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Improving Reliability of Myocontrol Using
Formal Verification

Dario Guidotti , Francesco Leofante, Armando Tacchella, and Claudio Castellini

Abstract— In the context of assistive robotics,
myocontrol is one of the so-far unsolved problems of
upper-limb prosthetics. It consists of swiftly, naturally, and
reliably converting biosignals,non-invasivelygathered from
an upper-limb disabled subject, into control commands
for an appropriate self-powered prosthetic device. Despite
decades of research, traditional surface electromyography
cannot yet detect the subject’s intent to an acceptable
degree of reliability, that is, enforce an action exactly when
the subject wants it to be enforced. . In this paper, we tackle
one such kind of mismatch between the subject’s intent
and the response by the myocontrol system, and show
that formal verification can indeed be used to mitigate
it. Eighteen intact subjects were engaged in two target
achievement control tests in which a standard myocontrol
system was compared to two “repaired” ones, one based
on a non-formal technique, thus enforcing no guarantee
of safety, and the other using the satisfiability modulo
theories (SMT) technology to rigorously enforce the
desired property. The experimental results indicate that
both repaired systems exhibit better reliability than the
non-repaired one. The SMT-based system causes only a
modest increase in the required computational resources
with respect to the non-formal technique; as opposed to
this, the non-formal technique can be easily implemented
in existing myocontrol systems, potentially increasing their
reliability.

Index Terms— Myocontrol, prosthetics, electromyogra-
phy, assistive robotics, formal verification, satisfiability
modulo theories.

I. INTRODUCTION

DESPITE decades of joint academic research in the
fields of assistive robotics, machine learning and human-

robot interaction, a widely accepted self-powered upper-
limb prosthesis is still not available in the clinics [1]. The
ideal upper-limb prosthesis is modular (i.e., applicable to
all possible upper-limb amputations), human-looking, light-
weight, silent and dexterous, enabling the amputated per-
son to recover most of the lost physiological functions [2].
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The most advanced attempts in this direction, the DEKA
Arm and its commercial counterpart, the Luke prosthetic arm
(www.mobiusbionics.com/luke-arm), already enforce some of
these characteristics from a mechatronic point of view —
whether they are effective in daily living is currently being
assessed [3].

Still, one of the biggest hurdles, if not the biggest one,
is how to reliably and naturally let the patient control such
devices. It is widely accepted [4] that the main way forward
is to apply machine learning (ML) to biological signals,
typically surface electromyography (sEMG, [5]), and associate
muscle activation patterns to control commands (torque, force,
position, velocity) to be issued to the prosthetic device. The
concept of natural, simultaneous and proportional (s/p) con-
trol [6] constitutes a wishlist for this kind of man-machine
interfaces: they must be able to activate the prosthesis as the
subject desires, continually, smoothly and effectively. Still,
the statistical nature of ML, together with the diversity of
human signals, and the unreliability of the physical interface
connecting a prosthesis to the subject’s body and embedding
the sensors turn this problem, in principle an easy one, into
an extremely hard one in practice [1].

Properly gathering data to build a ML model enforcing good
s/p myocontrol is already a challenge. Batch learning seems
to be inappropriate [7] and is being replaced by incremen-
tal learning coupled with an appropriate interaction strategy
[8]–[10]. But even assuming that a good data set has been
gathered in batch fashion, several issues might arise whenever
the model of muscle activation blatantly does not reflect the
subject’s intent; this would be the case, e.g., of a non-linear
model predicting low activation values (that is to say, weak
grasping forces exerted by the prosthesis) for high values of the
sEMG signals. An example can be found in Figure 2. Consider
the curve labelled “Original model”: a subject using it to grasp
an object would actually cause the prosthesis to release and
drop it (predicted activation lower than 1) while increasing her
activation past 2.5 to stabilize the grasp. (Multiple evidence
is present in literature, e.g. [11]–[13] showing that grasp
stabilsation implies in many cases an increase in the global
force applied to objects.) In this case, gathering more data
from the subject to amend the model is not desirable, as she
would need to apply a large amount of force — a task which
could lead to muscle strain, fatigue and frustration. Instead,
it would be very desirable to mechanically amend the model
to have it avoid mismatches such as the one described above.
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In order to partially fix this problem, in this paper we
propose to couple a standard ML-based s/p myocontrol system
with a Satisfiability Modulo Theories (SMT) solver in order to
iteratively repair and improve the model generated by the ML
method, until the intent mismatch is mitigated. As shown for
the first time in [14], by leveraging the expressive power of
the theories supported by SMT technology, we can represent
the ML model as well as a property encoding the desired
behaviour (in this case, that the prediction remains higher
than 1), as a Boolean combination of arithmetic constraints
which can be efficiently reasoned upon by state-of-the-art
solvers such as Z3 [15], MathSAT [16] or dReal [17]. Not only
we can establish algorithmically whether a model satisfies a
given property, but in cases where the property is not satisfied,
we can use the SMT solver to iteratively repair the ML model.
As a consequence of the formal approach, the repaired model
is mathematically guaranteed to predict values higher than
1 for high values of sEMG, therefore better matching the
subject’s intent.

