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Nonideality-Aware Training for Accurate and Robust
Low-Power Memristive Neural Networks

Dovydas Joksas,* Erwei Wang, Nikolaos Barmpatsalos, Wing H. Ng, Anthony J. Kenyon,

George A. Constantinides, and Adnan Mehonic*

Recent years have seen a rapid rise of artificial neural networks being
employed in a number of cognitive tasks. The ever-increasing computing
requirements of these structures have contributed to a desire for novel
technologies and paradigms, including memristor-based hardware
accelerators. Solutions based on memristive crossbars and analog data
processing promise to improve the overall energy efficiency. However,
memristor nonidealities can lead to the degradation of neural network
accuracy, while the attempts to mitigate these negative effects often introduce
design trade-offs, such as those between power and reliability. In this work,
authors design nonideality-aware training of memristor-based neural
networks capable of dealing with the most common device nonidealities. The
feasibility of using high-resistance devices that exhibit high I-V nonlinearity is
demonstrated—by analyzing experimental data and employing
nonideality-aware training, it is estimated that the energy efficiency of
memristive vector-matrix multipliers is improved by almost three orders of
magnitude (0.715 TOPs~'W~! to 381 TOPs~'W~") while maintaining similar
accuracy. It is shown that associating the parameters of neural networks with
individual memristors allows to bias these devices toward less conductive
states through regularization of the corresponding optimization problem,
while modifying the validation procedure leads to more reliable estimates of
performance. The authors demonstrate the universality and robustness of this
approach when dealing with a wide range of nonidealities.

1. Introduction

Artificial neural networks (ANNs) are now
routinely used in machine learning tasks
ranging from text generation!! to au-
tonomous driving.[?l However, rapidly in-
creasing number of parameters in mod-
ern ANNs is making them time- and
power-consuming during both trainingl®]
and inferencel* stages. This makes it chal-
lenging to apply machine learning ap-
proaches in environments where resources
are tightly constrained.l>®!

One of the proposed solutions to improve
the efficiency of ANNs has been to adopt
different computer architectures. The need
to transfer data between memory and com-
puting units in the von Neumann archi-
tecture is the main bottleneck in modern
computers!’l; this is especially evident in
machine learning where large amounts of
data are utilized. In this specific case, an
alternative can be memristor-based ANNs,
or memristive neural networks (MNNs).
With this approach, memristive crossbar ar-
rays are used to physically compute vector-
matrix products, which are one of the most
fundamental operations in ANNs.[89! This
is done without the need to constantly move
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large amounts of data: matrix entries are encoded into memris-
tor conductances, vector entries—into applied voltages, and the
result of the operation is extracted from the output currents pro-
duced according to Ohm’s law and Kirchhoff’s current law.®!

Memristors—when wused and programmed as analog
devices—can encode values at much higher density, but at
a cost of lower precision. A number of nonidealities may pre-
vent from accurately programming device conductances or
may cause deviations from intended electrical behavior. Such
nonidealities include stuck devices, device-to-device (D2D) and
cycle-to-cycle variability, drift in resistance states, line resistance,
I-V nonlinearity, and others.!%]

Potential solutions do exist but many of them introduce a num-
ber of trade-offs. For example, to ensure more linear [-V char-
acteristics, one may use low-resistance devices!'!l; however, this
results in higher power consumption. Alternatively, the effects
of [-V nonlinearities may be minimized by utilizing pulse-width
modulation,!*?] but that comes at a cost of increased clock cycles
for each encoded input.[*]

© 2022 The Authors. Advanced Science published by Wiley-VCH GmbH
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Figure 1. Overview of the novel ex situ training technique designed for memristive neural networks. Redefining the output operation of synaptic layers
allows to take non-ohmic device behavior into account, which makes working with power-efficient high-resistance (and high-nonlinearity) devices feasible.
Relating weight parameters in artificial neural networks to individual conductances in crossbar arrays enables to further decrease power consumption
through regularization, as well as to adapt to nonidealities that depend on the conductance values. Using an aggregate validation metric provides a

more reliable way of assessing memristive neural network performance.

Other techniques of dealing with memristor nonidealities in-
clude the following:

1) in situ (re)training of weights (or just a subset of them!!*))
to recover from the effects of nonidealities, > includ-
ing in convolutional neural networks (CNNs),['*2% recurrent
structures,?% and in neural networks used for reinforcement
learning!?!]

2) modifying device structure, including inserting a buffer
layer,[??] inserting an electro-thermal modulation layer,?*) and
adopting bilayer structurel]

3) using additional circuitry!?>2%] to ensure more stable behavior.

However, many of these approaches are technology-specific and
thus difficult to apply to different types of devices.

When optimizing the performance of memristive systems
(as opposed to individual devices), software approaches may be
preferable because they are usually technology-agnostic. For gen-
eral applications, mapping or redundancy schemes can be used
to mitigate the effects of faulty devices!?”) or line resistance.[?*]
In the specific context of MNNs, multiple smaller nonideal net-
works may replace a large one and increase the accuracy in this
way.[??] Alternatively, modifying ex situ training has been pro-
posed: altering the cost functionl*°! or injecting noise into the
synaptic weights*!! can make MNNs more robust to the effects
of nonidealities.

Memristor-oriented ex situ training is indeed a very promising
method of making MNNs feasible. However, it has been applied
by considering only a limited number of nonidealities, while the
robustness of this technique is not well understood. In this work,
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we propose a number of improvements to memristive ex situ
training, which are summarized in Figure 1.

First, our novel training technique addresses the problem of
nonlinearity. Deviations from the linear relationship between in-
puts and outputs in crossbar arrays are a major obstacle; however,
none of the aforementioned methods directly address this issue.
Although existing works often take conductance deviations into
account during ex situ training, crossbar arrays are still usually
modeled as structures computing a product of a vector of voltages
and a matrix of conductances. To reflect non-ohmic behavior of
memristive devices (illustrated in Figure 1) during training, we
propose incorporating nonlinearities into the node functions of
MNNs. Our aim is to embrace memristor nonlinearity so that
the network can learn to be robust toward this nonideality—or
even take advantage of it—during training based on stochastic
gradient descent. Existing works attempting to take device vari-
ations into account during ex situ training often result in poten-
tially lower training accuracy.[*?! Depending on the nature of the
nonideality that MNNs are trained on, our method could poten-
tially perform even better than conventional ANNs. For example,
if nonlinear response of the device is sufficiently consistent, non-
linearities may increase the network capacity.**]

We also show how to improve nonideality-aware training by
exposing conductances to the training process in a more direct
way. By constraining MNN weights to be nonnegative, they can
Dbe related to conductances in a linear way. This allows to

1) minimize the effects of nonidealities in cases where their

severity is dependent on the conductance values of the mem-
ristors

© 2022 The Authors. Advanced Science published by Wiley-VCH GmbH
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2) employ regularization as a high-level tool for controlling
power consumption of MNNs

Finally, we propose improving validation techniques applied
during the training of MNNs. Most memristive nonidealities are
stochastic in nature, therefore computing validation metrics only
once at specified checkpoints may provide unreliable estimates of
neural network performance, as illustrated in Figure 1. We pro-
pose computing validation metrics multiple times and using an
aggregate value (like the median) to determine which version of
the MNN to save for inference.

