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Abstract

Explainability, interpretability and how much they affect human trust in Al sys-
tems are ultimately problems of human cognition as much as machine learning,
yet the effectiveness of Al recommendations and the trust afforded by end-users
are typically not evaluated quantitatively. We developed and validated a general
purpose Human-AlI interaction paradigm which quantifies the impact of Al recom-
mendations on human decisions. In our paradigm we confronted human users with
quantitative prediction tasks: asking them for a first response, before confronting
them with an AI’s recommendations (and explanation), and then asking the human
user to provide an updated final response. The difference between final and first
responses constitutes the shift or sway in the human decision which we use as
metric of the AI’s recommendation impact on the human, representing the trust
they place on the AIl. We evaluated this paradigm on hundreds of users through
Amazon Mechanical Turk using a multi-branched experiment confronting users
with good/poor Al systems that had good, poor or no explainability. Our proof-of-
principle paradigm allows one to quantitatively compare the rapidly growing set
of XAI/IATI approaches in terms of their effect on the end-user and opens up the
possibility of (machine) learning trust.

1 Introduction

Human-facing Artificial Intelligence (AI) is making increasing progress from toy scenarios to real-
world deployment with safety-critical applications e.g. in healthcare or aerospace industries — little
Al will ever be used outside a scenario where it interacts with humans directly. The recent movement
towards Explainable and Interpretable Artificial Intelligence (e.g. Doshi-Velez & Kim, 2017; Rudin,
2019) aims to account for this role of Al, and to create AI models where the AI’s output and decision
making process can be better understood by its human users, whilst maintaining high predictive
performance.
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Building explainability and interpretability into Al recommender systems is a first step towards
thinking about how to engineer trust into Human-AlI interactions. A trusted Al system will be used
and adopted (taken into long-term use), its recommendations followed and not ignored as often seen
with “smart” alerts in hospital settings (Bedoya et al.,2019). More importantly a trusted Al decision
support system can be incorporated into human decision making workflows as a member of the
team — by allowing the Al to weigh in on the human decision (Gille et al.,[2020). Yet, much of the
XAI/TAI development history has been focused on algorithms that were thought up so as to give
better explanations, without a measure of the effect they might have on trust.

IAlis particularly essential when dealing with human-facing Al, and in safety conscious environments,
e.g. medicine (Wiens et al.,[2019), where the ultimate decisions on diagnosis and treatment will be in
the hands of medical experts, even when they use Al models to aid these decisions (Komorowski
et al.,|2018). Consequently, whether interacting humans trust the output of AI models becomes an
important factor in their usefulness, hence the need for interpretability (Payrovnaziri et al.,2020).

To enable Al deployment in regulated settings with advanced application domains, as in healthcare,
co-creation teams of human factors experts, clinical experts and Al researchers have started to design
and evaluate the usefulness of an Al system’s human interface — yet often this happens after much of
the machine learning research has completed. We as machine learning researchers can come up with
strategies for explainability or interpretability, but ultimately it is the human users themselves who are
the true arbiters of trust, the quality of explanations and the usefulness of interpretations. Crucially, the
explanation and interpretation development process is not automatable nor particularly quantitative.
Eventually, we want to be able to machine learn how to improve explanations, interpretations and
steer trust components. Towards this we present here a quantitative assessment framework which can
be applied from the start of the machine learning development process.

Here we propose a simple way of measuring and quantifying trust in Al systems in the form of a
Human-in-the-Loop protocol. Our approach is inspired by Bayesian Decision theory as successfully
applied by cognitive sciences and neuroscience (Tenenbaum et al., 2006} |Kording & Wolpert, 2006)
to model and predict human decision making behaviour quantiatvely. We directly assess how much
an Al can shift actual human decisions and responses, under different controlled conditions. It
is a general-purpose protocol that can be systematically used in supervised learning, specifically
regression settings. Our approach can deal with the natural variability of human decision making and
actions (Faisal et al.| 2008]), extracts more information per interaction by using a continuous report
(instead of categorical or ordinal questions) and in general avoids relying on subjective self-report or
momentary assessments (‘“Rate how much you trust...”) or choice of automation level. We present in
the following, the model for an example Al recommendation task based on tabular data (predicting the
school grade of pupils), derived explanations, the Human-in-the-Loop protocol and the experimental
results from running the experiment on hundreds of users online.

