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Abstract

Brain networks store new memories using functional and structural synaptic plasticity.

Memory formation is generally attributed to Hebbian plasticity, while homeostatic plastic-

ity is thought to have an ancillary role in stabilizing network dynamics. Here we report that

homeostatic plasticity alone can also lead to the formation of stable memories. We ana-

lyze this phenomenon using a new theory of network remodeling, combined with numeri-

cal simulations of recurrent spiking neural networks that exhibit structural plasticity based

on firing rate homeostasis. These networks are able to store repeatedly presented pat-

terns and recall them upon the presentation of incomplete cues. Storage is fast, governed

by the homeostatic drift. In contrast, forgetting is slow, driven by a diffusion process. Joint

stimulation of neurons induces the growth of associative connections between them,

leading to the formation of memory engrams. These memories are stored in a distributed

fashion throughout connectivity matrix, and individual synaptic connections have only a

small influence. Although memory-specific connections are increased in number, the total

number of inputs and outputs of neurons undergo only small changes during stimulation.

We find that homeostatic structural plasticity induces a specific type of “silent memories”,

different from conventional attractor states.

Author summary

Memories are thought to be stored in groups of strongly connected neurons, or engrams.

Much effort has been put into understanding engrams, but currently there is no definitive

consensus about how they are formed. Hebbian plasticity was proposed to underlie

engram formation. Hebbian plasticity occurs when synaptic weights are strengthened

between pairs of neurons with correlated activity. Hebbian plasticity, therefore, is thought

to rely on a mechanism that can detect correlation between neurons. However, the

increased synaptic weight implies increased correlation, which creates a positive feedback

loop that can lead to runaway growth. Avoiding such an unfavorable condition would

require regulatory mechanisms that are much faster than the ones which have been

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009836 February 10, 2022 1 / 40

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Gallinaro JV, Gašparović N, Rotter S
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observed in the brain. Here we show that a structural plasticity rule that is based on firing

rate homeostasis can also lead to the formation of engrams. In this case, engram formation

does not rely on a mechanism that traces correlation. Instead, stronger connectivity

between correlated neurons emerges as a network effect, based on self-organized rewiring.

Our work proposes a different possibility how engrams could be created. This new per-

spective could be instrumental for better understanding the process of memory

formation.

Introduction

Memories are thought to be stored in the brain using cell assemblies that emerge through coor-

dinated synaptic plasticity [1]. Cell assemblies with strong enough recurrent connections lead

to bistable firing rates, which allows a network to encode memories as dynamic attractor states

[2, 3]. If strong excitatory recurrent connections are counteracted by inhibitory plasticity,

“silent” memories are formed [4–6]. In principle, assemblies can be generated by strengthen-

ing already existing synapses [2, 3], but potentially also by increasing connectivity among neu-

rons. It has been shown that attractor networks can emerge through the creation of such

neuronal clusters [7].

The creation of clusters through changes in connectivity between cells would require synap-

tic rewiring, or structural plasticity. Structural plasticity has been frequently reported in differ-

ent areas of the brain, and sprouting and pruning of synaptic contacts was found to be often

activity-dependent [8–10]. Sustained turnover of synapses, however, poses a severe challenge

to the idea of memories being stored in synaptic connections [11]. Interestingly, recent theo-

retical work has shown that stable assemblies can be maintained despite ongoing synaptic

rewiring [12, 13].

The formation of neuronal assemblies, or clusters, is traditionally attributed to Hebbian

plasticity, driven by the correlation between pre- and postsynaptic neuronal activity on a cer-

tain time scale. For a typical Hebbian rule, a positive correlation in activity causes an increase

in synaptic weight, which in turn increases the correlation between neuronal firing. This posi-

tive feedback cycle can result in unbounded growth, runaway activity and an essential dynamic

instability of the network, if additional regulatory mechanisms are lacking. In fact, neuronal

networks of the brain appear to employ homeostatic control mechanisms that regulate neuro-

nal activity [14], and actively stabilize the firing rate of individual neurons at specific target lev-

els [15, 16]. However, even though homeostatic mechanisms have been reported in

experiments to operate on a range of different time scales, they seem to be too slow to trap the

instabilities caused by Hebbian learning rules [17]. All things considered, it remains to be elu-

cidated, what are the exact roles of Hebbian and homeostatic plasticity, and how these different

processes interact to form cell assemblies in a robust and stable way [18].

Concerning the interplay between Hebbian and homeostatic plasticity, we have recently

demonstrated by simulations that homeostatic structural plasticity alone can lead to the forma-

tion of assemblies of strongly interconnected neurons [19]. Moreover, we found that varying

the strength of the stimulation and the fraction of stimulated neurons in combination with

repetitive protocols can lead to even stronger assemblies [20]. In both papers, we used a struc-

tural plasticity model based on firing rate homeostasis, which had been used before to study

synaptic rewiring linked with neurogenesis [21, 22], and the role of structural plasticity after

focal stroke [23, 24] and after retinal lesion [25]. This model has also been used to study the

emergence of criticality in developing networks [26] and other topological aspects of plastic
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networks [27]. Similarly to models with inhibitory plasticity [4–6], the memories formed in

networks of this type represent a form of silent memory that is not in any obvious way

reflected by neuronal activity.

The long-standing discussion about memory engrams in the brain has been revived

recently. Researchers were able to identify and manipulate engrams [28], and to allocate mem-

ories to specific neurons during classical conditioning tasks [29]. These authors have also

emphasized that an engram is not yet a memory, but merely the physical substrate of a poten-

tial memory in the brain [28]. Similar to the idea of a memory trace, it should provide the nec-

essary conditions for a retrievable memory to emerge. Normally, the process of engram

formation is thought to involve the strengthening of already existing synaptic connections.

Here, we propose that new engrams could also be formed by a special form of synaptic cluster-

ing with increased synaptic connectivity among participating neurons, but the total number of

incoming and outgoing synapses remaining approximately constant.

To demonstrate the feasibility of the idea, we performed numerical simulations of a classical

conditioning task in a recurrent network with structural plasticity based on firing rate homeo-

stasis. We were able to show that the cell assemblies formed share all characteristics of a mem-

ory engram. We further explored the properties of the formed engrams and developed a

mean-field theory to explain the mechanisms of memory formation with homeostatic struc-

tural plasticity. We showed that these networks are able to effectively store repeatedly pre-

sented patterns. The formed engrams implement a special type of silent memory, which

normally exists in a quiescent state and can be successfully retrieved using incomplete cues.

Results

Formation of memory engrams by homeostatic structural plasticity

We simulated a classical conditioning paradigm using a recurrent network. The network was

composed of excitatory and inhibitory leaky integrate-and-fire neurons, and the excitatory-to-

excitatory connections were subject to structural plasticity regulated by firing rate homeostasis.

All neurons in the network received a constant background input in the form of independent

Poisson spike trains. Three different non-overlapping subsets of neurons were sampled ran-

domly from the network. The various stimuli considered here were conceived as increased

external input to one of the specific ensembles, or combinations thereof. As the stimuli were

arranged exactly as in behavioral experiments, we also adopted their terminology “uncondi-

tioned stimulus” (US) and “conditioned stimulus” (C1 and C2). The unconditioned response

(UR) was conceived as the activity of a single readout neuron, which received input from the

ensemble of excitatory neurons associated with the US (Fig 1A, top).

Fig 1B illustrates the protocol of the conditioning experiment simulated here. During a

baseline period, the engrams representing US, C1 and C2 were stimulated once, one after the

other. The stimulation consisted of increasing the rate of the background input by 40% for a

period of 2mathrms. In this phase, the activity of the US ensemble was high only upon direct

stimulation (Fig 1B, middle). The baseline period was followed by an encoding period, in

which the C1 engram was always stimulated together with the US engram, while the C2

engram was always stimulated in isolation. Simultaneous stimulation of neurons in a recurrent

network with homeostatic structural plasticity can lead to the formation of reinforced ensem-

bles [19], which are strengthened by repetitive stimulation [20]. This is also what happened

here: After the encoding period, each of the three neuronal ensembles had increased within-

ensemble connectivity, as compared to baseline. Memory traces, or engrams, were formed (Fig

1D). Moreover, the US and C1 engrams also had higher bidirectional across-ensemble connec-

tivity, representing an association between their corresponding memories.

PLOS COMPUTATIONAL BIOLOGY Homeostatic synaptic rewiring induces the formation of memory engrams

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009836 February 10, 2022 3 / 40

https://doi.org/10.1371/journal.pcbi.1009836


Between encoding and retrieval, memory traces remained in a dormant state. Due to the

homeostatic nature of network remodeling, the ongoing activity after encoding was very simi-

lar to the activity before encoding, but specific rewiring of input and output connections led to

the formation of structural engrams. It turns out that these “silent memories” are quite persis-

tent, as “forgetting” is much slower than “learning” them. In later sections, we will present a

detailed analysis of this phenomenon. Any silent memory can be retrieved with a cue. In our

case, this is a presentation of the conditioned stimulus. Stimulation of C1 alone, but not of C2

alone, triggered a conditioned response (Fig 1C) that was similar to the unconditioned

response. Inevitably, stimulation of C1 and C2 during recall briefly destabilized the corre-

sponding cell assemblies (seen as a drop in connectivity in Fig 1E), as homeostatic plasticity

was still ongoing. The corresponding engrams then went through a reconsolidation period,

during which the within-assembly connectivity grew even higher than before retrieval (Fig 1E,

red and green). As a consequence, stored memories got stronger with each recall. Interestingly,

as in our case the retrieval involved stimulation of either C1 or C2 alone, the connectivity

between the US and C1 engrams decreased a bit after the recall (Fig 1E, purple).

Memories and associations were formed by changes in synaptic wiring, triggered by neuro-

nal activity during the encoding period. They persisted in a dormant state and could be

Fig 1. Formation of memory engrams in a neuronal network with homeostatic structural plasticity. (A) In a classical conditioning scenario, an

unconditioned stimulus (US) was represented by a group of neurons that were connected to a readout neuron (yellow) via static synapses. The

readout neuron spiked whenever neuronal activity representing the US was above a certain threshold (top). During a conditioning protocol, two other

groups of neurons (CS1 and CS2) were chosen to represent two different conditioned stimuli (bottom). (B) During stimulation, the external input to a

specific group of neurons was increased. The color marks indicate when each specific group was being stimulated. During the “encoding” phase, CS1

was always stimulated together with US, and CS2 was always stimulated alone. The time axis matches that of panel C (top). (C) Firing rate (top) and

spike train (bottom) of the readout neuron. Before the paired stimulation (“baseline”), the readout neuron responded strongly only upon direct

stimulation of the neuronal ensemble corresponding to the US. After the paired stimulation (“retrieval”), however, a presentation of C1 alone

triggered a strong response of the readout neuron. This was not the case for a presentation of C2 alone. (D) Coarse grained connectivity matrix.

Neurons are divided into 10 groups of 100 neurons each, shown is the average connectivity within each group. After encoding, the connectivity

matrix indicates that engrams were formed, and we found enhanced connectivity within all three ensembles as a consequence of repeated stimulation.

Bidirectional inter-connectivity across different engrams, however, is only observed for the pair C1-US that experienced paired stimulation. (E)

Average connectivity as a function of time. The connectivity dynamics shows that engram identity was strengthened with each stimulus presentation,

and that engrams decayed during unspecific external stimulation.

https://doi.org/10.1371/journal.pcbi.1009836.g001
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reactivated by a retrieval cue that reflected the activity experienced during encoding. This set-

ting exactly characterizes a memory engram [28]. In the following sections, we will further

characterize the process of formation of a single engram. We will also explore the nature and

stability of the formed engram in more detail.

Engrams represent silent memories, not attractors

Learned engrams have a subtle influence on network activity. For a demonstration, we first

grew a network under the influence of homeostatic structural plasticity (see Section Grown

networks). All neurons received a baseline stimulation in the form of independent Poisson

spike trains. We then randomly selected an ensemble E1 of excitatory neurons and stimulated

it repeatedly. Each stimulation cycle was comprised of a period of 150s increased input to E1

and another 150 s relaxation period with no extra input. After 8 such stimulation cycles, the

within-engram connectivity had increased to �CE1E1
� 0:21. At this point, the ongoing activity

of the network exhibited no apparent difference to the activity before engram encoding (Fig

2A). Due to the homeostatic nature of structural plasticity, neurons fired on average at their

target rate, even though massive rewiring had led to higher within-engram connectivity. Look-

ing closer, however, revealed a conspicuous change in the second-order properties of neuronal

ensemble activity. We quantified this phenomenon using the overlap mμ. This quantity reflects

Fig 2. Silent memory based on structural engrams. (A–C) The ongoing activity of neurons belonging to the engram E1 can hardly be distinguished

from the activity of the rest of the network. (A) Raster plot showing the spontaneous activity of 50 neurons randomly selected from E1, 100 neurons

randomly selected from E2 but not belonging to E1, and 50 neurons randomly selected from the pool I of inhibitory neurons. (B) Overlap of ongoing

network activity with the learned engram E1 (mE1 , orange), and separately for 10 different random ensembles x disjoint with E1 (mx, purple). (C)

Cumulative distribution of mμ shown in (B). (D–F) The activity evoked upon stimulation of E1 is higher, if the within-engram connectivity is large

enough (�CE1E1
> 0:1) as a consequence of learning. (D) Same as A for evoked activity, the stimulation starts at t = 1 s. The neurons belonging to

engram E1 are stimulated before (top, �CE1E1
� 0:1) and after (bottom, �CE1E1

� 0:21) engram encoding. (E) Overlap with the learned engram (mE1 ,

orange) and with random ensembles (mx, purple) during specific stimulation of engram E1. (F) Population rate of all excitatory neurons during

stimulation of E1 before (black) and after (orange) engram encoding. (E, F) Solid line and shading depict mean and standard deviation across 10

independent simulation runs, respectively. In all panels, the bin size for calculating overlaps is 10 ms, and the bin size for calculating population rates

is 100 ms.

https://doi.org/10.1371/journal.pcbi.1009836.g002
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the similarity of the neuron-by-neuron activity in a given time bin with a specified pattern, for

example a pattern with all stimulated neurons being active and the remaining ones being silent

(see Section Overlap measure for a more detailed explanation of the concept). Fig 2B depicts

the time-dependent (bin by bin) overlap of ongoing network activity with the engram E1 (mE1 ,

see Table 1 for a complete list of symbols). It also shows the overlap with 10 different random

ensembles x (mx), which are of the same size as E1 but have no neurons in common with it.

