
 

© 2022 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license 

SIAM J. M\mathrm{A}\mathrm{T}\mathrm{H}. A\mathrm{N}\mathrm{A}\mathrm{L}. © 2022 SIAM. Published by SIAM under the terms 
Vol. 54, No. 1, pp. 1131--1168 of the Creative Commons 4.0 license 

CAUCHY THEORY FOR GENERAL KINETIC VICSEK MODELS IN 

COLLECTIVE DYNAMICS AND MEAN-FIELD LIMIT 

APPROXIMATIONS1\ast  

MARC BRIANT2\dagger , ANTOINE DIEZ3\ddagger , \mathrm{A}\mathrm{N}\mathrm{D} SARA MERINO-ACEITUNO4\S  

Abstract. In this paper we provide a local Cauchy theory both on the torus and in the whole space for 
general Vicsek dynamics at the kinetic level. We consider rather general interaction kernels, nonlinear 
viscosity, and nonlinear friction. Particularly, we include normalized kernels which display a singularity when 
the flux of particles vanishes. Thus, in terms of the Cauchy theory for the kinetic equation, we extend to more 
general interactions and complete the program initiated in [I. M. Gamba and M.-J. Kang, Arch. Ration. Mech. 
Anal., 222 (2016), pp. 317--342] (where the authors assume that the singularity does not take place) and in 
[A. Figalli, M.-J. Kang, and J. Morales, Arch. Ration. Mech. Anal., 227 (2018), pp. 869--896] (where the authors 
prove that the singularity does not happen in the spatially homogeneous case). Moreover, we derive an 
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explicit lower time of existence as well as a global existence criterion that is applicable, among other cases, to 
obtain a long time theory for nonrenormalized kernels and for the original Vicsek problem without any a 
priori assumptions. On the second part of the paper, we also establish the mean-field limit in the large particle 
limit for an approximated (regularized) system that coincides with the original one whenever the flux does 
not vanish. Based on the results proved for the limit kinetic equation, we prove that for short times, the 
probability that the dynamics of this approximated particle system coincides with the original singular 
dynamics tends to one in the many particle limit. 

Key words. Vicsek model, Vicsek--Kolmogorov equation, collective dynamics, nonlinear Fokker-- 
Planck equation on the sphere, normalized interaction kernels, mean-field limit, well-posedness 
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1. Introduction. 

1.1. Motivation. The emergence of collective motions among a group of 

selfpropelled agents is receiving a great deal of attention: flocks of birds [35], schools of 

fish [34], pedestrian dynamics [41], and microswimmers [10]. Many models have been 

proposed to explain these collective behaviors. Among them, the Vicsek model [23, 48] 

is one of the most studied. In this model all agents move at a constant speed while trying 

to adopt the same velocity as their neighbors, up to some noise. 

In this introductory section we present the discrete dynamics for the Vicsek model 

as presented in [23] as well as its corresponding kinetic equation for the time evolution 

of the distribution of the particles. Up to now, there were no complete rigorous results 

on the existence of solutions and the derivation of the kinetic equation (mean-field 

1131 

limit) for the Vicsek dynamics presented in [23]. The reason for this is the presence of a 

singularity in the dynamics that is reached when the local average velocity of the agents 

vanishes. 

In contrast to [23], one can define a Vicsek model without a singularity [3, 15, 16, 

32] for different modeling choices. However, these different modeling choices for the 

Vicsek model have profound mathematical implications (like appearance of phase 

transitions). For this reason, in this article we investigate a general form of the Vicsek 

model that includes the forms presented in [23] (with a singularity) and in [3, 32] 

(without singularity), as well as further extensions of the model like those in [4, 16, 25, 

31]. We give conditions to have existence of solutions for the equations and investigate 

approximations to the mean-field limit for this general class of Vicsek models. All of 

these are detailed in the following sections. 
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1.2. Particular case: Vicsek model as in [23] and [3, 32]. In what follows we 

assume that the agents move in a domain \Omega , with \Omega  being either the d-

dimensional torus \BbbT d or the whole space \BbbR d for d \geqslant  1. The orientations 

of the agents are given elements on the sphere \BbbS d - 1. Throughout the article, for a 

given vector \omega  \in  \BbbR d we denote by P\omega \bot  the orthogonal projection in 

\BbbR d onto (\BbbR \omega )\bot . The time-continuous Vicsek model [23] considers N 

agents characterized by their positions Xi,N(t) \in  \Omega , i = 1,...,N, and orientations 

\omega i,N(t) \in  \BbbS d - 1 over time t \geqslant  0. The evolution of the system is given 

by the following Stratonovich stochastic differential equation, where c,\nu ,\sigma  > 0 

are positive constants: 

(1.1) dXi,N = c\omega i,N dt, 

\surd  

(1.2)d\omega i,N = \nu \nabla \omega i,N(\omega i,N \cdot  \omega i)dt + P(\omega i,N)\bot  \circ 

 2\sigma dBti. 

Next, we explain this system of equations. Equation (1.1) describes the transport of the 

agents: agent i moves in the orientation \omega i,N at speed c > 0. Equation (1.2) gives 

the evolution of the orientations over time. It includes two competing forces. On one 

hand the first term in the form of a gradient represents organized motion: agents try to 

adopt the same orientation. The gradient \nabla \omega  is the gradient on the sphere, and 

the term \omega i represents the average orientation of the neighbors around agent i. 

Therefore, the first term on the right-hand-side of (1.2) is a gradient flow which relaxes 

the value of the orientation \omega i,N towards the mean orientation of the neighboring 

particles \omega i. The constant \nu  > 0 gives the speed of this relaxation. We will 

comment later on the different choices to compute the average orientation \omega i. 

These different choices give rise to the different models in [23] and [3, 32]. 

On the other hand , are N independent Brownian motions in 

\BbbR d and they introduce noise in the dynamics, driving particles away from organized 

motion. The constant \sigma  > 0 gives the intensity of the noise. The symbol ``\circ "" is 

used to specify that (1.2) has to be understood in the Stratonovich sense. This ensures 

that \omega i(t) \in  \BbbS d - 1 for all times where the solution is defined (this will be 

proven later). 

Now, formally at least, one can compute the time evolution for the distribution of 

agents f = f(t,x,\omega ) in space x \in  \Omega  and orientations \omega  \in  \BbbS d - 1 

at time t \geqslant  0 as the number of particles N \rightarrow  \infty  [23]. The dynamics 

for the distribution f is given by the following kinetic equation: 

(1.3)\partial tf + c\omega  \cdot  \nabla \omega f = \nabla \omega  \cdot  [ - \nu P\omega \bot 

\omega f f + \sigma \nabla \omega f] =: L(f), 

where \nabla \omega \cdot  denotes the divergence on the sphere \BbbS d - 1 and where 

\omega f(t,x) represents the average orientation of the particles around position x at 

time t. Notice that the projection term appears due to the fact that 

 \nabla \omega (\omega  \cdot  \omega ) = P\omega \bot \omega  for \omega  \in  

\BbbR d fixed. 
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One can show that the operator L on the right-hand side of (1.3) can be rewritten as a 

nonlinear Fokker--Planck operator: 

(1.4) , 

with (1.5)

  

for any v \in  \BbbS d - 1. The function Mv is a probability density on the sphere called the 

von Mises distribution. Notice that its mean is in the orientation given by v. 

When \sigma  \rightarrow  \infty  (large-noise limit) the von Mises distribution 

converges to the uniform distribution on the sphere. 

We comment now on the different choices to define the average orientation around 

an agent i, denoted by \omega i in (1.2). The choice considered has profound 

implications in the dynamics of the particles and in the derivation of the kinetic equation 

(1.3) (mean-field limit) and the derivation of macroscopic equations (equations for the 

particle density and mean orientation). In the mathematics literature, two options were 

first considered, given, in a compact way, by 

(1.6) . 

The two options correspond to the cases \alpha  = 0 (as presented in [23]) or \alpha  = 

1 (as presented in [3, 32]). The kernel K \geqslant  0 is an interaction kernel that 

represents the weights given to the neighboring particles depending on their distance 

to particle i. A classical choice is to take K the indicator function of a ball of radius R > 0. 

The flux JiN is, indeed, an average of the orientations of the neighboring particles. In the 

kinetic equation these choices define the operator \omega f as 

(1.7) 

 Jf(t,x) \int  

\omega f(t,x) = , Jf(t,x) = K(| x  -  y| )\omega f(t,y,\omega 

)dyd\omega . 

 \alpha  + (1  -  \alpha )| Jf(t,x)|  
\Omega \times \BbbS d - 1 

We compare next, the mathematical implications of these two choices: 

Case \bfitalpha  = 1 (nonnormalization). If \alpha  = 1, the average orientation 

\omega i = JiN \in / \BbbS d - 1 is not a unit vector. This also holds in the kinetic equation 

(1.3) for \omega f = Jf \in / \BbbS d - 1 in (1.7). However, the case \alpha  = 1 removes the 

singularity when | Jf|  = 0 or | JiN|  = 0. In [32] the authors prove the well-posedness of 

the spatially homogeneous kinetic equation in any Sobolev space, and in [2] the authors 

prove the mean-field limit (here we will recover these results). As a counterpart, though, 

this choice for the average \omega i makes the derivation of macroscopic equations for 

the density of the particles \rho  = \rho (t,x) and the mean orientation \omega  = \omega 

(t,x) of the agents more complex than in the case \alpha  = 0. Specifically, two equilibria 

exist for the mean particle orientation \omega  depending on whether Jf \not = 0 or Jf = 

0 [15, 16, 32]. In loose terms, if Jf \not = 0, then the von Mises equilibria M\bfJ f is an 
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equilibrium. The other equilibrium is given by the uniform distribution on the sphere, 

which corresponds to the case Jf = 0 in M\bfJ f. In different spatial regions (depending on 

the particle density \rho ) one of these two equilibria is stable. Consequently, this gives 

rise to a bifurcation or phase transition: in some spatial regions the mean orientation of 

the agents is \omega  = 0 (corresponding to disordered dynamics), and in other spatial 

regions the mean orientation is given by a unit vector | \omega |  = 1 (corresponding to 

ordered dynamics or flocking). The interested reader can find all the details in [4, 15, 

16, 32]. The presence of phase transitions enriches the dynamics in the sense that allows 

for a wider variety of patterns to arise. Understanding phase transition phenomena in 

the Vicsek model is also of great interest in the physics community [9, 48]. In particular, 

pattern formation has been studied through the simulation of the discrete dynamics for 

the Vicsek model and its variation. Band formation arises under some parameter 

conditions [6, 8, 9]. Phase transitions could be key to explaining the emergence of this 

band formation. 

Case \bfitalpha  = 0 (normalization). The first mathematical works on the Vicsek 

model correspond to this case [23]. The choice \alpha  = 0 comes with the difficulty of 

dealing with singularities when the flux JiN = 0 (another example of collective dynamics 

with singularities, different from the Vicsek model, can be found in [45] for the 

Kuramoto model). However, assuming that the flux Jf in the kinetic equation does not 

vanish along the dynamics, then the macroscopic equations can be obtained more easily 

than in the case \alpha  = 1 because there is a unique equilibria: the von Mises 

distribution in (1.5). Then the macroscopic equations for the particle density 

\rho  = \rho (t,x) and mean orientation \omega  = \omega (t,x) \in  \BbbS d - 1 correspond 

to the self-organized hydrodynamics (SOH) given in [23]. This was the first formal 

derivation of the SOH dynamics. See also [38, 50] as well as [37] for later rigorous 

results. In this scenario a rigorous mean-field limit to derive the kinetic equation was 

missing as well as a Cauchy theory for the particle dynamics and the kinetic equation. 

