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Abstract

Objective: Advances in artificial intelligence (AI) have demonstrated potential to

improve medical diagnosis. We piloted the end‐to‐end automation of the mid‐
trimester screening ultrasound scan using AI‐enabled tools.

Methods: A prospective method comparison study was conducted. Participants had

both standard and AI‐assisted US scans performed. The AI tools automated image

acquisition, biometric measurement, and report production. A feedback survey

captured the sonographers' perceptions of scanning.

Results: Twenty‐three subjects were studied. The average time saving per scan was
7.62 min (34.7%) with the AI‐assisted method (p < 0.0001). There was no difference

in reporting time. There were no clinically significant differences in biometric

measurements between the two methods. The AI tools saved a satisfactory view in

93% of the cases (four core views only), and 73% for the full 13 views, compared to

98% for both using the manual scan. Survey responses suggest that the AI tools

helped sonographers to concentrate on image interpretation by removing disruptive

tasks.

Conclusion: Separating freehand scanning from image capture and measurement

resulted in a faster scan and altered workflow. Removing repetitive tasks may

allow more attention to be directed identifying fetal malformation. Further work is

required to improve the image plane detection algorithm for use in real time.
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Key points

What is already known about this topic?

� Artificial intelligence has shown great promise in medical diagnosis, including in antenatal

settings

� Most published work has been based on retrospective data, with very little work exploring

how AI might be used in real‐life clinical practice

What does this study add?

� We have shown that real time use of AI in obstetric ultrasound scanning is feasible and can

fundamentally disrupt how sonographers perform the scan

� AI‐assisted scans were significantly faster than standard manual scans

� Automatically measured fetal biometry was highly accurate

� The performance of automatic standard plane acquisition needs to be improved before

these tools can enter mainstream clinical use

1 | INTRODUCTION

The mid‐trimester fetal anomaly ultrasound (US) scan is now in

widespread use, but quality is not consistent. Despite a trend

showing improvement, international antenatal screening detection

rates remain variable. For example, the rate of antenatal diagnosis of

severe congenital heart disease internationally ranges from 13%–

87%, with wide variation within countries.1‐3 A recent study exam-

ining why fetal heart defects are missed during screening found that

in the majority of such cases, either the correct sonographic plane

was not correctly obtained, or the defect was clearly demonstrated

on screen but not recognised by the operator.4

Artificial intelligence (AI) has been shown to achieve human‐level
performance in some medical imaging analysis tasks.5 This raises the

potential for automating aspects of the fetal US scan, including

automated image identification in real time and automatically

measured fetal biometry.6–13 Although excellent model performance

is often described using retrospective data in silico, relatively little

work has been published on translating these findings to the more

chaotic and unpredictable clinical world. This has created a gap be-

tween AI development in the literature and peer‐reviewed clinical

validation in real‐world clinical settings.14 Very few prospective

clinical trials have compared AI to human performance in medical

imaging, and this pilot study bridges that gap by embedding inte-

grated AI tools into a live clinical scan.15

Although commercial US manufacturers have recently intro-

duced new AI‐driven obstetric ultrasound products to the market,

these aim to complement and augment the sonographer's skills as

‘assistive’ optional compartmentalised tools and do not fundamen-

tally alter how the scan is performed.16 We propose a new paradigm,

in which AI is used to free the sonographer from scan processes that

force task switching. This would fundamentally alter the scanning

workflow and may allow the human operator to focus more atten-

tively on other diagnostic aspects of the examination during live

scanning.

The aim of the present study was to pilot the end‐to‐end auto-

mation of multiple elements of the mid‐trimester US screening scan

using AI‐enabled tools and to assess the impact of these on the ef-

ficiency and quality of the fetal examination compared to a standard

manual scan.

2 | METHODS

This study was performed as part of the intelligent Fetal Imaging and

Diagnosis (iFIND) project, NRES number = 14/LO/1806 (ISRCTN =
16542843). All participants gave informed written consent. Scans

were performed by two UK trained obstetric sonographers with

20 years combined experience (JM and ES) and equivalent profes-

sional qualifications. The trial design was a single centre prospective

method comparison study. A sample size target of between 20 and 25

participants was pragmatically selected to assess the feasibility of

end‐to‐end automation and to assess the initial impact on efficiency,
measurement reliability and image quality before a larger trial.