The variance of mE1 is slightly larger than that of mx (Fig 2C). This indicates that the increased

connectivity also increased the tendency of neurons belonging to the same learned engram to

synchronize their activity, in comparison to other pairs of neurons. An increase in pairwise

correlations within the engram, however, leads to increased fluctuations of the population

activity [30], which also affects population measures such as the overlap used here.

During specific stimulation, the differences between the evoked activity of learned engrams

and random ensembles were more pronounced. Fig 2D shows raster plots of network activity

during stimulation of E1 before and after the engram was encoded. The high recurrent connec-

tivity within the E1 assembly after encoding amplified the effect of stimulation, leading to

much higher firing rates of E1 neurons. This effect could even be seen in the population activity

of all excitatory neurons in the network (Fig 2F). During stimulation, the increase in firing rate

of engram neurons was accompanied by a suppression of activity of all other excitatory neu-

rons not belonging to the engram. This was what underlied the conspicuous decrease in the

overlap mx with random ensembles x during stimulation (Fig 2E).

How does the evoked response of an engram depend on the connectivity within? To answer

this question, we looked into evoked activity at different points in time during stimulation.

The within-engram connectivity increased with every stimulation cycle (Fig 3A), and so did

the population activity of excitatory neurons during stimulation (Fig 3B). The in-degree of

excitatory neurons, in contrast, was kept at a fixed level by the homeostatic controller, even

after engram encoding (Fig 4C). This behavior was well captured by a simple mean-field firing

Table 1. List of symbols.

Symbol Description

ϕ(t) Calcium trace

τCa Calcium time constant

S(t) Spike train

r(t) Instantaneous firing rate

ν Target rate

a(t) Number of axonal elements

d(t) Number of dendritic elements

βd Dendritic growth parameter

βa Axonal growth parameter

Cij(t) Number of synaptic connections from neuron j (presynaptic) to neuron i (postsynaptic)

�CijðtÞ Expected value of number of synaptic connections Cij(t)

E Excitatory neurons

E1 Stimulated excitatory neurons

E2 Non-stimulated excitatory neurons

I Inhibitory neurons

τdrift Effective time constant of encoding

τdiffusion Effective time constant of forgetting

mx(t) Overlap of network activity with pattern x
τrate Relaxation time of rate dynamics

https://doi.org/10.1371/journal.pcbi.1009836.t001
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rate model (grey line in Fig 3B), in which the within-engram connectivity was varied and all

the remaining excitatory connections were adjusted to maintain a fixed in-degree of excitatory

neurons.

We were interested to know whether engrams performed pattern completion, and how this

feature depended on the connectivity within. Following the formation of the engram E1

through 8 stimulation cycles (Fig 3A), we tested pattern completion by stimulating only 50%

of the neurons in E1 (E1S), while the remaining neurons in E1 (E1N) were not directly stimu-

lated. Fig 3C shows that, as expected, stimulation led to an increase in the activity of the

directly stimulated neurons (E1S, orange). It also shows, however, a very similar increase of the

activity of the remaining non-stimulated neurons (E1N, grey), indicating pattern completion.

In order to quantitatively assess pattern completion at different levels of the connectivity

within, we measured how the overlap of network activity within the engram, mE1 , depended

on partial stimulation. For an unstructured random network, mE1 increased at a certain rate

with the fraction of stimulated neurons (Fig 3C, black line). We speak of “pattern completion”,

Fig 3. Evoked activity depended on the strength of a memory. (A) Starting from a random network grown under the influence of unstructured

stimulation (black dot), we repeatedly stimulated the same ensemble of excitatory neurons E1 to eventually form an engram. Multiple stimulation cycles

increased the recurrent connectivity within the engram. (B) Population activity of all excitatory neurons upon stimulation of E1, for different levels of

engram connectivity �CE1E1
. Crosses depict the population rate observed in a simulation. Colors indicate engram connectivity �CE1E1

, matching the colors

used in panels (A) and (D). The grey line outlines the expectation from a simple mean-field theory. (C) Firing rate of E1 engram neurons upon

stimulation of 50% its neurons. Shown is the mean firing rate of the stimulated engram neurons (E1S, orange), the mean firing rate of the non-stimulated

engram neurons (E1N, grey), and the mean firing rate of excitatory neurons not belonging to the engram (E2, blue). Solid line and shading depict mean

and standard deviation for 10 independent simulation runs, respectively. (D) Time-averaged overlap hmE1 i, for different fractions of E1 being stimulated.

The recurrent nature of memory engrams enabled them to perform pattern completion. The degree of pattern completion depended monotonically on

engram strength. (E) Two engrams (orange and green) were encoded in a network. Both engrams had a different strength with regard to their within-

engram connectivity (green stronger than orange). A simple readout neuron received input from a random sample comprising 9% of all excitatory and

9% of all inhibitory neurons in the network. (F) Raster plot for the activity of 10 different readout neurons during the stimulation of learned engrams and

random ensembles, respectively. Readout neurons were active when an encoded engram was stimulated (orange and green), and they generally

responded with higher firing rates for stronger engrams (green). The activity of a readout neuron was low in absence of a stimulus (white), or upon

stimulation of a random ensemble of neurons (purple and blue).

https://doi.org/10.1371/journal.pcbi.1009836.g003
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if mE1 was systematically larger than in an unstructured random network. Fig 3C demonstrates

clearly that the degree of pattern completion associated with a specific engram increased

monotonically with the within-engram connectivity.

The evoked activity in learned engrams and in random ensembles of the same size is differ-

ent. This feature can be taken as a marker for the existence of a stored memory. To demonstrate

the potential of this idea, we employed a simple readout neuron for this task (Fig 3D). This neu-

ron had the same properties as any other neuron in the network, and it received input from a

random sample comprising a certain fraction (here 9%) of all excitatory and the same fraction

of all inhibitory neurons in the network. We encoded two engrams in the same network, one

being slightly stronger (�CE1E1
� 0:19, green) than the other one (�CE2E2

� 0:18, orange). We

recorded the firing of the readout neuron during spontaneous activity, during specific stimula-

tion of the engrams, and during stimulation of random ensembles of the same size. Fig 3E

shows a raster plot of the activity of 10 different readout neurons, each of them sampling a dif-

ferent random subset of the network. With the parameters chosen here, the activity of a readout

neuron was generally very low, except when a learned memory engram was stimulated. Due to

the gradual increase in population activity with memory strength (Fig 3B), readout neurons

responded with higher rates upon the stimulation of stronger engrams (green).

Homeostatic structural plasticity enables memories based on neuronal ensembles with

increased within-ensemble connectivity, or engrams. Memories are acquired quickly and can

persist for a long time. Moreover, the specific network configuration considered here admits a

gradual response to the stimulation of an engram reflecting the strength of the memory. As we

will show later, the engram connectivity lies on a line attractor, which turns into a slow mani-

fold if fluctuations are taken into consideration. This configuration allows the network to

simultaneously learn to recognize a stimulus (“Does the current stimulation correspond to a

known memory?”) and to assess its confidence of the recognition (“How strong is the memory

trace of this pattern?”). Such behavior would be absolutely impossible in a system that relies on

bistable firing rates (attractors) to define engrams. Details of our analysis will be explained

later in Section Fluctuation-driven decay of engrams.

The mechanism of engram formation

We have shown how homeostatic structural plasticity created and maintained memory

engrams, and we have then further elucidated the mechanisms underlying this process. We

considered a minimal stimulation protocol [19] to study the encoding process for a single

engram E1. We performed numerical simulations and developed a dynamical network theory

to explain the emergence of associative (Hebbian) properties. In Fig 4, the results of numerical

simulations are plotted together with the results of our theoretical analysis (see Section Mean-

field approximation of population dynamics). Upon stimulation, the firing rate followed the

typical homeostatic dynamics [31]. In the initial phase, the network stabilized at the target rate

(Fig 4A). Upon external stimulation, it transiently responded with a higher firing rate. With a

certain delay, the rate was down-regulated to the set-point. When the stimulus was turned off,

the network transiently responded with a lower firing rate, which was eventually up-regulated

to the set-point again.

Firing rate homeostasis relied on the intracellular calcium concentration ϕi(t) of each neu-

ron i (Fig 4D), which can be considered as a proxy for its firing rate. In our simulations, it was

obtained as a low-pass filtered version of the spike train Si(t) of the neuron

tCa
_�iðtÞ ¼ ��iðtÞ þ SiðtÞ; ð1Þ

with time constant τCa. Each excitatory neuron i used its own calcium trace ϕi(t) to control its
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number of synaptic elements. Deviations of the instantaneous firing rate (calcium concentra-

tion) ϕi(t) from the target rate νi triggered either creation or deletion of elements according to

bd
_diðtÞ ¼ ni � �iðtÞ; ba _aiðtÞ ¼ ni � �iðtÞ; ð2Þ

where ai(t) and di(t) are the number of axonal and dendritic elements, respectively. The

parameters βa and βd are the associated growth parameters (see Section Plasticity model for

Fig 4. Hebbian properties emerge through the interaction of selective input and homeostatic control. (A) The activity of the neuronal network was

subject to homeostatic control. For increased external input, it transiently responded with a higher firing rate. With a certain delay, the rate was down-

regulated to the imposed set-point. When the stimulus was turned off, the network transiently responded with a lower firing rate, which was eventually

up-regulated to the set-point again. The activity was generally characterized by irregular and asynchronous spike trains. (B) It was assumed that the

intracellular calcium concentration followed the spiking dynamics, according to a first-order low-pass characteristic. Dots correspond to numerical

simulations of the system, and solid lines reflect theoretical predictions from a mean-field model of dynamic network remodeling. (C) Dendritic elements

(building blocks of synapses) were generated until an in-degree of Kin = 1000 was reached. This number slightly decreased during specific stimulation, but

then recovered after the stimulus was removed. (D) Synaptic connectivity closely followed the dynamics of dendritic elements until the recovery phase,

when the recurrent connectivity within the stimulated group E1 overshooted. (A–D) Black vertical lines indicate beginning and end of the stimulation. (E,

F) Phase space representation of the activity. The purple lines are projections of the full, high-dimensional dynamics to different two-dimensional

subspaces: (E) within-engram connectivity vs. across-ensemble connectivity and (F) within-engram connectivity vs. engram calcium trace. The dynamic

flow was represented by the gray arrows. The steady state of the plastic network was characterized by a line attractor (thick gray line), defined by a fixed

total in-degree and out-degree. The ensemble of stimulated neurons formed a stable engram, and the strength of the engram was encoded by its position

on the line attractor. (G) The effective “instantaneous” learning rule for the expected connectivity between a pair of neurons is homeostatic in nature. It

could also be viewed as an “inverse covariance rule” with baseline at the set-point of the homeostatic controller. The emerging Hebbian properties results

from the more long-term combinatorial properties of rewiring across the whole network.

https://doi.org/10.1371/journal.pcbi.1009836.g004
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more details). These equations are describing homeostatic control in our model. When activity

is larger than the set-point, excitatory synapses are deleted. This tends to reduce activity.

When activity is lower than the set-point, synaptic elements are created and new excitatory

synapses are formed. This tends to increase activity. The number of elements are represented

by continuous variables. A floor operation bxc is used to create the integers required for

simulations.

During the initial growth phase, the number of elements increased to values corresponding

to an in-degree Kin = �N, which was the number of excitatory inputs to the neuron that are

necessary to sustain firing at the target rate (Fig 4D). Upon stimulation (during the learning

phase), the number of connections was down-regulated due to the transiently increased firing

rate of neurons. After the stimulus was turned off, the activity returned to its set-point. During

the growing and learning phases, connectivity closely followed the dynamics of synaptic ele-

ments (Fig 4D), and connectivity was proportional to the number of available synaptic ele-

ments (Fig 4D). After removal of the stimulus, however, in the reconsolidation phase, the

recurrent connectivity within the stimulated group E1 was found to overshoot (Fig 4D). Then

the average connectivity in the network returned to baseline (Fig 4C). While recurrent connec-

tivity �CE1E1
of the engram E1 increased, both the connectivity to the rest of network �CE2E1

and

from rest of the network �CE1E2
decreased, keeping the mean input to all neurons fixed. This

indicates that although the network was globally subject to homeostatic control, local changes

effectively exhibit associative features, as already pointed out in [19]. Our theoretical predic-

tions generally match the simulations very well (Fig 4), with the exception that it predicted a

larger overshoot. This discrepancy will be resolved in Section Fluctuation-driven decay of

engrams.

Deriving a theoretical framework of network remodeling (see Section Mathematical re-for-

mulation of the algorithm) for the algorithm suggested by [25] posed a great challenge due to

the large number of variables of both continuous (firing rates, calcium trace) and discrete

(spike times, number of elements, connectivity, rewiring step) nature. The dimensionality of

the system was effectively reduced by using a mean-field approach, which conveniently aggre-

gated discrete counting variables into continuous averages (see Section Time-continuous limit

and Section Mean-field approximation of population dynamics for more details of derivation).