In this work, we explore how to make nonideality-aware train-
ing more effective. We employ experimental data from a SiO,,
memristor device and a 128 x 64 Ta/HfO, memristor crossbar
array, and consider multiple nonidealities: I-V nonlinearity, stuck
devices, and D2D variability. We give special focus to I-V non-
linearity because existing works often prefer low-resistance de-
vices as they exhibit more linear I-V behavior. We show that our
proposed training function enables the use of the more power-
efficient high-resistance memristors by minimizing the accuracy
loss due to high nonlinearity and variability, which typically man-
ifest themselves in high-resistance devices.**! We demonstrate
how the proposed mapping between nonnegative weights and
memristor conductances enables further power savings through
¢, regularization. We additionally show how MNN validation dur-
ing training may be improved by taking the stochastic nature of
many of the nonidealities into account.

Importantly, we demonstrate the feasibility of our novel train-
ing technique. Networks produced using nonideality-aware ex
situ training are better adapted to nonidealities and can even han-
dle significant uncertainty in device behavior or designers’ under-
standing of what that behavior is. Weights learned once on a dig-
ital system can be transferred onto multiple crossbar-based phys-
ical implementations, even if the nonidealities manifest them-
selves differently in each system—our methodology does not re-
quire retraining once the weights are mapped onto crossbars. To
assess the robustness of nonideality-aware training, we even ex-
pose MNNs to different setups than they were trained for—we
find that the networks employing this technique are much more
robust than the networks trained using the previous, more con-
ventional approaches.

2. Design

2.1. Nonlinearity-Aware Training

The main focus of this work is the design of a novel ex situ
MNN training scheme that could handle nonidealities charac-
terized by the nonlinear relationship between inputs and out-
puts. Nonidealities like stuck devices, programming inaccura-
cies, or random telegraph noise can typically be represented with
a change in memristor conductance alone. They are thus more
straightforward to take into consideration during ex situ train-
ing because one can inject noise into the conductance array to
represent their effect. We refer to these nonidealities as linearity
preserving. On the other hand, nonidealities like I-V nonlinear-
ity or line resistance cannot be represented by simply disturb-
ing the conductances of crossbar devices. We refer to such non-
idealities as linearity nonpreserving. In this work, we redefine
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the output operations of the synaptic layers to take the effect of
linearity-nonpreserving nonidealities into account. To the best of
our knowledge, this is the first time these nonidealities are ad-
dressed during ex situ training.

Existing works usually model memristor crossbars as struc-
tures computing linear dot products, while only activation func-
tions are assumed to introduce nonlinearities. Specifically, out-
puts y; €y € RN are calculated using inputs x; € x € R,
weights w; € w € R™*", and a nonlinear activation function f,
as shown in Equation (1). During inference, x, w, and y are then
mapped onto and from voltages, conductances, and currents, re-
spectively. However, this creates a discrepancy between the linear
dot-product training nodes and memristor nonidealities that de-
viate from ohmic device behavior.

M
Y =f<z xi”’ij) 1)
i=1

Therefore, we suggest modifying the output operation of the
synaptic layers to reflect the nature of linearity-nonpreserving
nonidealities. Specifically, in cases where the nonlinearity is lim-
ited to individual devices (i.e. where devices experience I-V non-
linearity), we propose replacing the approach in Equation (1) with
the approach in Equation (2). That is, the activation function is
unchanged but the product is replaced with a nonlinear function
g that captures memristors’ non-ohmic I-V behavior.

szf(zg(xilwij)> (2)

The exact form of g will depend on

1) the mapping scheme, examples of which are explored in Sec-
tion 2.2

2) non-ohmic behavior model, which might typically be deter-
mined by the devices used; in Section 2.4, we present one
possibility motivated by experimental device data

2.2. Modified Weight Implementation

As mentioned previously, synaptic weights of MNNs are typi-
cally implemented using conductances of memristive devices.
While weights can usually take any real value, conductances are
nonnegative—this presents design challenges. In this work, we
propose training double the number of weights, 35 but constrain
them to be nonnegative and associate them with individual de-
vices. This approach creates a more natural mapping between
neural network parameters and conductances, as well as en-
ables weight regularization to act as a method for decreasing the
power consumption.

2.2.1. Conventional Approaches
In typical MNN implementations, both inputs x € x and outputs

y € y are mapped onto voltages**3’] V and from currents I, re-
spectively, in a proportional way using scaling factors ky and k;,

© 2022 The Authors. Advanced Science published by Wiley-VCH GmbH
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as shown in Equation (3).

V= kyx (32)
I
v=g where k; = ky k¢ (3b)
1
where k¢, is the conductance scaling factor typically made equal
G, -G
to =2 and k, is determined before training.

max |w
To enclod|e both positive and negative weights, pairs of conduc-
tances are employed. Conductances G, and G_ are introduced
into “positive” and “negative” bit lines of crossbar arrays, where
the output currents of the latter are subtracted from the output
currents of the former; this is referred as differential pair architec-
ture. Each weight is typically made proportional to the difference
of G, and G_ (with k¢ acting as the constant of proportional-
ity), which enables to encode any real number within a finite in-
terval. However, infinite conductance combinations will produce
the same difference,®®! thus the network designer may have to
make an arbitrary choice of how to perform this mapping. For
example, to encode weights w € w, the two conductances may be
picked symmetrically around the average value,*®! as shown in

Equation 4.

kcw
Gt = Gavg * T (4)
Gg+G
where G, = Zoff ~ Fon

Although there 2might be advantages to using the mapping
scheme like the one in Equation (4),0*] the choice of mapping
could be explicitly tied to certain objectives. For example, Ref. [25]
points out that differential pair architecture with aware mapping
can be advantageous for mitigating the effects of stuck devices.
Alternatively, a mapping scheme that optimizes some metric (like
power consumption) may be employed. Indeed, such a scheme
is used throughout this work for mapping the weights of conven-
tionally trained ANNs onto conductances—we minimize power
consumption by ensuring that at least one device in the pair is
set to G4, as demonstrated in Equation (5).

