internal capacitors are fully discharged by the end of the resting period.  

iv) the operating temperature is constant.  

v) the battery response model is independent of current direction or value.  

The parameter identification is demonstrated with ECM1 and it is achieved by fitting the 

expected voltage responses of an ECM during resting, in (3.12), to the experimental voltage 

data through the nonlinear least square error method. Figure 3.9 shows this process using a 

power pulse at 58.5% SoC from the day 1 experiment. Figure 3.9(a) and (b) are the voltage 

and current profiles. Between t1 and t2, the battery discharging current first takes 12 s to 

increase from 0 to 760 A and then slowly increases to 770 A until t2, during which the effect 

of 𝑅0, 𝑅𝑖 and 𝐶𝑖 and OCV on battery terminal voltage are simultaneously combined and this 

complicated the identification process as the cause-and-effect of each parameter is not easily 

separable from the data. On the contrary, during the resting process (t2 - t3), the OCV is 

constant, and after the current decreased to zero, the voltage change is dependent on 𝑅𝑖&𝐶𝑖 
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only (where 𝑖 = 1 for ECM1). In Figure 3.9(c) and (d), the red and the blue lines are the 

battery terminal voltage profile during resting before and after the battery current completely 

transitions to zero.  

Step 1: (3.12) describes the blue section of the battery terminal voltage response, 

 𝑉𝑡(𝑡) = 𝑘0 + 𝑘1 ∙ ex (−(𝑡 − 𝑡2)/𝜏1) (3.12) 

where 𝑘0 is battery OCV which is estimated at slightly higher than or equal with the voltage 

at the end of resting (t3):  

 𝑉𝑡(𝑡3) ≤ 𝑘0 = OCV (3.13) 

and 𝑘1  is the voltage on capacitor 𝐶1  at the beginning of resting interval with a value 

approximated to 𝐼𝑅1 in which 𝐼 is the current value at the end of discharge: 

 𝑘1 = 𝑉𝐶1(𝑡2) = 𝐼(𝑡2) ∙ 𝑅1 (3.14) 

and 𝜏1 is time constant: 

 𝜏1 = 𝑅1 ∙ 𝐶1 (3.15) 
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Figure 3.9 Curve fitting process for ECM parameter identification using the day 1 

experiment at 58.5% SoC as an example: (a) voltage, (b) current, (c) step 1 of parameter 

identification, (d) step 2 of parameter identification 

After the current step decreases to zero, the voltage (blue line) is assumed to only depend on 

the internal capacitor voltage (VC1) and, hence, (3.12) can be used to estimate the value of 

𝑅1, 𝐶1 and OCV. The black line in Figure 3.9(c) is the partial fitting result of battery voltage 

with the estimated value of 𝑅1, 𝐶1 and OCV. A significant change in voltage Δ𝑉 at t2 is 

observed in the response. This change is assumed to be due to the effect of the series 

resistance 𝑅0. Thus, step 2: 𝑅0 can be estimated using 𝑅0 = |
Δ𝑉

𝐼(𝑡2)
|. The combined response 

(of 𝑅1, 𝐶1 and 𝑅0) is shown as the black line in Figure 3.9(d). The parameter extraction 

process for the 2 time-constant ECM is similar.  

3.4.3 Equivalent circuit model 1 (ECM1) parameters 

The first column of plots in Figure 3.10 presents the ECM1 parameters as a function of SoC 

for both day 1 and day 2 experiments. The general trend between 90% and 70% SoC is that 
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the values of 𝑅0 + 𝑅1, in Figure 3.10(e), are approximately constant. However, between 70% 

and 50% SoC, as SoC decreases the total internal resistance has a sudden increase and then 

quickly restores to the previous level. After 50% SoC for day 1 (and 40% for day 2) the total 

internal resistance gradually increases. It can be observed that the parameters 𝑅1 (diffusion 

resistance) and 𝑅0 (ohmic resistance) have the same order of magnitude. 𝑅1 has a similar 

change trend to 𝑅0 + 𝑅1  except for a difference that 𝑅1  has a slight decrease as SoC 

decreases between 90% and 80% SoC. For 𝑅0, the value fluctuates around 4.5 mΩ for day 

1 and 3 mΩ for day 2 in the SoC zone 15% - 90% and then increase steeply as SoC decreases 

in SoC zone 5% - 15%. 

For the time constant 𝜏1, both day 1 and day 2 have a peak value at around 60% SoC which 

coincides with the aforementioned unusual behaviour discussed with respect to Figure 3.8. 

However, for most SoC points, day 1 has a smaller time constant than day 2, Figure 3.10(g). 

It is believed that it is caused by the nature of the modelling process. In detail, the modelling 

process is a fitting process to determine the optimal solution which causes the least error for 

the candidate model (ECM1 in this case) and the experimental data. The time constant that 

the algorithm provides is the dominant time constant or the optimal time constant value that 

represents the overall effect of all the time constants in the battery. Compared to day 2, day 

1 has a shorter resting time. Hence, the resting voltage change on day 1 is dominated by the 

smaller time constants. As a result, the calculated time constant is smaller than day 2’s result. 
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Figure 3.10 ECM1 and ECM2 resistance and time constants identified from the 

experiments on day 1 and day 2 with respective to SoC BMS. The first column: two sets of 

ECM1 identified from day 1 and day 2 experiment; the second column: ECM2 identified 

from day 2 experiment 

3.4.4 Equivalent circuit model 2 (ECM2) parameters 

The second column in Figure 3.10 shows the parameter results extracted from the day 2 

experiment for a two time constant model ECM2 (Figure 3.2(b)). This result shares 

similarities with ECM1. It can be observed that the total internal resistance for ECM2, 𝑅0 +

𝑅1 + 𝑅2, (Figure 3.10(f)) is almost identical to that of ECM1, 𝑅0 + 𝑅1, extracted from day 
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2 (Figure 3.10(e), blue). The total internal resistance is responsible for total voltage change 

(𝐼𝑅 drop and polarization voltage) during the resting and so the total internal resistance for 

ECM1 and ECM2 identified from the same voltage profile must be identical. 

𝑅0 and 𝑅1 identified from day 2 experiment (Figure 3.10(b) and (d) in blue) have the same 

changing trend with 𝑅0  from day 1 in Figure 3.10(a). As SoC decreases, their value 

fluctuates among high SoC zone and increase in lower SoC zone. As has been discussed, 𝑅0 

cannot be directly calculated from the voltage change and it is estimated after the RC time 

constants have been identified. Consequently, in ECM1 the small time-constant information 

is hidden inside the ohmic resistance 𝑅0 and also the single RC branch. Compared with 

ECM1, in ECM2, the appearance of the small time-constant resistance 𝑅1 reveals the hidden 

information and causes an obvious decrease in 𝑅0 (Figure 3.10(a), blue vs. Figure 3.10(b)). 

For branch 1 (𝜏1), Figure 3.10(h) in blue, the peak value occurs at around SoC of 60%, which 

is consistent with observations for ECM1. However, the peak in 𝜏2 (Figure 3.10(h) in red) 

at 75% SoC coincides with the first peak at SoC=75% for ECM1 (Figure 3.10(g), blue). It 

should be noted that the day 1 experiment operated with a shorter rest duration and thus 

contained less information to identify 𝜏2 and this is the reason for providing only ECM2 

parameters for day 2. 

3.4.5 OCV-SoC response and ECMs built with the SoC from BMS and the Coulomb-

counting method 

OCV-SoC relationship in a battery should be irrelevant to the number of time constants in 

ECM. However, due to the SoC self-correction mechanism in the BMS of WESS, the 

determination of OCV-SoC relationship for ECMs become complex. During the previous 

ECM parameter identification process, the OCV value was estimated alongside the value of 

𝑅0, 𝑅𝑖  and 𝜏𝑖 (𝑖 = 1 or 2). The OCV-SoC relationships estimated from the day 2 experiment 

during ECM1 and ECM2 identification processes are presented in Figure 3.11(a) in circle 

and asterisk markers, respectively. As Figure 3.11(a) shows, these two sets of OCV-SoC 

points are extremely close to each other and are located on the pseudo-OCV line (shown in 

black). As discussed before, the SoC values in these OCV-SoC sets that are estimated from 

the day 2 experiment are corrected by BMS which indicates that BMS SoC in low current 

experiments is the estimated from OCV-SoC lookup table; The pseudo-OCV model obtained 

from the experiments is the same as the embedded lookup table.  
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Figure 3.11 The OCV value estimated from different experiments (i.e. day 1 and day 2) 

and ECM models (i.e. ECM1 and ECM2) with respect to SoC from (a) BMS and (b) the 

Coulomb-counting method 

However, in the simulations in this chapter, the SoC is calculated by the Coulomb-counting 

method which does not have the self-correction mechanism. In this specific case of WESS, 

using the SoC calculated by the Coulomb-counting method to estimate the OCV value 

through an OCV-SoC relationship built with the SoC value after self-correction causes an 

error. The same problem caused by the difference between the BMS SoC and Coulomb-

counting SoC also exists in the models of parameters 𝑅0, 𝑅𝑖  and 𝜏𝑖 (𝑖 = 1 or 2). 

The purpose of this work is to build battery energy-storage system ECMs suitable for system 

modelling. This modelling process is demonstrated on WESS which is a specific case, as 

was mentioned earlier in this section. It is preferable to build ECM with the SoC estimated 

by the Coulomb-counting method rather than the SoC from BMS. The value of 𝑅0, 𝑅𝑖 and 𝜏𝑖 

(𝑖 = 1 or 2) under SoC measured using the Coulomb-counting method is presented Figure 

3.12. The OCV models under the Coulomb-counting SoC from the two experiments and two 

ECMs are shown in Figure 3.11(b). It can be seen that these estimated OCV-SoC 
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relationships from day 1 and day 2 are much closer than that in Figure 3.11(a). The solid 

lines are the fitting results (cubic spline) of OCV under the Coulomb-counting SoC whose 

coefficients are provided in the appendix Table A. 1 and each of them is used in their 

corresponding ECM.  

 

Figure 3.12 ECM1 and ECM2 resistance and time constants identified from the 

experiments on day 1 and day 2 with respective to SoC from the Coulomb-counting 

method. The first column: two sets of ECM1 identified from day 1 and day 2 experiment; 

the second column: ECM2 identified from day 2 experiment 

Because there is no self-correction in SoC due to the BMS in the day 1 experiment, the 

modification of ECMs by using the Coulomb-counting SoC has less impact on the ECM 

parameters obtained from the day 1 experiment than that from the day 2 experiment. Figure 
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3.13(a) and (b) demonstrate the superiority of the ECM modelled with the Coulomb-

counting SoC by comparing the voltage simulation results of it with the ECM modelled with 

the BMS SoC. Both ECMs used in the simulations, in Figure 3.13(a), are ECM1 identified 

from the day 2 data set. As Figure 3.13(b) shows, the ECM modelled with the Coulomb-

counting SoC in the red line has a much smaller error (root mean square error (RMSE): 0.39 

V) than the one modelled under the BMS SoC in the blue line (RMSE: 2.48 V). Hence, 

ECMs built with the Coulomb-counting SoC will be used in the rest of the chapter. 

 

Figure 3.13 A simulation voltage (a) and error (b) comparison between ECMs modelled 

with the BMS SoC (ECM1 (BMS)) and Coulomb-counting SoC (ECM1 (Coulomb)): using 

ECM1 (identified from day 2) and day 2 input as an example 

3.5 Simulation results 

This section provides a detailed comparison of the estimations using ECM1 and ECM2 for 

the day 1 and day 2 datasets alongside scaled-up results obtained from a cell model fitted to 

measurements taken using EIS. Above all, the scale-up simulation approach using a single 

cell ECM will be introduced. 
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3.5.1 Single cell equivalent circuit model scale-up approach 

Figure 3.14 provides the one time-constant model (ECM1) parameters obtained from EIS 

measurements based on a single Toshiba lithium titanium oxide (LTO) cell. The LTO cell 

shown in Figure 3.14 is one of the four tested LTO cells in this work. The experiment detail 

is not the focus of this chapter and will be described later in Chapter 5 when the four cells’ 

equivalent circuit models are heavily used. 

The single LTO cell and WESS shares similarities in ECM parameter’s general change trend 

between 90% and 10% SoC. The ECM parameter of WESS in Figure 3.10 were extracted 

from the large signal-measurements and the single LTO parameter was from small-signal 

EIS test. The large internal resistance, time constant and special OCV change phenomena at 

60% SoC in WESS also occur in the single cell's parameter characteristic which might be 

the unique properties of Toshiba super charge ion battery (SCib) LTO cell. Single cell ECM 

parameters (especially 𝑅1 and 𝜏1) at extreme SoC points make the simulation voltage result 

deviate from the measured value and hence be removed from the ECM model. The single 

SCiB LTO’s OCV and SoC relationship is obtained from 11 SoC-OCV points.  
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Figure 3.14 Single Toshiba SCiB LTO cell ECM1 parameters identified from EIS 

experiments 

If all cells in a battery pack can be assumed to be identical then a large-scale battery can be 

simulated by scaling the parameters of a single-cell model. There are 40 parallel racks in 

WESS. The battery current separates into 40 equal streams and each of them flows into a 

rack. Furthermore, because of the parallel structure inside the 2P12S module, the cell current 

is half of the rack current. As a result, a single cell experiences a current that is 1/80 of the 

battery current. Besides, the series structure in the 2P12S module and rack increases the cell 

voltage by 12 times and the module voltage by 22 times, respectively. So that, the WESS 

can be simulated by scaling up the voltage of a single cell model (by 264 times) that has a 

load current that equals 1/80 of WESS current. The result of this simulation process will be 

shown in section 3.5.2. 

3.5.2 Detailed comparison of model performance based on dataset parameter extraction  

In this chapter, three ECM parameter sets have been identified based on the two datasets 

(day 1 & 2). In this section, the following nomenclature will be used to represent an ECM 

fitted to a dataset: ECMiDj where i=1,2 is the different ECMs and j=1,2 is the dataset day 1 
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or 2, such that ECM1D1 corresponds to ECM1 parameters identified from the day 1 dataset. 

Thus, the six permutations (sim. 1-6) using the proposed pack level ECMs are listed in 

Table 3.3. Besides, there are two more simulations (sim. 7-8) in Table 3.3 that use the single 

cell ECM from EIS experiment (ECM1EIS) and scale-up approach. 

Table 3.3 Simulation settings and RMSE of voltage result 

Simulation No. Model Input RMSE (V) 

Sim. 1 ECM1D1 Day 1  0.29 

Sim. 2 ECM1D2 Day 1  0.60 

Sim. 3 ECM2D2 Day 1  0.58 

Sim. 4 ECM1D1 Day 2  0.37 

Sim. 5 ECM1D2 Day 2  0.39 

Sim. 6 ECM2D2 Day 2  0.40 

Sim. 7 ECM1EIS Day 1 2.22 

Sim. 8 ECM1EIS Day 2 2.01 
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Figure 3.15 Simulation voltage and voltage error result in sim. 1 – 8. (a - b): voltage and 

error of sim. 1 - 3 and 7 using day 1 as input; (c - d): voltage and error of sim. 4-6 and 8 

using day 2 as input. sim. 1-6 use battery pack ECMs identified from day 1 or day 2 dataset 

and sim. 7 - 8 use the scale-up approach and the single cell ECM from EIS test 
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Figure 3.15(a) shows the voltage results of sim. 1-3 and 7, which use day 1 as input; their 

errors are shown in (b). The voltage results and errors of simulations that use day 2 as input 

(sim. 4 – 6 and 8) are presented in Figure 3.15(c) and (d), respectively. In terms of the ECMs 

identified from the dataset day 1 and day 2, all three models have good performance with 

both day 1 and day 2 as input. Generally, these simulations (sim. 1-6) have a larger error at 

the beginning of the discharge pulses. This error decreases during resting and approaches to 

~0 V at the end of rest. The error at the start of a discharge cycle indicates that the battery 

discharging impedance may be slightly different from the resting impedance. The much 

smaller error at end of rest intervals reflects the high accuracy of the OCV-SoC relationship. 

For the simulations using ECM1EIS (sim. 7 and 8), the general trend of the result is in 

agreement with the measured voltage. However, the maximum error (~6 V) is greater than 

with the models proposed in this chapter. 

The root-mean-square error (RMSE) of the voltage in each simulation compared to the 

measured voltage is listed in Table 3.3. Among the simulations using ECMiDj, as battery 

model and day 1 as input (sim. 1-3), sim. 1 has the least RMSE 0.29 V. The model ECM1D1 

used in sim. 1 also has the best performance when simulating day 2 input (RMSE: 0.37 V). 

As expected, the ECMs have a smaller RMSE value when simulating the voltage profile 

from which they are identified. For example, ECM1D2 has a larger RMSE in sim. 2 than sim. 

5. The accuracy difference between ECM1D2 and ECM2D2 is not obvious. For the 

simulations with ECM1EIS model (sim. 7-8), the voltage RMSE is higher than that of 

simulation with ECMiDj model (sim 1-6) by an order of magnitude. 

3.5.3 Verification 

The previous section has shown that the identified pack level ECMs in this chapter have a 

better performance than simply scaling up a single cell model. A history data is used to 

further verify the models (ECMiDj). The history of current data on 3rd May 2019, Figure 

3.16(a), is taken as input profile for the three models described in this chapter. The BMS 

SoC and simulated SoC are plotted in Figure 3.16(b). The simulated SoC is calculated from 

the Coulomb-counting method which is incapable of achieving a self-correction. Hence, 

after a long rest, simulated SoC departs from the BMS SoC, for example at the rest after 0.6 

h and 1.6 h. All three models have a good performance during the simulation with a peak 

absolute error smaller than 5 V, as Figure 3.16(d) shows. It should be noted that as time 

passes the SoC estimation error accumulates which makes the error in OCV and parameters 
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larger. Consequently, for all simulations, the voltage error in the whole process is gradually 

increased. In terms of the RMSE of the three simulations, their RMSE value is in the same 

order as Table 3.3: ECM1D1 (1.77 V) < ECM1D2 (2.10 V)≈ECM2D2 (2.15 V). 

