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ABSTRACT
Background  Considerable clinical heterogeneity 
in idiopathic pulmonary fibrosis (IPF) suggests the 
existence of multiple disease endotypes. Identifying 
these endotypes would improve our understanding of 
the pathogenesis of IPF and could allow for a biomarker-
driven personalised medicine approach. We aimed to 
identify clinically distinct groups of patients with IPF that 
could represent distinct disease endotypes.
Methods  We co-normalised, pooled and clustered 
three publicly available blood transcriptomic datasets 
(total 220 IPF cases). We compared clinical traits across 
clusters and used gene enrichment analysis to identify 
biological pathways and processes that were over-
represented among the genes that were differentially 
expressed across clusters. A gene-based classifier 
was developed and validated using three additional 
independent datasets (total 194 IPF cases).
Findings  We identified three clusters of patients 
with IPF with statistically significant differences in 
lung function (p=0.009) and mortality (p=0.009) 
between groups. Gene enrichment analysis implicated 
mitochondrial homeostasis, apoptosis, cell cycle and 
innate and adaptive immunity in the pathogenesis 
underlying these groups. We developed and validated a 
13-gene cluster classifier that predicted mortality in IPF 
(high-risk clusters vs low-risk cluster: HR 4.25, 95% CI 
2.14 to 8.46, p=3.7×10−5).
Interpretation  We have identified blood gene 
expression signatures capable of discerning groups of 
patients with IPF with significant differences in survival. 
These clusters could be representative of distinct 
pathophysiological states, which would support the 
theory of multiple endotypes of IPF. Although more 
work must be done to confirm the existence of these 
endotypes, our classifier could be a useful tool in patient 
stratification and outcome prediction in IPF.

INTRODUCTION
Idiopathic pulmonary fibrosis (IPF) is a complex, 
ultimately fatal disease, characterised by progres-
sive scarring of the lungs, with a median survival 
of 3–5 years postdiagnosis.1 2 Currently, there is 
no cure for IPF and the two drugs approved for 
treatment (nintedanib and pirfenidone) only slow 
disease progression, do not work in all patients and 
are often not well tolerated.3 4 The clinical course of 
IPF is highly variable with slow progression in some 

patients, rapid progression in others, while many 
experience a slowly progressive course interspersed 
with periods of rapid lung function deterioration.1 
It is plausible that these clinical phenotypes could 
reflect different disease endotypes.

Disease endotypes are subtypes of a disease as 
defined by a particular pathophysiological mecha-
nism. It has been speculated that distinct endotypes 
of IPF exist,5 6 as in asthma and lung cancer,7 8 
although these are not yet well understood. Iden-
tification of endotypes would greatly increase our 
understanding of the behaviour and heteroge-
neity of the disease, and may allow for the devel-
opment of biomarkers and more precise, tailored 
approaches to treatment.

Transcriptomic data can be used to define disease 
endotypes, as similar transcriptomic profiles in 
affected individuals may reflect common underlying 
biological mechanisms. Previous transcriptomic 

WHAT IS ALREADY KNOWN ON THIS TOPIC
	⇒ The clinical course of idiopathic pulmonary 
fibrosis (IPF) is highly heterogeneous, which 
has prompted speculation that the disease may 
consist of multiple ‘endotypes’.

	⇒ Gene expression profiles could be used to 
identify these endotypes but previous studies 
have been limited by sample size, ability to 
validate and clinical interpretation.

WHAT THIS STUDY ADDS
	⇒ By combining and clustering multiple gene 
expression datasets, we identified three distinct 
clusters of patients with IPF with significant 
clinical differences between groups, as well as 
differences in gene expression that implicated 
mitochondrial homeostasis, apoptosis, cell cycle 
and innate and adaptive immunity.

	⇒ We went on to develop a 13-gene cluster 
classifier that was able to predict mortality in 
two validation cohorts of patients with IPF.

HOW THIS STUDY MIGHT AFFECT RESEARCH, 
PRACTICE AND/OR POLICY

	⇒ Our findings support the hypothesis of multiple 
endotypes of IPF and highlight distinct 
underlying biological mechanisms that could 
inform a precision medicine strategy for IPF.

    1Kraven LM, et al. Thorax 2022;0:1–8. doi:10.1136/thoraxjnl-2021-218563
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Interstitial lung disease

analyses of patients with cancer have been particularly successful 
in defining clinically significant patient subgroups, which have 
led to improvements in treatment.9 10 Previous studies in patients 
with IPF have used transcriptomic or limited biomarker data 
with supervised clustering approaches to develop binary signa-
tures predictive of disease progression, measured using mortality 
or transplant-free survival.11 12 Studies using unsupervised 
clustering approaches to discover disease endotypes have been 
limited by sample size,13 ability to validate13 14 and clinical inter-
pretation.14 However, these studies have consistently reported 
association of inflammatory genes,13 in particular those associ-
ated with T cell activation11 and differentiation,14 with worse 
outcomes.

In this study, we aimed to conduct the largest unsupervised 
clustering analysis of available transcriptomic datasets to date, 
with independent validation, to identify clinically distinct groups 
of patients with IPF. We hypothesised that these groups could 
represent individuals with different endotypes of IPF. Rather 
than undertake single dataset analyses, we co-normalised and 
pooled multiple datasets together to increase the sample size and 
enhance statistical power. Additionally, we used classification 
to develop a method to accurately assign additional individuals 
with IPF to one of these groups. This classifier displayed the 
ability to predict survival in IPF and so we then compared the 
performance of our classifier in independent validation datasets 
to a previous method of outcome prediction in IPF.

METHODS
Collection of publicly available data
The design of our study is shown in figure 1. First, we reviewed 
the IPF datasets available on the Gene Expression Omnibus15 and 
systematically selected several suitable datasets of gene expres-
sion data measured from whole blood (see online supplemental 
file for details). The datasets were then assigned to either the 
discovery stage or the validation stage (online supplemental file). 

Cohorts used in the discovery stage must have included healthy 
controls to enable the data co-normalisation. The methods used 
to preprocess the transcriptomic data before the co-normalisa-
tion are described in the online supplemental file.

Discovery stage
As the discovery datasets originated from different studies and 
the transcriptomic data were collected using varying platforms, 
there would have been considerable technical (non-biological) 
differences in gene expression between them. As such, the 
discovery datasets required adjustment before they could be 
combined and clustered. We co-normalised the discovery 
datasets using the COmbat CO-Normalisation Using conTrols 
(COCONUT) method,16 using R V.4.0.0 and the ‘COCONUT’ 
package V.1.0.2 (online supplemental file). All healthy control 
subjects were then removed from further analysis.

We used R V.3.4.0 and the Combined Mapping of Multiple 
clUsteriNg ALgorithms (COMMUNAL)17 package V.1.1.0 
to identify the optimal number of clusters within the pooled, 
co-normalised data. COMMUNAL integrates data from multiple 
clustering algorithms across a range of genes and evaluates 
the validity of each number of clusters using multiple validity 
measures. Details on the configuration of COMMUNAL used in 
this study and the process used to determine the optimal cluster 
assignment can be found in the online supplemental file. Once 
an optimal cluster assignment was chosen, principal components 
analysis and heatmaps were used to visualise the separation of 
the clusters. Unclustered samples were excluded from further 
analysis.

Clinical and demographic characteristics of clustered subjects 
were compared using χ2 tests for count data, analysis of variance 
for non-skewed continuous data, Kruskal-Wallis tests for skewed 
continuous data and survival analysis methods for time-to-event 
data (online supplemental file). Gene enrichment analysis was 
performed in R V.4.0.0 with the in-house ‘metabaser’ package 
(database V.20.3, package V.4.2.3) to highlight biological mech-
anisms that were significantly enriched for the subjects in each 
cluster (online supplemental file).

We developed a gene expression-based classifier to assign new 
individuals with IPF to one of the clusters using only the most 
informative differentially expressed genes. This classifier was 
designed following the approach described by Sweeney et al in 
their study of bacterial sepsis (online supplemental file).18

Validation stage
The classifier was used to assign all subjects with IPF in each 
validation dataset to a discovery cluster. Phenotypic traits were 
compared across clusters, as in the discovery stage (online 
supplemental file).

We compared the classifier’s performance at predicting survival 
in IPF to a previous transcriptomic prognostic biomarker for IPF 
by Herazo-Maya et al.19 Each of the validation subjects with 
survival data available were assigned into a ‘high-risk’ or ‘low-
risk’ group (in terms of mortality or requiring a lung transplant) 
using the method described by Herazo-Maya et al, the Scoring 
Algorithm for Molecular Subphenotypes (SAMS). For this we 
used as many of the genes in their signature as were present in the 
validation datasets. Similarly, each subject was assigned into one 
of our discovery clusters, which were each classed as low risk/
high risk based on the discovery stage findings. Survival analysis 
methods were used to determine which method performed best 
at predicting survival (online supplemental file).

Figure 1  A flow chart showing the design of our study. COCONUT, 
COmbat CO-Normalisation Using conTrols; COMMUNAL, Combined 
Mapping of Multiple clUsteriNg ALgorithms; IPF, idiopathic pulmonary 
fibrosis.
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Interstitial lung disease

RESULTS
Collection of publicly available data
Six independent whole blood gene expression datasets were 
selected for inclusion in the analysis (online supplemental figure 
E1). Summary statistics for all subjects are shown in table 1.

Discovery stage
All three discovery stage datasets were microarray-based (online 
supplemental table E1). There were expression levels measured 
for 9371 common genes across the three datasets, which 
consisted of a total of 220 subjects with IPF and 95 healthy 
control subjects. There were no significant differences in age 
or sex between healthy controls across the three studies (online 
supplemental table E2).

Prior to COCONUT co-normalisation, the data from the three 
cohorts were entirely separated in high-dimensional space due to 
technical differences between the studies (figure 2A). Whereas 
after COCONUT (figure  2B), the data were overlapping in 
high-dimensional space, indicating that the technical differences 
between datasets had been reduced and that the co-normalised 
data were suitable for clustering.

COMMUNAL was run on the co-normalised data and the 
resulting optimality map is shown in online supplemental figure 
E2. The clustering assignment with 3 clusters using 2500 genes 
was chosen as the optimal assignment (online supplemental file), 
with 64 subjects assigned to cluster 1, 95 assigned to cluster 2, 
37 assigned to cluster 3 and 24 (10.4%) that were unclustered 
(figure 2C and online supplemental figure E3).

Table 1  Summary information on the publicly available datasets that were included in this study, as well as summary statistics for all individuals 
whose data were included in the analysis.

Discovery stage Validation stage

GEO accession number GSE38958 GSE33566 GSE93606 GSE132607 GSE27957 GSE28042

Reference Huang et al34 Yang et al35 Molyneaux et al36 * †11 †11

Country USA USA UK USA USA USA

Disease status IPF Control IPF Control IPF Control IPF IPF IPF

Sample size 70 45 93 30 57 20 74 45 75

Age (years, SD) 68.2 (7.2) 69.3 (9.3) 67.2 (11.4) 62.4 (14.3) 67.4 (8.0) 66.0 (10.6) 66.6 (7.6) 67.1 (8.2) 68.9 (8.1)

Sex (% male) 82.6% 60.0% 65.6% 46.7% 66.7% 60.0% 70.3% 88.9% 69.3%

Ancestry (% European) 82.8% 71.1% Unknown Unknown Unknown Unknown 94.6% 82.2% 97.3%

FVC % predicted (SD) 62.4 (15.0) Unknown 62.0 (28.8) Unknown 72.2 (20.3) Unknown 69.7 (18.4) 60.6 (14.3) 65.4 (16.7)

DLCO % predicted (SD) 43.3 (18.7) Unknown 52.1 (27.9) Unknown 39.2 (14.1) Unknown 45.6 (15.4) 43.4 (17.7) 48.9 (18.6)

Mortality (%) Unknown Unknown Unknown Unknown 40.4% Unknown Unknown 37.8% 32.0%

MUC5B genotype (% GG) Unknown Unknown 28.0% 53.8% 40.0% Unknown 18.8% Unknown Unknown

MUC5B genotype (% GT) Unknown Unknown 66.0% 42.3% 50.0% Unknown 78.1% Unknown Unknown

MUC5B genotype (% TT) Unknown Unknown 6.0% 3.8% 10.0% Unknown 3.1% Unknown Unknown

Immunosuppressive 
therapy (%)

Unknown Unknown 0.0% Unknown 0.0% Unknown Unknown 4.4% 14.7%

*As of March 2022, the dataset with GEO accession number GSE132607 had not been associated with any published study.
†The datasets with GEO accession numbers GSE27957 and GSE28042 originated from the same study,11 where the data in GSE27957 were used in discovery and the data in 
GSE28042 were used as independent validation data.
DLCO, diffusing capacity of lung for carbon monoxide; GEO, Gene Expression Omnibus; MUC5B genotype, genotype for the MUC5B promoter polymorphism rs35705950.

Figure 2  Plots of the first two principal components of the gene expression data for the idiopathic pulmonary fibrosis samples prior to co-
normalisation and stratified by original study (A), post co-normalisation and stratified by original study (B) and post co-normalisation stratified by 
cluster (C). The x-axis represents the first principal component of the data and the y-axis represents the second principal component of the data.
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Interstitial lung disease

With all studies combined and unclustered individuals 
removed (table 2), there was a statistically significant difference 
in average predicted diffusing capacity of the lung for carbon 
monoxide (DLCO) across clusters (p=0.009). Subjects in cluster 
1 had a similar median predicted DLCO to those in cluster 3, 
whilst subjects in cluster 2 had the greatest median predicted 
DLCO, indicating that these individuals had relatively preserved 
lung function. Additionally, there was a significant difference in 
average score from the gender, age and physiology (GAP) index 
for IPF mortality (p=0.006),20 with those in cluster 1 having 
the greatest GAP score and those in cluster 2 having the lowest 
average GAP score. There was a statistically significant differ-
ence in mortality between clusters 2 and 3, with death observed 
for 25% of subjects in cluster 2 and 67% of subjects in cluster 
3 (p=0.009). Furthermore, those in cluster 3 had consistently 
poorer survival over time than those in cluster 2 (online supple-
mental figure E4). A Cox proportional hazards (PH) model esti-
mated that the HR between clusters 2 and 3 was 3.59 (95% CI 
1.40 to 9.19, p=0.008), and so at any follow-up time, subjects 
in cluster 3 were estimated to be 3.59 times as likely to die as 
subjects in cluster 2. The clinical and demographic traits of the 
subjects in each cluster stratified by original study are shown in 
online supplemental table E3.

Gene enrichment analysis revealed that cluster 1 was signifi-
cantly enriched for biological mechanisms relating to metabolic 
changes, including electron transport and cellular respiration 
(online supplemental table E4 and figure E5). Cluster 2 was 
significantly enriched for biological processes and pathways 
relating to gene regulation, DNA repair, cell cycle and apoptosis 
(online supplemental table E5 and figure E6), while cluster 3 was 
significantly enriched for terms relating to the immune response 
(online supplemental table E6 and figure E7). In addition, the 
genes assigned to clusters 2 and 3 were each found to be statis-
tically overconnected (in terms of direct gene regulation) to a 
significant number of genes that have been previously implicated 
in the development of IPF (see the ‘Gene enrichment analysis’ 
section in the online supplemental file for more details).

We used the pooled, co-normalised gene expression data for 
all 196 subjects who were successfully clustered in the discovery 
analysis to train a gene expression-based cluster classifier (online 
supplemental file). The classifier (online supplemental tables E7 
and E8) used expression data from 13 genes and was able to 
accurately reassign 99.0% of discovery subjects (online supple-
mental table E9).

