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ABSTRACT

Numerical simulators are essential tools in the study of natural fluid-systems, but
their performance often limits application in practice. Recent machine-learning
approaches have demonstrated their ability to accelerate spatio-temporal predic-
tions, although, with only moderate accuracy in comparison. Here we introduce
MultiScaleGNN, a novel multi-scale graph neural network model for learning to
infer unsteady continuum mechanics in problems encompassing a range of length
scales and complex boundary geometries. We demonstrate this method on advec-
tion problems and incompressible fluid dynamics, both fundamental phenomena
in oceanic and atmospheric processes. Our results show good extrapolation to new
domain geometries and parameters for long-term temporal simulations. Simula-
tions obtained with MultiScaleGNN are between two and four orders of magnitude
faster than those on which it was trained.

1 INTRODUCTION

Forecasting the spatio-temporal mechanics of continuous systems is a common requirement in many
areas of science and engineering, including environmental fluid dynamics (Rubin, 2001). Physical
models for the transport and dispersion processes in natural fluid flows often consist on one or more
partial differential equations (PDEs), whose complexity may preclude their analytic solution (Kim
& Boysan, 1999). Numerical methods are well-established for approximating the solution of PDEs
with high accuracy, but they are computationally expensive (Karniadakis & Sherwin, 2013). Deep
learning techniques have been shown to be capable of accelerating physical simulations (Guo et al.,
2016). Most of the recent work on deep learning to infer continuum physics has focused on the
use of convolutional neural networks (CNNs). In part, the success of CNNs for these problems
lies in their translation invariance and locality Goodfellow et al. (2016), which represent strong and
desirable inductive biases for continuum-mechanics models. However, CNNs constrain input and
output fields to be defined on rectangular domains represented by regular grids, which is not suitable
for more complex domains. As with traditional numerical techniques, it is desirable to be able to
vary the resolution in space, devoting more effort where the physics are challenging to resolve,
and less effort elsewhere. An alternative approach to applying deep learning to geometrically and
topologically complex domains is provided by graph neural networks (GNNs), which can also be
designed to satisfy spatial invariance and locality (Battaglia et al., 2018; Wu et al., 2020).

In this paper, we describe a novel approach to applying GNNs for accurately forecasting the evolu-
tion of physical systems in complex and irregular domains. We propose MultiScaleGNN, a multi-
scale GNN model, to forecast the spatio-temporal evolution of continuous systems discretised as
unstructured sets of nodes. Each scale processes the information at different resolutions, enabling
the network to more accurately and efficiently capture complex physical systems. We apply Mul-

1

ar
X

iv
:2

20
5.

02
63

7v
1 

 [
ph

ys
ic

s.
fl

u-
dy

n]
  5

 M
ay

 2
02

2



Accepted at the ICLR 2022 Workshop on AI for Earth and Space Science

tiScaleGNN to simulate advection and incompressible fluid dynamics, fundamental processes in
oceanic and atmospheric research. Importantly, MultiScaleGNN is independent of the spatial dis-
cretisation and the mean absolute error (MAE) decreases linearly as the distance between nodes is
reduced, which allows for the application of adaptive re-meshing (see Figure 1b) MultiScaleGNN
simulations are between two and four orders of magnitude faster than the numerical solver used for
generating the ground truth datasets, becoming a potential surrogate model for fast predictions.

(a) Advection (b) Incompressible flow

Figure 1: MultiScaleGNN forecasts continuum dynamics. We used it to simulate (a) advection [video] and,
(b) the incompressible flow around a circular cylinder [video].