 

Figure 3.16 Current profile on May 3rd, 2019 and simulation results with ECM1D1, 

ECM1D2 and ECM2D2: (a) current, (b) voltage, (c) SoC, (d) voltage error 

3.6 Conclusion 

This chapter demonstrates the modelling process of a 2 MW grid-tied BESS, WESS, using 

ECMs. It is found that some hardware and software settings in WESS could cause 

misunderstanding of a BESS and difficulties in building ECMs. In the proposed modelling 
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method, constant power experiments instead of constant current tests are used to identify 

ECM parameters because of the power-controlled inverter. Besides, due to the low sample 

rate, non-ideal measurement accuracy and slow current response speed, the ohmic resistance 

is calculated as a complementary component rather than from instant voltage drop. In 

addition, as discussed in section 3.4.5, the SoC self-correction mechanism in BMS prevents 

the large SoC estimation error from the Coulomb-counting method but could misguide the 

modelling process. For instance, the OCV-SoC relationship obtained from the resting 

experiment or low current pseudo-OCV experiment is the OCV-SoC lookup table stored in 

BMS which is not appropriate for offline simulations using empirical ECMs and the 

Coulomb-counting method. To build models that are suitable for offline simulations, OCV 

and other parameters should be modelled with respect to the Coulomb-counting SoC rather 

than BMS SoC after self-correction. 

The identified models have excellent performance when they are used for simulating the 

parameter identification experiment profiles and verified with historical data. Compared to 

the traditional single cell scale-up approach, modelling large scale battery systems directly 

from its terminal information reduces the simulation voltage root mean square error by an 

order of magnitude.  

The ECMs proposed in this chapter are for pack-level simulations that use one equivalent 

circuit to model over twenty-one thousand cells. These ECMs are appropriate for simulating 

the system performance under a specified load and for developing the battery energy 

management system. However, the pack level ECMs and simulations cannot provide cell 

level information such as the individual cell voltage and current which is important for 

understanding the battery management system and the characterises of WESS. To achieve a 

cell level simulation for WESS, a cell level battery equivalent circuit simulator will be 

introduced in the next chapter.  
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Chapter 4. Cell level battery equivalent circuit simulator 

In the pack level simulation presented in Chapter 3, a multi-cell battery pack is modelled by 

a single equivalent circuit model (ECM) in which cell level information, such as cell voltage 

and current, are amalgamated into single variables. While this provides a good first-order 

approximation for the outward characteristics of the battery pack, it cannot account for 

variation between cells as a result of manufacture, ageing or temperature. This variation is 

important because it has implications on cell lifetime, safety and balancing which can have 

implications for the entire battery system. Thus cell-level information is important for the 

study and understanding of the characteristics of large-scale batteries.  

To obtain the cell-level information, pack simulation and a circuit simulator at cell level are 

required. With the increase in the number of cells in the battery pack, traditional equivalent 

circuit simulation becomes increasingly cumbersome. The common approach, modified 

nodal analysis (MNA), as used in circuit simulation software such SPICE, cannot be used 

Since the Willenhall Energy Storage System (WESS) consists of over 21,000 cells, the 

results from the modified nodal analysis produces large sparse matrices which are difficult 

to solve and require considerable computational resources. This chapter proposes a 

computationally efficient method where circuit transformation techniques are used to avoid 

issues with large solving large sparse matrices. Subsequently, the proposed simulator will 

be used to study cell-to-cell variance study in Chapter 5. 

4.1 Internal cell connection within the Willenhall Energy Storage 

System 

A cell-level equivalent circuit for a large-scale battery pack is built by representing every 

cell by an equivalent circuit model (ECM) and connecting them, which requires the internal 

connection structure of the battery pack. WESS is a grid-tied battery research facility with a 

2 MW/1 MWh battery pack and consists of 21,120 Toshiba super charge ion battery (SCiB) 

lithium titanate oxide (LTO) cells [120]. The LTO cells inside WESS have an operating 

voltage window from 1.5 V to 2.7 V. A single SCiB LTO cell’s diagram and electrical 

symbol are shown in Figure 4.1(a). Every 24 cells are connected and packed into a 2P12S 

module which consists of 12 series links of 2 parallel cells as shown by Figure 4.1(b).  
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Figure 4.1 Battery connection in WESS: (a) cell diagram and electrical symbol, (b) 2P12S 

module diagram, (c) pack electrical connection 

In WESS the battery pack has 40 parallel racks and each rack is made of 22 series-connected 

2P12S modules [110]. As a result, the electrical connection at cell level has a symmetrical 

hierarchical structure as Figure 4.1(c) illustrates, where different hierarchical levels are 

shown in different background colours (pack: red, rack: green, module: blue, sub-module: 

orange, cell: yellow). Working from cell-level: a sub-module refers to the 2 parallel-

connected cells; a module consists of 12 series-connected sub-modules; a rack consists of 

22 series-connected modules and the whole pack is created from 40 parallel-connected racks.  

Thus, the number of cells within WESS can be determined from: 

2 parallel cells × 12 series connected × 22 series connected modules × 40 parallel connected 

racks = 21,120 cells 

Although the structure of the electrical connection varies across different applications [121], 

the overall aim is to guarantee similar currents are applied to all cells to achieve uniform 

ageing, state of charge (SoC) and temperature inside the battery. To reduce the 

manufacturing complexity, a pack is usually constructed using identical modules.  

4.2 Traditional circuit simulator 

SPICE is a commonly used circuit simulator that stands for ‘simulation program with 

integrated circuit emphasis’. SPICE was originally developed by the University of California 
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at Berkeley in the 1970s. After that, many SPICE-based circuit simulators are developed 

including LTSPICE, PSPICE and PartSim etc. SPICE-type software can translate a circuit 

schematic diagram into a netlist. According to the netlist, the SPICE simulator stamps the 

component voltage and current equations into a matrix equation using the modified nodal 

analysis technique. Stamping refers to the process of adding elements to a matrix equation. 

The detail of the stamping process and the form of the matrix equation will be discussed in 

section 4.2.2.  

Once the MNA equations have been generated, they are solved in discrete time and the 

procedure is iterated with a variable time step until the end of the simulation. This chapter 

will use a battery-cell equivalent circuit with one time constant to demonstrate this circuit 

simulation with MNA. 

4.2.1 Circuit schematic diagram and netlist in SPICE type simulators 

Figure 4.2 demonstrates the circuit diagram of battery equivalent circuit model with one time 

constant under a constant current load which is plotted with LTSPICE. The circuit diagram 

contains four kinds of elements: a resistor (ohmic resistor: R0 and diffusion resistor: R1), a 

capacitor (diffusion capacitor: C1), a voltage source (representing open circuit voltage: Voc) 

and a current source (load: I). After the ground node (N0 by convention) is designated, the 

simulator automatically names the remaining nodes in sequence from node 1 (N1) to node 3 

(N3). 

 

Figure 4.2 Circuit schematic diagram of the battery cell equivalent circuit model  

According to the assigned node names, SPICE generates a netlist for the circuit. A netlist is 

a code file that contains information such as the simulation commands, the simulation file 
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I
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address and all the needed information to represent the structure of a circuit. The elements 

of the circuit diagram in Figure 4.2 are written in the form of a netlist in Table 4.1. The 

information for each element is written in a single line which starts with the element name 

and is followed by the node names and the parameter value. I, V, R and C represent the 

current source, voltage source, resistor and capacitor respectively and the number or letter 

after the first character is used as an identifier for the element. 

Table 4.1 Partial netlist of the circuit diagram 

Name Terminal 
Node1 

Terminal 
Node2 

Value 

I N3 N0 set by user 

Voc N2 N3 set by user 

R0 N0 N1 set by user 

R1 N1 N2 set by user 

C1 N1 N2 set by user 

4.2.2 Modified node analysis and the stamping rules 

This section uses a series of circuits to demonstrate how to generate the MNA matrix 

equations. The MNA matrix equations are generated according to the netlists and stamping 

rules, which is the same as SPICE simulators. First, a simple circuit will be introduced. Then, 

more complex circuits including Figure 4.2 will be discussed. In a transient simulation, the 

MNA matrix equation is generated and solved at every time step to obtain the voltage and 

current information in the circuit. This information will be used to update the states in the 

circuit such as the voltage on capacitors which will be used in the next time step. Reference 

[122] comprehensively describes the stamping rules in SPICE simulator which will be 

described below. The stamping process happens at every time step and the following 

discussion the process on a time instant during a transient simulation. 

4.2.2.1 Nodal analysis 

Before explaining the MNA and stamping rules, traditional nodal analysis (NA) needs to be 

introduced first. Nodal analysis is developed based on Kirchhoff's current law which is 

suitable for circuit networks consisting of resistor and current source such as Figure 4.3. 

Compared with the circuit in Figure 4.2, the circuit in Figure 4.3 does not have the capacitor 

and the voltage source. The netlist of the circuit in Figure 4.3 is provided in Table 4.2. This 

circuit will be used for demonstrating the nodal analysis process and the stamping rules for 

resistors and current sources.  
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Figure 4.3 Circuit to demonstrate nodal analysis method 

Table 4.2 Netlist of the circuit diagram 

Name Terminal 
Node1 

Terminal 
Node2 

Value 

I N2 N0 set by user 

R0 N0 N1 set by user 

R1 N1 N2 set by user 

For the resistor 𝑅0, it has the current and voltage relationship as (4.1) shows, where 𝐼𝑅0
 is 

the current of 𝑅0, 𝐺0 is the conductance of the resistor and equals 1/𝑅0, 𝑉𝑁0 and 𝑉𝑁1 is the 

voltage of the resistor’s nodes (N0 and N1). 

 𝐼𝑅0
= 𝐺0(𝑉𝑁0 − 𝑉𝑁1) = 𝐺0(0 − 𝑉𝑁1) = −𝑉𝑁1𝐺0 (4.1) 

Similarly, for the resistor 𝑅1, (4.2) can be obtained where 𝐼𝑅1
 is the current of 𝑅1, 𝐺1 equals 

1/𝑅1 and 𝑉𝑁2 is the voltage of node N2. 

 𝐼𝑅1
= 𝐺1(𝑉𝑁1 − 𝑉𝑁2) (4.2) 

In nodal analysis method, there are two unknown values 𝑉𝑁1 and 𝑉𝑁2 in the circuit (in Figure 

4.3) which requires two equations to be solved.  According to Kirchhoff's current law (KCL), 

for node N1: 

 𝐼𝑅0
− 𝐼𝑅1

= −𝑉𝑁1𝐺0 − 𝐺1(𝑉𝑁1 − 𝑉𝑁2) = 0 (4.3) 

For node N2: 

 𝐼𝑅1
− 𝐼 = 𝐺1(𝑉𝑁1 − 𝑉𝑁2) − 𝐼 = 0 (4.4) 

As a result, 𝑉1 and 𝑉2 can be solve with (4.3)-(4.4). The KCL equations in nodal analysis 

method can be transformed into a matrix equation in the form of 𝒀 ∙ 𝑽 = 𝑱 where 𝑽 is the 
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column vector of nodal voltages [𝑉𝑁1 𝑉𝑁2 …𝑉𝑁𝑛]
𝑇, 𝑉𝑁𝑛 represent the voltage potential at 

node 𝑁𝑛 with respect to the grounded node 𝑁0, 𝒀 is the admittance matrix containing the 

reciprocals of resistances (and later reactances), and 𝑱 is a column vector of the current 

source input. The matrix equation is more convenient for a computer to solve. In the case of 

the circuit shown in Figure 4.3, one expression of  𝒀, 𝑽 and 𝑱 are provided in (4.5).  

 
𝒀 = [

−𝐺0 0
𝐺1 −𝐺1

] ;  𝑽 = [
𝑉𝑁1

𝑉𝑁2
] ;  𝑱 = [

𝐼
𝐼
] 

(4.5) 

There are many forms that this equation could take. The stamping method to be described 

results in an alternative format. This form is achieved by a two-step transformations:  

Step (1): subtracting the first row in 𝒀 ∙ 𝑽 = 𝑱 with the second row.  

Step (2): multiply both side of the result from step (1) with -1. 

a new equivalent form of 𝒀 𝑽 and 𝑱 is obtain as shown in (4.6) which will be compared with 

the matrix equation obtained from stamping process in section 4.2.2.2. 

 
𝒀 = [

𝐺0 + 𝐺1 −𝐺1

−𝐺1 𝐺1
] ;  𝑽 = [

𝑉𝑁1

𝑉𝑁2
] ;  𝑱 = [

0
−𝐼

] 
(4.6) 

4.2.2.2 The stamping rules of resistor and current source 

When the number of resistor and current source in a circuit is large, writing the KCL equation 

for the circuit becomes a cumbersome process. Fortunately, the matrices 𝒀, 𝑽 and 𝑱 can be 

constructed by stamping components value into specific location of a 𝑛 × 𝑛 zero matrix, a 

𝑛 × 1 zero vector and a 𝑛 × 1 zero vector respectively where 𝑛 is the number of nodes in 

the circuit (exclude the ground node N0).  

The stamp rules for a resistor are shown in Figure 4.4. A resistor has two nodes so that the 

current of the resistor contributes to the KCL equations of two nodes. As Figure 4.4 shows, 

for a resistor which has a resistance of R and is connected between nodes 𝑎 and 𝑏, its 

conductance 𝐺 = 1/𝑅  will be stamped (or added) into 𝒀(𝑎, 𝑎)  and 𝒀(𝑏, 𝑏)  while −𝐺 =

−1/𝑅 will be stamped into 𝒀(𝑎, 𝑏) and 𝒀(𝑏, 𝑎). 𝒀(𝑎, 𝑏) represents the element at row 𝑎 and 

column 𝑏  of matrix 𝒀 . Row 𝑎  and row 𝑏  of the 𝒀 ∙ 𝑽 = 𝑱  equation represents the KCL 

equation for the resistor’s node 𝑎 and 𝑏.  
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For any element with a grounded node, the ground node will cause no stamp because 

stamping with grounded node will introduce the ground node voltage 𝑉𝑁0 which is zero and 

does not cause any current flowing into or out of any node. 

 

Figure 4.4 Resistor stamping at a time step in transient simulation 

For a current source, the stamp changes the vector 𝑱 only. If the current source, as shown in 

Figure 4.5, has a value of 𝐼 and is connected between nodes of 𝑎 and 𝑏, −𝐼 and 𝐼 will be 

added into the 𝑎𝑡ℎ and 𝑏𝑡ℎ row of vector 𝐽 respectively. Stamping the current value into a 

row of vector 𝑱 is completing the KCL equation for the corresponding node. The stamped 

values for ath and bth row have different sign because the current source causes a ‘flowing 

out’ current for node 𝑎 but a ‘flowing in’ current for node 𝑏. 

 

Figure 4.5 Current source stamping at a time step in transient simulation 

Since the stamping location and value in the matrices are decided by the components value, 

node number and type which are contained in the netlist, the stamping process for a circuit 

can be conducted according to the netlist only. With the previously described stamping rules 

of resistor and current source, the stamping result of the circuit in Figure 4.3 can be obtained 

as (4.7) shows. The result from stamping in (4.7) is identical with that from KLC equations 
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in (4.6) which verifies the correctness of the stamping rules. The current source in Figure 

4.3 is grounded so that only −𝐼 is stamped into vector 𝒀. 

 
[
𝐺0 + 𝐺1 −𝐺1

−𝐺1 𝐺1
] [

𝑉𝑁1

𝑉𝑁2
] = [

0
−𝐼

] 
(4.7) 

4.2.2.3 Modified nodal analysis 

When there is a voltage source in the circuit as Figure 4.6 shows, the traditional nodal 

analysis cannot stamp it into the 𝒀 ∙ 𝑽 = 𝑱 equation as the voltage source has an undefined 

admittance and the previous stamping rules for resistor does not apply to it. Hence, the 

traditional nodal analysis needs to be modified to deal with the stamping of voltage sources, 

as modified nodal analysis. The circuit in Figure 4.6 will be used to describe the MNA 

method and the stamping rules for voltage sources. The netlist of the circuit is given in Table 

4.3. 

 

Figure 4.6 A circuit contains a voltage source 

Table 4.3 Netlist of the circuit diagram with a 

voltage source 

Name Terminal 
Node1 

Terminal 
Node2 

Value 

I N3 N0 set by user 

Voc N2 N3 set by user 

R0 N0 N1 set by user 

R1 N1 N2 set by user 

If there is a voltage source(s) in the circuit, the matrix equation 𝒀 ∙ 𝑽 = 𝑱 should be written 

according to the stamping processes described in section 4.2.2.2. Then the equation is 

augmented to include the voltage source which creates a new matrix equation 𝑨 ∙ 𝑿 = 𝒁 by 

introducing extra row(s) and column(s) into 𝒀, and extra row(s) into 𝑽 and 𝑱. Essentially, 
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the matrix formulation 𝑨 ∙ 𝑿 = 𝒁 is a group of equations based on Kirchhoff's current law 

(KCL) and Kirchhoff's voltage law (KVL).  

In detail, as Figure 4.7 shows, in the MNA method, each voltage source introduces an extra 

row and column into 𝒀. The 𝑎th element of the newly added row and column is set to 1; 

Meanwhile, the 𝑏𝑡ℎ element of the newly added row and column is set as -1. The current of 

the voltage source 𝐼𝑎𝑏 is combined with vector 𝑽 as the last row in the newly constructed 

vector 𝑿. Similarly, the voltage value 𝑉 is combined with 𝑱 to form the vector 𝒁.  

 

Figure 4.7 Voltage source stamping at a time step in transient simulation 

4.2.2.4 Stamping rules for capacitors 

For a capacitor, the relationship between its terminal voltage and current is shown in (4.8). 