Here we will not prove the mean-field limit starting from a particle system of the form 

(1.1)--(1.2), but from a modified system that we term the approximated particle system. 

This system does not have a singularity when the flux vanishes, and therefore it can be 

thought of as a regularization of the original particle dynamics. Proving the mean-field 

limit for particle systems with nonregular coefficients or with singularities is in general 

a difficult problem and, to the authors' knowledge, only very few results exist and focus 

on specific problems (see, e.g., [36]). Here, we will prove that with a probability which 

tends to one in the many-particle limit, for short times, solutions of the approximated 

particle system are also solutions of the Vicsek particle system. We investigate these 

questions in the present article. 

Theorem 1.1 (Cauchy theory for general Vicsek models with normalization and 

mean field from approximated particle dynamics). Suppose that \alpha  = 0 (normalized 

case). Suppose that the kernel K is Lipschitz and bounded, and that f(0,x,\omega ) satisfies 

assumptions (i) and (ii) in Theorem 2.4. Then there exists a unique local-in-time solution 

to the kinetic equation (1.7). Moreover, the kinetic equation (1.7) can be obtained as the 

mean-field limit of an ``approximated"" particle dynamics whose solutions are, with a 

probability which tends to one in the many-particle limit, also solutions to the particle 

Vicsek dynamics (1.1)--(1.2). 

The precise definition of ``solution"" of the approximated particle system and what 

we mean by ``a probability which tends to one in the many-particle limit"" will be 

explained in Theorem 2.4 and in section 2.3, respectively. As mentioned before, the 
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difficulty in proving the previous theorem is to show that there exists at least some time 

interval t \in  [0,T] such that Jf \not = 0 and that for N large enough the probability that 

| JiN|  > 0 goes to 1 as N \rightarrow  \infty  for all i = 1,...,N and t \in  [0,T]. To prove a 

lower bound in the flux Jf \not = 0 is, therefore, key. Indeed, in [33] the authors manage 

to prove well-posedness for the kinetic equation (1.3) assuming precisely that a priori 

all solutions satisfy | Jf| (t,x,\omega ) \geqslant  a > 0 for all times, positions, and 

orientations. In [30] the authors prove well-posedness in the spatially homogeneous 

setting as long as initially | Jf0|  > 0 (plus some other assumptions). This has been 

followed by further extensions in [39]. The spatially homogeneous case corresponds to 

spatially local kernels, i.e., K(x  -  y) = \delta 0(x  -  y) (delta distribution). 

To conclude this part, the choice on how to define the average orientation \omega i 
has profound mathematical and modeling implications (like dealing with singularities 

or with phase transitions). For this reason, in this article we will consider a general class 

of Vicsek models to encompass different modeling choices---existing or yet to be 

developed. 

1.3. General forms of the Vicsek model considered. As we saw in the previous 

section, modeling choices in the Vicsek model may produce important differences in the 

mathematical properties of the equations. For this reason, in this article we consider a 

wide class of Vicsek models based not only on the choice of the averaged orientation 

(1.2) but also on the particular shape of the friction \nu , the viscosity \sigma , and the 

interaction kernel K. Specifically, we will allow \nu  and \sigma  to be functions of f (the 

solution to the kinetic equation) at the kinetic level and functions of the empirical 

distribution (see (2.15)) at the particle level. The interaction kernel K can take the 

general form K = K(t,x,x\ast ,\omega ,\omega \ast ). The precise assumptions on \nu , 

\sigma , and K can be found in section 2.1. 

As a consequence, the results presented here apply to a wide breadth of Vicsektype 

models, like the ones in [15, 16, 25, 31]. In [15, 16] the authors consider functions \nu  

= \nu (| Jf| ), \sigma  = \sigma (| Jf| ) that depend on the flux of the particles; in [31] the 

author considers a kernel K that is not isotropic; in [25] the authors consider a Vicsek-

type model for alignment of discs. Beyond this, the approach presented here can be 

adapted to investigate other models like the ones in [4, 12, 13, 18, 17, 19, 20, 21, 22, 24, 

42]. In [13] the authors couple the Vicsek model with a Kuramoto model. In [42] the 

author considers a Vicsek model with two species having different velocities. The 

models in [4, 18, 19, 20, 21] describe collective motion based on nematic alignment 

(where particles align by adopting the same direction of motion but not necessarily the 

same orientation). BGK versions of Vicsek-type models are considered in [12, 17]. In 

[22] the authors couple the Vicsek model with Stokes equations to model 

microswimmers. Finally, in [24] a model for the persistent turning walker with 

curvature ``alignment"" is presented. 

1.4. Aims of the paper. In this paper, for a general form of the Vicsek model, we 

aim to 

(i) establish the well-posedness, at least locally in time, for the kinetic model 

(Theorem 2.4); existence of solutions will be proven in Lebesgue spaces; 

(ii) rigorously prove that the kinetic equation can be derived as the mean-field 

limit of some ``approximated"" agent-based dynamics in the limit N 

\rightarrow  +\infty (Theorems 2.10, 2.11, 2.12), and also show with a 

probability which tends to one in the many-particle limit realizations of the 
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``approximated"" particle system that there are solutions of the original Vicsek 

system (Theorem 2.14); 

(iii) derive a criterion that characterizes the global-in-time well-posedness of these 

systems (points (a) and (b) in Theorem 2.4) and apply it to several interesting 

cases (section 3.3.1); along the way we shall also open the discussion to 

longtime behavior and construct a free energy, but we shall not investigate 

further (section 3.3.2). 

Our goal is to give constructive proofs rather than weak-compactness arguments and to 

work in Lebesgue spaces rather than more regular Sobolev spaces. Our strategy is thus 

to prove a fixed point contraction theory for the kinetic equation (2.4) and to prove the 

mean-field limit, using a coupling approach popularized by Sznitman [3, 5, 7, 47]. 

1.5. Structure of the paper. The paper is structured as follows. Section 2 describes 

our main results, first in the kinetic framework in section 2.2 and second for the particle 

dynamics and its mean-field limit in section 2.3. The proofs for the results in section 2.2 

are given in section 3, and the proofs of the results in section 2.3 are given in section 4. 

In Appendix A the reader can find known results on stochastic differential equations and 

mean-field limits that are used in section 4 and that have been added here for the sake 

of completeness. The results in Appendix A are mainly from [5]. 

2. Main results and strategy. 

2.1. Functional framework and notation. First let us give some notation for 

functional spaces. We shall work on Lebesgue spaces indexed by the variable into 

consideration: for any p in [1,+\infty ) we denote 
 1 1 

\biggl( \int  \biggr) p \biggl( \int  \biggr) p p p 

 \| f\| Lp\omega  =| f(\omega )|  d\omega and \| f\| Lpx = | f(x)|  dx 
 \BbbS d - 1 \Omega  

and for a time-dependent function for any T > 0 

  and  . 

Finally we denote several variable Lebesgue spaces for any q and r in [1,+\infty ), 

 , 

with direct modifications for p, q, or r being +\infty . Note that when two indexes are the 

same we shall use the shorthand notation LpxLp\omega  = Lpx,\omega . 

For the mean-field limit results, we will consider the space \scrH  = (\Omega \times 

\BbbR d \times \scrP 2(\Omega \times \BbbR d)), where \scrP 2(\Omega  \times  \BbbR 

d) is the space of probability measures in \Omega  \times  \BbbR d with finite second-

order moment, i.e., \mu  \in  \scrP 2(\Omega  \times  \BbbR d) if it fulfills 

\int  

| z| 2 \mu (dz) < \infty . 
\Omega \times \BbbR d 
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For \mu ,\mu \prime  \in  \scrP 2(\Omega  \times  \BbbR d), the 2-Wasserstein distance is 

given by 

 ; 

\Biggr\}  

(2.1) \pi  \in  \scrP (\Omega  \times  \BbbR d)2 with marginals \mu  and \mu \prime 

 . 

The distance W2 induces the topology of weak convergence of measures and the 
convergence of all the moments of order up to 2 [5] (see also [49, p. 83]). The space 
\scrH  is a metric space with distance d\scrH  given by 

 \Bigl(  \Bigr)  

 d\scrH  (x,v,m),(y,w,p) = | x  -  y|  + | v  -  w|  + W2(m,p). 

The hypotheses we shall make on the nonlinearities are the following. 

(H1) The interaction kernel K is Lipschitz, regular, and bounded in all the variables. 

More precisely, it is assumed that K , and in 

the case \Omega  = \BbbR d we further assume that K . 

(H2) The viscosity satisfies that  is bounded from below 

and Lipschitz uniformly for any T > 0 in the sense there exists \sigma 0, \sigma 

\infty , and \sigma lip such that for any T > 0, 

 \Bigl(  2 \Bigr) 2 

 \forall (f,g) \in L[0,T],x,\omega  , 0 < \sigma 0 \leqslant  \sigma (f) 

\leqslant  \sigma \infty , 

\| \sigma (f)  -  \sigma (g)\| 
L\infty ,T],x,\omega  \leqslant  \sigma \mathrm{l}\mathrm{i}\mathrm{p} \| f  -  g\| 

L2[0,T],x,\omega  . 
[0 

(H3) The friction is local in time and Lipschitz, that is, \nu (f)(t,x,v) = \nu (f(t,\cdot ,\cdot 

))(x,v), where : 

 \forall (f,g) \in  \bigl( L2x,\omega \bigr) 2 ,\| \nu (f)\| L\infty x W\omega 1,\infty  \leqslant  \nu 

\infty , 

\| \nu (f)  -  \nu (g)\| 
L\infty x,\omega  

\leqslant  \nu \mathrm{l}\mathrm{i}\mathrm{p} \| f  -  

g\| 
L2x,\omega  . 

(H4) For the mean-field limit results we will assume further that \sigma , \nu , and 

\nabla \omega \sigma are Lipschitz and bounded in W2. 

Remark 2.1. 
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\bullet  Note that (H2) and (H3) are satisfied when \sigma  and \nu  do not depend 

on f, which is the case in most models so far. Ultimately, one would want \sigma 

(f) to be local in time and Lipschitz, like \nu (f). We think that this could be 

achieved with standard parabolic regularity methods for more regular initial 

data and \sigma (f). The main issue for closing a fixed point argument is the 

speed of convergence to 0 of the gain of regularity of the solutions f that we did 

not manage to quantify; see Proposition 3.3 and Remark 3.4. 

\bullet  In applications, typically the functions \nu  = \nu (t,x,\omega ,f) and 

\sigma  = \sigma (t,x,\omega ,f) are of the form 

\int  

 (2.2) \nu (t,x,\omega ,f) =d - 1 \nu \widetilde (t,x,\omega ,x\ast ,\omega \ast )f(t,x\ast 

,\omega \ast )dx\ast d\omega \ast  

\Omega \times \BbbS  

for some function \nu , and analogously for \sigma . For example, in [23] the 

authors 

\widetilde  

consider 

\nu (t,x,\omega ,f) = \omega  \cdot  \omega f(t,x), 

with 

(2.3) 

. 

