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A B S T R A C T

We use a generalized pore network model in combination with image-based experiments to understand the
parameters that control upscaled flow properties. The study is focued on water-flooding through a reservoir
sandstone under water-wet and mixed-wet conditions. A set of sensitivity studies is presented to quantify the
role of wettability, pore geometry, initial and boundary conditions as well as a selection of model parameters
used in the computation of fluid volumes, curvatures and flow and electrical conductivities.

We quantify the uncertainty in the model predictions, which match the measured relative permeability
and capillary pressure within the uncertainty of the experiments. Our results show that contact angle, initial
saturation, image quality and image processing algorithm are amongst the parameters which introduce the
largest variance in the predictions of upscaled flow properties for both mixed-wet and water-wet conditions.
1. Introduction

Reliable prediction of upscaled flow properties of porous media is
one of the main challenges in the energy sector, groundwater resource
management and environmental science as well as in industrial applica-
tions that rely on flow through granular and fibrous media. Examples
of the macroscopic properties – upscaled representation of molecular
to pore-scale forces – are relative permeability (𝑘𝑟) (Øren et al., 1998;

alvatne and Blunt, 2004), capillary pressure (𝑃𝑐) (Moss et al., 1999),
esistivity index (𝑅𝐼) (Archie, 1942; Glover, 2016), dispersion coeffi-
ient (Sahimi, 2011; Bijeljic et al., 2011) and reaction rates (White and
rantley, 2003; Al-Khulaifi et al., 2019). These properties, in particular
𝑐 , 𝑘𝑟 and 𝑅𝐼 , are functions of fluid saturation, displacement scenario,
s well as fluid and solid properties such as wettability and pore geom-
try (Morrow, 1970; Armstrong et al., 2012). Furthermore, predictions
f these properties may be subject to high natural, measurement or
imulation uncertainty (DiCarlo et al., 2000; Reynolds and Krevor,
015; Ramstad et al., 2020; Zahasky et al., 2020).

Traditionally the macroscopic flow properties of porous media have
een estimated by matching empirical or numerical models to ex-
erimental measurements of pressures and average saturation (Oak,
988; DiCarlo et al., 2000; Reynolds and Krevor, 2015; Moghadasi
t al., 2016). A quantification of the uncertainty in these measure-
ents, however, has rarely been presented. This poses a challenge

or modelling studies: for a statistically valid comparison of predicted
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properties with experiment, the values should be similar to within the
range of uncertainty in both the experiment and model itself. Without a
proper evaluation of experimental uncertainty, this comparison is of a
somewhat subjective nature, particularly when these uncertainties are
large.

Several different methods have been developed over the past
decades to predict the macroscopic properties of porous media, in-
cluding pore network models (Øren et al., 1998; Valvatne and Blunt,
2004; Gostick et al., 2016; Regaieg and Moncorgé, 2017; Raeini et al.,
2018) and numerical models that simulate flow directly on images of
the pore-space (Tartakovsky and Meakin, 2006; Raeini et al., 2014;
Pereira Nunes et al., 2016; Alpak et al., 2016; Akai et al., 2019a;
Gago et al., 2021). Direct simulations are computationally expensive for
many practical applications that require running sensitivity studies and
uncertainty quantification on relatively large flow domains (Regaieg
et al., 2021). Pore network models, on the other hand, require extensive
validation to be considered reliable for the prediction of macroscopic
flow properties. Recent advances in direct numerical simulations and
experimental pore-scale measurements have provided the necessary
data for their validation and refinement (Andrew et al., 2014a; Yang
et al., 2017; Singh et al., 2017; Gao et al., 2020). Pore network models
in turn are efficient tools for understanding and optimizing decision
variables that influence the pore-scale physics of the industrial or
environmental processes under consideration.
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Nomenclature

𝛥𝑃 Pressure drop along the sample (Pa)
𝛾 Corner half angle angle
⟨𝛥⟩ Mean signed difference
𝜇 Fluid viscosity
𝜙 Porosity
𝜃 Contact angle
𝐴 Cross-sectional area
𝐶 Coefficient
𝐹𝐹 Formation resistivity factor
𝑔 Throat conductivity
𝐼 Grey-scale intensity values in a micro-CT

image
𝑘abs Absolute permeability (Darcy)
𝑘𝑟 Relative permeability
𝐿 Length of core sample
𝑃𝑐 Capillary pressure (Pa)
𝑄 Flow rate
𝑅 Inscribed radius
𝑅𝐼 Electrical resistivity index
𝑆 Saturation
BC Boundary condition
Dif Differential imaging
DNS Direct numerical simulation
Exp Experimental
GNM Generalized network model
MW Mixed-wet
SCAL Special core analysis
seg Segmentation
WW Water-wet

Subscripts and superscripts

𝑒 and 𝑞 Electrical and volumetric flow
𝑜 Oil phase
𝑝 Pore
𝑠 Solid phase
𝑡 Throat
𝑤 Water phase
𝑤𝑖 Initial water before water-flooding

Similarly, experimental techniques together with imaging of fluid
hases in porous media have been used to investigate two-phase flow
echanisms in micro-model experiments (Keller et al., 1997; Chapman

t al., 2013; Yang et al., 2017) and in X-ray imaging experiments on
atural or synthetic porous media (Wildenschild and Sheppard, 2013;
ndrew et al., 2014a; Fogden et al., 2015; Scanziani et al., 2017). The
ata generated experimentally have been used to investigate wettability
haracteristics of porous media (Andrew et al., 2014a; Alhammadi
t al., 2017; Rucker et al., 2020) and displacement parameters such
s the effect of flow rate (Zhang et al., 2021; Spurin et al., 2019).
urthermore, the results have been used to evaluate the accuracy
f direct simulations (Akai et al., 2019a) as well as pore-network
odels (Bultreys et al., 2018; Raeini et al., 2019; Foroughi et al., 2021).

This work uses the experimental data by Gao et al. (2020) who
imultaneously measured the pressure difference across a reservoir
andstone sample while imaging the rock and fluids within it. The
xperiments were steady-state injection of brine and oil into the same
eservoir sandstone sample under two wettability conditions, before
2

nd after exposing the sample to a crude oil at high temperature.
Fig. 1. An illustration of different data sources for characterizing and minimizing
uncertainty in the macroscopic description of multiphase flow through porous media.
These include experimental image based special core analysis (SCAL), direct numerical
simulation (DNS) and the generalized network model (GNM).

Their application of pore-space imaging allowed measurements of both
capillary pressure and relative permeability from the same experiment.
Another advantage of this type of data for validation of network
models, compared to core-scale measurements, is the quantification of
contact angles in situ at different stages of the displacement process.

In this paper we first quantify the uncertainty in the experimental
data generated by Gao et al. (2020) and then use this data to validate
the upscaled flow properties predicted using the generalized pore net-
work model (GNM) (Raeini et al., 2018). Finally, the generated X-ray
images of the pore space are used to build different digital realizations
of the pore space using the GNM and to study the effect of various
pore-scale parameters on the macroscopic two-phase flow properties.

This work complements our previous study on water-wet porous
media (Raeini et al., 2019) where we quantified uncertainty in the
average fluid occupancy to be typically less than 5% between pairs of
repeated unsteady-state experiments by Andrew et al. (2014b), while
the local pore-by-pore occupancy uncertainty was of the order of 5%–
20%. The discrepancy between the GNM and experiments was less than
10% for the average saturation and occupancy and between 20%–30%
in their local pore-by-pore counterparts. Note that these differences,
even for repeat experiments on exactly the same sample, are sizeable.
The implication is that the uncertainty in both the measurement and
modelling of pore-scale processes need to be quantified carefully. This
is the focus of this paper.