2 RELATED WORK

During the last five years, most deep neural networks (DNNs) architectures used for predicting fluid
dynamics have included convolutional layers (Guo et al., 2016; Tompson et al., 2017; Lee & You,
2019; Kim et al., 2019; Wiewel et al., 2019; Fotiadis et al., 2020). These CNN-based solvers are
between one and four orders of magnitude faster than numerical solvers (Guo et al., 2016; Lino
et al., 2020), and some of them have shown good extrapolation to unseen domain geometries and
initial conditions (Thuerey et al., 2018; Lino et al., 2020). Recently, GNNs have been used to simu-
late the motion of discrete systems of solid particles (Battaglia et al., 2016; Chang et al., 2017) and
deformable solids and fluids discretised into Lagrangian (or free) particles (Li et al., 2019a; Mrowca
et al., 2018b; Sanchez-Gonzalez et al., 2020). Further research in this area introduced more gen-
eral message-passing (MP) layers (Sanchez-Gonzalez et al., 2018; Li et al., 2019b; Mrowca et al.,
2018a), high-order time-integration (Sanchez-Gonzalez et al., 2019) and hierarchical models (Li
et al., 2019a; Mrowca et al., 2018b). To the best of our knowledge Alet, et al. (2019) Alet et al.
(2019) were the first to explore the use of GNNs to infer Eulerian mechanics by solving the Pois-
son PDE. However, their domains remained simple, used coarse spatial discretisations and did not
explore the generalisation of their model. More closely related to our work, Pfaff et al. (2021) pro-
posed a mesh-based GNN to simulate continuum mechanics, although they did not consider the use
of MP at multiple scales of resolution. Li et al. (2020b) and Liu et al. (2021) used multi-resolution
GNNs to infer steady solutions, but their pooling remained simple and did not explore extrapolation
to unseen domain geometries or physical parameters. Li et al. (2020a) also considered multi-scale
neural PDE modelling, with the mayor drawback that the spatial discretisations are constrained to
uniform grids.

3 MODEL

3.1 MODEL DEFINITION

For a PDE ∂u
∂t = F(u) on a spatial domain D ⊂ R2, MultiScaleGNN infers the temporal evolution

of u(t,x) at a finite set of nodes V 1, with coordinates x1
i ∈ D. Given an input field u(t0,xV 1), at

time t = t0 and at the V 1 nodes, a single evaluation of MultiScaleGNN returns u(t0 + dt,xV 1),
where dt is a fixed time-step size. Each time-step is performed by applying MP layers in L graphs
and between them, as illustrated in Figure 2. The high-resolution graph G1 consists of the set of
nodes V 1 and a set of directed edges E1 connecting these nodes. In a complete graph, there exist
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Figure 2: MultiScaleGNN architecture. G1 is the high-resolution graph, G2 and GL are low-resolution graphs.

|V 1|(|V 1|−1) edges, this would result in a high computational cost to MP. Instead, MultiScaleGNN
connects each node in V 1 (receiver node) to its k-closest nodes (k sender nodes) using a k-nearest
neighbours (k-NN) algorithm. This guarantees that, in MP layers, each node is receiving informa-
tion from exactly k nodes, in contrast to Pfaff et al. (2021) and Sanchez-Gonzalez et al. (2018).
This uniformity can ease the learning and improve the accuracy of the predictions. The attributes
assigned to each node v1

i are the concatenation of u(t0,xi), pi and Ωi, where pi is a set of physical
parameters at xi (such as the Reynolds number in fluid dynamics) and Ωi = 1 for nodes located
on Dirichlet boundaries and zero elsewhere. Each edge attribute e1k is assigned the relative position
between sender node sk and receiver node rk.

Node attributes and edge attributes are encoded through two independent multi-layer perceptrons
(MLPs). A MP layer applied to G1 propagates the nodal and edge information only locally between
adjacent nodes. Nevertheless, most continuous physical-systems require this propagation at larger
scales, or even globally. To handle this, MultiScaleGNN processes the information at L scales,
creating a graph for each level and propagating information between them in each pass. The lower-
resolution graphs (G2, G3, . . . , GL; with |V1| > |V2| > · · · > |VL|) possess fewer nodes and edges,
and hence, a single MP layer can propagate features over longer distances more efficiently. As
depicted in Figure 2, the information is first diffused and processed in the high-resolution graph
G1 through M1 MP layers. It is then passed to G2 through a downward MP (DownMP) layer. In
G2 the attributes are again processed through M2 MP layers and a DownMP layer to G3. This
process is repeated L − 1 times. The lowest resolution attributes (stored in GL) are then passed
back to the scale immediately above through an upward message passing (UpMP) layer. Attributes
are again successively passed through Ml MP layers at scale l and an UpMP layer from scale l to
scale l − 1 until the information is ultimately processed in G1. Finally, a MLP decodes the nodal
information to return the predicted field at time t0+dt at the V 1 nodes. To apply MP in the L graphs,
MultiScaleGNN uses the MP layer introduced by Sanchez-Gonzalez et al. (2018) and Battaglia et al.
(2018), with the mean as the aggregation function.