And in [16] the authors consider \nu  and \sigma  of the form 

\nu  = \nu (t,x,f) = \nu (| J\widetilde f| (t,x)), 

with J\widetilde f given by (2.3). 

2.2. Kinetic point of view: Strategy and results. We will consider the following 

kinetic equation for the distribution function f = f(t,x,\omega ) for (t,x,\omega ) \in  

\BbbR + \times  \Omega  \times  \BbbR d (with \Omega  either the d-dimensional torus 

\BbbT d or the full space \BbbR d): 

(2.4)\partial tf + c\omega  \cdot  \nabla xf = \nabla \omega  \cdot  (\sigma (f)\nabla \omega f) 

+ \nabla \omega  \cdot  (\nu (f)fP\omega \bot  [\Psi [f]]), 

where \nabla \omega , \nabla \omega \cdot  are the gradient and divergence operators on 

the sphere; c > 0 is a positive constant and \nu ,\sigma ,\Psi  are given functions. 

Remark 2.2. Notice that we allow the function \nu (f) < 0. For example, in the kinetic 

equation for the Vicsek model in (1.3) this function corresponds to  - \nu  for some 

constant \nu  strictly positive. 

There exists an interaction kernel K : \BbbR + \times \Omega 2 \times \bigl( \BbbS d 

- 1\bigr) 2  - \rightarrow  \BbbR d that defines the flux \bfitJ  as 

\int  
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(2.5) \bfitJ [f](t,x,\omega ) =K(t,x,x\ast ,\omega ,\omega \ast )f(t,x\ast ,\omega \ast )dx\ast 

d\omega \ast . 
\Omega \times \BbbS  

From the flux \bfitJ  we define the functional \Psi  as 

(2.6) \exists \alpha  \in  [0,1],\Psi , 

where 

(2.7) | \bfitJ [f](t,x,\omega )| \alpha  = \alpha  + (1  -  \alpha )| \bfitJ [f](t,x,\omega )| , 

where | \cdot |  stands for the norm in \BbbR d. Note that when \alpha  = 0 we talk about 

a normalized operator since | \Psi [f]|  = 1, whereas for \alpha  = 1 we have a complete 

kernel operator. 

The orthogonal kernel nonlinearity (2.4) we tackle is more general than the 

gradient-type interaction (2.8). Furthermore, it is also more physically relevant when 

one wants to derive the Kolmogorov--Vicsek type of kinetic equation from particle 

systems behavior [2, 3]. The main issue for the kinetic part is the possible degeneracy 

of | \Psi [f]| \alpha  as well as the nonlinearity of the dissipativity and viscosity that does 

not necessarily compensate for the aforementioned degeneracy, unlike existing works 

in the literature. The key part of our strategy is to provide first a quantification of the 

possible time of degeneracy of the nonlinearity combined to a study of the dependencies 

over \sigma  and \nu  at a linear level. 

Remark 2.3. In the literature, typically the operator K is of the form K(x,x\ast ,\omega 

,\omega \ast ) 

= K(x  -  x\ast ,\omega \ast ). In this case it holds that 

 \biggl(  \int  \biggr)  

 P\omega \bot (\Psi [f]) = \nabla \omega  \omega  \cdot  K(x  -  x\ast ,\omega \ast 

)f(x\ast ,\omega \ast )dx\ast d\omega \ast  

\Omega \times \BbbS d - 1 

because for a vector X in \BbbR d, \nabla \omega (\omega  \cdot  X) = P\omega \bot (X). 

Therefore, in this case the 

Kolmogorov--Vicsek equation (2.4) can be rewritten as a gradient-type interaction 

(2.8)\partial tf + c\omega  \cdot  \nabla xf = \nabla \omega  \cdot  (\sigma (f)\nabla \omega f) 

+ \nabla \omega  \cdot  (\nu (f)f\nabla \omega \psi [f]). 

Theorem 2.4. Let \Omega  be either \BbbT d or \BbbR d, let \alpha  be in [0,1], and let 

\sigma , \nu , and K satisfy the hypotheses (H1)-(H2)-(H3). Let p belong to [2,+\infty ] 

and f0 be such that 

(i) f0 is a nonnegative function in L1x,\omega  \cap  Lpx,\omega  with mass 

\int  

f0(x,\omega )dxd\omega  := M0 > 0; 

\Omega \times \BbbS d - 1 
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(ii) inf(x,\omega )\in \Omega \times \BbbS d - 1 | \bfitJ [f0](x,\omega )| 
\alpha  := J0 > 0, where | \bfitJ 

[f0]| 
\alpha  was defined in (2.7). 

There exist a time T\mathrm{m}\mathrm{a}\mathrm{x} > 0, independent of p, and a unique weak 

solution f in 

L2 \bigl( [0,T\mathrm{m}\mathrm{a}\mathrm{x}),L1x,\omega  \cap  L2x,\omega 
\bigr)  to (2.4) with f0 as 

initial datum. Moreover, f is nonnegative on [0,T\mathrm{m}\mathrm{a}\mathrm{x}), belongs to 

L\infty  \bigl( [0,T\mathrm{m}\mathrm{a}\mathrm{x}),Lpx,\omega 
\bigr) \cap L2 \bigl( 

[0,T\mathrm{m}\mathrm{a}\mathrm{x}),L2xH\omega 1
\bigr) , and preserves the mass M0, and one of 

the following holds: 

(a) T\mathrm{m}\mathrm{a}\mathrm{x} = +\infty ; 

. 

Remark 2.5. Of important note are the following consequences. 

\bullet  Our Cauchy theory does not stand on any a priori assumption of the 

solutions and provides an explicit lower bound for T\mathrm{m}\mathrm{a}\mathrm{x} 

(see (3.18)--(3.20)). In particular, for T < T1 (where T1 > 0 is given in (3.20)), it 

holds that for all t \in  [0,T] 

 (2.9) | \bfitJ (t,x,\omega ,f)|  \geqslant  J0  -  K\infty M0T > 0, 

where K\infty  is given by (3.17) and M0 is as given in the theorem above. In 

what follows, we will define c\ast  = c\ast (T) as 

 (2.10) c\ast  = J0  -  K\infty M0T for T < T1. 

\bullet  The theorem above includes all the previous results made in L2 or L\infty , 

in both the nonhomogeneous and the homogeneous cases (it suffices to 

consider 

K = k(x\ast )K(\omega ,\omega \ast ) with \int 
\Omega  k = 1). 

\bullet  The global existence criterion offers direct global existence for 

nonnormalized interactions \alpha  \not = 0, but it also gives global existence 

for the original Vicsek equation with spatially homogeneous kernel K(t,x,x\ast 

,\omega ,\omega \ast ) = \omega \ast  and fully homogeneous viscosity and 

negative friction (i.e., only f and time dependent). Section 3.3.1 describes 

several general cases where global existence happens in the problematic and 

purely normalized case \alpha  = 0. 

Besides the issue of well-posedness, it is of great interest to understand the large 

time behavior of the solutions. We recall that section 3.3.1 proves global existence for 

different types of interactions, and it also exhibits a free energy which decreases along 

the flow. One cannot expect a general theory since it heavily depends on the shape of 

the kernel K, but one can still wonder if there are equilibria and if they are attractive. 

For this purpose, kinetic equations with gradient nonlinearities (2.8) are often used 

because one can extract an explicit free energy functional decreasing along time, hence 

leading to the existence of equilibria and a hope for an asymptotic study of the solutions. 
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This has been tackled in [32, 14, 16], where the authors exhibited a decreasing energy 

functional 

(2.11)  

when \sigma  and \nu  are solely functions of | Jf| . Associated to the latter is an energy 

dissipation allowing one to dig out explicitly the equilibria in the spatially homogeneous 

setting. 

It appears that a free energy is also underlying in the general equation: (2.4) enjoys 

a free energy functional that decreases along the flow with an explicit energy 

dissipation. Namely, 

 

and 

(2.13) which will 

be proven, in section 3.3, to satisfy along the flow 

. 

Remark 2.6. Let us emphasize that, considering the spatially homogeneous case K = 

\omega \ast , (2.12) and (2.13) are the ones obtained in [14] with | Jf| 2 instead of | Jf|  (in 

case of constant viscosity and friction we also recover the original Doi--Onsager free 

energy [43, 26]). For general gradient kernel interactions \psi [f] (2.8) that are 

symmetric in \omega  and \omega \ast  the free energy (2.12) becomes 

 

for \nu  and \sigma  being solely functions of \langle \psi [f],f\rangle L2x,\omega  (which 

equals | Jf
| 2), hence offering a new view on the gradient structure where the natural 

dependencies are, in fact, 

\langle \psi [f],f\rangle L2x,\omega  = | Jf| 2. 

One can immediately see that the energy dissipation vanishes on 

 , 

and when it vanishes so does the right-hand side of the kinetic equation (2.4). The latter, 

with the decrease of \scrF [f](t), offers a good chance that one could get a La Salle's 

invariance principle---in the spirit of [32]---when solutions are globally defined, namely, 

the solution draws closer to the set of local equilibria \scrE \infty . 

Remark 2.7. If one establishes a La Salle's principle, then necessarily, for a global 

equilibrium f\infty , the quantity ]) must be a tangential 
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gradient---and then f\infty (t,x,\omega ) = A(t,x)e - \psi [f](t,x,\omega ) and we recover generalized 

von 

Mises equilibria as in previous works [32, 14, 16]. Hence, as mentioned earlier, a 

gradient structure pops out naturally but does not solely concern P\omega \bot [\Psi [f]], as 

first considered in (2.8). However, this is beyond the scope of this article, and we did not 

investigate further. 

2.3. Microscopic point of view and mean-field limit for the Vicsek kinetic 

equation: Strategy and results. We will prove that the kinetic equation can be 

obtained as the mean-field limit of some ̀ `approximated"" (regularized) particle system. 

When there is normalization (\alpha  = 0), we will show that realizations of the 

approximated dynamics are also solutions of the Vicsek particle system with a 

probability which tends to one in the many-particle limit (Theorem 2.14). Note, 

however, that for the case \alpha  = 0, we will not prove the mean-field limit for the 

kinetic equation starting from particle systems of the form (1.1)--(1.2), nor its well-

posedness. 

We consider a system of N particles given by their positions Xti,N \in  \Omega  and 

velocities Vti,N \in  \BbbR d over time t \geqslant  0. Notice that we shall consider that the 

equations are written for v \in  \BbbR d rather than in \omega  \in  \BbbS d - 1, but we shall 

later prove that the velocities are restricted to the sphere with radius c, thus recovering 

the expected spherical dynamics. We recall the empirical distribution of the process (

: 

(2.15) . 

As mentioned before, in this article we will prove results on two types of particle 

systems. The first one we will call the general particle Vicsek and the second one 

approximated particle dynamics. We define the general particle Vicsek as the particle 

system given by the following Stratonovich stochastic differential equation: 

(2.16a) 

(2.16b) 

(2.16c) 

(2.16d) where 

Pv\bot  is the projection operator 

P , 

where Id is the identity matrix, and ((  are independent Brownian motions 

in \BbbR d. The symbol ``\circ "" denotes that the stochastic differential equation (2.16) 

is in the Stratonovich convention. 