Validation stage
There were 194 subjects with IPF across the three validation 
cohorts. Expression levels for all 13 genes used in the classi-
fier were available in all three validation cohorts. We used the 
classifier to assign each individual to a cluster and compared 
phenotypic traits across clusters (table  2). As in the discovery 
stage, there were statistically significant differences in mortality 
between clusters (p=0.001) and those in cluster 2 had the best 
survival over time (figure 3). Additionally, individuals in cluster 
2 had the highest average DLCO, although the difference in 
DLCO between validation clusters was not statistically significant 
(p=0.069). Cox PH models (online supplemental table E10) 
estimated that at any follow-up time, an individual in cluster 1 
was 3.80 times more likely to die than an individual in cluster 2 
(95% CI 1.78 to 8.12, p=0.001), while an individual in cluster 3 
was 5.05 times more likely to die than an individual in cluster 2 
(95% CI 2.24 to 11.35, p=9.1×10−5). However, the difference 
in survival over time between clusters 1 and 3 was not statisti-
cally significant (HR 1.47 (95% CI 0.67 to 3.22, p=0.341).

Finally, we compared the performance of our classifier at 
predicting survival in IPF with SAMS, a method used by Herazo-
Maya et al to predict outcome in IPF using a 52-gene signa-
ture.19 There were no common genes between the classifier and 
the 52-gene signature, although many were highly correlated 
in the validation subjects (online supplemental figure E8). The 
subjects in the GSE27957 and GSE28042 validation cohorts 
(GSE132607 did not report mortality) were each classed as ‘high 
risk’ or ‘low risk’ using both gene expression-based methods. 

Table 2  Comparison of clinical and demographic traits of clustered subjects in the discovery and validation stages

Discovery stage (n=196) Validation stage (n=194)

Cluster 1 Cluster 2 Cluster 3 P value N used Cluster 1 Cluster 2 Cluster 3 P value N used

n subjects in cluster 64 95 37  �  52 101 41  �

Age (years) (mean, SD) 67.8 (8.9) 66.9 (10.2) 68.8 (9.4) 0.592 188 67.1 (8.1) 68.5 (7.6) 66.2 (8.6) 0.239 194

Male (%) 52 (81.3%) 66 (69.5%) 23 (62.2%) 0.091 196 38 (73.1%) 72 (71.3%) 34 (82.9%) 0.347 194

European ancestry (%) 17 (81.0%) 29 (82.9%) 3 (75.0%) 0.883 60 51 (98.1%) 91 (90.1%) 38 (92.7%) 0.196 194

Ever smoker (%) NA 15 (62.5%) 18 (78.3%) 0.389 47 11 (57.9%) 21 (60.0%) 17 (85.0%) 0.114 74

Death observed during study (%) NA 6 (25.0%) 16 (66.7%) 0.009 48 16 (48.5%) 13 (19.7%) 12 (57.1%) 0.001 120

FVC % predicted (median, IQR) 63.0 (35.0) 70.5 (30.1) 60.1 (23.4) 0.342 154 64.3 (23.6) 65.0 (24.3) 63.1 (15.3) 0.467 193

DLCO % predicted (median, IQR) 35.0 (30.0) 45.0 (29.2) 34.4 (17.3) 0.009 133 42.1 (26.4) 48.2 (21.1) 43.4 (20.3) 0.069 194

FEV1 % predicted (median, IQR) NA 74.9 (23.1) 65.4 (22.7) 0.216 48 74.8 (21.7) 75.2 (22.2) 75.4 (17.7) 0.913 75

GAP index (mean, SD) 4.9 (1.4) 3.9 (1.5) 4.4 (1.7) 0.006 132 4.1 (1.6) 4.0 (1.5) 4.3 (1.5) 0.753 193

MUC5B genotype: GG (%) 5 (29.4%) 11 (27.5%) 14 (51.9%) 0.230 84 2 (11.8%) 6 (19.4%) 4 (25.0%) 0.780 64

MUC5B genotype: GT (%) 10 (58.8%) 26 (65.0%) 10 (37.0%)  �  14 (82.4%) 24 (77.4%) 12 (75.0%)  �

MUC5B genotype: TT (%) 2 (11.8%) 3 (7.5%) 3 (11.1%)  �  1 (5.9%) 1 (3.2%) 0 (0%)  �

Data are presented as count (percentage), mean (SD) or median (IQR). GAP index, Gender, age and physiology index for IPF mortality.20 P value for count data is from a χ2 
test, test comparing means is analysis of variance and test comparing medians is the Kruskal-Wallis log rank test. Significant p values (p<0.05) are highlighted in bold. For 
percentages, the denominator was the number of participants in that cluster with non-missing data for that trait.
DLCO, diffusing capacity for carbon monoxide; FEV1, forced expiratory volume in 1 second; FVC, forced vital capacity; IPF, idiopathic pulmonary fibrosis; MUC5B genotype, 
genotype for the MUC5B promoter polymorphism rs35705950; NA, data not available.
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Interstitial lung disease

As clusters 1 and 3 were not significantly distinct in terms of 
survival, both clusters were considered equally ‘high risk’ for the 
assignments based on the 13-gene classifier. Fifty-one out of 52 
(98.1%) genes in the gene signature by Herazo-Maya et al were 
present in the GSE27957 dataset and 50/52 (96.2%) were avail-
able in the GSE28042 dataset. Overall, there was 68.3% agree-
ment between the two methods (online supplemental table E11).

Our classifier performed well at predicting survival (figure 4A, 
E9A and E9C), with the subjects in the ‘high-risk’ clusters having 
far poorer survival over time than those in the ‘low-risk’ cluster. 
A univariate Cox PH model estimated that at any follow-up 
time, an individual in a high-risk cluster was 4.25 times more 
likely to die than an individual in the low-risk cluster (95% CI 
2.14 to 8.46, p=3.7×10−5). This model had a C-index (the 
equivalent of the area under the curve for a receiver operating 
characteristic curve) of 0.664 (95% CI 0.590 to 0.737). SAMS 
(figure 4B, E9B and E9D) performed less well, with a Cox PH 
model estimating that at any time, those in the high-risk group 
were 1.98 times as likely to die than those in the low-risk group 
(95% CI 1.07 to 3.68, p=0.030) and a C-index of 0.609 (95% 
CI 0.531 to 0.686).

The risk predictions made using the classifier remained statis-
tically significant (p=0.007) after adjusting for age, sex, ancestry, 
FVC and DLCO (online supplemental table E12), with an HR of 
2.70 between the high-risk and low-risk clusters (95% CI 1.32 
to 5.53). This model had a C-index of 0.773 (95% CI 0.697 to 
0.848), which was greater than that of the Cox model containing 
only age, sex, ancestry, FVC and DLCO (C-index=0.747, 95% 
CI 0.670 to 0.825), suggesting an improvement in predictive 
ability. A likelihood ratio test between the two models gave a 
p value of 0.005, suggesting that the improvement in predic-
tive ability when including the classifier’s risk predictions was 
statistically significant. The multivariate Cox model containing 
SAMS’ risk predictions had a C-index of 0.760 (95% CI 0.684 
to 0.837), which suggested an improvement over the Cox model 
containing only age, sex, ancestry, FVC and DLCO, although the 
likelihood ratio test p value between these two models was not 
statistically significant (p=0.105).

DISCUSSION
By applying new statistical methods for data co-normalisation 
and machine learning to multiple publicly available datasets, 
we identified three clusters of patients with IPF with statisti-
cally significant differences in lung function and survival. As the 

Figure 3  A Kaplan-Meier plot showing survival over time for the 
clustered validation subjects. The p value shown on the plot is from a 
log-rank test testing the three curves for equality. Median survival in 
each cluster is shown by dotted lines, where possible.

Figure 4  Survival over time for the subjects with IPF in GSE27957 and GSE28042, stratified by risk group according to our 13 gene classifier (A) and 
SAMS method by Herazo-Maya et al (B) . The p value on each plot is from a log-rank test testing the two curves for equality. A dotted line on the plot 
indicates the median survival time for the risk group if this could be calculated.
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Interstitial lung disease

clustering in this study was undertaken independently of clinical 
data, yet significant differences in clinical traits were observed 
between clusters, this suggests that they may be representative of 
distinct and clinically relevant endotypes of IPF.

In this study, we used datasets in which the gene expression 
had been measured from whole blood samples. However, as IPF 
is a lung disease, characterised by damage to the alveolar epithe-
lium, patterns of gene expression identified in blood may not 
reflect the underlying pathology of the disease and may instead 
reflect downstream effects or the presence of confounders, such 
as secondary infections or treatment effects. Nonetheless, blood 
is more accessible than a lung-specific tissue/cell type and the 
expression of a gene in blood is often a significant predictor of 
the expression of that gene in lung.21 Furthermore, the blood 
expression datasets available on GEO provided a larger sample 
size and more comprehensive accompanying clinical data than 
lung-specific tissue types, which allowed us to identify statisti-
cally significant clinical differences between clusters. In addition, 
this allowed us to develop a blood-based classifier, which has 
more clinical utility than one that requires measurements from 
lung, as this would require more invasive sample collection.

The genes that were most differently expressed in subjects in 
cluster 1 were significantly enriched for biological mechanisms 
related to electron transport and cellular respiration. Recent 
findings appear to suggest that metabolic dysregulation could be 
a contributing factor to fibrosis, although its role is not yet fully 
understood.22 23 The genes in cluster 1 were also significantly 
enriched for pathways related to transforming growth factor-β 
signalling, which is a central mediator of fibrosis.24–26

Among the biological pathways that were significantly 
enriched for cluster 2 were pathways related to apoptosis and cell 
cycle. It has been previously reported that apoptosis is increased 
in alveolar epithelial cells of patients with IPF but decreased 
in myofibroblasts,27 with this imbalance contributing to IPF 
pathogenesis.28 Furthermore, the use of therapies that can selec-
tively manipulate apoptosis have been proposed.29 Additionally, 
genetic variants within cell cycle genes have been shown to be 
associated with IPF development and progression.30 The results 
for this cluster could further support the idea that apoptosis and 
cell cycle each play an important role in the pathology of IPF.

Cluster 3 was enriched for terms related to the immune system 
response. The role of the immune system in IPF has been contro-
versial in the past; failed immunomodulatory therapies in IPF, 
some of which have led to worse outcomes, have led to specula-
tion that certain immune responses are protective while others 
are harmful.31 32 An improved understanding of immune-driven 
endotypes could inform novel treatment approaches.

The 13-gene expression-based cluster classifier was able to 
assign the subjects with IPF from the validation datasets to clus-
ters with statistically significant differences in survival between 
clusters 2 and 3 (p=9.1×10−5), which was consistent with the 
findings in the discovery stage (p=0.008). In addition, while 
survival information was not directly available for the individ-
uals in cluster 1 in the discovery stage, the significantly low 
average DLCO and high average GAP score for the individuals in 
that cluster is consistent with the poor survival that was observed 
for cluster 1 in the validation stage. As the classifier appears to 
have the ability to assign subjects who are at a lower risk of death 
into cluster 2 and the subjects who are at a greater risk of death 
into the other two clusters, it could potentially be used to predict 
survival in IPF.

The performance of the classifier in predicting survival was 
compared with SAMS, a similar approach to outcome predic-
tion in IPF.19 Despite using data from one-quarter of the number 

of genes used for SAMS, the differences in survival over time 
observed between the risk groups in the two validation datasets 
had greater statistical significance and effect size when predic-
tions were made using the classifier. Additionally, including 
the classifier’s predictions in a survival model that adjusted 
for important covariate factors led to a statistically significant 
increase in predictive ability.

One of the main strengths of this study was that the utilisation 
of a new statistical approach to co-normalisation (COCONUT) 
allowed for three datasets to be combined,16 resulting in one of 
the largest transcriptomic studies in IPF to date with a total of 
414 IPF cases across the discovery and validation stages. Another 
strength of our study was that the application of COMMUNAL, 
which considered two different clustering algorithms and tested 
five validity measures over a range of genes, meant that our clus-
tering was more reliable and more likely to be reproducible than 
the standard approach, which would have been to apply one 
clustering algorithm and test one validity measure.

There were several limitations to this study. First, as we relied 
on the use of publicly available data, some clinical variables were 
relatively underpowered due to missingness within the data or 
having not been reported in all studies. In particular, survival 
information was only available in one of the three discovery 
cohorts and two of the three validation cohorts, which may have 
limited our ability to clinically distinguish clusters 1 and 3 in 
terms of survival. In addition, we lacked detailed data for clin-
ically significant traits such as patient reported outcomes, lung 
function decline over time and the incidence rate of acute exacer-
bations. Additionally, we did not possess information regarding 
the background therapy of the subjects with IPF. However, for 
the three cohorts with survival data available, we were able to 
glean from the original papers that the patients with IPF were 
either treatment-naïve populations (GSE93606) or that there 
were only a small proportion that were receiving immunosup-
pressive therapy at the time of the blood collection (GSE27957 
and GSE28042). In addition, these populations were not given 
anti-fibrotics and so treatment effects are unlikely to have been 
driving the large differences in survival that were observed 
between clusters. These limitations highlight the need for a 
single large prospective study on this topic with more compre-
hensive phenotyping.

A further weakness of our study is that each participating 
cohort of subjects with IPF was subject to survival bias, as only 
subjects who survived long enough to enrol into each study could 
have contributed their transcriptomic data to it. This could have 
restricted the level of heterogeneity of IPF that we were able 
to capture in the study and limited the generalisability of our 
findings.

Additionally, COCONUT makes the assumption that the 
healthy controls across the different studies came from the same 
statistical distribution and so all differences between healthy 
controls across studies must have been due to non-biological 
variation. This means that any large differences in confounding 
factors between the groups of healthy controls would have 
restricted the efficacy of the co-normalisation. However, 
there were no significant differences in age (p=0.187) or sex 
(p=0.477) between the healthy controls across the three studies.

If the clusters identified in this study do truly represent endo-
types of IPF, it may be worth speculating about the nature of 
these endotypes. As IPF is a complex disease, with many known 
common genetic and environmental exposures, it is unlikely that 
it would behave under a traditional discrete endotype model and 
instead more likely that it would behave under a more complex 
model, such as the palette model described by McCarthy.33 
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Interstitial lung disease

Our gene enrichment analysis results could implicate metabolic 
changes and the immune system response as being among the 
component pathways for IPF.

To conclude, these results could support the hypothesis of 
multiple endotypes of IPF as there appear to be at least two clin-
ically distinct groups of patients with IPF that can be identified 
through cluster analysis of transcriptomic data. As these clusters 
were defined using expression from groups of genes that were 
significantly enriched for many different biological pathways and 
processes, they could be representative of distinct pathophysio-
logical states. Additionally, a classifier with the ability to assign 
additional individuals with IPF to one of the clusters was devel-
oped. With further development, this classifier could be a useful 
tool in outcome prediction in IPF as well as helping us gain a 
better understanding of the underlying biological processes that 
may be driving the observed differences in survival.

Author affiliations
1Department of Health Sciences, University of Leicester, Leicester, UK
2Research & Development, GlaxoSmithKline, Stevenage, UK
3Guy’s and St Thomas’ NHS Foundation Trust, Royal Brompton and Harefield 
Hospitals, London, UK
4National Heart and Lung Institute, Imperial College London, London, UK
5Keck School of Medicine, University of Southern California, Los Angeles, California, 
USA
6Division of Pulmonary, Critical Care & Sleep Medicine, Yale School of Medicine, New 
Haven, Connecticut, USA
7Division of Respirology, Western University, London, Ontario, Canada
8Department of Medicine, University of Colorado, Denver, Colorado, USA
9Division of Pulmonary & Critical Care Medicine, University of Virginia, Charlottesville, 
Virginia, USA
10National Institute for Health Research Respiratory Clinical Research Facility, Royal 
Brompton Hospital, London, UK
11National Institute for Health Research, Glenfield Hospital, Leicester, UK

Twitter Luke M Kraven @KravenLuke

Acknowledgements  We thank the research teams who have made their data 
publicly available via the Gene Expression Omnibus and to all study participants for 
contributing their data and samples.