In the following section, we discuss the workflows used in this
paper. Then, in Section 3, we present an evaluation of the uncertainty
in the experimental data, which is principally due to ambiguities in
image segmentation to find saturation and the measurement of pressure
difference. Afterwards, in Section 4, we show a comparison between the
GNM results and the experimental data while taking into account the
effect of uncertainty in input contact angle and initial water saturation
on network model predictions. In Section 5, the contribution of various
input parameters describing the sample wettability, pore geometry and
initial and boundary conditions, as well as the approximations used
in the GNM are quantified through sensitivity studies. The results are
used to draw conclusions on relative importance of these parameters for
further refinement of experimental protocols and pore network models.

2. Methodology

This study aims to move towards integrating our experimental
and modelling tools to better understand the mechanisms controlling
two-phase flow through porous media and to reduce uncertainty in

measuring or predicting them, as illustrated in Fig. 1.
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2.1. Image based special core analysis (SCAL)

The experimental data used in this paper are discussed in detail
in Gao et al. (2020) who performed steady-state co-injection of oil and
brine into a reservoir sandstone at several steps of increasing water
fractional flows while recording the pressure difference between the
injecting and receiving pumps. During each fractional flow experiment,
micro-CT images of the whole sample, 32 mm in length and 6 mm in
diameter were taken at a voxel size of 6.35 μm, as well as zoomed-in
scans of the middle part at a voxel size of 3.58 μm. The experiments
were repeated after exposing the sample to a crude oil at a high
pressure and temperature to alter its wettability from water-wet to
mixed-wet. Additionally, images of the sample in dry and fully brine
saturated states were taken, by Gao et al. (2020), which are used in
this study to obtain different representations of the pore space for
network extraction. The zoomed-in images of the sample during oil–
brine flow were further analysed by Gao et al. (2020) to obtain capillary
pressure and contact angles. The contact angles were computed using
an automatic algorithm (AlRatrout et al., 2017) and using energy
balance (Blunt et al., 2019). In this work we have re-evaluated the
uncertainty in the estimations of fluid saturations, relative permeability
and capillary pressure which is discussed below.

The saturations used in this paper were computed by applying
differential imaging to the experimental images. The differential imag-
ing technique and the assessment of the uncertainty in the measured
saturations are discussed in Appendix A. This involves first rescaling the
grey-scale intensity values to have the same values for the voxels of the
tubing (sample holder) and the impermeable parts of the solid matrix.
Then individual images were subtracted from the brine saturated image
and the intensity values of the brine and oil phases were sampled at
different locations along the sample whose standard deviation is used
to estimate the range of saturations as described in Appendix A.

The pressure difference was measured between the fluid injection
and receiving pumps, which account for the pressure drop across the
sample (𝛥𝑃 ), assumed to be the same in both phases, as well as the
pressure drop in the tubing (Gao et al., 2020). These measurements
have a low uncertainty themselves; the issue is the pressure difference
in the tubing connecting the pumps to the sample during two-phase
flow, which was comparable to the pressure drop across the rock
itself and was estimated in separate experiments performed without
the sample present. We assume that the pressure difference across the
sample has an uncertainty of the same magnitude as the tubing pressure
drop (see Appendix B) which are converted to uncertainty ranges in
relative permeability using the multiphase Darcy law:

𝑄 =
𝑘abs𝑘𝑟
𝐴𝜇

𝛥𝑃
𝐿

, (1)

where 𝑄 represents the flow rate of each phase and 𝑘𝑟 is the phase rela-
tive permeability. Finally, 𝑘abs, 𝐴 and 𝐿 are, respectively, single-phase
permeability, cross-sectional area and length of the sample.

The capillary pressures (𝑃𝑐) were computed by Gao et al. (2020)
from the curvature of imaged fluid–fluid interfaces:

𝑃𝑐 = 𝜎𝑘𝑐 , (2)

where 𝑘𝑐∕2 is the mean interface curvature and 𝜎 is the interfacial
tension, 0.051 N/m in this study. However, the uncertainty range in
the measured 𝑃𝑐 is re-estimated in this work based on the analysis
by Akai et al. (2019b). The average uncertainty in the water-wet
case capillary pressure was estimated to be 820 Pa (30% of measured
average capillary pressure) and is assumed to be the same for all
fractional flows for both water-wet and mixed-wet experiments. A
more accurate quantification of uncertainty and how to minimize it,
however, is subject to future work.

The estimated uncertainties in the experimental 𝑃𝑐 and 𝑘𝑟 curves
3

are presented in Section 3.
2.2. Direct simulations on images of fluid phases

We have presented an analysis of single-phase flow conductivities
using direct numerical simulations (DNS) in Appendix E.1. These results
show that both image resolution and segmentation algorithm can affect
the quantification of single-phase flow properties. Additionally, in Ap-
pendix E.1, we show that introducing surface roughness is necessary for
the direct simulations to match the measured porosity and permeability
of the sample simultaneously.

It also is possible to estimate relative permeability using DNS on the
images of individual fluid phases obtained during the two-phase flow
experiments (Hussain et al., 2014; Berg et al., 2016). However, due
to the high sensitivity of conductances to the inscribed radii of flow
paths, this approach requires high resolution and sharp images of the
fluid–fluid and fluid–solid boundaries. Therefore, we expect the errors
associated with this approach to be higher compared to the conductivi-
ties obtained directly from pressure drop measurements, or from direct
two-phase flow simulation that considers viscous coupling between the
phases. Nevertheless this approach is presented in Appendix E.2 to
provide an alternative estimation of upscaled properties which can be
used to evaluate the effect of imaging artefacts and the segmentation
of the images into different fluid and rock labels.

2.3. Generalized network modelling of two-phase flow

The third approach in Fig. 1 is to use the generalized network
model, GNM, to predict capillary pressure and relative permeability.
The GNM incorporates a rich representation of geometry extracted from
the micro-CT images, while simulating pore-scale phenomena such as
layer flow, contact angle hysteresis, snap-off and cooperative pore-body
filling; see Raeini et al. (2017, 2018) for details of the GNM algorithm.
Here, we mainly focus on studying its inputs and the main parameters
that describe the approximations used in this model.

To extract a network of the pore space, images should be first
segmented; the segmentation algorithm and thresholds can affect the
properties of the extracted network and flow simulation results. To
account for the effect of the segmentation, we run the network on:
(i) the segmentation reported in the original work (Gao et al., 2020);
(ii) a segmentation of the pore space using a multi-label clustering
algorithm described in Appendix C; (iii) a representation of the pore
space obtained using the clustering algorithm but with an altered
surface morphology to account for sub-resolution surface features that
can be missed after image reconstruction and segmentation (Schlüter
et al., 2014) and finally (iv) an image (called Rock A, provided by
TotalEnergies) of another sample drilled from the same sandstone core
at a higher resolution of 1.5 μm.

The measured contact angles can be uncertain and affected by the
image processing steps. Contact angles computed geometrically (AlRa-
trout et al., 2017) correspond to interfaces that are stable and hence
may take any value between their advancing and receding values.
Furthermore, despite the detailed images of fluid phases at several
snapshots during the experiment, the time resolution of the micro-CT
images is limited and we can only obtain average measures of the
contact angle distribution. Therefore, here we do not adjust contact
angles on a pore-by-pore basis but instead assign them statistically
based on the analysis by Gao et al. (2020) using the thermodynamic
approach (Blunt et al., 2019) as it measures the overall behaviour of
the system during displacement.