2.1 | Participants

The inclusion criteria were: completed 18+0–20+6 routine fetal

anomaly ultrasound scan with no subsequent onward referral to

specialist services, and gestational age between 20+0 and 24+0 weeks.

2.2 | Study protocol

Participants were required to attend a dedicated research clinic,

where two fetal US scans were performed sequentially, using a Phi-

lips EpiQ US system with a C5‐1 MHz curvilinear transducer (Philips

Healthcare, Best, Netherlands). The manual (standard) fetal ultra-

sound scan was performed, and the AI‐assisted scan (aided by

automated scan plane detection, automated biometry and autoreport

tools) was conducted as a comparator modality (see Figure 1 for the

scan protocol flowchart). Both scans were performed in line with the

UK's national FASP Fetal Anomaly Screening Programme guidelines
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(considered the gold standard). Supporting Information S1 gives

further details of the research US scanning methodology with

example standard images. The 13 standard planes for which acqui-

sition was attempted during each scan were: trans‐ventricular brain;
trans‐cerebellar brain; abdominal circumference view; femur length

view; facial profile; lips and nose; right and left outflow tract; four

chamber view; three vessel tracheal view; kidneys; sagittal spine;

coronal spine. The sonographers alternated between performing the

manual scan and the AI‐assisted scan for each participant to control

for any difference in scanning ability or technique, blinded to each

other's scan procedure and results. The time to perform each scan

was recorded independently. The scan was considered completed

when each view was either successfully acquired or had been

attempted a maximum of three times (after the mother was reposi-

tioned, or drank some water to encourage fetal movement, as is

common practice in a clinical setting).

The same display was used for both manual scanning and AI‐
assisted scanning. In manual mode only the information normally

displayed by the EpiQ system was presented. In the AI‐assisted
mode, a ‘traffic light’ system (Figure 2) provided additional real‐
time information for each anatomical view about the automated

image capture and storage (green: high confidence of detection;

amber: moderate confidence; red: insufficient confidence). The only

input data for the AI algorithms was from the full live stream 2D US

data that was collected for the duration of the examination. During

AI‐assisted examinations, the sonographer dynamically scanned and

observed the fetus until they were satisfied that a comprehensive

visual assessment had been completed. This was in combination with

confirmation that the required planes had been captured (i.e. green

‘traffic lights’). During this scan, the automated tools capture the 13

standard views and the fetal biometry of the biparietal diameter

(BPD), head circumference (HC), abdominal circumference (AC) and

F I GUR E 1 Research scan protocol flowchart
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femur length (FL) via a standard laptop (DELL XPS15 Intel® Core™

i7‐6700HQ CPU @ 2.60 GHz � 8, GeForce GTX 960M 2 GB, RAM

16 GB with Ubuntu Linux 18.04LTS). The laptop was connected to

the digital video output of the US system via a frame grabber

(Epiphan DVI2USB3.0).

At the end of an AI‐assisted scan, a report (automatically popu-

lated with five candidate images for each required plane) was

generated in .html format (Supporting Information S2). To complete

the auto‐report, the sonographer selected the best quality plane from
each set of candidate views. This selection triggered the inclusion of

the corresponding biometric measurements automatically extracted

from the images, presented both as numerical values and on relevant

growth curves. Other clinical data (e.g. gestational age and fetal po-

sition) were manually entered by the sonographer, and the report

was saved as a .pdf file when complete.

During the manual scan, acquisition of each standard view was

attempted, and biometric measurements were repeated, three times

on different images (as is considered best practice in the FASP

guidelines).17 The 13 standard views (which include the four core

biometric views) were saved in the standard way on the ultrasound

machine's hard drive ready to be sent to a picture archiving and

communication system (PACS) system after the examination. The

written manual report was produced using Astraia, a standard ob-

stetric reporting software package (Astraia software GmbH, Munich,

Germany). This required physical input of the technically best bio-

metric measurement selected by the sonographer.

2.3 | Image quality and biometric measurement
validation

After the data collection period of the study was complete, a third

independent sonographer (KL), blinded to the scan method,

performed a subjective assessment of image quality. A purpose‐built
interface that presented side‐by‐side images of the same nominal

standard view from the manual and the AI‐assisted scans unlabelled

and in random order was used for this assessment. For each image

pair, the sonographer was asked to select which was of a higher

quality, or if they were of equal quality. To allow for inter‐observer
comparison of biometry, the same sonographer also repeated all

biometric measurements offline using MITK workbench software

(German Cancer Research Center Division of Medical Image

Computing, Heidelberg, Germany).