Contributors  LMK, ART, AJY, WAF, GJ and LVW designed the study and led the 
writing of the manuscript. LMK collected and analysed the data. ART accessed and 
verified the data. PLM, TM, JMcD, MM, IVY, DAS, YH, IN and SFM provided additional 
clinical data for the individuals in the study. All authors contributed to drafting and 
providing critical feedback on the manuscript. LVW is the guarantor of the paper.

Funding  LVW holds a GSK/Asthma+Lung UK Chair in Respiratory Research (C17-
1). GJ is supported by a National Institute for Health Research (NIHR) Research 
Professorship (NIHR reference RP-2017-08-ST2-014). LMK was funded by a Medical 
Research Council PhD studentship (MR/N013913/1). PLM is supported by an 
Action for Pulmonary Fibrosis Mike Bray fellowship. TM is supported by a National 
Institute for Health Research Clinician Scientist Fellowship (CS-2013-13-017) and 
an Asthma+Lung UK Chair in Respiratory Research (C17-3). IN is supported by 
a National Heart, Lung, and Blood Institute (NHLBI) grant (R01HL145266). DAS 
is supported by NHLBI grants (UG3HL151865, R01HL097163, P01HL092870, 
X01HL134585 and UH3HL123442) and a United States Department of Defense 
grant (W81XWH-17-1-0597). The GSE110147 study was supported by the Roche 
Multi Organ Transplant Academic Enrichment Fund, Lawson Research Institute 
Internal Research Fund and Western Strategic Support for CIHR Success, Seed Grant. 
The research was partially supported by the NIHR Leicester Biomedical Research 
Centre.

Disclaimer  The views expressed are those of the author(s) and not necessarily 
those of the National Health Service (NHS), the National Institute for Health 
Research or the Department of Health.

Competing interests  ART, AJY and WAF are employees and shareholders of 
GlaxoSmithKline. LVW reports recent and current research grant funding from 
GlaxoSmithKline and Orion and consultancy fees from Galapagos. PLM reports 
recent and current research grant funding from AstraZeneca, consulting fees from 
Hoffman-La Roche, Boehringer Ingelheim and AstraZeneca and speaker fees from 
Boehringer Ingelheim and Hoffman-La Roche. TM reports consulting fees from 
Boehringer Ingelheim, Roche/Genentech, AstraZeneca, Bayer, Blade Therapeutics, 
Bristol-Myers Squibb, Galapagos, Galecto, GlaxoSmithKline, IQVIA, Pliant, Respivant, 
Theravance and Veracyte and speaker fees from Boehringer Ingelheim and Roche/

Genentech. IVY reports consulting fees from Eleven P15 and is co-chair for the ATS 
Section of Genetics and Genomics. DAS is a consultant for Vertex Pharmaceuticals 
and is the founder and chief scientific officer of Eleven P15, a company focused 
on the early diagnosis and treatment of pulmonary fibrosis. IN reports consulting 
fees from Boerhinger Ingelheim, Genentech and Sanofi Aventis and participation 
on the Yale Data Safety Monitoring Board. GJ reports research grant funding from 
AstraZeneca, Biogen, Galecto, GlaxoSmithKline, RedX and Pliant, consulting fees 
from Bristol Myers Squibb, Daewoong, Veracyte, Resolution Therapeutics and Pliant, 
speaker fees from Chiesi, Roche, PatientMPower and AstraZeneca, participation on 
Boehringer Ingelheim, Galapagos and Vicore data advisory boards and is a trustee 
for Action for Pulmonary Fibrosis.

Patient consent for publication  Not applicable.

Provenance and peer review  Not commissioned; externally peer reviewed.

Data availability statement  Data are available in a public, open access 
repository and available on reasonable request. All gene expression data used in this 
study are freely available on the Gene Expression Omnibus (https://www.ncbi.nlm.​
nih.gov/geo/). Additional clinical data for some participants were obtained directly 
from the study authors and are available on reasonable request.

Supplemental material  This content has been supplied by the author(s). It 
has not been vetted by BMJ Publishing Group Limited (BMJ) and may not have 
been peer-reviewed. Any opinions or recommendations discussed are solely those 
of the author(s) and are not endorsed by BMJ. BMJ disclaims all liability and 
responsibility arising from any reliance placed on the content. Where the content 
includes any translated material, BMJ does not warrant the accuracy and reliability 
of the translations (including but not limited to local regulations, clinical guidelines, 
terminology, drug names and drug dosages), and is not responsible for any error 
and/or omissions arising from translation and adaptation or otherwise.

Open access  This is an open access article distributed in accordance with the 
Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which 
permits others to distribute, remix, adapt, build upon this work non-commercially, 
and license their derivative works on different terms, provided the original work is 
properly cited, appropriate credit is given, any changes made indicated, and the use 
is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

ORCID iDs
Luke M Kraven http://orcid.org/0000-0003-1908-6281
Marco Mura http://orcid.org/0000-0002-2159-7083
R Gisli Jenkins http://orcid.org/0000-0002-7929-2119

REFERENCES
	 1	 Ley B, Collard HR, King TE. Clinical course and prediction of survival in idiopathic 

pulmonary fibrosis. Am J Respir Crit Care Med 2011;183:431–40.
	 2	 Lederer DJ, Martinez FJ. Idiopathic pulmonary fibrosis. N Engl J Med 

2018;378:1811–23.
	 3	 Rodríguez-Portal JA. Efficacy and safety of nintedanib for the treatment of idiopathic 

pulmonary fibrosis: an update. Drugs R D 2018;18:19–25.
	 4	 Okuda R, Hagiwara E, Baba T, et al. Safety and efficacy of pirfenidone in idiopathic 

pulmonary fibrosis in clinical practice. Respir Med 2013;107:1431–7.
	 5	 Kropski JA, Lawson WE, Blackwell TS. Personalizing therapy in idiopathic pulmonary 

fibrosis: a glimpse of the future? Am J Respir Crit Care Med 2015;192:1409–11.
	 6	 Jenkins G. Endotyping idiopathic pulmonary fibrosis should improve outcomes for all 

patients with progressive fibrotic lung disease. Thorax 2015;70:9–10.
	 7	 Woodruff PG, Modrek B, Choy DF, et al. T-Helper type 2-driven inflammation defines 

major subphenotypes of asthma. Am J Respir Crit Care Med 2009;180:388–95.
	 8	 Aggarwal C. Targeted therapy for lung cancer: present and future. Ann Palliat Med 

2014;3:229–35.
	 9	 van ’t Veer LJ, Dai H, van de Vijver MJ, et al. Gene expression profiling predicts clinical 

outcome of breast cancer. Nature 2002;415:530–6.
	10	 Slodkowska EA, Ross JS. Mammaprint 70-gene signature: another milestone 

in personalized medical care for breast cancer patients. Expert Rev Mol Diagn 
2009;9:417–22.

	11	 Herazo-Maya JD, Noth I, Duncan SR, et al. Peripheral blood mononuclear cell gene 
expression profiles predict poor outcome in idiopathic pulmonary fibrosis. Sci Transl 
Med 2013;5:205ra136.

	12	 Organ LA, Duggan A-MR, Oballa E, et al. Biomarkers of collagen synthesis 
predict progression in the profile idiopathic pulmonary fibrosis cohort. Respir Res 
2019;20:148.

	13	 Wang Y, Yella J, Chen J, et al. Unsupervised gene expression analyses identify IPF-
severity correlated signatures, associated genes and biomarkers. BMC Pulm Med 
2017;17:133.

	14	 Zhang N, Guo Y, Wu C, et al. Identification of the molecular subgroups in idiopathic 
pulmonary fibrosis by gene expression profiles. Comput Math Methods Med 
2021;2021:7922594.

	15	 Edgar R, Domrachev M, Lash AE. Gene expression Omnibus: NCBI gene expression 
and hybridization array data Repository. Nucleic Acids Res 2002;30:207–10.

7Kraven LM, et al. Thorax 2022;0:1–8. doi:10.1136/thoraxjnl-2021-218563

copyright.
 on M

ay 27, 2022 at Im
perial C

ollege London Library. P
rotected by

http://thorax.bm
j.com

/
T

horax: first published as 10.1136/thoraxjnl-2021-218563 on 9 M
ay 2022. D

ow
nloaded from

 

https://twitter.com/KravenLuke
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
http://creativecommons.org/licenses/by-nc/4.0/
http://orcid.org/0000-0003-1908-6281
http://orcid.org/0000-0002-2159-7083
http://orcid.org/0000-0002-7929-2119
http://dx.doi.org/10.1164/rccm.201006-0894CI
http://dx.doi.org/10.1056/NEJMra1705751
http://dx.doi.org/10.1007/s40268-017-0221-9
http://dx.doi.org/10.1016/j.rmed.2013.06.011
http://dx.doi.org/10.1164/rccm.201509-1789ED
http://dx.doi.org/10.1136/thoraxjnl-2014-206209
http://dx.doi.org/10.1164/rccm.200903-0392OC
http://dx.doi.org/10.3978/j.issn.2224-5820.2014.06.01
http://dx.doi.org/10.1038/415530a
http://dx.doi.org/10.1586/erm.09.32
http://dx.doi.org/10.1126/scitranslmed.3005964
http://dx.doi.org/10.1126/scitranslmed.3005964
http://dx.doi.org/10.1186/s12931-019-1118-7
http://dx.doi.org/10.1186/s12890-017-0472-9
http://dx.doi.org/10.1155/2021/7922594
http://dx.doi.org/10.1093/nar/30.1.207
http://thorax.bmj.com/


Interstitial lung disease

	16	 Sweeney TE, Wong HR, Khatri P. Robust classification of bacterial and viral infections 
via integrated host gene expression diagnostics. Sci Transl Med 2016;8:346ra91.

	17	 Sweeney TE, Chen AC, Gevaert O. Combined mapping of multiple clustering 
algorithms (communal): a robust method for selection of cluster number, K. Sci Rep 
2015;5:1–10.

	18	 Sweeney TE, Azad TD, Donato M, et al. Unsupervised analysis of transcriptomics in 
bacterial sepsis across multiple datasets reveals three robust clusters. Crit Care Med 
2018;46:915.

	19	 Herazo-Maya JD, Sun J, Molyneaux PL, et al. Validation of a 52-gene risk profile for 
outcome prediction in patients with idiopathic pulmonary fibrosis: an international, 
multicentre, cohort study. Lancet Respir Med 2017;5:857–68.

	20	 Ley B, Ryerson CJ, Vittinghoff E, et al. A multidimensional index and staging system for 
idiopathic pulmonary fibrosis. Ann Intern Med 2012;156:684–91.

	21	 Halloran JW, Zhu D, Qian DC, et al. Prediction of the gene expression in normal lung 
tissue by the gene expression in blood. BMC Med Genomics 2015;8:77.

	22	 Zhao YD, Yin L, Archer S, et al. Metabolic heterogeneity of idiopathic pulmonary 
fibrosis: a metabolomic study. BMJ Open Respir Res 2017;4:e000183.

	23	 Bargagli E, Refini RM, d’Alessandro M, et al. Metabolic dysregulation in idiopathic 
pulmonary fibrosis. Int J Mol Sci 2020;21:5663.

	24	 Biernacka A, Dobaczewski M, Frangogiannis NG. TGF-β signaling in fibrosis. Growth 
Factors 2011;29:196–202.

	25	 Meng X-M, Nikolic-Paterson DJ, Lan HY. TGF-β: the master regulator of fibrosis. Nat 
Rev Nephrol 2016;12:325.

	26	 Györfi AH, Matei A-E, Distler JHW. Targeting TGF-β signaling for the treatment of 
fibrosis. Matrix Biol 2018;68-69:8–27.

	27	 Plataki M, Koutsopoulos AV, Darivianaki K, et al. Expression of apoptotic and 
antiapoptotic markers in epithelial cells in idiopathic pulmonary fibrosis. Chest 
2005;127:266–74.

	28	 Wang Q, Xie Z-L, Wu Q, et al. Role of various imbalances centered on alveolar 
epithelial cell/fibroblast apoptosis imbalance in the pathogenesis of idiopathic 
pulmonary fibrosis. Chin Med J 2021;134:261.

	29	 du Bois RM. Strategies for treating idiopathic pulmonary fibrosis. Nat Rev Drug Discov 
2010;9:129–40.

	30	 Korthagen NM, van Moorsel CHM, Barlo NP, et al. Association between variations in 
cell cycle genes and idiopathic pulmonary fibrosis. PLoS One 2012;7:e30442.

	31	 Adegunsoye A, Hrusch CL, Bonham CA, et al. Skewed Lung CCR4 to CCR6 CD4+ T 
Cell Ratio in Idiopathic Pulmonary Fibrosis Is Associated with Pulmonary Function. 
Front Immunol 2016;7:516.

	32	 Desai O, Winkler J, Minasyan M, et al. The role of immune and inflammatory cells in 
idiopathic pulmonary fibrosis. Front Med 2018;5:43.

	33	 McCarthy MI. Painting a new picture of personalised medicine for diabetes. 
Diabetologia 2017;60:793–9.

	34	 Huang LS, Berdyshev EV, Tran JT, et al. Sphingosine-1-Phosphate lyase is an 
endogenous suppressor of pulmonary fibrosis: role of S1P signalling and autophagy. 
Thorax 2015;70:1138–48.

	35	 Yang IV, Luna LG, Cotter J, et al. The peripheral blood transcriptome identifies 
the presence and extent of disease in idiopathic pulmonary fibrosis. PLoS One 
2012;7:e37708.

	36	 Molyneaux PL, Willis-Owen SAG, Cox MJ, et al. Host-Microbial interactions in 
idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 2017;195:1640–50.