SMT solvers [18] are a family of algorithmic procedures
used to solve formal verification problems. An SMT solver
typically determines the satisfiability of a first-order logic
formula expressed in a theory of interest such as, e.g.,
the theory of lists, arrays, bit vectors or integer arithmetic;
in our case, real numbers with transcendental functions. To
this aim, given an input formula �, an SMT solver first builds
its Boolean abstraction � by replacing each constraint with
Boolean variables A, B, C, . . .:

� : x ≥ y
︸ ︷︷ ︸

∧ ( y > 0
︸ ︷︷ ︸

∨ x > 0
︸ ︷︷ ︸

) ∧ y ≤ 0
︸ ︷︷ ︸

� : A ∧ ( B ∨ C ) ∧ ¬B

where, e.g., x, y ∈ R. Subsequently, a Boolean Satisfiability
solver enumerates all satisfying assignments to �; if at least
one such assignment is found which is also consistent in the
underlying theory, then a satisfying solution is found for �;
otherwise, the formula is unsatisfiable.

To check whether the idea could work in practice, we have
engaged 18 intact subjects in two online goal-reaching exper-
iments. Three myocontrol systems were compared in both
experiments, namely (a) a standard myocontroller; (b) a
myocontroller whose model was repaired naively according
to a simple heuristics (PDO), yielding no guarantee of cor-
rect behaviour; and (c) a myocontroller which was repaired
using SMT. Both experiments were instances of the Target
Achievement Control (TAC) test for prosthetic hands [19]: the
first, as usual, consisted of a set of online goal-reaching tasks,
in which a 3D hand model needed to be held in a specific
configuration for a determined amount of time. The second
experiment was carefully designed to both check that such a
mismatch is a major problem, and that repairing the models
can solve it to a large extent: we artificially lowered the
predicted activation values, inducing the subjects to apply
more force while trying to reach the target. This would
simulate the above-mentioned attempt to stabilize the grasp,
potentially inducing the wrong control behaviour and thereby
making the target very hard to reach.

The experimental results indicate that repairing the models
is effective in both cases, and, especially in the second

experiment, employing a repaired machine increased the task
success rate from 14.58% to about 46%, due to a significantly
increased reachability of the targets. The computational price
to pay for this improvement is an added duration of the model
building phase of about 15s (SMT) and about 8s (PDO).
No added time is required while predicting, meaning that the
repaired systems affords a higher reliability while leaving the
online performance unhampered. Remarkably, the technique
retains a large degree of generalizability, so that it could also
be employed to enforce more desirable properties such as, e.g.,
reducing the inter-activation interference.

A. Related Work

To the best of our knowledge, there have been no attempts so
far at manipulating models obtained in the context of myocon-
trol. In [20]–[22] we have already proposed to “dope” the
dataset of a myocontrol system with synthetic data obtained
by linearly combining preexisting sEMG patterns, in order to
be able to predict combined activations of multiple degrees
of freedom; but this procedure, although rigorously defined
and experimentally validated, has no mechanical component
and enforces no mathematical guarantee. On the other hand,
several works have been proposed that leverage automated
reasoning to verify, and possibly repair, machine learning
artifacts. In [23] a method is proposed to verify that models
learned with Support Vector Regression [24] always provide
a bounded response as long as supplied inputs lie within
acceptable operational parameters. SMT solving has also been
applied to verify properties of different classes of neural net-
works such as shallow networks [14], Deep Neural Networks
(DNN) [25] and more general classes of DNNs [26] —
see [27] for a recent account on the subject. To the best of
our knowledge this is the first time that a machine learning
artifact is actually deployed in a safety-critical setting after
being verified and repaired with SMT.