The precise way in which the function \Psi  is extended to Vt \in  \BbbR d is explained 

in section 4.2; see system (4.5). 

The approximated particle system is given by similar equations, where the 

difference is that the functional \Psi  is replaced by a functional \tau \varepsilon 0 that will 

be made precise later: 
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(2.17a) 

(2.17b) 

(2.17c) 

(2.17d) 

The function \tau \varepsilon 0 = \tau \varepsilon 0(x,v,m) is defined such that 

(2.18)\tau \varepsilon 0(x,v,m) = \Psi (x,v,m) whenever | J(x,v,m)|  \geqslant  \varepsilon 0 

for some \varepsilon 0 > 0, and so that it is well-defined in \scrH  (i.e., without 

singularities). In particular, in the system above we will have that 

\tau \varepsilon 0(Xti,N,Vti,N,\mu Nt ) = \Psi (Xti,N,Vti,N,\mu tN) if | J(Xti,N,Vti,N,\mu Nt )|  

\geqslant  \varepsilon 0. 

Because \tau \varepsilon 0 does not present any singularities when | J|  = 0, the approximated 

particle system (2.17) can be thought of as a regularization of the Vicsek particle system 

(2.16). 

Associated to the approximated particle system, we define the approximated kinetic 

equation given by 

(2.19)\partial tf + c\omega  \cdot  \nabla xf = \nabla \omega  \cdot  (\sigma (f)\nabla \omega f) 

+ \nabla \omega  \cdot  (\nu (f)fP\omega \bot  [\tau \varepsilon 0[f]]). 

Observe that when \tau \varepsilon 0 is substituted by \Psi  in the approximated kinetic 

equation (2.19), we obtain the Vicsek kinetic equation (2.4). 

First, we will show the well-posedness for the approximated particle system 

(Theorem 2.10) and that in the mean-field limit gives the Vicsek kinetic equation (for 

short times) (Theorem 2.11 and Corollary 2.12). 

Remark 2.8. Notice that the term (2.16b) in system (2.16) appears so that we obtain 

the kinetic equation (2.4). This is just a technicality: system (2.16) in It\^o's convention 

corresponds to 

(2.20a) 

(2.20b) 

(2.20c) 

See also Appendix A.2 for more details. Without the extra term (2.16b) we would obtain 

a kinetic equation where the operator in \omega  is of the form (see (A.3)) 

Downloaded 06/07/22 to 109.158.135.86 . Redistribution subject to CCBY license  



 CAUCHY THEORY AND MEAN-FIELD FOR VICSEK MODELS 1145 

© 2022 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license 

\Delta . 

But with the extra term the operator \omega  in the kinetic equation is of the form 

\Delta \omega (\sigma (f)f)  -  \nabla \omega  \cdot  (\nabla \omega \sigma (f)f) = \nabla 

\omega  \cdot  (\sigma (f)\nabla \omega f), 

which is the operator that we are dealing with in (2.4). Notice that if we wanted to obtain 

just a factor \Delta \omega (\sigma (f)f), then the constant in front of the extra term (2.16b) 

should be  - 1/2 rather than 1/2. Notice also that if \sigma  = \sigma (t,x,f) does not 

depend on \omega , then the extra term (2.16b) does not appear. This is the case, for 

example, when 

\sigma  = \sigma (| J\widetilde f| (t,x)) for J\widetilde f defined in (2.3); see [16]. The 

extra term (2.16b) has the effect of relaxing V i,N towards the value taken by \nabla 

v\sigma . It can be rewritten equivalently as a gradient 

, 

where the gradient is on the sphere. 

As announced before, the dynamics described by our agent-based model indeed 

force the velocities to have unit norm, as shown by the next lemma. 

Lemma 2.9. Suppose that  is a solution to the approximated particle 

dynamics (2.17) or the Vicsek particle dynamics (2.16). Suppose that  for all i = 
1,...,N; then it holds that 

 | Vti,N|  = 1 \forall i = 1,...,N, 

for all times where the solution is defined. 

Proof of Lemma 2.9. It is a direct check that 

 

using the Stratonovich chain rule (see, for example, [29, p. 122]) and the fact that 

V \cdot  PV \bot  = 0.  

The potential degeneracy of \Psi  breaks the Lipschitz regularity of the interactions 

and thus prevents standard agent-based well-posedness results from being applied. 

There exist results for non-Lipschitz interactions [2], but their singularities differ from 

the one at stake in the present article. 

In the spirit of [3], we thus shall prove well-posedness of the system hand in hand 

with the mean-field limit with the aid of an auxiliary process which mixes microscopic 

dynamics with the mesoscopic distribution function ft. The main difference with respect 

to [3] is that we need to deal with the fact that the noise coefficient \sigma  is not 

constant. Let us make explicit the auxiliary process for the approximated particle 

system ( , solution of 
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(2.21a) 

(2.21b) 

      i,N

 i,N 

(2.21c)      ft = law(Xt ,V t ), 

(2.21d) , 

where the initial data and the Brownian processes (  are the same ones as in 

(2. 17). Notice that all the processes ( ) are independent by construction, 

and they all have the same law ft. 

We will prove the following two results for the approximated particle system (2.17) 

and the approximated kinetic equation (2.19). 

Theorem 2.10 (local-in-time existence and uniqueness of solutions for the 

approximated system). Under the assumptions of Theorem 2.4 and assumption (H4), let 

f0 be a probability measure on \BbbR d \times  \BbbS d - 1 with finite second moment in x \in  

\BbbR d, and let  independent random variables with 

law f0. 

The following hold: 
(i) There exists a pathwise global unique solution to the SDE system (2.17) with 

initial data . Moreover, the solution is such that 

| Vti,N|  = 1. 

(ii) There exists a pathwise global unique solution to the auxiliary process (2.21) 

with initial data and . 
(iii) There exists a global-in-time unique weak solution of the approximated kinetic 

equation (2.19) with initial datum f0. The solution of the kinetic equation is the 

law of the process solution to the auxiliary system (2.21), wherever the solution 

is defined. 

Along with this well-posedness result, we rigorously show its mean-field limit 

towards the approximated kinetic equation (2.19). 

Theorem 2.11 (mean-field limit for the approximated system: propagation of chaos). 

Under the assumptions of Theorem 2.4 and assumption (H4), for the respective solutions 

 and  of (2.17) and (2.21), for any T > 0, it holds that 

(2.22) lim . 

From this we deduce a mean-field limit result for the Vicsek kinetic equation. 

Corollary 2.12 (mean-field limit for the Vicsek kinetic equation). Suppose that the 

assumptions in Theorem 2.4 and assumption (H4) hold. Let ft be the local-in-time solution 

of (2.4) given by Theorem 2.4 for t \in  [0,T). Then there exists an \varepsilon 0 > 0 such 

that the law of the auxiliary process (2.21) is precisely ft for any t \in  [0,T). 

Consequently, Theorem 2.11 holds for  having law ft solution to the kinetic Vicsek 

equation (2.4). 
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Proof. Take T0 \in  [0,T) and define 

. 

Then, with this value of \varepsilon 0, the approximated kinetic equation (2.19) 

coincides with the Vicsek kinetic equation (2.4) for t \in  [0,T0]. Therefore, by Theorem 

2.10, the solution of the Vicsek kinetic equation ft is the law of the auxiliary process 

(2.21) for t \in  [0,T0] and Theorem 2.11 applies.  

Corollary 2.12 implies the mean-field limit of the approximated dynamics (2.17) 

towards the Vicsek kinetic equation (2.4) for short times (in the case \alpha  \not = 0, 

then T = +\infty  and the mean-field limit holds for all times). 

Remark 2.13 (convergence of the measures). Expression (2.22) ensures the 

convergence as N \rightarrow  \infty  of the law of the process ( ) towards ft 

for any i and t \in  [0,T]. See the notes after Theorem 1.1 in [2] for more details. In 

particular, in [2] the following upper bound in 2-Wasserstein distance is shown: 

, 

where \varepsilon (N) \rightarrow  0 as N \rightarrow  \infty  (by Theorem 2.11). The 

function f(1) denotes the first 

marginal of the N particle system. They also show that for any Lipschitz map \varphi  

(2.23)  

for some constant C > 0 independent of N. 

Under more regularity assumptions, one can obtain explicit estimates on 

\varepsilon (N). See Theorem 10 in [5] (section 1.3.4). 

2.3.1. The Vicsek particle system when \bfitalpha  = 0. All the previous results for 

the mean-field limit correspond only to the approximated system (2.17), which is not 

singular when \alpha  = 0. When the norm of the flux 

(2.24)  \geqslant  \varepsilon 0 

for all t \in  [0,T] and all i = 1,...,N, the approximated particle dynamics (2.17) coincides 

with the Vicsek particle dynamics (2.16) for t \in  [0,T]. 

When \alpha  = 0 (normalized case), every realization of the ``approximated"" 

particle system (2.17) such that | J(t,Xti,N,Vti,N,\mu Nt )|  > \varepsilon 0 for all t \in  [0,T] 

and all i = 1,...,N is also a solution to the Vicsek particle system. The next result shows 

that for short times (2.24) happens with a probability which tends to one in the 

manyparticle limit. 

Theorem 2.14 (lower bound on the flux for the normalized case). Suppose that we 

are under the assumptions of Theorem 2.4 and assumption (H4). Consider a time T < T1 

(where T1 is defined in (3.20)) and c\ast  = c\ast (T) > 0 given by (2.10). Then, for 

all t \in  [0,T] and all \varepsilon 0 \in  (0,c\ast ), it holds that 

(2.25) , 
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where \varepsilon (N) \rightarrow  0 as N \rightarrow  \infty . 

Define  as the event such that 

for all t \in  [0,T] and all . 

Then, as a consequence of Theorem 2.14, it holds that for all \varepsilon 0 \in  (0,c\ast ) 

(2.26) , 

and so with a probability which tends to one in the many-particle limit, in the sense of 

(2.26), realizations of the approximated particle dynamics (2.17) will have nonzero flux 

for short times, and they will also be solutions to the general Vicsek particle system 

(2.16). 

Remark 2.15. Proving the well-posedness and the rigorous mean-field limit for the 

Vicsek particle system (2.16) in the normalized case (\alpha  = 0) seems to at least 

require (using the current strategy) showing that 0 a.s. 

for all N large enough, for all times in some interval, and for all values of (x,v). It is not 

clear if this is even true. This would require some kind of generalization of a strong law 

of large numbers. Such a strong law of large numbers exists for infinite exchangeable 

sequences as a result of de Finetti's theorem (see [40]). However, to the best of our 

knowledge, there is not an analogous result for a hierarchy of finite exchangeable 

sequences. 