8 Kraven LM, et al. Thorax 2022;0:1–8. doi:10.1136/thoraxjnl-2021-218563

copyright.
 on M

ay 27, 2022 at Im
perial C

ollege London Library. P
rotected by

http://thorax.bm
j.com

/
T

horax: first published as 10.1136/thoraxjnl-2021-218563 on 9 M
ay 2022. D

ow
nloaded from

 

http://dx.doi.org/10.1126/scitranslmed.aaf7165
http://dx.doi.org/10.1038/srep16971
http://dx.doi.org/10.1097/CCM.0000000000003084
http://dx.doi.org/10.1016/S2213-2600(17)30349-1
http://dx.doi.org/10.7326/0003-4819-156-10-201205150-00004
http://dx.doi.org/10.1186/s12920-015-0152-7
http://dx.doi.org/10.1136/bmjresp-2017-000183
http://dx.doi.org/10.3390/ijms21165663
http://dx.doi.org/10.3109/08977194.2011.595714
http://dx.doi.org/10.3109/08977194.2011.595714
http://dx.doi.org/10.1038/nrneph.2016.48
http://dx.doi.org/10.1038/nrneph.2016.48
http://dx.doi.org/10.1016/j.matbio.2017.12.016
http://dx.doi.org/10.1378/chest.127.1.266
http://dx.doi.org/10.1097/CM9.0000000000001288
http://dx.doi.org/10.1038/nrd2958
http://dx.doi.org/10.1371/journal.pone.0030442
http://dx.doi.org/10.3389/fimmu.2016.00516
http://dx.doi.org/10.3389/fmed.2018.00043
http://dx.doi.org/10.1007/s00125-017-4210-x
http://dx.doi.org/10.1136/thoraxjnl-2014-206684
http://dx.doi.org/10.1371/journal.pone.0037708
http://dx.doi.org/10.1164/rccm.201607-1408OC
http://thorax.bmj.com/


1 

 

Cluster analysis of transcriptomic datasets to identify endotypes of Idiopathic Pulmonary 1 

Fibrosis – online data supplement 2 

 3 

Luke M. Kraven1,2*, Adam R. Taylor2*, Philip L. Molyneaux3,4, Toby M. Maher3,4,5, John E. McDonough6, Marco 4 

Mura7, Ivana V. Yang8, David A. Schwartz8, Yong Huang9, Imre Noth9, Shwu-Fan Ma9, Astrid J. Yeo2*, William 5 

A. Fahy2*, R. Gisli Jenkins3,4*, Louise V. Wain1,10* 6 

 7 

Contents 8 

Additional text ................................................................................................................................................ 1 9 

Systematic selection of publicly available datasets ........................................................................................ 1 10 

Assignment of datasets to discovery and validation stages ............................................................................. 2 11 

Discovery stage studies ................................................................................................................................ 2 12 

Validation stage studies ................................................................................................................................ 2 13 

Data pre-processing ...................................................................................................................................... 3 14 

Data co-normalisation using COCONUT ...................................................................................................... 3 15 

Clustering using COMMUNAL .................................................................................................................... 3 16 

Comparison of phenotypic traits across clusters ............................................................................................ 4 17 

Gene enrichment analysis ............................................................................................................................. 4 18 

Developing the gene expression-based cluster classifier ................................................................................ 5 19 

Risk classification using the classifier ........................................................................................................... 5 20 

Risk classification using SAMS .................................................................................................................... 5 21 

Comparing prognostic methods using survival analysis ................................................................................. 6 22 

References ....................................................................................................................................................... 7 23 

Additional Tables ........................................................................................................................................... 8 24 

Additional Figures .......................................................................................................................................... 13 25 

 26 

Additional text 27 

Systematic selection of publicly available datasets 28 

We performed our systematic search in March 2020 to select the datasets that were suitable for inclusion in the 29 

study (Figure E1). We required multiple sets of transcriptomic data from independent cohorts. We searched the 30 

Gene Expression Omnibus (GEO) (1) for all collections that contained the term ‘IPF’, excluding any that did not 31 

contain human samples. We restricted the search to collections with at least 30 samples as this allowed for 32 

inclusion of the largest datasets with the most IPF cases and healthy control subjects, which are the datasets that 33 

were the most likely to successfully co-normalise due to the higher counts of healthy control subjects. We did not 34 

restrict the search by platform. Each of the remaining collections were then reviewed to assess whether they 35 

contained data for IPF cases. All collections that did not contain data for IPF subjects were excluded.  36 

For a successful co-normalisation and meaningful clustering results, we were required to choose an optimal 37 

tissue/cell type to use for the analysis. After reviewing the IPF datasets on GEO, we chose whole blood as our 38 

optimal tissue/cell type. There were three main reasons for this. Firstly, there were several relatively large whole 39 

blood datasets available on GEO and these would have provided the largest sample size and greatest statistical 40 

power for the study compared to other tissue types. Secondly, we required multiple datasets that contained data 41 

for healthy controls in addition to the IPF patients (so that the data could be co-normalised using COCONUT) and 42 

the whole blood datasets fulfilled this requirement. Thirdly, the accompanying clinical data for the whole blood 43 

datasets was far more comprehensive than for other tissue types, such as whole lung. This clinical data was vital 44 
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to the study as it was required for the characterisation of the clusters in both the discovery and validation stages.  1 

So, all GEO collections containing expression data measured from a non-blood tissue/cell type were excluded.  2 

As multiple transcriptomic datasets were to be combined, it was important to check for the presence of common 3 

individuals across cohorts, which would have meant that the cohorts were not independent and could have biased 4 

the results of the study. To this end, the subjects in each collection were checked for unique study identification 5 

codes. Using these, we found that two of the blood collections, GSE132607 (n=74) and GSE85268 (n=68), both 6 

contained subjects from the Correlating Outcomes With Biochemical Markers to Estimate Time-progression in 7 

Idiopathic Pulmonary Fibrosis (COMET) study (ClinicalTrials.gov identifier: NCT01071707). There were a large 8 

number of IPF subjects in common between the two cohorts (n=58) and so we excluded the GSE85268 dataset as 9 

it was the collection with fewer IPF subjects.  10 

The seven remaining collections of data were uploaded by research groups from across the USA (including the 11 

University of Virginia, Yale University, the University of Nevada and the University of Colorado) and the UK 12 

(Imperial College London). GSE27957 and GSE28042 were uploaded by the Kaminski Lab in Yale. These two 13 

collections were both used in the same study (2), where GSE27957 was used as discovery data and GSE28042 14 

was used as independent replication data. Similarly, the data found in GSE133298 and GSE132607 were uploaded 15 

by researchers at the University of Virginia and were used as independent cohorts in the same study (unpublished 16 

as of October 2020, both collections uploaded to GEO in September 2019). All remaining collections were 17 

uploaded by separate research groups and no additional evidence of common subjects across cohorts was found 18 

so the seven cohorts of IPF subjects were deemed independent. However, the possibility that subjects could be 19 

common in two or more studies cannot be ruled out. 20 

The human biological samples were sourced ethically and their research use was in accord with the terms of the 21 

informed consents under an institutional review board/ethical committee (IRB/EC)-approved protocol. 22 

Assignment of datasets to discovery and validation stages 23 

All cohorts included in the discovery stage must have contained healthy controls in order to enable the data co-24 

normalization step. Four of the seven selected blood datasets contained data for healthy controls. We used the 25 

three with the greatest number of controls in discovery as these were the most likely to successfully co-normalize. 26 

The four remaining datasets were reserved for use in the validation stage. One dataset (GSE133298) was excluded 27 

during the validation stage as not all of the genes that were required to fully apply the classifier were present in 28 

the dataset.  29 

Discovery stage studies 30 

GSE38958: This dataset originates from an American observational study (3) that was investigating the 31 

relationship between sphingosine-1-phosphate lyase and pulmonary fibrosis. IPF cases were recruited from the 32 

University of Chicago. The authors studied gene expression data from peripheral blood mononuclear cells of IPF 33 

subjects (n=70) and compared this to gene expression from healthy controls (n=45).  34 

GSE33566: This dataset contained data for 123 IPF subjects and 30 healthy controls. A subset of this data was 35 

used in an American observational study (4), where the authors hypothesised that a peripheral blood biomarker 36 

for IPF would be able to identify the disease in its early stages and allow for disease progression to be monitored. 37 

The IPF cases were recruited through the Interstitial Lung Disease or the Familial Pulmonary Fibrosis Programs 38 

conducted at National Jewish Health and Duke University. In the study, 40 IPF subjects were split into groups 39 

based on their predicted FVC and DLCO, then the authors looked for differentially expressed genes between groups.  40 

GSE93606: This dataset contained data from a British prospective cohort study (5) (n=57 IPF subjects and n=20 41 

healthy age, sex and smoking history matched controls) which had the objective of examining host-microbial 42 

interactions in IPF subjects over time. IPF cases were prospectively recruited from the Interstitial Lung Disease 43 

Unit at the Royal Brompton Hospital, London, within six months of their initial diagnosis. The study was approved 44 

by the local research ethics committee (reference numbers 10/H0720/12 and 12/LO/1034). In this study, gene 45 

expression data from peripheral blood and lung function measurements were collected at multiple time points. 46 

However, only baseline gene expression and lung function data was used in our study. IPF patient survival was 47 

also recorded up to a maximum follow-up time of 34 months. 48 

Validation stage studies 49 

GSE132607: This dataset originates from a study (unpublished as of March 2022) which aimed to develop a 50 

predictor of FVC progression by studying gene expression differences in 74 IPF subjects over time. The subjects 51 
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included in this analysis were participants in COMET-IPF (Correlating Outcomes with biochemical Markers to 1 

Estimate Time-progression in Idiopathic Pulmonary Fibrosis), a prospective, observational study correlating 2 

biomarkers with disease progression. All IPF cases had been recruited in to this study within four years of their 3 

initial IPF diagnosis.  4 

GSE27957 and GSE28042:  both datasets originate from the same study (6), where the data in GSE27957 (n=45 5 

IPF subjects) was used in discovery and the data in GSE28042 (n=75 IPF subjects) was used as independent 6 

validation data. Individuals with IPF from the GSE27957 dataset were recruited from the University of Chicago 7 

and the individuals with IPF from the GSE28042 dataset were recruited from the University of Pittsburgh. In 8 

brief, the authors used these cohorts to develop a 52-gene signature that had the ability to predict transplant-free 9 

survival in IPF subjects.  10 

Data pre-processing 11 

In each discovery dataset, probes that did not map to a gene were removed. In the instance where multiple probes 12 

mapped to the same gene, only the probe with the greatest mean expression was included in the analysis. Each 13 

dataset was then quantile normalised to reduce any technical differences between the gene probes within a study. 14 

Following this, each dataset was scaled so that all expression data was on the log2 scale and thus in a consistent 15 

form prior to co-normalisation. Genes were matched across studies based on their gene symbols. 16 

Data co-normalisation using COCONUT 17 

We used COmbat CO-Normalization Using conTrols (COCONUT) (7) (in R v4.0.0 and the ‘COCONUT’ 18 

package) to reduce the technical differences between the three discovery transcriptomic datasets, therefore 19 

enabling a cluster analysis to be performed on the pooled, co-normalized data. COCONUT is an unbiased co-20 

normalisation method which assumes that all healthy controls across studies come from the same statistical 21 

distribution. It uses the healthy controls in each study to calculate correction factors that remove the technical 22 

differences in the data for the diseased subjects, without bias to the number of disease cases present. The method 23 

is adapted from the ComBat empiric Bayes normalization method (8), which is often used to adjust for batch 24 

effects within a study.  25 

As COCONUT makes the assumption that all healthy controls come from the same background statistical 26 

distribution, we tested for significant differences in clinical and demographic traits between the healthy controls 27 

in each study, where possible. Clinical and demographic characteristics of the healthy controls were compared 28 

using chi-square tests for count data and analysis of variance for non-skewed continuous data.  29 

Data for each study was input into COCONUT by providing a gene expression matrix (on the log2 scale) of 30 

common genes against subjects. These were accompanied by an indicator variable that showed which subjects 31 

were cases and which were controls. Following the co-normalisation, we removed all healthy control subjects 32 

from further analysis. Plots of the first two principal components of the transcriptomic data before and after 33 

COCONUT were used to evaluate the efficacy of the co-normalisation.  34 

Clustering using COMMUNAL  35 

In this study, we ran COMMUNAL using consensus clustering versions of two algorithms, K-means clustering 36 

and partitioning around medoids (PAM). Five different metrics were used to assess the validity of the clustering 37 

for different numbers of clusters and genes. These were: the gap statistic, connectivity, average silhouette width, 38 

the G3 metric, and Pearson’s gamma coefficient. We ranked the genes in order of variance, with the ‘top’ 100 39 

genes referring to the 100 genes with the greatest variance. We then applied the COMMUNAL algorithm using a 40 

range of input genes from the top 100 to the top 5,000. The genes with the greatest variance were used as these 41 

were the most likely to be informative, so as to minimise the number of non-informative genes and increase the 42 

signal-to-noise ratio.  43 

The samples that were not assigned into the same cluster by the COMMUNAL clustering algorithms were labelled 44 

‘unclustered’. Since the intention was to use the clustered data to create a classifier and classifiers trained on data 45 

with fewer errors are more robust, these uncertain samples were removed from further analysis to improve the 46 

accuracy of the classifier. 47 

The results were visualised in the form of a 3-dimensional (3D) map (Figure E2), which we used to select the 48 

optimal number of clusters in the data, as well as the optimal number of genes to use in the clustering. The map 49 

shows the mean of standardized values of each validity measure across the entire tested space. On the 3D map, 50 

blue squares indicate a potentially optimal clustering at a certain number of genes by finding the assignment where 51 
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the mean combined validation metric is greatest. The absolute maximum number of clusters for any consensus 1 

subset is marked with a red square. The points where the blue and red squares overlap indicate stable optima. If 2 

stable optima at a particular number of clusters are observed over most of the tested space, this indicates the 3 

presence of a strong, consistent biological signal at this number of clusters.  4 

In Figure E2 there are stable optima at K=4 from 250 genes to 1,000 genes, and at K=3 from 2,500 genes to 5,000 5 

genes, as shown by the red and blue squares meeting. Despite the K=4 clustering assignment at 1,000 genes 6 

showing the highest mean standardized validity score of all tested clustering assignments, there were stable optima 7 

at K=3 clusters over a larger range of tested space, indicating a stronger biological signal. As such, K=3 was 8 

chosen as the optimal number of clusters in the pooled IPF dataset. The clustering at 2,500 genes and 3 clusters 9 

was chosen as the optimal clustering assignment, under the assumption that the assignment with the fewest number 10 

of genes (out of those with stable optima at K=3) has the least amount of redundant signal. 11 

Comparison of phenotypic traits across clusters 12 

We characterised the clusters by comparing the clinical and demographic traits of the subjects that were assigned 13 

to each cluster. This was done for each phenotypic trait that was reported in at least one discovery cohort and one 14 

validation cohort. The statistical significance of the phenotypic differences across clusters was evaluated for all 15 

studies combined using a chi-square test for count data, an analysis of variance to compare means for non-skewed 16 

continuous data and a Kruskal-Wallis rank sum test to compare medians for skewed continuous data. For traits in 17 

the form of time-to-event data, Kaplan-Meier plots were used to approximate and visualise the survival function 18 

for these variables. Further, Cox proportional-hazards (PH) models were fit with cluster as the sole independent 19 

variable and the time to the event as the response variable.  20 

Gene enrichment analysis 21 

First, we assigned each of the 2,500 genes used in the optimal COMMUNAL clustering assignment to the cluster 22 

in which its expression was most different to its expression in the other two clusters, as this suggests that that gene 23 

was contributing to the identity of that cluster. 814 genes were assigned to Cluster 1, 866 were assigned to Cluster 24 

2 and 820 were assigned to Cluster 3.  25 

We then performed multiple ANOVA tests (one for each cluster) for each gene, each comparing the expression 26 

of that gene in subjects within a given cluster against the expression of subjects in both other clusters. Each gene 27 

was then assigned to the cluster in which it had the lowest ANOVA p-value. One benefit of this approach is that 28 

the ANOVA tests allowed for filtering based on statistical significance; a nominal p-value significance threshold 29 

of 0.05 was introduced and genes whose lowest ANOVA p-value was greater than this threshold were removed. 30 

The rationale for the introduction of this filtering step was that removing genes that were not associated with any 31 

cluster would reduce noise and strengthen the gene enrichment analysis for each cluster. The threshold for 32 

statistical significance was kept at a nominal level as a correction for all 7,500 ANOVA tests would have likely 33 

left too few genes assigned to each cluster to successfully perform the enrichment analysis. After the removal of 34 

the genes that were not at least nominally associated to any cluster, there were 769 genes assigned to Cluster 1, 35 

839 assigned to Cluster 2 and 784 assigned to Cluster 3.  36 

Then, gene enrichment analysis was performed separately on the three resulting gene lists using R v.4.0.0 and the 37 

in-house package ‘metabaser’ (database v20.3, package v4.2.3). This was used to search databases of gene 38 

ontology terms for statistically overrepresented biological processes and biological pathways. At the time that the 39 

analysis was performed, there were 17,552 biological processes and 12,222 biological pathways in the database 40 

accessed by metabaser. metabaser reports ‘q-values’, which are p-values that have been adjusted for multiple tests 41 

using the false-discovery rate. Gene ontology terms with q-value < 0.05 were deemed statistically significant. 42 

Sankey plots were used to show which of the genes that were assigned to each cluster corresponded to the 20 most 43 

significantly enriched biological pathways (see Figure 3). 44 

Additionally, the gene lists of each cluster were searched for the presence of the nearest gene for any of the 14 45 

variants that were genome-wide significant in Allen et al. (9), the largest genome-wide association study meta-46 

analysis of IPF susceptibility to-date. The 14 genes were as follows: AKAP13, ATP11A, DEPTOR, DPP9, DSP, 47 