As mentioned before, in transient simulations with SPICE type simulator, the MNA equation 

updates at every time step and so does the voltage on capacitors. From a step at time 𝑡 to the 

next time step 𝑡 + Δ𝑡, the voltage on the capacitor can be calculated with (4.9). The current 

𝑖 in (4.9) is time varying but when Δ𝑡 is small, the current can be considered as constant 

( ∫ 𝑖(𝜏)𝑑𝜏
𝑡+Δ𝑡

𝑡
≈ Δ𝑡 ∙ 𝑖(t) ) and the capacitor voltage is approximated as (4.10). This 

approximation is known as the forward Euler method. In this case, at every time step during 

a transient simulation, a capacitor can be seen to be equivalent to a voltage source whose 

voltage is calculated with (4.10). The equivalent voltage source is the companion model of 

the capacitor under the forward Euler approximation. Consequently, at each time-step the 

capacitor is replaced by a new voltage source whose stamping rules will be introduced next. 
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𝑣(𝑡 + Δ𝑡) = 𝑣(𝑡) +

1

𝐶
∫ 𝑖(𝜏)𝑑𝜏

𝑡+Δ𝑡

𝑡

 
(4.9) 

 
𝑣(𝑡 + Δ𝑡) ≈ 𝑣(𝑡) +

Δt

𝐶
𝑖(𝑡) 

(4.10) 

 

Figure 4.8 The companion model of a capacitor under the forward Euler approximation for 

the time step from 𝑡 to 𝑡 + Δ𝑡 

Because the capacitor in the circuit is replaced by its companion model at every time step, 

the stamping of the capacitor turns to the stamping of its companion model, a voltage source, 

which has been described in section 4.2.2.3. In this application, a constant time step Δ𝑡 is 

chosen heuristically to ensure acceptable accuracy without incurring significant 

computational expense. 

4.2.2.5 Generating the modified nodal analysis equation with stamping rules 

According to the described stamping rules and the circuit netlist in Table 4.1, the MNA 

equation of the battery equivalent circuit with a single time constant can be written. First, 

according to the stamping rules in section 4.2.2.2, the matrix equation 𝒀 ∙ 𝑽 = 𝑱 is generated 

as (4.11) shows. 𝑉𝑁1, 𝑉𝑁2 and 𝑉𝑁3 are the node voltages at nodes 1, 2 and 3 respectively. 𝐼 

is the current of load. 𝑅0 and 𝑅1 is the value of resistor R0 and R1 in Figure 4.2. 

 𝒀 ∙ 𝑽 = 𝑱 

[
 
 
 
 
1

𝑅0
+

1

𝑅1
−

1

𝑅1
0

−
1

𝑅1

1

𝑅1
0

0 0 0]
 
 
 
 

[
𝑉𝑁1

𝑉𝑁2

𝑉𝑁3

] = [
0
0
−𝐼

] 
(4.11) 

Then, the equation (4.11) is augmented in to 𝑨 ∙ 𝑿 = 𝒁 according to the stamping rules for 

voltage sources and capacitors in section 4.2.2.3 and 4.2.2.4 respectively. The final result of 
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𝑨 ∙ 𝑿 = 𝒁 is shown in (4.12). 𝐼𝐶1 and 𝐼𝑜𝑐 are the current of capacitor 𝐶1 and the current of 

voltage source 𝑉𝑜𝑐. At every time step in a transient simulation, the unknown vector 𝑿 is 

solved and the known vector 𝒁 is updated for next step according to their profiles or the 

companion model. 

 𝑨 ⋅ 𝑿 = 𝒁 

[
 
 
 
 
 
 
1

𝑅0
+

1

𝑅1
−

1

𝑅1
0 1 0

−
1

𝑅1

1

𝑅1
0 −1 1

0 0 0 0 −1
1 −1 0 0 0
0 1 −1 0 0]

 
 
 
 
 
 

[
 
 
 
 
𝑉𝑁1

𝑉𝑁2

𝑉𝑁3

𝐼𝐶1

𝐼𝑜𝑐 ]
 
 
 
 

=

[
 
 
 
 
0
0
−𝐼
𝑉𝐶1

𝑉𝑜𝑐 ]
 
 
 
 

 
(4.12) 

Matrix 𝑨 is in (4.12) a sparse matrix that has 13 zeros out of 25 elements. Equation (4.12) is 

for one cell’s equivalent circuit and can be easily solved by computer. This method works 

well for a pack with a low number of cells, but it is not appropriate for large-scale battery 

pack simulation due to the sparsity of the matrices.  

For example, in WESS there are 21,120 cells in WESS. If every cell were represented by an 

equivalent circuit model with one time constant, the overall circuit would contain over fifty 

thousand nodes and over forty thousand voltage sources and capacitors. As a result, in the 

𝑨 ∙ 𝑿 = 𝒁 formulation generated by MNA method, the matrix 𝐀 is not only sparse but also 

large (about 95 thousand by 95 thousand) which cannot be directly and efficiently inverted. 

As a result, SPICE type simulator and MNA cannot be used for the simulation of a large-

scale battery pack like WESS. 

4.3 Novel battery pack circuit simulator for the Willenhall Energy 

Storage System 

4.3.1 The overall structure of the proposed simulator 

The equivalent circuit of the entire battery pack can be generated by connecting the cells’ 

equivalent circuits in the electrical structure shown in Figure 4.1(c). The difficulty of solving 

the cell-level battery-pack equivalent circuits for WESS is obtaining the current of every cell 

at every time step. Instead of using MNA method, the proposed novel simulator uses 

Thévenin and Norton transformations to reduce the number of computations to determine 

the cell level currents. 
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Figure 4.9 Equivalent circuit model with one time constant in (a); the corresponding 

Thévenin circuit in (b); and Norton circuit in (c). (note: Veq and Ieq are equivalent voltage 

in Thévenin circuit and current source in Norton circuit) 

In order to demonstrate the modelling process, this section uses cell equivalent circuit model 

(ECM) with a single time constant, shown in Figure 4.9(a). However, the battery simulator 

can operate with an arbitrary-order ECM. For the single time-constant ECM, the ohmic 

resistance 𝑅0 , diffusion resistance 𝑅1 , capacitance 𝐶1 , time constant 𝜏1  and open circuit 

voltage (OCV) 𝑉oc  are state of charge (SoC)-dependent. The discretised mathematical 

description of the cell ECM is given in (4.13)-(4.16) where 𝑄 is maximum available cell 

capacity in ampere seconds and 𝛥𝑡 is time step length (𝛥𝑡 = 1 s), 𝑘 represent for the time 

step and 𝑉t is battery terminal voltage. The Thévenin and Norton transformations of the 

ECM is shown in Figure 4.9(b) and (c). 

 𝑉t[𝑘] = 𝐼[𝑘] ∙ 𝑅0[𝑘] + 𝑉C1[𝑘] + 𝑉oc[𝑘] (4.13) 

 𝜏1[𝑘] = 𝑅1[𝑘] ∙ 𝐶1[𝑘] (4.14) 

 𝑉C1[𝑘 + 1] = 𝑉C1[𝑘] ∙ ex (
−𝛥𝑡

𝜏1[𝑘]
) + 𝑅1[𝑘] ∙ 𝐼[𝑘] ∙ (1 − ex (

−𝛥𝑡

𝜏1[𝑘]
)) (4.15) 

 SoC[𝑘 + 1] = SoC[𝑘] +
𝐼[𝑘] ∙ 𝛥𝑡

𝑄
 (4.16) 

Figure 4.10 illustrates the main processes that occur within the battery pack simulator. At 

every step, cell parameters in the ECM are updated according to the cell’s SoC. The values 

of current for the 21,120 cells are calculated in two stages: ECM circuit transformation and 

cell current calculation (which will be discussed in section 4.3.2 and section 4.3.3 

respectively). The calculated value of cell current is used to update cell SoC and 𝑉C1 

(according to (4.15) and (4.16)) that will be used in the next time step. Elementwise and 

dimensional matrix operation and graphics processing unit (GPU) calculation were adopted 
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to boost the simulator’s speed. Compared with the calculation with central processing unit 

(CPU), GPU could deal with a much larger number of parallel calculations at the same time. 

 

Figure 4.10 The process in the proposed battery pack circuit simulator for WESS 

4.3.2 Equivalent circuit transformation  

Figure 4.11 demonstrates the process of equivalent circuit transformation that simplifies the 

overall battery pack circuit using Thévenin or Norton circuit transformations. To explain the 

process, the nomenclature needs to be explained first. Symbols I, V, and R are the current 

source, voltage source and resistor in Thévenin or Norton equivalent circuit. Lowercase 

subscript ‘c’, ‘sm’, ‘r’ and ‘p’ represents cell, sub-module, rack and pack respectively. The 

number in the subscript is used to distinguish between the different cells in the same sub-

module, sub-modules in the same rack, or racks in the pack. For example, Vc1 represents the 

voltage source of Thévenin circuit for cell 1 in the first sub-module of the first rack in the 

pack, as circuit C1.1 in Figure 4.11 shows. Circuit C1.1 is obtained by replacing the cell 

ECMs (show in Figure 4.9(a)) with their Thévenin circuits (shown in Figure 4.9(b)). As 

Figure 4.9 shows, Vc1, the value of the voltage source in Thévenin equivalent circuit for cell 

c1, is equal to the sum of the open circuit voltage 𝑉oc and the voltage on capacitor 𝐶1 (noted 

as 𝑉𝐶1 which is labelled with a capital ‘𝐶’ in the subscript). 

Cx.y (x∈(1, 2, 3, 4), y∈(1,2)) names different equivalent circuits where x is from 1 to 4 

representing circuit at cell level, sub-module level, rack level and pack level respectively 

and y is used to distinguish the Thévenin or Norton circuit in the same level. For instance, 

C1.1 represents the battery equivalent circuit at cell level with Thévenin form. a, b, …, h are 

the nodes in the first rack of the battery as shown in Figure 4.11 (for example in circuit C1.1). 

T1 and T2 are the battery terminal nodes.  
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Figure 4.11 Battery pack circuit simulator: Norton and Thévenin circuit transformation 
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As Figure 4.11 show, series and parallel connections of cells are combined using Thévenin 

and Norton theorems. Working up the pack hierarchy from single cell to sub-module, and so 

on, until the pack is finally represented by a single equivalent resistor and voltage source. 

There are seven steps in Figure 4.11 which can be divided into two kinds of operation. The 

first kind of operation is circuit transform according to Thévenin and Norton theorems which 

includes steps S1, S3, S5, and S7. The second kind of operation is combining electrical 

components such as parallel current sources, series voltage sources and parallel/series 

resistors which includes steps S2, S4, and S6. The representative calculation equation for 

steps S1 to S7 are listed in (4.17)-(4.23) in order. These equations are repeated on all units 

with the same structure in the circuit. For example, (4.17) takes cell c1 as an example but 

the same calculation should be applied to all cells in C1.1. 

S1 cell-wise Norton transformation: 

 𝐼𝑐1 =
𝑉𝑐1

𝑅𝑐1
 (4.17) 

S2 parallel combination: 

 {

𝐼𝑠𝑚1 = 𝐼𝑐1 + 𝐼𝑐2

𝑅𝑠𝑚1 =
1

1/𝑅𝑐1 + 1/𝑅𝑐2

 (4.18) 

S3 sub-module-wise Thévenin transformation: 

 𝑉𝑠𝑚1 = 𝐼𝑠𝑚1 ∙ 𝑅𝑠𝑚1 (4.19) 

S4 series combination: 

 {
𝑉𝑟1 = 𝑉𝑠𝑚1 + 𝑉𝑠𝑚2+ …+ 𝑉𝑠𝑚264

𝑅𝑟1 = 𝑅𝑠𝑚1 + 𝑅𝑠𝑚2+ …+ 𝑅𝑠𝑚264
 (4.20) 

S5 rack-wise Norton transformation: 

 𝐼𝑟1 =
𝑉𝑟1

𝑅𝑟1
 (4.21) 

S6 parallel combination: 
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 {

𝐼𝑝 = 𝐼𝑟1 + 𝐼𝑟2 +  + 𝐼𝑟40

𝑅𝑝 =
1

1/𝑅𝑟1 + 1/𝑅𝑟2 +  + 1/𝑅𝑟40

 (4.22) 

S7 pack Thévenin transformation: 

 𝑉𝑝 = 𝐼𝑝 ∙ 𝑅𝑝 (4.23) 

4.3.3 Cell current calculation 

At the end of the process in Figure 4.11, the battery pack is simplified into a Thévenin 

equivalent circuit C4.2. Figure 4.12 illustrates the following process that solving the voltage 

and current information inside the battery pack from pack level to cell level. In Figure 4.12, 

the prime symbol (′) represents the true current or voltage corresponding to the load which 

is different from that estimated by the Thévenin equivalent voltage and Norton equivalent 

current. For example, Ip′ is the current that flows into the battery pack. As Figure 4.12 shows, 

the internal currents and voltages inside the pack are determined in the sequence of racks, 

sub-modules, and cells through Kirchhoff’s current and voltage laws. 

There are three steps in Figure 4.12 from step S1′ to S4′. In step S1′, the pack current Ip′ and 

the battery pack voltage VT1T2 are calculated according to the load type (type 1: voltage load, 

type 2: current load, type 3: power load) as (4.24) shows. After replacing C4.2 with C3.1, 

the pack voltage VT1T2 and the pack current Ip′ remain the same. Hence, the rack current 

value can be calculated according to (4.25), taking rack 1 as example. In step S2′, the rack-

level equivalent circuit C3.1 is replaced by the sub-module level equivalent circuit C2.2 so 

that the voltages across sub-modules can be calculated by (4.26). In step S3′, C2.2 is 

substituted by C1.1 and the sub-modules voltage value keeps the same. Finally, in the circuit 

C1.1, the cell current can be calculated according to (4.27). By now, the current for every 

cell is calculated and as it has been discussed in section 4.3.1 the battery pack can be 

simulated step by step. 
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Figure 4.12 Battery pack circuit simulator: current calculation 

S1′ pack (and rack) voltage and current calculation: 

 

{
 
 

 
 𝑉𝑇1𝑇2 = 𝑉load;  𝐼𝑝

′ = (𝑉𝑇1𝑇2 − 𝑉𝑝)/𝑅𝑝                                                (ty e 1)

𝐼𝑝
′ = 𝐼load;  𝑉𝑇1𝑇2 = 𝐼𝑝

′ ∙ 𝑅𝑝 + 𝑉𝑝                                                           (ty e 2)

𝐼𝑝
′ = (−𝑉𝑝 + √𝑉𝑝

2 − 4𝑅𝑝 ∙ (−𝑃load))/2𝑅𝑝; 𝑉𝑇1𝑇2 = 𝐼𝑝
′ ∙ 𝑅𝑝 + 𝑉𝑝 (ty e 3)

 (4.24) 

 𝐼𝑟1
′ = (𝑉𝑇1𝑇2 − 𝑉𝑟1)/𝑅𝑟1 (4.25) 

S2′ sub-module voltage calculation: 

 𝑉𝑠𝑚1
′ = 𝐼𝑟1

′ ∙ 𝑅𝑠𝑚1 + 𝑉𝑠𝑚1 (4.26) 
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 𝐼𝑐1
′ = (𝑉𝑠𝑚1

′ − 𝑉𝑐1)/𝑅𝑐1 (4.27) 

4.4 The validation of the proposed battery simulator 

This section verifies the operation proposed battery simulator programmed in MATLAB 

with RC model scale-up method and with a commercial simulator, Simulink (in MATLAB 

2021a).  Both the proposed simulator and Simulink were executed on the same computer 

featuring an Intel i5-10500 processor and 8 GB random-access memory.  

Unfortunately, due to model complexity, Simulink cannot draw and simulate the cell level 

schematic circuit diagram for WESS on the simulation platform. The purpose of the 

comparison is to verify the simulation method in the proposed simulation, so the battery pack 

used in the simulation is designed with a small number of cells (eight) whose circuit diagram 

can be drawn by Simulink is shown in Figure 4.13.  

 

Figure 4.13 Circuit diagram for verification simulation, plotted with Simulink (using 

SIMSCAPE components) 

To simplify the simulation circuit, the value of resistors and capacitors in the equivalent 

circuit are set as constant values which do not change with SoC. Chapter 3 provides the ECM 

parameter for WESS in pack level at different SoC points. The parameter value from the day 

2 experiment at 50% SoC (𝑅0 = 4.2 mΩ , 𝑅1 = 1.9 mΩ  and 𝐶1 = 115.3 kF) is used to 

estimate the single cell’s ECM parameter.  
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Assuming all cells in WESS are identical, the theoretical value of a cell ECM parameter can 

be estimated by scaling the pack ECM parameter according to the electrical connection 

shown in Figure 4.1(c). For a single cell’s ECM, the capacity 𝑄 is set as 20 Ah which is the 

nominal capacity. 𝑅0 = 1.2727 mΩ and 𝑅1 = 0.5758 mΩ which are 80 264⁄  of that in the 

WESS ECM. 𝐶1 = 380.49 kF which is 264 80⁄  times of that in the WESS ECM. At the 

same SoC, the single cell’s OCV value is supposed to be 1 264⁄  of the WESS’s OCV. The 

cell OCV-SoC relationship as given by the polynomial equation of (4.28) shows where 𝑆 is 

the value of SoC and coefficients 𝑝1 to 𝑝10 are listed in Table 4.4. Number 80 and 264 are 

the scale factors caused by the parallel and series relationship in WESS’s internal connection 

respectively.  

 
𝑉𝑜𝑐 = 𝑝1𝑆

9  +  𝑝2𝑆
8 + 𝑝3𝑆

7  + 𝑝4𝑆
6  +  𝑝5𝑆

5  +  𝑝6𝑆
4  +  𝑝7𝑆

3  

+  𝑝8𝑆
2  +  𝑝9𝑆 + 𝑝10 

(4.28) 

Table 4.4 Cell open circuit voltage model coefficients 

𝑝1 𝑝2 𝑝3 𝑝4 𝑝5 𝑝6 𝑝7 𝑝8 𝑝9 𝑝10 

1.47e-15 6.6e-13 1.25e-10 1.28e-08 7.8e-07 2.88e-05 6.37e-4 8.02e-3 5.5e-2 1.95 

4.4.1 Verification A: scale-up method and cell level simulation 

If the cells in a battery pack are identical, the simulated pack voltage calculated from the 

scale-up method should be identical to that from cell level simulation. For the battery pack 

shown in Figure 4.13, if all cells are identical, the cell current will be 1/4 of the battery 

current and the pack voltage will be 4 times of the cell voltage. In verification A, the 

proposed simulator will first simulate the pack at cell level using the proposed method, noted 

as simulation A1. Then the same simulation will be repeated with the scale-up method, noted 

as simulation A2. The proposed model will be verified if the battery pack voltage results 

from the two methods are identical. 