3.2 MULTI-SCALE GRAPHS

Each graph Gl = (V l, El) with l = 2, 3, . . . , L; is obtained from graph Gl−1 by first dividing D
into a regular grid with cell size dlx × dly (Figure 3a exemplifies this for l = 2). For each cell,
provided that there is at least one node from V l−1 in it, a node is added to V l. The nodes from V l−1

in a given cell i and the node from V l on the same cell are denoted as child nodes, Ch(i) ⊂ V l−1,
and parent node, i ∈ V l, respectively. The coordinates of each parent node is the mean position
of its children nodes. Each edge k ∈ El connects sender node sk ∈ V l to receiver node rk ∈ V l,
provided that there exists at least one edge from Ch(sk) to Ch(rk) in El−1. Edge k is assigned the
mean edge attribute of the set of edges going from Ch(sk) to Ch(rk).

Downward message-passing (DownMP). To perform MP from Gl−1 to Gl (see Figure 3b), a set
of directed edges, El−1,l, is created. Each edge k ∈ El−1,l connects node sk ∈ V l−1 to its parent
node rk ∈ V l, with edge attributes assigned as the relative position between child and parent nodes.
A DownMP layer applies a common edge-update function, f l−1,l, to edge k and node sk. It then
assigns to each node attribute vl

i the mean updated attribute of all the edges in El−1,l arriving to
node i, i.e.,

3
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(a) Building V 2 from V 1 (b) DownMP and UpMP layers

Figure 3: (a) V 2 is obtained from V 1 by partitioningD using a grid with cell size d2x× d2y . (b) DownMP and
UpMP diagrams.

vl
i =

1

|Ch(i)|
∑

k:rk=i

f l−1,l([el−1,lk ,vl−1
sk

]), ∀i ∈ 1, . . . , |V l|. (1)

Upward message-passing (UpMP). To pass and process the node attributes from Gl+1 to Gl,
MultiScaleGNN defines a set of directed edges, El+1,l. These edges are the same as in El,l+1, but
with opposite direction. An UpMP layer applies a common edge-update function, f l+1,l, to each
edge k ∈ El+1,l and both its sender (at scale l+ 1) and receiver (at scale l) nodes, directly updating
the node attributes in Gl, i.e.,

vl
rk

= f l+1,l([el+1,l
k ,vl+1

sk
,vl

rk
]), ∀k ∈ El+1,l. (2)

UpMP layers leave the edge attributes of Gl unaltered. To model functions f l−1,l and f l+1,l, we
use MLPs.

4 TRAINING DATASETS

Datasets AdvBox and AdvInBox, both used simultaneously for training, contain simulations of
a scalar field advected under a uniform velocity field on a square domain ([0, 1] × [0, 1]) and a
rectangular domain ([0, 1] × [0, 0.5]) respectively. AdvBox domains have periodic conditions on
all four boundaries, whereas AdvInBox domains have upper and lower periodic boundaries, a
prescribed Dirichlet condition on the left boundary, and a zero-Neumann condition on the right
boundary. The initial states at t0 are derived from two-dimensional truncated Fourier series with
random coefficients and a random number of terms. For advection models, u(t,xi) ∈ R is the
advected field and pi ∈ R2 are the two components of the velocity field at xi.

Dataset NS contains simulations of the periodic vortex shedding around a circular cylinder at
Reynolds numbers between 500 and 1000. The upper and lower boundaries are periodic, and the ver-
tical distance between cylinders is randomly sampled between 4 and 6. Each domain is discretised
into approximately 7000 nodes. For flow models, u(t,xi) ∈ R3 contains the velocity and pressure
fields and pi ∈ R is the Reynolds number. Further details of the training and testing datasets are
included in Appendix A.