In the generalized network model, GNM, we use geometrical ap-
proximations to compute interfacial curvatures and fluid saturations
and correlations to compute fluid conductivities. These are further ex-
plained in Raeini et al. (2018), where the development of the model has
been guided through analytical approximations and direct two-phase
flow simulations on synthetic geometries. Furthermore, a description of
the conductivity correlations are given in Appendix D. The aim of this

study is to evaluate the reliability of the correlations used in the GNM
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using micro-CT based experimental data, find potential areas for future
improvement and, more importantly, to quantify the role of important
parameters that control two-phase flow through porous media.

All GNM simulation results presented in this work correspond to
water flooding cycle after primary drainage (oil injection). During
primary oil injection the rock is assumed to be water-wet (receding
contact angles of zero) but its end point (initial condition for the water-
flooding cycle) is considered to be uncertain and is investigated through
the sensitivity studies. As a base case, we run the primary drainage
cycle up to a capillary pressure of 20 kPa.

2.4. Sensitivity studies on network model predictions

The uncertainty in the GNM predictions originate both from the
uncertainty in the model inputs and from the approximations used in
the model. The sensitivity to contact angle is performed by varying the
mean value or spread (standard deviation) of the measured distribution.
For other parameters which we have not quantified based on exper-
imental data (such as wettability, spatial correlation length, corner
connectivity and surface morphology) we simply choose a plausible
range and compute the change in the upscaled properties compared to
the base case values. The base case is a simulation where all parameters
are kept as close as possible to experimental data, as discussed in
Section 4; except for the parameter for which the sensitivity study is
being performed, whose base value is set to the mid value between its
lower and upper bounds (discussed in Section 5).

The uncertainties are presented in terms of mean signed deviation,
⟨𝛥⟩, and mean absolute deviation, ⟨|𝛥|⟩, from the base case values:

⟨𝛥𝜑⟩ =
∑

(𝜑upper − 𝜑lower)
2𝑁

(3)

⟨|𝛥𝜑|⟩ =
∑

(|𝜑upper − 𝜑base| + |𝜑upper − 𝜑base|)
2𝑁

(4)

here 𝜑base is the base case results of an upscaled property: capillary
ressure 𝑃𝑐 , porosity (𝜙), saturation 𝑆𝑤, absolute (𝑘abs) or relative
𝑘𝑟𝑤 and 𝑘𝑟𝑜) permeabilities, formation factor (𝐹𝐹 ) or resistivity index
𝑅𝐼). 𝜑upper and 𝜑lower are the upscaled property values corresponding
o the upper and lower bounds of the parameter for which the sen-
itivity analysis is being performed (e.g. contact angle, initial water
aturation; see Section 5). Finally, the summations (∑) are performed
ver 𝑁 which is equal to the number of times the sensitivity analysis
s repeated multiplied by the number of data points describing each
roperty. All sensitivity studies presented in this paper are repeated
or the four different representations of the void space discussed in the
revious section. Therefore, 𝑁 = 4 for single-phase properties (𝜑 = 𝜙,
abs or 𝐹𝐹 ) which are described using one data point per simulation.
or saturation dependent data (𝜑 = 𝑃𝑐 , 𝑘𝑟𝑤, 𝑘𝑟𝑜 or 𝑅𝐼) 𝑁 = 40 since
e sample them at ten equally distanced saturation intervals for each

imulation. The differences are computed in linear space, for the sake
f simplicity, which implies that larger relative permeability values
ontribute more to the reported differences. Nevertheless, this analysis
eads to a quantification of the relative importance of the input or
odel parameters for predicting the upscaled flow properties which are
resented as bar charts in Section 5.

. Experimental results

Fig. 2 presents the experimental results by Gao et al. (2020) with
ur evaluation of fluid saturations and uncertainty in capillary pressure
nd relative permeability as discussed in Section 2.1.

The fluid saturations presented in Fig. 2 are obtained using differ-
ntial imaging (see Appendix A). In this experiment a 3.5% solution
f Potassium Iodide was used to improve the water (brine) phase X-ray
ttenuation and increase its contrast with the oil. The uncertainty in the
4

ifferential imaging analysis can be reduced by increasing the contrast p
etween the brine and oil phase; however this needs to be optimized to
irstly ensure a linear relationship between the phase contrast and fluid
aturation and secondly to avoid image blur due to excessive blockage
f the X-ray signal by the contrast agent.

The uncertainty in relative permeability can also be further reduced
y a more accurate quantification of the pressure difference across the
ample and the tubing, which can be substantial when using viscous
luids in the experiment. Nevertheless, a similar level of uncertainty
an be deduced from experimental data obtained using traditional core-
cale experiments (DiCarlo et al., 2000; Reynolds and Krevor, 2015),
otentially due to the impact of core-scale heterogeneity on flow at low
apillary numbers.

The effect of various descriptors of the model and its inputs on the
redicted macroscopic two-phase flow properties are investigated using
he GNM in the following sections.

. Generalized network flow simulations

In this section, we demonstrate the sensitivity of the GNM predic-
ions on contact angle, on initial capillary pressure at the beginning
f water-flooding and on the image segmentation algorithm, which
ere three of the most important input parameters of the GNM model.
he GNM results are compared with their experimental counterparts

n Fig. 3. As described previously, the range of contact angles used in
he GNM simulations are chosen based on the experimentally measured
alues using the energy balance approach: 20–80◦ for the water-wet
WW) case and 40–120◦ for the mixed-wet (MW) case (Gao et al.,
020, Fig. 8C). The contact angles assigned to pores are chosen from
his range assuming a normal distribution with a standard deviation
qual to 25% of the contact angle range (50 ± 15◦ for the WW and
0 ± 15◦ for the MW case), and using a spatial correlation length of
± 1 pores (AlRatrout et al., 2018). The spatial correlation is achieved
y clustering adjacent pores into groups of 2 ± 1 pores and assigning a
ingle contact angle to all pores in a cluster. The range of uncertainty
n the upscaled flow properties in Fig. 3 are obtained by shifting the
ean of the contact angle distribution by ±20◦ .

The simulations are presented on the four segmentations of the pore
pace discussed in the previous section. The sandstone used in this
tudy is considered a clean sandstone—predominantly made of quartz
rains. Our segmentation of the clay phase from the micro-CT images
ndicated that only 0.3% of the bulk volume is made of clay minerals.
herefore, in the simulations we assume that clay accounts for 1.5%
f the pore volume (0.3% of total volume) which contains immobile
ater. This, however, is considered uncertain and hence is included in

he uncertainty studies presented in Section 5.
The initial condition for the water-flooding simulation is obtained

y running a primary drainage simulation down to a specific water
aturation or capillary pressure. The initial capillary pressure of the
xperiment cannot be quantified from curvature measurements due to
he limited resolution of the X-ray images. The initial water saturation
s estimated using differential imaging to be 12 ± 8%. Similarly, in
his work we run the drainage simulation down to water-saturations of
2 ± 8% to investigate the effect of initial condition on the predicted
apillary pressure and relative permeability.