2 Related Work

Trust is a latent construct in a human’s mind which is challenging to measure explicitly (Toreini et al.|
2020). Previous work used self-report measures such as a subjective rating with questionnaires or
rating scales (Ajenaghughrure et al.l 2020) asking users to indicate their degree of trust; however,
self-report measures are too subjective to be viable in applied settings and are difficult to use due
to their inherent variability for e.g. automating trust engineering which may require determining
gradients of trust. Quantitative physiological and neural measures have been proposed, which use
social signal cues such as gaze behaviour (e.g. Walker et al.,|2019; |Lu & Sarter,2019) or physiological
measures such as EEG and GSR (e.g.|/Akash et al., 2018}; [Wang et al., [2018;; |Gupta et al., [2020).
Although these measures could be used for dynamic tracking they require special hardware, and
might suffer from ambiguities and confounders due to the indirect measurement and in many use
cases cannot be used for life-long calibration of trust. In contrast, behavioural measures where the
user’s actual actions and decisions are measured, are useful for applications in real-world situations.
Examples of behaviour used as a trust measure includes applications in choosing manual or automatic
tasks (e.g. (Okamura & Yamadal 2020) or choosing an automation level (e.g. Drnec et al., [2016;
Riley, |2018). Behaviours might not be observable if there is no interaction; nevertheless, behavioural
measures are practical and can easily be used as a basis for modeling and prediction.



Previous studies have shown that humans do not behave rationally when interacting with machine
learning algorithms and will often default to trusting in human judgement over a machine (Dietvorst;
et al., |2015). Trust is therefore an important consideration when creating explainable AI models.
Self-report measures such as Likert scales are a common way to measure trust (Bucinca et al., 2021}
Bansal et al., 2021} |Alarcon et al., 2021)). Other experiments take trust as a binary value, where a
participant is said to trust the model only if they follow the recommendation of the model (Lai &
Tan, 2019). Self-report measures as a measure of trust are especially problematic, as they are well
known to be affected by biases such as the perceived desirability of answering in a certain manner and
are inconsistent between subjects, over-relying on the subject’s perception of themselves (Paulhus
et al.| 2007). Trust in AI models has been studied previously for classification tasks such as disease
diagnosis (Anton et al., 2022 |Alam & Mueller, [2021). This is, however, not applicable to Al models
that make predictions on a continuous scale. For example, the Al Clinician (Komorowski et al.,[2018)
makes recommendations about the precise amounts of IV and vasopressor that should be delivered to
ICU patients. When a human is faced with a situation where their own prediction or recommendation
is different from that of an Al model, there are an infinite range of potential choices in between the
two recommendations which they might select.

Trust in Al as an abstract concept is relational, highly complex and involves at least two actors:
one actor trusts the other actor to act in the right way. This relationship is influenced by diverse
framing factors — culture, belief systems and context among others (Vollmer et al., [ 2018)). Here we
dramatically simplify this complex concept of trust into a measurable quantity through the shift in
a human’s response after being exposed to the AI's recommendation. This allows us to: A. put the
development of trust in Al, which is ultimately a problem situated in the human domain, into the
domain of sound scientific evidence, and B. to consider Al methods that can start learning from or
improve trust in Human-Al interactions by using a trust measure as a signal for machine learning
(e.g.|Okamura & Yamadal 2020).

Our approach is inspired by Bayesian decision theory and cue combination experiments (Yuille &
Biilthoff] |1996)). Experimental psychology studies have shown that humans use Bayesian inference to
combine cues from multimodal sources (Beierholm et al., 2008; [Jones| [2016). While this is often
studied in the context of sensory modalities (Kording & Wolpert, [2006; Maloney & Mamassian, [2009),
it can also be used to interpret how people combine their own beliefs with an external recommendation
to make a decision. Our framework thus allows us to objectively quantify human trust in an Al
model’s recommendation.