II. BACKGROUND

A. Myocontrol and Intent Mismatch

Natural, simultaneous and proportional myocontrol is an
instance of (multi-variate) regression as intended in the ML
lingo: using a set of i = 1, . . . , N observations xi ∈ R

d , each
one paired with a target value yi ∈ R

m , build an approximant
function f (x) : R

d → R
m which best fits the set of

observations / target values, call it S = (X, Y ) with X ∈ R
N×d

and Y ∈ R
N×m , and offers the best generalisation power on

so-far unseen data. Each observation consists of d features
evaluated from a set of sensors and denotes the muscular
activation corresponding to an action (e.g., wrist flexion, power
grasp, etc.); each associated target value, in turn, is a vector
of m motor activation values (currents, torques, ...) for a
prosthetic device and corresponds to the desired action as
enacted by the device itself. The approximant f is an “intent
detector” for an upper-limb prosthesis wearer: whenever the
subject’s muscles are activated to enforce a specific action,
the prosthesis should perform it.
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Fig. 1. A typical dataset S, obtained after gathering observations for
three actions (black dots; rest, RE; power grasp, PW; wrist flexion, FL);
the colour of the heat map denotes the approximant for power grasping,
fPW. Values of the input space lying on the straight line RE + (PW −
RE)tPW roughly denote power grasping with increasing strength.

As is now customary (see, e.g., [28], [29], but also the
“prosthesis-driven calibration” enforced in the Complete Con-
trol myocontrol commercial package by CoApt Engineering,
www.coapt.com), in practice S is built by gathering, for each
desired action, an adequate number of observations recorded
while the subject is stimulated to perform it; each such
observation is then coupled with the target value enforcing
the action by the prosthetic device. For instance, the subject is
asked to power grasp (“make a fist”); once the experimenter
verifies that the signals have reached a stable pattern, well dis-
tinct from the baseline, a representative amount of observations
is recorded and associated to (synthetic) target values denoting
maximal activation of all fingers. This methodology is called
on-off goal-directed training. As a result of this, at the end of
the data gathering phase, S consists of one or more observation
clusters for each action considered, coupled with adequate
target values (refer to [30] for a detailed description of this
process). If properly built out of S, f will smoothly and timely
activate every motor of the prosthesis whenever required;
minimal and maximal muscular activations, as gathered from
the subject, will correspond to minimal and maximal motor
activations; moreover, under plausible assumptions, interme-
diate activation values too will be correctly predicted in a
monotonically-increasing fashion (examples of this can be
found in, e.g., [8] and [30]).

Consider Figure 1, showing a 2D-reduced exemplary S
containing three observation sets, RE , PW and F L, gathered
in turn while the subject was resting, making a power grasp
and flexing the wrist. The Figure also shows, as a heat map, the
function fPW corresponding to power grasp, as obtained after
building the model using a standard non-linear regression ML
method. We assume that the straight line RE+(PW−RE)tPW

with tPW ≥ 0 denotes increasing and coordinated activation of
the muscles used to power grasp. For tPW = 0, that is around
RE (where by C we denote the average of the set C), the

subject is at rest; as tPW increases, she starts power-grasping;
and she reaches the maximum activation value (the one which
she produced during the data gathering phase, around PW )
for tPW = 1. Taking into account the natural adaptation of
the subject to the system [10], [29], [31], such an activation
function could reasonably accommodate the power grasp of a
prosthetic wrist for 0 ≤ tPW ≤ 1.

Unfortunately, it is also clear that, whenever the subject
activates her own muscles to a higher degree than that repre-
sented by PW (she “grasps with more force”), the activation
response is no longer adequate: the value of fPW decreases
for tPW > 1 and it will reach zero already for tPW ≈ 2. In
practice, the subject tries to increase the grasping force but
the hand applies less of it, almost surely leading to a drop of
the grasped object, or worse. We now turn to the problem of
trying and “repairing” the model f to avoid this behaviour.