5 RESULTS AND DISCUSSION

We first consider the MultiScaleGNN model trained to infer advection. Despite MultiScaleGNN
being trained on square and rectangular domains and uniform velocity fields, it generalises to com-
plex domains and non-uniform velocity fields. As an example of a closed domain, we consider the
Taylor-Couette flow in Figure 4, where after 49 time-steps a MultiScaleGNN with L = 1 maintains
high accuracy in transporting both the lower and the higher frequencies generated due to the shear
flow. We also evaluated the predictions of MultiScaleGNN on open domains containing obstacles
of different shapes (circles, squares, ellipses and closed spline curves). Figure 1 shows the predic-
tions obtained with a MultiScaleGNN with L = 2 for a field advected around a circular cylinder
and upper-lower and left-right periodic boundaries. MultiScaleGNN was also trained to simulate
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unsteady incompressible fluid dynamics in a range of Reynolds numbers between 500 and 1000. It
shows very good interpolation to unseen Reynolds numbers within this range. For instance, Figure
1b shows the horizontal velocity field predicted by MultiScaleGNN with L = 4 after 99 time-steps
for Re = 700. The MAE increases for Reynolds numbers lower than 400 and higher than 1200, but
the predictions remain visually realistic in the range 300 to 1500, indicating that the network has
learnt some fundamental aspects of the fluid dynamics. 1

Figure 4: Advection of a scalar field
in a Taylor-Couette flow [video].

We evaluate the accuracy of MultiScaleGNN with L = 1, 2, 3
and 4; the architectural details of each model are included
in Appendix B. Tables 1 and 2 collect the MAE for the last
time-point and the mean of all the time-points on the testing
datasets. Incompressible fluids have a global behaviour, and
the addition of coarser layers helps the network to learn this
characteristic and achieve significantly lower errors. Hence,
for the N-S testing dataset there is a clear benefit from in-
creasing the number of scales. In contrast, for the advection
datasets, the lowest MAE values are obtained for L = 1 or 2,
since in advection the information is propagated only locally.
As a comparison to Pfaff et al. (2021), a GNN with 16 sequen-
tial MP-layers (GN-Blocks) results in a MAE of 5.852× 10−2

on our NSMidRe dataset; whereas MultiScaleGNN with the
same number and type of MP layers, but distributed among 3
scales, results in a lower MAE of 3.081×10−2. A comparison
of our coarsening/pooling algorithm to Liu et al. (2021) is included in Appendix C.

Table 1: MAE ×10−2 on the advection testing datasets for MultiScaleGNN models with L = 1, 2, 3, 4

Datasets L = 1 L = 2 L = 3 L = 4
Step 49 All Step 49 All Step 49 All Step 49 All

AdvTaylor 6.940 3.195 7.914 3.676 8.037 3.739 8.790 4.050
AdvCircle 4.057 2.112 3.690 1.817 3.911 1.916 3.827 1.995
AdvCircleAng 3.870 2.030 3.962 1.890 4.300 2.074 4.428 2.249
AdvSquare 4.250 2.178 4.175 1.991 4.420 2.107 4.279 2.141
AdvEllipseH 4.462 2.241 4.328 2.017 4.567 2.136 4.449 2.179
AdvEllipseV 4.265 2.236 4.132 2.014 4.297 2.100 4.207 2.22
AdvSplines 4.484 2.293 4.426 2.088 4.636 2.199 4.58 2.300
AdvInCir 11.7 7.101 25.369 18.548 27.981 22.626 27.379 22.034

Table 2: MAE ×10−2 on the N-S testing datasets for MultiScaleGNN models with L = 1, 2, 3, 4

Datasets L = 1 L = 2 L = 3 L = 4
Step 99 All Step 99 All Step 99 All Step 99 All

NSMidRe 9.765 6.108 4.759 3.663 3.851 3.081 3.456 2.825
NSLowRe 9.43 7.327 12.346 8.211 11.707 8.203 7.338 5.532
NSHighRe 9.487 10.598 7.879 9.002 6.98 7.096 5.826 5.871