Synaptic elements are accounted for by the number of free axonal a+(t) and free dendritic

d+(t) elements, while the number of deleted elements is denoted by a−(t) and d−(t), respec-

tively. Free axonal elements are paired with free dendritic elements in a completely random

fashion to form synapses. The deletion of dendritic or axonal elements in neuron i automati-

cally induces the deletion of incoming or outgoing synapses of that neuron, respectively. We

employed a stochastic differential equation (Section Time-continuous limit) to describe the

time evolution of connectivity �CijðtÞ from neuron j to neuron i

dCijðtÞ
dt

¼
r0di
þðtÞr0aj

þðtÞ
rðtÞ

� CijðtÞ
rd
�
i ðtÞ

Kin
i ðtÞ

þ
ra
�
j ðtÞ

Kout
j ðtÞ

 !

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
deterministic drift

þ
dWspike noise

dt
þ
dWstructural noise

dt|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
stochastic noise

:

ð3Þ

In this equation, r�aiðtÞ, r
�
di
ðtÞ is the rate of creation/deletion of the axonal and dendritic ele-

ments of neuron i, respectively, and ρ(t) is the rate of creation of elements in the whole net-

work. Note that ρ0+ is a corrected version of ρ+ (see Section Time-continuous limit for details).
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The stochastic process described by Eq 3 decomposes into a deterministic drift process and a

diffusive noise process. The noise process has two sources. The first source derives from the

stochastic nature of the spike trains, and the second source is linked with the stochastic nature

of axon-dendrite bonding. In this section, we ignore the noise and discuss only the determin-

istic part of the equation. This is equivalent to reducing the spiking dynamics to a firing rate

model and, at the same time, treat connectivity in terms of its expectation values.

Stable steady-state solutions of the system described by Eq 3 represent a hyperplane in the

space of connectivity (see Eq 17 in Section Line attractor of the deterministic system). These

steady-state solutions are (random) network configurations with a fixed in-degree K in
i and

out-degree Kout
i such that C�i;j / K in

i K
out
j . We will show that these states are attractive in Section

Network stability and constraints on growth parameters and Section Linear stability analysis.

The hyperplane solution in our mean-field approach also generalizes to population variables

(Section Mean-field approximation of population dynamics and Section Line attractor of the

deterministic system). In the case of only one engram stored in the network, there is the stimu-

lated population and the “rest” of the network. In this case, the hyperplane from Eq 17 reduces

to a line attractor of Eq 16 (Fig 4E and 4F, gray line). Memories are stored in the network in

the following way: When a group of neurons is stimulated, the network diverges from the line

attractor and takes a different path back during reconsolidation. The new position on the line

encodes the strength of the memory. Stronger memories increase their connectivity within

�CE1E1
at expense of other connections. Furthermore, as the attractor is a skewed hyperplane in

the space of connectivity, the memory is distributed across the whole neural network, and not

only in recurrent connections among stimulated neurons in E1. As a reflection of this, other

connectivity parameters (�CE2E2
, �CE1E2

, �CE2E1
, cf. Fig 4D) are also slightly changed.

To understand why changes in recurrent connectivity �CE1E1
are associative, we note that the

creation part of Eq 3 is actually a product rþaiðtÞ and rþdiðtÞ, similar to a pre-post pair in a typical

Hebbian rule. The main difference to a classical Hebbian rule is that only neurons firing below

their target rate are creating new synapses. The effective rule is depicted in Fig 4G. Only neu-

rons with free axonal or dendritic elements, respectively, can form new synapses, and those

neurons are mostly the ones with low firing rates. The deletion part of Eq 3 depends linearly

on r�aiðtÞ and r�diðtÞ, reducing to a simple multiplicative homeostasis. Upon excitatory stimula-

tion, the homeostatic part is dominant and the number of synaptic elements decreases. Once

the stimulus is terminated, the Hebbian part takes over, inducing a post-stimulation overshoot

in connectivity. This leads to a peculiar bimodal dynamics of first decreasing connectivity and

then overshooting, an important signature of this rule. We summarize this process in an effec-

tive rule

Dcij / l DIiDIj
|fflffl{zfflffl}

effective Hebbian

� ga cijðtÞDIi
|fflfflfflffl{zfflfflfflffl}

dendritic homeostasis

� gd cijðtÞDIj;
|fflfflfflffl{zfflfflfflffl}

axonal homeostasis
ð4Þ

where ΔIi is the input perturbation of neuron i. The term ΔIiΔIj is explicitly Hebbian with

regard to input perturbations. Eq 4 only holds, however, if the stimulus is presented for a long

enough time such that the calcium concentration tracks the change in activity and connectivity

drops.

Fluctuation-driven decay of engrams

The qualitative aspects of memory formation have been explored in Section The mechanism of

engram formation. Now we investigated the process of memory maintenance. A noticeable

discrepancy between theory and numerical simulations was pointed out in Fig 4D. The
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overshoot is exaggerated and memories last forever. We found that this discrepancy was

resolved when we take the spiking nature of neurons into account (Section Spiking noise).

Neurons use discrete spike trains SiðtÞ ¼
P

k dðt � t
i
kÞ for signaling, and we conceived

them here as stochastic point processes. We found that Gamma processes (Section Spiking

noise) could reproduce the first two moments of the spike train statistics of the simulated net-

works with sufficient precision. The homeostatic controller in our model uses the trace of the

calcium concentration ϕi(t) as a proxy for the actual firing rate of the neuron. As the calcium

trace ϕi(t) is just a filtered version of the stochastic spike train Si(t), it is a stochastic process in

its own respect. In Fig 5A we showed the stationary distribution of the time-dependent cal-

cium concentration ϕi(t). Apparently, a filtered Gamma process (purple line) provided a better

fit to the simulated data than a filtered Poisson process (red line). The reason is that Gamma

processes have an extra degree of freedom to match the irregularity of spike trains (coefficient

of variation, here CV� 0.7) as compared to Poisson processes (always CV = 1).

The homeostatic controller (Eq 2) strived to stabilize ϕi(t) at a fixed target value ν, but ϕi(t)
fluctuates (Fig 5A) due to the random nature of the spiking. These fluctuations resulted in

some degree of random creation and deletion of connections. Our theory (Section Spiking

noise) reflected this aspect by an effective rule (Eq 12), which was obtained by averaging Eq 3

Fig 5. Noisy spiking induces fluctuations that lead to memory decay. (A) The gray histogram shows the distribution of calcium levels for a single neuron across 5000

s of simulation. The yellow lines resulted from modeling the spike train as a Poisson process (dotted line) or a Gamma process (solid line), respectively. (B) The rate of

creation or deletion of synaptic elements depends on the difference between the actual firing rate from the target rate (set-point), for different levels of spiking noise.

The negative gain (slope) of the homeostatic controller in presence of noise is transformed into two separate processes of creation and deletion of synaptic elements. In

the presence of noise (grey lines, lighter colors correspond to stronger noise), even when the firing rate is on target, residual fluctuations of the calcium signal induced a

continuous rewiring of the network, corresponding to a diffusion process. (C) If noisy spiking and the associated diffusion was included in the model, our mean-field

theory matched the simulation results very well. This concerns the initial decay, the overshoot and subsequent slow decay. Vertical lines indicate the beginning and the

end of the stimulation. (D) Change in connectivity during the decay period, for different values of the calcium time constant (different shades of red, from light to dark

τCa = 1, 2, 4, 8, 16, 32 s, ρ = 8 Hz) and the target rate (different shades of purple, from light to dark ρ = 2, 4, 8, 16, 32 Hz, τCa = 10 s). We generally observed exponential

relaxation as a consequence of a constant rewiring rate. (E) Time constant of the diffusive decay as a function of the calcium time constant and the target rate. Lines

show our predictions from theory, and dots represent the values extracted from numerical simulations of plastic networks. The decay time τdecay increases with
ffiffiffiffiffiffi
tCa
p

.

The memory was generally more stable for small target rates ν, but collapsed for very small rates. This indicates an optimum for low firing rates, at about 3 Hz. (F, G)

Same phase diagrams as shown in Fig 4E and 4F, but taking noise into consideration. (F) The spiking noise compromises the stability of the line attractor, which turns

into a slow manifold. (G) The relaxation to the high-entropy connectivity configuration during the decay phase is indeed confined to a constant firing rate manifold.

https://doi.org/10.1371/journal.pcbi.1009836.g005
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over the spiking noise (Fig 5B, red lines). The shape of this function indicates that connections

were randomly created and deleted even when neurons were firing at their target rate. The

larger the amplitude of the noise, the larger is the asymptotic variance of the process and the

amount of spontaneous rewiring taking place.

We now extended our mean-field model of the rewiring process (see Section The mecha-

nism of engram formation) to account for the spiking noise (see Section Spiking noise).

According to the enhanced model, both the overshoot and the decay now matched very well

with numerical simulations of plastic networks (Fig 5C). The decay of connectivity following

its overshoot was exponential (Fig Fluctuation-driven decay of engramsD), and Eq 3 revealed

that the homeostasis was multiplicative and that the decay rate should be constant. The expo-

nential nature of the decay is best understood by inspecting the phase space (Fig 5F and 5G).

In terms of connectivity, the learning process was qualitatively the same as in the noise-less

case (Fig 4E), where a small perturbation led to a fast relaxation to the line attractor (see Eq 16

in Section Line attractor of the deterministic system). In the presence of spiking noise (Fig 5F),

however, the line attractor was deformed into a slow stochastic manifold (see Eq 18 in Section

Slow manifold and diffusion to the global fixed point). The process of memory decay corre-

sponded to a very slow movement toward the most entropic stable configuration compatible

with firing rates clamped at their target value (Fig 5G). In our case, this led to a constraint on

the in-degree Kin = �NE, where � is the mean equilibrium connectivity of excitatory neurons

and NE is the number of excitatory neurons. In equilibrium, the connectivity matrix relaxed to

a uniform connection probability PL½C�ij� ¼ �. The realized connections, however, were con-

stantly fluctuating. In every moment, the network had a configuration as for the Erdős-Rényi

model. We refer to this state as “the” most entropic configuration. It will only change as a

result of external stimulation. We summarize the memory decay process by the equation

PL½C�ij� �!
tdiffusion const:� Kin

i K
out
j ¼

Kin

NE
;

PL½C�ij�  �
tdrift C�ij þ Stimulus:

ð5Þ

The fast “drift” process of relaxation back toward the slow manifold corresponds to the deter-

ministic part of Eq 3. In contrast, the slow “diffusion” process of memory decay along the slow

manifold corresponds to the stochastic part of Eq 3. In the equation above, τdrift represents the

time scale of the fast drift process, and τdiffusion is the time scale of the slow diffusion process.

The drift process is strongly non-linear, and its bandwidth is limited by the time constant

of the calcium filter τCa, but also by the growth parameters of the dendritic elements βd and

axonal elements βa. The diffusion process, on the other hand, is essentially constrained to the

slow manifold of constant in-degree and firing rate (Section Slow manifold and diffusion to

the global fixed point). Analytic calculations yield the relation

tdiffusion ¼

ffiffiffiffiffiffiffiffiffiffiffi
4ptCa
Z2n

r
NEc

1

bd
þ 1

ba

ð6Þ

whereNE is number of excitatory neurons, c is the average connectivity between excitatory neu-

rons, and η is a correction factor to account for the reduced irregularity of spike trains as com-

pared to a Poisson process. Both size and connectivity of the network increase the longevity of

stored memories. Assuming that neurons rewire at a constant speed, it takes more time to

rewire more elements. There is an interesting interference with the noise process, as memory

longevity depends on the time constant of calcium in proportion to
ffiffiffiffiffiffi
tCa
p

(Fig 5E). On the

other hand, the time scale of learning τdrift is limited by the low-pass characteristics of calcium,
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represented by τCa. Increasing τCa leads to more persistent memories, but it also makes the

learning slower. In the extreme case of τCa!1 the system is unresponsive and exhibits no

learning. As the calcium time constant, however, is finite, we don’t consider this possibility. We

also find that the longevity of memories depends as 1ffiffi
n
p on the target rate. Therefore, making the

target rate small enough should lead to very persistent memories. This path to very stable mem-

ories is not viable, though, because the average connectivity c implicitly changes with target

rate. In Fig 5E longevity of the memory is depicted as a function of the target rate with cor-

rected connectivity c = c(ν), and we find that for very small target rates memory longevity tends

to zero instead. This suggests that there is an optimal range of target rates centered at a few

spikes per second, fully consistent with experimental recordings from cortical neurons [32].

To summarize, the process of forming an engram (“learning”, see Section The mechanism

of engram formation) exploits the properties of a line attractor. Taking spiking noise into

account, the structure of the line attractor is deformed into a slow stochastic manifold. This

still allows learning, but introduces controlled “forgetting” as a new feature. Forgetting is not

necessarily an undesirable property of a memory system. In a dynamic environment, it might

be an advantage for the organism to forget non-persistent or unimportant aspects of it.

Homeostatic plasticity implements a mechanism of forgetting with an exponential time profile.

However, psychological forgetting curves are often found to follow a power law [33]. The pre-

sented model cannot account for this directly, and additional mechanisms (e.g., replay,

repeated stimulation, or alternative forms of plasticity) might be necessary to get this. Strong

memories are sustained for a longer period, but they will eventually also be forgotten. In the

framework of this model, the only way to keep memories forever is to repeat the correspond-

ing stimulus from time to time, as illustrated in Fig 1D. If we think of the frequency of occur-

rence as a measure of the relevance of a stimulus, this implies that irrelevant memories decay

but the relevant ones remain. Memories are stored in a way where the increase in connectivity

within the engram is accompanied by a decrease of connectivity with non-engram neurons.

This means that storage is linked with distributed changes in the connectivity matrix, instead

of being stored in specific and localized synaptic connections [11]. Forgetting is reflected by a

diffusion to the most entropic network configuration along the slow manifold. As a result, the

system performs continuous inference from a persistent stream of information about the envi-

ronment. Already stored memories are constantly refreshed in terms of a movement in direc-

tions away from the most entropic point of the slow manifold (novel memories define new

directions), while diffusion pushes the system back to the most entropic configuration.