3 Methods

Our study aims to investigate human trust in Al which makes predictions on a continuous scale and
how different factors might affect this trust, including the quality of the Al, inclusion of explainability
and the quality of said explainability, among other factors such as demographics and opinions on Al.
We choose a grade prediction task, where given tabular data about student backgrounds, participants
(and our Al) need to predict the grade of the student. Our Al predictions and the relevant explainability
come from real trained models.

Grade prediction task — The tabular data task uses the publicly-available Student Performance
Data Set (Cortez & Silval, 2008)). This dataset contains the grades of Portuguese students on three
separate high school tests, as well as additional information about the students such as their number
of absences and the jobs of their parents. See Appendix [A]for the full list. The task for participants in
the experiment is to predict a student’s grade on their final test from the other information about the
student. As grades on the first two tests are highly correlated with performance on the final test, these
two initial tests are excluded from the features.

Al prediction manipulation — We used a simple feedforward neural network as our grade prediction
Al The model consisted of an input layer with 43 neurons, two hidden layers, one with 32 and the
next with 16 neurons, and an output layer with one neuron, using ReLU activations except for the
output neuron. Categorical features were dummy encoded, and no normalisation or scaling was
performed for numerical features or labels. The model was implemented in PyTorch (Paszke et al.,
2019), trained for 100 epochs with an MSE loss, using Adam optimiser (Kingma & Ba, [2015), and a
batch size of 5.



Al Performance: Good/Poor
Explanation: Good/None/Poor
Explanation in Training: Yes/No

12 branches

Figure 1: Our experiment consists of 12 branches, based on conditions involving the quality of the
Al the quality of explanations, and the inclusion or exclusion of explanations during training and
testing phases (see Fig. [2).

For our factorial experiment design (see Fig. [I)), we needed two grade prediction Als of different
performance levels, to represent our Good Al and Poor Al conditions. Nonetheless, the output of the
Poor Al still needed to look reasonable to human participants. The two Als were obtained by training
them using different learning rates. For the Good Al a learning rate of 0.003 was ideal and led to an
RMSE of 2.90. For the Poor Al, a learning rate of 0.00065 led to an RMSE of 4.1. This could be
worsened with other learning rates but that would lead to implausible grades.

Al explainability manipulation — To assess the effect of explainability on Al-assisted human
responses, we produce explanations for our Al, using LIME (Ribeiro et al., 2016), a well-established
method and one of the most popular (Average 1450 citations per year since publication according
to Google Scholar). LIME aims to produce interpretable post-hoc explanations, by using simple
machine learning models such as linear regression or decision trees. For tabular datasets like ours,
an input sample is perturbed by picking different values for numerical and categorical features,
and swapping the values for binary features. The explanation then takes the form of a figure that
demonstrates the features which contribute most positively and negatively to the prediction. Positive
features are those features which lead to an increase in the predicted grade if they are included.
Negative features lead to a decrease in the grade, with the final output being a balance of positive
and negative features. Weights of the features show how much the features contributed and therefore
which features contributed most. See screenshots of our experiment interface in Appendix |B| for an
example of the LIME explanation visualisations.

For the factorial design in our experiment, we require two explanations, serving as Good and Poor
Explanations. LIME currently does not have a metric to assess the quality of its explainability output.
We decided to cross-use the explanations to make up for this, i.e. an explanation is considered a good
explanation, if it corresponds to the Al model you are facing. Conversely, a poor explanation will be
one that does not correspond to your Al model. As an example, if a participant is facing the Poor
Al and the explanation meant for the Good Al, then we will consider them as having faced a Poor
Explanation.

Crowd sourcing — Amazon Mechanical Turk (often referred to as MTurk) is a crowdsourcing plat-
form where ‘requesters’ (experimenters) can request completion of tasks from ‘workers’ (participants).
Each task completion earns the worker a reward specified by the requester. Additionally, requesters
can provide workers with a bonus reward, which can be based on their performance during the task.
This system of payment works well for our study, as participants can be rewarded without directly
collecting personal details like banking information.