G, = G + max{0, kow}

. ®)
G_ = G5 — min{0, k;w}

However, choosing the optimal scheme manually is a low-level
approach that requires understanding the physical characteristics
of MNNs. Thus, even if training is done ex situ, network designer
has to make choices about not only the conventional training hy-
perparameters (like learning rate), but also how the system will
be implemented physically because that will affect MNN perfor-
mance. We see this as an additional obstacle to making memris-
tive implementations of ANNs feasible in the real world.

2.2.2. Our Approach—Double Weights

In this work, instead of tweaking the mapping function, we de-
cided to change the characteristics of the weights that are be-
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ing trained. Specifically, we train two sets of nonnegative weights,
wiEW, € RY™N and w; € w_ € RIY, which we refer to as
double weights; similar approach has been explored in Ref. [40].
We map double weights onto conductances in the aforemen-
tioned “positive” and “negative” bit lines, respectively. Although
all the weight parameters are nonnegative, the negative contri-
bution of i input on j output can still be encoded because of
the differential pair architecture in the physical system. Only the
nonlinearity-aware ex situ training function in Equation (2) has
to be adjusted leading to the form in Equation (6).

n:f(ig<xi,w;>-g<xi,wg>) ©

The adoption of double weights allows to relate every weight in
w = [w, w_| to the corresponding conductance in the same way,
i.e., w, € [0, max(w)] are linearly mapped onto G, € [G g, G,,],
as shown in Equation (7).

G, =kew, + Gy ()

A clear advantage of our approach is that double weights al-
low for more direct optimization of MNN behavior. Exposing raw
device characteristics—i.e., conductances—to the training algo-
rithm, enables it to select the combination that has both the opti-
mal performance (as defined by some metric like loss) and high
robustness. For example, if a certain nonideality manifests itself
to a greater degree at low conductances, the training algorithm
would be able to push double weight pairs (and by extension, con-
ductances) toward higher values. Because of the differential pair
architecture, setting G, and G_ to 1.0 and 2.0 mS, respectively,
will—at least in the case of linearity-preserving nonidealities—
have the same effect as setting them to 3.0 and 4.0 mS, respec-
tively. Therefore, with double weights, the training algorithm
should be able to choose conductance combinations that mini-
mize the negative influence of nonidealities.

Additionally, double weights allow regularization to act as
a high-level tool for controlling the importance of power con-
sumption. We propose training with the ¢, sparsification
regularizer,[*!l which can not only improve training,[*?! but also
promote lower conductances because they are linearly related
to weight parameters, as demonstrated in Equation (7). During
backward propagation, the regularizer influences training loss,
inducing conductance pairs to descend toward G g. Instead of
manually tweaking the mapping function, network designer can
decide to what extent energy efficiency should be prioritized by
simply adjusting, say, regularization factor in ¢, regularization.
This can be incorporated into typical hyperparameter tuning pro-
cess that is performed before deploying ANNs in practice.

2.3. Modified Validation

We also propose a modified model validation scheme more fit for
MNNS. To determine when to stop the training (or which version
of the network to use when the training takes a predetermined set
of epochs), a validation dataset is commonly employed—a metric
(like error or loss) is computed for this dataset at certain epochs

© 2022 The Authors. Advanced Science published by Wiley-VCH GmbH
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and is used for picking the optimal version of the network.[*]

However, many of memristor nonidealities are at least partly
stochastic in nature, thus, say, validation accuracy at any given
epoch may not be entirely representative of the model’s quality
purely due to random chance. Because of this, we suggest com-
puting the validation metric multiple times and using an aggre-
gated value for higher reliability. Choices can be made about

® aggregate value that is used

® how frequently validation is performed

® how many times validation metric is computed at each check-
point

In the simulations of this work, we computed validation error 20
times every 20 epochs and saved the model whenever the median
validation error decreased.

2.4. Nonidealities

In this work, we explore a wide range of memristor nonidealities
and utilize experimental data. We use two different memristor
technologies—SiO, - and Ta/HfO,-based resistive random-access
memory (RRAM). More details on the two technologies can be
found in Section 5 and our previous publications.['%%]

2.4.1. I-V Nonlinearity

One of the most common ways to characterize deviations from
ohmic behavior in memristive devices has been by considering
two points on an I-V curve.[***] For example, one may define
nonlinearity at voltage V.. as the ratio of the conductance at that
voltage to the conductance at half that voltage,[** as shown in
Equation (8). Nonlinearity of 1 can then be characterized as in-
dicative of ohmic behavior; similarly, any deviations from that
value indicate I-V nonlinearity. This metric can be useful in de-
scribing non-ohmic behavior at different voltages but it is more
challenging to utilize it for modeling purposes.

G( Vref)

_ current at voltage V
G(Vref / 2)

nonlinearity = where G(V) =

voltage V
8

In this work, we utilized silicon oxide devices to investi-
gate the effects of current-voltage nonlinearity. SiO, devices
can undergo resistance switching—typical I-V switching curve
is shown in Figure S1 (Supporting Information), while a more
detailed analysis of resistance switching performance can be
found in our previous study.**! For the purposes of this work,
to achieve a wide range of resistance states and to analyze I-V
nonlinearity, incremental positive sweeps were used to gradu-
ally reset the device from the low-resistance state to the high-
resistance state. I-V curves of two subsets of all achieved states
are shown in Figure 2a,b. Low-resistance discrete states (in Fig-
ure 2a) exhibit more linear behavior and experience little vari-
ability in nonlinearity. On the other hand, high-resistance states
(in Figure 2b) are more nonlinear and the nonlinearity is less
predictable.
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Multiple conduction mechanisms have been proposed for
modeling I-V behavior of memristors. The models may incor-
porate principles like Fowler-Nordheim tunneling, thermionic
emission, and Poole-Frenkel emission.[*?] Data in Figure 2a,b
were best fit using Poole-Frenkel model in Equation (9).

2e | eV
I=cV exp <kB_T _47rd6> (9)

where I is the current, V is the voltage, ¢ is a constant (which
has units of conductance), T is the temperature, d is assumed
to be oxide thickness or effective thickness for partially oxidized
filament, and e is the permittivity.