3. The mesoscopic framework: Kinetic differential equation. 

3.1. Linear equation: Dependence on coefficients and averaging positivity. The 

differential operator \nabla \omega  is the tangential gradient---also called Gu\"nter 

derivatives---on the sphere \BbbS d - 1. It can be related to the standard gradient on \BbbR 
d by 

\nabla \omega  = \nabla v  -  \langle \nabla v,\omega \rangle 
\BbbR d \omega  = P\omega \bot  

[\nabla v], 

where \nabla v is the Euclidean gradient for functions from \BbbR d to \BbbR d. First of all 

let us emphasize that the tangential gradient \nabla \omega  displays very different 

behavior from the usual gradient. We give here three formulas that we shall use 

throughout the proofs. We refer the interested reader to [27, 1] for an introduction on 

tangential Gu\"nterderivatives and to [44, Appendix II] for the specific calculus of the 

following formulas (proven in dimension 3 but immediately extendable in dimension 

d). Integration by parts is allowed but generates an additional term in the direction of 

orientation \omega : 

 \int  \int  \int  

(3.1) \nabla \omega  (f(\omega ))g(\omega )d\omega  =  -  f(\omega 

)\nabla \omega  (g(\omega ))d\omega  + (d  -  1) \omega  fg 

d\omega . 
 \BbbS d - 1 \BbbS d - 1 \BbbS d - 1 
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The following explicit tangential derivatives for each coordinate \omega i of \omega  = 

(\omega 1,...,\omega d) on the sphere also hold: 

(3.2) \nabla \omega  (\omega i) = (\delta ij  -  \omega i\omega j)1\leqslant 

j\leqslant d and \Delta \omega (\omega i) =  - (d  -  1)\omega i. 

As mentioned in the introduction, (2.4) can be viewed as a nonlinear Fokker-Planck 

equation on the torus with local and nonlinear viscosity \sigma  and drift \nu . The 

purpose of this section is to study the associated linear equation when the nonlinearities 

are considered as given parameters. In other words we consider here the following 

differential problem: 

 
(3.3) \partial tf + c\omega  \cdot  \nabla xf = \nabla \omega  \cdot  

\bigl( \sigma (t,x,\omega )\nabla \omega f + f\Psi (t,x,\omega 

)\bigr) , 

where \sigma  and \Psi  are given functions. 

The issue of existence and uniqueness for (3.3) has been solved, for instance, in 

 
[11, Appendix A] for velocities in \BbbR  or \BbbR 2 for constant \sigma  with \Psi  and 

\nabla \omega  \cdot \Psi  being in 

. However, their methods are directly applicable for velocities in \BbbS d - 1 as shown 

in [33, Lemma 4.1] for constant \sigma . The case of nonconstant \sigma  is a 

straightforward adaptation of their proofs if \sigma  belongs to L\infty t,x,\omega  and is 

uniformly bounded from below by a constant \sigma 1 > 0 (note that one could also 

adapt to tangential derivatives standard Galerkin-type methods for linear parabolic 

equations [28, Chapter 6], as done in [32] in the spatially homogeneous case). We thus 

omit the proof and state the following theorem. 

Theorem 3.1. Let \sigma  be in L\infty t,x,\omega  uniformly bounded from below, \sigma 

(t,x,\omega ) \geqslant  \sigma 0 > Then for any  there exists a unique f in the 

space 

, 

solution to (3.3) with initial datum f0. 

Moreover, if f0 is nonnegative, then f is nonnegative. 

Section 3.1.1 is dedicated to Lp bounds and gain of regularity for solutions to (3.3), 

while section 3.1.2 studies the dependences on the viscosity and friction. To conclude, 

section 3.1.3 tackles the issue of an explicit lower bound on the vanishing time for 

velocity averaging densities. 

3.1.1. \bfitL \bfitp  bounds and gain of regularity. The issue of Lpx,\omega  estimates and 

gain of regularity had already been investigated in previously cited references for 

 
1 , and let \Psi  and \nabla \omega  \cdot  \Psi  be in L\infty t,x,\omega  with the orthogonal 

property P\omega \bot (\Psi ) = \Psi . 
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particular \sigma  and \Psi , and we provide here an adapted version that fits our 

general setting. 

Proposition 3.2. Let p belong to [2,+\infty ] and let f0 \geqslant  0 be in  with 

mass \| f0
\| 

L1x,\omega  = M0. Under the assumptions of Theorem 3.1 on \sigma  and \Psi , the 

solution f to (3.3) is in Lpx,\omega  and preserves the mass M0. More precisely it satisfies 

 \forall t \geqslant  0,\| f(t)\| Lpx,\omega  \leqslant  eCp(\sigma ,\bfPsi )t \| f0\| Lpx,\omega  , 

and it also gains regularity in \omega  when p < +\infty  in the following sense: 

, 

where 

(3.4) , 

with C\infty  = limp\rightarrow \infty  Cp. 

Proof of Proposition 3.2. 

 
Step 1: Lp bounds and gain of regularity. Note that since \nabla \omega  and \Psi  are 

orthogonal to \omega , we can perform on (3.3) integration by parts on \BbbS d - 1 as if 

we were working with classical derivatives. Indeed, the orthogonality to \omega  exactly 

cancels the additional term in the tangential derivatives integration-by-parts formula 

(3.1). It yields, 

for any p \geqslant  2, 

 

We use that the first integrand on the right-hand side can be written as a divergence in 

x : \nabla x\cdot (c\omega  | f| p), whereas the second one can be written as (p - 1)\sigma 

(t,x,\omega )| f| p - 2 (\nabla \omega f)2. 

This leads to the following upper bound: 

 

Downloaded 06/07/22 to 109.158.135.86 . Redistribution subject to CCBY license  



 CAUCHY THEORY AND MEAN-FIELD FOR VICSEK MODELS 1151 

© 2022 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license 

\leqslant  

\leqslant 

. 

Note that we used the Cauchy--Schwarz and Young inequalities for any \eta  > 0. 

Choosing = 0 gives us 

 

\leqslant . 

From this we deduce, thanks to the Gr\"onwall lemma, that for all t \geqslant  0 

 . 

The latter is exactly the standard bounds in Proposition 3.2 for p in [2,+\infty ), obtained 

as an a priori estimate. The proof that f belongs to Lp follows standard methods (also 

used in [33]) where our kinetic equation is approximated by a linear iterative scheme 

for which each solution fn is in Lp and (3.5) holds at each step. Then the uniqueness of 

the kinetic solution implies that fn \rightarrow  f and taking the limit in (3.5) shows that 

f belongs to Lp and satisfies (3.5). 

Step 2: Mass conservation and L\infty  bounds. Now let us suppose that f0 is 

nonnegative, which implies that f is nonnegative at all time by Theorem 3.1. Hence, it 

holds that 

 

because, again, the integration by parts (3.1) does not generate additional terms in the 

direction of \omega . This concludes the preservation of the -norm. 

The  estimates follows straight from the limit p goes to +\infty , since f(t) 

belongs to .  

3.1.2. Dependence on the coefficients. Our strategy to tackle the nonlinear 

equation is via a fixed point argument. We thus need to understand how solutions to 

(3.3) differ from one another when they are associated to different coefficients \sigma  

 

and \Psi . The main issue in establishing an estimate on \| f1  -  f2
\| 

Lpx,\omega  of two different 

solutions relies on the fact that the gain of regularity proved in Proposition 3.2 is highly 

nonlinear as soon as p > 2. Moreover, we did not manage to quantify the way the gain of 

regularity vanishes at initial time, so we cannot close a direct L\infty t fixed point method. 

We shall thus only study the dependence on the coefficient in L2t,x. 
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Proposition 3.3. Let f0 be a nonnegative function in . Suppose that 

\sigma 1, \sigma 2 and \Psi 1, \Psi 2 satisfy the assumptions of Theorem 3.1. Let f1 and f2 be 

the solutions of (3.3) associated, respectively, to the coefficients (\sigma 1,\Psi 1) and 

(\sigma 2,\Psi 2) with initial datum f0. 

Then the following holds for any t \geqslant  0: 

, 

where C2 = C2(\sigma 1,\Psi 1) + C2(\sigma 2,\Psi 2) as defined in Proposition 3.2. 

Remark 3.4. The main difficulty with dealing with local-in-time \sigma (f) appears 

in the second term on the right-hand side above. Indeed, from Proposition 3.2 we see 

that  is integrable on [0,t], and thus  vanishes when t goes to 0, 

thus almost managing to close a contraction fixed point argument. As we shall see later 

on, however, we need an explicit independence over \sigma  (other than inf \sigma  and 

sup\sigma ) to avoid any nonlinear breakdown of contraction theorem in short times. 

As a result an L2([0,T],L2x,\omega ) setting is required to get an extra integration in time. 

This explains hypothesis (H2), but one could also ask for more regularity for \sigma  and 

f0 to explicitly estimate the convergence to 0 of  with parabolic regularity. 

Proof of Proposition 3.3. To shorten notation we will use \sigma + = \sigma 1 + \sigma 2, 

\sigma  -  = 

 +   -  
\sigma 1 - \sigma 2, \Psi  = \Psi 1+\Psi 2, and \Psi  = \Psi 1 - \Psi 2. Also we denote the 

constant constructed from (3.4) by C2 = max\{ C2(\sigma 1,\Psi 1),C2(\sigma 2,\Psi 

2),C2(\sigma +,\Psi +),C2(\sigma  - ,\Psi  - )\} . 

 Using the algebraic identity )] we find 

 . 

We start by 

bounding the 

terms in f1  -  f2 as in Proposition 3.2 and obtain 

 + 

  dxd\omega , 
\Omega  
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where . We bound the two terms inside the integral on the righthand 

side. First, thanks to an integration by parts (3.1), 

\int  \int  

(f1 - f2)\nabla \omega \cdot \bigl[ \sigma  - \nabla \omega  (f1 + f2)\bigr] dxd\omega  =  -  \sigma  

- \nabla \omega (f1 - f2)\cdot \nabla \omega (f1+f2)dxd\omega . 

\Omega \times \BbbS d - 1 \Omega \times \BbbS d - 1 

The Cauchy--Schwarz and Young inequalities yield 

. 

The second integrand in (3.6) is dealt with in the same way, and we get 

 . 

We then plug (3.7) and (3.8) into (3.6) and get 

 

 , 

on which we apply Gr\"onwall's lemma to obtain 

(3.9)  

To conclude we apply Proposition 3.2 to bound the second term on the right-hand side, 

which directly gives the expected result.  

3.1.3. Estimation of vanishing time for velocity averaging densities. Now we 

turn to an explicit estimation of the vanishing time of velocity averaging densities. 

Proposition 3.5. Let p belong to [2,+\infty ] and f0 \geqslant  0 be in Lx,\omega 1 \cap 

Lpx,\omega . Let also 

\sigma  and \Psi  satisfy the assumptions of Theorem 3.1 supplemented with \sigma  

Lipschitz. Let 

f be the solution to (3.3) associated to f0. For any K in  denote 

\int  
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\bfitJ (t,x,\omega ) = (Ji(t,x,\omega ))1\leqslant i\leqslant d =d - 1 f(t,x\ast ,\omega \ast )K(t,x,x\ast 

,\omega ,\omega \ast )dx\ast d\omega \ast . 
\Omega \times \BbbS  

Then the following holds: 

\forall (t,x,\omega ) \in  \BbbR + \times  \Omega  \times  \BbbS d - 1, | \bfitJ (t,x,\omega )|  

\geqslant  | J(0,x,\omega )|   -  K\infty  \| f0\| L1x,\omega  t, 

where we defined 

(3.10)  

with 

(3.11) . 