In this verification, all the cells in Figure 4.13 are identical and have the same OCV-SoC 

relationship and the same parameter value: 𝑅0 = 1.27 mΩ and 𝑅1 = 0.58 mΩ 𝐶1 = 380 kF 

and 𝑄 = 20 Ah. For each cell, the SoC and the initial condition on capacitor 𝐶1 are set as 

zero. The battery pack is charged under an 80 A (1 C-rate) current load until any of the eight 

cells reaches the maximum allowed voltage (2.7 V).  
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The blue and red lines in Figure 4.14(a) are the voltage results from simulations A1 and A2. 

As it can be seen in Figure 4.14(a), the voltage result from the proposed simulator (A1) are 

identical to that from the scale-up method (A2). In both simulations, the battery is charged 

for 3557s which represents a 79.04 Ah charging capacity. The difference between the voltage 

results from the two methods, as Figure 4.14(b) shows, is zero throughout. This demonstrates 

the equivalence of the scale up method with the operation of the proposed battery simulator 

for an identical cell battery pack.  

 

Figure 4.14 Verification A: (a): the voltage results from the scale-up method and the cell 

level simulation; (b): the voltage difference between the two methods 

4.4.2 Verification B: Simulink vs. proposed simulator 

If the cells in a battery pack are different from each other, each cell’s current and voltage 

will be unique. In verification B, all the cells in Figure 4.13 are set to be different from one 

another. The ECM parameters for each cell are provided in Table 4.5 which are close to the 

estimated value. Cells with larger identity number have large internal resistance, large time 

constant and smaller capacity which is indicative of a more severe level of degradation. 

Similar to verification A, the battery pack in verification B is charged under an 80 A (1 C-

rate) current load until any of the eight cells reaches the maximum allowed voltage (2.7 V). 

The simulation is first conducted with the proposed simulator, noted as simulation B1 and 

then repeated with Simulink (MATLAB), noted as simulation B2. 
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Table 4.5 Cell ECM parameters setting in simulation 

Cell number 𝑅0 (mΩ) 𝑅1 (mΩ) 𝐶1 (kF) 𝑄 (Ah) 

1 1.27 0.58 380 20.0 

2 1.29 0.60 390 19.9 

3 1.31 0.62 400 19.8 

4 1.33 0.64 410 19.7 

5 1.35 0.66 420 19.6 

6 1.37 0.68 430 19.5 

7 1.39 0.70 440 19.4 

8 1.41 0.72 450 19.3 

The battery pack in both simulation B1 and B2 is charged for 3474s (charging capacity: 77.2 

Ah). The current of cell 1 to 8 is plotted in Figure 4.15 (a)-(h). As Figure 4.15 shows, the 

current results from B1 are identical to B2 and the difference between them is zero. Because 

the cells are connected in parallel, they have identical voltages so that only the voltage of 

cells 1, 3, 5 and 7 are shown in Figure 4.16. The results from the proposed simulator are 

identical to those from Simulink. The proposed simulator is verified by observing the same 

result with a reliable commercial software Simulink (MATLAB). 
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Figure 4.15 Verification B: Cell current simulation result from Simulink and the proposed 

simulator and the difference between them (a)-(h): cell 1-8 
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Figure 4.16 Verification B: Cell voltage simulation results from Simulink and the proposed 

simulator and the difference between them (a): cell 1; (a): cell 3; (a): cell 5; (a): cell 7 

Comparisons between proposed battery simulator with a scaled RC model and a multicell 

battery validate the operation of the simulator for both terminal voltage, cell voltage and cell 

current. 

4.5 Conclusion 

The cell level simulation for a large-scale battery pack is meaningful for understanding the 

battery management system and the battery properties. The traditional circuit simulation 

method (SPICE type simulator, modified nodal analysis) is not easily able to handle 

calculation for the cell level equivalent circuit for a large-scale battery pack because of the 

difficulty in inverting a large-sparse matrix. It is worth mentioning that the author did not 

conduct simulations on all the SPICE simulators. Hence, a general conclusion on the 

capability of SPICE simulators cannot be made. This chapter proposed a circuit simulator 

for large-scale battery pack cell level equivalent circuit simulation using Thévenin or Norton 

circuit transformation. The proposed simulator is verified by another simulation method 

(scale-up method) and another commercial simulator (Simulink, MATLAB). 
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The simulations in verification A and B raise the phenomenon of cell-to-cell variance. 

Compared with the battery pack in verification A, verification B has different cell parameters. 

The differences between the cells, known as cell-to-cell variance, leads to the cell voltage 

and current deviation. Also, a decrease in the available pack capacity is witnessed in 

verification A and B (from 79.04 Ah in verification A to 77.2 Ah in verification B). In a 

large-scale battery pack like WESS, cell-to-cell variance could cause serious consequences 

such as discontinuous power delivery. In the next chapter, the proposed simulator will be 

used to study cell-to-cell variance in the large-scale battery pack WESS. 
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Chapter 5. Cell level modelling for Willenhall Energy Storage 

System  

In Chapter 3, pack level models have been developed for Willenhall Energy Storage System 

(WESS). Then, a cell-level simulator for large-scale battery pack was described in Chapter 

4. As the simulations conducted with the proposed simulator in Chapter 4 show, the cell-to-

cell voltage deviation exists in multi-cell battery packs which could cause problems such as 

capacity loss in reality. In this chapter, the cell-level simulator provided in Chapter 4 will be 

adopted to simulate Willenhall sized battery packs and the results will be used to analyse the 

cell-to-cell deviation in battery packs. 

In a multi-cell battery pack, all cells are restrained to operate inside a certain voltage range 

by the battery management system (BMS) to prevent cell damage from undesired physical 

and chemical changes such as collector dissolution, and lithium dendrites [123]. There is 

variation in manufacturing tolerance, impurities etc, which eventually leads to differences 

between cells, which can be observed in terminal voltage. The overall pack performance is 

limited by the ‘worst’ cell [124], which reduces the energy utility of other cells. Inside a 

large battery energy storage system, this energy loss becomes considerable due to its scale. 

As it has been discussed in Chapter 2, for the cells with the same chemistry, manufacture 

and factory, cell-to-cell variation (CtCV) still generally exists. Different cells can be 

represented by the same equivalent circuit models (ECM) with different electrical 

component values. For the cells from the same factory and batch, their ECM electrical 

component values usually follow a statistical distribution which can be identified by 

sampling experiments. With knowledge of the ECM electrical component value distributions, 

cells can be randomly generated. Then an ECM for multi-cell battery pack considering CtCV 

can be constructed by connecting these individual cell ECMs. 

This chapter presents an investigation of the voltage deviation related phenomena observed 

during the operation of WESS research platform (which was described in detail in Chapter 

3), including the voltage deviation value change during full state of charge (SoC) range and 

the immediate cut-off mechanism caused by a large voltage deviation.  

After that, cell voltage deviation in WESS sized battery pack (>21k cells) will be studied 

using Monte Carlo simulation through the cell level battery simulator proposed in Chapter 
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4. To obtain cell equivalent circuit parameter distributions (the standard deviation and mean 

value), electroimpedance spectroscopy measurements (EIS) and equivalent circuit 

modelling were conducted on the same type of cell as that be used in WESS. The obtained 

distribution was used to randomly generate cells for constructing WESS sized battery pack. 

The dependency between SoC and the parameters distribution is considered in the model. 

The simulation in this chapter focuses on the impact of the intrinsic variation sources on a 

LTO battery pack in a limited time event (a charging and discharging cycle) and the intrinsic 

CtCV is represented by the difference in ECM components value. Both experiments and 

simulations reveal that high cell voltage deviation emerges at the low and high state of charge 

zones where the cell internal resistance has a large value and large extent of deviation. 

5.1 Cell voltage deviation phenomena observed during the operation of 

Willenhall Energy Storage System 

5.1.1 Maximum allowed cell voltage deviation 

During the operation of Willenhall Energy Storage System (WESS), some occasional 

unexpected cut-off events happened during which the battery is instantly disconnected from 

the load regardless of the demand. This battery disconnection causes the discontinuity in 

delivering or absorbing energy and could lead to a penalty in the service it provides (e.g. 

frequency service). The history data shows that some of these events are caused by voltage 

deviation in the battery. It was found that instead of eliminating the voltage deviation, the 

battery management system (BMS) in the WESS maintains the voltage deviation at a low 

level (~10 mV) through relaxation and passive balancing circuit. In this case, the cell 

imbalance is so severe that the BMS disconnects the battery in order to protect it. Under 

these circumstances, it may be necessary to balance the cells manually. Figure 5.1 shows a 

constant charging experiment where the charging process is repeatedly interrupted by the 

BMS due to the 150 mV maximum voltage deviation restriction. 150 mV is the 

manufacturer-specified maximum allowed cell voltage deviation which is 12.5% of the 

difference between the LTO cell’s higher and lower cut-off voltages (higher: 2.7 V and lower: 

1.5 V). 

In this chapter, as (5.1) (5.2) and (5.4) define, cell voltage deviation 𝑉t,dev refers to the 

difference between 𝑉t,max and 𝑉t,min which are the maximum and minimum cell terminal 
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voltage in a pack. 𝑉t,i is the terminal voltage for cell with identity number i (for WESS 𝑖 is 

an integer between 1 and 21,120). [𝑁R, 𝑁M, 𝑁S, 𝑁C] is used to represent the location of a cell 

where 𝑁R ∈ [1,40], 𝑁M ∈ [1,22], 𝑁S ∈ [1,12] and 𝑁C ∈ [1,2] are the identity of the racks, 

modules, sub-modules and cells respectively as Figure 4.1(c) shows. The cell identity can 

be calculated as 𝑖 = 528(𝑁R − 1) + 24(𝑁M − 1) + 2(𝑁S − 1) + 𝑁C. Besides, average cell 

terminal voltage 𝑉t,avg is defined in (5.3). Similar terms such as cell state of charge (SoC) 

deviation 𝑆𝑜𝐶dev and cell current deviation 𝐼dev are defined in the same way. 

 𝑉t,max(𝑡) = max (𝑉t,1(𝑡), 𝑉t,2(𝑡), … , 𝑉t,21120(𝑡)) (5.1) 

 𝑉t,min(𝑡) = min  (𝑉t,1(𝑡), 𝑉t,2(𝑡), … , 𝑉t,21120(𝑡)) (5.2) 

 𝑉t,avg(𝑡) = mean (𝑉t,1(𝑡), 𝑉t,2(𝑡), … , 𝑉t,21120(𝑡)) (5.3) 

 𝑉t,dev(𝑡) =  𝑉t,max(𝑡) − 𝑉t,min(𝑡) (5.4) 
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Figure 5.1 Measurements showing BMS cutting of the battery due to the battery exceeding 

the maximum allowed cell voltage deviation, 150mV (SoC: from 72.7% to 93.8%): (a) 

pack voltage, (b) cell voltage deviation, (c) pack power from BMS, (d) pack current and (e) 

BMS SoC 

Figure 5.1 shows the BMS-recorded performance of WESS during a constant power charge 

with part (a) showing the pack voltage, (b) the maximum cell voltage deviation, (c) the power 

provided by the BMS, (d) the pack current and (e) SoC estimated by BMS. The worst voltage 

deviation scenario in the WESS is in the high SoC zone. When the cell voltage deviation 

reached the maximum allowed value of 150 mV, as shown Figure 5.1(b), the battery was cut 

off from the load. After a brief rest, the voltage deviation value dropped below 150mV and 

then the battery was brought back online by the BMS. With the reapplication of the charging 

current (~1000 A), the voltage deviation quickly restored to 150 mV in more than 10 s 
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(normally 10 s – 40 s) and triggered another cut-off. This process repeatedly occurred at the 

end of charge causing the discontinuity in energy delivery. The first cut-off in Figure 5.1 

happens at around 90% SoC, and the rest 10% battery capacity cannot be used effectively. 

Under this circumstance, in frequency service applications, the battery will be failed on 

absorbing the extra energy from the grid network even the battery is not fully charged. 

5.1.2 Cell voltage deviation in repeated experiments 

To explore the changing trend of cell voltage deviation in WESS at the 'full' SoC range, 

constant load experiments were conducted on the WESS. Figure 5.2 presents two repeated 

constant power experiments (855 kW) on WESS. In both experiments, the battery was 

discharged from 95% SoC to ~5%; After a one-hour resting, the battery was charged to 90% 

as Figure 5.2(b) shows. The battery pack is in a heating, ventilating and air conditioning 

controlled environment which minimises the influence of the ambient environment on the 

experiments. At the end of discharge, there is a slight SoC difference between two 

experiments (Exp. 1: 5%, Exp. 2: 7%), as Figure 5.2(b) shows. Also, the internal cell 

balancing circuit incorporated within the Toshiba battery pack works under the instruction 

of a propriety BMS which operates outside the user’s control. 
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Figure 5.2 Two repeat experiments (blue: experiment 1, red: experiment 2): (a) pack 

voltage, (b) pack SoC from BMS, (c) pack power from BMS, (d) pack current (charging: 

positive), (e) cell voltage deviation vs. time, (f) cell voltage deviation vs. BMS SoC. Note: 

the legend for each subfigure is identical, and hence only one legend is shown in (a) 

As Figure 5.2(e) and (f) show, the two cell voltage deviation results share similarities in 

shape and value. At the beginning of both experiments, the battery had the same and stable 

voltage deviation of about 10mV. The voltage deviation had a slight step increase at the 

beginning of discharge (~1800 s) and then experienced a long period of fluctuation during 

further discharge. At the end of discharge (~5500 s), the deviation value had a rapid increase 

but ended with different values (Exp. 1: 87 mV, Exp. 2: 49 mV). SoC difference is believed 

to be a reason for this value difference. 
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During the resting processes, the voltage deviation quickly decayed and restored to 10 mV 

within a few minutes. At the beginning of charge (~9000 s), there was a smaller peak of 

voltage deviation. After a period of relative stability, the voltage deviation increased to a 

large value (Exp. 1: 63 mV, Exp. 2: 66 mV) at a high charging rate. The similar phenomenon 

was found in another experiment in WESS and reported in [125]. From the view of the SoC 

domain, Figure 5.2(f), at the same SoC, the voltage deviation in the two experiments is close 

to each other. The peak value of voltage deviation appeared at low (~5%) and high (~90%) 

SoC zone. 

5.2 Preparation for cell level battery pack simulation 

A cell level battery pack equivalent circuit simulator has been developed and verified in 

Chapter 4. This simulator will be used to study the impact of the cell voltage deviation 

phenomenon in this chapter. In the simulator, each cell is represented by an equivalent circuit 

from which the entire battery pack is constructed according to its internal hierarchy. Every 

single cell’s ECM parameter information is essential for the battery pack simulator.  

In the case of the WESS, it is impractical to disassemble the WESS facility and identify the 

ECM parameter value for each of the 21,120 cells. Instead, all the cells’ ECM parameters 

are assumed as following normal distributions and randomly generated from their mean 

values and standard deviation which are obtained from pre-experiments (electroimpedance 

spectroscopy measurements (EIS) tests) on four representative cells. The details and partial 

results of EIS test will be shown in section 5.2.1. 

 

Figure 5.3 Single time constant ECM 

The single time constant ECM, as shown in Figure 5.3, is chosen for fitting EIS tests and 

consequently the randomly generated cells in this chapter are represented by the same type 

of ECM (with single time constant). The single time constant ECM consists of an ohmic 

resistance (𝑅0), a RC branch (𝑅1𝐶1)  and a voltage source representing open circuit voltage 
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(OCV) which has been used in Chapter 3 for modelling WESS in pack level and in Chapter 

4 for developing cell level simulator. 𝑉𝑡  and 𝐼  are the cell terminal voltage and the cell 

current (defined as charging). The processes related to ECM parameter generation will be 

explained which mainly consists of three parts: parameter value and distribution 

identification (in section 5.2.1), generating parameter value (in section 5.2.2), and 

constructing ECM models for individual cells (in section 5.2.3). 

5.2.1 Equivalent circuit model parameter value identification and the extend of parameter 

variation 

ECM parameters used in the battery pack simulator are randomly generated according to the 

parameter's value and distribution from pre-experiments on sample cells. To obtain ECM 

parameters value at different SoC points, EIS tests were conducted on four super charge ion 

battery (SCiB) lithium titanium oxide (LTO) cells with the same cycle count (400 cycles). 

The four cells have a slight difference in cycling current value: two of the cells were cycled 

with 1 C-rate current and 2 C-rate for the other two. This is caused by the cells’ usage history. 

However, the cycle counts for different cells are the same. Besides, the cycle count is small 

for LTO cells and not enough to cause dramatic cell degradation. So that the impact caused 

by the cycling current value difference is neglected in this chapter. These cells were labelled 

from Cell02 to Cell05 and tested at 25°C from 100% to 0% SoC in 10% intervals. In the EIS 

measurement, the frequency range was set from 5 kHz to 5 mHz. 