B. Verifying Safety of a ML Model Using SMT

Verification of ML models such as f via SMT involves
reasoning over a set of arithmetic constraints expressed over
real numbers that provide a rigorous mathematical description
of the behaviour of the model. Given a logical formula
expressing the behaviour of the model to be verified, call it �,
we pursue the goal of proving that � ⊃ �, where the operator
⊃ denotes logical implication and � encodes the property that
“the predicted activation is always higher than 1 over a specific
manifold of interest”. More formally, let us assume that a non
linear model f has been built out of a data set S = (X, Y )
(entirely recorded from the subject during an initial data-
gathering phase), which in this specific case takes the form
f (x) = wT φ(x) where w ∈ R

D and φ : R
d → R

D non-
linearly maps d-dimensional observations onto D-dimensional
vectors in a feature space. To each action A considered while
gathering S we then associate one straight line such as the
one described above for power grasp, and one parameter
tA ∈ R. Given the above assumption, that moving along a
line tA denotes performing A with increasing/decreasing force,
to avoid low activation values for high sEMG values for A we
require that, whenever tA ≥ 1, f (tA) ≥ 1, that is, in first-order
logic terms,

∀tA. tA ≥ 1 ⊃ wT φ(tA) ≥ 1.

(With a slight abuse of notation, we denote by φ(tA) the
evaluation of φ over the input points lying on the straight line
associated to tA. More rigorously one should write φ(RE +
(A − RE)tA).) So, the logical language in which we must
express the above formula requires the usage of constraints
containing transcendental functions which make the problem
undecidable. In order to tackle undecidability, two different
approaches can be pursued. The first possibility is to build a
conservative abstraction of the learned model (referred to as
concrete) that does not include non-linearities and provides an
over-approximation of the concrete model. In this way, when
the SMT solver proves that the response of the abstract model
cannot exceed a stated bound as long as the input values satisfy
given preconditions, we can certify that the concrete model
enjoys the same property. However, if a counterexample is
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found then it is either an artifact of the abstraction (being an
over-approximation, the abstraction allows for more behaviors
than the concrete model), or a true counterexample proving
that the concrete model is not safe with respect to the target
property. If the counterexample originates from the former,
then refinement procedures [32] need to be put in place to
tighten the abstraction.

The other possibility is to directly encode the model
including the above mentioned non-linearities and resort to
incomplete decision procedures, as is the case for the solver
dReal [17] used for our experiments. In particular, dReal
implements a δ-complete decision procedure [33]: Given an
SMT formula and a positive rational number δ, the solver
determines either that the formula is unsatisfiable, or that its
δ-weakening is satisfiable.1

C. Using SMT to Prevent Dropping Objects

In practice, rather than proving the δ-validity of � ⊃ �,
one hopes to prove the δ-unsatisfiability of its negation,
tA≥1 ∧ wT φ(tA) < 1. If, as opposed to this, at least one
value tU

A can be found which δ-satisfies the formula (an Unsafe
point), then an activation lower than one will be predicted
whenever the muscle activity of the subject reaches tA = tU

A .
In this case we need to generate a new model f ′ for which
f ′(tU

A ) > 1, then check for δ-satisfiability again. Once the
formula is finally declared δ-unsatisfiable (no unsafe points can
be found anymore), the resulting f is guaranteed to behave
correctly, at least in the sense defined by � and within the
approximation defined by δ.

To build a new f once a tU
A is found we proceed as follows:

we first generate a set of new observations X ′ ∼ N (tU
A , σA)

where σA = stdv(A). We then associate to each observation
in X ′ a target value yA consisting of a 0 for each of the
m motors not involved in a and of a value yA = y0 +
cA(RE+ (A− RE)tU

A ) for each motor involved in a. Here y0
is experimentally estimated and cA is the slope of the straight
line connecting (RE , 0) and (A, 1). Intuitively, such target
values are an attempt at correcting fA so that it looks like a
linear response for tA > 1. Lastly, we generate a new model
out of S ∪ (X ′, yA) and repeat this loop until no more unsafe
points can be found. A pseudocode of this procedure is visibile
below.

w← buildModel(S)
unsafe← True
while unsafe do

for each action A do
[unsafe,tU

A ] ← δ-satisfiable(tA ≥ 1 ∧wT φ(tA) < 1)
if unsafe then

(X ′, Y ′)← (N (tU
A , σA), yA)

w← buildModel(S ∪ (X ′, Y ′))
end if

end for
end while
Figure 2 shows a typical run of the above mentioned

algorithm for the action Power Grasp.