Our experiment was created as a webpage using HTML and JavaScript. The jsPsych (de Leeuw
JR, 2015) library was used for implementation, as it provides a framework for conducting online
psychological style experiments. The main use of this library was to aid with the creation of multiple
trials of a particular type, and to measure the reaction time of participants for each trial. The library
offered a plugin template, which was used to create several specific plugins for each part of a trial. In
addition, there were several plugins which were used for gathering demographic information and
displaying instructions to participants.

The webpage was hosted on our lab server. This was implemented using Docker and node.js. The
jsPsych library returns a JSON object containing all of the experimental data collected during the
experiment. Participant data was stored in a SQLite database on this server, only if participants
completed the entire experiment.
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Figure 2: Flow chart of our training and testing phases for our Human-in-the-Loop protocol.

Human-in-the-Loop protocol — The experimental procedure overview is shown in Fig.[2| Partic-
ipants start on an overview page that shows them the sections to follow, and roughly how much
time each section is expected to take. Once they enter the experiment, they are asked to read an
information sheet and to provide their consent to take part in the study. Our study has received
ethical approval from the Imperial College London Science Engineering Technology Research Ethics
Committee, reference number 20IC6224. Participants’ explicit consent is required for participation
in the study, but they can opt out of their data being used in different supporting studies. After
consenting, participants are asked demographic questions regarding their gender, age and education
level. In addition, participants answer three questions regarding their attitude towards Al, using a
5-point Likert scale (see Appendix |C]for a list of questions). Once this part of the experiment is
complete, participants are given further instructions regarding the task they are about to perform.

Our experiment involves two phases, training and testing, each preceded by their own instructions
page. The aim of the training phase is to give the participants a chance to get to know the grade
prediction task, but also to familiarise them with the AI and explainability they will be facing, so that
they form a prior on the AI’s performance. To this end, in the training phase, participants are faced
with an stimulus (i.e. student features, as listed in Appendix [A), and asked to provide their grade
prediction. Once the prediction is submitted, the participants are provided with feedback: the score
they obtained, what the correct answer was, what the Al predicted, and (if they are in an explainability
branch) what the explanation for the Al prediction is. This is repeated for 30 trials, see Fig.

The training phase is followed by the testing phase. The participants are provided with a stimulus
and are asked to input their grade prediction response, mark the features they used to make their
decision (this allows us to consider their overlap with the Al, based on LIME output), and provide a
confidence range for their prediction (see Fig. [3]and Fig. [ST|in Appendix [B). The participants will
see an estimate of what their score would be if they were correct as they set the confidence range;
the larger the range, the lower the score they will receive which means a lower cash bonus prize
at the end of the experiment (see Appendix |B|for screenshots of the interface). Once participants
submit this, they are presented with the Al’s prediction for the same stimulus, and (if they are in an
explainability branch) the explanation for that prediction. At this point, the participants are given a



chance to update their response. Once this is submitted, at every other trial, participants are provided
with their cumulative score for motivation purposes. This process starts with a practice trial, followed
by 30 actual trials, see Fig.[2} At the completion of the testing phase, the participants are given the
chance to provide any feedback, and provided instructions on how to receive their payment through
MTurk.

The above experimental procedure is implemented in 12 branches. These branches are based on
combinations of the following conditions: Interacting with a Good Al vs. a Poor Al; seeing Good,
Poor or No explanations in the testing phase; and receiving or not receiving explanations in the
training phase (the type of explanations follows that of the testing phase, with a good explanation used
for cases where there is no explanation during testing). See Fig.[T|for a breakdown of the branches.
This design allows us to control for different conditions and see the effects of Al performance and
explanations on human responses after Al input.
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Figure 3: Web-interface for human subjects, accessed through Amazon Mechanical Turk. Top
area shows the individual student’s data with a tick box per feature for subjects to tick subjectively
important features. Middle area contains a slider to indicate the predicted grade. Bottom area contains
a reminder of the grading scheme (colour coded with the slider, and giving grade average). Al
recommendations and explanations are displayed in a similar interface, with the slider to input the
2nd response (see Fig.[ST]in Appendix [B).