Figure 5.4 illustrates the EIS impedance results of the 4 cells at 50% SoC where  re and  im 

are the real and imaginary parts of the impedance. When  im is positive, the test results are 

distorted (Figure 5.4(a)). Fortunately, the model in Figure 5.3 can never have an impedance 

with a positive imaginary part. Hence, only the EIS result with negative imaginary parts 

(Figure 5.4(b)) were used to identify the parameter's value. An example of ECM fitting 

results are shown in Figure 5.4(c) - (f) (fitting software: [126]). The EIS impedance results 

and ECM fitting results at other SoC points can be found in Appendix B. 
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Figure 5.4 EIS and ECM fitting result of 4 LTO cells at 50% SoC: (a) overall result, (b) 

result when Zim < 0, (c) – (f) ECM fitting result from Cell02 to Cell05 

The overall fitting results of ECM parameters are presented in Figure 5.5 (in the left vertical 

axis). In general, as Figure 5.5(a) shows 𝑅0 has a stable value (~ 0.7 mΩ) which slightly 

decreases as SoC increases. 𝑅1 takes most part of the total resistance 𝑅total and dominates 

the change of it. 𝑅total is the total resistance which is equal to sum of 𝑅0 and 𝑅1. Both 𝑅1 

and 𝑅total have the highest value at 100% SoC and second-highest value at 0% SoC. Time 

constant 𝜏1 in Figure 5.5(b) has the highest value at 100% SoC and a peak value at 60% SoC. 
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The results shown in Figure 5.5 provides ECM parameters of four cells and, more 

importantly, the distribution (the standard deviation 𝜎  to the mean 𝜇 ) of each ECM 

parameter can be obtained from it. 

 

Figure 5.5 Parameter value and the coefficient of variation of: (a) R0, (b) τ1, (c) R1, (d) C1, 

(e) Rtotal, (f) OCV. Note: the legend for each subfigure is identical, and hence only one 

legend is shown in (b) 

The previous experiments on WESS in Figure 5.2 shows the cell voltage deviation changes 

a lot during charging and discharging which indicates that the extent of cell variation in 
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WESS might be different at different SoC. The coefficient of variation (CoV) is used in this 

chapter to describe the extent of parameter variability through which the relationship 

between the extent of cell variation and SoC will be explored. For a data set with 𝑁 elements 

𝐴1, 𝐴2, … 𝐴N, the CoV is defined by the ratio of the standard deviation 𝜎 to the mean 𝜇 as 

(5.5)-(5.7) show.  

 𝜎 = √
1

𝑁 − 1
∑|𝐴i − 𝜇|2
𝑁

i=1

 (5.5) 

 𝜇 =
1

𝑁
∑𝐴i

𝑁

𝑖=1

 (5.6) 

 𝐶𝑜𝑉 =
𝜎

𝜇
 (5.7) 

The CoV of different parameters at different SoC is also shown in Figure 5.5 (in the right 

vertical axis). Among all the parameters, OCV in Figure 5.5(f) has the least CoV around 

0.06% (±0.04%) and the largest value of it appears at 100% SoC as 0.1%. As Figure 5.5(a) 

shows, 𝑅0 has a small CoV concentrated at 0.8% (±0.4%). The CoVs of 𝑅1 and 𝐶1 do not 

have rapid change between 20% and 90% SoC and both have large values at 10% and 100% 

SoC. 𝑅1 and 𝐶1 are parameters related to the diffusion process. The large CoV indicates 

more distinct differences in electrical or chemical properties among tested cells, such as the 

reaction rate. In terms of 𝜏1, the large CoV only shows up at 100% SoC. The cells capacities 

were estimated by the Coulomb counting method (𝜇=20.73 Ah, 𝜎=0.03 Ah). 

As can be observed in the cell SoC experimental data, at the extremities of the SoC curve, 

the voltage deviation becomes greater. Battery energy storage system manufacturers 

recognise this issue and therefore restrict the operating range of their systems to avoid issues 

associated with voltage deviation at extreme SoC. The parameters’ large value of CoV at 

these SoC regions is believed as an important reason for the high voltage deviation observed 

in Figure 5.1 and Figure 5.2.  

5.2.2 Generating equivalent circuit model parameters value 

With the ECM parameters result of EIS tests, ECM parameters used in the battery pack 

circuit solver can be generated to fit a measured statistical distribution. Before random 
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numbers are generated, the type of distribution must be chosen. Experiment results in the 

literature reflect that cell parameters reasonably fit normal distributions. In papers 

[105][127][128], a large number of lithium-ion cells were tested and the results show that 

cell parameters such as resistance, capacity reasonably fit normal distributions. So that, in 

the Monte Carlo simulation that follows, all the parameters are assumed to follow normal 

distributions. The standard deviation 𝜎 to the mean 𝜇 of each parameter at different SoC 

were estimated from the EIS results in Figure 5.5.  

ECM parameters among tested cells are not independent of each other. To include the 

correlation among parameters, in this chapter 𝑅0, 𝑅1 and 𝐶1 at every 10% SoC are set as 

following a joint normal distributed whose probability density function (PDF) 𝑓(𝑅0, 𝑅1, 𝐶1) 

is shown in (5.8). 𝜇R0 , 𝜇R1  and 𝜇C1  are the mean of random variable 𝑅0 , 𝑅1  and 𝐶1 

respectively. 𝜮 is the covariance matrix and shown in (5.9) where cov(. , . ) represents the 

covariance. From 0% SoC at every 10% SoC, 𝑅0, 𝑅1 and 𝐶1 are generated according to their 

𝜎, 𝜇, and 𝜮 obtained from cells EIS tests results in Figure 5.5 and the PDF in (5.8).  
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 𝜮 = [

cov(𝑅0, 𝑅0) cov(𝑅0, 𝑅1) cov(𝑅0, 𝐶1)
cov(𝑅1, 𝑅0) cov(𝑅1, 𝑅1) cov(𝑅1, 𝐶1)
cov(𝐶1, 𝑅0) cov(𝐶1, 𝑅1) cov(𝐶1, 𝐶1)

] (5.9) 

In terms of capacity and open circuit voltage, due to the limited sample size from the 

experiment, it is challenging to identify the most correlated parameters and SoC point to cell 

capacity 𝑄. As a compromise, 𝑄 is set as an independent normal distributed variable in this 

chapter and can be straightforwardly generated for different cells. 

𝑅0, 𝑅1 and 𝐶1 are the parameters related to cell’s dynamic properties. However, OCV is the 

cell terminal voltage at an equilibrium state, and it is decided by cell chemistry rather than 

the cell’s dynamic properties (𝑅0 , 𝑅1  and 𝐶1). Therefore, OCV is set as an independent 

variable which is irrelevant to 𝑅0, 𝑅1 and 𝐶1. The coulombic efficiency for all cells is set as 
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100% so that the effect of coulombic efficiency variation among cells is not included in this 

chapter. 

5.2.3 Constructing models for individual cells 

Building the model of  𝑅0, 𝑅1 and 𝐶1 is the most complex part of constructing ECMs for 

individual cells which are divided into three steps. Step 1: the value of 𝑅0, 𝑅1 and 𝐶1 at 

different SoC (0%, 10%, … 100%) for all 21,120 cells are randomly generated as section 

5.2.2 describes. Step 2: the randomly generated parameter in step 1 is regrouped according 

to their cell identity. Step 3: the parameter and SoC relationship is modelled using 

polynomial equations cell by cell. A diagram demonstrating this process is provided in 

Figure 5.6. The method of generating OCV-SoC model for each cell is similar.  
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Figure 5.6 The process of generating and modelling R0, R1 and C1 at full SoC range for 

21,120 number of cells. Step 1: random value generating for different cell at different SoC 

points. Step 2: reorganise the random value, gather parameter value for the same cell at 

different SoC into the same group. Step 3: obtain parameter-SoC relationship for each cell 

by curve fitting 
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Figure 5.7 A randomly generated WESS sized battery, all cells’ ECM parameters and their 

CoVs (red inline: CoV of generated pack; circle points: CoV from EIS experiment): (a) R0; 

(b) R1; (c) C1; (d) OCV vs. SoC 

An example of a generated battery is illustrated in Figure 5.7 in which the cyan areas contain 

all 21,120 cells’ parameter-SoC relationship. In another word, for a cell in the generated 

pack, its parameter-SoC relationship is located inside the cyan regions. The red line in Figure 

5.7 represents the parameter CoV of all 21,120 cells in the generated pack and the red circles 

are parameter CoV from the previous cells EIS experiment shown in Figure 5.5. In general, 

the parameters value and CoV in the generated pack are consistent with the experiment 

results in Figure 5.5. So far, the essential preparation for battery pack simulation has been 

done which includes building a battery pack simulator and generating random battery packs. 

5.3 Monte Carlo simulation: constant power load 

In this section, 100 randomly-generated WESS-sized battery packs are simulated under a 

constant power load (855 kW). The simulation results provide a general changing trend of 

variables such as battery voltage, current and cell voltage deviation, under the specified load 

and predetermined parameter uncertainty. In each simulation, all the 21,120 cells are set as 

95% SoC. The cells are connected into a pack according to the electrical connection which 
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has been described in Chapter 4. Because of the variation in cell OCV-SoC relationship, 

cells have slightly different terminal voltages. This terminal voltage difference is decreased 

by a 10-minute rest through self-balancing during which the terminal voltage difference 

among cells causes an internal cell current through the internal electrical connection in the 

pack. After resting, the maximum cell self-balancing current decreases to a small value 

(~0.005 C-rate). A small (or zero) self-balancing current indicates that the battery pack 

cannot be further effectively balanced by itself. Then, the pack is discharged with constant 

power until it meets cut-off requirements. After another 10-minute rest, the battery is charged 

until cut-off. In this simulation, a battery pack is cut-off when any cell voltage reaches cut-

off voltages or any cell SoC is outside the range of 0 to 100% or the maximum cell voltage 

deviation exceeds 150 mV. Compared with the experiments in Figure 5.2, the simulation 

explored a wider SoC range and conducted a shorter rest period. 

5.3.1 Results from a single simulation: at the pack and cell level 

The Monte Carlo simulation provides 100 similar simulation results with slightly different 

timelines. For example, because of CtCV, battery packs have different parameters (e.g., 

capacity, internal resistance) so that batteries were cut-off at different time instants in 

different simulations. To clearly describe the simulation process, one of the Monte Carlo 

simulations using the parameter set in Figure 5.7 is chosen to be discussed first. 

Figure 5.8(a)–(b) shows the pack level simulation result of the chosen simulation. Time 

instants from 𝑡1 to 𝑡4 in the figure represent the start or end of the discharging or charging. 

It is interesting to note that in a constant load simulation, the magnitude of battery current, 

shown in Figure 5.8(b), is increasing during the discharging process and decreasing during 

charging because of the decreasing and increasing battery voltage, respectively. This current 

change is also observed during the constant load experiment in Figure 5.2. 
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Figure 5.8 The result from a single simulation. (a) battery pack voltage, (b) pack current, (c 

- d) cell terminal voltage and deviation, (e - f) cell terminal current and deviation, and (g - 

h) cell SoC and deviation in the single simulation. t1: 600 s (t2: 4465 s, t3: 5060 s, t4: 9130 

s; ta: 832 s, tb: 1271 s, tc: 3744 s, td: 5832 s, te: 8369 s, tf: 8826 s) 

The cell level simulation results of the single simulation are shown in Figure 5.8(c) – (h). 

Apart from 𝑡1 - 𝑡4, six more time instants, 𝑡a - 𝑡f, are labelled in the figure at which cell 
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average SoC reaches some critical values (𝑡a and 𝑡f: 90%, 𝑡b and 𝑡e: 80%, 𝑡c and 𝑡d: 20%). 

The most important finding in the single constant power simulation result is the relationship 

between the ECM parameter variation and the different kinds of cell voltage deviations that 

a large parameter variation causes a large deviation in the pack. Between SoC zones of 0% 

- 20% and 90% - 100%, all cell ECM parameters have a large CoV, as Figure 5.7 shows. 

Correspondingly, during 𝑡1 - 𝑡a, 𝑡c - 𝑡2, 𝑡3 - 𝑡d and 𝑡f - 𝑡4 when the battery pack is being 

discharged or charged in these two SoC zones, the battery pack is more unbalanced and 

shows a large value of 𝑉t,dev, and 𝐼dev. 

It is worth mentioning the result during 𝑡a - 𝑡b and 𝑡e - 𝑡f when the cells are in the 80% - 90% 

SoC range. According to Figure 5.7, in this SoC range, 𝑅1 who dominates the total internal 

resistance also has a large CoV. However, 𝑉t,dev is small during 𝑡a - 𝑡b and 𝑡e - 𝑡f for two 

possible reasons. First, between 80% - 90% SoC, the other parameters such as OCV and 𝐶1 

have a smaller CoV compared with 0% - 20% and 90% - 100% SoC as Figure 5.7. Second, 

the value of 𝑅1 is small between 80% - 90% SoC which is unable to induce a large 𝑉over and 

voltage difference. Consequently, a small 𝑉t,dev is witnessed in this SoC zone. 

5.3.2 Results from Monte Carlo simulation 

To obtain an overall view of the cell deviation inside WESS sized pack with the given 

parameter distribution under constant power load, 100 Monte Carlo simulations were 

conducted, and the results are presented in Figure 5.9. There are 100 lines in Figure 5.9 and 

each of them represents the 𝑉t,dev result from one of the 100 Monte Carlo simulations. As 

Figure 5.9 shows, all simulations have a similar changing trend in terminal voltage but with 

slightly different values. The finding in the previous single simulation example (in Figure 

5.8) is still valid in the Monte Carlo simulation result that a large cell voltage deviation 

shows up at the beginning and end of charging and discharging where the cells have a large 

ECM parameter CoV and large internal resistance. 
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Figure 5.9 Cell terminal voltage deviation of 100 times Monte Carlo simulation 

The 𝑉t,dev results in simulations shares similarities with that in WESS experiments (Figure 

5.2). In terms of the changing trend, both simulation and experiment witnessed a high 𝑉t,dev 

at high and low SoC zone and also relatively small 𝑉t,dev in between. However, in WESS 

experiments the 𝑉t,dev in the beginning of discharging is not as obvious as that in simulation 

for unknown reasons. A possible reason is that before the experiments, cells in WESS were 

well balanced through the passive balancing circuit. The states (e.g., voltage, impedance) of 

different cells are close to each other so that cell voltage deviation is not obvious when a 

current pass through the battery. However, the passive balancing circuit is not included in 

the simulation model which causes a difference between simulation and experiments. In 

terms of value, 𝑉t,dev in simulation is smaller than Exp.1 and Exp.2 in Figure 5.2. The cell 

balancing circuit in WESS and the error in ECM parameters’ CoV are the possible reasons 

for it. 

5.4 Conclusion 

This chapter raises the awareness of the maximum allowed cell voltage deviation and the 

impact of SoC on cell variance which help the design of a BESS and the cell balancing 

technique. As it has been found in the chapter, the BMS may have an intense reaction when 

the voltage deviation exceeds the threshold value, for example, the battery cut-off in WESS. 

In most cases, the settings in a BMS cannot be changed by users. The cut-off reaction 

benefits the safety of the battery but may not be acceptable in some applications like electric 

vehicles where human life is involved. 

Some multi-cell batteries contain balancing circuits to keep the cell voltage or SoC deviation 

under control. Normally, the balancing circuit is triggered when the voltage deviation value 
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reaches a setting value regardless of the SoC value. However, the simulations for WESS 

LTO battery packs in this chapter show that it is more likely that a high cell voltage deviation 

shows up at certain SoC regions (the end of charge or discharge) than others. More 

importantly, the cell voltage deviation decreases when the battery moves out of these SoC 

regions. So that, the balancing circuit could be designed with considering the impact of SoC 

on CtCV, for example, setting different threshold values for balancing circuit for different 

SoC regions. 
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Chapter 6. Open circuit voltage hysteresis in Willenhall Energy 

Storage System  

6.1 Introduction 

Chapter 3 and Chapter 5 successfully modelled Willenhall Energy Storage System (WESS) 

at pack level and cell level respectively with equivalent circuits. However, neither chapter 

discusses the open circuit voltage (OCV) hysteresis effect, which is a common phenomenon 

in a battery. An accurate OCV model is important not only for battery simulation but also 

state of charge (SoC) estimation.  

As has been discussed in Chapter 3, because the relationship between OCV and SoC is 

repeatable, the OCV in battery equivalent circuit models (ECMs) is normally estimated 

through the OCV-SoC relationship. Because the OCV is the most significant part of the cell 

terminal voltage whose accuracy could significantly influence the fidelity of the ECMs.  

In terms of SoC estimation, as discussed, in the WESS battery management system (BMS), 

the SoC estimation is corrected according to OCV-SoC relationship (implemented as a look-

up table) when the battery has been rested for a long time. However, because of the hysteresis 

phenomenon, the same value of OCV is witnessed under different SoC with different SoC 

history. Consequently, without hysteresis information in the OCV-SoC relationship, an error 

can occur in the SoC estimation especially in the plateau OCV region. 

This chapter discusses OCV hysteresis in the large-scale battery pack WESS. A low power 

(50 kW, 0.05C-rate) experiment was conducted on WESS, consisting of hysteresis loops of 

differing ranges. The OCV-SoC relationship during charging and discharging, and hence the 

OCV hysteresis, might be expected to be obtained from a straightforward experiment. 

However, the experimental data obtained does not fully agree with theoretical expectation 

and, at times, appears to be contrary to theory. Compensating for the effects of hysteresis on 

OCV therefore remains an open research topic. As will be shown, at the same SoC, the 

measured battery voltage during discharging can be measured higher than that during 

charging which cannot be a true reflection of the underlying physics. 

The extended Kalman filter (EKF) is used to improve the SoC estimation during the 

continuous charging-discharging experiment. Under the SoC calculated from EKF, the OCV 
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hysteresis profile is improved insofar as, at all SoC points, the measured battery voltage 

during discharging lower than during charging. While this avoids the impossible scenario 

described above, the EKF is a model-based method and the EKF SoC can be influenced by 

the battery model and algorithm. This means that the SoC used for the hysteresis study 

should be determined using measurements from a high precision current sensor directly. 

Unfortunately, the studied platform does not have this capability and thus the findings of this 

chapter are not fully verified. It is believed that high precision current sensor and voltage 

sensor are needed in WESS to obtain the required data on this topic. 