1The δ-weakening of a formula ϕ is defined as its numerical relaxation. For
instance, the δ-weakening of x = 0 is |x| ≤ δ.

Fig. 2. Successive fPW as returned by a typical run of the SMT repairing
algorithm. At each round a new unsafe point is found, a corresponding
cluster is added to S and a new fPW is built. Notice how fPW becomes
“more and more linear” for tPW > 1 as the algorithm progresses.

III. MATERIALS AND METHODS

We designed two experiments involving human subjects.
Both experiments are instances of the Target Achievement
Control (TAC) test for prosthetic hands [19], in which a
physiologically plausible target configuration of the upper limb
is visually presented to the subject, who is then asked to have
a virtual upper limb match the stimulus. In our case, each
subject needed to reach each goal using either a standard
myocontroller, one repaired using the SMT approach described
in the previous Section, or one repaired using a simple non-
exhaustive unsafe-point search method in place of the SMT
system. This method, that we employed as a simpler “baseline”
alternative to SMT, works as follows: for each action A and
straight line considered, RE+(A− RE)tA , we check whether
fA(tA) < 1 for a discrete set of points evenly spaced by
0.001 in the interval 1 < tA < t M AX

A , where t M AX
A is computed

so that it doesn’t exceed the limits of the sensors. We call
this alternative method Physiologically Driven Optimization
(PDO). Notice that, of course, once PDO yields a positive
result, i.e., no more unsafe points, there is no formal guarantee
that this is true.

The first experiment was a plain instantiation of the TAC
test, with a tolerance threshold of 15% for the goal to be
reached, required target dwelling time of 1.5s and timeout
of 15s. In the second experiment, the values of fA were
reduced by a factor of 0.75 : the subjects would be stimulated
to reach maximal activation and, to this aim, they would reach
tA = 1; but they would only see fA = 0.75, and therefore they
would then increase their force to tA > 1.

A. Experimental Setup

The experimental setup was common to all experiments,
and consisted of a Myo bracelet by Thalmic Labs and two
3D hand models displayed on a computer screen. The Myo
bracelet (once available at www.thalmic.com, now no longer
in production) consists of eight uniformly spaced sensors, able
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Fig. 3. Success rate (SR), time to complete task (TCT), time in target (TIT), and reaching rate (RR) for the first experiment, for each of the three
systems considered.

Fig. 4. Frequency diagram (histogram) of the reaching rate, computed on
all tasks of the first experiment, for each of the three systems considered.

to detect the electromyographic signal generated by the muscle
activity of the forearm. The 3D hand models realistically
mimic the motions of a human wrist and hand. One of
the models is used to provide the visual stimulus, i.e., it
is controlled by the software; the other one enforces the
predicted motions of the hand and wrist as evaluated from the
data provided by the bracelet and using either the unrepaired
system, the SMT-repaired or the PDO-repaired ones.

B. Participants

Six intact human subjects (1 female and 5 males, age
21-32 years) participated in the first experiment whereas
twelve (4 females and 8 males, age 23-27 years) participated
in the second one. Before the experiment took place, it was
clearly explained to each participant, both orally and in writ-
ing, that no health risk was involved. Each participant signed
an informed consent form. The experiment was previously
approved by the internal committee for data protection of the
Institution where the experiments took place, and it followed
the World Medical Association’s Declaration of Helsinki.

C. Experimental Protocol

Each participant was assigned a distinct sequence of TAC
tasks (i.e., hand/wrist configurations to mimic on the screen)
using either the unrepaired, SMT or PDO system. The
sequence of both the learning machines and the tasks was
randomized for each participant in order to achieve counter-
balancing. The number and type of task was the same for each
participant.