6 CONCLUSION

MultiScaleGNN is a novel multi-scale GNN model for inferring mechanics on continuous systems
discretised into unstructured sets of nodes. Unstructured discretisations allow complex domains to
be accurately represented and the node count to be adjusted over space. Multiple coarser levels allow
high and low-resolution mechanics to be efficiently captured. In global and local problems, such as
incompressible fluid dynamics, the coarser graphs are particularly advantageous, since they enable

1Animations with the ground truth and best-model predictions can be found here.

5

https://imperialcollegelondon.box.com/s/jvemqgeffwgitall02enk4wo4237n8wv
https://imperialcollegelondon.box.com/s/f6eqb25rt14mhacaysqn436g7bup3onz


Accepted at the ICLR 2022 Workshop on AI for Earth and Space Science

global characteristics to be learnt. MultiScaleGNN interpolates to unseen spatial discretisations of
the physical domains, allowing it to adopt efficient discretisations and to dynamically and locally
modify them to further improve the accuracy. MultiScaleGNN also generalises to advection on
complex domains and velocity fields and it interpolates and extrapolates to unseen Reynolds num-
bers in fluid dynamics. Inference is between two and four orders of magnitude faster than with the
high-order solver used for generating the training datasets. This work is a significant advancement
in the design of flexible, accurate and efficient neural simulators for fluid dynamics and in general
for continuum mechanics.
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A DATASETS DETAILS

A.1 ADVECTION DATASETS

We solved the two-dimensional advection equation using Nektar++, an spectral/hp element solver
(Karniadakis & Sherwin, 2013; Cantwell et al., 2015). As initial condition, ϕ0, we take an scalar
field derived from a two-dimensional Fourier series with M ×N random coefficients, specifically

ϕ0 =

M∑
m=0

N∑
n=0

cm,nϕm,n · exp
(
− 2(x− xc)2 − 2(y − yc)2

)
, (3)

with ϕm,n = <
{

exp
(
i2π(mx+ ny)

)}
. (4)

Coefficients cm,n are sampled from a uniform distribution between 0 and 1, and integers M and N
are randomly selected between 3 and 8. In equation (4), xc and yc are the coordinates of the centre
of the domain. The initial field ϕ0 is scaled to have a maximum equal to 1 and a minimum equal to
−1. We created training and testing datasets containing advection simulations with 50 time-points
each, equispaced by a time-step size dt = 0.03. A summary of these datasets can be found in Table
3.

Training datasets. We generated two training datasets: AdvBox with 1500 simulations and
AdvInBox with 3000 simulations. In these datasets we impose a uniform velocity fields with
random values for u and v, but constrained to u2 + v2 ≤ 1. In dataset AdvBox the domain is
a square (x ∈ [0, 1] × [0, 1]) with periodicity in x and y. In dataset AdvInBox the domain is a
rectangle (x ∈ [0, 1]× [0, 0.5]) with periodicity in y, a Dirichlet condition on the left boundary and a
homogeneous Neumann condition on the right boundary – as an additional constraint, u ≥ 0. Dur-
ing training, a new set of nodes V 1 is selected at the beginning of every iteration. The node count
was varied smoothly across the different regions of the domains. The sets of node were created with
Gmsh, a finite-element mesher. The element size parameter was set to 0.012 in the corners and the
centre of the training domains, and set to

√
10 or 1/

√
10 times that value at one random control point

on each boundary. The mean number of nodes in |V1| for AdvBox and AdvInBox predictions are
9802 and 5009 respectively.