6.2 Open circuit voltage hysteresis and experiment on Willenhall 

Energy Storage System 

6.2.1 Background of open circuit voltage hysteresis 

The OCV of a battery cell is not only dependent on the state of charge (SoC) but also on 

SoC history which results in a hysteresis phenomenon in the open circuit votlage (OCV) and 

SoC relationship. Hysteresis can be measured by applying a balanced charge and discharge 

cycle. Figure 6.1 shows a schematic diagram of the OCV-SoC hysteresis phenomenon in a 

battery cell. There are a few terms that show up in Figure 6.1 including major loop, minor 

loop, hysteresis voltage and maximum hysteresis voltage. In a OCV-SoC hysteresis loop, 

SoC changes from a starting SoC point to a return SoC point and then back to the starting 

point. In a major loop, the battery starts at either 100% or 0 SoC, is fully charged or 

discharged (to 0 or 100%), and then discharged or charged (as the case may be) to its starting 

SoC. In a minor loop, at least one of the starting and turning SoC points are not 100% or 0%. 

In both cases, the SoC moves from A to B to A again where A is the starting point and B is 

the turning point. The OCV obtained from discharging and charging processes are noted as 

OCVdis and OCVch respectively. The difference between OCVch and OCVdis in a cycle is 

named the hysteresis voltage. The hysteresis voltage in the major cycle is larger than that in 

minor cycles so that it is named as the maximum hysteresis voltage. Hysteresis voltage varies 

with SoC, as well as the starting and turning points. 
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Figure 6.1 Schematic diagram of OCV hysteresis in a battery cell, (a): an incomplete major 

loop; (b): a minor loop 

Figure 6.1(a) shows a schematic OCV-SoC relationship in a process in which the battery is 

discharged from 100% SoC (point A) to 0% (point B) and then charged to 75% (point C), 

which makes an incomplete major loop. The arrows on the OCV-SoC result represents the 

SoC movement changing direction in the process. As Figure 6.1(b) shows, at point C the 

battery cell is discharged to 50% SoC (point D) then charged back to 75% (point C) which 

makes a minor loop which is plotted in the red line in Figure 6.1(b). Again, the arrow on the 

minor loop indicates the SoC change direction. 

During phase A→B, the battery cell is being discharged and has a history of decreasing SoC. 

By contrast, the battery has an increasing history of SoC during phase B→C. At the same 
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SoC, the OCV during the decreasing process (A→B) is smaller than that during the charging 

process (B→C). At point C, the direction change of battery SoC movement is reversed. The 

OCV is gradually decreasing with SoC and approaching line AB. 

The hysteresis phenomenon in Figure 6.1 is expected to be seen in a large-scale battery but 

with a larger voltage value. Take Willenhall Energy Storage System (WESS) as an example, 

WESS is built with Toshiba Super Charge ion Battery (SCiB) cells that have lithium titanium 

oxide (LTO) anode. Compared with a single LTO cell, the pack voltage in WESS is 

increased by 264 times due to the internal series structure among cells. As a result, the 

hysteresis voltage, the difference between OCV during charging and discharging, should 

also be increased by a factor of 264. 

Reference [129] measured the OCV of a SCiB LTO cell during charging (OCVch) and 

discharging (OCVdis) at 25℃ at every 10% SoC after a 30 min relaxation period. The result 

is shown in Figure 6.2(a). As can be seen in Figure 6.2(b), the hysteresis voltage of a single 

SCiB LTO cell is about 10 mV. As mentioned before, in theory, a 264 times larger hysteresis 

voltage (~2.6 V) would be witnessed in the WESS battery.  

 

Figure 6.2 OCV of a single Toshiba SCiB LTO cell: (a) OCV after charging (OCVch) and 

discharging (OCVdis) (data source: [129]), (b) hysteresis voltage: OCVch minus OCVdis 

6.2.2 The effect of cell chemistry on hysteresis 

This OCV hysteresis effect is observed in various batteries with different cell chemistry, 

such as lead-acid cells, lithium iron phosphate (LFP) cells and lithium nickel manganese 

cobalt oxide (NMC) cells. The value of hysteresis voltage is different for these cells. 

Reference [130] systematically measures the maximum hysteresis voltage of three cells with 
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different chemistry LFP, NMC and LTO between 0 and 100% SoC. The maximum hysteresis 

voltage in a major loop is a function of SoC. The largest value of the maximum hysteresis 

voltage between 0 and 100% SoC is used to compare the hysteresis phenomenon in 

difference chemistry: LFP (38 mV) > NMC (27 mV) > LTO (16 mV). Compared with these 

lithium-ion cells tested in [130], lead-acid has a higher maximum hysteresis voltage (60 mV 

[131]). However, the hysteresis voltage in an LTO cell is so small that paper [132] postulated 

that it does not exist in the LTO cell. 

6.2.3 The effect of experiment procedure on hysteresis 

Two methods are widely used in terms of measuring OCV and hysteresis voltage: low 

current and incremental charge/discharge [130]. In the low current method, a battery is 

continuously charged or discharged by a small current as Figure 6.3 shows. In this case, the 

battery voltage approximately equals OCV and is known as pseudo-OCV. The error is 

caused by the voltage drop on the cell’s internal resistance which is positively related to the 

amplitude of the current and the value of internal resistance. 

 

Figure 6.3 Schematic diagram of the low current method 

In the incremental charge/discharge method, the battery is charged or discharged by a 

constant pulse current as Figure 6.4 shows. The OCV is measured at every certain SoC (e.g. 

at every 10% SoC) at the end of relaxation. The relaxation time is not strict and varies 

between 0.5 and 4 hours ([129]: 0.5 h, [132]: 2 h, [133]: 3 h, [130]: 4 h).  
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Figure 6.4 Schematic diagram of incremental charge/discharge method 

The duration of relaxation can significantly influence the measured OCV value. Reference 

[134] explored the impact of different relaxation times (1 min, 5 mins, 30 mins and 3 h) on 

an LFP cell’s OCV measurement value and the result is shown in Figure 6.5. In general, with 

the increase of the relaxation time, the measured OCV after charging becomes smaller and 

the measured OCV after discharging becomes greater. Consequently, a smaller hysteresis 

voltage will be obtained after a longer relaxation. After 3 hours of relaxation, the OCV value 

basically keeps constant [134]. 
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Figure 6.5 The impact of different relaxation lengths on an LFP cell’s OCV measurement. 

(a): OCV incrementally measured at 5% SoC interval, (b): ΔU, the difference between the 

OCV measured after a certain relaxation period and the OCV measured after 3 h relaxation 

(positive: OCV difference after charging. negative: OCV difference after discharging). 

(adapted from: [134]) 

Both methods are time-consuming. The incremental method provides accurate OCVs at 

intermittent SoC points whereas the low current method provides continuous OCV 

measurements in a range. Besides, the hysteresis voltage for a cell is tens of millivolts which 



113 

is so small that can be easily influenced by experiment settings in both methods (e.g. 

relaxation time, current). 

6.2.4 Open circuit voltage hysteresis measurement on Willenhall Energy Storage System 

and Preisach hysteresis model 

To explore the OCV hysteresis phenomenon in a large-scale battery system, a low power 

(50 kW) experiment was conducted in WESS since the low current method cannot be 

directly applied on WESS due to the power-controlled inverter. 50 kW is chosen based on 

the time cost, the OCV accuracy and the properties of battery management system (BMS) in 

WESS. A full charging-discharging cycle in WESS (1 MWh) with 50kW load takes 40 h, 

which means two day during which WESS is unavailable. However, WESS is contractually 

demanded to provide frequency service. A lower power (<50 kW) hysteresis experiments 

will take a longer time (> 40 h per cycle) and could cause a financial loss. 

A 50 kW (0.05C-rate) load does not generate a big difference between terminal voltage and 

OCV. At the same time, the experiment time is acceptable (from 100% to 0%: ~20 h). More 

importantly, as it has been discussed in Chapter 3, an extremely low power (~0.01 C-rate) 

will trigger the OCV correction mechanism in WESS’s BMS. In this case, the BMS believes 

the battery terminal voltage is equal to the OCV and the SoC is estimated by searching the 

embedded OCV-SoC look-up table. Since experimental data in this work relies of the reports 

from the BMS, it is influenced by this property. Consequently, when the experiment power 

is extremely low (~0.01 C-rate), the collected OCV-SoC relationship will be identical with 

the embedded OCV-SoC loop-up table in the BMS. A power of 50kW should avoid nuances 

with the BMS SoC correction mechanism. 

The purpose of the experiment is to obtain the OCV-SoC relationship in multiple hysteresis 

loops so that an OCV hysteresis model (the discrete Preisach model) can be built for WESS. 

The classical Preisach model was proposed by F. Preisach in 1935 for magnetic materials 

and is considered as one of the most important hysteresis models [135]. With the wide use 

of batteries, the Preisach model has been applied to lithium batteries for OCV modelling 

[136][137] and SoC estimation [138].  

The Preisach model can be represented by (6.1)where 𝑦(𝑡) and 𝑥(𝑡) are the output and input 

of the model respectively. 𝑇 is the Preisach triangle shown in Figure 6.7. 𝛾𝛼𝛽 is the one-side 

Preisach operator as shown in Figure 6.6 which can be used in the case of a nonnegative 
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observation 𝑦(𝑡)  such as the OCV of a battery. 𝜇𝛼𝛽  is the weighting function for the 

corresponding operator 𝛾𝛼𝛽  and decides the shape of the hysteresis model [136] and is 

obtained from experiments. The operators can be expressed in mathematical equations (6.2). 

 

Figure 6.6 One-side Preisach operators (adapted from: [139]) 

 𝑦(𝑡) = ∬
𝑇
𝜇𝛼𝛽𝛾𝛼𝛽(𝑥(𝑡))𝑑𝛼𝑑𝛽 (6.1) 

Every single point on the Preisach triangle 𝑇 in Figure 6.7 represents for a one-side Preisach 

operators 𝛾𝛼𝛽 with unique value of 𝛼 and 𝛽 and the output of the Preisach operator 𝛾𝛼𝛽 is 

decided by the history of input 𝑥(𝑡). The history of input 𝑥(𝑡) decides the value of every 

Preisach operator 𝛾𝛼𝛽 on 𝑇 through an interface line 𝐿(𝑡) which will be introduced next. 

 

Figure 6.7 Preisach triangle T 
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The Preisach triangle is divided into two regions by the interface line 𝐿(𝑡) [140]. For all the 

Preisach operators 𝛾𝛼𝛽 in the region below 𝐿(𝑡),  the value of 𝛾𝛼𝛽 is set as 1. On the other 

hand, for all the Preisach operators 𝛾𝛼𝛽 in the region above 𝐿(𝑡), 𝛾𝛼𝛽 = 0.  

Figure 6.8 demonstrates the process of generating the interface line 𝐿(𝑡), plotted with a solid 

red line, according to the history of the given input 𝑥(𝑡) in Figure 6.8(a). Figure 6.8(b) (c) 

and (d) are the snapshot of 𝐿(𝑡) in Preisach triangle T at time t1 t2 and t3 respectively. The 

red arrow indicates the changing direction of the interface line 𝐿(𝑡).  

As Figure 6.8 shows, when 𝑥(𝑡) is increasing: t0→t1 and t2→t3, the horizontal line 𝛼 = 𝑥(𝑡) 

(moving up) redefines the bottom of 𝐿(𝑡) and the rest of 𝐿(𝑡) remains constant. When 𝑢(𝑡) 

is decreasing: t1→t2, the vertical line 𝛽 = 𝑥(𝑡) (moving towards left) redefines the right edge 

of 𝐿(𝑡) while the rest of 𝐿(𝑡) keep unchanged. As a result, in the Preisach model, as (6.1) 
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shows, the history of input 𝑥(𝑡) is remembered by the shape of the interface line 𝐿(𝑡) which 

changes the value of 𝛾𝛼𝛽 and then controls the value of output 𝑦(𝑡). 

 

Figure 6.8 An example of the Preisach triangle partition. (a): input; (b): 𝐿(𝑡) at t1; (c): 𝐿(𝑡) 
at t2; (d): 𝐿(𝑡) at t3; 𝐿(𝑡): the interface, plotted in solid red line 

Preisach model can be discretised by dividing the 𝛼 and 𝛽 axis into 𝐾 parts and generates N 

number of regions in the Preisach triangle, 𝑁 = 𝐾(𝐾 + 1)/2  [139]. Each region 

corresponds to one Preisach operator 𝛾𝛼𝛽 with unique numbers of 𝛼 and 𝛽. Figure 6.9 shows 

an example of the Preisach triangle T of a discrete Preisach model with 𝐾 = 5 and the 

Preisach triangle T is divided into 15 regions. In Figure 6.9(a), The Preisach operators 𝛾𝛼𝑖𝛽𝑗
 

for each region is represented by (𝛼𝑖, 𝛽𝑗), 𝑖 and 𝑗 ∈ [1,2, … ,5]. The corresponding value of 

(𝛼𝑖 , 𝛽𝑗 ) and the corresponding operator diagrams are shown in Figure 6.9(b) and (c) 

respectively where  = 𝑥max − 𝑥min. 
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Figure 6.9 A discrete Preisach model triangle (K=5, N=15). (a): allocate (𝛼𝑖, 𝛽𝑗); (b): the 

value of  (𝛼𝑖, 𝛽𝑗); (c): the operator diagram for each region 

The output in the discrete Preisach model is represented by (6.3). Similar to the classical 

Preisach model, in the discrete Preisach model 𝛾𝛼𝑖𝛽𝑗
 is the Preisach operators and 𝜇𝛼𝑖𝛽𝑗

 is 

the corresponding the weighting function where 𝑖 and 𝑗 ∈ [1, 2, …𝐾]. The value of 𝛾𝛼𝑖𝛽𝑗
 is 

decided by the history of input 𝑥(𝑡) through the interface 𝐿(𝑡) in the same way as Figure 

6.8 shows. 𝜇𝛼𝑖𝛽𝑗
 is determined through experiment and (6.3). In detail, the output 𝑦(𝑡) can 

be obtained from measurement and 𝛾𝛼𝑖𝛽𝑗
 is known from the input 𝑥(𝑡) history and 𝜇𝛼𝑖𝛽𝑗

 can 

be estimated from least square error method. 
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Figure 6.10 provides an example of using the discrete Preisach model to estimate the OCV 

of a lithium-silicon (Li//Si) half-cell (lithium metal vs. 30% Si/55% graphite half-cell). The 

model normally requires a large number of 𝑁 (e.g., 100) to achieve a satisfactory result. In 

terms of WESS, the OCV hysteresis loops are required to obtain 𝜇𝛼𝑖𝛽𝑗
 for Preisach model 

which demands experiments. 

 

Figure 6.10 A Li//Si half-cell’s OCV modelling using discrete Preisach model (K=100) 

(data collected from: [139]) 

6.2.5 Open circuit voltage hysteresis experiment: results 

To build a Preisach hysteresis model and determine the value of weighting function 𝜇(𝛼𝑖, 𝛽𝑗), 

OCV hysteresis experiment that contains 4 loops (loop 1 - 4) were conducted on Willenhall 

Energy Storage System. In each loop, WESS is discharged from 90% SoC to different return 

SoC points (loop 1: 10%, loop 2: 30%, loop 3: 50%, loop 4: 70%) and then charged to 90%. 

Figure 6.11 shows the experiment result of the four loops which was recorded by the BMS, 

including (a) battery pack voltage, (b) current, and (c) BMS SoC. As the first row in Figure 

6.11 shows, during loop 1, when the battery was charged to 78% SoC at t1, the battery was 

disconnected from the grid for 6 hours and 45 minutes for an unknown reason and there was 

no data recorded by BMS. 

O
C

V
 (

V
)

SoC (%)

 𝑦(𝑡) = ∑∑𝜇𝛼𝑖𝛽𝑗
[𝛾𝛼𝑖𝛽𝑗

(𝑥(𝑡))

𝑖

𝑗=1

𝐾

𝑖=1

] (6.3) 
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Figure 6.11 Result of the major and minor cycles in OCV hysteresis experiment: the pack 

voltage, current and BMS SoC in (a-c): loop 1, (d-f): loop 2, (g-i): loop 3 and (j-l): loop 4. 

Note: t1: 30.1 h, t2: 36.8 h 

The pack voltage results of the four cycles are plotted with respect to their corresponding 

BMS SoC in Figure 6.12. In Figure 6.12(a), a pseudo-OCV model is shown in black line. 

This pseudo-OCV model was first introduced in Chapter 3 and obtained from a series of 

extremely low power discharging experiments. As it has been discussed in Chapter 3, this 

pseudo-OCV model is the same as the embedded OCV-SoC look-up table inside the BMS. 

As can be seen in Figure 6.12, in all four cycles, at some SoC points the battery voltage 

during charging is smaller than that under discharging which is against the nature of a battery 

for two reasons. First, due to the internal resistance, the battery terminal voltage is higher 
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than its OCV under a charging current and lower than OCV under a discharging current. 

Second, in a charging-discharging loop, at the same SoC, the OCV with a charging SoC 

history is higher than OCV with a discharging SoC history. These two properties of batteries 

make the battery voltage during charging greater than that under discharging at the same 

SoC. 

The SoC estimation method in the BMS is believed to be the main reason that causes this 

unusual situation. In WESS, BMS uses the Coulomb-counting method to estimate SoC 

during charging and discharging and correct the SoC estimation according to an embedded 

lookup table when the battery is relaxed. The Coulomb-counting method introduces 

integration error due to measurement error in battery current. The SoC error in the Coulomb-

counting method accumulates with time which matches with the fact that loop 4 who 

consumed the least time compared with other loops has far fewer unusual result points. The 

voltage sensor error could be another reason for the unusual result in Figure 6.12. 
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Figure 6.12 Battery pack terminal voltage vs. BMS SoC (DCH: discharge, CH: charge), (a-

c): loop 1-4 
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As it has been mentioned, in loop 1 WESS is disconnected from the grid at t1 and reconnected 

at t2 (see t1→t2 in Figure 6.11(a) - (c) and Figure 6.12(a)) during which some properties of 

the BMS are revealed. The BMS has a SoC correction mechanism to minimise the SoC error 

of the Coulomb-counting method. As mentioned in Chapter 3, this mechanism only works 

after resting or under extremely low load current (<0.01 C-rate). The correction mechanism 

is triggered in cycle 1 between t1 and t2. 