The GNM and experimental results overlap, albeit with considerable
ncertainty ranges. The differences between the experiment and model
n many cases can be attributed to the finite resolution of the 3D
mages of the pore space and the network model, the differences in
he wettability of the simulations and the experiment, and also to
he differences in the treatment of boundary and initial condition at
he beginning of water-flooding. In the following section we present
more detailed quantification of the uncertainties introduced due to

ifferent descriptors of wettability, pore geometry, initial and boundary
onditions as well as an assessment of a selection of the model param-
ters used in the correlations and approximations of capillary entry

ressures, fluid volumes and conductivities. These sensitivity studies
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i

Fig. 2. Water-wet (a,b) and mixed-wet (c,d) experimental capillary pressure (a,c), and relative permeability (b,d) (Gao et al., 2020) versus saturation and their re-evaluated
uncertainty ranges (shaded areas). The dashed line in (a,c) corresponds to a mercury-injection capillary pressure measurements for primary drainage while the remaining plots
correspond to the steady-state water-flooding experiments. The initial point in 𝑃𝑐 is eliminated because the image resolution is insufficient for accurate curvature computation. The
nitial saturation and relative permeability can be read from the left-most points of the relative permeability plots; see also Table B.1.
Fig. 3. A comparison between GNM predictions of capillary pressure, 𝑃𝑐 , and relative permeability, 𝑘𝑟 with micro-CT based experimental data. The GNM simulations presented
show the sensitivity study on mean contact angle and on initial water saturation at the beginning of the water-flooding cycle, for the four different representations of the void
space. As shown in the figure legends, the initial water saturation is varied in the range of 12 ± 8% and the contact angle is varied by ±20◦ .
together with further comparisons with more experimental data and
with high resolution direct two-phase flow simulations on benchmark
5

geometries are necessary to quantify these discrepancies and further
improve our pore-scale experimental and modelling workflows.
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5. Uncertainties in GNM predictions

In this section, to have a more comprehensive but compact quan-
tification of the sensitivity, we average the uncertainty ranges of each
upscaled property (𝑆𝑤, 𝑘𝑟𝑤, 𝑘𝑟𝑜, 𝑅𝐼 , 𝑘abs, 𝐹𝐹 ) to obtain a single value
or the impact of various input or model parameters on the upscaled
low property. The results of sensitivity studies are further averaged
ver the simulations that have been performed over the four representa-
ions of the void space discussed in Section 2.3 and are presented as bar
harts. The input and model parameters are divided into (i) descriptors
f wettability distribution, (ii) pore geometry, (iii) initial and boundary
onditions and (iv) model approximations.

.1. Wettability

Fig. 4 shows the effect of uncertainty in the input parameters
escribing the wettability of the sample:
Advancing contact angle: The effect of advancing contact angle is

nalysed by shifting the mean of the contact angle distribution by ±20◦

ompared to the base case values discussed in the previous section.
Advancing contact angle range: The effect of the range of contact

ngle is analysed by shrinking and expanding the contact angle range
twice the standard deviations) by ±10◦ while keeping its mean value
ame as the base case.
Contact angle radius correlation: In this sensitivity study, the

adius correlation for contact angles is changed from uncorrelated to
ank correlation coefficients of ±1 with the inscribed radius.
Wettability spatial correlation: The wettability spatial correlation

f contact angle is varied by a factor of two, from a lower range
f 1–2 pores to a mid case of 2–4 pores and a higher range of 4–8
ores. The spatial correlation is implemented by clustering adjacent
ores to randomly selected seed pores until all pores are selected.
he spatial correlation length represents the number of pores in the
lusters. The contact angle assigned to each cluster is chosen from a
ormal distribution with mean and standard deviations of 50 ± 15◦ for
he water-wet, WW, simulations and 80 ± 15◦ for the mixed-wet, MW,
ase—same as the base case.

The results in Fig. 4 indicate that the contact angle values and their
istribution over the network play an important role in determining the
pscaled flow properties, hence indicating further research in this field
s needed to better quantify them for various porous media types and
luids. While we can assign a reliable average contact angle from en-
rgy balance, we cannot, at present, determine precisely pore-by-pore
alues.

.2. Pore space geometry

Fig. 5 shows the effect of uncertainty in the input parameters
escribing the pore space geometry, which are described below.
Corner connectivity number: Corner elements in our model are

ssumed to be connected to 0, 1 or 2 other corners from each side. This
s assigned based on proximity of corners and is not currently extracted
irectly from the underlying image. We only allow two corners to be
onnected if their medial axes make an angle less than 90◦ . To study
he impact of this parameter, here we further restrict the connectivity
f some of the corners at random to account for potentially lower
onnectivity in the underlying image, with probabilities of 0 (base
ase), 16.6% and 33%. This means that the probability that a corner
s connected to another corner from each side will be reduced from 1
o 0.834 and 0.67, respectively.
Sub-resolution water: Sub-resolution water accounts for water

bsorbed in clay minerals or residing in small pores and crevices not
esolved in the micro-CT image. These pores are assumed to have high
apillary entry pressures and therefore remain water-filled during the
xperiment and do not have a major contribution to flow conductivity
ue to their small size. However, they do contribute to water saturation
6

Fig. 4. Effect of uncertainty in the descriptors of contact angle distribution – mean
value, spread, correlation with inscribed radius and spatial correlation length – on the
upscaled properties. The lighter (and taller) bars show the mean absolute deviation,
⟨|𝛥𝜑|⟩ where 𝜑 is the parameter indicated in the plots’ legend. The darker bars show
the magnitude of the mean signed deviations, |⟨𝛥𝜑⟩|, whose signs are indicated by
the + or − symbols on top of them. Note that when the rank correlation coefficient
between an upscaled property and a sensitivity parameter is ±1, the bars showing
the two measures of sensitivity fully overlap and only the dark colour is visible. The
uncertainty ranges of the macroscopic properties are normalized based on an average
value, as indicated in the plot legends, to make them presentable in the same graph.

and electrical conductivity. The results in Fig. 5 are obtained from
simulations where volume fractions of 0, 1.5% (base case) and 3% of
void space (0, 0.3 and 0.6% of total volume, respectively) are assigned
to these sub-resolution pores. The sandstone used in this study is a
clean sandstone—containing a small clay fraction compared to many
sandstones found in hydrocarbon reservoirs. Therefore the sensitivity
study presented here can underestimate the uncertainty in such cases.

Voxel size: The effect of voxel size is studied using the image of
the Rock-A sandstone, which was drilled from the same rock formation
used in the rest of our analysis but was scanned at a smaller voxel size of
1.5 μm by TotalEnergies. It is then coarsened by factors of 1, 2 and 3 to
study the effect of voxel size, 1.5, 3 and 4.5 μm, respectively. Note that
this analysis does not account for imaging artefacts when scanning the
image at coarser resolutions where other factors such as image blur and
signal-to-noise ratio can play a role too; it solely accounts for the role
of the image resolution used in the network extraction and its impact
on flow simulations.

Surface morphology: Micro-CT images often have a degree of
mage artefacts such as a blur between the grey-scale values of the
ore-space fluids and the minerals. Consequently, their segmentation
an lead to images of the pore surfaces that are smoother than the
ctual geometry. To study the effect of surface morphologies that can
e removed during the image processing, we alter the voxels on either
ide of grain walls with a probability of 25% iteratively, for 0, 2 and
iterations. These images are then used in the network extraction and

low model to predict the impact of surface morphologies at the scale
f the voxel size on the network model predictions.