In both experiments, each participant sat comfortably in
front of the computer screen, and the bracelet was wrapped
around her/his forearm. She/He was instructed to hold the
forearm with an angle of 45 degrees, leaning the elbow on
the armrest. We told the participant that she/he would be
required to undergo a training session for the prosthesis and
then that she/he would be asked to face a series of 36 tasks,
during which she/he would need to guide the prosthesis in

following the stimulus, using her/his own movement, as close
as possible. At the beginning of training session, the stimulus
was shown on the screen; we then explained that the stimulus
would perform a series of movements (tasks), and that the
participant should simply mimic what the stimulus was doing
with her own arm. The data-gathering phase followed: each
action (rest, RE; wrist flexion, FL; wrist extension, XT; power
grasp, PW) was played once by the stimulus, and while the
participant followed the movement of the stimulus, the obser-
vations were collected. After the end of the data gathering,
a second hand model would appear on the screen, and the
subject was asked to have this model match the previous one.

D. Data Processing and Intent Detection

The observations collected during the model building phase
of the experimental protocol from the Myo bracelet were recti-
fied and mildly low-pass filtered with a 2nd order Butterworth
filter (cutoff 1Hz), then directly used together with the target
values to train an instance of Ridge Regression with Random
Fourier Features (RR-RFF). RR-RFF has been already used
to enforce incremental, non-linear s/p myocontrol (see [8] and
[9], where more details about the method can be found). Here,
it suffices to say that this method enforces an approximant
function f (x) = wT φ(x) of the form described in Subsec-
tion II-B, in which φ consists of cosines weighted through
randomly-sampled frequencies, inducing a finite-dimensional
approximation of a Gaussian kernel [34]. RR-RFF is fast both
in the evaluation of the model and in prediction, can be made
incremental and is bounded in space. It can also be viewed
as an instance of Linear Regression employing a specific
finite(D)-dimensional kernel. To control the 3D hand model
on the screen, the predicted activation values were capped in
in the interval [0, 1] and directly used to control the positions
of the virtual joints of the model. A movie attached to this
paper shows excerpts of a typical experiment.

IV. EXPERIMENTAL RESULTS

A. Performance Measures and Statistics

For each task, four measures of performance were reported
of: the Success Rate (SR), i.e., the fraction of tasks successfully
completed; the Time to Complete the Task (TCT), that is the
time it took to complete asuccessful task; and the Time In
Target (TIT), total time the participants managed to stay in
the target although the task was unsuccessful. Additionally,
in order to check whether a failure was really due to unreach-
ability of the target, for each task we monitored the Reaching
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Fig. 5. Success rate (SR), time to complete task (TCT), time in target (TIT), and reaching rate (RR) for the second experiment, for each of the three
systems considered.

Rate (RR), defined as the fraction of time during which the
output of fa was higher than the minimum acceptable value; in
practice, the percentage of time the subject actually managed
to reach the desired activation value. Lastly, we report the Time
To Repair (TTR), that is time required to complete the repair
process, whenever SMT or PDO were used. In the boxplots
the central mark indicates the median and the edges of the box
denote the 25th and 75th percentiles; the whiskers extend to
the extreme data points not considered outliers; the outliers
are plotted individually using the ‘+’ symbol. Statistically
significant difference between sample distributions is evaluated
using Wilcoxon’s Signed Rank test or the Mann-Whitney
U test (for paired and unpaired samples in turn), since all
distributions were non-Gaussian. Effect sizes are computed
using Cohen’s d Coefficient. The TCT is evaluated over
successful tasks only, whereas the TIT for failed ones only.

B. First Experiment

Figure 3 shows the above-mentioned measures of perfor-
mance for each of the three systems considered (unrepaired,
SMT-repaired and PDO-repaired) obtained by the subjects
during the first experiment.

Although the SR is relatively higher when SMT is used,
there is no significant difference among the three systems;
notice, though, that SMT allows a SR of 100% to be reached,
and that the mean SR in this case is quite high (79.17% ±
23.42%). The times (both TCT and TIT) are quite similar to
one another (again, no significant difference), whereas the RR
is significantly higher for unrepaired/SMT (p < .001, d =
0.71) and unrepaired/PDO (p < .01, d = 0.46). This was
to be expected, since a repaired f offers to the subject a
larger success interval. Figure 4 confirms this impression: the
distribution of the RR is shifted rightwards for SMT and PDO
with respect to the unrepaired system (more so for the SMT
than for the PDO), denoting that it was much easier in those
cases to remain in the target, irrespective of the success in the
tasks.