At t2, the SoC has a charging history and is corrected according to the embedded OCV-SoC 

loop-up table. Assuming the loop-up table in WESS contains the hysteresis information, the 

(SoC, voltage) point at t2 is supposed to be located above the pseudo-OCV model that has 

discharging SoC history. However, the (SoC, voltage) point at t2 is located exactly on the 

pseudo-OCV model as shown in Figure 6.12(a) so that the assumption does not hold which 

means that the embedded OCV-SoC loop-up table in WESS does not capture hysteresis 

behaviour.  

6.3 Improvements to the SoC estimation 

The previous section shows that the battery pack hysteresis voltage in WESS cannot be 

identified with the measured voltage and BMS SoC due to the error in the Coulomb-counting 

method. The relationship between hysteresis voltage and SoC cannot be determined without 

an accurate SoC estimation. The BMS SoC estimation error is mainly caused by the 

inaccurate current measurement. Kalman filter based method can provide an optimized 

recursive SoC estimation in a system that contains process and measurement noise. Extended 

Kalman filter (EKF) can be used on a non-linear system such as a battery. In theory, the SoC 

error caused by current sensor accuracy can be reduced by EKF. Therefore, the EKF method 

is adopted in this section to improve SoC estimation.  

6.3.1 Sequential probabilistic inference and Kalman filter 

The Kalman filter (KF) is a recursive algorithm designed by R.E. Kalman in 1960 for the 

optimal estimation problem in linear systems [141][142]. KF is a special case (the linear 

Gaussian case) of sequential probabilistic inference (SPI).  

In general, a (non-linear) dynamic system can be represented by a dynamic state space model 

written in (6.4)-(6.5) where 𝒙k is the hidden state in the system and 𝒚k is the output (or 
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observation) of the system. 𝑓 and 𝑔 are the state transition function and observation (or 

output) function respectively. 𝒘k is process noise and 𝒗k is observation noise. 

 𝒙k+1 = 𝑓(𝒙k, 𝒖k, 𝒘k) (6.4) 

 𝒚k = 𝑔(𝒙k, 𝒖k, 𝒗k) (6.5) 

The sequential probabilistic inference calculates the optimal value of hidden system states 

𝒙k given all the observations with noise. Mathematically, the optimal state estimation is 

calculated as a conditional expectation �̂�k = 𝐸[𝒙k|𝒀k] = ∫ 𝒙k 𝑝(𝒙k|𝒀k)𝑑𝒙k given all the 

observations 𝒀k = {𝒚1, 𝒚2, … , 𝒚k}. Figure 6.13 shows the concept of sequential probabilistic 

inference. In a system, the hidden state 𝒙k has a conditional probability density 𝑝(𝒙k|𝒙k−1) 

and an initial probability density 𝑝(𝒙0). The value of 𝑝(𝒙k|𝒙k−1) is decided by the state 

transition function 𝑓, input 𝒖k, and process noise 𝒘k. The conditional probability density 

for output 𝑝(𝒚k|𝒙k) is specified by output function 𝑔, input 𝒖k,and measurement noise 𝒗k. 

 

Figure 6.13 Sequential probabilistic inference 

The value of �̂�k  and the state conditional probability density 𝑝(𝒙k|𝒀k) can be updated 

recursively as reference [143] shows. When all the distributions are assumed to be Gaussian 

and the system is linear, the sequential probabilistic inference becomes the linear Kalman 

filter as reference [144] demonstrates. The process of the linear Kalman filter will be 

introduced in the next section. 

6.3.2 Linear Kalman filter 

Figure 6.14 shows the block diagram of the linear Kalman filter which uses the difference 

between the noisy measurement from a real system and the output estimation from the model 

to refine the estimation of system states. The model of linear discrete systems is shown in 

(6.6)-(6.7) where 𝒙k and 𝒚k are the state and output vectors respectively; 𝑨, 𝑩, 𝑪, and 𝑫 are 

system matrix, input matrix, output matrix and feedforward matrix; System noise 
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𝒘k ~ 𝑁(0, 𝑸) and measurement noise 𝒗k ~ 𝑁(0, 𝑹) are zero mean independent Gaussian 

noises. 𝑸  and 𝑹  are the system and measurement noise covariance. Symbol ‘~’ (a 

connection symbol) connects a variable and its distribution and 𝑁  represent a Gaussian 

distribution. 

 𝒙k+1 = 𝑨𝒙k + 𝑩𝒖𝐤 + 𝒘k (6.6) 

 𝒚k = 𝑪𝒙k + 𝑫𝒖𝐤 + 𝒗𝐤 (6.7) 

 

Figure 6.14 The block diagram of linear Kalman filter 

The following notations are used in KF where 𝑘  is time instant,   is matrix transpose 

operation, tilde ‘~’ (an accent symbol) indicates the error between the actual value and the 

estimated value and subscripts ‘-’ and ‘+’ indicate a priori and a posteriori estimation 

respectively: 

�̂�𝑘
− is the a priori state estimate of the state 𝒙k, given observation 𝒀𝑘−1 = {𝒚1, 𝒚2, … , 𝒚𝑘−1}. 

�̂�𝑘
+ is the a posterior state estimate of the state 𝒙k, given observation 𝒀𝑘 = {𝒚1, 𝒚2, … , 𝒚𝑘}. 

�̃�𝑘
− is the a priori state estimate error and equals 𝒙𝑘 − �̂�𝑘

−. 

�̃�𝑘
+ is the a posterior state estimate error and equals 𝒙𝑘 − �̂�𝑘

+. 
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𝑷k
− is the a priori state estimation error covariance and equals 𝐸[(�̃�𝑘

−)(�̃�𝑘
−)T] =

𝐸[(𝒙𝑘 − �̂�𝑘
−)(𝒙𝑘 − �̂�𝑘

−)T]. 

𝑷k
+ is the a posterior state estimation error covariance and equals 𝐸[(�̃�𝑘

+ )(�̃�𝑘
+)T] =

𝐸[(𝒙𝑘 − �̂�𝑘
+)(𝒙𝑘 − �̂�𝑘

+)T]. 

�̃�𝑘 is the innovation (or estimation error) of output and equals 𝒚𝑘 − �̂�𝑘. 

The KF algorithm in Figure 6.14 can be divided into two parts called prediction (or “time 

update”) and correction (or “measurement update”) as Figure 6.15 shows. The KF algorithm 

is summarised in the following steps [145]: 

 

Figure 6.15 Flowchart of linear Kalman filter 

At the first step k=0, the initial value of the states 𝒙0, system noise 𝑸, measurement noise 

covariance 𝑹 and state estimation error covariance 𝑷0
+ are set by users. At every time step, 

because 𝒘k has zero mean (𝐸[𝒘k−1|𝒀𝑘−1] = 0), with (6.6) the state can be updated (time 

update): 

 

�̂�𝑘
− = 𝐸[𝑨𝒙k−1 + 𝑩𝒖𝐤−𝟏 + 𝒘k−1|𝒀𝑘−1] 

= 𝐸[𝑨𝒙k−1|𝒀𝑘−1] + 𝐸[𝑩𝒖𝐤−𝟏|𝒀𝑘−1] + 𝐸[𝒘k−1|𝒀𝑘−1] 

= 𝑨�̂�𝑘−1
+ + 𝑩𝒖𝐤−𝟏 

(6.8) 

(1) Prior state calculation: 

Prediction (time update) Correction (measurement update)

𝒙𝑘
− = 𝑨𝒙𝑘−1

+ + 𝑩𝒖𝐤−𝟏

(2) Prior state estimation error covariance 

calculation: 

𝑷k
− = 𝑨𝑷k−1

+ 𝑨𝑇 + 𝑸

(1) Kalman gain calculation: 

 k = 𝑷k
−𝑪k

T 𝑪𝑷k
−𝑪𝑇 + 𝑹 −1

(2) Update states with new measurement 𝑦𝑘: 

𝒙𝑘
+ = 𝒙𝑘

− +  k�̃�𝐤

�̃�𝐤 = 𝒚𝐤 − 𝑪𝒙k
− − 𝑫𝒖𝐤

𝑷k
+ =  −  k𝑪 𝑷k

−

(3) Update state covariance: 

Initial value of 𝒙0

𝑷0, 𝑸 and 𝑹.
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Substituting (6.8) into the mathematical expression of priori state estimate error �̃�𝑘
− = 𝒙𝑘 −

�̂�𝑘
−, �̃�𝑘

− can be written as: 

 
𝒙𝑘

− = (𝑨𝒙k−1 + 𝑩𝒖𝐤−𝟏 + 𝒘k−1) − (𝑨�̂�𝑘−1
+ + 𝑩𝒖𝐤−𝟏) 

= 𝑨�̃�𝑘−1
+ + 𝒘k−1 

(6.9) 

Because 𝒘k−1  is zero mean independent Gaussian noises,  𝐸[�̃�𝑘
+(𝒘k−1)

T]  and 

𝐸[𝒘k−1(�̃�𝑘
+)T] are zero. Substituting (6.9) into the definition of the priori state estimation 

error covariance 𝑷k
−, 𝑷k

− can be updated as (time update): 

 

𝑷k
− = 𝐸[(𝒙𝑘

−)(�̃�𝑘
−)T] 

= 𝐸[(𝑨𝒙𝑘
+ + 𝒘k−1)(𝑨�̃�𝑘

+ + 𝒘k−1)
T] 

= 𝐸[(𝑨𝒙𝑘
+ + 𝒘k−1)((�̃�𝑘

+)T𝑨T + 𝒘k−1
T)] 

= 𝐸[𝑨�̃�𝑘
+(�̃�𝑘

+)T𝑨T + 𝒘k−1(�̃�𝑘
+)T𝑨T + 𝑨�̃�𝑘

+(𝒘k−1)
T 

+𝒘k−1(𝒘k−1)
T] 

= 𝑨𝑷k−1
+ 𝑨T + 𝑸 

(6.10) 

When the new output information 𝒚𝐤 is obtained, Kalman filter uses the output innovation 

�̃�𝑘 to update the a priori state estimation to the a posterior state estimation as (6.11) shows, 

where the Kalman gain and the output innovation is calculated according to equation (6.12) 

and (6.13).  

 �̂�𝑘
+ = �̂�𝑘

− +  k�̃�𝑘 (6.11) 

  k = 𝑷k
−𝑪T(𝑪𝑷k

−𝑪T + 𝑹)−1 (6.12) 

 �̃�𝑘 = 𝒚𝐤 − 𝑪�̂�k
− − 𝑫𝒖𝐤 (6.13) 

After the a posterior state estimation �̂�𝑘
+ is calculated, the a posterior state estimation error 

covariance can be updated with equation (6.14): 

 

𝑷k
+ = 𝐸[(�̃�𝑘

+ )(�̃�𝑘
+)T] 

= 𝐸[(�̃�𝑘
− −  k�̃�𝑘)(�̃�𝑘

− −  k�̃�𝑘)
T] 

= 𝑷k
− −  k𝐸[�̃�𝑘(�̃�𝑘)

T] k
T 

= ( −  k𝑪)𝑷k
− 

(6.14) 
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The KF is suitable for only linear systems because it is derived with the linear model equation 

shown in (6.6)-(6.7). Since the model of nonlinear systems cannot be written in the same 

form, the KF cannot be directly applied to a nonlinear system. 

6.3.3 Extended Kalman filter 

Equation (6.15)-(6.17) shows the state space model of nonlinear systems in which 𝒙k and 

𝒚k  are the state and output vectors and 𝑘  is time instant. 𝑓and 𝑔 are the state transition 

function and the output function. 𝒘k and 𝒗k are process noise and measurement noise which 

are independent Gaussian noises. The KF is designed for linear systems and cannot be used 

on a non-linear system like a battery model. To apply KF on a non-linear system, the first 

order Taylor series approximation is applied to the system model as a form of linearisation 

to allow the KF to be applied. The first order Taylor series approximation of the state 

transition function 𝑓 and the output function 𝑔 are shown in (6.18) and (6.19). 
𝜕𝑓(𝒙k,𝒖k)

𝜕𝒙k
 and 

𝜕𝑔(𝒙k,𝒖k)

𝜕𝒙k
 are the Jacobian matrices of 𝑓 and 𝑔. Assuming input 𝒙k is a 𝑁 × 1 vector, the 

expression of the Jacobian matrices of 𝑓 is given in as (6.20) an example. The notations ‘~’, 

‘+’ and ‘-’ in EKF have the same meaning as that in EK which represent an error, a a priori 

and a a posteriori estimation respectively. 

 𝒙k+1 = 𝑓(𝒙k, 𝒖k) + 𝒘k (6.15) 

 𝒚k = 𝑔(𝒙k, 𝒖k) + 𝒗k (6.16) 

 𝒘k ~ 𝑁(0, 𝑸), 𝒗k ~ 𝑁(0, 𝑹) (6.17) 

 𝑓(𝒙k, 𝒖k) ≈ 𝑓(�̂�k, 𝒖k) +
𝜕𝑓(𝒙k, 𝒖k)

𝜕𝒙k
|
𝑥k=𝑥 k

(𝒙k − �̂�k) (6.18) 

 𝑔(𝒙k, 𝒖k) ≈ 𝑔(�̂�k, 𝒖k) +
𝜕𝑔(𝒙k, 𝒖k)

𝜕𝒙k
|
𝑥k=𝑥 k

(𝒙k − �̂�k) (6.19) 

 
𝜕𝑓(𝒙k, 𝒖k)

𝜕𝒙k
=

[
 
 
 
 
𝜕𝑓1
𝜕𝒙1

 
𝜕𝑓1
𝜕𝒙𝑁

   
𝜕𝑓𝑁
𝜕𝒙1

 
𝜕𝑓𝑁
𝜕𝒙𝑁]

 
 
 
 

 (6.20) 
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Let �̂�k =
𝜕𝑓(𝒙k,𝒖k)

𝜕𝒙k
 and �̂�k =

𝜕𝑔(𝒙k,𝒖k)

𝜕𝒙k
, substituting (6.18)-(6.19) into (6.15)-(6.17), the 

nonlinear system can be linearised and the system state space model can be written as (6.21)-

(6.22) which are similar to (6.6)-(6.7). In (6.21)-(6.22), since the input 𝒖k and the estimation 

of state �̂�k are known so that value of the second and third items of both equations are known. 

Consequently, there is no nonlinear items in (6.21)-(6.22) and the process of deriving KF 

can be ‘extended’ and applied to the linearized system. The algorithm is named as then 

extended Kalman filter. 

 𝒙k+1 ≈ �̂�k𝒙k + 𝑓(�̂�k, 𝒖k) − �̂�k�̂�k + 𝒘k (6.21) 

 𝑦k ≈ �̂�k𝒙k + 𝑔(�̂�k, 𝒖k) − �̂�k�̂�k + 𝒗k (6.22) 

The steps for EKF is summarized in reference [95][146] and shown in Figure 6.16 as a flow 

chart. The process of extended Kalman filter is similar to that of linear Kalman filter except 

for that system matrix 𝑨 and output matrix 𝑪 used in linear Kalman filter is replaced with 

�̂�k and �̂�k [145]. 

 

Figure 6.16 Flowchart of extended Kalman filter 

6.3.4 State of charge estimation with extended Kalman filter 

The EKF method is expected to produce a better SoC estimation for the hysteresis 

experiment (shown in Figure 6.11) than the BMS SoC. To estimate SoC with EKF, the single 
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time constant equivalent circuit model (ECM) identified from the day 2 experiment 

(ECM1D2) in Chapter 3 is chosen. The electrical diagram of ECM1D2 and its parameter value 

are shown in Figure 6.17 and Figure 3.10 respectively. The one time constant is used for 

simplicity. Day 2 is chosen because BMS SoC self-correction happened during the (day 2) 

experiment which prevented a large SoC error from the Coulomb-counting method. A 

discussion about the Coulomb-counting method in WESS can be found in section 3.3.2. 

 

Figure 6.17 Single time constant ECM 

For EKF with ECM1D2, SoC and the voltage on capacitor C1 in the equivalent circuit are 

chosen as the internal states 𝒙k = [𝑆𝑜𝐶k 𝑉C1,k]T. The discretised model of the circuit is 

shown in (6.23) and (6.24) where 𝐼k is the battery current, 𝑉t,k is the battery terminal voltage, 

𝑄 is the battery capacity, τ1 is the time constant which equals 𝑅1𝐶1 and Δ𝑡 is the step length 

(1 s) in the simulation.  

 
[
𝑆𝑜𝐶k+1

𝑉C1,k+1
] = 𝑓(𝒙k, 𝒖k) + 𝒘k 

= [

1 0

0 ex (−
Δ𝑡

τ1(𝑆𝑜𝐶k)
)] [

𝑆𝑜𝐶k

𝑉C1,k
] 

+

[
 
 
 

Δ𝑡

3600𝑄

𝑅1(1 − ex  (−
Δ𝑡

τ1(𝑆𝑜𝐶k)
))

]
 
 
 

𝐼k + [
𝑤1,k

𝑤2,k
] 

(6.23) 

 𝑉t,k = 𝑔(𝒙k, 𝒖k) + 𝑣k 

=  𝐶𝑉(𝑆𝑘) + 𝑉C1,k + 𝑅0𝐼k + 𝑣k 
(6.24) 

The Jacobian matrices of the state transition function 𝑓  and the output function 𝑔 are 

calculated according to the definition during which the relationships between parameters R0, 

𝑅1  and τ1  and SoC are ignored, �̂�k =
𝜕𝑓(𝒙k,𝒖k)

𝜕𝒙k
 = diag [1 ex (−
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𝜕𝑔(𝒙k,𝒖k)

𝜕𝒙k
= [

𝜕𝑉OC

𝜕𝑆𝑜𝐶
1]. In this way, the Jacobian matrices keep in a simple form which keeps 

the battery EKF robust and reliable. The relationships between parameters and SoC are 

adopted for the time update of state 𝒙k for a better a priori state estimation. The value of 𝑸, 

𝑹 and 𝑷0
+ in EKF are set as [10−6, 0;  0, 10−10], 1 and diag[1 10−10], respectively. The 

SoC in the four hysteresis experiment cycles are calculated through EKF and the voltage vs. 