The results in Fig. 5 show that voxel size and surface morphology
lay an important role in the accuracy of single-phase flow simulation
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Fig. 5. Sensitivity of the upscaled properties to uncertainties in different descriptors of
the pore space geometry, including mean corner connectivity number/probability, sub-
resolution pores and crevices, voxel size and number of surface morphology alteration
iterations. See the caption of Fig. 4 for the interpretation of the bar charts.

of formation factor and absolute permeability. Additionally, voxel size
and corner connectivity number have a significant impact on two-phase
flow properties.

5.3. Initial and boundary conditions

Fig. 6 shows the results of our sensitivity analysis on the input
parameters that describe the initial condition at the beginning of the
water-flooding simulation and the boundary conditions that control the
flow rates and contribution of viscous pressure in the displacement
process:

Viscous pressure drop: In this analysis, both phase viscous pres-
sure drops were equal and set to 𝛥𝑃𝑤 = 𝛥𝑃𝑜 = 32, 320 and 3200 Pa
(6.2, 62 and 620 kPa/m) which partially covers the range of pressure
gradients recorded in the experiment (62–1680 kPa/m).

Water viscous pressure drop: Here the oil-phase pressure drop is
kept at 1 Pa while the water phase viscous pressure drop is varied from
𝛥𝑃𝑤 = 1 to 500 and 1000 Pa. Therefore, the simulation results represent
the effect of capillary pressure gradient (for example due to boundary
effects) which can lead to a different pressure gradient in the two fluid
phases.

Oil viscous pressure drop: Similar to the case of water-phase
pressure drop, here the oil (non-wetting) phase viscous pressure drop is
set to 𝛥𝑃𝑜 = 1, 500 and 1000 Pa while the water-phase viscous pressure
drop is kept at 1 Pa.

Upscaling bounds: The boundaries of the domain for which the
flow properties are computed were set to 20%–90%, 25%–75% and
5%–95% of the length of the images which are cylindrical domains
of length 1400 and diameter 1600 voxels in this paper. Note this
parameter relates to heterogeneity of the displacement process and can
behave differently depending on the physical scale of the flow domain
and the relative importance of viscous forces.

Initial saturation: The capillary pressure at the end of drainage
(initial condition for water-flooding) determines how much water is
7

r

left in corners of the pore space or in small pores and throats. These
water-filled elements in turn affect the capillary entry pressure compu-
tations and lead to a more water-wet behaviour compared to the case
where water is drained down to a high capillary pressure. As stated in
Section 4, we run the drainage simulation down to water-saturations of
12 ± 8% to investigate the effect of initial condition on the computed
flow properties using the GNM.

The results in Fig. 6 show that initial saturation/capillary pressure
plays a major role in controlling the displacement behaviour during
water-flooding. The initial occupancy of brine has an impact on the
whole displacement sequence: it is necessary to reproduce the starting
state of the water-flood as accurately as possible (Bultreys et al.,
2020). The viscous pressure drop and the size of the network used
in the computation of upscaling properties have a smaller impact.
This is to be expected, as the experiments were run in the capillary-
controlled regime where viscous effects are small, and the network
itself is sufficiently large to encompass a representative elementary
volume (Mostaghimi et al., 2012).

5.4. Model parameters

In Fig. 7 we investigate the effect of a set of the GNM parameters
that were found to have the largest impact on the prediction of upscaled
flow properties. These parameters are not input parameters and hence
the objective is not to quantify uncertainties but to better understand
the model and find where further refinement of the model can be the
most effective in improving its predictive power.

Piston-like curvature contribution to 𝑆𝑤: This coefficient is used
as a first order correction for computation of fluid saturations in piston-
like configurations. The volume of the phase toward the pore-centre
(non-wetting phase) is set to that computed using linear interpolation
of corner-level volumes (Raeini et al., 2018) minus this factor times
the contact angle normalized by 𝜋. This factor is set to 1 ± 0.5 in the
nalysis presented here. This feature has not been implemented in our
revious work, see Raeini et al. (2018, Eqn. (22)).
Pore sagittal curvature coefficient: Similarly, we modify the

quation used for calculation of layer sagittal curvatures at pore cen-
res, (Raeini et al., 2018, Eq (13)) by multiplying it with a constant
actor of 0, 1 (base case) and 1.33. Corner sagittal curvatures in this
nalysis represent the interfacial curvature along the corner medial axis
hich is subtracted from the total curvature to obtain the curvature in
xial cross-sections of the corners and in turn to obtain the snap-off
hreshold pressures and the volume-fraction of the water phase in the
ayers; see Raeini et al. (2018) for more details.
Conductance coefficient 𝐶1: This coefficient is introduced to fur-

her investigate and calibrate the correlations used to compute flow
onductivities of the corner levels, Eq. (D.3) in Appendix D. Here we
hose 𝐶1 = 0.1 ± 0.05.
Piston-like conductivity coefficient: This is a correction factor

ultiplied by the interpolated conductivity of fluids under a piston-like
onfiguration. Its values are chosen as 0.55 ± 0.45 in this analysis.

Fig. 7 shows that the conductance coefficient has a major effect on
he single-phase permeability and formation factor, but has a smaller
mpact on the relative permeability. Another important observation is
hat the parameters used to approximate the volume of fluids in piston-
ike configurations have a relatively high impact on the saturation
omputations. In comparison, the sagittal curvature has a moderate
mpact on the upscaled flow properties. Although the impact of these
arameters is lower compared to the impact of uncertainties in the
nputs, in particular contact angle distributions, it is important to
urther calibrate the model using direct simulations so that it can be
sed as a complementary tool to better understand the experimental
esults and to perform more accurate case studies to optimize the
icroscopic performance of the two-phase flow processes of interest.

Overall this section has shown that the wettability, voxel size (image

esolution) and initial conditions are the three most sensitive inputs
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Fig. 6. Sensitivity of the upscaled flow properties to viscous pressure difference between inlet and outlet boundaries of the network for water, oil and both phases, to initial
capillary pressure and to sample length used in the upscaling of saturation and flow conductivities. See the caption of Fig. 4 for the interpretation of the bar charts.
Fig. 7. Effect of a selection of model parameters used in computation of fluid
saturations, curvatures and fluid conductivities on the upscaled flow properties. These
parameters include the coefficients used in computation of piston-like curvature
contribution to 𝑆𝑤, sagittal curvature in pores, conductivity correlations in single-phase
and piston-like configurations. See the caption of Fig. 4 for the interpretation of the
bar charts.

to pore-scale models. Even though high-resolution imaging can resolve
most of the pore space, detailed features, such as pore wall roughness
cannot be captured. Furthermore, while energy balance does provide a
8

good average estimate of contact angle, it cannot yet be applied with
sufficient precision to assign pore-by-pore values. The result is that
there is a significant range of uncertainty in model predictions, which is
mirrored by uncertainties in the experiments themselves, again related
to image quality and the measurement of pressure differential. Future
improvements in experimental protocols and imaging facilities should
be able to reduce these uncertainties, and to increase the predictive
power and applicability of this imaging and modelling workflow to a
wider range of samples.

6. Conclusions

In this paper we have presented an overview of the uncertainty
in micro-CT based experimental data and compared the results with
network model predictions, considering the range of uncertainties in
network model parameters that are used to compute fluid volumes and
threshold curvatures as well as flow and electrical conductivities. Our
results demonstrate that the generalized network model predictions are
close to the range of the experimental data and hence the model can be
used to study and optimize two-phase flow processes at the pore scale.
Nevertheless, the complexities of two-phase flow through porous media
introduces significant uncertainties in our experimental data and in the
description of our pore-scale model inputs, which implies that a more
integrated experimental and modelling approach is needed.