The TTR was 15.32s± 4.58s for SMT and 10.72s± 3.96s
for PDO.

C. Second Experiment

The picture becomes even clearer if we turn to the results
of the second experiment. Consider Figure 5, analogous to
Figure 3 but for the second experiment.

Due to unreachability of the targets, the success rate is much
lower then in the first experiment (14.58%± 21.06%) for the

Fig. 6. Frequency diagram (histogram) of the reaching rate, computed
on all tasks of the second experiment, for each of the three systems
considered.

unrepaired system, and significantly better than this for SMT
(46.53% ± 22.88% with p < .001, d = 1.45) and for PDO
(45.83%± 18.29% with p < .01, d = 1.58).

The TIT is significantly higher for SMT and PDO
(0.45s ± 1.08s for unrepaired, 2.13 ± 2.31s with p < .001
for SMT and 2.30s± 2.38s with p < .001 for PDO) whereas
the TCTs appear uniform. Lastly, the reaching rates for unre-
paired, SMT and PDO (in turn, 12.76%± 23.84%, 46.79%±
30.26% and 42.59% ± 27.87%) are significantly higher for
unrepaired/SMT ( p < .001, d = 1.25) and unrepaired/PDO
(p < .001, d = 1.15).

Figure 6 reveals that it is much harder to reach the
required activation whenever using the unrepaired machine in
this second experiment (distribution highly skewed leftwards),
whereas, again, using a repaired machine yields distributions
which are much less skewed.

Lastly, the TTR was 16.7s ± 10.02s for SMT and
14.12s ± 13.418s for PDO.

V. DISCUSSION AND CONCLUSIONS

The standard ML-based approach to myocontrol is based
upon classification of sEMG patterns. For the past decade,
however, s/p myocontrol has been advocated as a better
alternative, its main advantage being that it enforces a contin-
uous, infinite manifold of reachable prosthesis configurations,
therefore giving to the subject a better control and immersion
experience. Moreover, it is deemed that small errors in the
intent detection in s/p myocontrol would have a less dramatic
effect on the control itself, whereas crossing a decision bound-
ary in classification can lead to catastrophic effects. Notice that
proportional (non-simultaneous) myocontrol has been in use
since the 60s in the classic two-sensor control system, and
that the idea already appears in [35] and [36]; interestingly,
the advent of classification caused the loss of proportionality
already enforced in the previous approaches. Anyway, here
we have employed such an s/p myocontrol system thanks to
simultaneous regression on all motors of a virtual prosthetic
hand.
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Of course, s/p myocontrol also presents a number of added
difficulties; in this work we tackled one of them, a non-
intuitive behaviour appearing whenever muscle activation is
increased to stabilise a grasp but, as a result, the prosthesis
applies less force than before. Data gathering in regions of high
activation in the input space can be problematic, so we have
rather used a formal procedure, SMT, to try and “repair” ML
models to mathematically ensure that the predicted activation
remains high in such regions. We have also compared SMT
with a simpler repairing technique called PDO, which yeidls
no guarantee of safety but is easier to implement and faster
to execute. The experiment results clearly show that (a) such
intent mismatch does occur, and can even become ubiquitous
in specific conditions; and that (b) SMT/PDO repairing can
effectively prevent it.

In particular, consider the results of the first experiment,
which enforced the standard condition of using a myocontrol
system. Here, using a repaired system versus a standard one
improves the success rate. The phenomenon is not statistically
significant, possibly also due to the relatively small number of
subjects involved. SMT seems to be slightly better than PDO,
and it enables a few subjects to achieve all tasks (SR=100%).
TCT and TIT are very similar to one another, denoting
that repaired machines enforce the same performance as the
unrepaired one as far as timings are concerned. As opposed
to this, the significantly higher RR shows that it was easier
for the subjects to actually reach the desired goal, and stay
within it, using the repaired systems. The frequency diagrams
confirm that reachability improves once a repaired system is
used. Using a repaired machine added 10-15 seconds to the
model-building phase.