EKF SoC is presented in the first column of Figure 6.18.  

In the new relationship shown in the first column of Figure 6.18, at the same SoC, the battery 

charging voltage is larger than discharging voltage. Because the hysteresis voltage is small, 

the voltage caused by the battery current (~80 A) on the battery internal resistor (~7 mΩ) in 

WESS is not negligible. The total internal resistance of WESS (𝑅0 + 𝑅1, shown in Figure 

3.10(e)) and the battery current 𝐼 in each cycle (shown in the second column of Figure 6.11) 

are known. The OCV can be estimated as the measured pack voltage (shown in the first 

column of Figure 6.11) minus the voltage on the total internal resistance (≈ 𝐼(𝑅0 + 𝑅1)).  

The second column of Figure 6.18 shows the estimated OCV result in each cycle after 

subtracting the voltage on the total internal resistance (≈ 𝐼(𝑅0 + 𝑅1 )). In terms of the 

hysteresis voltage amplitude, the estimated OCV hysteresis voltage of WESS is less than 1 

V and it is lower than 0.1 V when SoC is around 40% and smaller than 70% which is much 

less than the theoretical value (~2.6 V). The hysteresis voltage has a peak value at around 

60% SoC and decreases with SoC between 10% and 40% SoC. 
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Figure 6.18 Battery pack voltage vs. EKF SoC (first column) and estimated OCV vs. EKF 

SoC (second column). (note: DCH: discharge, CH: charge) 
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To obtain the OCV-SoC hysteresis relationship (or hysteresis loops) in a battery, an accurate 

measurement for the SoC and terminal voltage are required which should be estimated or 

measured with high-precision equipment (i.e. current sensor and voltage sensor). In 

hysteresis experiments, the BMS SoC estimation error grows with time, which is caused by 

the low data sample rate and the low current sensor accuracy in the WESS. The present 

equipment and setting in WESS are not adequate to directly measure the hysteresis voltage. 

The EKF largely improved the SoC estimation. Compared with the hysteresis loops plotted 

under BMS SoC in Figure 6.12, the hysteresis loops plotted under EKF SoC Figure 6.18 are 

closer to reality. In detail, EKF eliminated the crossover points in hysteresis loops plotted 

under BMS SoC. The EKF ensured a basic rule in the OCV hysteresis phenomenon: that, at 

the same SoC, the measured battery voltage during charging is greater than that during 

discharging. 

However, the EKF in this chapter is not capable of adjusting the battery OCV model inside 

the equivalent circuit. This is because the OCV and SoC relationship obtained from the EKF 

is approximately the OCV model inside the ECM. As it can be seen in the second column of 

Figure 6.18, the OCV profiles obtained from the charging process (plotted in orange) and 

discharging process (plotted in blue) are close to the OCV model in ECM (plotted in black 

dash line). 

Further work is clearly needed to obtain the direct current and voltage measurements of a 

large battery pack in order to generate an accurate hysteresis model independent of that 

stored within the BMS. Unfortunately, such a system is not immediately available. 

Nonetheless, this chapter has demonstrated that the OCV hysteresis can be modelled with 

the discrete Preisach model. However, the hysteresis voltage of LTO cell is small which 

requires high accuracy measurements. To improve the SoC estimation, the EKF can be 

applied (as it was on WESS) to provide a better hysteresis model.  

6.4 Conclusion 

This chapter using Willenhall Energy Storage System (WESS) as an example explored the 

topic of the open circuit voltage (OCV) hysteresis phenomenon in a large-scale battery 

energy storage system (BESS) built with lithium titanium oxide (LTO) cells. The experiment 

and simulation results leave it as an open research topic and further study requires more in-
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depth knowledge of cell characterisation, improved measurement accuracy and sensors with 

high dynamic range.  

The battery management system (BMS) in WESS does not capture the hysteresis properly. 

WESS is a commercial BESS that functions as an energy storage system first and then a 

research platform. Such platforms do not allow access to their internal data. The hardware 

and software setting in WESS cannot achieve measurements with high precision. However, 

the results have shown the viability of the Presaich model for the estimation of hysteresis in 

a large battery back, particularly when combined with the extended Kalman filter. 
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Chapter 7. Conclusion and future work 

7.1 Conclusion 

As has been stressed in Chapter 1 and Chapter 2, the large-scale battery energy storage 

systems (BESSs) play a more and more important role in the grid systems. Large-scale 

BESSs are used to provide services such as peak load lopping, frequency response, amongst 

others. Meanwhile, the further understanding of the properties of large-scale BESSs has 

become meaningful for battery management and economic investment validation. Besides, 

more accurate battery models in both cell level and pack level are needed for battery system 

behaviour prediction and analysis. 

This work was motivated by the practical need for large-scale BESS models and used 

Willenhall Energy Storage System (WESS) as the research platform to conduct a series of 

modelling work. Chapter 3 demonstrated the pack level modelling of WESS in which 

equivalent circuit models (ECMs) were extracted from the terminal information of the 

battery pack. As experiments in Chapter 3 have shown, WESS displayed some properties 

which cause difficulties in modelling. The properties include the slow current responses, low 

data resolution, low sample frequency, unsatisfactory sensor (current and voltage) accuracy, 

etc. The inherited properties of WESS causes difficulties in the ECM parameter 

identification, especially for the ohmic resistance. As shown in Chapter 3, by setting the 

ohmic resistance as a complementary component, the ECM can be identified. The identified 

ECMs has higher accuracy than scaling up a single cell but the latter method does have a 

reasonable performance during simulations. 

The pack level battery model is not able to reflect the battery internal (cell level) conditions. 

To obtain the cell level information, each cell in the pack is represented by an ECM. 

However, as shown in Chapter 4, the massive circuit generated when cell-level equivalent 

circuits and combined into a pack of over 21000 cells caused failure in traditional simulators 

due to the difficulties in solving equations that contain large sparse matrices. Chapter 4 

shows that systematically applying Thévenin and Norton transformations provide a more 

efficient method to solve the high order sparse matrices resulting from high-order RC 

network constructed from cell ECMs. This simulation tool was used for the study of cell-to-

cell variation (CtCV) in this thesis, but the application of the tool can be expanded to other 

areas such as exploring the impacts of aged cells in a battery pack. 
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CtCV is known to have a significant impact on the operation of large-scale BESSs. As 

Chapter 5 has discussed, the voltage deviation which is a result of CtCV can trigger the cut-

off mechanism in BESS when the manufacturer’s recommended limits are exceeded. In 

Chapter 5, electroimpedance spectroscopy measurements (EIS) on cells show that the cells 

have a dramatic property change at operating conditions close to fully charged and close to 

fully discharge zones which are the extreme state of charge (SoC) characteristic. The obvious 

change in cell chemistry properties leads to a large change in the ECM parameter value and 

causes large parameter variation. In the Monte Carlo simulations, the randomly generated 

battery pack (obeying specific probably distributions) also showed a large deviation at low 

and high SoC zones. The findings in the experiments and simulations provided a possible 

explanation for the voltage deviation change observed in the two discharge-charge 

experiments on WESS. In detail, the large cell to cell differences at high and low SoC zone 

leads to the variation on cell electrical properties which caused a higher voltage deviation at 

the low and high SoC zones. Operating battery pack in these regions is more likely to cause 

the voltage of some of the cells within a pack exceed manufacturers limits. 

Chapter 6 explored the open circuit voltage hysteresis phenomenon in a large-scale BESS. 

A low power charge-discharge experiment was designed for WESS according to the 

properties of the battery management system (BMS) in WESS. The BMS recorded result of 

the hysteresis experiments were still influenced by the BMS and caused some unusual 

phenomenon. In detail, sometimes at the same SoC, the battery voltage during the 

discharging process is larger than that during the charging process. This obvious error in the 

experiment is believed to be due to how the BMS calculates SoC. The BMS uses the 

Coulomb counting method to estimate the SoC value when there is a current flow through 

the battery and uses an OCV-SoC look-up table to current the estimation when the battery is 

under a zero or extreme low current for a long period of time. An error can be introduced by 

the Coulomb counting method because of the sensor accuracy. This error is accumulating 

over time until an SoC correction happens. 

The SoC estimation can be largely improved by an extended Kalman filter (EKF) and the 

improved hysteresis experimental result shows a more satisfactory profile. However, as 

discussed in Chapter 6, the EKF is a model-based method and the hysteresis voltage 

extracted from this method is close to the OCV-SoC relationship used in the EKF algorithm. 
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Further experiments or more advanced algorithms are required to accurately identify the 

hysteresis voltage profile in a large-scale BESS. 

A large-scale BESS is normally designed for a particular application or service. For example, 

WESS was designed for the grid application and frequency response services. The hardware 

and software in a large-scale BESS are usually chosen to adapt the application requirements 

and the economic purpose. However, the hardware and software may not be appropriate for 

a scientific study. Hence, when an experiment is designed for a large-scale BESS, one should 

consider the hardware and software properties of the facility and carefully assess the 

feasibility of the experiments. 

7.2 Potential future work 

The research provided three valuable pack level ECMs for a real large-scale BESS and also 

proposed an efficient cell level simulator for large-scale BESS. Based on the provided data 

and simulator, a few further research ideas are suggested below. 

1) Economic evaluation of applications 

With the pack-level ECMs provided in Chapter 3, the response of a large-scale BESS can be 

simulated under different applications such as frequency response. The economic value of 

the battery in the applications can be estimated. 

2) Impact of different applications on cell voltage deviation 

Using the simulator proposed in Chapter 4, the cell voltage deviation under different load 

profiles can be simulated which can be used to evaluate the impact of different applications 

on the cell voltage deviation. 

3) Further hysteresis voltage study on large-scale battery packs 

The study of hysteresis voltage in large-scale BESS could help increase the model accuracy 

which is worth further research. Based on the hysteresis experiment result from this work, 

more accurate current and voltage sensors are recommended to use in further experiments. 

These are not likely to be provided by the battery management system on a commercial 

battery energy storage system. 
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4) Introducing the cell thermal model into the proposed simulator 

The CtCV on cell internal resistance is small.  It is believed that the temperature variation 

among cells caused by cell resistance variation is small so the temperature factor is not 

involved in this thesis. However, the accurate impact of temperature on BESS requires 

further experiments and simulations to be decided. 

The cell level battery simulator proposed in this work uses electrical equivalent circuit 

models to simulate individual cells in a pack. Thermal model can be introduced into the 

simulator to account for changes in ambient temperature around and within the pack. The 

thermal models can also be translated into a massive RC circuit which might be solvable 

with a similar approach as shown in Chapter 4. 

5) Coupling the effects of cell-to-cell variation and ageing 

Because of cell-to-cell variation, the current flowing through each cell in a pack will not be 

the same. After a long term of operation, the current difference among cells could lead to a 

variation in ageing. This topic can be explored by adding cell ageing models into the 

proposed cell level simulator. 
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Appendix A: 

Table A. 1. The cubic spline coefficients of different OCV-SoC models from different 

ECMs and datasets. OCV-SoC polynomial model on the SoC interval [S1, S2] is 𝑉𝑂𝐶 =
𝑎(𝑆 − 𝑆1)

3 + 𝑏(𝑆 − 𝑆1)
2 + 𝑐(𝑆 − 𝑆1) + 𝑑. 

ECM1 from day 1 ECM1 from day 2 ECM2 from day 2 

SoC interval Coefficients SoC interval Coefficients SoC interval Coefficients 

𝑆1 𝑆2 𝑎 𝑏 𝑐 𝑑 𝑆1 𝑆2 𝑎 𝑏 𝑐 𝑑 𝑆1 𝑆2 𝑎 𝑏 𝑐 𝑑 

8.029 13.265 -0.0001 -0.0089 1.0426 557.1 5.447 6.264 -0.0024 0.0095 1.0954 553.9 5.447 6.264 -0.0045 0.0324 1.0324 553.937 

13.265 18.474 -0.0001 -0.0105 0.9408 562.3 6.264 9.753 -0.0024 0.0036 1.1061 554.8 6.264 9.753 -0.0045 0.0213 1.0763 554.800 

18.474 23.603 0.0008 -0.0122 0.8225 566.9 9.753 15.207 0.0010 -0.0218 1.0426 558.6 9.753 15.207 0.0013 -0.0261 1.0595 558.622 

23.603 28.732 0.0002 -0.0006 0.7570 570.9 15.207 20.583 -0.0003 -0.0055 0.8939 563.8 15.207 20.583 -0.0004 -0.0045 0.8926 563.838 

28.732 33.756 0.0004 0.0031 0.7699 574.8 20.583 25.900 0.0006 -0.0104 0.8084 568.4 20.583 25.900 0.0007 -0.0109 0.8101 568.446 

33.756 38.764 0.0007 0.0095 0.8333 578.8 25.900 31.141 0.0004 -0.0002 0.7520 572.5 25.900 31.141 0.0006 -0.0005 0.7498 572.544 

38.764 43.753 0.0008 0.0201 0.9815 583.3 31.141 36.337 0.0002 0.0067 0.7865 576.5 31.141 36.337 0.0000 0.0085 0.7921 576.543 

43.753 48.666 0.0000 0.0325 1.2437 588.8 36.337 41.555 0.0011 0.0102 0.8747 580.8 36.337 41.555 0.0013 0.0082 0.8791 580.886 

48.666 53.568 -0.0006 0.0332 1.5663 595.7 41.555 46.750 0.0006 0.0276 1.0719 585.8 41.555 46.750 0.0006 0.0283 1.0696 585.879 

53.568 58.351 -0.0089 0.0238 1.8457 604.1 46.750 51.846 0.0012 0.0373 1.4088 592.2 46.750 51.846 0.0012 0.0379 1.4136 592.286 

58.351 63.132 0.0020 -0.1038 1.4633 612.5 51.846 56.827 -0.0071 0.0549 1.8787 600.5 51.846 56.827 -0.0077 0.0570 1.8974 600.640 

63.132 67.874 0.0156 -0.0752 0.6078 617.3 56.827 61.782 -0.0086 -0.0519 1.8940 610.3 56.827 61.782 -0.0083 -0.0574 1.8955 610.559 

67.874 72.566 -0.0096 0.1471 0.9489 620.2 61.782 66.750 0.0215 -0.180 0.7451 617.4 61.782 66.750 0.0218 -0.1807 0.7157 617.533 

72.566 77.210 0.0016 0.0121 1.6959 626.9 66.750 71.638 -0.0057 0.1410 0.5514 619.3 66.750 71.638 -0.0059 0.1448 0.5373 619.306 

77.210 81.753 -0.0001 0.0347 1.9135 635.2 71.638 76.434 -0.0030 0.0577 1.5223 624.7 71.638 76.434 -0.0032 0.0583 1.5301 624.703 

81.753 86.219 -0.0032 0.0333 2.2225 644.6 76.434 81.228 0.0017 0.0150 1.8706 633.0 76.434 81.228 0.0019 0.0130 1.8719 633.035 

86.219 90.649 0.0069 -0.0102 2.3253 654.9 81.228 85.945 -0.0032 0.0395 2.1319 642.5 81.228 85.945 -0.0033 0.0403 2.1273 642.516 

90.649 95.000 0.0069 0.0814 2.6407 665.6 85.945 90.620 0.0050 -0.0057 2.2913 653.1 85.945 90.620 0.0050 -0.0058 2.2902 653.106 

- - - - - - 90.620 95.200 0.0050 0.0648 2.5673 664.2 90.620 95.200 0.0050 0.0649 2.5664 664.201 
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Appendix B: 

This appendix provides the EIS and ECM curve fitting results of four LTO cells at different 

SoC. Each figure shows the results at a different SoC. In each figure, subfigure (a) shows 

the complete EIS result of four cells.  Subfigure (b) shows the partial EIS result (Zim>0). 

Subfigure (c) – (f) are the ECM curve fitting results for cell 02 – 05. 

 

Figure B. 1 EIS and ECM fitting result of 4 LTO cells at 0% SoC: (a) overall result, (b) 

result when Zim < 0, (c) – (f) ECM fitting result from Cell02 to Cell05 
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Figure B. 2 EIS and ECM fitting result of 4 LTO cells at 10% SoC: (a) overall result, (b) 

result when Zim < 0, (c) – (f) ECM fitting result from Cell02 to Cell05 
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Figure B. 3 EIS and ECM fitting result of 4 LTO cells at 20% SoC: (a) overall result, (b) 

result when Zim < 0, (c) – (f) ECM fitting result from Cell02 to Cell05 
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Figure B. 4 EIS and ECM fitting result of 4 LTO cells at 30% SoC: (a) overall result, (b) 

result when Zim < 0, (c) – (f) ECM fitting result from Cell02 to Cell05 
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Figure B. 5 EIS and ECM fitting result of 4 LTO cells at 40% SoC: (a) overall result, (b) 

result when Zim < 0, (c) – (f) ECM fitting result from Cell02 to Cell05 
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Figure B. 6 EIS and ECM fitting result of 4 LTO cells at 60% SoC: (a) overall result, (b) 

result when Zim < 0, (c) – (f) ECM fitting result from Cell02 to Cell05 
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Figure B. 7 EIS and ECM fitting result of 4 LTO cells at 70% SoC: (a) overall result, (b) 

result when Zim < 0, (c) – (f) ECM fitting result from Cell02 to Cell05 
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Figure B. 8 EIS and ECM fitting result of 4 LTO cells at 80% SoC: (a) overall result, (b) 

result when Zim < 0, (c) – (f) ECM fitting result from Cell02 to Cell05 
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Figure B. 9 EIS and ECM fitting result of 4 LTO cells at 90% SoC: (a) overall result, (b) 

result when Zim < 0, (c) – (f) ECM fitting result from Cell02 to Cell05 
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Figure B. 10 EIS and ECM fitting result of 4 LTO cells at 100% SoC: (a) overall result, (b) 

result when Zim < 0, (c) – (f) ECM fitting result from Cell02 to Cell05 