FAM13A, LRRC34, IVD, KIF15, MAD1L1, MAPT, MUC5B, TERC and TERT. Following this, enrichment 48 

analysis was performed on the genes of each cluster to investigate whether those genes were statistically 49 

overconnected (in terms of direct gene regulation) to any of the IPF-associated genes from Allen et al. (2020).  If 50 

the genes that were assigned to a particular cluster were found to be overconnected to one or more of the IPF-51 

associated genes listed above (say the exact number of overconnected IPF-associated genes is N), then a 52 
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hypergeometric test was performed to approximate the statistical significance of the finding that N out of the 14 1 

IPF-associated genes were present within the list of overconnected genes for that cluster.  2 

None of the 14 suspected IPF susceptibility genes from Allen et al. were assigned to Cluster 1, nor were they 3 

statistically overconnected to the genes that were assigned to this cluster. FAM13A was one of the genes that was 4 

assigned to Cluster 2, though it did not belong to any of the top 20 significantly enriched biological pathways. 5 

Additionally, the genes in Cluster 2 were statistically overconnected to five other IPF-associated genes. These 6 

were: AKAP13, DSP, LRRC34, MAPT and TERT. The hypergeometric p-value was calculated to be 0.020, 7 

indicating that it is significant that five IPF-associated genes were overconnected to the genes Cluster 2 and this 8 

is more than would be expected due to random chance. None of the IPF-associated genes from Allen et al. were 9 

found in the gene list for Cluster 3, although four were found to be statistically overconnected to the genes in this 10 

cluster. These were as follows: DSP, MAD1L1, MAPT and TERT. The statistical significance of this was 11 

approximated to be P=0.008 using a hypergeometric test, again indicating that this was significantly more than 12 

would be expected under random chance. 13 

Developing the gene expression-based cluster classifier 14 

Classification is a method of supervised machine learning that uses a correctly labelled training dataset to predict 15 

which category new observations belong in. 16 

To determine the optimal genes to include in the classifier for the IPF data, we used an iterative algorithm which 17 

performed a greedy forward search for each cluster separately to determine the optimal combination of genes to 18 

differentiate between subjects in that cluster vs all other clusters. This was done by calculating receiver operating 19 

characteristic curves for each combination of genes and selecting the combination of genes which maximised the 20 

area under the curve (AUC). In an effort to prevent the classifier from being overfit to the discovery data, a 21 

threshold was implemented to stop the algorithm once an AUC of 0.99 had been reached. Each gene was labelled 22 

as either overexpressed or underexpressed based on whether the average expression of that gene was greater in 23 

the subjects from that particular cluster compared to the average expression across all subjects.  24 

Making predictions with the classifier was a two-stage process. First, each subject was given a classification score 25 

for each cluster. This score was calculated as the geometric mean of the overexpressed genes for that cluster minus 26 

the geometric mean of the underexpressed genes. These scores were mean centred around zero and scaled to 27 

reflect a Z-score (i.e. standard deviation equal to 1). Ideally, subjects that belonged to a certain cluster should have 28 

had a high classification Z-score for that cluster and low classification Z-scores for the other clusters.  29 

Then, we used the classification Z-scores to fit a multinomial logistic regression model, with cluster as the 30 

independent categorical variable and the Z-scores from each cluster as the dependent variables. This model had 31 

the ability to take data from new IPF subjects and predict which cluster they were each most likely to belong in, 32 

using only expression data from the optimal genes in the classifier. Importantly, the classifier does not use absolute 33 

levels of gene expression in order to make predictions, but instead utilizes relative gene expression between 34 

subjects. This meant that the classifier could be applied to a cohort of IPF cases (from the same study) without 35 

first requiring the removal of technical effects, which allowed for the use of validation datasets that did not contain 36 

data for healthy controls. 37 

We tested the prediction accuracy of the classifier by using it to reassign all of the IPF subjects in the discovery 38 

datasets. 39 

Risk classification using the classifier 40 

Each of the IPF subjects in the two validation studies for which survival data was available, GSE27957 (n=45) 41 

and GSE28042 (n=75), were assigned into one of the three clusters using the 13 gene classifier. As significant 42 

differences in survival were observed between clusters 1 and 2 and 2 and 3, but not between clusters 1 and 3 43 

(Table E9), we used assignment to clusters 1 and 3 to define high risk individuals and assignment to cluster 2 as 44 

low risk.  45 

Risk classification using SAMS 46 

Each of these individuals were also classed as high-risk or low-risk using SAMS (2). 7 of the 52 genes used by 47 

SAMS were expected to be more highly expressed in high risk cases than low risk cases (‘up genes’). Likewise, 48 

the remaining 45 genes were expected to be less highly expressed in high risk cases than low risk cases (‘down’ 49 

genes). The method that SAMS used to predict risk is as follows: 50 
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1. For each gene, the geometric mean of the expression for that gene across all subjects was calculated. 1 

This value represents the average level of expression for that gene across the whole cohort. It was then 2 

subtracted from the gene expression of that gene for each subject so that positive values represented 3 

subjects that had increased expression of that gene compared to the average and negative values 4 

represented subjects that had decreased expression compared to the average.  5 

2. For each subject, the proportion of the 7 ‘up genes’ that were overexpressed was calculated. Similarly, 6 

the proportion of the 45 ‘down genes’ that were less highly expressed than average was calculated. So, 7 

if a subject had 4 ‘up genes’ that were greater than the average and 30 ‘down genes’ that were lower than 8 

the average, these proportions would have been 0.571 and 0.667 respectively. 9 

3. For each subject, the sum of the geometric mean normalised expression data was summed up for the ‘up 10 

genes’ that were more highly expressed than average. Then the sum of the geometric mean normalised 11 

expression data was summed up for the ‘down genes’ that were less highly expressed than average. So, 12 

for example, for the subject above who had 4 of the 7 ‘up genes’ that were more highly expressed than 13 

the average, say with expression values 0.185, 0.553, 0.123 and 1.003 for these four genes, the sum 14 

would have been 1.864. The sum for the ‘down genes’ must always be negative, for example say that 15 

this sum for the subject above was -7.645.   16 

4. The proportion of the ‘up genes’ calculated in step 2 was multiplied by the sum for the ‘up genes’ 17 

calculated in step 3 to produce the ‘up score’ for each subject. So, for the example subject above, their 18 

up score would have been 0.571×1.864 = 1.064. A ‘down score’ for each subject was also calculated by 19 

multiplying their proportion of down genes by their down sum from step 3. For our example subject, this 20 

would have been 0.667× -7.645=-5.099.  21 

5. Subjects with up scores greater than the median value and down scores lower than the median value were 22 

classed as ‘high risk’, while all other subjects were classed as ‘low risk’.  23 

This was done separately for each cohort and by using data from as many of the 52 genes as were measured in the 24 

datasets; 51/52 (98·1%) genes in the SAMS signature were present in GSE27957 and 50/52 (96·2%) were present 25 

in GSE28042. Two-way tables were used to compare agreement between the two methods. 26 

Comparing prognostic methods using survival analysis  27 

Kaplan-Meier plots were used to visualise the survival over time for the validation subjects in each risk group 28 

under each method. In both cases, the log-rank test was used to test the survival curves of each risk group for 29 

equality. Univariate Cox proportional-hazards models were fit to the data with risk group as the sole covariate and 30 

time-to-death as the outcome of interest. In both cases, the low-risk group was used as the reference group. The 31 

Concordance index (C-index), the equivalent of the area under the curve (AUC) for a receiver operating 32 

characteristic (ROC) curve, and the p-values from the log-rank test were used to assess which method performed 33 

best at assigning the IPF subjects to the correct risk group and therefore predicting survival.  34 

Following this, multivariate Cox proportional-hazards models were used to assess whether the predictions made 35 

by each method were significant predictors of mortality in the validation datasets whilst adjusting for age, sex, 36 

ancestry, FVC and DLCO. We used the likelihood ratio test and C-index to assess whether either of the two methods 37 

of risk prediction led to a significant increase in predictive ability over a Cox PH model containing only age, sex, 38 

ancestry, FVC and DLCO.  39 

 40 

 41 

 42 

 43 

 44 
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1 

Additional Tables 2 

TABLE E1: Information about the transcriptomic data in the discovery datasets and the platform used in each 

study.  

GEO accession GSE38958 GSE33566 GSE93606 

Microarray platform Affymetrix Human 

Exon 1.0 ST Array  

Agilent-014850 Whole Human 

Genome Microarray 

Affymetrix Human 

Gene 1.1 ST Array 

Number of gene probes 44,280 32,850 33,297 

Number of unique genes 17,256 12,171 20,254 

 3 

 4 

TABLE E2: Comparison of the age and sex of the healthy controls in each discovery stage study. Data are 

presented as count (percentage) or mean (standard deviation, SD). P-value for count data is from a chi-square 

test and the test comparing means is analysis of variance. 

 GSE38958 GSE33566 GSE93606 P-value n used 

Number of healthy controls 45 30 20   

Age (years, SD) 69·3 (9·3) 62·4 (14·3) 66·0 (10·6) 0.187 83 

Sex (% male) 27 (60·0%) 14 (46·7%) 12 (60·0%) 0.477 95 

 5 

 6 
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TABLE E3: Comparison of clinical and demographic traits of clustered discovery subjects by study and for all studies combined. Data are presented as count (percentage), 

mean (standard deviation, SD) or median (interquartile range, IQR). NA = data not available, FVC=Forced vital capacity, DLCO = Diffusing capacity for carbon monoxide, 

FEV1 = Forced expiratory volume in one second, CPI = composite physiologic index, MUC5B genotype = genotype for the MUC5B promoter polymorphism rs35705950.  

- indicates that the calculation was not applicable as there were zero subjects in that cluster. P-value for count data is from a chi-square test, test comparing means is analysis 

of variance and test comparing medians is the Kruskal-Wallis log rank test. Significant P-values (P < 0·05) are highlighted in bold.  

 GSE38958 (n=65) GSE33566 (n=83) GSE93606 (n=48) All studies combined (n=196) 
 

Cluster  

1 

Cluster 

2 

Cluster 

3 

Cluster  

1 

Cluster 

2 

Cluster  

3 

Cluster  

1 

Cluster 

2 

Cluster 

3 

Cluster  

1 

Cluster 

2 

Cluster 

3 

P-

value 

Total 

n used 

n subjects in cluster 22 39 4 42 32 9 0 24 24 64 95 37   

Age (years)  

(mean, SD) 

70·0 

(6·3) 

68·3 

(7·9) 

64·0 

(2·7) 

66·7 

(9·8) 

67·0 

(14·1) 

67·0 

(12·1) 
- 

64·8 

(5·9) 

70·3 

(8·8) 

67·8 

(8·9) 

66·9 

(10·2) 

68·8 

(9·4) 
0·592 188 

Male  

(%) 

20 

(91·0%) 

30 

(77·0%) 

4  

(100%) 

32 

(76·2%) 

21 

(65·6%) 

3 

(33·3%) 
- 

15 

(62·5%) 

16 

(66·7%) 

52 

(81·3%) 

66 

(69·5%) 

23 

(62·2%) 
0·091 196 

European ancestry 

(%) 

17 

(81·0%) 

29 

(82·9%) 

3 

(75·0%) 
NA NA NA - NA NA 

17 

(81·0%) 

29 

(82·9%) 

3 

(75·0%) 
0·883 60 

Ever smoker  

(%) 
NA NA NA NA NA NA - 

15 

(62·5%) 

18 

(78·3%) 
NA 

15 

(62·5%) 

18 

(78·3%) 
0·389 47 

Death observed 

during study (%) 
NA NA NA NA NA NA - 

6 

(25·0%) 

16 

(66·7%) 
NA 

6 

(25·0%) 

16 

(66.7%) 
0·009 48 

FVC % predicted 

(median, IQR) 

59·5 

(19·5) 

65·0 

(24·0) 

51·5 

(7·8) 

77·0 

(36·0) 

66·0 

(46·0) 

73·0 

(17·5) 
- 

71·5 

(27·7) 

60·8 

(24·1) 

63.0 

(35·0) 

70·5 

(30·1) 

60·1 

(23·4) 
0·342 154 

DLCO % predicted 

(median, IQR) 

34·5 

(17·5) 

49·0 

(21·0) 

28·5 

(21·0) 

65·0 

(37·0) 

66·0 

(40·0) 

30·0 

(30·0) 
- 

38·1 

(17·1) 

36·6 

(15·9) 

35·0  

(30·0) 

45·0 

(29·2) 

34·4 

(17·3) 
0·009 133 

FEV1 % predicted 

(median, IQR) 
NA NA NA NA NA NA - 

74·9 

(23·1) 

65·4 

(22·7) 
NA 

74·9 

(23·1) 

65·4 

(22·7) 
0·216 48 

GAP index 

(mean, SD) 

5·3  

(1·3) 

3·9 

(1·3) 

4·5 

(1·3) 

4·3 

(1·5) 

4·1 

(1·6) 

4·3 

(3·1) 
- 

3·7 

(1·8) 

4·4 

(1·6) 

4·9 

(1·4) 

3·9 

(1·5) 

4·4 

(1·7) 
0·006 132 

MUC5B genotype:   

GG (%) 
NA NA NA 

5 

(29·4%) 

6 

(28·6%) 

3 

(60·0%) 
- 

5 

(26·3%) 

11 

(50·0%) 

5 

(29·4%) 

11 

(27·5%) 

14 

(51·9%) 
0·230 84 

MUC5B genotype:  

GT (%) 
NA NA NA 

10 

(58·8%) 

14 

(66·7%) 

2 

(40·0%) 
- 

12 

(63·2%) 

8 

(36·4%) 

10 

(58·8%) 

26 

(65·0%) 

10 

(37·0%) 
  

MUC5B genotype:   

TT (%) 
NA NA NA 

2 

(11·8%) 

1 

(4·8%) 

0 

(0%) 
- 

2 

(10·5%) 

3 

(13·6%) 

2 

(11·8%) 

3 

(7·5%) 

3 

(11·1%) 
  

1 
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 1 

TABLE E4: The significantly enriched (q-value <0.05) biological processes for the 769 genes assigned to 

Cluster 1. 

Biological process 
Enrichment 

score 
p-value q-value 

Mitochondrial ATP synthesis coupled electron transport 7.18 1.0×10-7 7.8×10-4 

ATP synthesis coupled electron transport 7.12 1.2×10-7 7.8×10-4 

Respiratory electron transport chain 6.88 1.4×10-7 7.8×10-4 

Cellular respiration 5.95 1.3×10-6 0.005 

Oxidative phosphorylation 5.84 4.0×10-6 0.012 
Electron transport chain 5.56 4.3×10-6 0.012 

Homeostasis of number of cells 5.12 1.1×10-5 0.024 

Homeostatic process 4.54 1.7×10-5 0.032 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

 10 

 11 

TABLE E5: The 20 most significantly enriched (q-value <0.05) biological processes for the 839 genes 
assigned to Cluster 2.  

Biological process Enrichment score p-value q-value 

Cell activation 12.78 2.2×10-27 3.7×10-24 

Immune system process 11.33 1.7×10-25 1.4×10-21 

Leukocyte activation 11.76 2.4×10-23 1.2×10-19 

Immune response 9.83 6.0×10-19 2.5×10-15 

Regulation of immune system process 9.75 1.5×10-18 4.9×10-15 

Regulated exocytosis 8.90 2.5×10-14 6.9×10-11 

Response to stimulus 7.30 1.3×10-13 3.1×10-10 

Defence response 8.16 1.6×10-13 3.2×10-10 

Multi-organism process 7.74 1.9×10-13 3.5×10-10 

Lymphocyte activation 8.73 4.5×10-13 7.5×10-10 

Translational initiation 9.72 6.4×10-13 9.1×10-10 

Symbiotic process 8.24 6.6×10-13 9.1×10-10 

Interspecies interaction between organisms 8.02 1.6×10-12 2.1×10-9 

Peptide metabolic process 8.31 1.9×10-12 2.1×10-9 

Exocytosis 8.06 1.9×10-12 2.1×10-9 

Peptide biosynthetic process 8.43 2.9×10-12 2.9×10-9 

Translation 8.46 3.2×10-12 3.1×10-9 

Regulation of biological quality 7.14 3.8×10-12 3.5×10-9 

Myeloid leukocyte activation 8.09 4.1×10-12 3.6×10-9 

Regulation of multicellular organismal process 7.20 5.0×10-12 4.0×10-9 
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TABLE E6: The 20 most significantly enriched (q-value <0.05) biological processes for the 784 genes 

assigned to Cluster 3. 