T'is room temperature, thus the following parameters were fit:
c and the product of d and e. Different sets of fits were produced
for above and below the conductance quantum G, = 2¢?/h be-
cause states below this value experienced different trends and/or
amounts of variability. This is not surprising as memristive de-
vices have been reported to exhibit different behavior in differ-
ent resistance states, and that is often tied to the conductance
quantum.[4748]

The fits for the two sets of parameters are shown in Figure 2c,d.
Slopes close to —1 and intercepts close to 0 in Figure 2c demon-
strate that ¢ does indeed act similarly to conductance, i.e. recip-
rocal of resistance. In high-resistance states on the right, how-
ever, the variability is noticeably higher. In Figure 2d, product de
is indicative of the extent to which a given curve is nonlinear—
the smaller this product, the more nonlinear the I-V curve is.
For the low-resistance states, de decreases with increasing resis-
tance; however, for the first few states, this product is large—
Equation (9) can approximate linear behavior (ohmic conduc-
tion); however, the values of de are physically plausible only for
the high resistance states (<G,). For those high-resistances states
on the right side of Figure 2d, the product is, on average, lower
but there is no clear trend between those states. It is also more dif-
ficult to predict de from a given R as the deviations from the linear
fit are very large. Thus, not only are highly resistive states more
nonlinear, but there is also a significant level of variability. This is
also indicated in the colors of the curves in Figure 2b where the
last few states are shown—there is no obvious relationship be-
tween the resistance state and the color (which indicates nonlin-
earity). During nonideality-aware training, we take into account
not only the nonlinearity but also the variability of I-V curves.

The simulations were performed by considering two dif-
ferent resistance ranges from our experimental data and by
subsequently using fits from Figure 2¢,d. Low-resistance group
was constructed by interpolating between the lowest achieved
resistance state of 289.8 Q and five times that resistance. Simi-
larly, to ensure the same dynamic range, high-resistance group
was constructed by interpolating between the highest achieved
resistance state of 1.905 MQ and one fifth that resistance.*”] As
hinted earlier, it is naive to simply use the aforementioned linear
fits without taking into account significant deviations. In fact,
the presence of uncertainty in the model is one of our main goals
because we wish to demonstrate that nonideality-aware training
can adapt not only to deviations from linear behavior but also
to stochastic behavior. This makes nonideality-aware training

© 2022 The Authors. Advanced Science published by Wiley-VCH GmbH
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Figure 2. SiO, data utilized in this work. -V sweeps of a SiO, device are shown for a) a subset of the low-resistance region (with resistance at 0.1V
ranging from 289.8 to 1169 ), and b) a subset of the high-resistance region (with resistance at 0.1V ranging from 445.2 kQ to 1.905 MQ). For all curves,
only the range of voltages from 0.0 V to 0.5 V was considered. Nonlinearity was computed by dividing the conductance at voltage V by the conductance
at voltage 0.5V. Poole—Frenkel fits in low- (left) and high-resistance (right) regions for c) ¢ and d) de. In both panels, to ensure dimensionless inputs
to logarithms, R, ¢ and de are the amounts of the corresponding quantities in Sl units, e.g., R is not the resistance, but rather the number of ohms of
resistance measured at 0.1 V. Marker colors represent the mean nonlinearity of the fits, rather than the experimental I-V curves.

approach generalizable because it does not require exact knowl-
edge of device behavior—it improves the performance even when
different hardware is used as will be demonstrated in Section 3.6.

During simulations involving nonlinear I-V behavior, the out-
put current of any given device was determined in the following

way:

Adv. Sci. 2022, 2105784

1) ¢ and de were interpolated from the fits in Figure 2c,d using
resistance (parameter) R

2) c and de were disturbed using multivariate normal distribu-
tion with the covariance matrix determined using the residu-
als of the fits

3) current I was computed using Equation (9)
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Figure 3. Experimental HfO, data utilized in this work. a) Eleven potentiation and depression cycles of 82 Ta/HfO, devices—data are shown for 1% of
the devices in a 128 x 64 crossbar array. Any device whose maximum conductance range was less than half the median range was classified as “stuck.”
The conductance of Ta/HfO, crossbar devices was modulated by controlling the voltage pulses applied to the gate of the selector transistor; more details
are provided in Section 5 and Ref. [21]. b) Mean conductances of all stuck devices together with their estimated probability density function constructed

using Gaussian kernel density estimation.

We note that such treatment, where only the linear relationship
between the two sets of residuals is considered, likely overesti-
mates, rather than underestimates, the amount of uncertainty for
a given device. Additional information on heteroscedasticity, the
correlation between the residuals of the two sets of parameters,
and the justification for using normal distribution can be found
in Section 5.

Linearity-nonpreserving nonidealities like I-V nonlinearity
cannot be simulated using conventional noise injection methods,
which simply disturb the conductance values. Instead, a forward
propagation function must be defined reflecting the nonlinear
relationship between inputs and outputs. One can express the
procedure described earlier in the form of the aforementioned
function g representing nonlinear behavior; this can be done by
combining Equations (3), (7), and (9) leading to the form in Equa-
tion (10), which we implement using TensorFlow.

g(xw,)= icxexp 2e [ kv
W) = TV ande

c 1
where [de] = exp <ln <m> m+b+E>

N5(0,X)

(10)
and E ~

where m and b are slopes and intercepts, respectively, of the
corresponding fits in Figure 2¢,d, X is the covariance matrix of
the residuals, and all inputs to logarithms or exponents are the
amounts of quantities in SI units.
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2.4.2. Stuck Devices

Additionally, we explore linearity-preserving nonidealities, which
can be simulated using noise injection into the conductances.
One of such nonidealities is devices stuck in a particular state,
which is a very common issue in memristors. The effect of stuck
devices can be explored in isolation, but it also easily lends it-
self to being simulated along other nonidealities thus allowing
to investigate the effectiveness of nonideality-aware training in
more complex scenarios. In the modeling of this nonideality, we
consider both real experimental data (where we draw the state in
which devices may get stuck from a probability distribution) and
a simplified model (where we assume devices can get stuck in
only one state).