4 Results

Our experiments are continuously running on MTurk. At the moment, we have obtained results from
167 participants. The participants are 27.5%/72.5% female/maleﬂ, and aged 36.4 £ 10.1 (mean +
standard deviation). Demographics can be seen in Fig.[S2] in Appendix [D}

2Choices were: Female, Male, Non-binary, Other, Prefer not to say — but so far only Male/Female choices
were made
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Figure 4: Performance of participants in the training phase. Top: Absolute error throughout the trials,
showing mean and standard error, with no learning effect. Bottom: Comparing performance levels at
the beginning and end of the phase, by breaking the trials down into blocks of size 5, 10 and 15, and
comparing mean absolute error. We see no significant differences, indicating no learning.

Our training phase is designed to familiarise the participants with the Al and potential explanation
they will be facing. Additionally, the training phase is there for the participants to get to know
the prediction task, so that we remove any learning effects from our actual Al interaction trials.
Figure[d] top, shows the absolute error results of our participants during the training phase. We see
no learning effect, with a steady performance throughout, further validated by breaking down the
trials into blocks of sizes 5, 10 and 15, and then comparing the first and last blocks for significant
differences in performance. We see no signifcant differences in any of the block size cases (two-sided
Mann-Whitney-Wilcoxon test, with Bonferroni correction), see Figure ] bottom.

For the purposes of this work, we look into the main questions regarding the effect of Al performance
and the quality of explanations on the influence of Al over human decisions, and the subsequent
performance of humans during the testing phase of our protocol. Fig. [} inspects the role of Al
performance and explanations, on human performance, considering mean performances per stimuli
across subjects, and then comparing the grand average across stimuli. We see that humans paired
with the Good Al reduce their error significantly (paired t-test, with Bonferroni correction, p < 0.01)
on their updated response (i.e. after they receive the Al input). This reduction is not significant when
humans are paired with a Poor Al, suggesting that the Poor AI’s recommendation is not helping the
human decision maker.

When breaking the results down by the explainability conditions, and looking only at the updated
response errors (i.e. final performance, after exposure to the Al prediction), we see that with the
Good Al, having a Good Explanation leads to significantly lower error, when compared with the case

Poor AT Good Al & Good X Good Al & Poor X Good Al & No X Poor Al & Good X Poor Al & Poor X Poor Al & No X
Istprediction  2nd prediction  2nd prediction  2nd prediction  2nd prediction  2nd prediction  2nd prediction
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Figure 5: Prediction error of the human subjects under different Al interaction conditions. The error
is measured as the difference between the actual value and the predicted value. The columns are
the errors of human users predicting the answer while being exposed to different branches of our
explainability paradigm (see main text for details): Good/Poor AI=AlI prediction quality seen by user,
Good/Poor X=AlI explanation quality seen by user, No X=no explanation seen. Horizontal square
brackets indicate test for significant statistical differences between different predictions errors (ns =

not significant, * = 5% level, ** = 1% level). Bars are mean = standard error.
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Figure 6: Shift of human response between original estimate and revised estimate after having
been exposed to the Al. The columns are the absolute response shift of human users while being
exposed to different branches of our explainability paradigm (see main text for details): Good/Poor
AI=AI prediction quality seen by user, Good/Poor X=AI explanation quality seen by user, No
X=no explanation seen. Horizontal square brackets indicate test for significant statistical differences
between different predictions errors (ns = not significant, * = 5% level, **** = (0.01% level). Bars are
mean = standard error.

of having a Poor Explanation (p < 0.01), or No Explanation (p < 0.05, see Fig.[5). However, there
is no significant difference between having Poor Explanation or No Explanation, suggesting that a
poor explanation will not be helpful, to the point that outcomes will be similar without explanation.