2.4 | Analysis of constituent parts of the scan

To validate our findings from the blinded and paired comparison

study between the manual and AI scanning methodologies, we used a

bespoke software script to automatically analyse the frozen, that is

‘non‐scanning’ time in the manual scans for each study participant. To
further assess how scan time savings may translate into an uncon-

trolled clinical environment, 782 consecutive scan datasets from the

previously described iFIND‐1 cohort7 which had been verified for

completeness, were analysed in a similar fashion.

2.5 | Artificial intelligence algorithms

To ensure a seamless real‐time end user experience during the AI‐
assisted scan, the following six elements were required to work

simultaneously (see Table 1, and for full technical methods see

Supporting Information S3):

(1) Real‐time image capturing through HDMI video output and

frame grabber.

F I GUR E 2 Research clinic room set up and
display monitors. Large white arrow: AI

feedback overlay, displaying real‐time
detection confidence for each standard view.
Small white arrow: 'Traffic light' system

indicating the overall confidence of the
completeness of the data capture for each
standard view (high, moderate, low) [Colour
figure can be viewed at wileyonlinelibrary.com]
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(2) Automatic standard plane detection, image saving, and clus-

tering7 (SonoNet (EpiQ), ClusterSPD.v2).

(3) Automatic biometric extraction6,18 (BrainNet.v1, AbdoNet.v2,

FemurNet.v1).

(4) Automatic report generation (Autoreport.v2).

(5) Real‐time display of the original images and AI‐derived infor-

mation (‘traffic light’ system).

(6) Dedicated computer running all the above simultaneously in real

time.

The number of standard plane image frames collected per case

by the SonoNET (EpiQ) algorithm was too large for a sonographer to

review during clinical reporting. ‘ClusterSPD’ was developed to

address this and was used to provide five candidate views from which

the operator performed a final offline selection. This provided both

an efficient and manageable process and afforded sonographers the

chance for a second review of key clinical information.

2.6 | Data analysis

Means and standard deviations (SD) were calculated for the biom-

etry, scanning and reporting times for each scan condition. Paired

absolute and relative difference were compared between scan con-

ditions across subjects and tested using a two‐tailed paired t‐test
(where p < 0.05 was considered significant). The growth in gesta-

tional days equivalent to size differences in different measurements

were calculated using fetal growth reference charts.19‐22 All data

were analysed using SPSS (version 24, SPSS Inc, Chicago, Ill, USA) and

Excel (version 15.0, Microsoft Corp, Redmond, Washington, USA). At

the end of the study, a short feedback survey was conducted with the

scanning sonographers to gain some structured feedback on the use

of the tools.

3 | RESULTS

Between May 2019 and March 2020, 23 pregnant women were

recruited into this single centre study to undergo both AI‐assisted
and standard manual prospective mid‐trimester fetal US scans as

per the NHS FASP protocol (Figure 1).17 In total, 299 manually ac-

quired and 260 AI‐assisted FASP standard image views were ach-

ieved. Table 2 outlines the baseline participant information, and

Figure 3 demonstrates exclusions and losses from the final data used

in analyses.

3.1 | Examination duration and processes

Scan times were 34.7% shorter in the AI‐assisted scan compared to

the manual scan (mean duration 14.32 vs. 21.93 min, mean time

saving 7.62 min; Table 3). With the exception of two cases, AI‐
assisted scans were faster than the matched manual scan. When a

subgroup of manual scans was analysed, the mean duration for the

screen to be frozen during the manual scans (corresponding to pe-

riods where the images were being visually assessed, measured, and

saved) was 7.8 min, corresponding to 38.8% of the total scan duration

(Table 4, where comparable data is also shown from a large clinical

cohort database collected from a working antenatal clinic, further

details in discussion).

Sonographers reported that the AI tools were easy to use,

perceiving a change in their scanning approach during the AI‐assisted
scan compared to the manual scan. Both sonographers agreed that

the AI tools made it easier to concentrate on image interpretation,

with no adverse impact on patient interaction during the scan

(Figure 4).