Proof of Proposition 3.5. Since f0 is nonnegative and belongs to L1x,\omega  \cap  Lpx,\omega  

we deduce from Theorem 3.1 and Proposition 3.2 that f(t) is nonnegative and belongs 

to 

L1x,\omega  \cap Lpx,\omega  for all time. Hence, we can multiply (3.3) by K(x,x\ast ,\omega 

,\omega \ast ) and integrate 

 
by parts (3.1). Here again note that there are no additional terms along \omega \ast  since 

\Psi and \nabla \omega \ast  are both orthogonal to \omega \ast . This yields 

 
\geqslant 

 

\geqslant   - Ki,\infty  \| f0
\| 

L1x,\omega  | Ji(t,x,\omega )| , 

where we used conservation of mass along time. Summing over i we obtain 

\geqslant   

\geqslant  . 

The latter implies that 
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which concludes the proof.  

3.2. The local-in-time nonlinear Cauchy theory. The present section is devoted 

to the proof of Theorem 2.4 thanks to the linear study we presented in section 3.1. We 

shall prove existence, uniqueness, and the global existence criterion to 

(3.12)\partial tf + c\omega  \cdot  \nabla xf = \nabla \omega  \cdot  (\sigma (f)\nabla \omega f) 

+ \nabla \omega  \cdot  (\nu (f)fP\omega \bot  [\Psi [f]]). 

Proof of Theorem 2.4. We fix p in [2,+\infty ] and f0 \geqslant  0 in L1x,\omega  \cap  

Lpx,\omega . We recall some assumptions of Theorem 2.4: 

\int  

f0(x,\omega ) dxd\omega  = M0 > 0, 

\Omega \times \BbbS d - 1 inf d - 1 | \bfitJ 

[f0](x,\omega )| 
\alpha  = J0 > 0. 

(x,\omega )\in \Omega \times \BbbS  

The strategy is to apply a contraction fix point argument so we start by defining a 

complete metric space on which we shall work. For any M \geqslant  M0 and T > 0 we 

define 

 \left\{   esssup[0,T] \| f(t)\| L1x,\omega  

\leqslant  M \right\}    

(3.13) \Gamma , and \nu . esssup

  
    [0,T]\times \Omega \times \BbbS d - 1 

Note that since J[f] is an integral over (x\ast ,\omega \ast ) against K and because K 

 
(by (H1)), a Cauchy sequence for the L2-norm in \Gamma MT indeed converges in 

\Gamma MT . 

For a function  we have that g belongs to , so by Fubini's theorem g 

belongs to L2([0,T],L2x,\omega ) and for almost every t in [0,T] the function g(t,\cdot ,\cdot 

) belongs to L2x,\omega . Therefore \sigma (g(t)) and \nu (g(t)) are defined almost 

everywhere in [0,T], and with hypotheses (H2) and (H3) one has 

\sigma 0 \leqslant  \sigma (g(t)) \leqslant  \sigma \infty  and \| \nu 

(g(t))\| L\infty x W\omega 1,\infty  \leqslant  \nu \infty almost everywhere in [0,T]. 

Defining 

 



1156 M. BRIANT, A. DIEZ, AND S. MERINO-ACEITUNO 

© 2022 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license 

\Psi 

(t,x,\omega ) = \nu (g(t))(x,\omega )P\omega \bot  [\Psi [g]], 

hypothesis (H1) shows that for t \in  [0,T] 

 if\alpha  = 1 1 

(3.14) \leqslant := CM, 

 if\alpha  \not = 1 

and 

 

(3.15) \leqslant  CM1 + \nu \infty C\alpha M \| K\| 
L\infty t,x,x\ast ,\omega \ast W\omega 1,\infty  := CM2 , 

where C\alpha  > 0 only depends on \alpha  and equals 1 when \alpha  = 1. Therefore 

thanks to 

Theorem 3.1 we are able to define 

 \Phi  :\Gamma  

 g\mapsto  - \rightarrow  \Phi (g) = fg, 

where fg is the solution on [0,T] \times  \Omega  \times  \BbbS d - 1 to the linear equation 

\partial tf + c\omega  \cdot  \nabla xf = \nabla \omega  \cdot  (\sigma 

(g)(t,x,\omega )\nabla \omega f + f\nu (g)P\omega \bot  [\Psi [g]]) 

associated to the initial datum f0. 

We now show that for a specific T, \Phi  is in fact a contraction from \Gamma MT to 

\Gamma MT . 

Due to Proposition 3.2 and since f0 belongs to L2x,\omega  we see that \Phi (g) belongs to 

 and also that for almost every t \in  [0,T] 

\| \Phi (g)(t)\| 
L1x,\omega  = M0 < M. 

Moreover, Proposition 3.5 gives that almost everywhere 

(3.16) | \bfitJ [\Phi (g)](t,x,\omega )|  \geqslant  J0  -  K\infty M0T. 

We defined K\infty  in (3.10) and recall it here: 

(3.17) . 

Therefore if we choose 

(3.18) , 

the lower bound (3.16) implies 

, 
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so that 

\nu \infty  

, 

and we thus proved that for any 0 < T < T0, \Phi  maps \Gamma MT to itself. 

It remains to prove that \Phi  is a contraction on \Gamma MT for T sufficiently small. 

By hypothesis (H2) we have 

. 

Also, thanks to the Lipschitz property (H3) of the friction \nu  and the kernel form of 

\Psi [g], one infers 

\leqslant  \Psi \mathrm{l}\mathrm{i}\mathrm{p} , 

where \Psi \mathrm{l}\mathrm{i}\mathrm{p} > 0 is a constant depending only on \| K\| 
L\infty t,x,x\ast ,\omega 

,\omega \ast , M, \alpha , \Psi 0, and \nu \mathrm{l}\mathrm{i}\mathrm{p}. 

This inequality comes from the algebraic identity . 

We apply Proposition 3.3 to see that for any g1 and g2 in \Gamma MT 

\leqslant  \Lambda (  , 

where 

(3.19) \Lambda (T) = . 

Note that we used Proposition 3.2 to obtain explicit constants. To conclude, it suffices to 

choose (3.20)  

because then for any g1 and g2 in \Gamma MT we have proved 

, 
,T 

which implies that \Phi  is a contraction on \Gamma MT . 

We thus proved the local existence and uniqueness of a solution f to the nonlinear 

kinetic equation (2.4) in  with T\mathrm{m}\mathrm{a}\mathrm{x} \geqslant  T1. The 

solution f belongs to  due to Proposition 3.2 

since \sigma (f) and \nu (f) 

are well-defined and satisfy the required assumptions, as we saw above. At last, thanks 

to the global-in-time Cauchy theory for the linear equation given by Theorem 3.1 we see 

that if lim  , then we can apply our fixed point 

argument starting at T\mathrm{m}\mathrm{a}\mathrm{x}, and therefore 

T\mathrm{m}\mathrm{a}\mathrm{x} must be +\infty . This concludes the proof of Theorem 2.4.  

\

f
t \i

n  
[0 ,T ] , 

|  \

n

( ( \

P

g )) |  

|   [ ( \

P

g )]( t,x,\om

ega  

) |  \

al

 
\

al

+(1  -  \

al

) J 0 
2 
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3.3. Global existence and decay of the free energy. The present section focuses 

on some important cases where one is ensured to have a globally defined solution to the 

fully nonlinear kinetic equation (2.4). Then we get a look into the free energy and its 

energy dissipation. 

3.3.1. Important examples of global solutions. Theorem 2.4 offers a direct and 

easy way to check whether the solutions obtained are globally defined. Indeed, under 

the assumptions (H1)-(H2)-(H3), if one shows that inf\Omega \times \BbbS d - 1 | \bfitJ [f]| 
\alpha  

cannot vanish along the flow, then indeed sup\Omega  cannot explode in finite 

time. 

The nonnormalized case: \bfitalpha  \not = 0. The discussion above implies that 

when \alpha  \not = 0, then 0 for any function f so that \Psi [f] is well-

defined. Therefore for any \alpha  \not = 0 the solutions constructed in Theorem 2.4 are 

global in time. This is the case of the equations looked at in [43, 26, 32], among others. 

The nonasymptotic normalized case: | 
\bfitnu 

\bfitJ ([
\bfitf 

\bfitf )]|  prevents any 

explosion. Here we are interested in the normalized framework \alpha  = 0, but when 

the coefficient \nu (f) compensates for a possible vanishing of | \bfitJ [f]| , namely, if we 

add the assumption that  is a bounded function when | \bfitJ [f]|  tends to zero. 

Again, in this particular case the solutions constructed in Theorem 2.4 are global in time. 

This is the case of equations looked at in [14, 16] where \nu (f) = \nu (| Jf| ) with  

bounded and is generalized here, for instance, to any \nu (f) = \nu (| \bfitJ [f]| ) with  

bounded near zero. 

The normalized case of a kernel with one coordinate with a strict sign. 

In this paragraph we assume that the kernel K(t,x,x\ast ,\omega ,\omega \ast ) is such that 

one of its coordinates Ki has a strict sign in the following sense: there exists a positive 

constant ki > 0 such that 

 or sup Ki \leqslant   - ki. 
\BbbR +\times \Omega \times \Omega \times \BbbS d 

- 1\times \BbbS d - 1 

It is a direct verification since, thanks to the positivity of f, either 

\int  \int fKi dx\ast d\omega \ast  \geqslant  kiM0 or fKi dx\ast 

d\omega \ast  \leqslant   - kiM0. 

 \Omega \times \BbbS d - 1 \Omega \times \BbbS d - 1 

Therefore, Ji(t,x,\omega ) cannot vanish in finite time and again, in this particular case, 

the solutions constructed in Theorem 2.4 are global in time. 

The Vicsek kernel operator. We study the special case when K(t,x,x\ast ,\omega 

,\omega \ast ) = \omega \ast  and normalized \alpha  = 0, as in [14, 16, 33, 30] for the 

spatially homogeneous equation. Note that here we also obtain the global-in-time 

solution for the nonspatially homogeneous setting. We also assume that \nu  and \sigma  
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do not depend on x or \omega  and that the friction \nu  is negative (standard in all 

previous studies). 

Contrary to the setting above, the present kernel can degenerate in the sense that 

one nonzero coordinate of K can possibly vanish later on but gives rise to another 

nonzero coordinate. As a consequence, the full | K|  will not vanish in finite time. First 

we explicitly write 

 \int  \bfitJ  

 Ji(t,x,\omega ) = Ji(t) =\omega i\ast f(t,x\ast ,\omega \ast )dx\ast d\omega \ast  and

 \Psi  = . 

 \Omega \times \BbbS d - 1 | \bfitJ |  

As before let us consider the computation below for 0 \leqslant  t < 

T\mathrm{m}\mathrm{a}\mathrm{x}, which in the present setting yields 

. 

Thanks to the properties of the tangential derivatives we can compute directly with 

(3.2) 

 

\geqslant   - (d  -  1)\sigma 0 | \bfitJ (t)| 2 . 