Looking at the same breakdown when humans are paired with a Poor Al, we see that a Good
Explanation still results in a significantly better performance by the human compared to having a
Poor Explanation (p < 0.01). However, in this case, the performance with good explanations is not
significantly different to that with no explanation at all (see Fig. ), suggesting that the Al quality is
more valuable in improving human outcomes, than explanations.

Aside from the effect of our different experiment conditions on human performance in the task, we are
also interested in examining how much humans are influenced by the AI’s input, given the different
conditions. Note that a large influence will not necessarily result in a reduced error, therefore, here we
look at the absolute shift in human-predicted values between the first and second responses. Similarly
to the error plots, here we look at mean absolute shift across participants for given stimuli, and then
consider the grand average over all stimuli, see Fig. [ for a summary.

We see that the Good Al causes a significantly larger shift than the Poor Al in the humans paired
with it (paired t-test, with Bonferroni correction, p < 0.05). Interestingly, breaking down the results
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Figure 7: Human absolute response shift versus human absolute error in their first prediction, showing
a positive correlation. Participants making larger errors are more heavily influenced by the Al input,
leading to a larger shift between their first and second prediction responses (r = 0.31,p < 0.001) —
Gaussian noise (u = 0,0 = 0.3) added as jitter to scatter plot for better visibility.



for those paired with the Good Al by explanation quality, we see that No Explanation actually leads
to a significantly larger absolute shift than receiving a Good Explanation (p < 0.05), while other
explanation conditions do not result in significant differences. When looking at humans paired
with the Poor Al, we see that Good Explanations and No Explanation, result in significantly higher
response shifts than facing a Poor Explanation (p < 0.0001), while the inclusion of Good Explanation
or lack thereof makes no significant difference.

Looking at Fig. [5|and Fig. [6|together, we see that in the case of the Good AI, No Explanation leads to
a significantly higher response shift, and a significantly higher error, compared to Good Explanations.
This could indicate that the Good Explanation is helping the participant work better with the Al,
settling on better shifts that lead to lower errors. When paired with a Poor Al, the higher shifts
with the Good or No Explanation compared to Poor Explanations, only lead to significantly lower
error with the Good Explanation shift. However, this lower error is not significantly lower than
that obtained without any explanation. This combined with the Good Al results, suggests that Al
performance has a more important role on Human-AlI decision making, than explanation quality.
Finally, looking directly at absolute response shift versus absolute error on first predictions, we see
a positive correlation (r = 0.31,p < 0.001, see Fig.[7), indicating that participants with a higher
prediction error, are more impacted by the AI’s input, resulting in a larger response shift when they
submit their 2nd prediction.

5 Discussion

In this study we presented a quantitative trust measure derived through a two-step human decision
making protocol where humans are exposed to different forms of Al recommendations and explana-
tions. The protocol was designed to be suitable for high-throughput large-scale human-in-the-Loop
studies and demonstrated to work efficiently on the Amazon Mechanical Turk with hundreds of users
completing the hour long study.

‘We manipulated the quality of the AI’s predictions exposing users to either 1. a “Poor AI” system
that had a prediction error higher or at best comparable to that of must human users or 2. a “Good AI”
system that had systematically lower prediction error than human users. The underlying Al system
was in both cases a deep learner with manipulated learning rates.

Due to our human subject protocol (see Fig. 2, users become aware of the Al system qualities
through experience during the training phase. In the testing phase we found that human subjects
are in general sensitive to the quality of the Al, with the better Al resulting in lower final response
errors (see Fig. [) and larger response shifts (see Fig. [6)). Furthermore, the amount of impact that the
Al prediction quality had on users was bigger the worse subjects performed at the prediction task
themselves (see Fig.[7). These results are thus consistent with the idea that humans place their trust
based on evidence of expertise: better Al prediction ability is more trusted by users, especially if they
themselves are not performing as well.