Biological process 
Enrichment 

score 
p-value q-value 

Cell activation 20.78 1.3×10-60 1.5×10-56 

Immune response 19.53 1.8×10-60 1.5×10-56 

Leukocyte activation 20.87 3.3×10-59 1.8×10-55 

Immune system process 18.04 1.6×10-57 6.6×10-54 

Immune effector process 19.19 1.2×10-52 4.0×10-49 

Myeloid leukocyte activation 20.63 1.7×10-52 4.7×10-49 

Leukocyte activation involved in immune response 20.07 9.2×10-51 2.2×10-47 

Cell activation involved in immune response  19.98 1.9×10-50 3.9×10-47 
Neutrophil activation 20.19 1.0×10-48 1.9×10-45 

Granulocyte activation 20.02 3.5×10-48 5.7×10-45 

Neutrophil activation involved in immune response 19.55 4.0×10-46 6.1×10-43 

Leukocyte degranulation 19.42 5.0×10-46 6.8×10-43 

Neutrophil degranulation 19.43 1.3×10-45 1.7×10-42 

Myeloid cell activation involved in immune response 19.21 1.5×10-45 1.8×10-42 

Neutrophil mediated immunity 19.23 3.6×10-45 3.9×10-42 

Myeloid leukocyte mediated immunity 18.99 1.1×10-44 1.1×10-41 

Leukocyte mediated immunity 17.11 4.3×10-43 4.2×10-40 

Secretion by cell 16.63 3.9×10-41 3.5×10-38 

Export from cell 16.50 5.9×10-41 5.2×10-38 

Defence response 15.95 1.2×10-40 1.0×10-37 

 1 

2 

TABLE E7: The 13 genes in the classifier. ‘Up genes’ refer to genes that were more highly expressed in the 
subjects for that cluster compared to the mean expression across all subjects, and ‘down genes’ refer to genes 
that were less highly expressed in the subjects in that cluster.  

Cluster 1  Cluster 2 Cluster 3  

Up genes Down genes Up genes Down genes Up genes Down genes 

KCNK15 RPF1 NOP58 
 

CA4 
 

SORBS1 
 

PSMA5 
 

BCL2A1 
 

HBB 
 

RASGRP1 
 

UGCG 
 

  
IFI30 

   

  
HLA-DRA 

   

  
ATM 

   

TABLE E8:  Coefficients of the multinomial logistic regression model fit using classification scores 

from the genes in the classifier. Note that Cluster 1 is the reference cluster and so the coefficients for 

this cluster are all zero and have been omitted. 

 Cluster Intercept Cluster 1 score Cluster 2 score Cluster 3 score 

2 3.12 -9.75 8.87 1.66 

3 -16.6 -11.92 -3.15 29.42 
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 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

TABLE E10: Pairwise comparisons showing the differences in survival over 

time between any two validation clusters, estimated using Cox proportional 

hazards models. 

Reference 

cluster 

Alternate 

cluster 

Hazard 

Ratio 
95% CI P-value 

Cluster 2 Cluster 1 3.80 1.78, 8.12 0.001 

Cluster 2 Cluster 3 5.05 2.24, 11.35 9.1×10-5 

Cluster 1 Cluster 3 1.47 0.67, 3.22 0.341 

 9 

 10 

TABLE E11: The agreement between the cluster classifier and 

SAMS when validation subjects were assigned to risk groups 

using each method.  

GSE27957 (n=45) 
Cluster classifier 

High risk Low risk 

SAMS 
High risk 13 2 

Low risk 5 25 

GSE28042 (n=75) 
Cluster classifier 

High risk Low risk 

SAMS 
High risk 17 12 

Low risk 19 27 

Both datasets combined 

(n=120) 

Cluster classifier 

High risk Low risk 

SAMS 
High risk 30 14 

Low risk 24 52 

 11 

 12 

 13 

 14 

 15 

TABLE E9: Two-way tables comparing ‘true’ assignment of subjects from the 
discovery analysis (determined using COMMUNAL with 2,500 genes) to the 

reassignment of these subjects using the 13-gene cluster classifier. 

  
True cluster 

Cluster 1 Cluster 2 Cluster 3 

Classifier 

predicted 

cluster 

Cluster 1  63 1 0 

 Cluster 2 1 94 0 

Cluster3  0 0 37 
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TABLE E12: Summary statistics from the Cox proportional hazards model adjusting for 

cluster, age, sex, ancestry, predicted forced vital capacity (FVC) and predicted diffusing 

capacity of the lung for carbon monoxide (DLCO). OR = odds ratio, SE = standard error 

and CI = confidence interval.  

Variable OR SE P-value 95% CI  

Cluster (high-risk cluster) 2.697 0.367 0.007 (1.315, 5.534) 

Age (years) 1.006 0.020 0.748 (0.968, 1.046) 

Sex (male) 5.720 0.752 0.020 (1.310, 24.969) 

Ancestry (non-European) 1.099 0.608 0.876 (0.334, 3.619) 

Predicted FVC 0.996 0.013 0.745 (0.971, 1.022) 

Predicted DLCO 0.967 0.013 0.008 (0.944, 0.991) 

 1 

 2 

 3 

 4 

 5 

Additional Figures  6 

 7 

 

FIGURE E1: Flow diagram showing the process used to systematically select publicly available IPF gene 

expression datasets from the Gene Expression Omnibus for use in this study. 

 8 
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 1 

Cluster 1 Cluster 2 Cluster 3 

FIGURE E3: Heatmaps of gene expression for the clustered samples (x-axis) across the top 2,500 genes (y-

axis), without hierarchical clustering of the samples (A) and with hierarchical clustering of the samples (B). 

Blue inside the heatmap indicates low expression and red indicates high expression. In both plots, the genes 

have been hierarchically clustered for presentation purposes, the bar above the plot shows the cluster that 

subject was assigned in to (red = cluster 1, blue = cluster 2 and yellow = cluster 3) and the bar below the plot 

indicates which original study the subject was in (red = GSE38958, green = GSE33566 and blue = GSE93606). 
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 1 

FIGURE E4: Kaplan-Meier curves and corresponding 95% confidence intervals showing survival over time for 2 

the subjects from study GSE93606, stratified by the cluster which they were assigned to in this study. The p-value 3 

shown on the plot is from a log-rank test testing the two curves for equality. 4 
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FIGURE E5: A Sankey diagram for Cluster 1 showing the genes that correspond to the 20 most significantly enriched biological pathways. The colour on the right hand 

side of the plot indicates the category of a particular pathway.  
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FIGURE E6: A Sankey diagram for Cluster 2 showing the genes that correspond to the 20 most significantly enriched biological pathways. The colour on the right 

hand side of the plot indicates the category of a particular pathway. 
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FIGURE E8: A heatmap showing the Pearson correlation between the genes in the classifier (y-axis) and the genes used by SAMS (x-axis). The correlation was calculated 

using the data from the IPF patients in the three validation cohorts (total n=194) for all genes that had complete data (12/13 genes for the classifier and 49/52 genes for 
SAMS). Both sets of genes were clustered using hierarchical clustering for presentation purposes.  

 

 1 

 2 
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 5 

FIGURE E9: Survival over time for the IPF subjects in the validation datasets GSE27957 and 6 

GSE28042, stratified by predicted risk group. A) Survival of IPF cases from GSE27957 with risk 7 

predicted by our 13 gene classifier. B) Survival of IPF cases from GSE27957 with risk predicted by 8 

SAMS. C) Survival of IPF cases from GSE28042 with risk predicted by our 13 gene classifier. D) 9 

Survival of IPF cases from GSE28042 with risk predicted by SAMS. The P-value on each plot is from 10 

a log-rank test testing the two curves for equality. A dotted line on the plot indicates the median survival 11 

time for the risk group if this could be calculated. 12 

A B 

C D 
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Additional text 27 

Systematic selection of publicly available datasets 28 

We performed our systematic search in March 2020 to select the datasets that were suitable for inclusion in the 29 

study (Figure E1). We required multiple sets of transcriptomic data from independent cohorts. We searched the 30 

Gene Expression Omnibus (GEO) (1) for all collections that contained the term ‘IPF’, excluding any that did not 31 

contain human samples. We restricted the search to collections with at least 30 samples as this allowed for 32 

inclusion of the largest datasets with the most IPF cases and healthy control subjects, which are the datasets that 33 

were the most likely to successfully co-normalise due to the higher counts of healthy control subjects. We did not 34 

restrict the search by platform. Each of the remaining collections were then reviewed to assess whether they 35 

contained data for IPF cases. All collections that did not contain data for IPF subjects were excluded.  36 

For a successful co-normalisation and meaningful clustering results, we were required to choose an optimal 37 

tissue/cell type to use for the analysis. After reviewing the IPF datasets on GEO, we chose whole blood as our 38 

optimal tissue/cell type. There were three main reasons for this. Firstly, there were several relatively large whole 39 

blood datasets available on GEO and these would have provided the largest sample size and greatest statistical 40 

power for the study compared to other tissue types. Secondly, we required multiple datasets that contained data 41 

for healthy controls in addition to the IPF patients (so that the data could be co-normalised using COCONUT) and 42 

the whole blood datasets fulfilled this requirement. Thirdly, the accompanying clinical data for the whole blood 43 

datasets was far more comprehensive than for other tissue types, such as whole lung. This clinical data was vital 44 
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to the study as it was required for the characterisation of the clusters in both the discovery and validation stages.  1 

So, all GEO collections containing expression data measured from a non-blood tissue/cell type were excluded.  2 

As multiple transcriptomic datasets were to be combined, it was important to check for the presence of common 3 

individuals across cohorts, which would have meant that the cohorts were not independent and could have biased 4 

the results of the study. To this end, the subjects in each collection were checked for unique study identification 5 

codes. Using these, we found that two of the blood collections, GSE132607 (n=74) and GSE85268 (n=68), both 6 

contained subjects from the Correlating Outcomes With Biochemical Markers to Estimate Time-progression in 7 

Idiopathic Pulmonary Fibrosis (COMET) study (ClinicalTrials.gov identifier: NCT01071707). There were a large 8 

number of IPF subjects in common between the two cohorts (n=58) and so we excluded the GSE85268 dataset as 9 

it was the collection with fewer IPF subjects.  10 

The seven remaining collections of data were uploaded by research groups from across the USA (including the 11 

University of Virginia, Yale University, the University of Nevada and the University of Colorado) and the UK 12 

(Imperial College London). GSE27957 and GSE28042 were uploaded by the Kaminski Lab in Yale. These two 13 

collections were both used in the same study (2), where GSE27957 was used as discovery data and GSE28042 14 

was used as independent replication data. Similarly, the data found in GSE133298 and GSE132607 were uploaded 15 

by researchers at the University of Virginia and were used as independent cohorts in the same study (unpublished 16 

as of October 2020, both collections uploaded to GEO in September 2019). All remaining collections were 17 

uploaded by separate research groups and no additional evidence of common subjects across cohorts was found 18 

so the seven cohorts of IPF subjects were deemed independent. However, the possibility that subjects could be 19 

common in two or more studies cannot be ruled out. 20 

The human biological samples were sourced ethically and their research use was in accord with the terms of the 21 

informed consents under an institutional review board/ethical committee (IRB/EC)-approved protocol. 22 

Assignment of datasets to discovery and validation stages 23 

All cohorts included in the discovery stage must have contained healthy controls in order to enable the data co-24 

normalization step. Four of the seven selected blood datasets contained data for healthy controls. We used the 25 

three with the greatest number of controls in discovery as these were the most likely to successfully co-normalize. 26 

The four remaining datasets were reserved for use in the validation stage. One dataset (GSE133298) was excluded 27 

during the validation stage as not all of the genes that were required to fully apply the classifier were present in 28 

the dataset.  29 

Discovery stage studies 30 

GSE38958: This dataset originates from an American observational study (3) that was investigating the 31 

relationship between sphingosine-1-phosphate lyase and pulmonary fibrosis. IPF cases were recruited from the 32 

University of Chicago. The authors studied gene expression data from peripheral blood mononuclear cells of IPF 33 

subjects (n=70) and compared this to gene expression from healthy controls (n=45).  34 

GSE33566: This dataset contained data for 123 IPF subjects and 30 healthy controls. A subset of this data was 35 

used in an American observational study (4), where the authors hypothesised that a peripheral blood biomarker 36 

for IPF would be able to identify the disease in its early stages and allow for disease progression to be monitored. 37 

The IPF cases were recruited through the Interstitial Lung Disease or the Familial Pulmonary Fibrosis Programs 38 

conducted at National Jewish Health and Duke University. In the study, 40 IPF subjects were split into groups 39 

based on their predicted FVC and DLCO, then the authors looked for differentially expressed genes between groups.  40 

GSE93606: This dataset contained data from a British prospective cohort study (5) (n=57 IPF subjects and n=20 41 

healthy age, sex and smoking history matched controls) which had the objective of examining host-microbial 42 

interactions in IPF subjects over time. IPF cases were prospectively recruited from the Interstitial Lung Disease 43 

Unit at the Royal Brompton Hospital, London, within six months of their initial diagnosis. The study was approved 44 

by the local research ethics committee (reference numbers 10/H0720/12 and 12/LO/1034). In this study, gene 45 

expression data from peripheral blood and lung function measurements were collected at multiple time points. 46 

However, only baseline gene expression and lung function data was used in our study. IPF patient survival was 47 

also recorded up to a maximum follow-up time of 34 months. 48 

Validation stage studies 49 

GSE132607: This dataset originates from a study (unpublished as of March 2022) which aimed to develop a 50 

predictor of FVC progression by studying gene expression differences in 74 IPF subjects over time. The subjects 51 

BMJ Publishing Group Limited (BMJ) disclaims all liability and responsibility arising from any reliance
Supplemental material placed on this supplemental material which has been supplied by the author(s) Thorax

 doi: 10.1136/thoraxjnl-2021-218563–8.:10 2022;Thorax, et al. Kraven LM



3 

 

included in this analysis were participants in COMET-IPF (Correlating Outcomes with biochemical Markers to 1 

Estimate Time-progression in Idiopathic Pulmonary Fibrosis), a prospective, observational study correlating 2 

biomarkers with disease progression. All IPF cases had been recruited in to this study within four years of their 3 

initial IPF diagnosis.  4 

GSE27957 and GSE28042:  both datasets originate from the same study (6), where the data in GSE27957 (n=45 5 

IPF subjects) was used in discovery and the data in GSE28042 (n=75 IPF subjects) was used as independent 6 

validation data. Individuals with IPF from the GSE27957 dataset were recruited from the University of Chicago 7 

and the individuals with IPF from the GSE28042 dataset were recruited from the University of Pittsburgh. In 8 

brief, the authors used these cohorts to develop a 52-gene signature that had the ability to predict transplant-free 9 

survival in IPF subjects.  10 

Data pre-processing 11 

In each discovery dataset, probes that did not map to a gene were removed. In the instance where multiple probes 12 

mapped to the same gene, only the probe with the greatest mean expression was included in the analysis. Each 13 

dataset was then quantile normalised to reduce any technical differences between the gene probes within a study. 14 