Testing datasets. We generated eight testing datasets, each of them containing 200 simulations.
These datasets consider advection on more complex open and closed domains with non-uniform
velocity fields. The domains employed are represented in Figure 5, and the testing datasets are
listed in Table 3. The velocity fields were obtained from the steady incompressible Navier-Stokes
(N-S) equations with Re = 1. In dataset AdvTaylor the inner and outer walls spin at a velocity
randomly sampled between −1 and 1. In datasets AdvCircle, AdvSquare, AdvEllipseH,
AdvEllipseV and AdvSplines there is periodicity along x and y, and a horizontal flow rate
between 0.2 and 0.75 is imposed. The obstacles inside the domains on the AdvSplines dataset are
made of closed spline curves defined from six random points. Dataset AdvCircleAng is similar
to AdvCircle, but the flow rate forms an angle between −45 deg and 45 deg with the x axis. The
domain in dataset AdvInCir has periodicity along y, a Dirichlet condition on the left boundary
(with 0.2 ≤ u2 +v2 ≤ 0.75 and−45 deg ≤ arctan(v/u) ≤ 45 deg), and a homogeneous Neumann
condition on the right boundary. The set of nodes V 1 were generated using Gmsh with an element
size equal to 0.005 on the walls of the obstacles and 0.01 on the remaining boudaries.
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(a) (b) (c)

(d) (e) (f)

Figure 5: Physical domains (black areas) on our testing datasets.

Table 3: Advection training and testing datasets

Dataset Flow type Domain #Nodes Train/Test

AdvBox Open, periodic in x and y [0, 1]× [0, 1] 9601-10003 Training
AdvInBox Open, periodic in y [0, 1]× [0, 0.5] 4894-5135 Training
AdvTaylor Closed, Taylor-Couette flow Figure 5a 7207 Testing
AdvCircle Open, periodic in x and y Figure 5b 19862 Testing
AdvCircleAng Open, periodic in x and y Figure 5b 19862 Testing
AdvSquare Open, periodic in x and y Figure 5c 19956 Testing
AdvEllipseH Open, periodic in x and y Figure 5d 20210 Testing
AdvEllipseV Open, periodic in x and y Figure 5e 20221 Testing
AdvSplines Open, periodic in x and y Figure 5f 19316-20389 Testing
AdvIncir Open, periodic in y Figure 5b 19862 Testing

A.2 INCOMPRESSIBLE FLUID DYNAMICS DATASETS

We solved the two-dimensional incompressible Navier-Stokes equation using the high-order solver
Nektar++. We consider the flow around an infinite vertical array of circular cylinders, with diameter
D = 1, equispaced a distance H randomly sampled between 4D and 6D. The width of the domain
is 7D and the cylinders axis is at 1.5D from the left boundary. The left boundary is an inlet with
u = 1, v = 0 and ∂p/∂x = 0; the right boundary is an outlet with ∂u/∂x = 0, ∂v/∂x = 0 and
p = 0; and, the cylinder walls have a no-slip condition. In our simulations, we select Re values that
yield solutions in the laminar vortex-shedding regime, and we only include the periodic stage to our
datasets. The sets of nodes V 1 employed for each simulation were created using Gmsh placing more
nodes around the cylinders walls. The mean number of nodes in these sets is 7143. Each simulation
contains 100 time-points equispaced by a time-step size dt = 0.1. The training and testing datasets
are listed in Table 4.

B MODEL DETAILS

Hyper-parameters choice. The number of edges going to each node was set to k = 6, and the
number of layers in each MLP (encoder, decoder and edge and node update functions) was three,
with 128 neurons per hidden layer. All MLPs (except the decoder) use SELU activation functions
(Klambauer et al., 2017), and, batch normalisation (Ba et al., 2016). The grid sizes used for gener-

Table 4: Incompressible flow training and testing datasets

Dataset Re #Simulations Train/Test

NS 500-1000 1000 Training
NSMidRe 500-1000 250 Testing
NSLowRe 100-500 250 Testing
NSMidRe 1000-1500 250 Testing

Table 5: Cell sizes for coarsening to levels 2, 3
and 4

Cell size Advection Fluid dynamics

d2x, d
2
y 0.02 0.15

d3x, d
3
y 0.04 0.30

d4x, d
4
y 0.08 0.60
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ating the coarser graphs are collected in Table 5. The number of MP layers we used at each scale
are listed in the Table 6.