Data from 128 x 64 Ta/HfO, memristor crossbar array were
analyzed for the purposes of modeling stuck devices’ behavior.
Figure 3a shows 11 potentiating and depression cycles (each con-
sisting of a 100 voltage pulses) for a fraction of the devices. By
considering the minimum and maximum conductance values
achieved by each of the 8192 devices over 11 cycles, G 4 and G,
were chosen as the median of these minimum and maximum val-
ues, respectively. Devices whose maximum range was less than
half the median range (where median range had been defined as
G,, — G,q) were classified as “stuck.”

Stuck devices were simulated using a probabilistic model.
Using the aforementioned stuck devices' definition, 10.1%
of the devices were classified as such. To simplify modeling,
these devices were simulated to be fully stuck, meaning their
conductance could not be changed even by a small amount.>")
The average values of all stuck devices are denoted by markers

© 2022 The Authors. Advanced Science published by Wiley-VCH GmbH



ADVANCED
SCIENCE NEWS

ADVANCED
SCIENCE

Open Access,

www.advancedsciencenews.com

www.advancedscience.com

Training Validation Test (nonideal)

a b (o
S

1 . .
S 107 5 =
=
L

d e f
S

1 | . -
510 ; :
=
w

T T T T
0 200 400 600 800 1000 O
Epoch

T T T T
200 400 600 800 1000 O
Epoch

T T T T
200 400 600 800 1000
Epoch

Figure 4. Training results for standard and nonideality-aware schemes when exposed to |-V nonlinearities. a—c) Low [-V nonlinearity (data from Fig-
ure 2a), d-f) high |-V nonlinearity (data from Figure 2b); a, d) standard training (same training and validation curves), b, e) nonideality-aware training,
c, f) nonideality-aware training with regularization. The panels show curves for one of five sets of trained networks. Networks were trained on MNIST
dataset. Where error was computed multiple times, the curves show the median value, as well as the region bounded by the minimum and maximum

values.

on the y axis of Figure 3b. The probability density function of
these average values was constructed using kernel density esti-
mation with truncated normal distributions. Scott’s rulel®!] was
used for bandwidth estimation, while mirror reflections of the
distributions were employed to correct for bias at the 0 S clipping
boundary.®?l When simulating the effect of the nonideality, each
device could be set to any conductance state between G g and
G,,; however, every device also had a 10.1% probability of getting
stuck. When a device was classified as stuck, its conductance
would be drawn from the probability distribution constructed
using kernel density estimation in Figure 3b.

Additionally, a simple model of devices getting stuck in G g
or G, was considered. This allowed to combine nonidealities to-
gether, specifically with SiO, I-V nonlinearities. For both states,
devices were simulated to have 5% probability of getting stuck.
As with experimental stuck devices’ model, this was simulated
as noise injection into the conductances. Both models of stuck
device behavior were used to test the robustness of nonideality-
aware training.

2.4.3. Device-to-Device Variability
We also consider D2D variability arising from inaccuracies dur-
ing device programming. During mapping onto conductances,

one may end up with different values than intended; in some
memristors, these (resistance) deviations are modeled using log-
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normal distribution.l**] As with stuck devices, this can be incor-
porated into training by disturbing the values in each iteration—
in this case, by drawing from lognormal distribution. We use this
nonideality mostly to explore

1) double weights (see Section 3.4)
2) the effects of incredibly stochastic nonidealities (see Sec-
tion 3.6)

For the lognormal modeling, we linearly interpolate the stan-
dard deviation of the natural logarithm of resistances from the
following values meant to represent different device behaviors:

1) 0.25 for R s and R, (more uniform D2D variability)
2) 0.5 for R 4 and 0.05 for R, (less uniform D2D variability)
3) 0.5 for R g and R, (high-magnitude D2D variability)

3. Results and Discussion

3.1. Nature of Training

Figure 4 contains training curves for MNNs trained on MNIST
dataset and exposed to I-V nonlinearities. Although not used to
affect any aspect of the training process, error curves for the test
subset!**] are included as well. Testing on nonideal configuration
during training can help to understand the differences between
standard and nonideality-aware training.

© 2022 The Authors. Advanced Science published by Wiley-VCH GmbH
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Figure 5. Inference results of using nonideality-aware training to deal with
|-V nonlinearities. The three box plots on the right refer to memristive neu-
ral networks that used data from Figure 2a, and the three on the left—to
memristive neural networks that used data from Figure 2b. Networks were
trained on MNIST dataset. The variability in power consumption for the
data points of each group is small thus the average power consumption
is used for the horizontal position of each box plot.
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Figure 4a—c explores the effect of low I-V nonlinearity. In Fig-
ure 4a, the validation curve (which is computed assuming digi-
tal implementation of the ANN) is closely coupled with the test
curve (which assumes that nonideal effects are present)—this
suggests negligible effect of low I-V nonlinearity. Consequently,
nonideality-aware training produces similar results on the test set
both without (Figure 4b) and with (Figure 4c) regularization.

Figure 4d-f explores the effect of high I-V nonlinearity. In Fig-
ure 4d, where the results of standard training are presented, we
notice that validation and test curves are detached from one an-
other. Not only that, but the global minimum of the (nonideal)
test curve occurs very early in the training, while the (ideal) val-
idation error keeps decreasing. This indicates that without tak-
ing nonidealities into account during training, a highly subopti-
mal version of the ANN may be chosen for inference stage with
nonidealities. Nonideality-aware training without (Figure 4e) and
with (Figure 4f) regularization is much more effective—the val-
idation and test curves are closely coupled together and the test
error decreases to lower values.

3.2. Performance Improvement

Inference results for I-V nonlinearity simulations are summa-
rized in Figure 5. Because the simulated memristors are non-
linear, power consumption was computed using P = IV, instead
of P = IR, for each of the individual devices. Apart from cross-
bar arrays, MNN implementations require additional circuitry, !
which suggests power consumption due to passive elements
dominates in the uS range and above (i.e., the conductance range
of the device investigated in this work); only at lower conduc-
tances does the relative impact of other energy components be-
come significant.

Adv. Sci. 2022, 2105784
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Box plots representing low-resistance (and, by extension, low-
nonlinearity) devices are presented on the right side of Figure 5.
With such devices, nonideality-aware training without regulariza-
tion achieves median error of 4.3%. This is close to the error—
4.6%—of (digital) ANNSs of the same size trained using standard
procedure; the small difference is indicative of the relatively small
effect of low [-V nonlinearity (and its uncertainty). However, reg-
ularization not only decreases the power consumption by more
than half, but also helps to achieve median error rate of 4.1%.