Following this, each dataset was scaled so that all expression data was on the log2 scale and thus in a consistent 15 

form prior to co-normalisation. Genes were matched across studies based on their gene symbols. 16 

Data co-normalisation using COCONUT 17 

We used COmbat CO-Normalization Using conTrols (COCONUT) (7) (in R v4.0.0 and the ‘COCONUT’ 18 

package) to reduce the technical differences between the three discovery transcriptomic datasets, therefore 19 

enabling a cluster analysis to be performed on the pooled, co-normalized data. COCONUT is an unbiased co-20 

normalisation method which assumes that all healthy controls across studies come from the same statistical 21 

distribution. It uses the healthy controls in each study to calculate correction factors that remove the technical 22 

differences in the data for the diseased subjects, without bias to the number of disease cases present. The method 23 

is adapted from the ComBat empiric Bayes normalization method (8), which is often used to adjust for batch 24 

effects within a study.  25 

As COCONUT makes the assumption that all healthy controls come from the same background statistical 26 

distribution, we tested for significant differences in clinical and demographic traits between the healthy controls 27 

in each study, where possible. Clinical and demographic characteristics of the healthy controls were compared 28 

using chi-square tests for count data and analysis of variance for non-skewed continuous data.  29 

Data for each study was input into COCONUT by providing a gene expression matrix (on the log2 scale) of 30 

common genes against subjects. These were accompanied by an indicator variable that showed which subjects 31 

were cases and which were controls. Following the co-normalisation, we removed all healthy control subjects 32 

from further analysis. Plots of the first two principal components of the transcriptomic data before and after 33 

COCONUT were used to evaluate the efficacy of the co-normalisation.  34 

Clustering using COMMUNAL  35 

In this study, we ran COMMUNAL using consensus clustering versions of two algorithms, K-means clustering 36 

and partitioning around medoids (PAM). Five different metrics were used to assess the validity of the clustering 37 

for different numbers of clusters and genes. These were: the gap statistic, connectivity, average silhouette width, 38 

the G3 metric, and Pearson’s gamma coefficient. We ranked the genes in order of variance, with the ‘top’ 100 39 

genes referring to the 100 genes with the greatest variance. We then applied the COMMUNAL algorithm using a 40 

range of input genes from the top 100 to the top 5,000. The genes with the greatest variance were used as these 41 

were the most likely to be informative, so as to minimise the number of non-informative genes and increase the 42 

signal-to-noise ratio.  43 

The samples that were not assigned into the same cluster by the COMMUNAL clustering algorithms were labelled 44 

‘unclustered’. Since the intention was to use the clustered data to create a classifier and classifiers trained on data 45 

with fewer errors are more robust, these uncertain samples were removed from further analysis to improve the 46 

accuracy of the classifier. 47 

The results were visualised in the form of a 3-dimensional (3D) map (Figure E2), which we used to select the 48 

optimal number of clusters in the data, as well as the optimal number of genes to use in the clustering. The map 49 

shows the mean of standardized values of each validity measure across the entire tested space. On the 3D map, 50 

blue squares indicate a potentially optimal clustering at a certain number of genes by finding the assignment where 51 
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the mean combined validation metric is greatest. The absolute maximum number of clusters for any consensus 1 

subset is marked with a red square. The points where the blue and red squares overlap indicate stable optima. If 2 

stable optima at a particular number of clusters are observed over most of the tested space, this indicates the 3 

presence of a strong, consistent biological signal at this number of clusters.  4 

In Figure E2 there are stable optima at K=4 from 250 genes to 1,000 genes, and at K=3 from 2,500 genes to 5,000 5 

genes, as shown by the red and blue squares meeting. Despite the K=4 clustering assignment at 1,000 genes 6 

showing the highest mean standardized validity score of all tested clustering assignments, there were stable optima 7 

at K=3 clusters over a larger range of tested space, indicating a stronger biological signal. As such, K=3 was 8 

chosen as the optimal number of clusters in the pooled IPF dataset. The clustering at 2,500 genes and 3 clusters 9 

was chosen as the optimal clustering assignment, under the assumption that the assignment with the fewest number 10 

of genes (out of those with stable optima at K=3) has the least amount of redundant signal. 11 

Comparison of phenotypic traits across clusters 12 

We characterised the clusters by comparing the clinical and demographic traits of the subjects that were assigned 13 

to each cluster. This was done for each phenotypic trait that was reported in at least one discovery cohort and one 14 

validation cohort. The statistical significance of the phenotypic differences across clusters was evaluated for all 15 

studies combined using a chi-square test for count data, an analysis of variance to compare means for non-skewed 16 

continuous data and a Kruskal-Wallis rank sum test to compare medians for skewed continuous data. For traits in 17 

the form of time-to-event data, Kaplan-Meier plots were used to approximate and visualise the survival function 18 

for these variables. Further, Cox proportional-hazards (PH) models were fit with cluster as the sole independent 19 

variable and the time to the event as the response variable.  20 

Gene enrichment analysis 21 

First, we assigned each of the 2,500 genes used in the optimal COMMUNAL clustering assignment to the cluster 22 

in which its expression was most different to its expression in the other two clusters, as this suggests that that gene 23 

was contributing to the identity of that cluster. 814 genes were assigned to Cluster 1, 866 were assigned to Cluster 24 

2 and 820 were assigned to Cluster 3.  25 

We then performed multiple ANOVA tests (one for each cluster) for each gene, each comparing the expression 26 

of that gene in subjects within a given cluster against the expression of subjects in both other clusters. Each gene 27 

was then assigned to the cluster in which it had the lowest ANOVA p-value. One benefit of this approach is that 28 

the ANOVA tests allowed for filtering based on statistical significance; a nominal p-value significance threshold 29 

of 0.05 was introduced and genes whose lowest ANOVA p-value was greater than this threshold were removed. 30 

The rationale for the introduction of this filtering step was that removing genes that were not associated with any 31 

cluster would reduce noise and strengthen the gene enrichment analysis for each cluster. The threshold for 32 

statistical significance was kept at a nominal level as a correction for all 7,500 ANOVA tests would have likely 33 

left too few genes assigned to each cluster to successfully perform the enrichment analysis. After the removal of 34 

the genes that were not at least nominally associated to any cluster, there were 769 genes assigned to Cluster 1, 35 

839 assigned to Cluster 2 and 784 assigned to Cluster 3.  36 

Then, gene enrichment analysis was performed separately on the three resulting gene lists using R v.4.0.0 and the 37 

in-house package ‘metabaser’ (database v20.3, package v4.2.3). This was used to search databases of gene 38 

ontology terms for statistically overrepresented biological processes and biological pathways. At the time that the 39 

analysis was performed, there were 17,552 biological processes and 12,222 biological pathways in the database 40 

accessed by metabaser. metabaser reports ‘q-values’, which are p-values that have been adjusted for multiple tests 41 

using the false-discovery rate. Gene ontology terms with q-value < 0.05 were deemed statistically significant. 42 

Sankey plots were used to show which of the genes that were assigned to each cluster corresponded to the 20 most 43 

significantly enriched biological pathways (see Figure 3). 44 

Additionally, the gene lists of each cluster were searched for the presence of the nearest gene for any of the 14 45 

variants that were genome-wide significant in Allen et al. (9), the largest genome-wide association study meta-46 

analysis of IPF susceptibility to-date. The 14 genes were as follows: AKAP13, ATP11A, DEPTOR, DPP9, DSP, 47 

FAM13A, LRRC34, IVD, KIF15, MAD1L1, MAPT, MUC5B, TERC and TERT. Following this, enrichment 48 

analysis was performed on the genes of each cluster to investigate whether those genes were statistically 49 

overconnected (in terms of direct gene regulation) to any of the IPF-associated genes from Allen et al. (2020).  If 50 

the genes that were assigned to a particular cluster were found to be overconnected to one or more of the IPF-51 

associated genes listed above (say the exact number of overconnected IPF-associated genes is N), then a 52 
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hypergeometric test was performed to approximate the statistical significance of the finding that N out of the 14 1 

IPF-associated genes were present within the list of overconnected genes for that cluster.  2 

None of the 14 suspected IPF susceptibility genes from Allen et al. were assigned to Cluster 1, nor were they 3 

statistically overconnected to the genes that were assigned to this cluster. FAM13A was one of the genes that was 4 

assigned to Cluster 2, though it did not belong to any of the top 20 significantly enriched biological pathways. 5 

Additionally, the genes in Cluster 2 were statistically overconnected to five other IPF-associated genes. These 6 

were: AKAP13, DSP, LRRC34, MAPT and TERT. The hypergeometric p-value was calculated to be 0.020, 7 

indicating that it is significant that five IPF-associated genes were overconnected to the genes Cluster 2 and this 8 

is more than would be expected due to random chance. None of the IPF-associated genes from Allen et al. were 9 

found in the gene list for Cluster 3, although four were found to be statistically overconnected to the genes in this 10 

cluster. These were as follows: DSP, MAD1L1, MAPT and TERT. The statistical significance of this was 11 

approximated to be P=0.008 using a hypergeometric test, again indicating that this was significantly more than 12 

would be expected under random chance. 13 

Developing the gene expression-based cluster classifier 14 

Classification is a method of supervised machine learning that uses a correctly labelled training dataset to predict 15 

which category new observations belong in. 16 

To determine the optimal genes to include in the classifier for the IPF data, we used an iterative algorithm which 17 

performed a greedy forward search for each cluster separately to determine the optimal combination of genes to 18 

differentiate between subjects in that cluster vs all other clusters. This was done by calculating receiver operating 19 

characteristic curves for each combination of genes and selecting the combination of genes which maximised the 20 

area under the curve (AUC). In an effort to prevent the classifier from being overfit to the discovery data, a 21 

threshold was implemented to stop the algorithm once an AUC of 0.99 had been reached. Each gene was labelled 22 

as either overexpressed or underexpressed based on whether the average expression of that gene was greater in 23 

the subjects from that particular cluster compared to the average expression across all subjects.  24 

Making predictions with the classifier was a two-stage process. First, each subject was given a classification score 25 

for each cluster. This score was calculated as the geometric mean of the overexpressed genes for that cluster minus 26 

the geometric mean of the underexpressed genes. These scores were mean centred around zero and scaled to 27 

reflect a Z-score (i.e. standard deviation equal to 1). Ideally, subjects that belonged to a certain cluster should have 28 

had a high classification Z-score for that cluster and low classification Z-scores for the other clusters.  29 

Then, we used the classification Z-scores to fit a multinomial logistic regression model, with cluster as the 30 

independent categorical variable and the Z-scores from each cluster as the dependent variables. This model had 31 

the ability to take data from new IPF subjects and predict which cluster they were each most likely to belong in, 32 

using only expression data from the optimal genes in the classifier. Importantly, the classifier does not use absolute 33 

levels of gene expression in order to make predictions, but instead utilizes relative gene expression between 34 

subjects. This meant that the classifier could be applied to a cohort of IPF cases (from the same study) without 35 

first requiring the removal of technical effects, which allowed for the use of validation datasets that did not contain 36 

data for healthy controls. 37 

We tested the prediction accuracy of the classifier by using it to reassign all of the IPF subjects in the discovery 38 

datasets. 39 

Risk classification using the classifier 40 

Each of the IPF subjects in the two validation studies for which survival data was available, GSE27957 (n=45) 41 

and GSE28042 (n=75), were assigned into one of the three clusters using the 13 gene classifier. As significant 42 

differences in survival were observed between clusters 1 and 2 and 2 and 3, but not between clusters 1 and 3 43 

(Table E9), we used assignment to clusters 1 and 3 to define high risk individuals and assignment to cluster 2 as 44 

low risk.  45 

Risk classification using SAMS 46 

Each of these individuals were also classed as high-risk or low-risk using SAMS (2). 7 of the 52 genes used by 47 

SAMS were expected to be more highly expressed in high risk cases than low risk cases (‘up genes’). Likewise, 48 

the remaining 45 genes were expected to be less highly expressed in high risk cases than low risk cases (‘down’ 49 

genes). The method that SAMS used to predict risk is as follows: 50 
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1. For each gene, the geometric mean of the expression for that gene across all subjects was calculated. 1 

This value represents the average level of expression for that gene across the whole cohort. It was then 2 

subtracted from the gene expression of that gene for each subject so that positive values represented 3 

subjects that had increased expression of that gene compared to the average and negative values 4 

represented subjects that had decreased expression compared to the average.  5 

2. For each subject, the proportion of the 7 ‘up genes’ that were overexpressed was calculated. Similarly, 6 

the proportion of the 45 ‘down genes’ that were less highly expressed than average was calculated. So, 7 

if a subject had 4 ‘up genes’ that were greater than the average and 30 ‘down genes’ that were lower than 8 

the average, these proportions would have been 0.571 and 0.667 respectively. 9 

3. For each subject, the sum of the geometric mean normalised expression data was summed up for the ‘up 10 

genes’ that were more highly expressed than average. Then the sum of the geometric mean normalised 11 

expression data was summed up for the ‘down genes’ that were less highly expressed than average. So, 12 

for example, for the subject above who had 4 of the 7 ‘up genes’ that were more highly expressed than 13 

the average, say with expression values 0.185, 0.553, 0.123 and 1.003 for these four genes, the sum 14 

would have been 1.864. The sum for the ‘down genes’ must always be negative, for example say that 15 

this sum for the subject above was -7.645.   16 

4. The proportion of the ‘up genes’ calculated in step 2 was multiplied by the sum for the ‘up genes’ 17 

calculated in step 3 to produce the ‘up score’ for each subject. So, for the example subject above, their 18 

up score would have been 0.571×1.864 = 1.064. A ‘down score’ for each subject was also calculated by 19 

multiplying their proportion of down genes by their down sum from step 3. For our example subject, this 20 

would have been 0.667× -7.645=-5.099.  21 

5. Subjects with up scores greater than the median value and down scores lower than the median value were 22 

classed as ‘high risk’, while all other subjects were classed as ‘low risk’.  23 

This was done separately for each cohort and by using data from as many of the 52 genes as were measured in the 24 

datasets; 51/52 (98·1%) genes in the SAMS signature were present in GSE27957 and 50/52 (96·2%) were present 25 

in GSE28042. Two-way tables were used to compare agreement between the two methods. 26 

Comparing prognostic methods using survival analysis  27 

Kaplan-Meier plots were used to visualise the survival over time for the validation subjects in each risk group 28 

under each method. In both cases, the log-rank test was used to test the survival curves of each risk group for 29 

equality. Univariate Cox proportional-hazards models were fit to the data with risk group as the sole covariate and 30 

time-to-death as the outcome of interest. In both cases, the low-risk group was used as the reference group. The 31 

Concordance index (C-index), the equivalent of the area under the curve (AUC) for a receiver operating 32 

characteristic (ROC) curve, and the p-values from the log-rank test were used to assess which method performed 33 

best at assigning the IPF subjects to the correct risk group and therefore predicting survival.  34 

Following this, multivariate Cox proportional-hazards models were used to assess whether the predictions made 35 

by each method were significant predictors of mortality in the validation datasets whilst adjusting for age, sex, 36 

ancestry, FVC and DLCO. We used the likelihood ratio test and C-index to assess whether either of the two methods 37 

of risk prediction led to a significant increase in predictive ability over a Cox PH model containing only age, sex, 38 

ancestry, FVC and DLCO.  39 

 40 

 41 

 42 

 43 

 44 
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1 

Additional Tables 2 

TABLE E1: Information about the transcriptomic data in the discovery datasets and the platform used in each 

study.  