Note that we use the fact that the friction is negative. Using Gr\"onwall's inequality we 

conclude that | \bfitJ (t)| 2 \geqslant  | \bfitJ (0)| 2 e - 2(d - 1)\sigma 0t. 

These computations were already done in a homogeneous regularized setting in 

[30], and our local theory allows us to carry them out directly. Such a lower bound thus 

implies the nonvanishing of | \bfitJ (t)|  in finite time, thus leading again to a global-in-

time solution in this setting. 

3.3.2. Decay of the free energy. We recall our definitions for the free energy and 

the energy dissipation (2.12)--(2.13): 

 

Let f0, \sigma , \nu , and K be as in Theorem 2.4. We now establish the decay of \scrF 

[f](t): 
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(3.21) . 

It comes from direct computations. Indeed since  it follows by 

integrating by parts formula (3.1), 

 

Hence, 

 

as claimed above. 

4. Mean-field limit: Proofs of the results in section 2.3. Let us first describe the 

strategy we are about to implement. At the core, we will use the coupling approach 

popularized by Sznitman [47] (which differs from classical BBGKY approaches [36]). We 

will prove Theorems 2.10 and 2.11 and follow the same steps as in [3] and the results 

in [5]. 

4.1. Preliminaries: Functional framework and notation. In this section 

we will work in the space \scrH  defined in section 2.1 and with the 2-

Wasserstein distance also defined there. We will need some results on 

Wasserstein distances in what follows, so we summarize them next (these 

results and proofs can be found in [49]). In our setting, the Wasserstein 

distance of order 1 is given by 

 \Biggl\{ \Biggl[  \Biggr]  

\int  

 W1(m,p) := inf | z  -  u| \pi (dz,du) ; 
(\Omega \times \BbbR d)2 

\Biggr\}  

 \pi  \in  \scrP (\Omega  \times  \BbbR d)2 with marginals m and p . 

This distance can be expressed in duality form using the Kantorovich--Rubinstein 

distance 

(4.1) 
. 
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Also, by H\"older's inequality, it holds that 

(4.2) W1 \leqslant  W2. 

4.2. The nonsingular dynamics. To prove Theorems 2.10 and 2.11, we 

will consider first modified versions of systems (2.17) and (2.21) where we 

work with 

Lipschitz coefficients. Being more precise, first we construct \gamma  : \BbbR d  - 

\rightarrow  \BbbR d Lipschitz and bounded with 

4.3. \gamma (v) = v, when | v|  \leqslant  2. 

We will use the function \gamma  as a substitute of the variable V (t) in some parts of 

the equations. We do this to be able to apply known results of existence and uniqueness 

of solutions for stochastic differential equations that require the coefficients to be 

Lipschitz and bounded (see Theorem A.2). We will prove in a second stage that along 

the dynamics it holds that | V (t)|  = 1; therefore \gamma (V (t)) = V (t) and we recover 

the terms in the original equation. Second, we define a functional \tau 0 as (4.4) \tau 

0(x,v,m) = \tau \varepsilon 0(x,\gamma (v),m). 

We will show that \tau 0 is Lipschitz and bounded in the whole \scrH . 

Lemma 4.1. The functions r = r(x,v,m) := | J| (x,\gamma (v),m) : \scrH  \rightarrow  

\BbbR + and \tau 0 = \tau 0(x,v,m) : \scrH  \rightarrow  \BbbR + are Lipschitz and bounded. 

Proof of Lemma 4.1. We notice, first, that since \gamma  is bounded, then 

K(x,\gamma (v),m) is bounded in all the variables and, therefore, rf(z) is bounded in 

\scrH . Now, letting f,g \in  \scrP 2(\Omega \times \BbbR d) and fixing z \in  \Omega 

\times \BbbR d, we show next that rf := r(z,f) is Lipschitz in f. Consider z,z\prime  \in  

\Omega  \times  \BbbR d and for z = (x,v) denote z\widetilde  = (x,\gamma (v)). Now, we 

consider (the integrals are in \Omega  \times  \BbbR d) 

 

\leqslant \leqslant 

 

\leqslant  \| K\| Lip(\| \gamma \| Lip + 1)| z  -  z\prime |  

 \bigm|  \bigm|  

 \bigm|  \biggl( \int  \int  \biggr) \bigm|  

 +\| K\| Lip \bigm|  sup \varphi (y)f(dy)  - \varphi (y)g(dy) 

\bigm|  

 \bigm|  \bigm|  

 \bigm| \| \varphi \| Lip\leqslant 1 \bigm|  

= \| K\| Lip(\| \gamma \| Lip + 1)| z  -  z\prime |  + \| K\| LipW1(f,g) 

\leqslant  \| K\| Lip(\| \gamma \| Lip + 1)| z  -  z\prime |  + \| K\| LipW2(f,g), 
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where in the second line we used the reverse triangle inequality; in the third line we 

have used that \int 
\BbbR 2d f = 1 and that K is Lipschitz; in the fourth line we used that 

\gamma is Lipschitz and chose an arbitrary z0 \in  \BbbR 2d; the fifth line is given by (4.1); 

and the last inequality follows from (4.2). Therefore, we conclude that r = rf(z) is 

Lipschitz in \scrH . 

Next, we also show that \tau 0 is Lipschitz and bounded in \scrH . First, whenever r 

\geqslant  \varepsilon 0 we have that (\alpha  + (1  -  \alpha )r) - 1 is also Lipschitz and 

bounded for all \alpha  \in  [0,1]; therefore, \tau 0 is the product of Lipschitz and 

bounded functions, and hence is Lipschitz and bounded.  

With the function \tau 0 we define the nonsingular particle dynamics as 

(4.5a) \left\{ dXti,N = Vti,Ndt, 

       dVti,N = \nu (\mu N)P(V i,N)\bot (\tau 0(Xi,N,V i,N,\mu N))dt 

1 

(4.5b) 

(this is exactly system (2.17) substituting \tau 0 by the function \tau \varepsilon 0), and the 

nonsingular auxiliary process is given by 

(4.6a) 

(4.6b) 

(4.6c) 

(again this is exactly system (2.21) after substituting \tau 0 by \tau \varepsilon 0). 

Analogously, we also consider the nonsingular kinetic equation in \Omega  \times  \BbbS 
d - 1 given by 

(4.7)\partial tf + \omega  \cdot  \nabla xf = \nabla \omega  \cdot  (\sigma (f)\nabla \omega f) + 

\nabla \omega  \cdot  (\nu (f)f\nabla \omega  \tau 0(f)). 

Note that under the assumptions of Theorem 2.4, (4.7) has global existence and 

uniqueness of solutions in the spaces stated in Theorem 2.4. 

Remark 4.2. Notice that we are assuming that \nu , \sigma , and \nabla v\sigma  are 

bounded and Lipschitz for all v \in  \BbbR d rather than v \in  \BbbS d - 1 (see hypothesis 

(H4)). However, we just need \nu , \sigma , and \nabla v\sigma  to be Lipschitz and 

bounded in a neighborhood of | v|  = 1, as we can use regularizing arguments as the one 

done to define the functional \tau 0. 
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Proposition 4.3. Theorems 2.10 and 2.11 hold by replacing in the statements system 

(2.17) by system (4.5), system (2.21) by system (4.6), and the kinetic equation (2.4) by the 

kinetic equation (4.7). 

We prove this Proposition in section 4.4. The proof of Theorems 2.10 and 2.11 is 

direct, assuming Proposition 4.3 holds true. 

Proof of Theorems 2.10 and 2.11 assuming Proposition 4.3. The result is direct by 

Lemma 2.9, since it implies that the nonsingular dynamics and the approximated 

dynamics coincide.  

4.3. Proof of Theorem 2.14. Let ft be a solution to the Vicsek kinetic equation (2.4). 

By the proof of Theorem 2.4 we know that for T < T1 (with T1 given in (3.20)) it holds 

that 

(4.8) . 

Therefore, for t \leqslant  T the approximated kinetic equation (2.19) coincides with the 

Vicsek kinetic equation (2.4). 

Suppose now that for all a > 0 it holds that 

(4.9) , 

where \varepsilon (N) \rightarrow  0 as N \rightarrow  \infty . If (4.9) holds, then we 

have that 

(4.10) 

 \biggl(  \biggr)  \biggl(  \biggr)  

\BbbP  inf inf | J(t,x,v,\mu Nt )|  > \varepsilon 0 = 1  -  \BbbP  inf inf | J(t,x,v,\mu Nt )|  

\leqslant  \varepsilon 0 t\in [0,T] (x,v) t\in [0,T] (x,v) 

\geqslant  , 

where we used the inequality 

, 

which follows from the triangular inequality (| | a|   -  | b| |  \leqslant  | a  -  b|  for all a,b 

\in  \BbbR ). 

The bound 

 

\geqslant  inf inf | J(t,x,v,ft)|   -  | J(t,x,v,ft)  -  J(t,x,v,\mu Nt )| t\in 

[0,T] (x,v) 

 \geqslant  inf inf | J(t,x,v,ft)|   -  sup | J(t,x,v,ft)  -  J(t,x,v,\mu tN )|  
 t\in [0,T] (x,v) (x,v) 

\geqslant  c\ast   -  sup sup | J(t,x,v,ft)  -  J(t,x,v,\mu Nt )|  
t\in [0,T] (x,v) 
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holds by (4.8). Using this inequality in combination with (4.10), we deduce that 

 

\geqslant  . 

Finally, applying (4.9) in this inequality, we obtain (2.25), from which we conclude the 

proof of the theorem. 

We are left with checking that (4.9) holds. We have the following by applying 

Markov's inequality: 

 

(4.11) \leqslant . 

Now, let C(K) be the Lipschitz constant of K (which does not depend on (x,v)). By the 
Kantorovich characterization of the 1-Wasserstein distance given in (4.1) we have that 

. 

We take first the supremum over (x,v) on the previous expression, but observe that the 

right-hand side is independent of (x,v), and then we take expectations. The result is that 

 . 

By the triangle inequality, it holds that 

, 

where  denotes the empirical measure associated to the nonlinear process (2.21). 

Now, applying (A.5), we have that 

 \BbbE  sup 

 | Xt  -  Xt | 2 + | Vt -  V t | 2 

\leqslant , 

where in the second inequality we used the identity (A.5) and in the third inequality we 

used the Cauchy--Schwarz inequality to get rid of the square root and that sup(| b|  + 

| c| ) \leqslant  sup| b|  + sup| c|  and sup| b| 2 = (sup| b| )2 for b,c \in  \BbbR . We also recall 

that W1 \leqslant  W2. It also holds that 
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 . 

To bound this last quantity we will consider the path solutions to the auxiliary particle 

, system (2.21), i.e., the path solutions (

\Omega  \times  \BbbS d - 1)valued random variables. Denote by f[0,T] \in  \scrP (\scrC ) 

their common law and its associated empirical measure 

. 

Since the space \scrC  with the norm \| w\| \infty  := sup
t\in [0,T] | wt|  is a Banach space, one 

can define the Wasserstein distance on \scrP (\scrC ): 

 

\bi

ggr\} m \in  \scrP 2(\scrC  \times  \scrC ) with 

marginals m1 and m2 . 