Network stability and constraints on growth parameters

So far, we have described the process of forming and maintaining memory engrams based on

homeostatic structural plasticity. We have explained the mechanisms behind the striking asso-

ciative properties of the system. Now, we will explore the limits of stability of networks with

homeostatic structural plasticity and derive meaningful parameter regimes for a robust mem-

ory system. A homeostatic controller that operates on the basis of firing rates can be expected

to be very stable by construction. Indeed we find that, whenever parameters are assigned

meaningful values, the Jacobian J ¼ J ð�Þ obtained by linearization of the system around the

stable mean connectivity � has only eigenvalues λ with non-positive real parts Re[λ]� 0 (see

Section Linear stability analysis). As a demonstration, we consider the real part of the two

“most unstable” eigenvalues as a function of two relevant parameters, the dendritic/axonal

growth parameter βd and the calcium time constant τCa (Fig 6B, upper panel). The real part of

these eigenvalues remains negative for any meaningful choice of time constants. It should be

noted at this point, however, that the system under consideration is strongly non-linear, and
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linear stability alone does not guarantee global stability. We will discuss an interesting case of

non-linear instability in Section Loss of control leads to bursts of high activity. Oscillatory

transients represent another potential issue in general control systems, and we will now

explore the damped oscillatory phase of activity in more detail.

In Fig 6A we depict three typical cases of homeostatic growth responses: non-oscillatory

(left, green), weakly oscillatory (middle, blue), and strongly oscillatory (right, red) network

remodeling. The imaginary parts of the two eigenvalues shown in Fig 6B (bottom left), which

are actually responsible for the oscillations, become non-zero when the dendritic and axonal

growth parameters are too small (for other parameters, see Section The mechanism of engram

formation), and both creation and deletion of elements are too fast. Oscillations occur, on the

other hand, for large values of the calcium time constant τCa (Fig 6B, bottom right). The system

oscillates, if the low-pass filter is too slow as compared to the turnover of synaptic elements.

The combination of βd and τCa that leads to the onset of oscillations can be derived from the

condition Im[λ] = 0. We can further exploit the fact that two oscillatory eigenvalues are

Fig 6. Linear stability of a network with homeostatic structural plasticity. (A) For a wide parameter regime, the structural evolution of the network has a

single fixed point, which is also stable. Three typical types of homeostatic growth responses are depicted for this configuration: non-oscillatory (left), weakly

oscillatory (middle), and strongly oscillatory (right) network remodeling. (B) All eigenvalues of the linearized system have a negative real part, for all values of

the growth parameters of dendritic (axonal) elements βd and calcium τCa. In the case of fast synaptic elements (small βd) or slow calcium (large τCa), the system

exhibits oscillatory responses. Shown are real parts and imaginary parts of the two “most unstable” eigenvalues, for different values of βd (left column, τCa = 10

s) and τCa (right column, βd = 2). (C) Phase diagram of the linear response. The black region below the red line indicates non-oscillatory responses, which

corresponds to the configuration τCa� 3βd s. Dots indicate the parameter configurations shown in panel (A), with matching colors.

https://doi.org/10.1371/journal.pcbi.1009836.g006
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complex conjugates of each other, and that the imaginary part is zero, when the real part

bifurcates.

To elucidate the relative importance of the two parameters βd and τCa, we now explore how

they together contribute to the emergence of oscillations (Fig 6C). The effect of parameters on

oscillations is a combination of the two mechanisms discussed above: low-pass filtering and

agility of control. We use the bifurcation of the real part of the least stable eigenvalues as a cri-

terion for the emergence of Im[λ] = 0, which yields the boundary between the oscillatory and

the non-oscillatory region (Fig 6C, red line). The black region of the phase diagram corre-

sponds to a simple fixed point with no oscillations, the green point corresponds to the case

shown in Fig 6A, left. From Fig 6B, bottom, we conclude that the fastest oscillations are created

when βd is very small, as the oscillation frequency then exhibits a 1

bd
asymptotic dependence.

The calcium dependence is a slowly changing function. The specific case indicated by a red

point in Fig 6C corresponds to the dynamics shown in Fig 6A, right. Although intermediate

parameter values result in damped oscillations (Fig 6C, blue dot; Fig 6A, middle), its amplitude

remains relatively small. This link between two parameters can be used to predict a meaningful

range of values for βd. Experimentally reported values for τCa are combined with the heuristic

of not exhibiting strong oscillations.

The analysis outlined in the previous paragraph clearly suggests that, in order to avoid

excessive oscillations, the calcium signal (a proxy for neuronal activity) has to be faster than

the process which creates elements. Oscillations in network growth are completely suppressed,

if it is at least tree times faster. Strong oscillations can compromise non-linear stability, as we

will show in Section Loss of control leads to bursts of high activity. A combination of parame-

ters that leads to oscillations could also imply a loss of stability for certain stimuli, for reasons

explained later. We assume that the calcium time constant is in the range between 1 s and 10 s,

in line with the values reported for somatic calcium transients in experiments [34–37]. This

indicates that homeostatic structural plasticity should not use element growth parameters

smaller than around 0.4. Faster learning must be based on other types of synaptic plasticity

(e.g. spike-timing dependent plasticity, or fast synaptic scaling).

We use this analysis framework now to compute turnover rates (TOR) and compare them

to the values typically found in experiments. In Sections The mechanism of engram formation

and Fluctuation-driven decay of engrams we use a calcium time constant of 10 s and a growth

parameters for synaptic elements of βa = βd = 2, which results in TOR of around 18% per day

(see Methods). Interestingly, [38] measured TOR in the barrel cortex of young mice and found

TOR values of around 20% per day. After sensory deprivation, the TOR increased to a maxi-

mum of around 30% per day in the barrel cortex (but not elsewhere). In our model, stimulus-

dependent rewiring is strongest in the directly stimulated engram E1 (Fig 4C). This particular

ensemble rewires close to 25% of its dendritic elements per stimulation cycle. This very large

turnover is a result of our experimental design involving a very strong stimulus. In principle,

we could choose weaker stimuli, but then we would need many more encoding episodes, as

described in [20]. The main results of the paper, however, would remain the same.

Loss of control leads to bursts of high activity

A network the connectivity of which is subject to homeostatic regulation generally exhibits

robust linear stability around the fixed point of connectivity �, as explained in detail in Section

Network stability and constraints on growth parameters and Section Linear stability analysis.

But what happens, if the system is forced far away from its equilibrium? To illustrate the new

phenomena arising, we repeat the stimulation protocol described in Section The mechanism of

engram formation with one stimulated ensemble E1. However, we now increase both the
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strength and the duration of the stimulation (Fig 7A). The network behaves as before during

the growth and the stimulation phase (Fig 7A, upper panel), but during the reconsolidation

phase connectivity gets out of control. New recurrent synapses are formed at a very high rate

until excessive feedback of activity triggered by input from the non-stimulated ensemble causes

an explosion of firing rates (Fig 7A bottom panel). The homeostatic response of the network to

such seizure-like activity can only be a brisk decrease in recurrent connectivity. As a conse-

quence, the activity rE1
quickly drops to zero and the deregulated growth cycle starts all over.

We explore the mechanism underlying this runaway process by plotting the long-term

dynamics in a phase plane spanned by recurrent connectivity �CE1E1
and the activity of the

Fig 7. Non-linear stability of a network with homeostatic structural plasticity. (A) The engram E1 is stimulated with a very strong external input. As the

homeostatic response triggers excessive pruning of recurrent connections, the population E1 is completely silenced after the stimulus is turned off. This, in

turn, initiates a strong compensatory overshoot of connectivity and consecutive runaway population activity. The dots with corresponding color show the

results of a plastic network simulation, and the solid lines indicate the corresponding predictions from our theory. The theoretical instantaneous firing rate is

clipped at 100 Hz. (B) The network settles in a limit cycle of connectivity dynamics. The hysteresis-like behavior is caused by the faster growth of within-

engram connectivity �CE1E1
as compared to connectivity from the non-engram ensemble �CE1E2

. During the initial phase of the cycle, the increase of �CE1E1
has

no effect on the activity of population E1 yet, as its neurons are not active. Only when the input from population E2 through �CE1E2
gets large enough, the rate

rE1
becomes non-zero and rises to very high values quickly due to already large recurrent �CE1E1

connectivity. (C) The calcium signal ϕ adds an additional

delay to the cycle. (D) This leads to smoother trajectories when scattering calcium concentration against connectivity. (E) Connectivity within the stimulated

group �CE1E1
plotted against input connectivity from the non-engram population �CE1E2

. The black line shows configurations with constant in-degree, of

which the black dot represents the most entropic one. The red dot corresponds to critical connectivity, beyond which the limit cycle behavior is triggered.

The limit cycle transients in connectivity space are orthogonal to the line attractor, indicating that the total in-degree is oscillating and no homeostatic

equilibrium can be established.

https://doi.org/10.1371/journal.pcbi.1009836.g007
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engram rE1
(Fig 7B). A special type of limit cycle emerges, and we can track it using the input

connectivity from the rest of the network to the learned engram (�CE1E2
, see Fig 7B). The cycle

is started when the engram E1 is stimulated with a very strong external input. As the homeo-

static response of the network triggers excessive pruning of its recurrent connections, the

population E1 is completely silenced, rE1
¼ 0, after the stimulus has been turned off. Then,

homeostatic plasticity sets in and tries to compensate the activity below target by increasing

the recurrent excitatory input to the engram E1. The growth of intra-ensemble connectivity

�CE1E1
is faster than the changes in inter-ensemble connectivity �CE1E2

, as the growth rate of

�CE1E1
is quadratic in the rate rE1

(Fig 4G), but �CE1E2
depends only linearly on it. However,

while there are no recurrent spikes, rE1
¼ 0, the increase in intra-ensemble connectivity can-

not restore the activity to its target value. As soon as input from the rest of the network via

�CE1E2
is strong enough to increase the rate rE1

to non-zero values, engram neurons very

quickly increase their own rate by activating recurrent connectivity �CE1E1
. At this point, how-

ever, the network has entered a state in which the population activity is bistable, and there is

a transition to high activity state, coinciding with a pronounced outbreak of population

activity rE1
. The increase in rate is then immediately counteracted by the homeostatic con-

troller. Due to the seizure-like activity burst, a high amount of calcium is accumulated in all

participating cells. As a consequence, neurons delete many excitatory connections, and the

firing rates are driven back to zero. This hysteresis-like cycle of events is repeated over and

over again (Fig 7B), even if the stimulus has meanwhile been turned off. The period of the

limit cycle is strongly influenced by the calcium variable, which lags behind activity (Fig

7C). Replacing activity rE1
by recurrent connectivity �CE1E1

, a somewhat smoother picture

emerges (Fig 7D).

Two aspects are important for the emergence of the limit cycle. Firstly, the specific relation

between the time scales of calcium and synaptic elements gives rise to different types of insta-

bilities (see Figs 6, 7C and 7D). Secondly, the rates of creation and deletion of elements do not

have the same bounds. While the rate with which elements are created ρ+ is limited by 1

bd
n, the

rate of deletion ρ− is limited by 1

bd

1

tref
. This peculiar asymmetry causes the observed brisk

decrease in connectivity after an extreme seizure-like burst of activity. An appropriate choice

of the calcium time constant, in combination with a strict limit on the rate of deletion, might

lead to a system without the (pathological) limit cycle behavior observed in simulations.

Finally, we have derived a criterion for bursts of population activity to arise, related to the loss

of stability due to excessive recurrent connectivity (see Section Linear stability analysis, Eq 22).

Indeed, a network with fixed in-degrees becomes dynamically unstable, if the connectivity of

subpopulation E1 exceeds the critical value �Ccrit
E1E1
¼ � 1þ

NE2

NE1 jE

� �
, which for our parameters is

at about 29%. The neurons comprising the engram E1 receive too much recurrent input (Fig

7E), and the balance of excitation and inhibition brakes. In this configuration, only one attrac-

tive fixed point exists for high firing rates, and a population burst is inevitable. In simulations,

the stochastic nature of the system tends to elicit population bursts even earlier, at about 22%

connectivity in our hands. We conclude that 22–29% connectivity is a region of bi-stability,

with two attractive fixed points coexisting. Early during limit cycle development, the total in-

degree is less than �N (the connectivity is in the region below the black line in Fig 7E), and the

excitation-inhibition balance is broken by positive feedback. Later, the limit cycle settles into a

configuration, where the total in-degree exceeds �N (the black line is crossed from below in

Fig 4E). We have shown before that stable learning leads to silent memories in the network

(Section Formation of memory engrams by homeostatic structural plasticity and Engrams
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represent silent memories, not attractors), but in the case discussed here, sustained high activ-

ity is at odds with stable homeostatic control of network growth.

Discussion

We have demonstrated by numerical simulations and by mathematical analysis that structural

plasticity controlled by firing rate homeostasis can implement a memory system based on the

emergence and the decay of engrams. Input patterns are defined by a stimulation of the corre-

sponding ensemble of neurons in a recurrent network. Presenting two patterns concurrently

leads to their association by newly formed synaptic connections between the involved neurons.

This mechanism can be used, among other things, to effectively implement classical condition-

ing. The memories are stored in network connectivity in a distributed fashion, defined by the

engram as a whole and not by isolated individual connections. The memories are dynamic.

They decay if previously learned stimuli are no longer presented, but they get stronger with

every single recall. The memory is not affecting the firing rates during spontaneous activity,

but even weak memory traces can be identified by the correlation of activity. Memories

become visible as a firing rate increase of a specific pattern upon external stimulation, though.

The embedding network is able to perform pattern completion, if a partial cue is presented.