We have presented several sensitivity studies that show the potential
of pore-scale models and reveal the pore-scale parameters that play
an important role in displacement processes. These sensitivity analyses
indicate that parameters such as wettability, pore geometry and surface
morphology have a large impact on the upscaled flow properties. Min-
imizing the uncertainties these parameters introduce in our workflow,
however, requires collecting more high quality experimental data with
lower uncertainty ranges, as well as performing high-fidelity direct
simulations to further improve our understanding of two-phase flow.
Such data can be used to improve the network model predictions both
in terms of local pore-by-pore parameters as well as upscaled flow

properties.
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Appendix A. Saturation uncertainty

Uncertainty in porosity and saturation can be estimated based on
variations on grey-scale intensity (𝐼) of different phases, assuming that
they scale linearly with the volume fraction of each phase. The porosity
can be estimated based on the intensity of the phases in the images:

𝐼 = 𝐼𝑠(1 − 𝜙) + 𝜙𝐼𝑎 (A.1)

→ 𝜙 = (𝐼 − 𝐼𝑠)∕(𝐼𝑎 − 𝐼𝑠) (A.2)

where subscripts 𝑎 and 𝑠 stand for air and solid phase respectively and
𝐼 stands for the average intensity of the whole image.

Similarly, fluid saturations can be estimated based on the intensity
of the phases in partially-saturated images – containing oil (𝑜), brine
(𝑏) and solid (𝑠):

𝐼 = 𝐼𝑠(1 − 𝜙) + 𝐼𝑜𝜙𝑆𝑜 + 𝐼𝑤𝜙(1 − 𝑆𝑜) (A.3)

→ 𝑆𝑜 =
𝐼 − 𝐼𝑤𝜙 − (1 − 𝜙)𝐼𝑠

𝜙(𝐼𝑜 − 𝐼𝑤)
(A.4)

here 𝐼 is the average intensity of the partially saturated image.
Differential imaging can be used to both simplify the equations

and reduce the uncertainty in the measured porosity and saturations.
When subtracting brine saturated image from the dry image, the solid
phase intensities cancel out (𝐼𝑠 → 0) and air and brine intensities are
subtracted from each other (𝐼𝑎−𝑤). Therefore, Eq. (A.1) can be written
as:

𝜙 = 𝐼
𝐼𝑎−𝑤

(A.5)

Similarly, when subtracting the partially saturated image from the
rine saturated image, brine and solid phase intensities cancel out and
alling the subtracted oil and brine phase Intensity 𝐼𝑜−𝑤, Eq. (A.3)
ields:

𝑜 =
𝐼

𝜙𝐼𝑜−𝑤
(A.6)

Therefore, in differential imaging, the remaining sources of uncer-
ainty are the intensity values for the void space in the differential
mage, 𝐼𝑎−𝑤, and the differential value of the oil-invaded regions, 𝐼𝑜−𝑤.

Additionally, increasing the contrast between the water and oil X-
ray attenuations will lead to lower uncertainties. However, there is a
trade-off as making one phase too opaque to X-ray leads to lower image
quality and increased image blur which makes image segmentation less
accurate.
9

Table B.1
Fluid saturations obtained using differential imaging, Eq. (A.6), and total pressure
difference between injecting and receiving pumps and the tubing pressure drop,
measured after each fractional flow experiment with the core sample removed (Gao
et al., 2020).

Water-wet Mixed-wet

𝑆𝑤 (%) Total Tubing 𝑆𝑤 (%) Total Tubing
𝛥𝑃 (kPa) 𝛥𝑃 (kPa) 𝛥𝑃 (kPa) 𝛥𝑃 (kPa)

16.7 ± 6.4 4.34 2.18 15.4 ± 9.6 4.11 2.12
35.6 ± 5.0 11.42 2.16 33.3 ± 7.5 11.49 1.89
42.9 ± 4.4 18.77 2.18 37.8 ± 7.5 34.29 2.18
46.6 ± 4.1 26.42 6.13 41.2 ± 6.6 48.40 6.11
51.2 ± 3.8 26.72 9.30 46.0 ± 6.1 61.49 10.28
54.4 ± 3.5 26.70 13.10 50.1 ± 5.6 66.99 13.11
60.7 ± 3.5 12.09 5.68 60.0 ± 4.5 23.69 5.68
63.3 ± 2.8 6.16 2.36 75.8 ± 2.7 4.55 2.36

Appendix B. Experimental saturation and pressure difference

Table B.1 shows the re-evaluation of the uncertainty in the water
saturations measured based on differential imaging discussed in Ap-
pendix A and in the measured pressure difference along the sample,
which is assumed to be the same as the measured pressure drop in
the tubing connecting the sample holder to the injecting and receiving
pumps described by Gao et al. (2020).

Appendix C. Image segmentation

Our current flow simulation model uses, for simplicity, a segmented
image for the description of the geometry. Typical micro-CT images
have a blur of few voxels across the boundary between fluid and solid
phases, and where the exact boundary is chosen during the image
segmentation can affect the hydraulic radii of pore throats and fluid
images. This in turn can have a major impact on the computed flow
transmissibility which scales with the radius to the fourth power.

Although there has been previous research on different image seg-
mentation approaches (Schlüter et al., 2014) for analysing micro-CT
images of porous media, our understanding of the effect of image
processing steps and the segmentation algorithm on the predicted single
and multiphase flow properties is incomplete. Global thresholding algo-
rithms such as the OTSU algorithm rely only on the grey-scale intensity
histograms and do not perform well for 3D geometries and for multi-
label segmentation. Other commonly used segmentation algorithms are
watershed and WEKA machine learning, which has been investigated
in Garfi et al. (2020) for their impact on image statistics and single-
phase flow properties. Supervised WEKA machine learning incorporates
the spatial distribution of the grey-scale intensities into account for
selection of its local thresholds. However, it requires human input to
set its internal parameters and its performance cannot be quantified
separate from those inputs. Watershed segmentation uses the image
intensity gradient to choose its thresholds to separate different regions
of the image. In particular, it can avoid the segmentation of image blur
(ring effects) into fluid layers. However, it cannot be used without ex-
tensive filtering if the image does not have relatively sharp boundaries
between different regions or does not have high signal to noise ratio.
Moreover, the location of maximum gradient may not necessarily be
the optimal value for separating different image regions with varying
sizes.

The algorithm presented in this section combines local and global
thresholding approaches to have a relatively simple but flexible al-
gorithm that aims to avoid the misclassification of image blur as an
intermediate phase and yet allows small fluid layers to be identified.
This however requires further investigation using a data driven ap-
proach to choose the parameters of the algorithm and of the image
enhancement algorithm, such as the number of iterations and kernel

sizes. In this work these parameters are simply chosen by visually
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inspecting the resulting segmentation of the image and comparing it
with the grey-scale image.