Despite a fundamental change in written report production

(during which the AI‐assisted process required the sonographers to

undertake an additional review of the automatically obtained im-

ages for selection into the report: see Supporting Information S2),

there was no significant difference in the time taken to complete

the reports between the two methods (Table 3). When selecting a

specific image for use, the auto‐report automatically included any

corresponding biometric measurements, displaying these in con-

ventional tabular form and plotting them on population centile

charts.

3.2 | Scan completeness, image quality and
biometrics

In considering completeness of the reports for the core fetal views

(trans‐ventricular brain view (TV), trans‐cerebellar brain view (CB),

abdominal circumference view (AC) and femur length view (FL)), the

AI‐assisted report included 93% of the required views, compared to

98% in the manual report (Figure 5 and Table 5). When all 13 stan-

dard views were considered (i.e. core biometry views plus additional

facial profile, lips and nose, right and left outflow tract, four chamber

view of the heart, three vessel tracheal view, kidneys, sagittal and

coronal spine: see Supporting Information S1), the AI‐assisted report
successfully saved 73% of the required images compared to 98% in

the manual report.

Independent, blinded assessment of image quality demonstrated

that the automatically extracted image was of a superior quality than

the paired manual equivalent image in 33%, 41%, 44%, and 19% of

the TV, CB, AC, and FL view respectively, and the manual view su-

perior in 33%, 29%, 38%, and 69%. The views were felt to be of

equivalent quality in 33%, 29%, 19%, and 13% (Figure 5).

There were no statistically significant differences between the

manual and AI‐assisted measurements for any of the biometrics

other than for the head circumference (Table 6). Although for this

measurement there was a statistically significant difference between

the manual and automated measurements, the human inter‐observer
difference was greater than the manual versus AI‐assisted difference
(−5.37 mm, SD 3.36 vs. −2.44 mm, SD 3.65). Additionally, neither of

these differences were considered clinically significant (i.e. they
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would not change routine clinical management) based on the asso-

ciated equivalent change in gestational age (in this case, between 1

and 3 days).

4 | DISCUSSION

Standard manual obstetric US examinations feature an interrupted

mode of operation with repeated pauses to save images and make

measurements. A reporting process then follows, which is primarily

a mechanical data entry task. In contrast, the AI‐assisted approach

that we tested fundamentally changed the way in which the scan

was performed and reported. Many tasks were completely auto-

mated, enabling the sonographer to focus on optimal scanning and

offering parent‐centred care. The reporting process was trans-

formed into a secondary image review task: as the images for re-

view had been automatically acquired during live scanning, the

operator could critically appraise image quality and evaluate likeli-

hood of anomalies.

4.1 | Algorithm performance and clinic workflow

The AI‐assisted scans were significantly faster (saving on average

34.7%) than manual scans. When we analysed the constituent parts

of a subgroup of manual scans, we found that the screen was frozen

for 39% of the total scan time (i.e. a similar duration to the AI time

saving). Selecting the ideal image plane and placing callipers for

biometric measures are not required in the AI‐assisted scans,

therefore it is likely that this is where the time savings are gained. To

investigate how this may translate into a true clinical environment,

we analysed the constituent parts of a retrospective sample of 782

full video recordings of anomaly scans from a single centre (Table 4).

During these the proportion of the scan time where the screen was

frozen was approximately 19.5%. This represents a clinically useful

real‐world time saving should our results be replicated outside of the
controlled study environment.

Cognitive load theory concerns the overloading of working

memory by extraneous factors that do not contribute to task

completion.23 Previous work demonstrates that AI assistance can

TAB L E 1 Algorithm data and clinical outcome measures

Algorithm name

and version Input data type

Output data

selection

Poor/missing data

handling Output data

Four fetal measurements and

intermodality variation

BrainNet,

AbdoNet,

FemurNet

Complete ultrasound

real‐time video feed
ClusterSPD/

human

interaction

All poor or missing data

noted in autoreport

Autoreport: biometry

values and growth

charts

Thirteen standard views

completeness and quality

SonoNet (EpiQ) Complete ultrasound

real‐time video feed
ClusterSPD/

human

interaction

All poor or missing data

noted in autoreport

Autoreport: Standard

views saved

TAB L E 2 Baseline participant information

Category Sub‐category Result

Number of participants, n 23

GA median (range), weeks and days 23+2 (21+4–24+0)

BMI median (range), kg/m3 23.4 (19.5–30.7)