Finally, we have devised a simple recognition memory mechanism, in which downstream neu-

rons respond with a higher firing rate, if any of the previously learned patterns is stimulated.

Memory engrams emerge because the homeostatic rule acts as an effective Hebbian rule

with associative properties. This unexpected behavior is achieved by an interaction between

the temporal dynamics of homeostatic control and a network-wide distributed formation of

synapses. Memory formation is a fast process, exploiting degrees of freedom orthogonal to a

line attractor while it reacts to the stimulus, and storing memories as positions on the line

attractor. The spiking of neurons introduces fluctuations, which lead to the decay of memory

on a slow time scale through diffusion along the line attractor. In absence of specific stimula-

tion, the network slowly relaxes to the most entropic configuration of uniform connectivity

across all pairs of neurons. In contrast, multiple repetitions of a stimulus push the system to

states of lower entropy, corresponding to stronger memories. The dynamics of homeostatic

networks is, by construction, very robust for a wide parameter range. Instabilities occur when

the time scales of creating and deleting synaptic elements are much smaller than the time scales

of the calcium trace, which feeds the homeostatic controller. Under these conditions, the net-

work displays oscillations of fast decaying amplitudes, but it remains linearly stable. Stability is

lost, though, when the stimulus is too strong. In this case, the compensatory forces lead to a

limit cycle dynamics with pathologically large amplitudes.

Experiments involving engram manipulation have increased our current knowledge about

this type of memory [28], and some recent findings are actually in accordance with our model.

For example, memory re-consolidation was disrupted if a protein synthesis inhibitor was

administered immediately after the retrieval cue during an auditory fear conditioning experi-

ment [39]. In our model, engram connectivity initially decreases upon stimulation, and memo-

ries are shortly destabilized and consolidated again after every retrieval. Interfering with

plasticity during or after retrieval could, therefore, also lead to active forgetting. Our model

also predicts a decreased connectivity following cue retrieval, which should be visible if the dis-

ruption is imposed at the right point in time. We are, however, not aware of any experiments

demonstrating this decreased connectivity. It is conceivable, therefore, that additional mecha-

nisms exist in biological networks that actively counteract such decay. Another example of

experiments that are in accordance to our model refers to excitability and engram allocation.

Recent experiments have shown that neurons are more likely to be allocated to an engram, if
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they are more excitable before stimulation [40, 41]. In our model, more excitable neurons

would fire more during stimulation, making them more likely to become part of an engram as

a result of the increased synaptic turnover. Moreover, our analysis of the model suggests that

decreasing excitability of some neurons soon after stimulation should also increase the likeli-

hood that they become part of the engram. Further research with our model of homeostatic

engram formation might include even more specific predictions for comparison with experi-

ments involving engram manipulation. This would also help to better characterize and under-

stand the process of engram formation in the brain.

The exact rules governing the sprouting and pruning of spines and boutons, and how these

depend on neuronal activity, are unknown. While some studies show a constant turnover of

spines, but fixed spine density [42], [38], other studies report either an increased spine density

after stimulation in LTP protocols [43], [44], [45], or a loss of spines after persistent depolari-

zation [46], [47], see [48] for a review on activity dependent structural plasticity. These differ-

ent results might seem contradictory at first, but our model suggests that they could all be

related. This is because the specific connectivity within the stimulated population undergoes a

bimodal change over time (Fig 4D), and whether one encounters an increase or a decrease in

spine density would depend on when the measurements were performed. More specifically,

our model predicts that the overall spine density remains unchanged before and after stimula-

tion (Fig 4C), notwithstanding a small temporary decrease during stimulation. Most impor-

tantly, however, our model emphasizes a reallocation of synapses, resulting in higher

connectivity between stimulated neurons and reduced connectivity to non-stimulated neu-

rons. This means that the overall number of spines is the same before and after stimulation

(same number of dendritic elements before and after stimulation on Fig 4). However, the

number of spines connecting to other stimulated neurons is higher after stimulation (green

line on Fig 4D) and the number of spines connecting to non-stimulated neurons is smaller

(grey lines on Fig 4D). Demonstrating such specific effects experimentally would require to

establish for each synapse separately, whether the presynaptic and the postsynaptic neuron

was stimulated, or not. To our knowledge, there is currently no experimental study available

reporting such labeled connectivity data. As the model is inherently stochastic, it is not neces-

sary that a synapse is deleted each time their presynaptic or postsynaptic neurons are stimu-

lated. Instead, random deletions between any pair of stimulated neurons might lead to a small

change in overall engram connectivity. Although small, these decrements in connectivity accu-

mulate over time, as a result of repetitive stimulation [20].

High turnover rates of synapses increase the volatility of network structure. This, in turn,

poses a grand challenge to any synaptic theory of memory [11], and it is not yet clear how

memories can at all persist in a system that is constantly rewiring [49]. In our model, the

desired relative stability of memories is achieved by storing them with the help of a slow mani-

fold mechanism. An estimation of turnover rates in our model amounts to about 18% per day,

which is comparable to the 20% per day that have been measured in mouse barrel cortex [38].

In general, however, adult mice have more persistent synapses with much lower turnover rates

as low as 4% per month [10, 50, 51]. This can be accounted for in our model, as increased

growth parameters of axonal, βa, and dendritic, βd, elements would lead to smaller synaptic

turnover rates and, consequently, to more persistent spines (see Methods). The downside of

increasing the growth parameters is that the learning process becomes slower. The turnover

rate of 18% per day corresponds to a specific value of the parameter βd. It is conceivable, how-

ever, to implement an age-dependent parameter βd. For example, one could have a high turn-

over rate in the beginning and let the growth become slower with time. This would reflect the

idea that the brains of younger animals are more plastic than the brains of older ones. As ani-

mals grow older, synapses become more persistent. Similar to certain machine learning
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strategies (“simulated annealing”), this could be the optimal strategy for an animal, which first

explores a given environment and then exploits the acquired adaptations to thrive in it.

Recently, [12] showed that Hebbian structural plasticity could be the force behind memory

consolidation through a process of stabilization of connectivity, which is based on the exis-

tence of an attractive fixed point in the plastic network structure. In our model, because of the

decay along the slow manifold, memories are never permanent, and repeated stimulation is

necessary to refresh them. We would argue, though, that forgetting is an important aspect of

any biological system. In our case, we observe an exponential decay, if the stimulus is no longer

presented. Furthermore, [25] has shown that a network can repair itself after lesion using a

structural plasticity model similar to the one used in our current paper. Together with our

results, this suggests that a structural perturbation of engrams (e.g. by removing connections

or deleting neurons) could actually trigger a “healing” process and eventually rescue the mem-

ory. In the case of unspecific lesions, however, such perturbation might also lead to the forma-

tion of “fake” memories, or to the false association of actually unconnected memory items.

It appears that the attractor metaphor of persistent activity is not consistent with our model

of homeostatic plasticity. As explained in Section Loss of control leads to bursts of high activ-

ity, homeostatic control tends to delete connections between neurons which are persistently

active, and in extreme cases could even lead to pathological oscillations. In the case discussed

in Section Engrams represent silent memories, not attractors, in contrast, the memories

formed are “silent” (elsewhere classified as “transient” [52]), very different from the persistent

activity usually considered in working memory tasks (elsewhere classified as “persistent”, or

“dynamic” [52]). It was previously shown that silent memories can emerge in networks with

both excitatory and inhibitory plasticity [4–6]. In all these cases, inhibitory plasticity allows the

memory to be silent, but memory formation still relies on explicit Hebbian plasticity rules of

excitatory connections. Some authors [5, 6] apply STDP to the excitatory connections, and

others [4] just impose an increase in weight of excitatory-to-excitatory connections between

neurons forming the assembly. As we understand it, such an increase could be achieved by

Hebbian plasticity of excitatory connections. In contrast, our work shows that silent memories

could potentially also be formed without correlation-based Hebbian plasticity on excitatory

connections. Persistent activity, on the other hand, seems to be exclusively consistent with

Hebbian plasticity models [2, 3, 12]. One consequence of the lack of persistent activity in our

model is that pattern completion is restricted to the stimulation period. As previously seen, in

our model, stimulating partial patterns leads to the subsequent activation of the full pattern

(Fig 3C and 3D). Given that there is no persistent activity, however, the firing rates of all neu-

rons go back to their baseline values as soon as the stimulus is gone. In models with persistent

activity, on the other hand, a brief stimulation of partial patterns leads to activation of the full

pattern, which remains active even after the stimulus is removed.

One possible way to integrate both mechanisms in a single network would be to keep their

characteristic time scales separate. This could be accomplished, for example, by choosing faster

time constants for Hebbian functional plasticity, and slower ones for homeostatic structural

plasticity. An effective separation of time scales could also be obtained, if homeostatic struc-

tural plasticity would use somatic calcium as a signal, but not exert any control of the interme-

diate calcium levels in dendritic spines [53]. This might eliminate the need to specify a target

rate in the model, and fast functional plasticity would shape connectivity in the allowed range

of values where neurons have a distribution of firing rates reflecting previous experience. This

induces a natural separation of time scales, where memories encoded by homeostatic plasticity

would last much longer than in the present model, as only extreme transients would trigger

rewiring. Homeostatic plasticity would perform Bayesian-like inference similar to structure

learning, while functional plasticity would perform fast associative learning, similar to the
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system proposed by [54]. Integrating both functional and structural plasticity opens the possi-

bility that different information is represented by the number of synapses and by the synaptic

weights between pairs of neurons. This would allow for the encoding of more complex pat-

terns. If the mean connectivity among neurons establishes the engram, the synaptic weights

would offer additional degrees of freedom to encode information and to modulate the activity

of individual neurons within the engram in an independent way. Different plasticity rules

could thus be used to encode different temporal aspects of neuronal activity in either synaptic

weights or synaptic connectivity.

Synaptic plasticity also influences the joint activity dynamics of neurons, which can be

assessed with appropriate data analysis methods. Functional and effective connectivity, for

example, are inferred from measured neuronal activity [55], [56], [57]. One implication of our

results is that different activity dependent plasticity rules can lead to the same changes in func-

tional and effective connectivity. Specifically, changes in network connectivity triggered by

homeostatic plasticity also lead to changes in correlation. Therefore, these changes appear to

be driven by correlation, and a correlation detector for each synapse might be postulated to

implement it. This is, however, a wrong conclusion. The increased correlation and the Heb-

bian properties of the homeostatic model emerge as a network property due to availability of

free elements and random self-organization. It remains a challenge to devise experiments that

can differentiate between these fundamentally different possibilities.

We showed that very strong stimulation can damage the network by deleting too many syn-

apses in a short time. The compensatory processes, which normally guarantee stability, get out

of control and lead to seizure-like bursts of very high activity. This pathological behaviour of

the overstimulated system could contribute to the etiology of certain brain diseases, such as

epilepsy. The disruption of healthy stable activity is caused by a broken excitation-inhibition

balance due to the high activity of one subgroup (Fig 7A). This, in turn, leads to the emergence

of a runaway connectivity cycle (Fig 7E). Strategies for intervention in this case must take the

whole cycle into account, and not just the phase of extreme activity. Inhibiting neurons during

the high-activity phase, for example, could have an immediate effect, but it would not provide

a sustainable solution to the problem of runaway connectivity. Our results suggest, against

intuition maybe, that additional excitation of the highly active neurons could actually termi-

nate the vicious cycle quite efficiently. It is important to note, however, that our system has not

been designed as a model of epilepsy, and therefore does not reproduce all features of it [58].

In particular, seizure occurrence is stochastic in nature, but the limit cycle we describe here

implies periodic activity and a periodic dynamics of connectivity. Although increased mossy-

fibre connectivity among granule cells is known to be one of the structural changes related to

epilepsy [59], there is currently no evidence for cyclic changes of this recurrent connectivity.

Furthermore, the process of epileptogenesis in real brains is accompanied by other structural

changes, such as neuronal death and glia-related tissue reorganization. In any case, our results

shed light on a novel mechanism of pathological structural overcompensation and could

potentially instruct alternative approaches in future epilepsy research.

René Descartes already proposed a theory of memory, paraphrased in [11]: Putting needles

through a linen cloth would leave traces in the cloth that either stay open, or can more easily

be opened again. Richard Semon, who originally coined the term “engram” in his book [28,

60], proposes that an engram is a “permanent record” formed after a stimulus impacts an “irri-

table substance”. Putting these two ideas together, we can think of Descartes’ needles not to

penetrate an inanimate linen cloth, but a living brain, the irritable substance. In this case, we

should expect the formation not of permanent holes, but of scar tissue, which grows further by

repeating the procedure. Therefore, the memory of the system nothing else but a “scar” left by

sensory experience. We think that this is a good metaphor for the type of memories described
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in our paper, formed through homeostatically controlled structural plasticity. Interestingly,

this model was originally meant as a model for rewiring after lesion [25]. In our work, how-

ever, the “lesion” is imposed by stimulation, which induces phenomena similar to scar forma-

tion. The dynamics of this healing process is very universal, where resources from the whole

network are used to fix a local problem leading to a scar. A perturbation introduces heteroge-

neity in a previously homogeneous organic substrate.