As shown on the left side of Figure 5, MNNs implemented us-
ing high-resistance devices achieve almost three orders of mag-
nitude lower power consumption. However, MNNs trained us-
ing the standard procedure have median error of 41.6%, which
would be unacceptable in most scenarios. Fortunately, adjusted
training results in much lower error rate, while maintaining low
power consumption (compared to low-nonlinearity devices). In
the non-regularized case, the median error is 9.1%, and in regu-
larized MNNs it is 7.1%. Thus, nonideality-aware training makes
it feasible to use orders of magnitude more power-efficient high-
resistance devices while maintaining error rates similar to those
achieved with low-resistance devices.

One may also compare estimated absolute energy efficiency
in both cases. By assuming the values used inl'*'—read pulses of
50 ns, and two operations per synaptic weight (multiplication and
accumulation)—one can calculate energy efficiency in OPs~!W~!
using Equation (11).

2Xn

Energy efficiency = ————————
& Y 50X 107° X P,,,

(11)

where n is the number of synaptic weights and P, , is the average
power consumption.

Using these assumptions, standard training using low-
resistance devices achieves energy efficiency of 0.715
TOPs~'W~!, while nonideality-aware training using high-
resistance devices achieves energy efficiency of 234 TOPs™!W~!
in the nonregularized case and of 381 TOPs~!W~! in the reg-
ularized case. As explained earlier, these estimates incorporate
power consumption only on crossbar arrays.

3.3. More Complex Architectures and Datasets

To understand how well nonideality-aware training performs on
more complex tasks, we employed CIFAR-10 dataset. For this, we
trained CNNs assuming that their convolutional layers would be
implemented digitally, and their fully connected layers—using
memristive crossbar arrays suffering from high I-V nonlinearity.
Standard training is explored in Figure 6a, and nonideality-aware
training in Figure 6b. As with MNNs trained on MNIST, there
is a much greater coupling between validation and test curves
when nonidealities are taken into account. As shown in Figure 6c,
nonideality-aware approach reduces the median inference error
from 43.0% to 18.9%.

3.4. Importance of Weight Implementation

Double weights can be advantageous because they expose
conductances to the training process in a more direct way. To

© 2022 The Authors. Advanced Science published by Wiley-VCH GmbH
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Figure 6. Results for standard and nonideality-aware schemes when employed by convolutional neural networks. a) Standard training, b) nonideality-
aware training, and c) inference error comparing the approaches in (a) and (b). Networks were trained on CIFAR-10 dataset and their fully connected
layers were exposed to high I-V nonlinearity (data from Figure 2b) during inference. Panels (a) and (b) show curves for one of five sets of trained networks.

investigate the utility of this modified weight implementation,
we utilized lognormal D2D variability of two kinds:

1) more uniform variability where the relative magnitude of de-
viations is the same throughout [G ¢,G,,]

2) less uniform variability where the relative magnitude of de-
viations is much greater near G ; compared to G, ,—similar
to what is experienced in real devices when trying to program
them(>®!

This allowed to

1) evaluate the performance of double weight implementation
when the severity of nonideality does not depend on the con-
ductance value

2) test whether double weight implementation would outper-
form standard weights when exposed to nonidealities whose
severity depended on the conductance value

Both standard weights with different mapping schemes and
double weights without and with regularization are investigated
in Figure 7.

First, we consider weight implementations in the context of
D2D variability with relatively high uniformity across the con-
ductance range. Figure 7a,b shows conductances resulting from
mapping conventional weights using rules in Equations (4)
and (5), respectively. In both cases, the conductances are all
mapped along either one or two line segments. In contrast, Fig-
ure 7¢,d shows conductances obtained from double weight im-
plementation and training without and with regularization, re-
spectively. In the nonregularized case (Figure 7c), the conduc-
tances are distributed mostly around the diagonal, though they
are spread out, unlike in Figure 7a. Regularization results in
more data points in the bottom left corner of the diagram rep-
resenting low conductance values, as shown in Figure 7d.

Adv. Sci. 2022, 2105784

Figure 7e-h demonstrates the utility of double weights. Here,
the MNNs were trained to deal with less uniform D2D variability
where the disturbances were much greater at low conductance
values compared to high conductance values. As demonstrated
in Figure 7g, the training naturally results in most of the pairs
concentrated in the top right corner representing high conduc-
tance values. Like before, regularization in Figure 7h results in
conductances with lower values.

Figure 7i shows the inference error for various weight imple-
mentations of MNNs encountering more uniform D2D variabil-
ity. Conventional weights with mapping rule in Equation (5) re-
sult in the lowest median error of 6.3%; in comparison, double
weights achieve median error of 7.2% without regularization and
median error of 6.7% with regularization. Conventional weights
with mapping rule in Equation (4) achieve the highest median er-
ror of 7.9%, indicating the unpredictability of the performance of
mapping methods. Even so, it is important to point out that dou-
ble weights do not achieve optimal performance in this case. We
hypothesize that in scenarios where the dependence of the sever-
ity of the nonideality on the conductance values is not strong,
double weights might struggle to find optimal configuration—
infinitely many pairs may result in the same behavior, making it
a more computationally difficult problem.

Figure 7j shows the inference error for equivalent weight im-
plementations of MNNs dealing with less uniform D2D variabil-
ity. In this case, the advantage of double weights is much more
apparent—the median error in nonregularized case is 5.4% com-
pared to 5.9% and 6.6% resulting from conventional weights with
mapping rules in Equations (4) and (5), respectively. When dou-
ble weights are trained by employing regularization, they take
on lower values thus decreasing power consumption but also in-
creasing the error—in the case of this specific nonideality, there
is a tradeoff between energy efficiency and accuracy. However,
double weights together with regularization provide a straight-
forward way of specifying to what extent low power consumption
should be prioritized at the expense of accuracy.