We first filter the images using a bilateral-mean with simultaneous
bounded sharpening algorithm, where each voxel value is recursively
altered based on weighted averages of its adjacent voxels as follows:

𝛿𝑣𝑏𝑙 =
∑

𝑤𝑏𝛿𝑣𝑗
∑

𝑤𝑏
, 𝑤𝑏 =

1
1 + 𝛿𝑣2𝑗∕𝜎2𝑣 + 𝑑𝑥2𝑖𝑗∕𝜎

2
𝑙

(C.1)

𝛿𝑣𝑠ℎ =
∑

𝑤𝑠𝛿𝑣𝑗
∑

𝑤𝑠
, 𝑤𝑠 =

min(𝛿𝑣2𝑗 , 𝜎
2
𝑣 )

𝜖 + 𝑑𝑥2𝑖𝑗∕𝜎
2
𝑙

(C.2)

𝛿𝑣min =
∑

𝑤𝑚𝛿𝑣𝑗
∑

𝑤𝑚
, 𝑤𝑚 = step(𝛿𝑣𝑗 ≤ 0) (C.3)

𝑣max =
∑

𝑤𝑥𝛿𝑣𝑗
∑

𝑤𝑥
, 𝑤𝑥 = step(𝛿𝑣𝑗 ≥ 0) (C.4)

𝑓𝑖𝑙𝑡
𝑖 = 𝑣𝑖 + min(max(𝛿𝑣min, 𝛿𝑣𝑏𝑙(1 + 𝑓𝑠ℎ) − 𝑓𝑠ℎ𝛿𝑣𝑠ℎ), 𝛿𝑣max) (C.5)

here 𝛿𝑣𝑏𝑙, 𝛿𝑣𝑠ℎ, 𝛿𝑣min and 𝛿𝑣max are changes to voxel values (𝑣𝑖) using
weighted bilateral, unsharp, max and min algorithms, which differ only
in the choices of the weighting factors, 𝑤, as shown in the equations
above. 𝛿𝑣𝑗 represents the difference between an adjacent (𝑗) voxel
intensity and the intensity of the voxel itself, 𝑣𝑖.

To segment the image, we first select an initial guess for different
threshold values that separate the image into different labels by visually
inspecting the grey-scale slices and their histograms. This initial guess is
used to assign the seeds for a clustering algorithm. A voxel is chosen as
a seed if it falls within 25–75 percentile of the threshold values for each
region. Voxels that have adjacent voxels assigned to one or more of
the segmentation regions are assigned to the region, 𝑔, with the lowest
rank, 𝑓𝑖,𝑔 , which is computed for each voxel, 𝑣𝑖, and region pair:

𝑓𝑖,𝑔 =
|𝑣𝑖 − 𝑣𝑔𝑗 | (1 − 𝑓𝐺) + 𝑓𝐺 |𝑣𝑖 − med(𝑣𝑔)| + 𝑐𝜎

min(1 + 𝑐𝑠𝑚𝑓𝑔 , 𝑓𝑐𝑎𝑝)
(C.6)

where med stands for median value of all voxels in the region; 𝑓𝐺 is a
weighting factor which, when set to a value closer to one, moves the
algorithm toward a global thresholding algorithm; 𝑣𝑔𝑗 is the average
of adjacent voxels belonging to region 𝑔 and 𝑓𝑔 =

∑

𝑤𝑔
𝑗 ∕

∑

𝑤𝑗 is a
measure of the fraction of the adjacent voxels belonging to region 𝑔.

aving a larger value for 𝑓𝑔 implies that small-scale features, whose
egmentation purely based on the grey-scale values has a high uncer-
ainty, are assigned to the label of the adjacent voxels with the highest
requency.

The image filtering and segmentation algorithms discussed above,
nd the image blur artefacts, effectively lead to a smoother represen-
ation of the solid surfaces compared to the actual pore geometry.
his can be compensated by reintroducing roughness to the pore wall
urface, by iteratively changing the voxels on either side of the void–
olid boundary with a given probability. The resulting image with
ltered surface morphology is used as the fourth representation of the
oid space in our network extraction and flow modelling in this work.

Fig. C.8 shows a slice at the middle of the segmentation of the
ry image by Gao et al. (2020) and the differential image (difference
etween dry and the fully brine saturated images) using the algorithm
resented above. A screenshot showing the qualitative difference of the
wo segmentations is also presented, which highlight potential sources
f uncertainty in direct simulation and pore network modelling results.

Both segmentations presented in Fig. C.8 under-predict the porosity
hile over-predicting the permeability, compared to the experimentally
easured value; see Table E.3. This problem can be addressed by

ltering the surface morphology as shown in Table E.4. Further research
s needed to have a reliable workflow for predicting these properties for
10

ifferent levels of imaging artefacts and different rock types. c
ppendix D. Corner conductivity correlations

In the generalized network model, the pore space is divided into
orner elements and each corner is further discretized into three sub-
lements whose conductivities are, in this work, obtained using the
orrelations presented below. The corner level 1 represents single-
hase flow. Corner levels 2 and 3 represent scenarios where voxels
nside inscribed spheres larger than, respectively, 1 and 0.7 times the
hroat radius are filled with a different fluid than those deeper in the
orner edge. Further details on how these correlations are used in the
eneralized network model are discussed in Raeini et al. (2018).

The corner electrical and flow conductivities (𝑔𝑒𝑖 and 𝑔𝑞𝑖 , respec-
tively), at discretization levels 𝑖 = 2 and 3, are obtained using the
following equations:

𝑔𝑒𝑖 = 𝜏𝑐
𝐴𝑖
𝐿𝑖

, 𝑖 = 2, 3 (D.1)

𝑔𝑞𝑖 = 𝜏2𝑐 (0.168 − 0.036𝛾𝑖)𝑅2
𝑖 𝑔

𝑒
𝑖 , 𝑖 = 2, 3 (D.2)

here 𝑅𝑖 is the inscribed radius corresponding to the corner discretiza-
ion level, 𝐴𝑖 is its cross-sectional area, 𝐿𝑖 is its length and 𝜏𝑐 is a
ortuosity factor, set to 0.95 in this study.

To estimate the conductivity of corner centres, we first estimate
hem using the corner parameters at the throat surface:

∗𝑒
1 =

𝐴1 − 𝐶𝑔
1𝐴2

𝐿1
, (D.3)

𝑔∗𝑞1 =
𝑅2
2𝑔

∗𝑒
1

8 − 4𝐴2∕𝐴1
, (D.4)

where 𝐶𝑔
1 is a coefficient used to perform sensitivity study and calibrate

the conductivity correlations in Fig. 7.
The conductivities above are corrected for the effect of expansion

of the half-throat cross-sectional area between the throat surface and
the adjacent pore centres:

𝑔∗∗𝑒1 = 𝑔∗𝑒1 𝑅𝑝∕𝑡 (D.5)

𝑔∗∗𝑞1 = 𝑔∗𝑞1 𝑅3
𝑝∕𝑡∕(1 + 𝛿𝑅𝑝∕𝑡 + 𝛿𝑅2

𝑝∕𝑡∕3) (D.6)

where 𝑅𝑝∕𝑡 = 𝑅𝑝
𝑅𝑡

and 𝛿𝑅𝑝∕𝑡 = 𝑅𝑝−𝑅𝑡
𝑅𝑡

are the expansion ratio and the
relative expansion of the maximal-sphere radius from the throat centre
to the pore centre.

Finally, the corner conductivities at level 𝑖 = 2 are added to these
conductivities to obtain the level 1 (single-phase flow) conductivities.