Methods

Network model

The neuronal network consists of NE = 10000 excitatory and NI = 2500 inhibitory current-

based leaky integrate-and-fire (LIF) neurons. The sub-threshold dynamics of the membrane

potential Vi of neuron i obeys the differential equation

tm
dVi

dt
¼ �Vi þ tm

X

j

CijJijSjðt � DÞ þ RIiðtÞ: ð7Þ

The membrane time constant τm is the same for all neurons. The number of synaptic contacts

between a presynaptic neuron j and a postsynaptic neuron i is denoted by Cij (see Table 1 for a

complete list of symbols). The synaptic weights of individual contacts Jij is the peak amplitude

of the postsynaptic potential and depends only on the type of the presynaptic neuron. Excit-

atory connections have a strength of JE = J = 0.1 mV. Inhibitory connections are stronger by a

factor g = 8 such that JI = −gJ = −0.8 mV. A spike train SjðtÞ ¼
P

kdðt � t
k
j Þ consists of all

spikes produced by neuron j. The external input RIi(t) to a given neuron in the network is con-

ceived as a Poisson process of rate νext = 15 kHz and amplitude τmJ. The external input to dif-

ferent neurons is assumed to be independent. All synapses have a constant transmission delay

of D = 1.5 ms. When the membrane potential reaches the firing threshold Vth = 20 mV, the

neuron emits a spike that is transmitted to all postsynaptic neurons. Its membrane potential is

then reset to Vr = 10 mV and held there for a refractory period of tref = 2 ms.

The number of input synapses is fixed at 0.1NI for inhibitory-to-inhibitory and inhibitory-

to-excitatory connections, and at 0.1NE for excitatory-to-inhibitory synapses. Once synaptic

connections of these three types are established, they remain unchanged throughout the simu-

lation. In contrast, excitatory-to-excitatory connections are initially absent and grow only

under the control of a structural plasticity rule.

Plasticity model

Growth and decay of excitatory-to-excitatory (EE) connections follow a known model of

structural plasticity regulated by firing rate homeostasis [19, 25]. In this model, each neuron i
has a certain number of synaptic elements of two kinds available, axonal elements ai(t) and

dendritic elements di(t). These elements are bonded together to create functional synapses.

Synaptic elements that have not yet found a counterpart are called free elements, denoted by

aþi and dþj , respectively. If K in
i ¼

P
jCijðtÞ denotes the in-degree and Kout

i ¼
P

jCjiðtÞ the out-

degree of neuron i, the number of free elements in every moment is given by aþi ðtÞ ¼
½aiðtÞ � Kout

i ðtÞ�þ and dþi ðtÞ ¼ ½diðtÞ � K
in
i ðtÞ�þ, with [x]+ = max(x, 0).

Firing rate homeostasis is implemented by allowing each neuron to individually control the

number of its synaptic elements. We assume that each neuron i maintains a time-dependent

estimate of its own firing rate, using its intracellular calcium concentration ϕi(t) as a proxy.
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This variable reflects the spikes Si(t) the neuron has generated in the past, according to

tCa
_�iðtÞ ¼ ��iðtÞ þ SiðtÞ;

with a time constant of τCa = 10 s for all neurons. This implements a first-order low-pass fil-

ter. In this model, more weight is given to more recent spikes, following a decaying expo-

nential. The calcium trace ϕi(t) of individual neurons is used as a control signal for the

number of axonal elements ai(t) and dendritic elements di(t) according to the homeostatic

equations

bd
_biðtÞ ¼ ni � �iðtÞ ba _aiðtÞ ¼ ni � �iðtÞ;

where βd is the dendritic and βa is the axonal growth parameter. Both have a value of 2 in

our default setup. The parameter νi is called the target rate. Whenever the firing rate esti-

mate (in fact, the calcium concentration) is below the target rate, the neuron creates new

axonal and dendritic elements, from which new synapses can be formed. Whenever the esti-

mated firing rate is larger than the target rate, the neuron deletes some of its elements,

removing the synapses they form. The (negative) decrements a�i and d�i in the number of

synaptic elements, respectively, are in each moment given by a�i ðtÞ ¼ ½aiðtÞ � K
out
i ðtÞ�� and

d�i ðtÞ ¼ ½diðtÞ � K
in
i ðtÞ�� for [x]− = min(x, 0).

After time intervals of duration ΔTs, all negative elements are collected, and a�i of the exist-

ing outgoing connections of neuron i are randomly deleted. Similarly d�i connections are ran-

domly deleted. The deletion of bonded elements of one type frees their counterparts that were

previously connected to the deleted element. Then, all free dendritic |d+| and axonal elements |

a+| are collected and randomly combined into pairs, creating n = min(|a+|, |d+|) new synaptic

connections. This algorithm has originally been devised by [25], an efficient implementation

of it in NEST exists [61] and has been employed for all our simulations.

Mathematical re-formulation of the algorithm

The algorithm of homeostatically controlled structural plasticity can be expressed as a discrete-

time stochastic process. Rewiring takes place at regular intervals of duration ΔTs

Trewire ¼ ft0 ¼ 0; t1 ¼ DTs; t2 ¼ 2DTs; � � � ; tn ¼ nTDTsg:

Between any two rewiring events, for t 2 (tk, tk + ΔTs), the neuron just accumulates synaptic

elements

DCijðtÞ ¼ 0

aiðtÞ ¼
Z t

tk

1

ba
ðni � �ðt

0ÞÞ dt0

diðtÞ ¼
Z t

tk

1

bd
ðni � �iðt

0ÞÞ dt0

while the already established connectivity remains unchanged. At every rewiring step, the rear-

rangement of connectivity is completely random, driven by the probabilities P(Δ±Cij(tk) = c | a

(tk), d(tk), C(tk−1)) of creating or deleting c connections from neuron j to neuron i at time tk,
during a time step of duration ΔTs. This gives rise to a discrete-time stochastic process

CijðtkÞ ¼ Cijðtk�1Þ þ DþCijðtkÞ � Da�CijðtkÞ � Dd�CijðtkÞ;

for tk 2 Trewire. Here, we define Δ+Cij(tk) as the random variable representing the creation of
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synapses, while Δa−Cij(t) and Δd−Cij(t) are random variables describing the deletion of synapses

by removing their corresponding axonal and dendritic elements, respectively.

We first calculate the probability to create just one new connection

pþij ðtkÞ ¼ PðDþCijðtkÞ ¼ 1jaðtkÞ; dðtkÞ;Cðtk�1ÞÞ. We can express this as a process of selecting a

presynaptic partner j with probability Pðpresynaptic neuron ¼ jÞ ¼
aþj ðtkÞ

jaþðtkÞj
and then a postsyn-

aptic partner i with probability Pðpostsynaptic neuron ¼ iÞ ¼ dþi ðtkÞ
jdþðtkÞj

. We then connect the pair

with the product of both probabilities

pþij ðtkÞ ¼
dþi ðtkÞ
jdþðtkÞj|fflfflfflffl{zfflfflfflffl}

prob: of choosing a post neuron

�
aþj ðtkÞ
jaþðtkÞj|fflfflffl{zfflfflffl}

prob: of choosing a pre neuron

as they are independent random variables. We now have the probability of creating individual

connections, but the full probability of an increment for the whole network is hard to calculate.

This is because of statistical dependencies that arise from the fact that rewiring affects all

neurons in the network simultaneously. First, the total number of new connections is

n = min(|a+|, |d+|). Second, the number of new connections for a given pair of neurons is

bounded by the number of free axonal and dendritic elements in the two neurons, respectively,

nij ¼ minðdþi ; a
þ
j Þ. Finally, we cannot delete more connections than we actually have. This

indicates that independent combinations of individual probabilities cannot be expressed by

simple binomial distributions, but a hypergeometric distribution arises instead. We obtain for

the probability of creating c synapses from neuron j to neuron i

PðDþCijðtkÞ ¼ cjaðtkÞ; dðtkÞ;Cðtk�1ÞÞ ¼

dþi ðtkÞa
þ
j ðtkÞ

c

� �
jaþðtkÞjjd

þ
ðtkÞj � dþi ðtkÞa

þ
j ðtkÞ

nðtkÞ � c

� �

jaþðtkÞjjd
þ
ðtkÞj

nðtkÞ

� � :

This probability is easy to understand: We divide the ensemble of all possible new synapses

(which has size |a+||d+|) into the ensemble of potential synapses between the pair (i, j) (which

has size dþi a
þ
j ) and all the rest. We then choose cij< nij(tk) connections from the preferred

ensemble, and the rest of connections from the remaining pool. This is “sampling without

replacement” as there is a fixed number of new connections n(tk) in each time step.

We can now calculate the probability to delete one connection using axonal “negative” ele-

ments as pa�ij ðtkÞ ¼ PðDa�CijðtkÞ ¼ 1jaðtkÞ;Cðtk�1ÞÞ. This is the probability to choose one to-

be-deleted element from all existing elements p�aij ðtkÞ ¼
a�i ðtkÞ
aiðtkÞ

and

pd�ij ðtkÞ ¼ PðDd�CijðtkÞ ¼ 1jdðtkÞ;Cðtk�1ÞÞ ¼
d�i ðtkÞ
diðtkÞ

. Out of ai(tk) candidates for deletion, we

select a�i ðtkÞ, subject to the condition not to delete more than Cij(tk) for this particular pair of

neurons. This constraint is reflected by the hypergeometric distribution. The preferred popula-

tion is represented by the elements bonded into connections from neurons j to neuron i, and

the other population is comprised by all remaining elements of neuron j. Finally, during
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rewiring events in Trewire, we obtain for the stochastic evolution of Cij(tk)

CijðtkÞ ¼ Cijðtk�1Þ þ DþCijðtkÞ � D
a
�
CijðtkÞ � D

b
�
CijðtkÞ

DþCijðtkÞ � HypergeometricðDþCijðtkÞ ¼ cjdþi ðtkÞa
þ
j ðtkÞ; jd

þ
jjaþj;minðjaþj; jdþjÞÞ

D
a
�
CijðtkÞ � HypergeometricðDþCijðtkÞ ¼ cja�j ðtkÞ; ajðtkÞ;Cijðtk�1ÞÞ

D
b
�
CijðtkÞ � HypergeometricðDþCijðtkÞ ¼ cjd�i ðtkÞ; diðtkÞ;Cijðtk�1ÞÞ:

ð8Þ

To calculate the total change ΔCij(tk) we have to account for all these contributions. The distri-

bution of the total increment is not simply the convolution of the three distributions given

above, as they are not independent. On the contrary, (negative) decrements occasionally influ-

ence (positive) increments, as we first delete connections and thereby create additional free

elements. Therefore, the number of free elements has to be corrected as

a0þi ðtkÞ ¼ aþi ðtkÞ þ
X

l

D
b
�
CliðtkÞ; b0þi ðtkÞ ¼ dþi ðtkÞ þ

X

l

D
a
�
CilðtkÞ:

Eq 8 defines a complicated discrete-time stochastic process, but since we are at this point inter-

ested only in the expected change of connectivity, we can restrict ourselves to the evolution of

expectations. We use Es to denote the (linear) operator of expectation over the structural

noise, i.e. over the realizations of the increments/decrements ΔCij(tk). We have

Es½DCijðtkÞ� ¼
b0þi ðtkÞa

0þ

j ðtkÞ

maxðja0þðtkÞj; jb
0þ
ðtkÞjÞ

þ Es½Cijðtk�1Þ�
d�i ðtkÞ
diðtkÞ

þ
a�j ðtkÞ
ajðtkÞ

 !

: ð9Þ

Further on in this paper, for notational convenience, we write �CijðtkÞ for the expectation

Es½CijðtkÞ�.

Time-continuous limit

We now switch over to continuous equations, which result from the limit ΔTs! 0. In this

case, we can express free elements and negative elements as

a�i ðtÞ ¼
1

ba
ðni � �iðtÞÞdt

� �

�

; d�i ðtÞ ¼
1

bd
ðni � �iðtÞÞdt

� �

�

;

which will assign infinitesimally small values to the numbers of free elements and negative ele-

ments. The bracket notation [�]± corresponds to flooring/ceiling operations using Heaviside

step function [x]± = θ[±x]. Since the rewiring takes place continuously, the numbers of ele-

ments are, up to infinitesimal correction, the same as the degrees, ai � K in
i and di � Kout

i . We

can now define the rates of creation and deletion of axonal elements as ra
�
i ¼ limdt!0

a�i
dt and

dendritic of elements as rd
�
i ¼ limdt!0

d�i
dt and we write explicitly

ra
�
i ðtÞ ¼

1

ba
½ni � �iðtÞ��; rd

�

i ðtÞ ¼
1

bd
½ni � �iðtÞ��: ð10Þ

As noted above, we have omitted here the expectation over the structural noise Es from the

notation. We can now calculate the evolution of connectivity from Eq 9 as

_�Cij ðtÞ ¼
r0di
þðtÞr0aj

þðtÞ
rðtÞ

� �CijðtÞ
rd
�
i ðtÞ

Kin
i ðtÞ

þ
ra
�
j ðtÞ

Kout
j ðtÞ

 !

; ð11Þ
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where rðtÞ ¼ maxðjρ0þa ðtÞj; jρ
0þ

d ðtÞjÞ. The specific implementation requires that the deletion of

elements takes place first, with the corresponding synaptic partner remaining available as a

free element to form new connections. After an axonal element has been deleted, the previ-

ously bonded dendritic element becomes a free element. This requires a correction on the rate

of free elements

r0ai
þðtÞ ¼

1

ba
½ni � �iðtÞ�þ þ

X

k

rd
�
k ðtÞ

Kin
k ðtÞ

�CkiðtÞ

r0di
þðtÞ ¼

1

bd
½ni � �iðtÞ�þ þ

X

k

�CikðtÞ
ra
�
k ðtÞ

Kout
k ðtÞ

:

Spiking noise

We assume that spike trains SiðtÞ ¼
P

kdðt � t
i
kÞ reflect an asynchronous-irregular state of the

network, so they can be modeled as a stochastic point process. As described in [62, 63], the

coefficient of variation of the spike trains generated by a leaky integrate-and-fire neuron

driven by Gaussian white noise current is given by

CVðm;sÞ ¼ 2pðn0tmÞ
2

Z

Vy � m

s

Vr � m

s

ex2 dx
Zx

�1

ey2

ð1þ erfðyÞÞ2 dy;

where μ and σ are the parameters of the current input, and τm, Vr and θ are the parameters of

the neuron, respectively. The configuration used here yields CV� 0.7. A good approximation

for spike trains of a given rate r and irregularity CV is obtained with a specific class of renewal

processes, so-called Gamma processes. These have an ISI distribution

f ðtÞ ¼ HðtÞ r

GðaÞ
ðrtÞa�1e�rt, with parameters a ¼ 1

CV2 and r ¼ r
CV2.