Postnatal outcome, n Livebirth 19

Perinatal death 0

Missing data (delivered elsewhere) 4

Fetal position, n Cephalic 13

Breech 7

Transverse 3

Placental position, n Posterior 14

Anterior 6

Fundal or lateral 3

Sonographer reported quality, n Good 15 (3 scans restricted by fetal position)

Satisfactory 8 (2 scans restricted by fetal mobility, 6 scans

restricted by fetal position)

Poor 0

Abbreviations: BMI, body mass index; GA, gestational age.
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F I GUR E 3 Participant and image data flowchart

TAB L E 3 Scanning and reporting times for both manual and AI‐assisted scans with mean paired difference

Timing type (n) Method Mean time (range), min SD, min Paired mean difference, min p value

Scan time (20) Manual 21.93 (17.33–29.28) 3.24 7.62 <0.0001

AI‐assisted 14.32 (10.93–22.53) 2.85

Reporting time (18) Manual 2.39 (1.63–4.67) 0.87 −0.09 Not sig.

AI‐assisted 2.49 (1.22–4.6) 0.76

Abbreviations: min, time in minutes; SD, standard deviation.

TAB L E 4 Proportion of frozen scan time from a ‘manual’ scan from pilot data and a clinical dataset

Number of scans
analysed

Mean total scan time
(SD), min

Mean total frozen time
(SD), min

Mean % of scan
frozen (SD)

Mean number of freeze
episodes (SD)

Manual scan from this study 14 20.1 (3.9) 7.8 (3.7) 38.8 (16.9) 34 (8)

Scans from previous large

clinical cohort

782 19.6 (6.6) 3.8 (1.7) 19.4 (5.1) 51.7 (19)

Abbreviations: %, percentage; SD, standard deviation.
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reduce cognitive load and improve performance in US‐based
tasks.24,25 We did not directly assess cognitive load in this study,

however sonographer feedback suggests that the less disrupted

approach of the AI‐assisted scan seemed more efficient and made it

easier to focus on the interpretation (rather than acquisition) of

relevant images.

We utilised a modified SonoNet algorithm7 to automatically ac-

quire standard planes (SonoNET EpiQ). This algorithm had excellent

performance when previously tested with retrospectively acquired

data, but unsurprisingly had poorer performance in our ‘real‐world’
prospective setting. Considering the possible complete 13‐image

dataset, a suitable image was saved for 73%. This is improved to

93% when we include only the four core views, but this is still inferior

to the standard manual scan (98% for both). This discrepancy high-

lights an area for necessary improvements before this technology

enters mainstream clinical use.

Automatically acquired fetal measurements were found to be

highly reliable, and comparable with manually obtained measure-

ments. No clinically significant differences were found between the

two methods, and the discrepancy between automatic and manual

measurements was less than the difference between two independent

human observers. This demonstrates that as well as being faster to

F I GUR E 4 Sonographer feedback survey of using AI‐tools [Colour figure can be viewed at wileyonlinelibrary.com]
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acquire, automatic biometry measurement has human‐level accuracy
and repeatability consistent with technical validation experiments.6

4.2 | Challenges and limitations

Despite the recent volume of research on the use of AI in medical

imaging, the majority of studies are based on the testing of trained

algorithms using retrospectively acquired data.5,15 Compared to

other modalities, US has little work published on the use of AI.16,26

This is likely due to additional challenges posed by ultrasound,

particularly the high degree of operator‐dependence and suscepti-

bility to artefact. The way in which US is performed is also funda-

mentally different to other modalities, with images being acquired
F I GUR E 5 Proportional paired quality score by independent

review [Colour figure can be viewed at wileyonlinelibrary.com]

TAB L E 5 Completeness of manual and AI‐assisted scan views

Report type Number of cases, n Total views possible, n Successfully saved images, n (%)

Core views (TV, CB, AC, FL) Manual 23 92 90 (98)

AI‐assisted 20 80 74 (93)

All 13 FASP views Manual 23 299 294 (98)

AI‐assisted 20 260 191 (73)

Abbreviations: %, percentage; AC, abdominal circumference view; CB, trans‐cerebellar brain view; FASP, fetal anomaly screening programme; FL, femur
length view; TV, trans‐ventricular brain view.