2105784 (10 O‘F]G) © 2022 The Authors. Advanced Science published by Wiley-VCH GmbH
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Figure 7. Comparison of weight implementations. Conductance distributions in the first synaptic layer of a memristive neural network that deals with
more uniform device-to-device variability and utilizes a) conventional weights mapped symmetrically around average conductance, b) conventional
weights mapped onto devices by preferring lowest total conductance, ) double weights, d) double weights with regularization; and e-h) corresponding
conductance distributions for a memristive neural network dealing with less uniform device-to-device variability. Scatter plots contain conductance data
from 10% of the devices for one of five sets of networks. Inference error for different weight implementations of memristive neural networks that deal
with i) more and j) less uniform device-to-device variability, where the box plot colors correspond to different weight implementations in a—d and e-h,

respectively
3.5. Memristive Validation

As explained in Section 2.3, many memristive nonidealities are
nondeterministic, therefore it might be advantageous to com-
pute an aggregate metric for use in validation. During training,
with each batch, we simulate nonidealities separately, e.g., pa-
rameters for I-V nonlinearity are drawn from a probability dis-
tribution or the exact devices that get stuck are picked randomly

Adv. Sci. 2022, 2105784

each time. As a result, we believe that memristive validation can
provide more reliable estimates of performance during train-
ing. Although we hypothesize that in aggregate this method will
achieve only marginally better performance, it should help to
avoid choosing a highly suboptimal version of the weights, which
might yield higher error in a small number of cases.

Of course, memristive validation parameters may have to
be optimized individually for each training configuration. For

2105784 (11 of 1 6) © 2022 The Authors. Advanced Science published by Wiley-VCH GmbH
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Figure 8. Extent of nonideality agnosticism of nonideality-aware training. Median inference error in percent is shown for various training setups. Com-
pared to standard (ideal) training, nonideality-aware approach usually results in lower error rate during inference, even if the nonideality encountered is
different from the one the networks were exposed to during training. This is especially the case with more severe nonidealities. Networks were trained
on MNIST dataset. Each row in the heatmap uses a separate instance of the logarithmically scaled colormap. Additional information on training and

inference setups can be found in Table S4 (Supporting Information).

example, in the memristive CNN training in Figure 6D, the vari-
ability of validation error is usually lower at any given checkpoint
than between checkpoints. In that case, one may increase the
frequency of checkpoints by either decreasing the number of
repeats at each checkpoint (and thus increasing uncertainty) or
keeping it the same (and thus increasing computation time).
At the extreme—if one can afford additional training time—
validation error may be computed every epoch multiple times.

3.6. Nonideality Agnosticism

Accurate modeling of nonidealities for nonideality-aware ex situ
training is a significant challenge. First, the nature of nonide-
alities encountered in practice may be different than what was
modeled for the purposes of training. For example, the existence
of D2D variability of SiO, memristors means that the behavior of
any individual device is not perfectly representative of the nature
of other devices. Therefore, to hedge against fitting the model
to the behavior of any specific device, we assumed that Poole-

Adv. Sci. 2022, 2105784

Frenkel parameters are inferred using a linear fit (determined by
a trend in the experimental data) and disturbed by drawing ran-
dom deviations from a probability distribution. Even so, in differ-
ent devices, these trends and amounts of deviations may be dif-
ferent. Second, in the real world, one may encounter completely
different types of nonidealities. If the training takes into account
the effects of only, say, I-V nonlinearities, MNNs could still suf-
fer from, for example, stuck devices when deployed. Therefore,
it is important to find out how robust the MNNs employing
nonideality-aware training are.

To investigate this, we utilized networks trained either by as-
suming no nonidealities or by being exposed to one of the eight
different combinations of nonidealities. In the case of both types
of I-V nonlinearity and two types of D2D variability, networks
were additionally trained using regularization. During inference,
each group of networks was then exposed to the

1) setup that they were trained on
2) setups of the other groups of networks

2105784 (12 0f16) © 2022 The Authors. Advanced Science published by Wiley-VCH GmbH
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In total, this produced (1 + 8 + 2 + 2) x (1 + 8) = 117 scenarios;
median inference error for each is presented in the heatmap in
Figure 8.

The heatmap shows that, in most cases, the lowest error for
a given nonideality during inference is achieved by the network
that was exposed to it during training. A few exceptions exist, in-
cluding regularized networks that were exposed to more uniform
D2D variability during training—when exposed to high I-Vnon-
linearity during inference, they achieve lower error of 8.5% com-
pared to the error of 9.1% of networks that were trained (without
regularization) on this exact nonideality. This may suggest that
the nature of some nonidealities might often overlap and, when
additional techniques like regularization are employed, the per-
formance might be increased beyond even what can be achieved
with the knowledge of a particular nonideality.

Importantly, Figure 8 demonstrates that nonideality-aware
training makes networks robust to the effects a wide array of
nonidealities. Except for the ideal case and low-severity nonideal-
ities (low I-V nonlinearity and devices stuck at G.g), nonideality-
aware training results in lower median error compared to con-
ventional training for all MNN groups—even when the networks
encounter different nonidealities during inference. The heatmap
also suggests that the effect of regularization on robustness is
not always the same. In the case of high I-V nonlinearity, regu-
larization usually results in higher error (compared to nonregu-
larized case) when encountering different nonidealities. On the
other hand, regularization in networks dealing with D2D vari-
ability produces more robust behavior—when encountering dif-
ferent nonidealities, they usually achieve lower error.

4. Conclusion

In this work, design a novel nonideality-aware training scheme
that can improve the performance of MNNs. We demonstrate
the importance of taking nonideal device behavior into account
during training—without that, training performance may not
be indicative of how well the networks will perform during in-
ference. Importantly, we show the utility of nonideality-aware
training in dealing with linearity-nonpreserving nonidealities,
specifically I-V nonlinearity. Our simulations show that the di-
chotomy between stable device behavior and power efficiency can
become less relevant if the training stage is adjusted. Indeed, if
nonideality-aware training is used, high-nonlinearity devices may
achieve similar error rate, while also having almost three orders
of magnitude better energy efficiency of 381 TOPs~!'W~! (with
regularization) compared to 0.715 TOPs™'W~! with the conven-
tional training scheme and low-resistance devices.

We additionally explore a number of adjacent factors that are
worth considering while dealing with MNN training. For exam-
ple, we explore the use of double weights as a way to control con-
ductance values of MNNs more directly trough methods like ¢,
regularization. We explore the need to consider how validation
is performed during training when nonidealities are stochastic
and thus the outputs of an MNN are nondeterministic. In con-
trast to many previous works, we also investigate how robust
nonideality-aware training is—we find that, compared to conven-
tional training, it can usually achieve much lower error when en-
countering nonidealities that it was not trained to deal with. Be-
sides, nonideality-aware training can be applied not just to one
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single type of nonideality—it can deal with multiple nonideali-
ties at once, for example I-V nonlinearity and stuck devices, as
shown in Figure 8.