One can check that for m,m\prime  \in  \scrP (\scrC ) it holds that 

\leqslant  

]. Therefore 

, 

where the limit is a consequence of Lemma A.4 (notice that, following the proof in [5], 

this lemma can be applied to random variables in \scrC ). As a consequence we have 

that 

 0as N \rightarrow  \infty . 

From these estimates, we have that  

(4.13)  

as N 

\rightarrow  

\infty , 
t\in [0,T] 

since \varepsilon (N) \rightarrow  0 as N \rightarrow  \infty  by Theorem 2.11. 

\widetilde  

Finally, combining (4.11), (4.12), and (4.13), we conclude (4.9). 

4.4. Proof of Proposition 4.3. The proof of Proposition 4.3 follows closely the 

methodologies in [3] and [5], which are based on the Sznitman approach [47]. The main 

difference is that the interaction rate \nu  and the noise coefficient \sigma  are 

considered to be constant in [3]. In particular, this gives rise to an extra term in the 

equations (coming from (2.16b)). 
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Step 1. Regularized version of the nonsingular dynamics. The nonsingular 

particle dynamics (4.5) written in It\^o's convention corresponds to (see section 

A.2 for more details) 

(4.14a) 

(4.14b) 

And the It\^o formulation for the nonsingular auxiliary process (4.6) is given by 

(4.15a) 

(4.15b) 

Remark 4.4. Notice that the solutions of (4.14) and (4.15) fulfill | Vt| 2 = | V0| 2 in the 

velocities for all times where the solution is defined (this is shown as in Lemma 

2.9). 

Step 2. Existence and uniqueness for the regularized particle system: Proof of 

part (i) of Theorem 2.10 for (4.5). We consider now a regularized version of systems 

(4.14) and (4.15) using two functions \tau 1 and \tau 2, both Lipschitz and bounded and 

satisfying 

if | v|  \geqslant  1/2, 

. 

With these functions we defined the regularized particle dynamics as 

(4.16a) 

(4.16b) 

Remark 4.5. Notice that the functions \tau 0, \tau 1, and \tau 2 are introduced to 

regularize the original system in the sense that we obtain a new system where all the 

coefficients are Lipschitz and bounded in \scrH . This regularity allows us to apply 
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classical results of existence of solutions and convergence, as we will see next. At the 

same time, when 

| V |  = 1 and | J|  \geqslant  \varepsilon 0 we recover the approximated particle equations. 

First, we have by Lemma 4.1 that \tau 0 is a Lipschitz bounded function and, 

moreover, all the coefficients are also Lipschitz bounded (using that the product of 

Lipschitz bounded functions is Lipschitz bounded; see also Remark 4.2). So we have 

existence and uniqueness of pathwise solutions for (4.16) (see [5, Theorem 1.2], which 

for completeness we have added in simplified form as Theorem A.2 in the appendix.). 

Second, one can check as in Lemma 2.9 that = 1. Therefore, the 

solution to the regularized system (4.16) is also a solution to the nonsingular system 

(4.5). 

Step 3. Existence and uniqueness for an auxiliary regularized process of 

(2.21): Proof of part (ii) of Theorem 2.10 for (4.6). Similarly as before, we consider 

a regularized version of the nonsingular auxiliary process (4.6) given by 

(4.17a) 

(4.17b) 

(4.17c) 

(4.17d) 

Since (4.17) has bounded and Lipschitz coefficients in \scrH  (this can be seen as in 

the previous proof), it admits a pathwise unique global solution (this statement is shown 

in [5, Theorem 1.7], which is a generalization of Sznitman's strategy [47, Theorem 1.1]; 

see Theorem A.3 in the appendix). We can prove as in Lemma 2.9 

that d| V t| 2 = 0, so | V t|  = 1 for all times. Therefore, the solution to (4.17) is also the 

solution of the nonsingular auxiliary system (4.6). 

Step 4. Existence and uniqueness for the nonsingular kinetic equation (4.7): 

Proof of part (iii) of Theorem 2.10 for the nonsingular case, (4.6) and (4.7). Next 

we show that part (iii) of Theorem 2.10 holds for the nonsingular auxiliary process (4.6) 

and the nonsingular kinetic equation (4.7). 

We can apply Theorem 2.4 to the nonsingular kinetic equation (4.7). Moreover, 

since \nu  is bounded and \tau 0 is also bounded we have global-in-time existence of 

solutions for (4.7). 

Now, we also know that the kinetic equation (2.4) has existence and uniqueness of 

weak solutions in L\infty ([0, Tmax), L1x,\omega  \cap  Lpx,\omega ) for p in [2,\infty ]. Let ft be the 

weak solution of the kinetic equation for t \in  [0,Tmax). We also now that for \varepsilon 

0 > 0 small enough there is a time T\varepsilon 0 \leqslant  Tmax such that | Jft|  > \varepsilon 0 

for all t \in  [0,T\varepsilon 0). Therefore, for t \in  [0,T\varepsilon 0) the solution ft of the kinetic 

equation is also a solution of the nonsingular kinetic equation (4.7). 

The fact that the Fokker--Planck equation for the nonsingular auxiliary process 

 
(Xt,V t) (4.7) corresponds to the nonsingular kinetic equation (4.7) is proven in [3] (this 

is an application of It\^o's formula; see, for example, [47, Remark 1.2], [5, Remark 
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1.8], and (A.3)). The proof that (Xt,V t) has law ft (local-in-time) is carried out in the same 

way as in [3]. 

Step 5. Mean-field limit for the nonsingular dynamics: Proof of Theorem 2.11 

for nonsingular dynamics (4.5) and (4.6). The proof of Theorem 2.11 is an application 

of the Sznitman approach, generalized in [5]. 

We can apply the result in [5, Theorem 1.10] (a condensed version can be found in 

Theorem A.5 in the appendix). 

Remark 4.6. The control in the particle position is immediate from the one in the 

velocities: 

. 

Appendix A. Some known results on SDE. For the sake of completeness, we 

introduce in this section known results for stochastic differential equations that we used 

in the main part of the document. 

A.1. Results on existence of solutions and large-particle limits. The results and 

proofs from this section can be found in a more general form in [5]. The original 

approach to proving the large-particle limit is due to Sznitman and can be found in [47]. 

General stochastic differential equations. Consider a filtered probability space 

(\Omega ,\scrF ,(\scrF t)t\geqslant 0,\BbbP ) and an (\scrF t)t\geqslant 0-Brownian motion B 

taking values in \BbbR m. Consider the stochastic differential equation giving the 

evolution for Zt \in  \BbbR p for t \geqslant  0: 

(A.1) dZt = b(Zt)dt + a(Zt)dBt, 

with initial data Z(t = 0) = Z0 \in  \BbbR p, where the coefficients a : \BbbR p \rightarrow  

\BbbR p\times m and b : \BbbR p \rightarrow  \BbbR p are Lipschitz and bounded. (This is the 

form taken by the SDE (4.16) 

with p = 2d and Zt = (Xt,Vt).) 

Definition A.1 (see Definition 1.1 in [5]). An (\scrF t)t\geqslant 0-adapted continuous process 

(Zt)0\leqslant t\leqslant T is a solution to (A.1) if 

 
Theorem A.2 (adapted from Theorem 1.2 in [5]). Let us assume that Z0 \in  L2 is 

independent of B and that the coefficients b and a are Lipschitz and bounded. Then there 

exists a unique solution of (A.1). Moreover, Zt \in  L2 for all t < T, with T finite. 

Results for nonlinear SDE. We consider a nonlinear SDE of the form (A.2) dZt = 

b(Zt,\scrL (Zt))dt + a(Zt,\scrL (Zt))dBt, 

where \scrL (Z) denotes the distribution or law of the random element Z. Here we also 

assume that b : \BbbR p \times  \scrP 2(\BbbR p) \rightarrow  \BbbR p and a : \BbbR p 

\times  \scrP 2(\BbbR p) \rightarrow  \BbbR p\times m are bounded and 
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Lipschitz. Specifically, in this case to be Lipschitz means that for all z,z\prime  \in  \BbbR d 

and all \mu ,\mu \prime  \in  \scrP (\BbbR d) it holds that 

| (b,a)(z,\mu )  -  (b,a)(z\prime ,\mu \prime )|  \leqslant  c(| z  -  z\prime |  + 

W(2)(\mu ,\mu \prime )) 

for some constant c (see section 4.1 for more details). System (A.2) is the form taken by 

the auxiliary system (4.17). 

Theorem A.3 (from Theorem 1.7 in [5]). Let us assume that Z0 \in  L2 is independent 

of B, and that the coefficients b and a are bounded and Lipschitz. Then there exists a unique 

solution to (A.2). 

For \varphi  \in  Cb2(\BbbR p), It\^o's formula applied to the process Zt gives (see 

Remark 1.8 in [5]) 

trace[a(Zs,\scrL (Zs))Ta(Zs,\scrL (Zs))]D2\varphi (Zs) 

(A.3) , 

where the exponent T denotes the transpose and D2 denotes the Hessian matrix. 

Lemma A.4 (law of large numbers; Lemma 1.9 in [5]). Let \mu  \in  \scrP 2(\BbbR p), 

and let (Zi)i\in \BbbN  be a sequence of independent and identically distributed random 

variables with common law \mu . For each N \geqslant  1 denote by \mu N the empirical 

distribution associated to the first N elements of the sequence, i.e., 

. 

Then it holds that 

(A.4) lim \BbbE [W2(\mu N,\mu )2] = 0. 
N\rightarrow \infty  

Letting zi \in  \BbbR p and zi\prime  \in  \BbbR p for i = 1,...,N, it holds (see [5, (1.24)]) 

that 

(A.5)  . 

Particle approximations (from [5, section 1.3.4]). 

Theorem A.5 (extracted and adapted from section 1.3.4 in [5]). Consider 

(A.6) and 
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(A.7) , 

where \mu Ns is the empirical distribution of the N particles. Assume that a,b are bounded 

and Lipschitz in \BbbR p \times  \scrP 2(\BbbR p). Then it holds that 

(A.8) lim . 

A.2. Stratonovich to It\^o's convention. We use the results presented in [29] as 

well as [46, V.30, Theorem (30.14)]. Particularly, if Zt is a solution to the Stratonovich 

SDE 

(A.9a), 

(A.9b) 

where B is an m-dimensional Brownian motion, and b : \BbbR p \times  [0,T] \rightarrow  

\BbbR p and a : \BbbR p \times  [0,T] \rightarrow  Mp\times m (the space of real matrices of 

dimension p \times  m) and are such that there is existence and uniqueness of solutions 

for the SDE (A.9), then Zt is a solution to the It\^o SDE: 

(A.10a), 

(A.10b) where 

. 

In our case a : \BbbR 2d \rightarrow  \BbbR 2d\times d with 

, 

where 0d\times d is a d \times  d zero-matrix and 

 

 \eta (x,v) = \alpha (x,v)Pv\bot ;\alpha (x,v) = \sqrt{} 2\sigma (f)(x,v). 

With this we have that c : \BbbR 2d \rightarrow  \BbbR 2d, with ci = 0 for i = 1,...,d since 

\gamma jk = 0 for all j = 1,...,d and any k = 1,...,d. Now, for i = d + 1,...,2d we have that 

. 

Using that 

we compute the previous expression 

and obtain that 

. 
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