TAB L E 6 Comparison of intra‐observer, inter‐observer, and inter‐modality mean paired differences, with gestational age equivalent

Mean (SD) paired difference, mm GA equivalent of mean paired difference, days p value

Biparietal diameter

Intra‐observer −0.12 (1.07) <1 day 0.59

Inter‐observer −1.26 (1.28) 2–3 days <0.001

Manual versus AI‐assisted 0.22 (2.44) <1 day 0.704

Head circumference

Intra‐observer 1.47 (1.93) <1 day <0.001

Inter‐observer −5.37 (3.36) 3 days <0.001

Manual versus AI‐assisted −2.44 (3.65) 1–2 days 0.011

Abdominal circumference

Intra‐observer −1.09 (4.63) <1 day 0.27

Inter‐observer −0.37 (4.3) <1 day 0.7

Manual versus AI‐assisted 2.81 (8.98) 1–2 days 0.2

Femur length

Intra‐observer 0.1 (0.85) <1 day 0.607

Inter‐observer 0.41 (0.95) 1–2 days 0.075

Manual versus AI‐assisted 0.24 (1.79) <1 day 0.575

Note: Significant results highlighted in bold.

Abbreviations: GA, gestational age; mm, milimeters; SD, Standard deviation.

MATTHEW ET AL. - 57

https://www.wileyonlinelibrary.com


and interpreted simultaneously, meaning that any useful AI system

must work in real time. Fetal US is further challenged by other fac-

tors, including fetal movement, difficult acoustic windows, and very

small physical sizes of anatomical structures. However, US imaging is

accessible, relatively inexpensive, and portable. For these reasons,

clinically useful AI‐enabled US procedures have an unparallelled

impact potential, both for the democratisation of technology for less

expert clinical staff, and for imaging‐based diagnosis and in-

terventions in pregnancy.

Limitations of this study include a relatively small sample size,

although this is to our knowledge the largest study of the prospective

use of fully integrated AI in a complete fetal screening examination.

Also, the fact that sonographerswere unblinded to the knowledge that

the subjects had previously had a routine anomaly scan without on-

ward referral meant that they were aware of a low risk for significant

clinical findings. The dedicated research setting included additional

observers in the scan room (a timekeeper and engineers on standby for

technical support), and the scan environment was artificial by clinical

standards with a stricter protocol, possibly resulting in higher protocol

adherence compared to a typical US clinic with multiple operators.

4.3 | Future research

The two areas requiring improvement before our package of AI tools

could be implemented in a real‐world clinical environment are: (1) the
completeness of the AI‐assisted scans for an extended set of stan-

dard views, and (2) quality of the acquired images. The quality of the

acquired images compared between the AI‐assisted and the manual

scans (as assessed by a blinded independent observer) was broadly

similar for the core views of the head and abdomen but were poorer

in the views of the femur. These areas of potential improvement

highlight the previously discussed challenges in translating AI into an

actual clinical environment.14

This study was designed to pilot the introduction of AI into the UK

fetal anomaly screening programme (FASP). As such, only views which

are specified in the FASP protocol were used. There are additional

views such as views of the fetal bladder or umbilical cord that are often

used by fetal medicine specialists to diagnose important fetal disease.

Also, more advanced ultrasound methods such as colour Doppler are

routinely used by fetal medicine and cardiac specialists. Although not

currently part of population‐level screening in the UK, the application
of AI to aid the interpretation of these additional views and other

imaging techniques may be a novel way of improving the performance

of the screening programme in the future.

5 | CONCLUSIONS

Wehave demonstrated the feasibility and utility of integrated AI‐tools
in the performance of obstetric US scans. These tools have the po-

tential to transform the current practice ultrasound scanning meth-

odology by altering workflow. By removing tasks that interrupt live

scanning, the ultrasound operator achieves a faster scan and with

similar image quality, although further work is required to improve the

performance of the image plane detection algorithms for some stan-

dard views when used in real time. The subjective sonographic expe-

rience was also changed, most likely a result of the reduction in task

switching and interruption of observational scanning. Large scale

multicentre trials motivated by smaller evaluation studies (such as this

one) will be needed to determine if AI assistance results in increased

antenatal fetal anomaly detection rates. We hypothesise that in the

future, AI will release human operators from repetitive tasks, allowing

them to focus on other aspects of the scan which could enhance

scanning quality and antenatal care for expectant families.
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