Nonideality-aware training schemes are critical to making
memristor-based ANNSs feasible. Such schemes are key to ensur-
ing low error rate and high energy efficiency. Using experimen-
tal data and several novel optimization techniques, we demon-
strate that our training design deals with a wide range of nonide-
alities, importantly linearity-nonpreserving nonidealities, which
have not been addressed during ex situ training before. Further,
we demonstrate that high-resistance operational ranges can be
used to reduce power consumption by almost three orders of
magnitude without significant accuracy loss, despite the high
level of associated nonidealities.

5. Experimental Section

Fabrication of SiO,: SiO, RRAM devices were fabricated on a Si sub-
strate with Tum of thermal oxide on top. A 100 nm of Mo was deposited on
top of the Si/SiO, substrate that served as the bottom electrode. The SiO,
layer was sandwiched between the bottom and top electrodes and was de-
posited by reactive sputtering. The top electrodes consisted of 5 nm Ti
wetting layer followed by a 100 nm of Au; their pattern was defined using a
shadow mask. The device sizes ranged from 200 pm x 200 pm to 800 pm
X 800 um.

Characterization of SiO,:  Electrical characterization of a 400 um x 400
um device was performed using Keithley 4200A-SCS. The signals were ap-
plied to the top electrode (Au), while the bottom electrode (Mo) was con-
nected to the ground. The device required an initial electroforming step be-
fore stable resistive switching could be achieved. The forming process was
carried out by a negative voltage sweep, which stopped when the current
had reached the limit of 3 mA. Subsequently, 18 voltage sweeps were per-
formed to guarantee proper device performance: the voltage was ramped
from 0.0V, to 2.5 V, and back to 0.0 V using a 3 mA current compliance.

After this, to achieve a wide range of resistances, incremental positive
sweeps were applied to the sample, starting from 0.5 V and increasing by
0.05 V in each run. This was being repeated until there was no further re-
sistance change, i.e., the filament had returned to its initial (post-forming)
state. The obtained I-V curves are shown in (Figure S2, Supporting Infor-
mation), while a subset of curves utilized in this work are shown in Fig-
ure 2a,b.

Fabrication of Ta/HfO,: Ta/HfO, 1T1R array contained NMOS tran-
sistors (with feature size of 2 nm) and Pt/HfO,/Ta RRAM devices. The
bottom electrode was deposited by evaporating 20 nm Pt layer on top of
a 2 nm Ta adhesive layer. A 5 nm HfO, switching layer was deposited by
atomic layer deposition using water and tetrakis (dimethylamido)hafnium
as precursors at 250°C. 50 nm Ta sputtered layer followed by 10 nm Pd
served as the top electrode.[?’! Fabrication process is described in more
detail in Ref. [56].

Characterization of Ta/HfO,: Device conductance was being increased
using SET pulses (500 us @ 2.5 V and gate voltage linearly increasing from
0.6 V to 1.6 V). After each 100-pulse cycle, RESET pulses (5 us @ 0.9 V
linearly increasing to 2.2 V and gate voltage of 5 V) were used to reduce
the conductance. More information can be found in Ref. [21].

Simulations:  The following architectures were employed:

1) fully connected ANNs (trained on MNISTE7l) containing
a) fully connected layer with 25 hidden neurons and logistic activation
function
b) fully connected layer with 10 output neurons and softmax activa-
tion function
2) CNNs (trained on CIFAR-10[%8]) containing
a) convolutional layer with 32 output filters, 3 X 3 kernel size and
RelLU activation function
b) pooling layer with 2 X 2 pool size

2105784 (13 of 1 6) © 2022 The Authors. Advanced Science published by Wiley-VCH GmbH
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Figure 9. Residuals from the trends of Poole—Frenkel parameters. Residuals of In(c) for a) low- and b) high-resistance states. Residuals of In(de) for c)
low- and d) high-resistance states. Normal probability plots of the residuals of In(c) for e) low- and f) high-resistance states. Normal probability plots of
the residuals of In(de) for g) low- and h) high-resistance states. In all panels, the inputs to logarithms are made dimensionless by using the amounts of
the corresponding quantities in Sl units.

c) convolutional layer with 64 output filters, 3 x 3 kernel size and
RelLU activation function

d) pooling layer with 2 X 2 pool size

e) convolutional layer with 64 output filters, 3 x 3 kernel size and
ReLU activation function with maximum value of 1

f) fully connected layer with 25 hidden neurons and logistic activation
function

g) fully connected layer with 10 output neurons and softmax activa-

Adv. Sci. 2022, 2105784

tion function

To account for high variability of nonidealities (which were nondeter-
ministic), five networks were trained for each configuration. Each trained
network went through 25 inference runs, totaling 5 x 25 = 125 runs for
each configuration.

Networks used 4: 1 training-validation split. All networks were trained
for a 1000 epochs with batch size of 64. Where £ regularization had
been employed, regularization factor of 107 was used. To ensure dou-
ble weights stayed nonnegative, NonNeg weight constraint provided by the
Keras machine learning library was utilized. For any given batch (whose

2105784 (14 O‘F]G) © 2022 The Authors. Advanced Science published by Wiley-VCH GmbH
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size was 64 during training, as mentioned before, and 100 during infer-
ence), conductances were disturbed once in the case of linearity-preserving
nonidealities and Poole-Frenkel parameters associated with individual de-
vices were drawn from a probability distribution once in the case of I-V non-
linearity.

Statistical Analysis:

1) Inall box plots, the maximum whisker length was set to 1.5 X IQR.

2) In Figure 4 and equivalent plots, curves with semitransparent re-
gions consist of two parts summarizing 20 inference repeats at cer-
tain epochs: opaque curve representing the median values and semi-
transparent region bounded by the minimum and maximum values.

3) To avoid large file size, only a subset of all data points is presented in
Figures 3 and 7; these subsets were chosen randomly using NumPy.

Fifty-three SiO, resistance states were achieved using the procedure de-
scribed earlier but several (four) of them were excluded from the analysis.
Specifically, states where there were abrupt changes in current were not
considered. This was done by excluding the curves where the maximum
ratio of the second derivative of current (with respect to voltage) to average
current exceeded a threshold of 0.1 V2.

The analysis of the residuals of In(c) and In(de) is provided in Figure 9.
One of the issues, which was evident, was that these two sets of residuals
correlated to some extent, especially at higher resistance states as can be
seen in Figure 9b,d. If these deviations were simulated independently, the
amount of uncertainty would be significantly overestimated, which is why
covariance matrix of the residuals is used in Equation (10). The rationale
for simulating the deviations using normal distribution is provided in the
normal probability plots in Figure 9e—h.
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