In our model, the fluctuating intracellular calcium concentration is a shotnoise, a continuous

signal that arises from a point process through filtering. Here, the point process has a mean rate

ν, and the calcium signal is a convolution with an exponential kernel FðtÞ ¼ HðtÞ 1

tCa
e�

t
tCa .

Campbell’s theorem allows us compute the mean mCa ¼
E½NT �
T

R t
0
FðsÞ ds ¼ n and the variance

s2
Ca ¼

Var½NT �
T

R t
0
FðsÞ2 ds � CV2 n

2tCa
of the calcium variable. Here we used the fact that spike

count of Gamma process NT ¼
R T

0
SðtÞ dt has a mean E½NT� ¼ nT and a variance

Var½NT� �
s2
ISI
m3
ISI
T ¼ n

a
, provided the observation time T is long enough [64]. As a consequence of

the Central Limit Theorem, the amplitude distribution of the calcium signal is approximately

Gaussian N ðmCa; s
2
CaÞ, provided the mean spike rate is much larger than the inverse time con-

stant of the calcium signal hriðtÞi � 1

tCa
. In other words, if the mean firing rate is 8 Hz and the

calcium constant is τCa = 10 s, there are on average 80 spikes in the characteristic time interval

τCa.

We are actually interested in the equilibrium rates of free and negative elements in Eq 10.

These rates are rectified versions of the shifted calcium trace, and in order to calculate them

we resort to the ergodic theorem and to an adiabatic approximation. The former is a self-

averaging property, according to which the time-averaged variable for a long observation is

equal to the equilibrium mean value 1

T

Z T

0

xi tð Þ dt ¼ hxiit. The adiabatic property comes from
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the fact that spiking dynamics of a network is much faster than network remodeling due to

structural plasticity. At every point in time, plasticity is driven by the average adiabatic rate.

This implies that, at every point in time t, the structural plasticity sees the equilibrium distri-

bution of the calcium trace Peqð�iðtÞÞ ¼ N ðmCaðtÞ; s2
CaðtÞÞ. The right-hand side of Eq 10

becomes

hra
�
i ðtÞi ¼

1

ba
h½ni � �iðtÞ��i ¼ R�

sa

ni � hriðtÞi
ba

� �

hrd
�
i ðtÞi ¼

1

bd
h½ni � �iðtÞ��i ¼ R�

sb

ni � hriðtÞi
bb

� �

:

ð12Þ

The transfer function for synaptic elements is given by

RsðmÞ ¼ 1

2
mþ m erf mffiffi

2
p

s

� �
þ

ffiffi
2

p

p
se�

m2

2s2

� �

, and the variance of the rate of elements is

s2
x ¼

Z2ni
2tCab

2
x
. The parameter η is a correction factor, which accounts for the regularity of spike

trains. In our case η = CV. Even if the mean number of free elements is zero, the noise will

still drive the creation and deletion of elements with rate
sxffiffiffiffi
2p
p . Even if homeostatic control

manages to drive all neurons to their target rates, the inherent calcium fluctuations and the

associated uncertainty of firing rate inference will still induce random rewiring.

Mean-field approximation of population dynamics

We define population means for variables x 2 {r, ϕ, a, b} and neuronal populations Y, Z as

xYðtÞ ¼
1

NY

X

i2Y

xiðtÞ

�CYZðtÞ ¼
1

NYNZ

X

i2Y

X

j2Z

�CijðtÞ;

where NY is the size of population Y. An individual neuron in population Y typically gets

many inputs from every other neuronal population, which invites use of mean-field approxi-

mation due to the central limit theorem. The resulting currents aggregate to a Gaussian white

noise process with mean and variances given as

mYðtÞ ¼ Jt
X

Z2E

�CYZðtÞNZrZðt � DÞ � gJt�CIrIðt � DÞ þ tJ �CEnext;

s2
YðtÞ ¼ J2t

X

Z2E

�CYZðtÞNZrZðt � DÞ þ g2J2t�CIrIðt � DÞ þ tJ2 �CEnext:

The stationary firing rate of a leaky integrate-and-fire neuron driven by input with mean μ
and variance σ2 is [62]

r ¼ f ðm;sÞ ¼ tr þ tm
ffiffiffi
p
p

Z

Vr � y

s

Vr � m

s

eu2

ð1þ erfðuÞÞ du

0

B
B
B
B
B
@

1

C
C
C
C
C
A

�1

:

Solving the time-dependent self-consistency problem for multiple interacting plastic
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populations is a challenging problem. We suggest here to use an adiabatic approximation,

resorting to the fact that the firing rate dynamics is much faster than the plastic growth

processes. Therefore, we employ a Wilson-Cowan type of the firing rate dynamics [65]

trate _rYðtÞ ¼ �rYðtÞ þ f ðmYðtÞ; sYðtÞÞ: ð13Þ

The relaxation time is set to τrate < τm to account for the fact that population response is gen-

erally much faster than the membrane potential dynamics [66]. The parameter τrate is the

only free parameter in this model, but our results do not depend on its exact value as long as

τrate� τm. The heuristic described by Eq 13 results in a tractable and numerically stable sys-

tem to be analyzed with standard dynamical system tools.

As the equation is linear, the average calcium trace can be computed without approxima-

tion

tCa
_�YðtÞ ¼ rYðtÞ � �YðtÞ: ð14Þ

The rate of element creation and deletion is also linear, therefore population averages are

given by

rdYðtÞ ¼
1

bd
ðnY � �YðtÞÞ raYðtÞ ¼

1

ba
ðnY � �YðtÞÞ:

Finally we calculate the average connectivity

_�CY;Z ðtÞ ¼
r0 þdY ðtÞr

0 þ
aZ ðtÞ

rðtÞ
þ �CY;ZðtÞ

rd
�
Y ðtÞ

kiYðtÞ
þ
ra
�
Z ðtÞ

koYðtÞ

� �

: ð15Þ

Here, rd
�
Y ðtÞ ¼ Rsð�rd�Y ðtÞÞ, ra

�
Y ðtÞ ¼ Rsð�ra�Y ðtÞÞ, and ρ(t) is same as before, while the cor-

rected rate for free elements is

r0 þaY ðtÞ ¼
1

bd
ðnY � �YðtÞÞ þ

X

Z2E

rd
�
Z ðtÞ

Kin
Z ðtÞ

NZ
�Cpopk;Y

ðtÞ

r0 þdY ðtÞ ¼
1

ba
ðnY � �YðtÞÞ þ

X

Z2E

�CYZðtÞNZ
ra
�
k ðtÞ

Kout
Z ðtÞ

:

Line attractor of the deterministic system

We represent the state of the network consisting of one static inhibitory and two plastic excit-

atory ensembles as a vector

yðtÞ ¼ ð�E1
ðtÞ; �E2

ðtÞ; �CE1E1
ðtÞ; �CE1E2

ðtÞ; �CE2E1
ðtÞ; �CE2E2

ðtÞ; rE1
ðtÞ; rE2

ðtÞ; rIðtÞÞ
T
;

the components of which adhere to the calcium dynamics Eq 14, the connectivity dynamics

Eq 15, and the activity dynamics Eq 13. The joint ODE system
dy
dt ¼ Fðy; tÞ defines the vector

field F. We first explore the stationary states of the deterministic system (σx = 0), setting the

left hand side of all ODEs to zero. In this case, calcium concentration and excitatory firing

rates are fixed at their target values, and inhibitory firing rates r�I can be obtained using

the self-consistency Eq 13. Stationary connectivity is calculated from the condition that

the rates of creation and deletion of synaptic elements are zero. This implies that the num-

bers of free axonal and dendritic elements are zero, a± = 0 and d± = 0, which in turn implies
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that a = 1T � C and d = C � 1. The second condition is that all axonal elements are bonded

with a dendritic element, and the total number of both types of elements are the same

|a| = |d|.

Let us consider the case of two plastic excitatory ensembles E1 and E2 and one static inhibi-

tory population I. Using the parameter x ¼ �CE1E1
, the stationary state of the deterministic net-

work is a line

LðxÞ ¼

�
�

E1

�
�

E2

�C�E1E1

�C�E1E2

�C�E2E1

�C�E2E2

r�E1

r�E2

r�I

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

¼

n

n

x

K�E1

NE2
� x NE1

NE2

K�E1

NE2
� x NE1

NE2

K�E2

NE2
�

NE1

NE2

K�E1

NE2

� �
þ x NE1

NE2

� �2

n

n

r�I

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

: ð16Þ

Here, K�Y is the mean stationary in-degree, and we assume that the dendritic element growth

factor βd is less or equal to the axonal element growth factor βa. The attractor is a line segment,

as a consequence of linear conditions for element numbers and non-negativity of excitatory

connections �Cij � 0. This solution can be easily generalized to a solution for individual con-

nections of NE excitation neurons, or for the case of nE excitatory populations. The minimal

invariant changes of the stationary connectivity matrix C that keep in-degree and out-degree

conditions valid are of the type

. .
.

⋰

1 � � � �1

..

. . .
. ..

.

�1 � � � 1

⋰ . .
.

0

B
B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
C
A

;

where all missing entries are considered to be zero. This transformation defines a hyperplane
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section invariant space. The stationary connectivity can be solved as

jaj ¼ jdj

C ¼

�C11 � � � �C1ðNE�1Þ d1 �
XNE�1

k¼1

�C1k

..

. . .
. ..

. ..
.

�CðNE�1Þ1 � � � �CðNE�1ÞðNE�1Þ dNE�1 �
XNE�1

k¼1

�CðNE�1Þk

a1 �
XNE�1

k¼1

�Ck1 � � � aNE�1 �
XNE�1

k¼1

�CkðNE�1Þ dn �
XNE�1

k¼1

ak þ
XNE�1

l¼1;m¼1

�Clm

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

ð17Þ

Note that we have put the in-degree conditions in the last row and the out-degree conditions

in the last column, but there is a permutation symmetry and they could apply to any row-col-

umn combination. The hyperplane for individual neurons has NE(NE − 3) + 1 dimensions, if

there are no self-connections. In the case of nE excitatory populations, the hyperplane has

nE(nE − 2) + 1 dimensions.

Slow manifold and diffusion to the global fixed point

Now we calculate the stationary state for the stochastic system and assess the geometry and sta-

bility of the underlying phase space. In the case of finite noise, σd> 0, Eq 11 has an attractive

fixed point, instead of a hyperplane attractor. The fixed point is given by

�C�i;j ¼
r0di
þr0aj

þ

rðrd
�
i Kout

j þ ra
�
j Kin

j Þ
Kin
i K

out
j : ð18Þ

Here, without loss of generality, we have assumed that the growth rate of dendritic elements is

smaller or equal as compared to axonal elements. We obtain a normalized outer product of the

indegree and outdegree vectors, respectively. In the case of identical dynamics for axonal and

dendritic elements, and if all neurons have the same target rate νi = ν, we obtain the fixed point

by plugging in the homogeneous solution

�C�i;j ¼
K in

NE
¼ c: ð19Þ

This fixed point depends only on the indegree of neurons. For a two-population system, the

fixed point is y ¼ L Kin

NE

� �
, the most entropic configuration of the line segment attractor. This

suggests a special importance for the relic of the line-attractor, which, as we show later, turns

into a stochastic slow manifold through the presence of noise.

We now calculate the relaxation time for the three-population system to assess the persis-

tence of a memory trace. To this end, we calculate the Jacobian J ¼ @Fðy;tÞ
@y

�
�
y¼LðxÞ on the slow

manifold, using a linearization of the vector field F (see Section Line attractor of the
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deterministic system). For the stochastic system, the Jacobian J ðC�Þ about the global fixed

point is

J =

2
6666666666664

¡ 1
¿Ca

0 0 0 0 0 1
¿Ca

0 0

0 ¡ 1
¿Ca

0 0 0 0 0 1
¿Ca

0

J31 J32 J33 J34 J35 J36 0 0 0
J41 J42 J43 J44 J45 J46 0 0 0
J51 J52 J53 J54 J55 J56 0 0 0
J61 J62 J63 J64 J65 J66 0 0 0
0 0 J73 J74 0 0 J77 J78 J79
0 0 0 0 J85 J86 J87 J88 J89
0 0 0 0 0 0 J97 J98 J99

3
7777777777775

: ð20Þ

The Jacobian has a block structure, which corresponds to calcium activity (black rectangle

in Eq 20), connectivity J c (blue rectangle) and spike activity J r (red rectangle). The connec-

tivity block around fixed point y = L(c) is given by

J c ¼ c0

�N2
E2

N2
E2

N2
E2

�N2
E2

NE1NE2 �NE1NE2 �NE1NE2 NE1NE2

NE1NE2 �NE1NE2 �NE1NE2 NE1NE2

�N2
E1

N2
E1

N2
E1

�N2
E1

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

;

where c0 ¼
Z
ffiffiffiffiffiffi
n

ptCa

p

2cN3
E

1

ba
þ 1

bb

� �
. Jacobian entries responsible for interaction between connectivity

variables and calcium activity variables are�J42 ¼ �J52 ¼ J61 ¼
NE1

N2
Ebb

, J32 ¼ �J41 ¼ �J51 ¼
NE2

N2
Ebb

,

J31 ¼ �
nE1þ2NE2

N2
Ebb

and J62 ¼ �
2NE1þNE2

N2
Ebb

. The spike activity terms in the Jacobian are

J r ¼
1

trate

�1þ jEE�CE1E1
NE1 jEE�CE1E2

NE2 jEI�NI

jEE�CE2E1
NE1 �1þ jEE�CE2E2

NE2 jEI�NI

jIE�NE1 JIE�NE1 �1þ jII�NI

2

6
6
6
4

3

7
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7
5

Here we define the effective interaction of different neuron types neurons as excitatory-to-

excitatory jEE ¼ Jt @f ðmE ;sEÞ
@mE

þ J2t
sE

@f ðmE ;sEÞ
@sE

, inhibitory-to-excitatory jEI ¼ �gJt
@f ðmE ;sEÞ

@mE
þ J2t

sE

@f ðmE ;sEÞ
@sE

,

excitatory-to-inhibitory jIE ¼ Jt @f ðmI ;sI Þ
@mI
þ J2t

sI

@f ðmI ;sI Þ
@sI

and inhibitory-to-inhibitory neurons as

jII ¼ �gJt
@f ðmI ;sI Þ
@mI
þ

g2J2t
sI

@f ðmI ;sI Þ
@sI

. The Jacobian elements which are responsible for influence of

connectivity change to rates are J73 ¼
1

trate
jEENE1rE1, J74 ¼

1

trate
jEENE2rE2, J85 ¼

1

trate
jEENE1rE1

and J86 ¼
1

trate
jEENE2r2. These terms are the largest in the Jacobian, but since connectivity

changes only through a change of calcium, they will not play an essential role for long-term

stability.