The results of the second experiment, in which we “damp-
ened” the predicted activation, thereby inducing the subjects
to apply more force to reach the targets, are on the same line
and go even further. Here the SR for the unrepaired machine
is dramatically low but gets significantly better thanks to the
repairing. In this experiment, using a repaired machine added
14-17 seconds to the model-building phase. Notice that in this
case a statistically significant difference in the TITs appears,
which are much higher for SMT and PDO — actually close
to zero for the unrepaired machine (consider also the results
and related histograms of the RR). This means that in this
experiment, without repairing, whenever a task fails (recall
that TIT is evaluated on failed tasks only) it does so because
of the wrong behaviour of the model, which predicts low
activation values. In other words, it is close-to impossible for
the subjects to reach fA > 1 even though they manage to travel
past tA = 1. Of course some subjects could make it, due to
a favourable instantiation of the fA during the data gathering
phase. As in all ML, here too randomness can play a crucial
role; repairing via SMT can also be seen as a way to smoothen
the uncertainty introduced by ML, while retaining its good
properties of adaptation to each subject. So we conclude that
repairing is effective in improving intent detection, and that
this can be achieved at the price of spending a few seconds in
the beginning of an experiment. Consider again the movie clip
attached to this paper to get an idea of the advantage brought
over by repairing the models.

As far as the comparison between SMT and PDO is con-
cerned, no statistically significant difference can be noticed,
although in the first experiment SMT yields a better SR; the
TTRs are similar in the two experiments, which is not sur-
prising since the only difference between the two experiments
was in the online testing phase, i.e., after the model were
built, and on similar datasets. Taking into account that PDO
cannot guarantee that the desired condition will be enforced,
one should prefer SMT. Of course, we cannot give any
indication of how differently SMT and PDO would perform
on more complex problems, e.g., with more actions or more
observations and/or in true daily-living conditions; but we
expect the complexity of SMT to increase dramatically as
the problem gets harder — as opposed to that, this should
be no problem for PDO. There is indeed a trade-off then,
between employing a possibly slower method with a guarantee
(SMT) or a possibly faster one which would only work well in
practice. Such a trade-off must be analyzed on a case-by-case
basis. Moreover, PDO is an easy method to implement.

One remark about the encoding of the wrong model behav-
iour. We have made the assumption that the straight line
(A− RE) encodes, for an arbitrary action A, the enforcement
of A with increasing force; this assumption is physiologically
justified (see. e.g., [37]–[41]) but, obviously, only to some
extent. Extreme flexion or muscle fatigue would seriously
invalidate it and the input signals would no longer lie on
the straight line. So far we have observed very little of this
phenomenon, but it will need to be taken into account in the
general case. Actually, given that in RR-RFF the non-linear
basis functions are cosines, that is smooth ones, enforcing the
safety condition as we have done probably buys the system
some extra safety: if the subject even moves slightly away
from the straight line, the fA should be not so different.

Perspectives / Future work

The approach presented is, per se, very general, since the
logical language enforced in dReal [17] can encode safety of
RR-RFF-based myocontrol with respect of numerous interest-
ing properties � as presented in Subsection II-B. One example
is that of actually forcing a monotonically increasing behav-
iour for values of 0 ≤ tA ≤ 1. Another even more interesting
possibility is that of trying and eliminating action interference,
another undesired behaviour of myocontrol, in which while
trying to perform an action, another one gets unwillingly
performed — for example, the wrist unwillingly pronates
while the subject only tries to power grasp, which could lead
to unwanted effects. To this aim, we should probably try and
verify a more complex property (or set of properties) for each
straight line.

All in all, we may not as yet claim that the approaches
presented in this work are applicable in daily-living scenarios.
The TAC test, although online and successfully tested on
18 subjects, is no representative of daily-living activities in
which movement artifacts, added weights, fatigue, electrode
displacement, etc. usually play a determinant role. Patients
must be involved, and possibly interactive learning [10] must
be used to enable on-the-fly corrections to the ML model
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to improve the overall reliability — this is our next planned
experiment. Notice, anyway, that at least the PDO approach
is easy to implement and, as long as the ML method’s
performance does not crucially depend on N (as is the case
of RR-RFF), won’t alter training and prediction times.
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