The focus of our thinking was to understand how explanations affect the impact an Al has on the
human user. In this initial study we limited ourselves to simple manipulation of this explanation
condition: either providing no explanation or one specific form of explanation, here the most important
features contributing to the AI’s decision through LIME (Ribeiro et al.,[2016). In addition, we varied
the quality of explanation provided. Different explanation qualities were implemented by confronting
users with an explanation generated by the Al system that matched the prediction response (e.g. Good
Al prediction and Good Al explanation shown) or one that was mismatched (e.g. Poor Al prediction
and Good Al explanation shown — referred to as a Poor Explanation).

While for this initial study the variations on task, Al operation and explanation are limited by design,
these few options already resulted in a combinatorial number of 12 experimental branches (see
Fig.[I)), that we evaluated and ran on hundreds of users to survey whether these factors are actually
contributors to trust in human-Al interactions. This study design allowed us to discover that humans
paired with Al input performed best when exposed to the Good Al with Good Explanations (as
expected) while those receiving no or poor quality explanations were second best (see Fig.[5). Thus,
Al prediction quality mattered considerably. Users exposed to combinations of Poor Al or Poor
Explanations or both made respectively ever larger errors. We found that users generally trusted the
Good Al predictions more (i.e. had a larger response shift, see Fig.[6)), and here the presence of an
explanation — irrespective of its quality (!) — was a bonus on the response shift. This suggests that



the Al is treated by the subjects as a trustworthy expert based on their experience of its previous
prediction (past performance predicting future performance and thus engendering trust).

In contrast the presence of Al explanations provide a trust bonus (vs. no explanation, see Fig. [6),
however, the fact that non-matching explanations also provided an indistinguishable trust bonus from
matching ones, suggests that users where reassured by the presence of an explanation but did not
evaluate its quality specifically. Conversely, users exposed to the Poor Al system were more sensitive
to the quality of the explanations. Thus, in this first study we find that good predictions provide the
largest trust bonus, and then the presence of explanations (but not necessarily their quality) induces
larger response shifts. This illustrates how the experience of good predictions and the semblance
of explanation may sway users (just as in human-human settings) often more than the details of
the explanation. There are many factors that need to be investigated before we can start deducing
general design principles, e.g. how sensitive are our results to the presentation or nature of the
task (e.g. predictions based on tabular data vs predictions based on images), to the nature of the
human decision maker (e.g. common sense type predictions vs expert predictions in safety-critical
settings), the nature of the explanations needing to go beyond feature importance, the importance of
exposing users to training vs no training experience with the AI (which depends ultimately on the
deployment scenario of an Al recommender sytem). Our preliminary findings for this limited study
pose interesting challenges and implications for the field of trustworthy and explainable Al.

Extensive research has been conducted to examine the factors that influence a human’s trust in
autonomous agents (Parasuraman & Rileyl, 1997 Robinette et al., 2016) - it is beyond the scope
of this technical focused study to list or enumerate these all, but broadly we can identify machine-
related factors, human-related factors and environment-related factors. Our protocol focused on
the machine-related factors as the driving force and environment-related factors by giving subjects
training experience to get to know the Al, modulating the nature of its presentation of information
and its quality. Some human related factors have been captured in terms of demographics and
questionnaires for the users who participated in our study but we have excluded them from results as
it would be beyond the scope of this short technical paper. Other human factors such as an individual’s
overall tendency to trust, so called situational trust, are partially captured by our design, somewhat
reflected in our finding that the presence of explanations is influential (but less so than the quality
of explanations matter). However how the cost/benefit of the human’s final decision influence the
degree of trust have not been captured in the presented design. Our protocol contains an explicit
training phase, thus the notion of dynamically learned trust (trust formed during an interaction)
was measured in steady state, and the transients were not measured. Further demographic analysis
of the users participating in our study will reveal how much their “a priori” trust in Al systems,
attitude to technology, education and other factors may contribute to a better understanding on how
to dynamically personalise Al systems better.