We exploit the block structure of the Jacobian J to separate between connectivity variables,

the fast firing rate and calcium variables. We can solve the connectivity eigenproblem
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analytically,
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; ð21Þ

with eigenvalues λ0 = 0 and l1 ¼ �
Rsa ð0ÞþRsb ð0Þ

cNE
.

The persistence of a memory trace in the system with noise is essentially determined by

the diffusion to the global fixed point. In fact, the line attractor of the noiseless system turns

into a slow manifold of the noisy system. The eigenvalue λ0 is degenerate, and the three-

dimensional invariant space defines the central manifold of the connectivity subsystem. The

eigenvalue λ1 is also an eigenvalue of the full Jacobian J and it represents the slowest time

scale of the system in the direction of the slow manifold. It is easy to check that @xL(x) = λ1.

This means that the noiseless line attractor is exactly corresponding to the slow manifold of

the system. The other eigenvectors have components orthogonal to the slow manifold.

Those are dominated by fast variables, and they relax quickly. As a result, the relaxation

dynamics is dominated by the eigenvalue λ1, and the relaxation time of the system under

consideration is

tdiffusion ¼

ffiffiffiffiffiffiffiffiffiffiffi
4ptCa
Z2n

r
NEc

1

bd
þ 1

ba

:

For the default parameters used here, its value is around 5000 s, fully in accordance with

numerical simulations. The system relaxes along the direction of the slow manifold. There-

fore, although rates of creation and deletion are identical on the slow manifold, the system

takes a fast trajectory off the slow manifold upon perturbation, and it relaxes slowly along

the slow manifold towards the fixed point.

A quantitative measure for the volatility of network structure used in experiments is the

turnover ratio (TOR) of dendritic spines [38]. It is defined as TOR ¼ DNnewþDNdeleted
2Nspines

, where the

changes ΔNnew and ΔNdeleted are typically measured per day. For the case when the network

plasticity is selectively driven by diffusion, this quantity corresponds to the eigenvalue λ1, cor-

responding to a value around 18% per day for standard parameters.

Linear stability analysis

Numerical exploration of the eigenvalues of the Jacobian J (Eq 20) show that for our system

there is linear stability for a wide parameter range. However this system can produce damped
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oscillations, which may cause problems. In the case discussed here, dendritic and axonal ele-

ments have identical dynamics, βa = βd, and damped oscillations influence the connectivity

block in the same way. Therefore it was sufficient to consider a reduced system of only one

plastic excitatory population and one static inhibitory population to analyze the influence of

the calcium time constant and element growth. This gives rise to the Jacobian

J 1 ¼

� 1

tCa
0 1

tCa
0

� 1

NEbd
0 0 0

0 1

trate
jEEcNE � 1

trate
þ 1

trate
jEEcNE

1

trate
jEI�NI

0 0 1

trate
JIE�NE � 1

trate
þ 1

trate
jII�NI

2

6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
5

:

The eigenvalues of J 1 have been reduced to radicals using Mathematica 12.0, and the complex

conjugated eigenvalues λ3/4 responsible for oscillations are plotted in Fig 6.

Although there is linear stability around the global fixed points for wide parameter range,

the same is not the true for all points along the line attractor. The connectivity eigenvalue λ1 is

constant on the slow manifold, but if one population presents large recurrent connectivity,

spike activity jumps to a persistent high activity state. We can track this instability in the Jaco-

bian J ðxÞ along the line attractor L(x). As the recurrent connectivity of the first ensemble E1

is increased, one of the eigenvalues becomes positive, and its corresponding eigenvector makes

the biggest contributions in the direction of spike activity rE1 and rE2. Here we use this fact and

use the reduced Jacobian

J r ¼

@F7ðy;tÞ
@rE1

@F7ðy;tÞ
@rE2

@F8ðy;tÞ
@rE1

@F8ðy;tÞ
@rE2

2

6
4

3

7
5 ¼ 1

trate

�1þ jEE�CE1E1
NE1 jEE�CE1E2

NE2

jEE�CE2E1
NE1 �1þ jEE�CE2E2

NE2

2

4

3

5

to find the approximate position of this transition on the line attractor. The spiking activity

becomes unstable, when the real part of the second eigenvalue l
r
2

becomes positive, and at this

point the determinant of the Jacobian changes its sign (since both eigenvalues are real). We

can use this criterion to determine when the system loses linear stability, leading to the critical

value ccrit of connectivity �CE1E1

ccrit ¼ � 1þ
NE2

NE1jE

� �

; ð22Þ

where jE is a dimension-less measure of effective excitatory excitability jE = �NE jEE. The value

ccrit is the upper bound of full stability, but the system loses stability even below this value, as

discussed in our results.

Network simulations

All simulations have been performed using the neural network simulator NEST 2.16.0 [67].

Grown networks. All numerical stimulation experiments start from grown networks. To

this end, we initialize a network with random connections to and from inhibitory neurons and

no excitatory-to-excitatory connections, whatsoever. The latter are then grown under the con-

trol of homeostatic structural plasticity. The controlled variable is the firing rate of excitatory

neurons, the target rate is set to ν = 8 Hz for all neurons. During this initial growth period,

excitatory neurons receive external Poisson input of rate νext = 15 kHz. After a long-enough
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growth time tgrowth, the network structure has reached its equilibrium and all neurons fire at

their target rate, apart from small fluctuations.

Conditioning paradigm. Non-overlapping neuronal ensembles comprising 10% of all

excitatory neurons each are selected and labeled US, C1 and C2. Non-plastic connections of

weight JE = 0.1 mV are created from all neurons labeled US to a readout neuron, which has the

same properties as all the other neurons in the network. Stimulation is specific for a certain

group of neurons. A stimulation cycle consists of an increased external input rate of 1.4νext for

a period of 2 s, followed by a relaxation period of 48 s, during which the external input is set

back to νext.

The whole protocol consists of 5 different episodes: growth, baseline, encoding, decay and

retrieval. During “baseline” each of the 3 groups is stimulated alone in the order US, C1, C2.

The “encoding” episode consists of 6 stimulation cycles. In 3 out of the 6 cycles, C2 is stimu-

lated alone. In the other 3 cycles, neurons from both US and C1 are stimulated at the same

time. The “decay” episode lasts 100 s, during which no stimulation beyond νext is applied. Dur-

ing “retrieval”, there are 2 stimulation cycles, C1 alone is followed by C2 alone. Connectivity is

recorded every 1 s. In this protocol, plasticity is always on, and all measurements are per-

formed in the plastic network. Growth time is tgrowth = 100 s, the remaining parameters are

βd = βa = 0.4, τCa = 1 s, ΔTs = 10 ms.

Repeated stimulation. Starting from a grown network, a random neuronal ensemble

comprising 10% of all excitatory neurons in the network is repeatedly stimulated for 8 cycles.

Here, a stimulation cycle consists of a stimulation period of 150 s, during which the external

input to the ensemble neurons is increased to 1.05 νext. It is followed by a relaxation period of

150 s, during which the external input is set back to νext. During stimulation, the connectivity

is recorded every 15 s. After encoding the engram, plasticity is turned off, and all measure-

ments are now performed in a non-plastic network. Growth time is tgrowth = 500 s, the remain-

ing parameters are βd = βa = 2, τCa = 10 s, ΔTs = 100 ms.

Readout neuron. Two non-overlapping ensembles comprising 10% of all excitatory neu-

rons each are randomly selected and labeled A1 and A2. Starting from a grown network, A1 is

stimulated twice. During each stimulation cycle, the external input to stimulated neurons is

increased to 1.1 νext for a time period of 150 s. This is followed by a relaxation period of 150 s,

during which the external input is set back to νext. After a pause of 100 s, A2 is stimulated once

using otherwise the same protocol. Growth time is tgrowth = 500 s, the remaining parameters

are βd = βa = 2, τCa = 10 s, ΔTs = 100 ms.

After the encoding of engrams, plasticity is turned off. A readout neuron is added to the

network, which has the same properties as all other neurons in the network. Non-plastic con-

nections of weight JE = 0.1 mV are created from a random sample comprising 9% of all excit-

atory and 9% of all inhibitory neurons in the network. Two new non-overlapping ensembles

comprising 10% of all excitatory neurons each are selected as random patterns A3 and A4. Neu-

rons in the network are stimulated in the order A3, A2, A1, A4. During each stimulation cycle,

the external input to neurons in the corresponding group is increased to 1.1νext for a period of

1 s duration. This is followed by a non-stimulation period of 4 s, during which external input

rate is set back to νext.

Formation and decay of engrams. Starting from a grown network, a subgroup compris-

ing 10% of all excitatory neurons is randomly selected and stimulated for 150 s, followed by a

prolonged relaxation period of 5500 s. During stimulation, the external input to stimulated

neurons is increased to 1.1νext. For all simulations, βd = βa = 2, ΔTs = 100 ms.

The simulations to demonstrate how τdecay changes with τCa were performed with a target

rate ν = 8 Hz and τCa = 2, 4, 8, 16, 32 s. The simulations showing how τdecay changes with ν
were performed with τCa = 10 s and ν = 2, 4, 8, 16, 32 Hz. In the simulations performed with
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ν = 2, 4 Hz, τgrowth = 5000 s, neurons are stimulated for 1500 s, and the relaxation period is

26000 s. The parameter τdecay is estimated from simulated time series by performing a least-

squares fit of an exponential function to the connectivity values during the decay period, and

extracting the fitted time constant.

Linear stability. Starting from a grown network, a subgroup comprising 10% of all excit-

atory neurons is randomly selected and stimulated for a time period tstim. During stimulation,

the external input to stimulated neurons is increased to 1.1νext. Stimulation is followed by a

period of duration trelax, during which the external input is set back to νext and the connectivity

relaxes back to a new equilibrium. The parameters used are for non-oscillatory regime: tgrowth

= tstim = trelax = 800 s, βd = βa = 2, τCa = 5 s, ΔTs = 1 ms; for the weakly oscillatory regime: tgrowth

= tstim = trelax = 400 s, βd = βa = 0.2, τCa = 20 s, ΔTs = 0.2 ms; and for the strongly oscillatory

regime: tgrowth = tstim = trelax = 200 s, βd = βa = 0.03, τCa = 10 s, ΔTs = 0.2 ms.

Non-linear stability. Starting from a grown network, a subgroup comprising 10% of all

excitatory neurons is randomly selected and stimulated for 200 s. During stimulation, the

external input rate to stimulated neurons is increased to 1.25 νext. Stimulation is followed by a

relaxation time in which external input rate is set back to νext. Growth time tgrowth = 500 s, βd =

βa = 2, τCa = 10 s, ΔTs = 0.1 ms. During and after stimulation, connectivity is recorded every 5

s.

Overlap measure. The similarity between network activity during stimulation, spontane-

ous and evoked responses is measured by the corresponding overlaps [68] defined as

mm ¼ ½Nað1� aÞ��1
X

i

ðx
m

i � aÞsiðtÞ: ð23Þ

The pattern ξμ is a vector of dimension N. Each entry x
m

i is a binary variable indicating

whether or not neuron i is stimulated by pattern ξμ, and it has a mean value of a ¼ hxmi ii. The

activity vector si(t) is also composed of binary variables, which indicate whether or not neuron

i is active in a given time bin. In all figures, the bin size used for calculating overlaps is 10 ms.

Population firing rate. In Fig 3B, the population response of excitatory neurons is esti-

mated for different connectivity values using a mean-field rate model [62]. We consider a

model with three populations, two of which are excitatory (E1 comprises 10% and E2 com-

prises 90% of all NE = 10000 excitatory neurons), and one is inhibitory with NI = 2500 neurons.

All connectivities involving inhibitory neurons are fixed and set to � = 0.1. For the excitatory-

to-excitatory connections, we systematically vary the connectivity within the E1 population

(�CE1E1
), and calculate the other values to achieve a constant excitatory in-degree of �NE. All

other parameters used are unchanged. For the different values of �CE1E1
we calculate the popula-

tion rate of excitatory neurons for E1 receiving a larger external input of 1.05 νext as compared

to the E2 and I populations (νext = 15 kHz).

Pattern completion. To address pattern completion, we employ the non-plastic network

after engram encoding (see Section Repeated stimulation). Different fractions of the neurons

belonging to the engram are stimulated for 10 s, and we calculate the overlap averaged over the

stimulation time hmE1i. For each fraction of stimulated neurons, 50 different simulations are

run, during which a different subsample of the engram neurons is stimulated.
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