Table 6: Number of MP layers at each scale for L = 1, 2, 3 and 4

L Advection Fluid dynamics

L = 1 M1 = 4 M1 = 8
L = 2 M1 = 2,M2 = 4 M1 = 4,M2 = 4
L = 3 M1 = 2,M2 = 2,M3 = 4 M1 = 4,M2 = 2,M3 = 4
L = 4 M1 = 2,M2 = 2,M3 = 2,M4 = 4 M1 = 4,M2 = 2,M3 = 2,M4 = 4

Training details. We trained MultiScaleGNN models on a internal cluster using 4 CPUs, 86GB of
memory, and a RTX6000 GPU with 24GB. We fed 8 graphs per batch. First, each training iteration
predicted a single time-point, and, every time the training loss decreased below a threshold (0.01 for
advection and 0.005 for fluid dynamics), we increased the number of iterative time-steps by one, up
to a limit of 10. We used the loss function given by

L = MSE
(
û(t,x1

V 1),u(t,x1
V 1)
)

+ λd MAE
(
û(t,x1

V 1 ∈ ∂DD),u(t,x1
V 1 ∈ ∂DD)

)
+

λe
|E1|

∑
∀k∈E1

MSE

(
û(t,x1

rk
)− û(t,x1

sk
)

||ek||2
,
u(t,x1

rk
)− u(t,x1

sk
)

||ek||2

)
. (5)

with λd = 0.25, and, λe = 0.5 for advection and λe = 0 for fluid dynamics. The initial time-point
was randomly selected for each prediction, and, we added to the initial field noise following a uni-
form distribution between -0.01 and 0.01. After each time-step, the models’ weights were updated
using the Adam optimiser with its standard parameters Kingma & Ba (2015). The learning rate
was set to 10−4 and multiplied by 0.5 when the training loss did not decrease after six consecutive
epochs, also, we applied gradient clipping to keep the Frobenius norm of the weights’ gradients
below or equal to one.

C COARSENING COMPARISON

An important question in the design of MultiScaleGNN was how to coarsen Vl to Vl+1. In the
field of numerical simulations several coarsening algorithms have been developed to guarantee the
stability and accuracy of the simulations. Liu et al. (2021) and Belbute-Peres et al. (2020) used
coarsening techniques from numerical simulations and then interpolated the nodes attributes into
the coarsened set of nodes. We found that our cell-grid coarsening and learnt MP from the high
to the low-resolution graph (see section 3.2) performs significantly better than such coarsening-
interpolation approach. Table 7 shows the MAE on the incompressible flow testing datasets for
MultiScaleGNN models using both pooling strategies and a random coarsening, which randomly
drops nodes to match the same |Vl|/|Vl+1| ratio. In contrast to coarsening algorithms adopted from
numerical simulations, cell-grid coarsening does not preserve the spatial node density from the orig-
inal discretisation, but it results into a pseudo-structured discretisation. This discretisation may help
to spread the node information more efficiently on all directions and regions and to ease the learning
of the parameters of the MP layers at low resolution scales. Also, instead of a vanilla interpolation,
in the DownMP the node information is passed to the low-resolution graph using a learnt MP layer,
and the edge information is also passed to the edges of the low-resolution graph.
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Table 7: MAE×10−2 on the N-S testing datasets for L = 1, 2, 3, 4 with three different coarsening algorithms

Datasets L
Cell grid Guillard’s Random

Step 99 All Step 99 All Step 99 All

NSMidRe
2 4.759 3.663 6.756 4.393 7.191 4.741
3 3.851 3.081 5.735 3.952 6.431 4.606
4 3.456 2.825 4.494 3.330 6.337 4.428

NSLowRe
2 12.346 8.211 9.053 6.378 10.736 7.255
3 11.707 8.203 9.099 6.946 8.977 6.672
4 7.338 5.532 14.358 9.164 10.335 7.521

NSHighRe
2 7.879 9.002 10.776 7.608 11.024 7.842
3 6.980 7.096 10.331 7.556 9.631 7.28
4 5.826 5.871 11.222 7.837 9.572 7.202
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