Crucially our method provides a directly measurable quantitative signal in form of the “Response
Shift”, that we can use to objectively evaluate and compare different Al explanatory methods on a
common currency and task, which will help shape and understand which algorithms will have the
most impact on human recommendations and help settle and diversify the debate about which of
the logic-based, neurosymbolic, causal and other explanatory approaches are best suited for which
applications, tasks and users. Importantly, we obtain a numerical signal that we can feed back directly
into a machine learning system to automatically improve and personalise the nature of interaction
with the human and optimise trust — thus our method enables gradient-based learning of trust. Of
course, there is nothing that limits our protocol to just measure of trust in Al systems, it could also be
used to measure human-human trust interactions objectively using the same protocol.

Our measure of trust is based on a very specific measurement procotol, and it is known that the
task design (when is what information provided and in what order) does matter. Here, we chose
this specific design as it established a measure of pre-Al baseline on each trial, that we can then
differentiate directly with the response of the human post-Al Building an Al system that engenders
trust has many benefits, such as the personalisation of trust to individual ways of reasoning and
thinking about trust. However, this in itself bears risks that machine learning researchers need to
be aware of, most importantly the risk of users granting blind trust to a system, especially one
that has optimised itself to influence the user’s trust, where the trust afforded outpaces that actual
trustworthiness. Perhaps a lessen that we can take away from this study already is that Al systems
and trust in them, are ultimately problems founded in human cognition and psychology, not just Al,

10



as we find that human users can misplace trust in our AI recommendations that are not deserved, or
some (a few) fail to trust those that are trustworthy or at least more precise than the human user.
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A Overview of grade prediction dataset features

Table 1: Tabular features, their category in the web experiment, and their possible values. Note:
Based on table 1 in (Cortez & Silva, [2008)). Values column represents values as they were shown to
participants in the experiment, not the values in the dataset. Most nominal values were encoded with

integers in the dataset.

Feature name Category Values

Guardian Family Mother, father, other

Mother’s job Family At home, civil services, teacher, healthcare, other
Father’s job Family At home, civil services, teacher, healthcare, other
Parent’s cohabitation status Family Together, apart

Mother’s education level Family None, up to 4th/9th grade, secondary ed., higher ed.
Father’s education level Family None, up to 4th/9th grade, secondary ed., higher ed.
Family size Family Three or fewer, more than three

Family educational support Family Yes, no

Quality of family relationships Family Very bad, bad, average, good, excellent

School name School GP (Gabriel Pereira), MS (Mousinho da Silveira)
Reason to choose this school School Closeness, school reputation, course prefs., other
Number of absences School 0-93

Travel time to school School <15min, 15-30min, 0.5-1h, >1h

Weekly study time School <2h, 2-5h, 5-10h, >10h

Past class failures School 0-4

Extra educational school support ~ School Yes, no

Wants to pursue higher education  School Yes, no

Extra paid classes School Yes, no

Attended nursery school School Yes, no

Age Other 15-22

Gender Other Female, male

Address Other Rural, urban

In a romantic relationship Other Yes, no

Current health status Other Very bad, bad, average, good, excellent
Extra-curricular activities Other Yes, no

Internet access at home Other Yes, no

Free time after school Other Very low, low, average, high, very high

Going out with friends Other Almost never, not often, sometimes, often, v. often
Workday alcohol consumption Other Very low, low, average, high, very high

Weekend alcohol consumption Other Very low, low, average, high, very high
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B Experiment interface

( A) Student 1

nge that you think

You must interact with the slider before you can continue

(B) Student 1

You must interact with the slider before you can continue

Figure S1: Further examples of our web-based experiment interface. (A) Slider for participants to
indicate the confidence range for their prediction, note that the interface shows their expected score if
they are correct, and how it reduces with a larger range. (B) Al prediction and explanation provided
to participants. LIME explanation is shown, with the AI’s prediction shown with the participant’s
first prediction on the grade bar. Participants are then allowed to respond with a second prediction.

C Questionnaire on attitude towards Al
The questions that all participants are asked to answer are:

* “How do you feel towards Artificial Intelligence (Al) in general?”
* “How do you feel about Al being used to help make decisions in medical settings?”

* “How do you feel about Al being used to help make decisions in education settings?”
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D Demographics
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Figure S2: The demographics of our 167 participants.
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