GEO accession GSE38958 GSE33566 GSE93606 

Microarray platform Affymetrix Human 

Exon 1.0 ST Array  

Agilent-014850 Whole Human 

Genome Microarray 

Affymetrix Human 

Gene 1.1 ST Array 

Number of gene probes 44,280 32,850 33,297 

Number of unique genes 17,256 12,171 20,254 

 3 

 4 

TABLE E2: Comparison of the age and sex of the healthy controls in each discovery stage study. Data are 

presented as count (percentage) or mean (standard deviation, SD). P-value for count data is from a chi-square 

test and the test comparing means is analysis of variance. 

 GSE38958 GSE33566 GSE93606 P-value n used 

Number of healthy controls 45 30 20   

Age (years, SD) 69·3 (9·3) 62·4 (14·3) 66·0 (10·6) 0.187 83 

Sex (% male) 27 (60·0%) 14 (46·7%) 12 (60·0%) 0.477 95 

 5 

 6 
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TABLE E3: Comparison of clinical and demographic traits of clustered discovery subjects by study and for all studies combined. Data are presented as count (percentage), 

mean (standard deviation, SD) or median (interquartile range, IQR). NA = data not available, FVC=Forced vital capacity, DLCO = Diffusing capacity for carbon monoxide, 

FEV1 = Forced expiratory volume in one second, CPI = composite physiologic index, MUC5B genotype = genotype for the MUC5B promoter polymorphism rs35705950.  

- indicates that the calculation was not applicable as there were zero subjects in that cluster. P-value for count data is from a chi-square test, test comparing means is analysis 

of variance and test comparing medians is the Kruskal-Wallis log rank test. Significant P-values (P < 0·05) are highlighted in bold.  

 GSE38958 (n=65) GSE33566 (n=83) GSE93606 (n=48) All studies combined (n=196) 
 

Cluster  

1 

Cluster 

2 

Cluster 

3 

Cluster  

1 

Cluster 

2 

Cluster  

3 

Cluster  

1 

Cluster 

2 

Cluster 

3 

Cluster  

1 

Cluster 

2 

Cluster 

3 

P-

value 

Total 

n used 

n subjects in cluster 22 39 4 42 32 9 0 24 24 64 95 37   

Age (years)  

(mean, SD) 

70·0 

(6·3) 

68·3 

(7·9) 

64·0 

(2·7) 

66·7 

(9·8) 

67·0 

(14·1) 

67·0 

(12·1) 
- 

64·8 

(5·9) 

70·3 

(8·8) 

67·8 

(8·9) 

66·9 

(10·2) 

68·8 

(9·4) 
0·592 188 

Male  

(%) 

20 

(91·0%) 

30 

(77·0%) 

4  

(100%) 

32 

(76·2%) 

21 

(65·6%) 

3 

(33·3%) 
- 

15 

(62·5%) 

16 

(66·7%) 

52 

(81·3%) 

66 

(69·5%) 

23 

(62·2%) 
0·091 196 

European ancestry 

(%) 

17 

(81·0%) 

29 

(82·9%) 

3 

(75·0%) 
NA NA NA - NA NA 

17 

(81·0%) 

29 

(82·9%) 

3 

(75·0%) 
0·883 60 

Ever smoker  

(%) 
NA NA NA NA NA NA - 

15 

(62·5%) 

18 

(78·3%) 
NA 

15 

(62·5%) 

18 

(78·3%) 
0·389 47 

Death observed 

during study (%) 
NA NA NA NA NA NA - 

6 

(25·0%) 

16 

(66·7%) 
NA 

6 

(25·0%) 

16 

(66.7%) 
0·009 48 

FVC % predicted 

(median, IQR) 

59·5 

(19·5) 

65·0 

(24·0) 

51·5 

(7·8) 

77·0 

(36·0) 

66·0 

(46·0) 

73·0 

(17·5) 
- 

71·5 

(27·7) 

60·8 

(24·1) 

63.0 

(35·0) 

70·5 

(30·1) 

60·1 

(23·4) 
0·342 154 

DLCO % predicted 

(median, IQR) 

34·5 

(17·5) 

49·0 

(21·0) 

28·5 

(21·0) 

65·0 

(37·0) 

66·0 

(40·0) 

30·0 

(30·0) 
- 

38·1 

(17·1) 

36·6 

(15·9) 

35·0  

(30·0) 

45·0 

(29·2) 

34·4 

(17·3) 
0·009 133 

FEV1 % predicted 

(median, IQR) 
NA NA NA NA NA NA - 

74·9 

(23·1) 

65·4 

(22·7) 
NA 

74·9 

(23·1) 

65·4 

(22·7) 
0·216 48 

GAP index 

(mean, SD) 

5·3  

(1·3) 

3·9 

(1·3) 

4·5 

(1·3) 

4·3 

(1·5) 

4·1 

(1·6) 

4·3 

(3·1) 
- 

3·7 

(1·8) 

4·4 

(1·6) 

4·9 

(1·4) 

3·9 

(1·5) 

4·4 

(1·7) 
0·006 132 

MUC5B genotype:   

GG (%) 
NA NA NA 

5 

(29·4%) 

6 

(28·6%) 

3 

(60·0%) 
- 

5 

(26·3%) 

11 

(50·0%) 

5 

(29·4%) 

11 

(27·5%) 

14 

(51·9%) 
0·230 84 

MUC5B genotype:  

GT (%) 
NA NA NA 

10 

(58·8%) 

14 

(66·7%) 

2 

(40·0%) 
- 

12 

(63·2%) 

8 

(36·4%) 

10 

(58·8%) 

26 

(65·0%) 

10 

(37·0%) 
  

MUC5B genotype:   

TT (%) 
NA NA NA 

2 

(11·8%) 

1 

(4·8%) 

0 

(0%) 
- 

2 

(10·5%) 

3 

(13·6%) 

2 

(11·8%) 

3 

(7·5%) 

3 

(11·1%) 
  

1 
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 1 

TABLE E4: The significantly enriched (q-value <0.05) biological processes for the 769 genes assigned to 

Cluster 1. 

Biological process 
Enrichment 

score 
p-value q-value 

Mitochondrial ATP synthesis coupled electron transport 7.18 1.0×10-7 7.8×10-4 

ATP synthesis coupled electron transport 7.12 1.2×10-7 7.8×10-4 

Respiratory electron transport chain 6.88 1.4×10-7 7.8×10-4 

Cellular respiration 5.95 1.3×10-6 0.005 

Oxidative phosphorylation 5.84 4.0×10-6 0.012 
Electron transport chain 5.56 4.3×10-6 0.012 

Homeostasis of number of cells 5.12 1.1×10-5 0.024 

Homeostatic process 4.54 1.7×10-5 0.032 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

 10 

 11 

TABLE E5: The 20 most significantly enriched (q-value <0.05) biological processes for the 839 genes 
assigned to Cluster 2.  

Biological process Enrichment score p-value q-value 

Cell activation 12.78 2.2×10-27 3.7×10-24 

Immune system process 11.33 1.7×10-25 1.4×10-21 

Leukocyte activation 11.76 2.4×10-23 1.2×10-19 

Immune response 9.83 6.0×10-19 2.5×10-15 

Regulation of immune system process 9.75 1.5×10-18 4.9×10-15 

Regulated exocytosis 8.90 2.5×10-14 6.9×10-11 

Response to stimulus 7.30 1.3×10-13 3.1×10-10 

Defence response 8.16 1.6×10-13 3.2×10-10 

Multi-organism process 7.74 1.9×10-13 3.5×10-10 

Lymphocyte activation 8.73 4.5×10-13 7.5×10-10 

Translational initiation 9.72 6.4×10-13 9.1×10-10 

Symbiotic process 8.24 6.6×10-13 9.1×10-10 

Interspecies interaction between organisms 8.02 1.6×10-12 2.1×10-9 

Peptide metabolic process 8.31 1.9×10-12 2.1×10-9 

Exocytosis 8.06 1.9×10-12 2.1×10-9 

Peptide biosynthetic process 8.43 2.9×10-12 2.9×10-9 

Translation 8.46 3.2×10-12 3.1×10-9 

Regulation of biological quality 7.14 3.8×10-12 3.5×10-9 

Myeloid leukocyte activation 8.09 4.1×10-12 3.6×10-9 

Regulation of multicellular organismal process 7.20 5.0×10-12 4.0×10-9 
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TABLE E6: The 20 most significantly enriched (q-value <0.05) biological processes for the 784 genes 

assigned to Cluster 3. 

Biological process 
Enrichment 

score 
p-value q-value 

Cell activation 20.78 1.3×10-60 1.5×10-56 

Immune response 19.53 1.8×10-60 1.5×10-56 

Leukocyte activation 20.87 3.3×10-59 1.8×10-55 

Immune system process 18.04 1.6×10-57 6.6×10-54 

Immune effector process 19.19 1.2×10-52 4.0×10-49 

Myeloid leukocyte activation 20.63 1.7×10-52 4.7×10-49 

Leukocyte activation involved in immune response 20.07 9.2×10-51 2.2×10-47 

Cell activation involved in immune response  19.98 1.9×10-50 3.9×10-47 
Neutrophil activation 20.19 1.0×10-48 1.9×10-45 

Granulocyte activation 20.02 3.5×10-48 5.7×10-45 

Neutrophil activation involved in immune response 19.55 4.0×10-46 6.1×10-43 

Leukocyte degranulation 19.42 5.0×10-46 6.8×10-43 

Neutrophil degranulation 19.43 1.3×10-45 1.7×10-42 

Myeloid cell activation involved in immune response 19.21 1.5×10-45 1.8×10-42 

Neutrophil mediated immunity 19.23 3.6×10-45 3.9×10-42 

Myeloid leukocyte mediated immunity 18.99 1.1×10-44 1.1×10-41 

Leukocyte mediated immunity 17.11 4.3×10-43 4.2×10-40 

Secretion by cell 16.63 3.9×10-41 3.5×10-38 

Export from cell 16.50 5.9×10-41 5.2×10-38 

Defence response 15.95 1.2×10-40 1.0×10-37 

 1 

2 

TABLE E7: The 13 genes in the classifier. ‘Up genes’ refer to genes that were more highly expressed in the 
subjects for that cluster compared to the mean expression across all subjects, and ‘down genes’ refer to genes 
that were less highly expressed in the subjects in that cluster.  

Cluster 1  Cluster 2 Cluster 3  

Up genes Down genes Up genes Down genes Up genes Down genes 

KCNK15 RPF1 NOP58 
 

CA4 
 

SORBS1 
 

PSMA5 
 

BCL2A1 
 

HBB 
 

RASGRP1 
 

UGCG 
 

  
IFI30 

   

  
HLA-DRA 

   

  
ATM 

   

TABLE E8:  Coefficients of the multinomial logistic regression model fit using classification scores 

from the genes in the classifier. Note that Cluster 1 is the reference cluster and so the coefficients for 

this cluster are all zero and have been omitted. 

 Cluster Intercept Cluster 1 score Cluster 2 score Cluster 3 score 

2 3.12 -9.75 8.87 1.66 

3 -16.6 -11.92 -3.15 29.42 
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 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

TABLE E10: Pairwise comparisons showing the differences in survival over 

time between any two validation clusters, estimated using Cox proportional 

hazards models. 

Reference 

cluster 

Alternate 

cluster 

Hazard 

Ratio 
95% CI P-value 

Cluster 2 Cluster 1 3.80 1.78, 8.12 0.001 

Cluster 2 Cluster 3 5.05 2.24, 11.35 9.1×10-5 

Cluster 1 Cluster 3 1.47 0.67, 3.22 0.341 

 9 

 10 

TABLE E11: The agreement between the cluster classifier and 

SAMS when validation subjects were assigned to risk groups 

using each method.  

GSE27957 (n=45) 
Cluster classifier 

High risk Low risk 

SAMS 
High risk 13 2 

Low risk 5 25 

GSE28042 (n=75) 
Cluster classifier 

High risk Low risk 

SAMS 
High risk 17 12 

Low risk 19 27 

Both datasets combined 

(n=120) 

Cluster classifier 

High risk Low risk 

SAMS 
High risk 30 14 

Low risk 24 52 

 11 

 12 

 13 

 14 

 15 

TABLE E9: Two-way tables comparing ‘true’ assignment of subjects from the 
discovery analysis (determined using COMMUNAL with 2,500 genes) to the 

reassignment of these subjects using the 13-gene cluster classifier. 

  
True cluster 

Cluster 1 Cluster 2 Cluster 3 

Classifier 

predicted 

cluster 

Cluster 1  63 1 0 

 Cluster 2 1 94 0 

Cluster3  0 0 37 
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TABLE E12: Summary statistics from the Cox proportional hazards model adjusting for 

cluster, age, sex, ancestry, predicted forced vital capacity (FVC) and predicted diffusing 

capacity of the lung for carbon monoxide (DLCO). OR = odds ratio, SE = standard error 

and CI = confidence interval.  

Variable OR SE P-value 95% CI  

Cluster (high-risk cluster) 2.697 0.367 0.007 (1.315, 5.534) 

Age (years) 1.006 0.020 0.748 (0.968, 1.046) 

Sex (male) 5.720 0.752 0.020 (1.310, 24.969) 

Ancestry (non-European) 1.099 0.608 0.876 (0.334, 3.619) 

Predicted FVC 0.996 0.013 0.745 (0.971, 1.022) 

Predicted DLCO 0.967 0.013 0.008 (0.944, 0.991) 

 1 

 2 

 3 

 4 

 5 

Additional Figures  6 

 7 

 

FIGURE E1: Flow diagram showing the process used to systematically select publicly available IPF gene 

expression datasets from the Gene Expression Omnibus for use in this study. 

 8 
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 1 

Cluster 1 Cluster 2 Cluster 3 

FIGURE E3: Heatmaps of gene expression for the clustered samples (x-axis) across the top 2,500 genes (y-

axis), without hierarchical clustering of the samples (A) and with hierarchical clustering of the samples (B). 

Blue inside the heatmap indicates low expression and red indicates high expression. In both plots, the genes 

have been hierarchically clustered for presentation purposes, the bar above the plot shows the cluster that 

subject was assigned in to (red = cluster 1, blue = cluster 2 and yellow = cluster 3) and the bar below the plot 

indicates which original study the subject was in (red = GSE38958, green = GSE33566 and blue = GSE93606). 
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 1 

FIGURE E4: Kaplan-Meier curves and corresponding 95% confidence intervals showing survival over time for 2 

the subjects from study GSE93606, stratified by the cluster which they were assigned to in this study. The p-value 3 

shown on the plot is from a log-rank test testing the two curves for equality. 4 
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FIGURE E5: A Sankey diagram for Cluster 1 showing the genes that correspond to the 20 most significantly enriched biological pathways. The colour on the right hand 

side of the plot indicates the category of a particular pathway.  
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FIGURE E6: A Sankey diagram for Cluster 2 showing the genes that correspond to the 20 most significantly enriched biological pathways. The colour on the right 

hand side of the plot indicates the category of a particular pathway. 
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FIGURE E8: A heatmap showing the Pearson correlation between the genes in the classifier (y-axis) and the genes used by SAMS (x-axis). The correlation was calculated 

using the data from the IPF patients in the three validation cohorts (total n=194) for all genes that had complete data (12/13 genes for the classifier and 49/52 genes for 
SAMS). Both sets of genes were clustered using hierarchical clustering for presentation purposes.  

 

 1 

 2 
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 5 

FIGURE E9: Survival over time for the IPF subjects in the validation datasets GSE27957 and 6 

GSE28042, stratified by predicted risk group. A) Survival of IPF cases from GSE27957 with risk 7 

predicted by our 13 gene classifier. B) Survival of IPF cases from GSE27957 with risk predicted by 8 

SAMS. C) Survival of IPF cases from GSE28042 with risk predicted by our 13 gene classifier. D) 9 

Survival of IPF cases from GSE28042 with risk predicted by SAMS. The P-value on each plot is from 10 

a log-rank test testing the two curves for equality. A dotted line on the plot indicates the median survival 11 

time for the risk group if this could be calculated. 12 
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