𝑔𝑒1 = 𝑔∗∗𝑒1 + 𝑔𝑒2, (D.7)

𝑔𝑞1 = 𝑔∗∗𝑞1 + 𝑔𝑞2 . (D.8)

Further details on these correlations and their incorporation in the
NM is discussed in Raeini et al. (2017, 2018).

ppendix E. Direct flow simulations on pore space and fluid im-
ges

.1. Single-phase flow properties

This section presents the results of direct single-phase flow simu-
ations (DNS) using the OpenFOAM finite-volume library. We use the
ame formulation as in Raeini et al. (2012) but for single-phase flow
nly. The finite-volume mesh is generated directly from the micro-CT
mage of the pore space without smoothing the voxelization artefacts
n the solid boundaries. The rationale behind using DNS instead of
NM is that GNM can predict DNS simulation results exactly if its

low conductivities are obtained from upscaling of the DNS results and

an reproduce them closely when the conductivities are obtained using
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Fig. C.8. Slices at the middle of (a) dry and (b) differential (dry-water) images, (c) segmented dry image (Gao et al., 2020) and (d) the differential image segmented using the
clustering algorithm presented in Appendix C, which shows the regions identified as sub-resolution or clay porosity in grey and the macro-pores in black. The discrepancy between
the pore space for the two segmentations is highlighted in (e).
F

correlations (Raeini et al., 2017). Furthermore, the focus of this section
is to study imaging and image processing artefacts while excluding
any approximations which might be introduced during the network
modelling workflow.

We have presented sensitivity studies for the effect of voxel size in
Table E.2, for the effect of segmentation algorithm in E.3 and for the
effect of surface morphology at the scale of the voxel sizes (3.58 μm) in
Table E.4.

The results in Table E.2 show that voxel size plays an important
role in the prediction of single-phase flow properties from micro-CT
images, despite its minor role in the two-phase flow results presented
in Section 5.2. The sensitivity of the single-phase flow properties to
different segmentations of the void space in Table E.3 is also significant.
Finally, surface morphology plays an important role both in prediction
11

s

Table E.2
Effect of voxel size on direct simulation of single-phase flow properties – porosity and
absolute permeability, 𝑘abs, and formation factor, 𝐹𝐹 , in the 𝑥, 𝑦 and 𝑧 Cartesian
directions – of the high-resolution image with an original voxel size of 𝛿𝑥 = 1.5 μm
provided by TotalEnergies.

Resample 𝛿𝑥 (μm) Porosity 𝑘𝑥 (D) 𝐹𝐹𝑥 𝑘𝑦 (D) 𝐹𝐹𝑦 𝑘𝑧 (D) 𝐹𝐹𝑧

1 1.5 0.188 1.713 19.00 1.826 18.34 1.764 19.17
2 3.0 0.169 1.193 25.70 1.364 24.82 1.246 25.98
3 4.5 0.151 0.767 36.98 0.915 34.97 0.805 36.99

of single-phase flow properties (Table E.4) as well as in the prediction
of two-phase flow properties using the GNM formulation (see Fig. 5).
urther investigation is needed to have a predictive workflow to obtain

ingle-phase flow properties without input from experimental data.
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Fig. E.9. Relative permeabilities computed using direct numerical simulation (DNS) on segmented images of fluid phases taken during the experiments, which are plotted against
the saturations based on the image segmentation and compared to the experimental data presented in Fig. 2. The top row shows the results on semi-log and the bottom plots are
on a linear scale. The left column shows results for the water-wet (WW) case, while the right column shows the mixed-wet (MW) results. The fluid conductivities are computed
by applying both slip and no-slip boundary conditions on fluid–fluid interfaces for the segmentation of fluid phases by Gao et al. (2020) (‘Seg.Dry, no-slip’ and ‘Seg.Dry, slip BC’
respectively). In the slip boundary condition, the gradient of velocity field is set to zero and no flow is permitted to cross the boundary. Additionally the DNS results are presented
for the segmentation of fluid phases by clustering algorithm in Appendix C, using the no-slip boundary condition on the fluid–fluid interfaces (‘Seg.Dif, no-slip’). The results show
that image segmentation has a higher impact than the boundary condition applied on the fluid–fluid interfaces.
Table E.3
Measured and direct simulation of single-phase permeability. Note that the porosity
values using segmentation are underestimated while the permeability values are
overestimated, potentially due to missing sub-resolution surface features in the seg-
mented images. The experimental results on the 10 cm3 sample are provided by
TotalEnergies.

Method Size 𝜙 𝑘abs (D) Explanation

Experimental ∼10 cm3 0.206 0.98 Helium porosity
Experimental 1.06 cm3 0.956 ± 0.06 Gao et al. (2020)
Experimental 1.06 cm3 0.203 ± 0.007 Differential imaging
DNS, seg.dry 49 mm3 0.162 1.64 Macropores only
DNS, seg.dif 49 mm3 0.188 ± 0.004 2.29 ± 0.13 Macropores only

Table E.4
Effect of surface morphology modification iterations on the predicted single-phase flow
properties using DNS for the segmentation of differential image (Seg.dif) using the
clustering algorithm described in Appendix C and the segmentation of the dry image
using thresholding (Gao et al., 2020). Surface morphology is introduced by flipping the
voxels on either side of the void–solid boundary with a probability of 0.25 successively
in multiple iterations (first column).

Roughness level Seg.dif Seg.dry

𝜙 𝑘abs (D) FF 𝜙 𝑘abs (D) FF

0 0.188 2.34 20.7 0.162 1.65 31.9
2 0.185 1.10 28.4 0.159 0.75 44.4
4 0.181 0.91 31.9 0.156 0.59 51.6

E.2. Direct flow simulations on micro-CT images of individual fluids

In order to have an assessment of imaging and image processing
artefacts, we have performed direct single-phase flow simulations on
12
voxels assigned to each fluid phase in the images (Hussain et al., 2014;
Berg et al., 2016) and plotted the simulation results in Fig. E.9. We have
performed the simulations using both slip and no-slip boundary condi-
tions on the fluid–fluid interface for the segmentation of fluid phases
by Gao et al. (2020). The slip boundary condition simulates a case
where there is no viscous drag force on the fluid–fluid interface while
a no-slip boundary condition represents a high resistive drag force;
either of these scenarios can occur during two-phase flow depending
on the fluid viscosity and relative velocity. Furthermore, in this Figure,
we have presented simulations on an alternative segmentation of the
pore-space and fluid phases using the clustering algorithm presented in
Appendix C, to have an assessment of the effect of image segmentation
on the predicted flow conductivities.

The simulation results in Fig. E.9 using the slip and no-slip boundary
conditions are similar (a difference of 13% on average). However, the
results in this figure for the two segmentations of the fluid phases show
that segmentation can have a major effect on the quantification of
the flow conductivities and that higher resolution images are required
to accurately quantify conductivities of the imaged fluid phases using
direct single-phase flow simulations.

Regardless of the segmentation and boundary conditions chosen,
the predictions of relative permeability are poor with a tendency to
over-predict the flow conductance. This suggests that simply applying
DNS on pore-space images, unless run on very high-resolution images,
is not necessarily a reliable method to assess flow properties. The
reason for this is that DNS cannot accurately capture flow in thin
wetting layers in pore space corners, nor can it account for the effect
of sub-resolution roughness. While pore network models simplify the
pore-space geometry, they can empirically account for these effects to

provide robust predictions.
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Appendix F. Supplementary data

Supplementary material related to this article can be found online at
https://doi.org/10.1016/j.advwatres.2022.104194. This includes plots
of relative permeability and capillary pressure that were used to ob-
tain the uncertainty ranges in the bar charts presented in the main
manuscript, in SVG (scalable vector graphics) format. It additionally
includes the raw data of the bar charts as CSV (comma separated value)
ASCII text files and as SQLite database tables.
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